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Abstract. The smooth variable structure filter (SVSF) has seen significant development and
research activity in recent years. It is based on sliding mode concepts, which utilize a switching
gain that brings an inherent amount of stability to the estimation process. In an effort to improve
upon the numerical stability of the SVSF, a square-root formulation is derived. The square-root
SVSF is based on Potter’s algorithm. The proposed formulation is computationally more effi-
cient and reduces the risks of failure due to numerical instability. The new strategy is applied on
target tracking scenarios for the purposes of state estimation, and the results are compared with
the popular Kalman filter. In addition, the SVSF is reformulated to present a two-pass smoother
based on the SVSF gain. The proposed method is applied on an aerospace flight surface actuator,
and the results are compared with the Kalman-based two-pass smoother. © 2017 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.015018]
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1 Introduction

State and parameter estimation theory is an important field in mechanical and electrical engineer-
ing. As the name suggests, estimation strategies are used to predict, estimate, or smooth out
important system states and parameters.1,2 Consider a simple example, a spring-damper-mass
system. To accurately control and understand the dynamics of the system, an engineer or scientist
must have an accurate representation of the spring constant, damper value, and system mass. If
these values are not known with a degree of certainty, then the system will be modeled incor-
rectly and the dynamics will lead to instability or system failure.3,4 Estimation strategies are used
to identify these state and parameter values. Filters use measurements and system information
taken at time t to estimate state values at time t. However, smoothers estimate the state of a
system at time t using information before and after time t. The accuracy of a smoother is gen-
erally better than that of a filter since it makes use of more information for its estimate. As per
Refs. 5 and 6, there are three types of smoothers: fixed-interval, fixed-point, and fixed-lag.
Fixed-interval smoothers are often used offline and use all the measurements over a fixed interval
to estimate the system states throughout the entire interval. Fixed-point smoothers estimate the
state at a fixed time in the past. Fixed-lag smoothers estimate states at a fixed time interval at
some point behind the current measurement (hence, lag).

The most popular estimation strategy was developed nearly 60 years ago and is referred to as
the Kalman filter (KF).7 The KF yields a statistically optimal solution to the linear estimation
problem. The goal of the KF is to minimize the state error covariance, which is a measure of the
estimation accuracy and is defined as the expectation of the state error squared.7 The state error is
defined as the difference between the true state value and the estimation state value. Although the
KF yields a solution for linear estimation problems, it is based on a few strict assumptions: the
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system and measurement models must be known, the noise distribution is Gaussian, and
the behavior is linear.4,6 If any of these assumptions are not held by the actual system, then
the KF may yield inaccurate or unstable estimation results.8,9 Other KF-based solutions have
been presented to overcome issues with nonlinearity: the perturbation KF, the extended
Kalman filter (EKF), the unscented Kalman filter (UKF), and the cubature Kalman filter
(CKF).8,10–12 Essentially, these solutions attempt to linearize or approximate the nonlinearities,
with increasing degrees of complexity. For example, the EKF is a first-order Taylor series
approximate, the UKF is equivalent to a second-order approximation, and the CKF is equivalent
to a third-order approximation.8 Although these methodologies are distinctly different and offer
improved estimation accuracy, they still fall victim to modeling uncertainties and external,
unwanted disturbances—which is often the case in real-world scenarios and estimation
problems.

Over the years, estimation strategies such as the H-infinity filter and the smooth variable
structure filter (SVSF) have been introduced to overcome modeling uncertainties and
errors.13–17 However, a trade-off often exists between accuracy and robustness. The SVSF
was introduced in 2007 and was considered to be a suboptimal filter albeit stable and
robust.16 It is based on sliding mode concepts that yields a switching gain. This gain brings
an inherent amount of stability to the estimation process as the estimates are forced toward
the true state trajectory. Improvements were made on this format and newer forms of the
SVSF were introduced, including covariance derivations, multiple-model formulations, a
time-varying boundary layer solution, and combined KF-based derivations.8,9,11,18 A number
of applications were considered, including target tracking, fault detection and diagnosis, system
control, and basic state and parameter estimation examples.8,19–22 Although the SVSF has shown
significant improvement since its introduction, it remains a suboptimal filter and has room for
advancement.

As described in Ref. 9, square-root (or factored-form) filters help to ensure numerical
stability.23–25 The square-root formulation makes use of three powerful linear algebra techniques:
QR decomposition, Cholesky factor updating, and efficient least squares.26,27 The covariance
matrix is broken up into factored terms, which are propagated forward and updated at each
measurement.5 The factors are multiplied together to reform the covariance matrix, thus ensuring
it to be positive definite. The two most popular square-root filters are Potter’s square-root filter
and Bierman–Thornton’s UD filter.28 The UD filter has similar accuracy to Potter’s strategy;
however, it is less computationally expensive.6 Introduced in the late 1970s, UD filtering is
based on transformation methods that involve an upper triangle covariance factorization
[Eq.(1)].29,30 Although the UD strategy is considered a type of square-root filter, no square
roots are actually calculated; the covariance P is defined by

EQ-TARGET;temp:intralink-;e001;116;304P ¼ UDUT; (1)

where U is an upper triangle matrix with diagonal elements that are unity (all 1) and
D ¼ diagðd1; : : : ; dnÞ. The matrices U and D are referred to as the UD factors of the covariance
matrix P. A number of different strategies exist to perform UD decomposition (i.e., to create U
and D matrices).2 Further, in the UD strategy, numerical stability for filtering strategies can be
improved by factoring the covariance matrix into Cholesky factors.31 This was discovered when
attempting to improve the stability of the KF when dealing with finite-precision arithmetic.2

Essentially the nature of the KF remains the same; however, an equivalent statistical parameter
is used and is found to be less sensitive to round-off errors.32 Increasing the arithmetic precision
reduces the effects of round-off error, which improves the overall stability of the filter.

This paper is organized as follows. KF and SVSF and their equations are summarized in
Sec. 2. The square-root formulations of the KF are shown in Sec. 3, and the square-root
SVSF is then summarized. The two-pass formulations of the KF and SVSF are shown in
Sec. 4. In Sec. 5, the target tracking scenario is described, and the results of implementing
the square-root KF and square-root SVSF are shown and compared. In Sec. 6, the aerospace
actuator scenario is described, and the results of implementing the two-pass KF-based smoother
and two-pass SVSF-based smoother are shown and compared. The paper is then concluded, and
future work is described.
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2 Estimation Strategies

2.1 Kalman Filter

The following equations form the core of the KF algorithm and are used in an iterative fashion.
Equations (2) and (3) define the a priori state estimate x̂kþ1jk, based on knowledge of the system
F and previous state estimate x̂kjk, and the corresponding state error covariance matrix Pkþ1jk,
respectively

EQ-TARGET;temp:intralink-;e002;116;644x̂kþ1jk ¼ Fx̂kjk þ Guk; (2)

EQ-TARGET;temp:intralink-;e003;116;610Pkþ1jk ¼ FPkjkFT þQk: (3)

The Kalman gain Kkþ1 is defined by Eq. (4) and is used to update the state estimate x̂kþ1jkþ1

as shown in Eq. (5). The gain makes use of an innovation covariance Skþ1, which is defined as
the inverse term found in the following equation:

EQ-TARGET;temp:intralink-;e004;116;546Kkþ1 ¼ Pkþ1jkHTðHPkþ1jkHT þ Rkþ1Þ−1; (4)

EQ-TARGET;temp:intralink-;e005;116;511x̂kþ1jkþ1 ¼ x̂kþ1jk þ Kkþ1ðzkþ1 −Hx̂kþ1jkÞ: (5)

The a posteriori state error covariance matrix Pkþ1jkþ1 is then calculated by Eq. (6) and is
used iteratively, as per Eq. (3)

EQ-TARGET;temp:intralink-;e006;116;459Pkþ1jkþ1 ¼ ðI − Kkþ1HÞPkþ1jkðI − Kkþ1HÞT þ Kkþ1Rkþ1KT
kþ1: (6)

The derivation of the KF is well documented, with details available in Refs. 1, 3, and 7. The
KF gain is unique as it yields an optimal solution to the linear estimation problem; however, it
comes at a price of stability and robustness. Assumptions used in the derivation include: the
system model is known and linear, the system and measurement noises are white, and the states
have initial conditions with known means and variances.4,6 However, the previous assumptions
often do not hold in a number of applications. If these assumptions are violated, the KF yields
suboptimal results and can become unstable.10 In addition, the KF is sensitive to computer pre-
cision and the complexity of computations involving matrix inversions.2 However, modern com-
puting power has reduced this drawback significantly. The EKF is a natural extension of the KF
method. However, the EKF may be used for nonlinear systems and measurements, unlike the KF.
A nonlinear system or measurement equation may be linearized according to its Jacobian. The
partial derivatives are used to compute linearized system and measurement matrices F and H,
respectively, found as follows:33

EQ-TARGET;temp:intralink-;e007;116;269Fk ¼
∂f
∂x

����
x̂kjk;uk

; (7)

EQ-TARGET;temp:intralink-;e008;116;219Hkþ1 ¼
∂h
∂x

����
x̂kþ1jk

: (8)

Note that the nonlinear system equation is represented by f and the nonlinear measurement
equation is represented by h. Equations (7) and (8) essentially linearize the nonlinear system or
measurement functions around the current state estimate.1 These values can then be used as per
Eqs. (2)–(6). This comes at a loss of optimality; as such, the EKF yields a suboptimal solution to
the nonlinear estimation problem.3 Other Kalman-based methods exist beyond the EKF, such as
the UKF and the CKF.11 Although these methods yield improvements on the EKF, a number of
strict assumptions still apply. Modeling errors, uncertainties, and disturbances can still lead to
unstable estimates.
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2.2 Smooth Variable Structure Filter

The SVSF was derived in 2007 and has been shown to be stable and robust to bounded dis-
turbances, modeling uncertainties, and noise.14,15 The basic estimation concept of the SVSF is
shown in Fig. 1.

The SVSF method is model based and may be applied to differentiable linear or nonlinear
dynamic system models.34,35 The original form of the SVSF as presented in Ref. 16 did not
include covariance derivations. An augmented form of the SVSF was presented in Refs. 8
and 9, which proposed a strategy for obtaining an error covariance matrix for the filter. The
estimation process is iterative and may be summarized by the following set of equations.
The predicted state estimates x̂kþ1jk and the error covariance matrix Pkþ1jk are first calculated
as per the KF strategy.

Utilizing the predicted state estimates x̂kþ1jk, the predicted measurements ẑkþ1jk, and the
measurement errors ez;kþ1jk may be calculated by Eqs. (9) and (10), respectively

EQ-TARGET;temp:intralink-;e009;116;573ẑkþ1jk ¼ Hx̂kþ1jk; (9)

EQ-TARGET;temp:intralink-;e010;116;538ez;kþ1jk ¼ zkþ1 − ẑkþ1jk: (10)

Notice how Eqs. (9) and (10) are similar to the KF.36 The SVSF process differs in how the
gain is formulated. The SVSF gain is a function of the a priori and the a posteriorimeasurement
errors ez;kþ1jk and ez;kjk; the smoothing boundary layer widths ψ ; the SVSF “memory” or con-
vergence rate γ; and the measurement matrix C. Refer to Refs. 9 and 16 for a complete explan-
ation on how the gain Kkþ1 is derived. The SVSF gain is defined as a diagonal matrix such that8

EQ-TARGET;temp:intralink-;e011;116;450Kkþ1 ¼ Cþdiag½ðjez;kþ1jkj þ γjez;kjkjÞsatðψ̄−1ez;kþ1jkÞ�diagðez;kþ1jkÞ−1: (11)

The smoothing boundary layer term ψ̄ in Eq. (11) is defined as

EQ-TARGET;temp:intralink-;e012;116;405ψ̄−1 ¼

2
664

1
ψ1

0 0

0 . .
.

0

0 0 1
ψm

3
775; (12)

Fig. 1 The SVSF estimation concept.
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where m is the number of measurements. This gain is used to calculate the updated state
estimates x̂kþ1jkþ1 as well as the updated state error covariance matrix Pkþ1jkþ1, as per the
KF strategy.

Finally, the updated measurement estimate ẑkþ1jkþ1 and measurement errors ez;kþ1jkþ1 are
calculated and are used in later iterations

EQ-TARGET;temp:intralink-;e013;116;675ẑkþ1jkþ1 ¼ Cx̂kþ1jkþ1; (13)

EQ-TARGET;temp:intralink-;e014;116;641ez;kþ1jkþ1 ¼ zkþ1 − ẑkþ1jkþ1: (14)

The SVSF process results in the state estimates converging to within a region of the state
trajectory.16,8 Thereafter, it switches back and forth across the state trajectory within a region
referred to as the existence subspace, as shown earlier in Fig. 1. This switching effect brings
about an inherent amount of stability and robustness in the estimation process, as will be dem-
onstrated in the simulation.

3 Square-Root Formulations

3.1 Square-Root Kalman Filter

The square-root formulation of the KF was developed by James Potter and Angus Andrews.6 The
method described in this section is often referred to as Potter’s algorithm.2 As per Cholesky
factorization, suppose that the square root of the state error covariance matrix P is available
such that P ¼ SST. Modifying Eq. (3) yields

EQ-TARGET;temp:intralink-;e015;116;438Pkþ1jk ¼ Skþ1jkSTkþ1jk ¼ FSkjkSTkjkF
T þQ1∕2

k QT∕2
k : (15)

Equation (15) is essentially Eq. (3). Modifying Eq. (4) yields

EQ-TARGET;temp:intralink-;e016;116;390Kkþ1 ¼ Skþ1jkSTkþ1jkH
TðHSkþ1jkSTkþ1jkH

T þ Rkþ1Þ−1: (16)

The updated state error covariance Eq. (6) then becomes

EQ-TARGET;temp:intralink-;e017;116;344Pkþ1jkþ1 ¼ ðI − Kkþ1HÞSkþ1jkSTkþ1jkðI − Kkþ1HÞT þ Kkþ1Rkþ1KT
kþ1: (17)

Alternatively, this can be written as6

EQ-TARGET;temp:intralink-;e018;116;298Pkþ1jkþ1 ¼ Skþ1jkðI − aϕϕTÞSTkþ1jk; (18)

where a and ϕ are defined as

EQ-TARGET;temp:intralink-;e019;116;252a ¼ ðϕTϕþ Ri;kþ1Þ−1; ϕ ¼ STkþ1jkH
T: (19)

Note that i refers to the i’th element of the corresponding matrix or vector. As per Ref. 6, the
a posteriori square-root covariance matrix can be calculated as follows:

EQ-TARGET;temp:intralink-;e020;116;193Skþ1jkþ1 ¼ Skþ1jkðI − aγϕϕTÞ; (20)

where γ is given as6

EQ-TARGET;temp:intralink-;e021;116;148γ ¼
�
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aRi;kþ1

p �
: (21)

Equations (15)–(21) can be used in conjunction with the standard KF estimation process. The
main difference is that the update equation is used to update S instead of P, and the process is
repeatedly iteratively.6
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3.2 Square-Root Smooth Variable Structure Filter

The square-root formulation of the SVSF, hereafter referred as to SR-SVSF, is shown here.37 It is
based on the same approach as the square-root KF. For linear systems and measurements, the
SR-SVSF estimation process is summarized by the following set of equations. For nonlinear
systems and measurements, the nonlinearities may be linearized as per the EKF methodology.
The state estimates x̂kþ1jk and square-root covariance Skþ1jk are first calculated as follows:

EQ-TARGET;temp:intralink-;e022;116;656x̂kþ1jk ¼ Fx̂kjk þ Guk; (22)

EQ-TARGET;temp:intralink-;e023;116;624Skþ1jkSTkþ1jk ¼ FSkjkSTkjkF
T þQ1∕2

k QT∕2
k : (23)

The predicted measurement ẑkþ1jk and measurement errors ez;kþ1jk are calculated next

EQ-TARGET;temp:intralink-;e024;116;581ẑkþ1jk ¼ Hx̂kþ1jk; (24)

EQ-TARGET;temp:intralink-;e025;116;549ez;kþ1jk ¼ zkþ1 − ẑkþ1jk: (25)

Next, the gain Kkþ1 is calculated as

EQ-TARGET;temp:intralink-;e026;116;510Kkþ1 ¼ Cþdiag½ðjez;kþ1jkj þ γjez;kjkjÞsatðψ̄−1ez;kþ1jkÞ�diagðez;kþ1jkÞ−1: (26)

The a posteriori square-root covariance matrix Skþ1jkþ1 is calculated next as follows:

EQ-TARGET;temp:intralink-;e027;116;465Skþ1jkþ1 ¼ Skþ1jkðI − aγϕϕTÞ; (27)

where a ¼ ðϕTϕþ Ri;kþ1Þ−1, ϕ ¼ STkþ1jkH
T, and γ ¼ ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aRi;kþ1

p Þ. Finally, the updated
measurement estimate ẑkþ1jkþ1 and measurement errors ez;kþ1jkþ1 are calculated and are used
in later iterations

EQ-TARGET;temp:intralink-;e028;116;396ẑkþ1jkþ1 ¼ Cx̂kþ1jkþ1; (28)

EQ-TARGET;temp:intralink-;e029;116;364ez;kþ1jkþ1 ¼ zkþ1 − ẑkþ1jkþ1: (29)

The SR-SVSF estimation process is summarized by Eqs. (22)–(29). It is important to note
that in this case, the gain is not affected by the square-root covariance calculation. However, the
SR-SVSF formulation sets the framework for future work and implementation in other types of
SVSF that rely on the covariance.8

4 Two-Pass Formulations

4.1 Two-Pass Smoother

Smoothers (whether fixed-interval, fixed-point, or fixed-lag) may be derived from the KF model.
In general, as per Ref. 2, the common methodology uses the KF for measurements up to each
time step that the state needs to be estimated, combined with another algorithm. The second
algorithm can be derived based on running the KF backward from the last measurement to
the measurement just past time t. The two independent estimates (forward and backward)
can then be combined.2

The two-pass smoother, also known as the RTS (Rauch–Tung–Striebel) smoother, is a popu-
lar type of smoother.1 The standard KF estimate and covariance are computed in a forward pass,
and the smoothed quantities are then computed in a backward pass.1 The forward pass is similar
to the standard KF, written as follows for completeness:

EQ-TARGET;temp:intralink-;e030;116;109x̂kjk−1 ¼ Fx̂k−1jk−1 þ Guk; (30)

EQ-TARGET;temp:intralink-;e031;116;79Pkjk−1 ¼ FPk−1jk−1FT þQk; (31)
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EQ-TARGET;temp:intralink-;e032;116;723Kk ¼ Pkjk−1HTðHPkjk−1HT þ RkÞ−1; (32)

EQ-TARGET;temp:intralink-;e033;116;708x̂kjk ¼ x̂kjk−1 þ Kkðzk −Hx̂kjk−1Þ; (33)

EQ-TARGET;temp:intralink-;e034;116;678Pkjk ¼ ðI − KkHÞPkjk−1ðI − KkHÞT þ KkRkKT
k : (34)

The backward pass is then performed using the state estimate and covariance values.
The smoothed state estimate is first calculated as follows:38

EQ-TARGET;temp:intralink-;e035;116;626x̂kjn ¼ x̂kjk þ Akðx̂kþ1jn − x̂kþ1jkÞ: (35)

The supporting matrices are defined by38

EQ-TARGET;temp:intralink-;e036;116;582Ak ¼ Pkjk−1F̄T
kP

T
kþ1jk; (36)

EQ-TARGET;temp:intralink-;e037;116;545F̄k ¼ F − KkH: (37)

The smoothed state error covariance becomes38

EQ-TARGET;temp:intralink-;e038;116;507Pkjn ¼ Pkjk þ AkðPkþ1jn − Pkþ1jkÞAT
k : (38)

Equations (30)–(38) summarize the two-pass smoother or the RTS algorithm. The forward
pass includes the KF estimation strategy and the backward pass computes the smoothed
quantities based on the available system information and measurements. The process is
computed iteratively.

4.2 Two-Pass Smooth Variable Structure Filter (Smoother)

This paper introduces the fixed-interval formulation of the SVSF-based smoother, hereafter
referred as to the variable structure smoother (VSS).39 It is based on the same approach as
the RTS or two-pass smoother. The forward pass is essentially the SVSF estimation process
and is listed here for completeness

EQ-TARGET;temp:intralink-;e039;116;340x̂kjk−1 ¼ Fx̂k−1jk−1 þ Guk; (39)

EQ-TARGET;temp:intralink-;e040;116;306Pkjk−1 ¼ FPk−1jk−1FT þQk; (40)

EQ-TARGET;temp:intralink-;e041;116;276ez;kjk−1 ¼ zk −Hx̂kjk−1; (41)

EQ-TARGET;temp:intralink-;e042;116;247Kk ¼ Cþdiag½ðjezkjk−1 j þ γjezk−1jk−1 jÞsatðψ̄−1ezkjk−1Þ�diagðezkjk−1Þ−1; (42)

EQ-TARGET;temp:intralink-;e043;116;216x̂kjk ¼ x̂kjk−1 þ Kkðzk −Hx̂kjk−1Þ; (43)

EQ-TARGET;temp:intralink-;e044;116;187Pkjk ¼ ðI − KkHÞPkjk−1ðI − KkHÞT þ KkRkKT
k ; (44)

EQ-TARGET;temp:intralink-;e045;116;157ez;kjk ¼ zk −Hx̂kjk: (45)

The backward pass is then performed using the state estimate and covariance values. The
smoothed state estimate is first calculated as follows:38

EQ-TARGET;temp:intralink-;e046;116;105x̂kjn ¼ x̂kjk þ Akðx̂kþ1jn − x̂kþ1jkÞ: (46)

The supporting matrices are defined by38
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EQ-TARGET;temp:intralink-;e047;116;735Ak ¼ Pkjk−1F̄T
kP

T
kþ1jk; (47)

EQ-TARGET;temp:intralink-;e048;116;698F̄k ¼ F − KkH: (48)

The smoothed state error covariance becomes38

EQ-TARGET;temp:intralink-;e049;116;672Pkjn ¼ Pkjk þ AkðPkþ1jn − Pkþ1jkÞAT
k : (49)

Equations (39)–(49) summarize the two-pass SVSF-based smoother or the VSS algorithm.
The forward pass includes the SVSF estimation strategy with a state error covariance matrix, and
the backward pass computes the smoothed quantities based on the available system information
and measurements. The process is computed iteratively.

5 Target Tracking Problem for Square-Root Filters

5.1 Target Tracking Scenario

The target tracking problem is based on a generic air traffic control (ATC) scenario found in
Ref. 4 and is as described in Ref. 8. A radar stationed at the origin provides direct position
only measurements, with a standard deviation of 50 m in each coordinate. Figure 2 shows the
average motion of the target.

As shown in Fig. 2, an aircraft starts from an initial position of [25,000 m, 10,000 m] at time
t ¼ 0 s and flies westward at 120 m∕s for 125 s. The aircraft then begins a coordinated turn (CT)
for a period of 90 s at a rate of deg ∕s. It then flies southward at 120 m∕s for 125 s, followed by
another CT for 30 s at 3 deg ∕s. The aircraft then continues to fly westward until it reaches its
final destination.

In ATC scenarios, the behavior of civilian aircraft may be modeled by two different modes:
uniform motion (UM), which involves a straight flight path with a constant speed and course,
and maneuvering, which includes turning or climbing and descending.4 In this case, maneuver-
ing will refer to a CT model, where a turn is made at a constant turn rate and speed. The UM
model used for this target tracking problem is given by4,40

EQ-TARGET;temp:intralink-;e050;116;355xkþ1 ¼

2
6664
1 0 T 0

0 1 0 T
0 0 1 0

0 0 0 1

3
7775xk þ

2
6664

1
2
T2 0

0 1
2
T2

T 0

0 T

3
7775wk: (50)

Note that T refers to sample rate and wk refers to system noise. The state vector of the aircraft
may be defined as

EQ-TARGET;temp:intralink-;e051;116;256xk ¼ ½ ξk ηk ˙ξk ˙ηk �T: (51)

The first two states refer to the position along the x-axis and y-axis, respectively, and the last
two states refer to the velocity along the x-axis and y-axis, respectively. The sampling time T
used in this simulation was 5 s. When using the CT model, the state vector needs to be aug-
mented to include the turn rate, as shown in Eq. (32).4 The CT model may be considered non-
linear if the turn rate of the aircraft is not known. Note that a left turn corresponds to a positive
turn rate and a right turn has a negative turn rate. This sign convention follows the commonly
used trigonometric convention (the opposite is true for navigation convention).4 As per Refs. 4
and 40, the CT model is given by Eq. (53)

EQ-TARGET;temp:intralink-;e052;116;127xk ¼ ½ ξk ηk ˙ξk ˙ηk ωk �T; (52)
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EQ-TARGET;temp:intralink-;e053;116;509xkþ1 ¼

2
666664
1 0 sin ωkT

ωk
− 1−cos ωkT

ωk
0

0 1 1−cos ωkT
ωk

sin ωkT
ωk

0

0 0 cos ωkT − sin ωkT 0

0 0 sin ωkT cos ωkT 0

0 0 0 0 1

3
777775xk þ

2
66664

1
2
T2 0 0

0 1
2
T2 0

T 0 0

0 T 0

0 0 T

3
77775wk: (53)

Since the radar stationed at the origin provides direct position measurements only, the meas-
urement equation may be formed linearly as follows:

EQ-TARGET;temp:intralink-;e054;116;403zk ¼
�
1 0 0 0 0

0 1 0 0 0

�
xk þ vk: (54)

Note that vk refers to measurement noise. Equations (50)–(54) were used to generate the true
state values of the trajectory and the radar measurements for this target tracking scenario. As
previously mentioned, the EKF uses a linearized form of the system and measurement matrices.
In this case, the system defined by Eq. (53) is nonlinear such that the Jacobian of it yields a
linearized form as shown in Eq. (55). The terms in the last column of Eq. (55) are correspond-
ingly defined in Eq. (56)4

EQ-TARGET;temp:intralink-;e055;116;285

h
∇xFT

k;x

i
T
���
xk¼x̂k

¼

2
666664
1 0 sin ω̂kT

ω̂k
− 1−cos ω̂kT

ω̂k
Fω̂1

0 1 1−cos ω̂kT
ω̂k

sin ω̂kT
ω̂k

Fω̂2

0 0 cos ω̂kT − sin ω̂kT Fω̂3

0 0 sin ω̂kT cos ω̂kT Fω̂4

0 0 0 0 1

3
777775; (55)

EQ-TARGET;temp:intralink-;e056;116;197

2
664
Fω̂1

Fω̂2

Fω̂3

Fω̂4

3
775 ¼

2
666664

ðcos ω̂kTÞT
ω̂k

ċξk − ðsin ω̂kTÞ
ω̂2
k

ċξk − ðsin ω̂kTÞT
ω̂k

ċηk − ð−1þcos ω̂kTÞ
ω̂2
k

ċηk
ðsin ω̂kTÞT

ω̂k

ċξk − ð1−cos ω̂kTÞ
ω̂2
k

ċξk − ðcos ω̂kTÞT
ω̂k

ċηk − ðsin ω̂kTÞ
ω̂2
k

ċηk
−ðsin ω̂kTÞTċξk − ðcos ω̂kTÞT ċηk
ðcos ω̂kTÞTċξk − ðsin ω̂kTÞT ċηk

3
777775: (56)

To generate the results for this section, the following values were used for the initial state
error covariance matrix P0j0, the system noise matrix Q, and the measurement noise matrix R

Fig. 2 True target trajectory for the nonlinear estimation target tracking problem.
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EQ-TARGET;temp:intralink-;e057;116;735P0j0 ¼

2
66664
R11 0 0 0 0

0 R22 0 0 0

0 0 100 0 0

0 0 0 100 0

0 0 0 0 1

3
77775; (57)

EQ-TARGET;temp:intralink-;e058;116;661Q ¼ L1

2
6666664

T3

3
0 T2

2
0 0

0 T3

3
0 T2

2
0

T2

2
0 T 0 0

0 T2

2
0 T 0

0 0 0 0 L2

L1
T

3
7777775; (58)

EQ-TARGET;temp:intralink-;e059;116;572R ¼ 502
�
1 0

0 1

�
: (59)

Note that L1 and L2 are referred to as power spectral densities and were defined as 0.16 and
0.01, respectively.40 The system and measurement noise (wk and vk) were generated using their
respective covariance values (Q and R). Also, when using the UMmodel, the fifth row and column
of Eqs. (57) and (58) were truncated. For the stand-alone SVSF estimation process, the limit on the
smoothing boundary layer widths were defined as ψ ¼ ½ 500 1000 500 1000 1 �T, and the
SVSF “memory” or convergence rate was set to γ ¼ 0.1. These parameters were tuned based on
some knowledge of the uncertainties (i.e., magnitude of noise) and with the goal of decreasing the
estimation error. It is required to transform the measurement matrix into a square matrix
(i.e., identity) such that an “artificial” measurement is created. It is possible to derive “artificial”
velocity measurements based on the available position measurements. For example, consider the
following artificial measurement vector yk for the SVSF:

EQ-TARGET;temp:intralink-;e060;116;399yk ¼

2
6664

z1;k
z2;k

ðz1;kþ1 − z1;kÞ∕T
ðz2;kþ1 − z2;kÞ∕T

0

3
7775: (60)

The accuracy of Eq. (60) depends on the sampling rate T. Applying the above type of trans-
formation to nonmeasured states allows a measurement matrix equivalent to the identity matrix.
The estimation process would continue as in the previous section, where H ¼ I. Note, however,
that the artificial velocity measurements would be delayed one time step. Furthermore, it is
assumed that the artificial turn rate measurement is set to 0 since no artificial measurement
could be created based on the available measurements. A total of 500 Monte Carlo runs
were performed, and the results were averaged.

5.2 Results

Both the square-root KF and the proposed SR-SVSF were applied on the target tracking prob-
lem. The algorithms were applied to the aforementioned setup. The target tracking results are
shown in Fig. 3. The square-root-based SVSF was able to follow the target trajectory, regardless
of which flight model was implemented. However, the square-root-based EKF experienced dif-
ficulty at the presence of the aircraft turns. This is primarily due to the difference between the
model used by the filter and the model actually experienced by the target. The estimation error is
shown in Fig. 4. Notice how the SR-SVSF yielded relatively similar results, regardless of which
model was implemented. This is primarily due to the robust estimation process inherent to the
switching gain. A second case was studied in which the measurement at 50 s was increased by
1000 times. This case further demonstrated the robustness of the SR-SVSF. The SR-EKF was
unable to overcome the measurement error; however, the SR-SVSF was able to maintain the true
state trajectory. This is further shown in Figs. 5 and 6.
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Fig. 3 True and estimated target trajectories for the nonlinear estimation problem.

Fig. 4 Estimation errors for the nonlinear estimation problem.

Fig. 5 True and estimated target trajectories with the presence of measurement errors.
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6 Electrohydrostatic Actuator Estimation Problem for Two-Pass
Smoothers

6.1 Aerospace Actuator Scenario

In this section, an electrohydrostatic actuator (EHA) is described. It is important to note that
smoothers are typically used in applications that can have offline calculations or some esti-
mation delay. However, this example uses computer simulations to allow a detailed investi-
gation of the effects of the smoothers and parametric uncertainties. The EHAmodel is based on
an actual prototype built for experimentation and is commonly used as an aerospace flight
surface actuator.16,15 The EHA has been modeled as a third-order linear system with state
variables related to its position, velocity, and acceleration.16 Initially, it is assumed that all
three states have measurements associated with them (i.e., C ¼ I). The sample time of the
system is T ¼ 0.001 s, and the discrete-time state space system equation may be defined
as follows:16

EQ-TARGET;temp:intralink-;e061;116;32 1xkþ1 ¼
2
4 1 0.001 0

0 1 0.001

−557.02 −28.616 0.9418

3
5xk þ

2
4 0

0

557.02

3
5uk: (61)

For this case, the corresponding measurement equation is defined by

EQ-TARGET;temp:intralink-;e062;116;248zkþ1 ¼
2
4 1 0 0

0 1 0

0 0 1

3
5xkþ1: (62)

The initial state values are set to zero. The system and measurement noises (w and v) are
considered to be Gaussian, with zero mean and variances Q and R, respectively. The initial state
error covariance P0j0, system noise covariance Q, and measurement noise covariance R are
defined, respectively, as follows:

EQ-TARGET;temp:intralink-;e063;116;144P0j0 ¼ 10Q; (63)

EQ-TARGET;temp:intralink-;e064;116;110Q ¼
2
4 1 × 10−5 0 0

0 1 × 10−3 0

0 0 1 × 10−1

3
5; (64)

Fig. 6 Estimation errors for the square-root filters with the presence of measurement errors.

Gadsden and Lee: Advances of the smooth variable structure filter: square-root and two-pass formulations

Journal of Applied Remote Sensing 015018-12 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 08 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e065;116;723R ¼
2
4 1 × 10−4 0 0

0 1 × 10−2 0

0 0 1

3
5: (65)

As per Ref. 41, for the standard SVSF estimation process, the “memory” or convergence rate
was set to γ ¼ 0.1, and the limits for the smoothing boundary layer widths (diagonal elements)
were defined as ψ ¼ ½ 0.05 0.5 5 �T. These parameters were selected based on the distribution
of the system and measurement noises. For example, the limit for the smoothing boundary layer
width ψ was set to 5 times the maximum system noise, or approximately equal to the meas-
urement noise. The initial state estimates for the filters were defined randomly by a normal dis-
tribution, around the true initial state values x0 and using the initial state error covariance P0j0.
Two different cases were studied in this section. The first case was considered “normal,” and the
second included a system modeling error halfway through the simulation. A total of 500 Monte
Carlo runs were performed, and the results were averaged.

6.2 Results

Figures 7–9 show the result of applying the Kalman-based smoother (labeled as KS) and the
variable structure smoother (labeled as VSS). Both the KS and VSS were able to smooth out the
kinematic states. However, the KS performed slightly better in terms of accuracy, as expected.
The position root mean square error (RMSE) for the KS and VSS was 0.0019 and 0.0023 m,
respectively. The velocity RMSE for the KS and VSS was 0.0216 and 0.0269 m∕s, respectively.
Finally, the acceleration RMSE was closer and was found for the KS and VSS as 0.3199 and
0.3202 m∕s2, respectively.

As per Ref. 16, consider the introduction of modeling error or uncertainty such that the
system used by the smoothers is modified Eq. (66) at 0.5 s. The model changes at this point
to coincide with the input step, exaggerating the effects of modeling uncertainty. Figures 10–12
show the result of applying the KS and VSS on the system with modeling uncertainty halfway
through the simulation. The KS failed to yield a good position estimate but was able to follow
(somewhat) the velocity and acceleration trajectories. The VSS was able to overcome the uncer-
tainties and yielded accurate and robust state estimates

EQ-TARGET;temp:intralink-;e066;116;358xkþ1 ¼
2
4 1 0.001 0

0 1 0.001

−240 −28 0.9418

3
5xk þ

2
4 0

0

557.02

3
5uk: (66)

Fig. 7 Smoothed position estimates of the EHA by the KS and VSS.
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Fig. 9 Smoothed acceleration estimates of the EHA by the KS and VSS.

Fig. 10 Smoothed position estimates of the EHA by the KS and VSS (with uncertainties).

Fig. 8 Smoothed velocity estimates of the EHA by the KS and VSS.
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7 Conclusions

This paper introduced a two-pass, SVSF-based smoother for the purpose of state and parameter
estimation. The proposed algorithm was applied to a linear flight surface actuator and was com-
pared with the popular KF-based smoother. For the computer experiment, under normal con-
ditions, both the two-pass smoother and the proposed VSS performed well. During the presence
of modeling uncertainties, the VSS was able to overcome inaccuracies and yield a stable sol-
ution. In addition, this paper introduced a new version of the SVSF based on Potter’s square-root
algorithm. The new methodology, referred to simply as the SR-SVSF, was applied on a nonlinear
target tracking problem. The results were compared with the popular Kalman filter strategy. It
was determined that the robustness of the SVSF switching gain yielded a stable and accurate
estimation of the target. The estimates were found to be bounded to the true state trajectory. With
the presence of measurement errors, the KF-based strategy failed to yield a good result; however,
the SVSF-based strategy remained stable. Future studies will look at implementing the VSS and
SR-SVSF on real-life data and benchmark problems.

Fig. 11 Smoothed velocity estimates of the EHA by the KS and VSS (with uncertainties).

Fig. 12 Smoothed acceleration estimates of the EHA by the KS and VSS (with uncertainties).
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Appendix: Proof of SVSF Stability
The SVSF guarantees stability by making use of a Lyapunov stability condition.16 According to
Lyapunov stability theory, a Lyapunov function V is said to be stable if V is locally positive
definite and the time derivative of V is locally negative semidefinite. Let V be a Lyapunov func-
tion defined in terms of the SVSF a posteriori estimation error such that

EQ-TARGET;temp:intralink-;e067;116;669V ¼ eTz;kþ1jkþ1
ez;kþ1jkþ1 > 0: (67)

According to Lyapunov stability theory, the estimation process is stable if the following is
satisfied:42

EQ-TARGET;temp:intralink-;e068;116;610ΔV ≤ 0; (68)

where ΔV represents the change in the Lyapunov function, and, in this case, is defined as

EQ-TARGET;temp:intralink-;e069;116;567ΔV ¼ eTz;kþ1jkþ1
ez;kþ1jkþ1 − eTz;kjkez;kjk: (69)

Substituting Eq. (69) into (68) and rearranging yields

EQ-TARGET;temp:intralink-;e070;116;521eTz;kþ1jkþ1
ez;kþ1jkþ1 < eTz;kjkez;kjk: (70)

Equation (70) is equivalent to the following, which is the stability condition for the SVSF:16

EQ-TARGET;temp:intralink-;e071;116;474jez;kþ1jkþ1jAbs < jez;kjkjAbs: (71)

To remove the absolute operator in Eq. (71), both sides are expressed in the form of diagonal
matrices [i.e., diagðeÞ], as follows:

EQ-TARGET;temp:intralink-;e072;116;417diagðez;kþ1jkþ1Þdiagðez;kþ1jkþ1Þ < diagðez;kjkÞdiagðez;kjkÞ: (72)

Assuming that the measurement function is well-defined (and it may be linearized as C), then
the a posteriori measurement error may be calculated as

EQ-TARGET;temp:intralink-;e073;116;360ez;kþ1jkþ1 ¼ Cex;kþ1jkþ1 þ vkþ1: (73)

Substitution of Eq. (73) into (72) yields

EQ-TARGET;temp:intralink-;e074;116;316

0
BBBB@

diagðCex;kþ1jkþ1ÞdiagðCex;kþ1jkþ1Þ
þdiagðvkþ1Þdiagðvkþ1Þ

þdiagðCex;kþ1jkþ1Þdiagðvkþ1Þ
þdiagðvkþ1ÞdiagðCex;kþ1jkþ1Þ

1
CCCCA <

0
BBBB@

diagðCex;kjkÞdiagðCex;kjkÞ
þdiagðvkÞdiagðvkÞ

þdiagðCex;kjkÞdiagðvkÞ
þdiagðvkÞdiagðCex;kjkÞ

1
CCCCA: (74)

If the measurement noise vkþ1 is stationary white, then taking the expectation of both sides in
Eq. (74) and simplifying yields the following:

EQ-TARGET;temp:intralink-;e075;116;209E

�
diagðCex;kþ1jkþ1ÞdiagðCex;kþ1jkþ1Þ

þdiagðvkþ1Þdiagðvkþ1Þ
�
< E

�
diagðCex;kjkÞdiagðCex;kjkÞ

þdiagðvkÞdiagðvkÞ
�
; (75)

where E½diagðCex;kþ1jkþ1Þdiagðvkþ1Þ� and E½diagðvkÞdiagðCex;kjkÞ� vanish due to the white
noise assumption. For a diagonal, positive, and time-invariant measurement matrix, Eq. (75)
becomes

EQ-TARGET;temp:intralink-;e076;116;128E½diagðex;kþ1jkþ1Þdiagðex;kþ1jkþ1Þ� < E½diagðex;kjkÞdiagðex;kjkÞ�: (76)

Note that the assumptions pertaining to the measurement matrix are realistic since most appli-
cations use linear sensors as feedback in their operations. Moreover, these sensors are well cali-
brated, and their structures are well-known.16 Finally, Eq. (76) becomes

Gadsden and Lee: Advances of the smooth variable structure filter: square-root and two-pass formulations

Journal of Applied Remote Sensing 015018-16 Jan–Mar 2017 • Vol. 11(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 08 Nov 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



EQ-TARGET;temp:intralink-;e077;116;735Eðjex;kþ1jkþ1jAbsÞ < Eðjex;kjkjAbsÞ: (77)

Equation (77) is the proof of stability for the SVSF. It states that the expectation of the a
posteriori estimation error is reduced over time (i.e., converges toward a region of the state
trajectory referred to as the existence subspace). Furthermore, the proof of stability may be
used to derive the SVSF gain Kkþ1. Define γ to be a diagonal matrix with elements 0 < γii ≤
1 such that

EQ-TARGET;temp:intralink-;e078;116;651jez;kjkjAbs > γjez;kjkjAbs: (78)

Adding the absolute value of the a priori measurement error jez;kþ1jkjAbs to both sides of
Eq. (78) yields

EQ-TARGET;temp:intralink-;e079;116;594jez;kþ1jkjAbs þ jez;kjkjAbs > jez;kþ1jkjAbs þ γjez;kjkjAbs: (79)

The absolute value of the measurement matrix multiplied with the SVSF gain jCKkþ1jAbs is
set equal to the right side of Eq. (79) such that42

EQ-TARGET;temp:intralink-;e080;116;537jCKkþ1jAbs ¼ jez;kþ1jkjAbs þ γjez;kjkjAbs: (80)

Next, consider the following definition:

EQ-TARGET;temp:intralink-;e081;116;493jCKkþ1jAbs ¼ CKkþ1signðCKkþ1Þ: (81)

Furthermore, the sign of the measurement matrix multiplied with the SVSF gain CKkþ1 is set
equal to the sign of the a priorimeasurement error ez;kþ1jk.16,42 This leads to the SVSF gain (with
a sign function), as follows:

EQ-TARGET;temp:intralink-;e082;116;431Kkþ1 ¼ Cþðjez;kþ1jkjAbs þ γjez;kjkjAbsÞsignðez;kþ1jkÞ: (82)

Note that Eq. (82) satisfies and is derived from inequality Eq. (80), and for 0 < γii ≤ 1, it satisfies
Eq. (80) with the stability condition Eq. (71), as per Refs. 16 and 42.
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