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A B S T R A C T

Unmanned ground vehicles (UGVs) are becoming popular for use in agricultural environments. These unmanned systems are implemented in order to address human
labor shortages throughout the agricultural industry, and improve food safety throughout the production cycle of produce crop. Common uses of UGVs in agriculture
include: detection of animal fecal matter, surveys of crop growth, detection of crop damage from storms or floods, and detection of unwanted pests or molds.
Navigation of crop rows is typically accomplished using vision-based cameras and global positioning system (GPS) units. Machine vision strategies are implemented
to detect crop row contours and edges to ensure proper navigation of rows without damaging crops. A number of other control and navigation strategies exist for
autonomous movements of UGVs. This paper provides a survey and overview of autonomous navigation strategies for UGVs with applications to agricultural
environments.

1. Introduction

The development of UGVs for various uses from agriculture opera-
tions to military operations has been occurring for the last few decades
(Sistler, 1987). Improving the efficiency of agricultural production is a
concern as the world population continues to increase. The unique
ability of UGVs to travel through fields, while supporting sizable pay-
loads makes them ideal for an agricultural environment. The develop-
ment of UGVs for particular agricultural applications is ongoing in
academia and the engineering industry to combat issues of labor
shortages and foodborne illness which affect the agricultural industry
today (Hamrita et al., 2000). Many of the currently available com-
mercial UGVs do not offer autonomous navigation for agricultural en-
vironments, and instead depend on remote control (Husky Unmanned
Ground Vehicle Robot, n.d.; Jackal Small Unmanned Ground Vehicle,
n.d.). Various researchers have developed autonomous UGVs for spe-
cific agricultural tasks in crop rows, however these systems are de-
signed only for that particular application (Lefcourt et al., 2016).
Commercially available or open-source hardware and software are not
available for crop navigation.

Currently, GPS and geographic information system (GIS) are the
most commonly used means of guiding vehicles through an agricultural
environment without the input of a human operator. In general, these
vehicles rely on pre-planned routes, rather than having the ability to
operate in new or changing environments. In order to ensure high

location accuracy, precision GPS receivers are used. Real-time kine-
matic (RKT) and Differential GPS (DGPS), which use reference stations
located in the target environment, are used to enhance the accuracy of
GPS signal down to a few centimeters. The autonomous weeding robot
developed by Bakker et al. (2010a) navigates using this type of tech-
nology, relying on two GPS antennas connected to a RTK-DGPS re-
ceiver, improving location accuracy to 1–2 cm (Bakker et al., 2010a).

An alternative to GPS navigation is to use sensors or cameras to
interpret the local environment as the UGV travels. Radar and ultra-
sonic sensors can be used to detect large obstacles or landmarks, and
can be used in well controlled indoor environments or roads with
predefined surroundings for navigation. However, in uncontrolled
outdoor environments, natural variability can test the limits of these
types of sensors. Light Detection and Ranging (LIDAR) systems can also
be used to produce either a 2D or 3D rendering of the surroundings.
LIDAR systems utilize a laser or combination of lasers, and are not
limited by visibility or ambient light levels.

While 3D LIDAR sensing systems can be expensive, cheaper 2D
sensors can be manipulated to produce a 3D rendering for use in de-
tecting static and dynamic objects in the surroundings of a UGV, as
discussed by Rejas et al. (2015). A 2D laser sensor mounted atop a
continuously rotating platform was used to emit a focused laser beam
and receive and interpret reflection levels of objects in the path of the
laser. Based on this information, the distance between the robot and an
obstacle or object of interest was determined. The rate of rotation of the

https://doi.org/10.1016/j.eaef.2018.09.001
Received 27 July 2017; Received in revised form 1 April 2018; Accepted 2 September 2018

∗ Corresponding author.

1 Current affiliation: Northrop Grumman Corp., Baltimore, MD, 21090, USA.
E-mail address: gadsden@uoguelph.ca (S.A. Gadsden).

Engineering in Agriculture, Environment and Food 12 (2019) 24–31

Available online 10 September 2018
1881-8366/ © 2018 Asian Agricultural and Biological Engineering Association. Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/18818366
https://www.elsevier.com/locate/eaef
https://doi.org/10.1016/j.eaef.2018.09.001
https://doi.org/10.1016/j.eaef.2018.09.001
mailto:gadsden@uoguelph.ca
https://doi.org/10.1016/j.eaef.2018.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eaef.2018.09.001&domain=pdf


laser was adjusted by the system based on the density of the objects
detected in the path of the laser and the vehicle speed. Using a Hokuyo
30LX LIDAR system with a detection angle of 270° and a detection
range of 0.1–30m, the system was used to create a 3D image of a room
containing the scanner. The software for this system was developed in
ROS for optimal processing speed. Using a rotation speed of 1.5 RPS,
the scanner can be mounted atop a vehicle travelling up to 5.5m/s to
avoid obstacles in its path. After various experimental trials, it was
determined that the rotation speed of the scanner should be adjusted
based on the speed of the vehicle for optimal results. The system was
able to detect obstacles between 0.1 and 10m surrounding the UGV,
and could be used to produce 3D map renderings of the vehicle's en-
vironment as it travels.

Camera vision can also be used to visually interpret the environ-
ment for navigation and obstacle avoidance. Cameras can be used to
produce 2D images or 3D renderings of the local environment. A
standard camera can be used to capture 2D still or video images of the
crop environment, which can be processed for guidance. Navigation
based on image processing utilizes images as an input signal to detect
edges of crops and rows by recognizing differences in color or shape, or
avoid obstacles while travelling through a field. Imaging relies on a
light source to induce reflectance or a fluorescence response of the area
of interest. In agricultural fields, sunlight or infrared light sources can
be used to induce reflectance for data acquisition, while various light
sources including ultraviolet light can induce a fluorescent response.
Image processing can be used to navigate an unknown environment and
respond to changes in real-time (Mousazadeh, 2013).

In contrast, stereo vision cameras are capable of creating a 3D image
of the environment by imitating human vision, which combines data
from two separate images of the same scene to interpret the depth of
various objects. Navigation based on stereo vision through agricultural
crop rows requires a detectable height difference of the crop above the
ground (English et al., 2014). In earlier growing stages, crops may too
short to provide enough information for navigation based on the height
of the crop. Additional image processing is needed to distinguish be-
tween the crop and ground compared to mono vision cameras. Since the
processing of the stereo images required to determine depth informa-
tion is significant, this method may be less efficient than the use of
mono vision cameras to collect 2D images of the environment (Rejas
et al., 2015).

English et al. (2014) developed a guidance method for an autono-
mous weed spraying platform utilizing two different cameras for image
capture: an IDS uEye CP and a low-cost Microsoft LifeCam Cinema
webcam. A row-tracking control system developed in C++ using
OpenCV was implemented on the platform. The image processing al-
gorithm performed a series of processing and calculation steps on the
image collected by the camera. First pre-processing was performed to
remove lens-distortion effects, then the location of the horizon was
detected to determine roll and pitch. Next, the image was straightened
using roll and pitch estimations, and the image was warped to create an
overhead view for interpretation. Using the warped image, an estimate
for vehicle location and heading were determined. After correcting for
robot heading angle from the desired track was determined. Using a
Proportional-Integral controller, closed-loop experiments were run to
observe the vehicle's ability to autonomous navigate wheat and sor-
ghum stubble rows. For comparison, RTK-GPS data was collected to
record vehicle position throughout the experiments. The RMSE between
the vehicle position and the true lane location for these trials was
28 mm and 120 mm, respectively. Despite noisy images in some loca-
tions, the vehicle was able to successfully navigate both crop rows
without modification to the image processing algorithm.

Similarly, Xue and Xu developed a vision-based row guidance
method for an autonomous weeding and spraying robot (Xue & Xu,
Autonomous Agircultural Robot and Its Row Guidance, 2010). This
vehicle was equipped with a Sony CCD camera mounted to the front of
the platform. The row detection method relied on the detection of two

crops in front of the robot. Calculating the center of the detected plants,
and drawing a line between these points, the position and heading of
the vehicle was determined by comparing to a predefined line at the
center of the image. The image processing algorithm used edge detec-
tion and predetermined information about the crop size and distance
between each crop to detect plants in the image. The collected image
was converted to a binary image, and after detecting the contours of the
plants in the image, the plant's centroid was determined. These two
points were used to create the guidance line for navigation. Using a
fuzzy logic controller with two inputs (vehicle position and heading)
and one output (motor output commands), the vehicle was run through
a small vegetable crop lane. The true position of the vehicle throughout
the trial was recorded using a painted line drawn by the robot as it
travelled. With the vehicle travelling at 0.2m/s, it was able to maintain
a position within±35mm of the desired path.

Takagaki et al. (2013) created an image processing method that
could be used for autonomous navigation of a ground vehicle through
agricultural environments based on ridge and furrow detection between
rows. Two different image processing algorithms were used for images
with shade and images without shade, as determined by analysis of gray
level histograms. In order to navigate through rows with shade, color
differences were used, while texture detection was used to navigate
when shade was not present. For shade images, shadows were present
on one side of the ridge based on the angle of the sun. The edge of a
ridge was determined by observing the pixel value difference between
the light side of the ridge and the shaded side of the ridge. After the
edges of the ridges to the left and right of the vehicle were determined,
a Hough transform was applied to determine the equations of these
lines, and a center line between the two was calculated for vehicle
navigation. For images without shade, the variance within a square
region was observed to find the area in the image where the soil is
smooth, indicative of a furrow. Using the minimum variance values, the
furrow can be distinguished from the ridges in a binary transformation.
Finally, a Hough transform is applied to obtain the equation of the
furrow line for guidance along the row.

Testing the algorithms in four different fields, the camera was used
to acquire images with a variety of lighting conditions. The image
sorting algorithm correctly distinguished the shaded images from those
without shade 100% of the time. Of the 30 images taken with shade, the
image processing algorithm successfully determined the row center
100% of the time. Of the 23 images without shade, the image proces-
sing algorithm successfully determined the lane center 87% of the time.
The image processing algorithm, Takagaki et al. predict, could be im-
plemented into a control system to guide an UGV through the rows
(Takagaki et al., 2013).

Navigation in an agricultural field may require not only navigating
through a crop row, but also recognizing the start and end of a row, and
turning between rows. While image or sensor data can interpret when
an UGV has reached the end of a row, additional control is needed to
instruct the vehicle to make turns and locate the next row. Based on the
size of the rows in a particular field as well as the size of the UGV,
software can be programmed to enable the robot to make a pre-
determined turning maneuver when the end of a row is reached.

The purpose of this paper is to provide an overview of autonomous
navigation strategies for UGVs with applications to agricultural en-
vironments. The paper is organized as follows. Navigation techniques
for UGVs are described in Section 2. Two of the most popular lane
detection algorithms are summarized in Section 3, and include crop row
detection using contour tracing and Hough line transformation. Section
4 describes lane detection based on popular control strategies: PID and
fuzzy logic. The paper is then concluded in Section 5.

2. Navigation techniques

In order to control the motion of an UGV, manual or autonomous
control can be used. A manual control scheme can be utilized to direct a
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robot in performing desired tasks. For mobile, UGVs, manual control
can be executed by synching a wireless handheld controller, mobile
device or tablet to the vehicle motion. Control actions may be sent to
the vehicle from close proximity or from a remote location, depending
on the functionality of the wireless communication. Cameras may be
mounted atop the vehicle to stream live feed images to the operator
(Yang et al., 2015). Instead of using manual control, various automated
control schemes can be implemented to enable autonomous navigation
in an UGV. In order to accomplish autonomous motion, the position or
location (globally or relative to its surroundings) of the vehicle must be
determined and interpreted as an input. Next, the input can be pro-
cessed to determine a navigational goal (e.g. moving forward, back-
ward, turning, or stopping). Finally, this goal can be outputted as in-
formation to the vehicle motors and wheels. Methods of positioning and
localization include dead reckoning, range sensing, reflectance sensing,
and image processing (Xue, Zhang, & Grift, Variable Field-of-View
Machine Vision Based Row Guidance of an Agricultural Robot, 2012).

Dead reckoning is a positioning method which calculates vehicle
position based on the distance, angle, and speed of travel. While the
positioning is accurate at first, as the travel time increases, accumula-
tion of error from slipping decreases accuracy (Mousazadeh, 2013).
GPS information can be used for autonomous vehicle navigation by
determining absolute vehicle location; however, the localization in-
formation is limited by the GPS receiver. Low-cost GPS sensors can
provide accuracy to within meters, while more expensive receivers can
provide accuracy to within centimeters (Patel, 2015). Range sensing
can be accomplished by implementing infrared, ultrasonic, or other
sensors on a vehicle to detect the distance from an object for obstacle or
landmark detection (Mousazadeh, 2013). In a similar fashion, re-
flectance information from a photo resistor can provide information
about changes in the surrounds. The photo resistor will pick up varied
inputs based on the amount of light reflected off of a particular object.
Reflectance of plants will be different than that of dirt or other objects
in the field (Bakker et al., 2010a). Navigation based on image proces-
sing utilizes images as an input signal to detect crop rows or avoid
obstacles while travelling through a field. Image processing can be used
to navigate an unknown environment and respond to changes in real-
time (Mousazadeh, 2013).

While the information gathered from these sensors and methods
alone may be enough to determine an appropriate output to the vehicle,
control algorithms can be implemented to improve the accuracy and
efficiency of vehicle movement. For example, to assist in converting
input information into viable navigational control, various algorithms
can be implemented including: proportional-integral-derivative (PID)
control, fuzzy logic control, neural networks/genetic algorithm control,
and Kalman filtering. Mousazadeh (2013) conducted a review of con-
trol algorithms used in various agricultural ground vehicle applications,
concluding that a combination of multiple control strategies would
provide the best approach to navigation.

While a variety of UGV platforms are commercially available for
research and development, software for autonomous motion in crop
rows is not. Many UGV platforms are equipped with GPS antennas for
navigation of environments based on predetermined paths. However, in
a row crop environment, navigation via GPS may not provide the ac-
curacy needed to avoid damage to crops, or may require the addition of
antennas to the field for centimeter-accuracy, depending on the loca-
tion. In these cases, it may be beneficial to explore the use of image-
based navigation for real time interpretation of the UGV's current en-
vironment.

3. Lane detection algorithms

Control strategies have been developed to allow robots to navigate
crop rows autonomously using machine vision (Xue, Zhang, & Grift,
Variable Field-of-View Machine Vision Based Row Guidance of an
Agricultural Robot, 2012). The image from the camera will be

interpreted by a guidance algorithm to distinguish between the crops
and the soil between the crops. Once the location of the edges of the
crops on the left and right sides of the robot are determined, a center
point, representing the location of the center of the row within the
image, will be determined, as illustrated in Fig. 1. A predetermined set-
point representing the value of the center point when the robot is
centered within the lane will be defined based on the image collected
by the selected UGV. The error between the calculated center point and
the predetermined setpoint will be fed through either the PID (Method
#1) or the Fuzzy Logic (Method #2) controller to determine the
movement necessary to move the robot to the center, reducing the error
to zero.

The crop lane detection algorithm requires processing of the camera
image to determine which parts of the image are crops as opposed to
rows. Two image processing approaches are explored for detecting the
edges of crop rows: one using contour detection, and another using line
detection. Common techniques used to detect a particular color in
images include binary segmentation, applying morphological filters for
noise reduction, obtaining an image complement to flip the black and
white pixels in the binary image, and tracing contours within the image.
Alternatively, a Hough transform (Hough Transformation, 2016) can be
used to detect the lines after an edge detection filter has been applied to
the image. If the rows of crops can be detected accurately and effi-
ciently, navigation through the row based on image data may be pos-
sible.

3.1. Crop row detection using contour tracing

Since a stark contrast exists between the soil and the crop rows for
food crops, particularly leafy greens and other produce which make up
a large portion of the consumables that lead to foodborne illness,
common image processing techniques can be used to detect the edges of
the rows in real-time. For example, a lettuce field is dominated by large
rows of green plants alternating with brown dirt lanes (Fig. 2). Pro-
cessing this image can lead to the detection of the lanes between the
rows for effective navigation.

In order to begin processing the image, it is converted to grayscale
as a preprocessing step (Demant et al., 2013). The 8-bit image is made
up of three masks, one for red, green, and blue (RGB), respectively. The
colors are determined by a combination of three brightness values, each
corresponding to one of these RGB masks, with values ranging from 0 to
255. If one of the three masks is isolated, the original brightness from 0
to 255 corresponding to a particular pixel for the color selected will be
used to convert all three RGB values to the same level corresponding to

Fig. 1. Row center determination illustration (Xue, Zhang, & Grift, Variable
Field-of-View Machine Vision Based Row Guidance of an Agricultural Robot,
2012).
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this brightness. When all three RGB values are equal, the corresponding
color falls between white (maximum brightness) and black (minimum
brightness), storing only the intensity information, thus the pixel will be
in grayscale.

For example, in this case, the green mask is of interest since the
region of interest (lettuce crop) is green, while other areas of the field
are brown. Isolating the green mask of the image, which is the second
layer of the RGB file, will form a grayscale image corresponding to the
intensity of green in the image. As can be seen in Fig. 3, the top image
displays the original crop rows with the RGB information for a point
within the crop row at (300, 210). The grayscale RGB values are re-
presented as a percentage between 0 and 1, calculated by computing
the quotient of 171, the green value, over 256, which is equal to 0.667.
The greater the green index is at a particular point, the greater the value
of the quotient, and thus the brighter the grayscale pixel will be. Pixels
with a greater intensity, closer to 255 (or 100%), are more green, and
appear to be more white in grayscale. Pixels with a lower intensity,
closer to 0, are less green, and appear darker in grayscale.

Since the green objects in the image will appear as brighter pixels, a
brightness threshold can be set to distinguish between the areas in the
grayscale image, converting the image to binary. In this case, a global
threshold, which uses a single gray level for the entire image, can be set
(Demant et al., 2013). A global threshold will define all gray values
above the threshold value as white, and all those below the threshold as

black. For example, if the threshold value is set to 50, the point (300,
210) will be converted to a white pixel, with RGB value (255, 255,
255). However, if the threshold is set to 172, just above the original
green value of 171 from the original image, this same pixel is converted
to black, with RGB value (0, 0, 0), since it falls below the set threshold
(Fig. 4). In this case, a value of 50 is a more appropriate threshold for
this image.

Now that the image is binary, the contours of the lanes between the
crop rows can be traced. The contour of the lane is the connected line
which encloses all of the pixels that make up the object. In order for the
program to detect a contour, the concept of connectedness must be
defined. Two basic types of connectedness are used for 2-D images:
four-connectedness and eight-connectedness (Fig. 5). Starting with a
single point, the pixels surrounding it can be considered connected only
if they fall next to this point in the horizontal or vertical directions
when using four-connectedness. In contrast, diagonal pixels are also
considered to be connected to the point when using eight connected-
ness.

Based on the selected connectedness definition, a contour detecting
algorithm can be developed using the following steps for lane detection.
First, a search is initiated for a transition between the rows and the
lanes between the rows. Once this transition is located, the next
neighbor, based on the connectedness definition is determined. Since
the contour represents the border or perimeter of the object, only pixels

Fig. 2. Sample lettuce crop row (Rows of Lettuce, n.d.).

Fig. 3. Isolating the green mask of the lettuce rows.

Fig. 4. Binary Images based on Threshold Value of 50 (top) and 172 (bottom).

Fig. 5. 4-connectedness (Left) vs 8-connectedness (Right) (Demant et al.,
2013).
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along the object border are considered neighbors. Moving in a clock-
wise or counterclockwise direction, the entire image is searched until
the contour is traced. The contour has been completely traced when the
algorithm reaches the point at which it started, signifying a closed re-
gion.

In general, the object of interest in a binary image is considered to
be that which is represented by white pixels (pixels with a value of 1),
while black pixels (value of 0) are considered the background. In this
example, the crop rows are the area of interest that is denoted by white
pixels, but the lanes between the rows are the contours that should be
detected for row guidance. As such, the image can be inverted, so that
all of the pixels representing the crop rows are flipped from a value of 1
to a value of 0 and all of the pixels representing the lanes are flipped
from 0 to 1. Considering the threshold value of 50, the image is in-
verted, and the point (300, 210) is now black, while the lane pixels are
white (Fig. 6).

In various software platforms, such as MATLAB, predefined func-
tions are available to detect contours without having to program the
algorithm. In MATLAB, the function “bwconncomp.m” can be used to
find all of the connected objects within a binary image. This function
stores the x-y coordinates of all of the points that make up the contour,
which can later be used to calculate the center of a lane or row. After
the contours are detected in the image, they can be displayed on the
image. In the row detection case, the lanes between the rows should be
the largest contours in the area of interest (Fig. 7). The two largest
contours in this image are the lanes to the left and right of the center
crop row. Based on the shape of the contours, the left lane is better
detected than the right lane because of the shadows within the field.
The lane detection can be improved in a variety of ways including fil-
tering the binary image to remove noise and tuning the threshold value
to adapt to the ambient light in the field.

3.2. Crop row detection using hough line transformation

In contrast to row detection, the lines which follow the edges of the
crop row can be determined using Hough transformation (Hough

Transformation, 2016). Similar to the previous method, the first step is
to isolate the green mask of the image (Fig. 8). Next, an edge detection
algorithm can be used to convert the image to binary based on the
shapes in the image. For example, Canny edge detection, which com-
bines five steps, smoothing, finding gradients, non-maximum suppres-
sion, double thresholding, and edge tracking by hysteresis, can be used
to distinguish between edges and the rest of the image (Canny Edge
Detection, n.d.). The output image from the Canny edge detection al-
gorithm is a binary image, with the edges of objects as white pixels, and
the rest of the image as black pixels (Fig. 9).

Once the edges of the objects within the image have been detected,
a Hough transform can be performed to determine the equation of the
lines within the image. In MATLAB, the “hough.m” function can be
used to implement a Standard Hough Transform, using the parametric
representation of a line (Equation (1)):

= +x θ y θρ cos( ) sin( ) (1)

where ρ is the perpendicular distance from the image origin to the line
of interest in the image and θ is the angle, ranging between −90 and
90°, between the perpendicular projection and the x axis (Fig. 10).

The inputs to the “Hough” function are a binary image, and optional
rho and theta resolution values. The “Hough” function outputs the
Standard Hough Transform (SHT), which is a parameter space matrix
with rows and columns corresponding to rho and theta respectively, in
addition to the rho and theta arrays. The values in the SHT are the
number of points that lie on a line that is specified by the particular rho
and theta. The peak values in this matrix signify potential straight lines
within the image.

The peak values in the SHT matrix can be determined using the
“houghpeaks.m” function, which uses the SHT matrix and a specified
number of peaks to look for. The output of “houghpeaks.m” is a matrix
containing the rho and theta values of the specified number of peaks.
Finally, the rho and theta values of the peaks can be used to calculate
the equations of the lines in the image using “houghlines.m” based on
the formula in Equation (1). These lines can be drawn in the image for
visual comparison with the crop rows. For example, using the example

Fig. 6. Inverted Binary Image based on Threshold of 50.

Fig. 7. Contours in lettuce row.

Fig. 8. Grayscale image from the green mask of the example image.

Fig. 9. Binary image output of canny edge detection algorithm.
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image, Hough transform was able to detect two straight lines along the
edges of the center crop row (see Fig. 11).

It can be noted that while the line left side of the crop row follows
the edge of the row well, the line along the right side seems to be angled
slightly off from the actual row. Utilizing filters to remove noise from
the image before performing the Canny edge detection, as well as ad-
justing the Hough transform configuration can be useful in improving
the line detection for this particular image. In addition, the Hough
transform did not detect both edges of the lanes between the rows, but
rather only detected the edges of the largest row. A limitation of this
particular method is that the resulting lines are straight line approx-
imation of the crop row edges. Based on the curvature of the particular
row, this straight line approximation may not convey the necessary
information for successful navigation. Selecting a smaller region within
the image collected in which to perform the Hough transform to de-
termine the row edges would improve the approximation.

4. Lane detection with control strategies

Based on the two lane detection techniques described above, two
approaches can be taken to guide a UGV through the crop rows. For
one, the UGV can be configured to follow the edges of the lane between
two crop rows. Another approach would be to configure the UGV to
detect the edges of the crop row itself. Since the wheels (or tracks) of
the vehicle will be on the ground between the crop rows, damage can
occur if the wheels (or tracks) begin to roll over the crops themselves

rather than over the soil between the rows. Using the image data to the
detect the crop rows or lanes between the rows can be used in combi-
nation with a PID or Fuzzy Logic controller to ensure that the UGV stays
within the desired lane to avoid damage to the crops.

The configuration of the vehicle platform will determine which
approach is appropriate for this project. For example, if the vehicle is to
use the edges of the crop row for navigation, it will need to take an
image of the entire row. If the UGV is much shorter than the crops in the
row, the camera image may be blocked by the surrounding crops. To
overcome this, a platform can be used that is tall enough to mount the
camera above the row. Alternately, a platform that can straddle the
crop row, with one side of the vehicle in the lane on the left and the
other in the lane of the right side of the crop row could be used. In
contrast, an UGV which uses the edges of the lane between crop rows
can navigate, regardless of whether it can see over the tops of plants.
Both UGVs that fit within a lane and UGVs that straddle an entire crop
row could utilize the lane detection approach. Since the lane detection
approach seems to be better suited for a wider variety of UGV plat-
forms, controllers using approach are outlined below.

To convert the lane detection data to commands for the motors for
UGV navigation, an area of interest within the image can be de-
termined. For example, based on the UGV speed, the transmission speed
of the image to the computer that processes the image, and the trans-
mission speed of the navigation commands to the motors, navigation
data at a certain distance in front of the image is needed in order for
movement correction to be applied in time. In a 2-D image, this area of
interest can be selected as a set pixel value on the y-axis, which re-
presents a particular distance from the front of the UGV.

In addition, the center of vehicle relative to the image at this area of
interest should be known. This can be determined through a calibration
even before developing the controller. Theoretically, each time the
vehicle is centered and facing forward, the center of the row being
detected should align to the same pixel value. Centering the vehicle
within a sample row and processing a series of images taken by the
robot at this location can be used to determine the pixel value of the
row center. Depending on the accuracy of the image processing algo-
rithm, this center pixel value should be applicable across rows of many
widths, and can used as the set-point.

4.1. Method #1: lane detection with PID control

One of the oldest and most commonly used forms of system control
is PID, which combines proportional, integral, and derivative terms.
PID control requires a user to tune three constant parameters to control
the system response: kp, ki, and kd. Increasing the kp term generally
improves the system rise and settling times, while increasing ki im-
proves the steady state error, and increasing kd improves the percent
overshoot. However, changing each of the gain terms can also nega-
tively impact the system response characteristics, as summarized in
Table 1. For example, increasing kp can increase the percent overshoot
of the response. As such, fine tuning to determine the optimal combi-
nation of the three gain terms is important.

The error between a measured system variable and a desired set-
point is continuously calculated and is used to calculate an output to a
process variable. Equation (2) displays the general form of a PID con-
troller:

Fig. 10. Graphical representation of ρ (“rho”) and θ (“theta”) from the hough
transform (Hough Transformation, 2016).

Fig. 11. Hough transform lines in the example image.

Table 1
Impact of increasing PID gain terms on system response (Introduction: PID
Controller Design, n.d.).

Gain Term Rise Time Overshoot Settling Time Steady State Error

kp Decrease Increase Small Change Decrease

ki Decrease Increase Increase Eliminate
kd Small Change Decrease Decrease No Change
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where u t( ) is the controller output variable and te( ) is the error between
the desired location of the vehicle (set-point) and the actual location of
the vehicle based on the image data acquired. The derivative and in-
tegral values can be approximated in discrete time for implementation
in control software as seen in Equations (3) and (4):

≈
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t
e t e t

T
de( )

d
[ ( ) ( 1)]

(3)

∫ ≈ − − ⋅τ τ e t e t Te( )d [ ( ) ( 1)]
t

0 (4)

where t is the current time step, −t 1 is the previous time step, and T is
the sampling rate. PID controllers are used for a variety of industrial
applications temperature control in furnaces and pH regulators
(Common Industrial Applications of PID Control, n.d.). PID control has
also been used for agricultural applications for driver assistances. Foster
et al. utilized a PID controller to autonomously regulate the velocity of
a hydrostatic windrower to improve the machine productivity
(Mousazadeh, 2013).

The implementation of a PID controller requires gain tuning in order
to assist in guiding the system input to a predetermined set-point. The
following steps outline the software algorithm for lane detection using a
PID controller (Fig. 12):

In Step 1, a camera facing forward connected to the UGV will be
instructed to capture an image of the area. This image will be stored
within the software, and then processed in Step 2 by the image pro-
cessing algorithm. The goal of the image processing algorithm will be to
determine the pixel value of the crop row on both the left and right
sides of the robot at the predetermined area of interest (y-axis pixel
value). With the pixel values of the crops rows surrounding the UGV,
Step 3 can be completed to calculate the pixel value of the center of the
crop lane. Then, the set-point pixel value can be subtracted from the
lane center pixel value to determine the error from the set-point in Step
4. Once the error is determined, it can be feed through a PID controller
with predefined gains in Step 5 to determine appropriate motor output
values. Then in Step 6 the PID output motor values can be sent to the
motors. Finally, in Step 7, the algorithm is instructed to return to Step 1
and repeat the loop.

Setting up the PID controller for navigation will require manual gain
tuning efforts for the real system. The goals of this tuning effort should
be to reduce the percent overshoot of the system response to avoid
running into crops after a correction. The desired maximum percent
overshoot will vary based on the width of the crop lane that the vehicle
travels down, as a higher overshoot may be allowable within wider
rows. In addition, reducing the settling time of the system such that the
distance between the center of the UGV and the lane center is within a
predetermined error from center (± 1 or±2 inches) will maximize the
amount of time the robot is travelling forward at maximum speed.

4.2. Method #2: lane detection with fuzzy logic control

A Fuzzy Logic controller utilizes fuzzy logic to produce desired
outputs based on given inputs. Fuzzy logic, in contrast to Boolean logic,
allows for varying degrees of truthfulness between 0 and 1, rather than

absolute truth and falsity. In order to design a fuzzy controller, mem-
bership functions must be developed for the system input and output,
coupled with a set of rules to handle the inputs and determine what
output is appropriate for the current state of the system (Gerla, 2005).

A Fuzzy control system has three parts: fuzzification, rule evalua-
tion, and defuzzification. A set of crisp inputs, for example sensor input
data, is transformed into a set of fuzzy inputs through fuzzification. A
set of input membership functions, which encompass the relationship
between all possibly input values, is used to convert these sensor input
values to a fuzzy input value ranging between 0 and 1. Developing
appropriate membership functions for the input set is important; using
too few can lead to slow system response and using too many can cause
instability in the system. After the crisp inputs are converted to fuzzy
inputs, these values are fed through a set of rules developed for the
system. These rules are used to determine the controller output based
on the sensor input data in the form of an IF-THEN statement, which
relates the output (dependent) variables to the input (independent)
variables. Based on the fuzzy input values, the rules are evaluated and
the rule that is most true is used to determine the fuzzy outputs. Finally,
the fuzzy outputs are converted into crisp outputs through defuzzifi-
cation, which requires a second set of membership functions, con-
verting the fuzzy outputs between 0 and 1 to meaningful output values.

Fuzzy Logic control has been used for steering control in agri-
cultural and military robots. A Fuzzy Logic controller was implemented
into the DORIS robot at the University of Germany to control the
commands sent to the motors based on the steering wheel angle and the
level of force applied to the break or gas pedal to ensure smooth turning
maneuvers (Sailan et al., 2014). In addition, an UGV developed by Xue
et al. utilized a Fuzzy Logic controller to guide a robot through a corn
crop row based on the detected location of crop rows on either side of
the robot. The Fuzzy controller used two inputs (offset from center line
and heading angle), fuzzified by five triangular membership functions
with a uniform distribution. The input information was compared to the
previous position of the robot, and various turn signals were outputted
to the motors based on the position and heading angle (Xue, Zhang, &
Grift, Variable Field-of-View Machine Vision Based Row Guidance of an
Agricultural Robot, 2012).

The implementation of a Fuzzy Logic controller requires calibration
and development of membership functions for both the input and
output variables of the system. The following steps outline the software
algorithm for lane detection using a Fuzzy Logic controller (Fig. 13):

Similar to the PID controller, in Step 1, a camera facing forward
connected to the UGV will be instructed to capture an image of the area.
This image will be stored within the software, and then processed in
Step 2 by the image processing algorithm. With the pixel values of the
crops rows surround the UGV, Step 3 can be completed to calculate the
pixel value of the center of the crop lane. Then, the set-point pixel value
can be subtracted from the lane center pixel value to determine the
error from the set-point in Step 4. This step can be eliminated if the
membership functions are calibrated to directly interpret the lane
center information. Once the error is determined, it can be fuzzified
using predetermined input membership functions for the system in Step
5. In Step 6, the fuzzified error value will be evaluated using the rule set
for the Fuzzy Logic Controller, and used to determine fuzzified output
motor values using the output membership functions. Then in Step 7
the Fuzzy output motor values can be defuzzified to be sent to the
motors. The defuzzified motor command values can be sent to the

Fig. 12. PID controller lane detection.
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motors in Step 8. Finally in Step 9, the algorithm is instructed to return
to Step 1 and repeat.

In order to utilize the Fuzzy Logic controller, a calibration step must
be performed to determine the values of the membership functions for
the input and output variables. Calibration for the image input variable
can be completed by setting up the UGV at different, known locations
across the front of the crop lane to determine what range of error values
corresponds to the physical position of the robot within the lane. The
rules to evaluate the input should be setup such that the UGV performs
certain turning maneuvers based on the input from the image data.
Predetermined set speeds can be used to set up the membership func-
tions for the output variables to enable the UGV to perform the various
turning maneuvers to return to the center of the crop lane. Finally, the
fuzzy output should be converted to a command value which is
meaningful to the motors so that the maneuver can be performed.

5. Concluding remarks

Unmanned systems such as UGVs are implemented in order to ad-
dress human labor shortages throughout the agricultural industry, and
improve food safety throughout the production cycle of produce crop.
The most common use of UGVs in agriculture is detecting contaminated
plants and crops, searching for the presence of animals or pests, and
identifying crop funguses and molds. UGVs navigate crop rows, and as
such, autonomous navigation strategies have been developed. These
strategies typically make use of machine vision and PID and fuzzy
control methods. The purpose of this paper was to provide a compre-
hensive overview of autonomous navigation strategies for unmanned
ground vehicles (UGVs) with applications to agricultural environments.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://
doi.org/10.1016/j.eaef.2018.09.001.
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