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a b s t r a c t 

In this paper, a new strategy referred to as the nonlinear second-order (NSO) filter is presented and used 

for estimation of linear and nonlinear systems in the presence of uncertainties. Similar to the popular 

Kalman filter estimation strategy, the proposed strategy is model-based and formulated as a predictor- 

corrector. The NSO filter is based on variable structure theory that utilizes a switching term and gain 

that ensures some level of estimation stability. It offers improvements in terms of robustness to mod- 

eling uncertainties and errors. The proof of stability is derived based on Lyapunov that demonstrates 

convergence of estimates towards the true state values. The proposed filtering strategy is based on a 

second-order Markov process that utilizes information from the current and past two time steps. An ex- 

perimental system was setup and characterized in order to demonstrate the proposed filtering strategy’s 

performance. The strategy was compared with the popular Kalman filter (and its nonlinear form) and 

the smooth variable structure filter (SVSF). Experimental results demonstrate that the proposed nonlin- 

ear second-order filter provides improvements in terms of state estimation accuracy and robustness to 

modeling uncertainties and external disturbances. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Estimation is the process of extracting true state and param-

eter values from systems in the presence of noisy measurements,

modeling uncertainties, and unwanted disturbances. This task aims

to provide optimal estimates in terms of minimal estimation er-

ror, which is defined as the difference between the estimated and

actual state values. Inherent to the estimation process is system

and measurement noise, external disturbances, and uncertainties–

all of which can be caused by sensors, instruments, or the envi-

ronment. In order to overcome these issues, model-based estima-

tion and filtering strategies are utilized to monitor and control en-

gineering systems. In model-based methods, a probability density

function (PDF) is calculated recursively, and is based on the state

estimates. Information on the state mean and state covariance is

contained within the PDF, and can be used to provide state es-

timates. Model-based strategies are recursive, and consist of two

stages: predict and update. In the first stage, the system model

is used to estimate (or predict) the state values at the next time

step. The update stage, as the name suggests, refines the predicted

state estimates based on system measurements. The most popu-
∗ Corresponding author. 
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ar model-based method used for linear estimation problems is

he well-known Kalman filter (KF) [1] . The KF assumes that the

stimation problem is linear, the system is known, and the noise

s zero-mean and Gaussian distributed. For general nonlinear and

on-Gaussian systems, several strategies have been proposed: lin-

arization (e.g., the extended Kalman filter or EKF [2,3] ), and PDF

pproximation (e.g., the unscented Kalman filter or UKF [3] , the

ubature Kalman filter or CKF [4] ). It has been demonstrated that

he CKF is merely a special case of the UKF [4] . Due to improve-

ents in computing power and reductions in cost, particle filters

PFs) have grown in popularity [5] . Similar to the UKF, the PF uses

 large set of weighted particles that approximate the state PDF

3,6] . 

One of the main issues with the KF is that the estimation per-

ormance may degrade in the presence of modeling and parame-

er uncertainties. To overcome this issue, robust state estimation

echniques are implemented, such as minimax estimators, worst-

ase, or set-membership state estimators [7,8] . From a statistical

tandpoint, the minimax estimators deal with uncertainties that

re uniformly distributed within given bounds. In the case of el-

ipsoidal bounding sets, these estimators coincide with the KF for

inear systems. Interestingly, there also exists minimax estimators

here the uncertainty is mathematically expressed using entropy-

ike indexes [9] . Based on propagation of uncertainties, a family of

https://doi.org/10.1016/j.sigpro.2018.09.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.09.036&domain=pdf
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Nomenclature 

A Linear state matrix 

A E Piston area 

B Linear control matrix 

B E Load friction 

D P Pump displacement 

H Linear measurement matrix 

K Filter’s gain 

L Leakage coefficient 

M Load mass 

P State error covariance matrix 

Q Process noise covariance matrix 

Q e Leakage flow rate 

Q L0 Flow rate offset 

R Measurement noise covariance matrix 

S Vector of sliding variables 

T Sampling rate 

V 0 Initial cylinder volume 

a 1 ,a 2 ,a 3 Friction coefficients 

e Estimation error 

f Nonlinear state model 

k Sample time 

s Sliding mode variable 

u Control variable 

v Measurement noise 

w Process noise 

x State vector 

z Measurement vector 

βe Effective bulk modulus 

γ Convergence rate 

ε Upper bound 

ω P Motor rotational velocity 

ψ Smoothing boundary layer 
ˆ � Estimated quantity 

�+ Pseudo-inverse operator 

obust Kalman filter may be derived [10] . Other robust strategies

nclude the so-called robust KF [11,12] and the H ∞ filter [13] . The

obust KF was used for systems with bounded modeling uncertain-

ies such that an upper bound of the mean square estimation er-

or (MSE) is minimized at each step [11] . Considerable research has

een performed on the design of robust state estimation methods

or dynamic systems with bounded uncertainties, such as mini-

ax estimators [14] , worst-case [7,15] , or set-membership state es-

imators [8] . Zames [13] created the H ∞ method by removing the

ecessity of a perfect model or complete knowledge of the input

tatistics. The H ∞ theory was designed by tracking the magnitude

f the ‘energy’ of a signal for the worst possible scenario in terms

f noise levels and modeling uncertainties. 

In 2007, an initial form of the smooth variable structure filter

SVSF) was introduced based on variable structure theory intro-

uced in the 1970s [16,17] . Similar to the KF method, the SVSF

17] is a predictor-corrector strategy. However, the SVSF formula-

ion is unique since the gain is derived based on a discontinuous

orrective gain. This gain bounds state estimates to within a re-

ion of the true state trajectory, improving stability of estimates

nd robustness to external disturbances [17] . The discontinuous

orrective action provided by the SVSF gain has demonstrated ro-

ustness to bounded modeling uncertainties [18,19] . A smoothing

erm (e.g., saturation function) is used to suppress or smooth chat-

er caused by the SVSF gain [20] . However, the robustness of the

ethod comes at a trade-off; the SVSF introduced in 2007 is a

ub-optimal filter [21,22] . Gadsden extended the SVSF by deriving
 state error covariance term for it, and using the term to obtain

n optimal smoothing boundary layer [18,19] . Results demonstrate

mproved state estimation while maintaining robustness to model-

ng uncertainties and disturbances [18,19,23] . Afshari et al. have re-

earched on the design and application of hydraulic and pneumatic

ctuation systems. They implemented a number of techniques to

nalyze the dynamic behavior of such systems [24,25] . Moreover,

fshari et al. investigated the performance of popular robust esti-

ation methods with applications to fault detection and diagnosis

26–29] , maneuver vehicle tracking [30–32] , and energy manage-

ent systems [33,34] . 

This paper is motivated by state estimation problems for sys-

ems with modeling uncertainties or errors, such as in fault oper-

ting conditions. Since a higher-order version of the SVSF is de-

ived, it is expected that the proposed method will yield a more

ccurate solution to the estimation problem in terms of state er-

or. However, the higher-order accuracy comes at a trade-off with

omputational complexity and time. Since computers are being ex-

remely fast and relatively cheap, the issue of computational power

equirements is less important than a decade ago. During system

aults, the mathematical model of the system used by the filter de-

iates from the true model (e.g., normal conditions). In most cases

t is extremely difficult (or impossible) to identify all of the pos-

ible operating and fault conditions. The proposed NSO filter, de-

cribed in Section 2 , is able to overcome this issue by generating

tate estimates for systems subjected to ‘soft’ fault conditions. The

tability of the proposed filter is proven mathematically. Different

easurement cases (full and reduced) for the proposed filter are

escribed in Sections 3 and 4 , respectively. An experimental setup

as used to verify and compare the proposed NSO filter with the

opular KF and the EKF. As described in Section 5 , two cases were

tudied: linear system with only one measured state, and non-

inear system with full measurements. The paper is concluded in

ection 6 . 

. NSO filtering strategy 

The proposed NSO filter is based on the SVSF, whereby a

econd-order formulation of the gain is implemented [17] . The

trategy can be formulated to work with linear and nonlinear sys-

ems. However, for nonlinear systems without full measurements,

he nonlinearities need to be linearized or approximated. A tech-

ique is presented in [17] to obtain the gain for unmeasurable

tates of a nonlinear system without the need for linearization. The

roposed filter utilizes a prediction and update stage (described in

his section). To formulate the NSO filter, consider a nonlinear sys-

em represented by a discrete state model as follows: 

 k +1 = F ( x k , u k , w k ) , (1)

here F : R 

2 n + p → R 

n is the nonlinear state model, x k ∈ R 

n ×1 is

he state vector, u k ∈ R 

p×1 is the control vector, and w k ∈ R 

n ×1 is

he process noise (modeling uncertainties) vector. The measure-

ent model is assumed to be linear or at least piece-wise linear

uch that: 

 k = H x k + v k , (2) 

here z k ∈ R 

m ×1 is the measurement vector, v k ∈ R 

m ×1 is the mea-

urement noise, and H ∈ R 

m ×n is the measurement matrix. 

Assumption 1: The control vector u k is assumed known and

orm-bounded. Moreover, vectors w k and v k are assumed to be

nknown but norm-bounded, and with a zero mean. 

Assumption 2: It is assumed that the system with Eqs. (1) and

2) is smooth and with continuous partial derivatives. 

Based on these assumptions, consider the following steps for

he NSO filter. 
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Prediction stage: 

(1) The a priori state estimate vector is predicted as follows: 

ˆ x k +1 | k = F ( ̂  x k | k , u k ) , (3)

The a priori state estimate ˆ x k +1 | k is produced using the state

model F and the previous a posteriori state estimate ˆ x k | k . An

initial estimate ˆ x 0 ∈ R 

n ×1 is required to initialize or start the

process. The a priori measurement vector estimate ˆ z k +1 | k is

also given by: 

ˆ z k +1 | k = H ̂  x k +1 | k . (4)

(2) The a posteriori measurement error e z k | k ∈ R 

m ×1 and a pri-

ori measurement error vector e z k +1 | k ∈ R 

m ×1 are respectively

given by: 

e z k | k = z k − H ̂  x k | k , (5)

e z k + 1 | k = z k +1 − H ̂  x k +1 | k . (6)

Update stage: 

(3) A corrective gain for the NSO filter, K k +1 ∈ R 

n ×m , is obtained

as a nonlinear function of the a priori measurement error

e z k + 1 | k and the a posteriori errors e z k | k and e z k −1 | k −1 
as: 

K k +1 = f (H , e z k + 1 | k , e z k | k , e z k −1 | k −1 
) . (7)

In this paper, H is initially assumed to be full rank indicat-

ing that all states are measured, m = n . The corrective gain of

the nonlinear 2nd-order filter for cases with full state mea-

surement ( m = n ) and cases without full state measurement

( m < n ) is described in Sections 3 and 4 , respectively. 

(4) The a priori estimates are utilized to obtain a posteriori esti-

mates ˆ x k +1 | k +1 such that: 

ˆ x k +1 | k +1 = ˆ x k +1 | k + K k +1 . (8)

(5) Steps 1–4 are iteratively repeated for each sample time. 

Assumption 3: In order to apply the NSO filter, it is assumed that

both the state and measurement models can be mapped to each

other [17] . Without noise and uncertainties, it is possible to find

an inverse mapping that generates x k by iterations of the output

vector in the form of x n k = F −1 
n ( H 

+ z k +1 , H 

+ z k , u k ) [17] . Note that

H 

+ denotes pseudo-inverse of the H matrix, where m � = n . 

The SVSF presented in [17] was based on the a prior mea-

surement and a posteriori measurement errors. However, NSO in-

cludes an additional a posteriori measurement error, as described

by Eq. (7) . As demonstrated later, this improves the estimation ac-

curacy at a cost of slightly increased computational complexity. 

3. The NSO filtering strategy for fully measured systems ( m = n )

To ensure robustness, the corrective gain K k +1 for the NSO fil-

tering strategy must satisfy the Lyapunov’s second law for stabil-

ity. Theorem 1 presents a stable corrective gain restricted to sys-

tems with a full measurement matrix H ∈ R 

m ×n (m = n ) . Thereafter,

Section 4 presents the gain for cases with fewer measurements

than states ( m < n ). 

Definition 1. Let � be the backward difference operator that ap-

plies to variable x such that: �x k +1 = x k +1 − x k . It is assumed that

� is smooth and differentiable. 

Theorem 1. The NSO filter with the corrective gain (9) is considered

stable, and will generate state estimates that converge to the true

state trajectory: 

K k +1 = H 

−1 

[ 

e z k +1 | k −
e z k | k 

2 

− γ

√ 

e z k | k 
◦e z k | k 
4 

+ 

�e z k | k 
◦�e z k | k 
2 

] 

, (9)
here H ∈ R 

m ×n (m = n ) is the measurement matrix, e z k | k ∈ R 

m ×1 is

he measurement error vector, �e z k | k = e z k | k − e z k −1 | k −1 
is the time dif-

erence of the measurement error vector, and γ is a constant coeffi-

ient and is defined such that 0 < γ < 1. Note that ° denotes the Schur

element-wise) product, and the square root operator applies to e z k | k 
nd �e z k | k element-wisely . 

Proof: Consider a Lyapunov function candidate that utilizes the

easurement error vector and its discrete-time form, as follows: 

 k = e z k | k ◦ e z k | k + �e z k | k ◦ �e z k | k , (10)

here � refers to the backward difference, and where ◦ denotes

he Schur product. Based on Lyapunov’s theory, the system is sta-

le if: �V k +1 = V k +1 − V k < 0 . Multiplying both sides of the gain in

9) by H and rearranging yield the following: 

 z k +1 | k − H K k +1 = 

e z k | k 
2 

+ γ

√ 

e z k | k ◦ e z k | k 
4 

+ 

�e z k | k ◦ �e z k | k 
2 

. (11)

Following Eq. (8) , the corrective gain may be restated

s: K k +1 = ̂  x k +1 | k +1 − ˆ x k +1 | k . Substituting this relation into

11) yields: 

 z k +1 | k − H ( ̂  x k +1 | k +1 − ˆ x k +1 | k ) 

= 

e z k | k 
2 

+ γ

√ 

e z k | k ◦ e z k | k 
4 

+ 

�e z k | k ◦ �e z k | k 
2 

. (12)

The predicted and updated measurement errors at time k are

iven by Eqs. (5) and (6) as: e z k +1 | k = z k +1 − H ̂ x k +1 | k and e z k +1 | k +1 
=

 k +1 − H ̂ x k +1 | k +1 . Subtracting the predicted error from the updated

rror yields the following: 

 z k +1 | k +1 
− e z k +1 | k = −H ( ̂  x k +1 | k +1 − ˆ x k +1 | k ) . (13)

Using Eq. (13) , equality (12) may be restated as follows: 

 z k +1 | k +1 
= 

e z k | k 
2 

+ γ

√ 

e z k | k ◦ e z k | k 
4 

+ 

�e z k | k ◦ �e z k | k 
2 

. (14)

Transferring e z k | k / 2 in equality (14) to the left side of the equa-

ion, and squaring both sides of the equation using the Schur prod-

ct, it becomes: 

e z k +1 | k +1 
− e z k | k 

2 

)
◦
(

e z k +1 | k +1 
− e z k | k 

2 

)
= γ 2 

(
e z k | k ◦ e z k | k 

4 

+ 

�e z k | k ◦ �e z k | k 
2 

)
. (15)

Since γ is defined such that 0 < γ < 1, equality (15) is restated

s: 

e z k +1 | k +1 
− e z k | k 

2 

)
◦
(

e z k +1 | k +1 
− e z k | k 

2 

)
< 

(
e z k | k ◦ e z k | k 

4 

+ 

�e z k | k ◦ �e z k | k 
2 

)
. (16)

Expanding the above inequality leads to: 

 z k +1 | k +1 
◦ e z k +1 | k +1 

− e z k +1 | k +1 
◦ e z k | k < (�e z k | k ◦ �e z k | k ) / 2 . (17)

Adding and subtracting ( e z k | k ◦ e z k | k ) / 2 into the left hand side of

he above and rearranging yields the following: 

 e z k +1 | k +1 
◦ e z k +1 | k +1 

− 2 e z k +1 | k +1 
◦ e z k | k + e z k | k ◦ e z k | k 

− e z k | k ◦ e z k | k − �e z k | k ◦ �e z k | k < 0 . (18)

Equality (18) may be restated such that: 

 z k +1 | k +1 
◦ e z k +1 | k +1 

+ ( e z k +1 | k +1 
− e z k | k ) ◦ ( e z k +1 | k +1 

− e z k | k ) − e z k | k ◦ e z k | k 
−�e z k | k ◦ �e z k | k < 0 . (19)

According to the Lyapunov function, given by V k = e z k | k ◦ e z k | k +
e z k | k ◦ �e z k | k , inequality (19) becomes: 

V k +1 < 0 . (20)



H.H. Afshari et al. / Signal Processing 155 (2019) 182–192 185 

Fig. 1. Illustrative concept of the NSO filter. 
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emark 1. An intuitive result of Theorem 1 is that if the stability

riterion (10) is preserved, then absolute values of the measure-

ent error will decrease over time. However, factors such as the

easurement noise, modeling and parametric uncertainties, dis-

retization error and measurement errors cannot be canceled com-

letely. Since the measurement and the process noise are assumed

o be norm-bounded with zero mean, it is deduced that they only

ecrease until reaching a subspace bounded by ɛ e and ɛ �e , respec-

ively. Thereafter, the measurement error remains bounded such

hat || e z k | k || < ε e and || �e z k | k || < ε �e . 

emark 2. Following equality (15) , γ may be referred to as the

onvergence rate coefficient, since proper selection of γ such that

 < γ < 1 preserves the stability and convergence of the filter. 

emark 3. The NSO filter can be applied to nonlinear systems with

ull measurements (m = n ) , without the need for linearization or

pproximation. This capability is an advantage of this method over

ther estimation methods that are using linearization (e.g., EKF [2] )

r some form of approximation of nonlinear terms (e.g., UKF [3] or

KF [4] ). However, the NSO filter does require a linear or piecewise

inear measurement model. Note that, however, for cases without

ull state measurement ( m < n ), the nonlinear state model needs to

e linearized. 

Fig. 1 shows the main concept of the NSO filter. As shown in the

gure, an initial state estimate is made utilizing the state model

known or estimated). The NSO corrective gain pushes the esti-

ated state trajectory in a path that leads it within a region of the

ctual state trajectory. This region is referred to as the boundary

ayer. The width of this layer depends on the amount of modeling

nd parameter uncertainties, measurement noise, and other factors

uch as sample time, discretization error, and so forth. The width

s typically defined by design, and can be tuned. Once within the

xistence subspace, the stability criterion guarantees that the es-

imated state remains in a close vicinity of the actual state, as-

uming norm-bounded noise and uncertainties. In this context, the

easurement error e z k | k and its time difference �e z k | k may be

ounded by two upper bounds such as ɛ e and ɛ �e , respectively. 

In the NSO filter, the stability criterion applies constraints on

oth the measurement error e z k | k and its time difference �e z k | k .
hereas, in the other first-order filters (e.g., KF and SVSF), there

xists only one constraint that applies to only the measurement
rror e z k | k . This characteristic will increase the accuracy of the NSO

lter with respect to first-order filters for state estimation un-

er uncertain conditions (as per Fig. 2 ). Moreover, the corrective

ain (9) value at k + 1 computationally depends on the values of

he measurement error at k and k − 1 , namely e z k | k and e z k −1 | k −1 
.

his means that the filter updates the a priori state estimates at

 + 1 based on information available from two time steps before.

ence, it utilizes more information from the past which results

n a smooth estimate (i.e., smoothing filter), and consequently re-

uces undesirable effects of noise, spikes, and other high frequency

ynamics on state estimates. 

. NSO filter for linear systems with m < n 

The NSO filter may be applied to linear systems with more

tates than measurements ( m < n ), if the system is both control-

able and observable. In this case, the corrective gain of the filter is

alculated based on the Luenberger’s observer, as presented in [17] .

n this context, the system nonlinearities (1) must be linearized as

er the following: 

 k +1 = A x k + B u k + w k , (21)

here A ∈ R 

n ×n is the state matrix, B ∈ R 

p×1 is the control ma-

rix. The state variables may be decomposed into two parts x =
 x u x l ] T , where the upper part x u ∈ R 

m ×1 is directly measured

nd whereas the lower part x l ∈ R 

(n −m ) ×1 is not. Using the Lu-

nberger’s transformation, a new measurement vector is given by

17] : 

 x k = 

[
y u k y l k 

]T 
, (22) 

here T is defined as a transformation matrix. Thereafter, a mod-

fied state vector may be provided in terms of measurements

s: y = [ z y l ] 
T , where z ∈ R 

m ×1 is the measurements and y l ∈
 

(n −m ) ×1 are the ‘artificial’ measurements. Values for entries of y l 
re obtained using the partitioned model. The measurement model

s given by [17] : 

z k +1 

y l k +1 

]
= 

[
�11 �12 

�21 �22 

][
z k 
y l k 

]
+ 

[
G 1 

G 2 

]
u k + 

[
d 1 

d 2 

]
w k , (23) 

here � = T −1 AT , G = T −1 B , and d = T −1 . The a priori state esti-

ate is calculated by [17] : 

ˆ z k +1 | k 
ˆ y l k +1 | k 

]
= 

[
�11 �12 

�21 �22 

][
z k 
ˆ y l k | k 

]
+ 

[
G 1 

G 2 

]
u k . (24) 

Subtracting (24) from (23) , the predicted and updated measure-

ent errors for the hidden measurement vector y l are determined

espectively as follows [17] : 

 y l,k | k = �12 
−1 

e z k +1 | k , (25) 

 y l,k +1 | k = �22 �12 
−1 

e z k +1 | k , (26) 

here e y l ∈ R 

(n −m ) ×1 is the artificial measurement error vector and

 z ∈ R 

m ×1 is the measurement error vector corresponding to mea-

urable states. Eqs. (25) and (26) present a mapping of the mea-

urement error vector. They are used for obtaining a corrective gain

or the lower partition of states as follows: 

 k +1 = �22 �
−1 
12 e z k +1 | k −

�−1 
12 

e z k | k 
2 

−γ�−1 
12 

√ 

e z k | k 
◦e z k | k 
4 

+ 

�e z k | k 
◦�e z k | k 
2 

. (27) 

Considering the elements within the state vector, the corrective

ain for the NSO filter is formulated for linear systems with more
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Fig. 2. Comparison of error by a 2nd-order filter and by a 1st-order filter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Experimental setup of the electrohydrostatic actuator (EHA). 

Table 1 

The parameters used to define the EHA system [ 19 ]. 

Parameter Physical meaning Parameter values 

A E Piston area 1.52 × 10 −3 m 

2 

D P Pump displacement 5.57 × 10 −7 m 

3 /rad 

L Leakage coefficient 4.78 × 10 −12 m 

3 /(sec × Pa) 

M Load mass 7.376 Kg 

Q L0 Flow rate offset 2.41 × 10 −6 m 

3 /sec 

V 0 Initial cylinder volume 1.08 × 10 −3 m 

3 

βe Effective bulk modulus 2.07 × 10 8 Pa 

x  

x

 

w  

h  

c  

a  

p  

a  

a

u  
states than measurements as follows: 

K k +1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

H 

+ 
(

e z k +1 | k −
e z k | k 

2 
− γ

√ 

e z k | k 
◦e z k | k 
4 

+ 

�e z k | k 
◦�e z k | k 
2 

)
, 

�22 �
−1 
12 

e z k +1 | k −
�−1 

12 
e z k | k 

2 
− γ�−1 

12 

√ 

e z k | k 
◦e z k | k 
4 

+ 

�e z k | k 
◦�e z k | k 
2 

. 

(28)

where H 

+ is the pseudo-inverse of H ∈ R 

m ×n that is not square.

The upper part of (28) shows the corrective gain for measurable

states, whereas the lower part shows the gain for hidden states. 

Lemma 1. The NSO filter under the gain (27) produces stable state

estimates for the lower partition states y l . 

Proof. Let define a Lyapunov function candidate for the lower par-

tition states y l ∈ R 

(n −m ) ×1 in terms of e y l ∈ R 

(n −m ) ×1 , as follows: 

V k = e y l,k | k 
◦e y l,k | k + �e y l,k | k 

◦�e y l,k | k . (29)

Since e y l,k | k = �12 
−1 e z k +1 | k , and e y l,k +1 | k = �22 �12 

−1 e z k +1 | k , the

corrective gain (27) for the lower partition states is restated as

follows: 

K l k +1 
= e y l,k +1 | k −

e y l,k | k 
2 

− γ

√ 

e y l,k | k 
◦e y l,k | k 
4 

+ 

�e y l,k | k 
◦�e y l,k | k 
2 

. (30)

The stability proof of Eqs. (11 –20 ) may simply be repeated for

the lower partition states using the gain (30) . The time difference

of the Lyapunov function (29) is hence given by: 

e y l,k +1 | k +1 

◦e y l,k +1 | k +1 
+ ( e y l,k +1 | k +1 

− e y l,k | k ) 
◦( e y l,k +1 | k +1 

− e y l,k | k ) 

− e y l,k | k − �e y l,k | k 
◦�e y l,k | k < 0 . (31)

Since V k = e y l,k | k 
◦e y l,k | k + �e y l,k | k 

◦�e y l,k | k , inequality (31) is re-

stated as �V k +1 < 0 that proves stability of the filter under gain

(27) . �

5. Application to an experimental electrohydrostatic actuator 

(EHA) setup 

To illustrate the accuracy and efficacy of the proposed NSO fil-

ter, a flight-surface actuator system referred to the electrohydro-

static actuator (EHA) was used. The EHA is an experimental setup

that has been devised and fabricated based on existing technology.

The experimental setup and its circuit diagram are presented in

Figs. 3 and 4 , respectively. Additional EHA details are available in

the Appendix. 

The EHA dynamics can be defined by three kinematic statics:

actuator position x 1 , velocity x 2 , and acceleration x 3 [19] . Gadsden

developed a nonlinear system model of the EHA based on mathe-

matical modeling and system identification, as per [19] : 

x 1 ,k +1 = x 1 ,k + T x 2 ,k , (32)
 2 ,k +1 = x 2 ,k + T x 3 ,k , (33)

 3 ,k +1 = 

[
1 − T 

a 2 V 0 + M βe L 

M V 0 

]
x 3 ,k − T 

(
A E 

2 + a 2 L 
)
βe 

M V 0 

x 2 ,k 

− T 
2 a 1 V 0 x 2 ,k x 3 ,k + βe L 

(
a 1 x 2 ,k 

2 + a 3 
)

M V 0 

sgn ( x 2 ,k ) 

+ T 
A E βe 

M V 0 

u k , (34)

here V 0 is the initial cylinder volume, βe is the stiffness of the

ydraulic fluid or known as the effective bulk modulus, A E is the

ross-sectional area of the piston, L is the coefficient for leakage,

nd M is the mass of the load. Moreover, T represents the sam-

le time and is equal to T = 1 ms. These parameters are described

nd listed in Table 1 . The input to the EHA is defined such that it

djusts the fluid flow rate as follows [19] : 

 = D p ω p − sgn ( P 1 − P 2 ) Q L 0 , (35)
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Fig. 4. EHA input and output signals under three operating conditions. 

Table 2 

Numeric values of the friction coefficients [ 19 ]. 

Condition a 1 a 2 a 3 

Normal 6.589 × 10 4 2.144 × 10 3 436 

Major friction 1.162 × 10 6 −7.440 × 10 3 500 

Minor friction 4.462 × 10 6 1.863 × 10 4 551 

Table 3 

Numeric values of leakage coefficients and flow rate offsets [ 19 ]. 

Condition Leakage (L) Flow rate (Q L0 ) 

Normal 4.78 × 10 −12 m 

3 /(sec × Pa) 2.41 × 10 −6 m 

3 /s 

Major leakage 2.52 × 10 −11 m 

3 /(sec × Pa) 1.38 × 10 −5 m 

3 /s 

Minor leakage 6.01 × 10 −11 m 

3 /(sec × Pa) 1.47 × 10 −5 m 

3 /s 

w  
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a  
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p  
here D p is the hydraulic displacement by the pump, Q l is the flow

ate of the leakage, and Q l0 is an adjustment parameter for offsets.

oreover, �P = P 1 − P 2 denotes the differential pressure, may be

onsidered a fourth state, and can be measured using the absolute

ressure sensor [19] . It has been established that the fault condi-

ions affect two types of parameters of the nonlinear model (34) :

he friction coefficients a 1 , a 2 , and a 3 , and the leakage coefficient

 . In order to model the EHA dynamics accurately, parameter val-

es should be modified for each situation. Table 2 presents numer-

cal values of the friction coefficients for different simulated fault

onditions. These values are obtained by experimentation, as pre-

ented in [19] . Furthermore, Table 3 shows numerical values of the

eakage coefficients and flow rate offsets for fault conditions. 

Two case studies were considered. In the first case, the EHA

odel of (32) through (34) was linearized and was used for es-

imation under normal and uncertain conditions. In this case, the

osition x 1 was the only measurable state H = [ 1 0 0 ] ,

hereas its velocity and acceleration were considered as hidden

tates. Hence, in this case m < n , the corrective gain of (28) should
e applied. Note that artificial measurements need to be produced

or the velocity and acceleration. They are respectively obtained by

alculating the first and the second time-difference of the mea-

ured signal (which introduces noise). The produced velocity and

cceleration data are used as artificial measurements, whereas they

annot directly be measured. In this context, since m = n , it allows

or applying the gain (9) for state estimation using the nonlinear

HA model. 

In the second case, the EHA’s nonlinear model was directly used

or estimation without any linearization or approximation. It was

ssumed that the position, velocity, and acceleration were mea-

ured, and hence H = eye (3) . 

The test scenario is the same for each case and includes the

ormal EHA, the EHA with friction, and the EHA with internal leak-

ge. The test is designed and conducted for 20 s. The EHA operates

ormally for the first 4 s, followed by friction for the next 8 s, and

nds with leakage for the last 8 s. The EHA normal model is used

y all of the filters (KF, SVSF, and NSO) for state estimation in or-

er to provide consistent results and comparisons. The three state

ariables are initialized as zero. The input to the EHA is the motor

ngular velocity that is applied by a square wave signal oscillating

etween −100 and + 100 rad/sec. Fig. 4 presents profiles of the in-

ut angular velocity and the output position measured by the op-

ical encoder. The state estimate and state error covariance matrix

re initialized as follows: 

ˆ  0 | 0 = 

[
0 0 0 

]
, P 0 | 0 = 10 × eye (3) . (36)

For the standard SVSF strategy, the smoothing boundary layer

idth and the convergence rate are respectively defined as γ = 0.5

nd ψ = [ 10 −10 10 −8 10 −4 ] T . The convergence rate coeffi-

ient for the NSO filter is set to γ = 0.5. The following indicators

re used to compare the state estimation methods: the root mean

quare (RMS) and the standard deviation (STD) of the state estima-

ion error e x ,. Note that a second-order Butterworth filter was ap-

lied to the velocity and acceleration signals in order to minimize
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Fig. 5. Actual and estimated values obtained for the linear EHA model. 

Table 4 

Root mean square error. 

State Kalman filter SVSF NSO filter 

Position (m) 7.82 × 10 −7 6.88 × 10 −7 3.39 × 10 −7 

Velocity (m/s) 8.78 × 10 −3 7.63 × 10 −3 3.27 × 10 −3 

Acceleration (m/s 2 ) 0.85 0.71 0.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Standard deviation. 

State Kalman filter SVSF NSO filter 

Position (m) 7.41 × 10 −7 6.39 × 10 −7 3.17 × 10 −7 

Velocity (m/s) 8.96 × 10 −3 7.72 × 10 −3 3.16 × 10 −3 

Acceleration (m/s 2 ) 0.81 0.74 0.41 
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a  
the amplification of noise (from the derivative of the measured

position). 

5.1. Case 1: linear EHA with position measurement only ( m = n ) 

The nonlinear model of the EHA, described by (36) through

(38) , needs to be linearized in the first case study. The lineariza-

tion is performed by calculating partial derivatives of the nonlinear

model at its equilibrium point: x (0) = [ 0 0 0 ] T . The lin-

earized model of the EHA setup is described by: 

x k +1 = A x k + B u k , (37)

where 

A = 

[ 

1 T 0 

0 1 T 
0 −60 . 303 0 . 708 

] 

, B = 

[ 

0 

0 

39497 

] 

. (38)

The system noise covariance Q and the measurement noise co-

variance R for the KF are defined as per the following: 

Q = 

⎡ 

⎣ 

10 

6 0 0 

0 10 

2 0 

0 0 10 

3 

⎤ 

⎦ , R = 10 

−10 . (39)

Note that in this case study, since m < n , the Luenberger ob-

server is used in conjunction with the filter gain to estimate actu-

ator velocity and acceleration. In this context, the NSO filter with

the corrective gain (28) applies for state estimation. Tables 4 and
 respectively list the RMS and STD values of the estimation er-

or. Fig. 5 shows the actual and estimated state trajectories for the

HA’s linearized model. Fig. 6 presents profiles of the estimation

rror obtained by the KF and the NSO filter. 

.2. Case 2: nonlinear EHA with full measurements ( m = n ) 

In this case, the nonlinear EHA model described by

qs. (32) through (34) is utilized by the EKF, SVSF, and NSO

trategies. It is assumed that all states are measurable, whereas

easurements of the velocity and acceleration are respectively

btained by taking the first and second time-derivatives of the

osition measurement signal. The system noise covariance Q and

he measurement noise covariance R for the EKF are defined as

ollows: 

 = 

⎡ 

⎣ 

10 

6 0 0 

0 10 

2 0 

0 0 10 

3 

⎤ 

⎦ , R = 

⎡ 

⎣ 

10 

−10 0 0 

0 10 

−7 0 

0 0 10 

−5 

⎤ 

⎦ . (40)

In order to use the NSO filter, the corrective gain (9) applies,

hile the measurement matrix is equal to H = eye (3) . Table 6 and

able 7 respectively present the RMS and STD values of the estima-

ion error obtained by estimators for the second case study. The

HA follows the same operating conditions as per the first case.

he actual and the estimated states for the second case study are

hown in Fig. 7 . The state estimation error obtained by the EKF

nd the NSO filter are shown in Fig. 8 . The measurement error
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Fig. 6. Profiles of the estimation error for the linear EHA model. 

Fig. 7. Actual and estimated states with the nonlinear EHA model (KF refers to EKF). 
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Fig. 8. Profiles of the estimation error with the nonlinear EHA model (KF refers to EKF). 

Fig. 9. Phase portraits of the measurement error and its difference obtained by the NSO filter. 

Table 6 

Root mean square error. 

State EKF SVSF NSO filter 

Position (m) 7.24 × 10 −7 6.16 × 10 −7 3.15 × 10 −7 

Velocity (m/s) 8.27 × 10 −3 7.11 × 10 −3 3.28 × 10 −3 

Acceleration (m/s 2 ) 0.79 0.64 0.39 

 

Table 7 

Standard deviation. 

State EKF SVSF NSO filter 

Position (m) 7.53 × 10 −7 6.28 × 10 −7 3.12 × 10 −7 

Velocity (m/s) 8.58 × 10 −3 7.34 × 10 −3 3.22 × 10 −3 

Acceleration (m/s 2 ) 0.81 0.69 0.35 

5

 

p  
obtained by the NSO filter is shown as a phase portrait in Fig. 9

for each condition. 
.3. Comparison and discussion 

As illustrated in Tables 4 through 7 , the proposed NSO filter

rovided the most accurate state estimates as per the smallest
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l  
MS value, followed by the SVSF, and EKF (or KF) method. During

he presence of faults, the filters do not model the EHA dynam-

cs correctly, and as such, the KF fails to provide a robust estimate.

his was expected since one of the main KF assumptions is that

he modeled system is known. However, it is important to men-

ion that under normal conditions the KF or EKF yields excellent

racking performance. Since the NSO filter preserves stability ver-

us bounded uncertainties, it reduces the measurement error over

ime until reaching a subspace restricted by ɛ e and ɛ �e . Thereafter,

he state estimation error remains norm-bounded. Figs. 5 through

 further illustrate the estimated state trajectories. Since the actu-

tor position is directly measured, its trajectory is closely followed

y state estimation trajectories even under faulty operating con-

itions. Moreover, it is presumed from the estimation results that

he NSO filter is also more accurate than the SVSF. The NSO filter

ain applies second-order constraints on the measurement error

hat does not require the saturation condition in which the dis-

ontinuous corrective action of the gain is approximated; thereby

ncreasing the accuracy when compared with the SVSF. 

Experimentations demonstrate that the NSO filter generates

tate estimates with the smallest STD, followed next by the SVSF

nd the EKF. The smoothness characteristic is specifically observed

or the estimated acceleration trajectory. This verifies that the NSO

lter provides smoother state estimates in comparison to other es-

imation methods due to the corrective gain of the NSO strategy

efined by the second-order formulation. Moreover, Fig. 9 illus-

rates the phase portrait of the measurement error produced by

he NSO filter for the second case study. As shown, the measure-

ent error decreases over time until the estimates reach a region

lose to the true trajectory also known as the subspace (which is

 function of ɛ e and ɛ �e ). The width of this subspace is based on

he modeling uncertainties, measurement noise, discretization er-

or, and even the number and magnitude of external disturbances.

t is typically defined a designer value. However, it is observed that

he measurement error remains bounded, even though this bound

s larger for the faulty operating conditions. 

. Conclusion 

A new estimation strategy referred to as the nonlinear second-

rder (NSO) filter was introduced and implemented in this paper.
Fig. A. The EHA hydraulic circuit d
he NSO filter was derived based on variable structure control the-

ry, and was formulated as predictor-corrector strategy that uses

 corrective gain to recursively decrease the measurement error.

he corrective gain of the NSO filter updates state estimates using

easurement errors from the two previous time steps, which con-

equently provides the filter with more information for estimation.

his gain formulation not only results in smoother state estimates,

ut also improves the estimation performance in terms of state

stimation accuracy as well as robustness and stability to uncer-

ainties. The NSO filter was implemented an experimental setup,

nd was compared with the popular KF, EKF, and SVSF strate-

ies. Experimental results indicate that the proposed NSO strategy

ields improved state estimates in terms of estimation error with

he smallest RMS and STD values. In addition to robustness and

moothness advantages, the NSO filter offers application to nonlin-

ar systems without any need for linearization or approximation.

ince a higher-order version of the SVSF was derived, it was ex-

ected to yield a more accurate solution to the estimation prob-

em in terms of state error. However, the higher-order accuracy

omes at a trade-off with computational complexity and time. Fu-

ure work will look at comparing the proposed strategy with other

opular robust estimation strategies. 

ppendix 

The EHA consists of a number of different com ponents, includ-

ng: linear actuator (8) , variable-speed electric motor (13) , gear

ump (10) , pressure relief valve (7) , accumulator (2) , and safety

ircuits ( Fig. A ). The EHA setup also includes circuits that enable

he physical simulation of leakage and friction faults. There are two

istons: piston (3) at the top and piston (4) at the bottom. The

HA uses pumping action (10) to create pressure and move pis-

on A (3) and piston B (4) . The servomotor controls the gear pump

10) and forces hydraulic oil into the cylinder (8) . The gear pump

10) changes the linear actuator position (and speed) by controlling 

he flow rate and direction of hydraulic oil. An accumulator (12) is

rimarily used to avoid cavitation, and collects excess oil (10) . The

ressure relief valve (7) limits the maximum system pressure to

00 psi in this case study. 

The hydraulic circuit contains two main parts. The first is a

ow-pressure circuit that filters the oil and ensures a minimum
iagram (modified from [19] ). 
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pressure of 40 psi by using an accumulator (2) as well as filters

and check valves (6) . The second is an outer high-pressure circuit

that controls the linear actuator. The input to the EHA is the volt-

age to the electric motor (13) , which controls the speed and di-

rection of the pump (10) . An optical linear encoder with a state

resolution of 1 nm (12) is attached to piston A . Two main types

of fault conditions were physically generated: internal leakage and

friction. To implement a friction fault in the system, piston A was

used as the driver while piston B was the load. To simulate inter-

nal leakage faults across the circuit, throttling valves for piston A

and B were used in conjunction to create cross-port leakage. Based

on this fault condition, the cylinder (8) response was affected. 
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