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ARTICLE INFO ABSTRACT

Real-time control systems rely on reliable estimates of states and parameters in order to provide accurate and
safe control of electro-mechanical systems. The task of extracting state and parametric values from system’s
partial measurements is referred to as state and parameter estimation. The main goal is minimizing the
estimation error as well as maintaining robustness against the noise and modeling uncertainties. The
development of estimation techniques spans over five centuries, and involves a large number of contributors
from a variety of fields. This paper presents a tutorial on the main Gaussian filters that are used for state
estimation of stochastic dynamic systems. The main concept of state estimation is firstly described based on the
Bayesian paradigm and Gaussian assumption of the noise. The filters are then categorized into several groups
based on their applications for state estimation. These groups involve linear optimal filtering, nonlinear
filtering, adaptive filtering, and robust filtering. New advances and trends relevant to each technique are
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addressed and discussed in detail.

1. Introduction

Estimation is the process of extracting the value of a hidden
quantity from indirect, inaccurate and uncertain measurements. The
hidden quantity may be a parameter or a state variable. In general, the
term parameter refers to a time-invariant physical quantity that may
be a scalar, a vector, or a matrix. Although the term time-varying
parameter may be appear in some texts, its variations must be slow in
comparison to changes in the state variable. The term state usually
refers to a vector that evolves over time by the use of an equation which
describes the dynamics of a system [4]. There exist two different classes
of estimators which include the parameter estimator and the state
estimator. The main goal of the estimation task is to minimize the state
or parameter estimation error while being robust to uncertainties and
perturbations. Noise and perturbations are inherently present in the
measurement process, and are caused by instruments and environ-
mental factors. System uncertainties are usually caused by inaccuracies
in modeling the process, approximations, nonlinearities, and variations
in physical parameters of the system.

Major contributions to the estimation field began in the fifteen
century, and included a large number of contributors from a variety of
backgrounds. Thomas Bayes (1701-1761), as the first major contri-
butor to this field, introduced the famous Bayesian rule for statistical
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inference that provides the basic formula for Bayesian estimation
methods [1]. The pioneering study that provides an optimal estimate
from noisy data was performed by Carl Friedrich Gauss (1777-1855).
He invented the famous least square estimation method in 1795 and
used it to solve nonlinear estimation problems in mathematical
astronomy [2]. Later on, Andrei Markov (1856—1922) introduced the
Markov process and Markov chain theories based on probability and
statistical methods [3]. The Markov theories formulate transitions in
random processes from one state to another, between a finite or
countable number of possible states. He proved that the probability
distribution of states may be calculated using its current distribution
that contains the effects of all the past events of the system [4]. Andrei
Kolmogorov  (1903-1987) published his well-known book,
Foundations of the Theory of Probability, in 1933 laying the modern
axiomatic foundations of probability theory. Sydney Chapman (1888-
1970) continued the research on the Markov processes. Chapman and
Kolmogorov independently presented the Chapman-Kolmogorov equa-
tions used for solving basic equations in the estimation field [3].
Ronald Aylmer Fisher (1890-1962) became famous for his major
contribution, the so-called Fisher information matrix. It represents a
measure of the amount of information extracted from a sample of
values with a given probability distribution [3]. Norbert Wiener (1894—
1964) introduced the so-called Wiener filter formulation in 1949 for
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signal processing applications. This filter reduces the amount of noise
present in a signal in comparison with an estimation of the desired
noiseless signal [5]. Kolmogorov (1903-1987), along with Wiener,
made the foundation of estimation theories that were used later to
develop the theory of prediction, filtering, and smoothing. His research
ultimately led to the derivation of an optimal estimator, which was
formulated for continuous-time systems [6]. Meanwhile, Kolmogorov
independently derived an optimal linear predictor for discrete-time
systems [7]. Their research would later become famous, known as the
Wiener-Kolmogorov filter (WF), a predecessor to the Kalman filter [1].

In 1960, Rudolf Kalman, building on the work of others, introduced
a new approach to linear filtering and prediction problems; later
referred to as the Kalman filter [4]. The Kalman filter was successfully
applied by NASA for the Apollo’s guidance and navigation system and
quickly became popular as the most practical method for state
estimation [1,4,8]. The Kalman filter (KF) uses a linear dynamic model
and sequential measurements of the system to provide an optimal state
estimate in the presence of Gaussian noise. A continuous version of the
KF was later developed by Kalman and Bucy which later became known
as the Kalman-Bucy filter [9]. Some extensions to the KF formulation,
such as linearization and approximation, led to the extended Kalman
filter (EKF) and the unscented Kalman filter (UKF), respectively. These
extensions allowed the KF to be implemented on nonlinear systems for
the purpose of state and parameter estimation. Other advanced
variants of the Kalman filter include the quadrature Kalman filter
(QKF) [10,11], mixture Kalman filter (MKF) [12], and the cubature
Kalman filter (CKF) [13]. Fig. 1 presents the lifeline of a number of
main contributions to the estimation theory from the eighteenth
century to present.

In the Bayesian state estimation approach, the a posteriori prob-
ability density function (PDF) of the states is recursively calculated
based on the known a priori PDF and newer measurements. The
calculation includes two main steps: prediction and update. In the

— —
2009 = — — — — Cubature Kalman Filter — — — — —
2007| = — — Smooth Variable Structure Filter — — —
2003 g — — — — Gaussian Particle Filter — — — — —
2000 [— — ——— Gauss-Hermite Filter - — — — — —
1997| { — — — — Unscented Kalman Filter — — — — —
1993| | ————— Particle Filter — — — — — — —
1984 | - — — —Interacting Multiple Model - — — — —
1981 ff——————— H, Filter = — — — — — — —
1965| - — — — — Multiple Models Filter — — — — —
1960| F = —— — — — Kalman Filter= — — — — — —
1949| |— — — — Wiener Kolmogorov Filter - — — — —
1945 — — — — — Cramer-Rao Bound - — — — — —
1930 — — — — — Monte Carlo Method - — — — — —
1929 ¢ — — — — —— Lattice Filter — — — — — — —
1908| |— — — — Fisher Information Theory - — — — —
1906 = — — — — — Markov Process - — — — — — —
1795 — — — — Least Square Estimation — — — — —
1763| |— — — — — Bayesian Estimation- — — — — —

Fig. 1. The 200 year history of main contributions to the estimation theory.
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Fig. 2. Block-diagram scheme of a state estimation process.

prediction stage, the system model is used to predict state values. The
predicted values of states are then refined and updated based on
measurements from the system. There are three concepts that include
smoothing, filtering, and prediction. Smoothing uses the measure-
ments beyond the desired time of interest, 7,,, > t,; to refine the
estimates further. Filtering uses measurements up to and including the
time of interest, #,;s < 7. Prediction only uses measurements prior to
the time of interest and thus predicts the future the system’s state,
fops < Lo [14]. A state estimation process is generally constructed based
on the available knowledge of the system summarized in four items [4]:
the state transition model; the measurement model; the input or its
probabilistic characterization; and the prior knowledge of the system.
State estimation methods are extensively used in modern engineering
applications. These include target tracking, control systems, commu-
nications, biomedical engineering, and economic systems. During
recent years, this field has attracted a significant amount of attention
in both theory and applications [15-20]. Fig. 2 shows a block-diagram
scheme of state estimation.

In this paper, the main Gaussian estimators used for state estima-
tion are reviewed, and new advances and trends are addressed. Section
2 presents the main foundation of the state estimation problem which
is based on the Bayesian paradigm and Gaussian assumption. Section 3
reviews the main linear Gaussian filters, and Section 4 surveys popular
nonlinear Gaussian filters. Section 5 and Section 6 respectively present
adaptive filtering and robust filtering for state estimation.

2. State estimation of stochastic dynamic systems

The task of extracting state values from inaccurate, uncertain, and
noisy measurements is referred to as state estimation. The main
objective is to minimize the estimation error when projected to the
output space. This error is referred to as the residual or innovation
vector. It is important to note that due to the presence of noise and
uncertainties (caused by the measurement process, instrumentation,
and environment), the measurements cannot reflect exact values of the
state variables. In order to construct a framework for the state
estimation of stochastic dynamic systems, one may assume a first-
order Markov process that is modeled as follows:

1
)

where x;,u;, and z; are the state, input, and measurement vectors,
respectively. Moreover, w, and v; are the process noise and measure-
ment noise at time step k, respectively. It is assumed that f, h, and u;
are known, when w; and v, are mutually independent white stochastic
processes. The filtering problem is formulated by recursively calculat-
ing an estimate of the state vector x,. This is achieved by constructing a
Bayesian paradigm based on the sequence of measurements Z; up to

X1 = F(Xp, Wi, W),

21 = h(xg, vp),
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time k. There are two main concepts in statistics that help to
computationally simplify the process of state estimation. They are the
Bayesian paradigm and the Gaussian distribution of states, which will
be explained in the subsequent subsections.

2.1. Bayesian paradigm for state estimation

The main purpose of using a Bayesian paradigm in state estimation
is to calculate the conditional a posteriori state PDF p (x;411Z;4 1), where
Ziy1 = {7, 75, ... .2} is the vector of noisy measurements. In order to
formulate the state’s a posterior PDF, a two stage recursive algorithm
can be used, when the state a priori PDF p(x.lz,)is available. It is
assumed that the initial PDF of the state is p(x) = p(x¢lzg). The
filtering process contains two stages that include prediction and
update. The Chapman-Kolmogorov equation can be used to perform
the prediction stage using the system model of (1), as follows [21]:

P Xp1lZy) = fP(Xk+||Xk) P (XilZy) dxy 3)

where the state transition probability p(x;,lx;) is obtained from the
state Eq. (1). Then after, the Bayesian rule is used to provide the basis
for the update stage given by [21]:

P Zir1Xp )P (Kay 11Z)
P (Zi11Zy)

Xyt 1lZ, =
P Xiy1lZg 1) @

where p(z411Z;) is the normalizing constant, and is obtained by
[21]:

p@alZ) = [p@ixie) poalZe) dx, )

This value depends on the likelihood function p(zlx;,;) that is
obtained from the measurement Eq. (2). From the a posteriori PDF, a
theoretically optimal state estimate may be computed using an
approach such as the minimum mean square error (MMSE), as follows
[21]:

& MMSE

A
Xerike1 = [ Xer1P e 1lZgr1) dXpprs

O]
Alternatively, the maximum a posteriori (MAP) method may be
used, as follows [21]:

S MAP

A
X = arg maxp (Xg11Zg41),
Xk

(7)

The above calculations are based on two assumptions: 1- the state
transitions  follow a first order Markov process, i.e.,
P Xir 11X, Ziy1) = p(Xey1lx;) where X = {xo, ... ,X¢}; 2- the measure-
ments are conditionally independent given the states, i.e.,
P @t Xiw 1, Zy) = p @y 1 Xpy ) [22].

The main purpose of filtering is to construct an accurate posterior
PDF of the state based on all available information. Egs. (3)—(5)
provide the basis for recursive estimation schemes; with emphasis that
they present only a conceptual solution, which in some scenarios
cannot be calculated analytically. It is possible to solve the recursive
equation of the estimated posteriori PDF analytically for the estimation
problem with a linear state transition and measurement model,
subjected to additive noise and uncertainties with Gaussian PDF. As
a statistical point of view, in linear systems with Gaussian uncertain-
ties, p (x¢|Z;) contains all statistical information about x;. In this way, it
is expected to convert the estimation problem to the point estimation in
which the mode, mean, or median are estimated. In such cases, the a
posteriori PDF can be expressed with simply the mean and covariance
terms; the a posteriori mean and covariance can be predicted and
updated recursively. However, this approach is not applicable to
nonlinear systems or systems with non-Gaussian uncertainties. Fig. 3
compares the main concept of point estimation for systems with
Gaussian and non-Gaussian uncertainties respectively. For systems
with Gaussian distributions, the mode, mean and median are the same.
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The most popular method used to solve the linear estimation problem
when subjected to the white Gaussian noise is the Kalman filter (KF) [8,
21].

2.2. Gaussian assumption for the Bayesian estimation paradigm

In order to simplify complex equations of the Bayesian filtering
paradigm, Gaussian distributions for the noise and uncertainties are
assumed. This assumption provides a Gaussian distribution for the
state a priori PDF p(x.41lZ;) and the filter likelihood density p (z+11Z;)
which alternatively results in a Gaussian distribution for the state a
posteriori PDF p(x;411Z;. ). In this context, a class of Bayesian filters is
formulated under the Gaussian assumption and is referred to as the
Gaussian filters. Following this formulation, recursive computations of
the former Bayesian filter convert to recursive algebraic computations
of the first moment (mean) and the second moment (covariance) of
existing conditional PDFs. This procedure is followed for both time and
measurement updates, which follow [13]:

A. Time Update [13]:
In this step, the state’s a priori mean %;.;; and the state
estimation error’s a priori covariance P, |, of the Gaussian distribu-
tion are calculated using the expectation operator as follows [13]:

Rertie = E{f (e w12y} = f[RnX S X, we) X N (X5 Rk, Prag) dXee,

®
Peyiie = E{Kirr = Ri ) K1 — Kep )17}
= /ﬂ;nx S s w) X T (e, ) XN (X3 R Pk
dx; — Ker X ke + Qi ©

where N (x;; Xui, Pux) denotes the Gaussian density function.
B. Measurement Update [13]:

Since the error in the a priori measurement is a zero-mean white
process [23], it is possible to approximate the error to be Gaussian and
restate the filter likelihood density as follows [13]:

P @ 1lZy) = N 215 Zir 1k Popr 1) (10

where the a priori measurement is given by [13]:

Zipk = fﬂ B (X, W) X N Kier 15 R 11ks P i) . an
R

and the a priori covariance and cross-covariance are respectively
calculated as follows [13]:

Pk = -/R"‘ B (X1 Wep DAY (Rgeg 1, W) XN gy 13 Rew 116> Pr11a)

A AT
dXp = Zer 12’ e + R 12)
_ T Lo
Po i = fR”X X th” (i1, W) X N K 13 R 11> Pr110)
o AT
dX = Xy 1k pr 11k (13)

The Gaussian filter calculates the state a posteriori PDF using the
new measurement z;, 1, as follows [13]:
P (Xip11Zyy ) = N Ker 15 Rier 11k 15 Per 1k s 14
and hence, the a posteriori state and error covariance may be
calculated by [13]:

Kirir1 = X1k + K 1@ir1 = Zig1n)s Prg i
T
= Periike — K P 10 Kg 1 Kot = P ip 1P kv 114 (15)

Note that for the case with linear state and measurement functions
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Fig. 3. Effects of the probability distribution on point state estimation [22].
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Fig. 4. A block-diagram scheme of a one-cycle Gaussian filtering [13].

subjected to an additive zero-mean white Gaussian noise, the above
formulation reduces to the Kalman filter. However, the main basis of
the Gaussian filter is concentrated on how to calculate the Gaussian
weighted integrals that are all formulated as nonlinear functions with
Gaussian densities [13]. Fig. 4 presents a block-diagram concept of a
one-cycle Gaussian filtering process.

In the case of nonlinear systems with non-Gaussian noise and
disturbances, however, it is impossible to obtain an exact analytical
solution. Techniques such as linearization or PDF approximation may
be considered to solve the estimation problem. The extended Kalman
filter (EKF) technique is the most common Gaussian method for
solving recursive nonlinear estimation problems through linearization
[2,3,14]. The unscented Kalman filter (UKF) or the Cubature Kalman
filter (CKF) are extensions to the Kalman filter. They use a transforma-
tion to approximate a posterior Gaussian distribution by capturing its
mean and covariance accurately to the second order. The correspond-
ing approximation error will be in the third order or higher [2,3,14]. In
the past decade, due to increased computational power, the particle
filter (PF) has attracted considerable interest as a powerful tool for

Gaussian Filtering for State Estimation

Linear Optimal Filtering

solving nonlinear estimation problems with a non-Gaussian noise
distribution. The PF technique uses a random set of weighted particles
that approximate nonlinear characteristics or distributions in the state
a posteriori PDF.

The Kalman-type filtering methods are primarily designed based on
the assumption that the system model is known and that noise is white.
In real applications, there may be considerable uncertainties about the
model structure, physical parameters, level and distribution of noise,
and initial conditions. In some situations, the system dynamic is too
complex to be modeled exactly, or a priori knowledge is not available
about parameters such as noise levels or distributions. In other
situations, the system structure or parameters may change by time
unpredictably. In order to overcome such potential difficulties, there
are two approaches in state estimation, when the Kalman-type filtering
methods diverge or present unacceptable performance. These two
approaches are referred to as the robust state estimation and the
adaptive state estimation. The main objective of robust estimation is
designing a fixed filter that presents an acceptable performance for a
wide range of modeling uncertainties [81]. The main robust state
estimation methods found in the literature are the robust Kalman filter
(or H>), the H, filter and the variable structure filter (VSF). Otherwise,
the adaptive estimation approach is primarily used to estimate both the
unknown state and the unknown noise parameters, when in some cases
they may considerably change over time. There are two main
approaches for adaptive estimation that include the adaptive filter
with gain adaptation approach and the multiple models (MM)
approach. In the first approach, the filter gain and parameters are
adjusted based on statistical characteristics of noise and uncertainties.
In the MM approach, several models of the system, each representing a
particular operating regime, are stored and used for state estimation.
The final state and covariance estimates are then calculated through a
weighted summation of each filter output. Fig. 5 shows a general
classification of main Gaussian filters used for state estimation.

Nonlinear Filtering

1
Wiener Kalman  Linearization-
Filter (WF) Filter (KF) Based Filtering

Numerical Integration-
Based Filtering

Extended Product Rules
KF (EKF) for Sampling

Non-product Rules
for Sampling

v

Adaptive Filtering Robust Filtering

Filter Tuning Multiple Models ~ Robust  Variable Structure He Filtering
Filtering (MM) ~ KF (RKF) Filtering (VSF)
Adaptive

Gz‘mss-llﬂcrmil Unscented  \jonte-Carlo  Cubature Gaussian Particle
Filter (GHF) KF (UKF) gF (MCKF) KF (CKF)

Quadrature
KF (QKF)

KF (AKF
¢ ) Smooth Variable

Structure Filter (SVSF)

Dynamic ~ Static

Filter (GPF)

Global Pseudo- Interacting Multiple SVSF-VBL

Bayesian (GPB) Models (IMM)

Fig. 5. A general classification of main Gaussian filters for state estimation.
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Fig. 6. Block-diagram scheme of a one cycle Kalman filter [3].
3. Gaussian filters for linear systems

Gaussian filters may be used to estimate states of systems with
linear or nonlinear state transition models. For linear systems, there
are two main approaches including optimal filtering and robust
filtering. In the linear optimal filtering, the main purpose is minimizing
the estimation error. The optimal filtering for linear Gaussian systems
leads to the Wiener-Kolmogorov filter and its extension, the well-
known Kalman filter (KF). Optimal state estimation is the task of
extracting state values from system measurements by minimizing the
MSE. The Wiener-Kolmogorov filter is the first contribution into the
optimal filtering field and is only applicable to stationary signals. The
Kalman filter is an extension of the Wiener-Kolmogorov filter and is
applied to linear systems with non-stationary Gaussian signals.

3.1. The Kalman filter (KF)

Rudolf Kalman introduced a new approach to the linear estimation
and prediction problem that later became famous as the Kalman filter
(KF) [24]. Tt is an optimal recursive Bayesian filter restricted to the
class of linear Gaussian estimation problems. The KF is a general-
ization of the WF and by using a state transition model, adapts itself to
non-stationary signals. It was successfully utilized by NASA in the
Lunar and Apollo missions. The KF requires a dynamic model of the
system, known control inputs, and measurements containing white
noise. Under these strict assumptions, it provides optimal state
estimates by recursively predicting the states, estimating the uncer-
tainty of the predicted states, computing a weighted average of the
predicted and measured values, and refining the predicted states. There
has been a significant amount of research on the KF theory as applied
to engineering applications.

A one cycle KF has two main stages: prediction, and update. The
prediction step uses the state estimate from the previous time step to
produce an estimate at the current time step. This predicted state
estimate is also known as the a priori state estimate. In the update
stage, the current a priori prediction is combined with current
observation for refining the state estimate into the a posteriori state
estimate. To formulate the KF process, assume the linearized form of
system equations of (1) and (2), given by [4]:

(16)
a7

Xir1 = Bxp + Guug + wg,
7 = Hpxi + v,

The KF process for estimating the system with the above equations
may be summarized as [4]:
1. Prediction Step:

e Calculation of the predicted (a priori) state and covariance estimates

[4]:

Rir 1k = B + Grug, (18)
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Peoiie = EPuF] + Qr. (19)

2. Update Step

Calculation of the measurement error (innovation) and its covar-
iance [4]:

Cooin = Zisl — Zip ik (20)

Sir1 = He P Hi ) + Ry, (21)
e Calculation of the optimal Kalman gain [4]:

Kir1 = P HE, (S ™" (22)

Calculation of the update (a posteriori) state and covariance
estimates [4]:

(23)

Xir k41 = Xer e + Kiv 1€

Pttt = Pt — Kiw1Se 1 Kfy 1o 24)

Note that Q and R refer to the process and measurement noise
covariance matrices, respectively [4]. Fig. 6 presents a block-diagram
scheme of a one cycle Kalman filtering process.

In the KF derivation process, it is assumed that the system model is
known and linear, as well as the system and measurement noises being
white, and the states have initial conditions with known means and
variances [1,4]. However, in real engineering applications, these
assumptions are not always preserved or true. The convergence of
the KF is dependent on the computer precision and mathematical
operations required for calculating matrix inversions [3,25]. The main
aspects of the KF method are summarized as follows:

e It provides a real-time optimal recursive estimator in the MMSE
sense. It produces unbiased and minimum variance estimates of
system states. This illustrates that the expected value of the error
between estimates and real states is zero and the expected value of
the root-mean-squared of the error is minimum [26].

It operates like an adaptive low-pass filter and its cut-off frequency
is related on the ratio between the system uncertainties and
measurement noise, as well as the estimate covariance [26].

When covariance matrices are symmetric, the recursive computation
of the Kalman filtering may diverge which leads to numerical
instability in the estimation process. If both the process and the
measurement noise covariance matrices are assumed to be very
small, the covariance of the estimation error will reduce quickly and
it may lead to the numerical instability [14].

3.2. Modifications to the Kalman filter

An important issue with the Kalman filter is its numerical stability.
In simulations with small values of the process noise covariance Q, the
round-off error equation may have a small positive eigenvalue. This
makes the numeric form of the state covariance matrix be indefinite, in
spite of its true form that is positive-definite. However, positive definite
matrixes have a triangular matrix square root P = S. S”. Squared-form
(or factored-form) derivation helps the estimation filter to guarantee
numerical stability [27]. The square-root formulation of the filter is
obtained by using three techniques in the linear algebra including QR
decomposition, Cholesky factor updating, and efficient least squares
[28]. In this context, the covariance matrix is decomposed into factored
terms that are propagated forward and updated at each measurement
sample time. There exist two main factored-form filters including the
Potter’s square-root filter and Bierman-Thornton’s U-D filter [29]. The
U-D decomposition form is obtained by P = U. D. U7, where U is a unit
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triangular matrix and D is a diagonal matrix. The Bierman-Thornton’s
U-D filter has similar accuracy to Potter’s filter and has less computa-
tional cost. It is obtained by using transformation techniques that
involve an upper triangle covariance factorization [29]. Grewal et al.
have presented a number of different techniques to construct the U and
D matrices and the application of the U-D decomposition [3].

Numerical stability of filtering methods may be increased by
decomposing the covariance matrix into Cholesky factors, specifically
when dealing with finite precision arithmetic [30]. Another way to
increase the KF stability is to impose boundaries on the state estimates
that are based on the prior knowledge of the system [31]. In this
context, upper bounds may be defined on the level of parametric or
modeling uncertainties. This provides a bound on the KF that increases
stability. Formulations of the a priori and the a posteriori error
covariance may be modified such that they explicitly contain effects
of modeling uncertainties. For instance, one may define the a priori
error covariance matrix Py, as follows [4]:

Peoii = FPyE" + FXF + FYF + FYF + Qx (25)

where it contains the modeling error explicitly. Matrix X; denotes the
mean square value matrix (or a correlation matrix, namely E {x;x}}),
matrix Yy, denotes the cross term between the true states x;and the
error %;, namely E {x,X! }. The a posteriori error covariance matrix may

also be defined as [4]:

Periierr = A = K BP0 = Ko DT + K R Ky
— T A —
+ K X 1 K" = (1= Ky ) Yo K7

= Kir Yy 157 (1 — Ky FD). (26)

Another strategy for increasing the KF stability includes the
addition of fictitious process noise and consideration of a fading
memory to the KF formulation [32]. Using a fading memory results
in neglecting measurements in the distant past and putting more
emphasis on the current information. Although this modification leads
to a partial loss to the optimality via the new formulation, it helps to
improve the robustness and stability of the filter. In this way, the a
priori state error covariance is restated as [32]:

Peyik = a FP FT + Qg 27)

where a denotes the forgetting factor which is a positive, typically
slightly larger than 1 (i.e., a = 1.01). Its value is chosen based on how
much the past measurements are desired [32].

The KF performance may be improved numerically by introducing
the “Joseph form” of the a posteriori state error covariance matrix in
the following form [3, 32]:

Pttt = T = Ky Py (0 — Ky () + Kpy (Rey K (28)

This form is proven to be more stable and robust over the former
formulation presented in Eq. (24). Using the Joseph form guarantees
that the a posteriori error covariance matrix is always symmetric
positive definite at the cost of increasing the computational complexity
[3, 32]. Another approach that helps to increase the numerical stability
of the KF is to force the covariance matrix to be symmetric and to
initialize it accordingly [32]. In this context, the a posteriori covariance
matrix may be restated as follows [32]:

Peitine1 = Prarikrt + PerriarD/2. (29)

Another approach to this context is to equalize off-diagonal entries
to each other (i.e., P; = P;), or making the eigenvalues of P to be
positive. Using an appropriate initial value for the covariance improves
the filter performance and prevents large or abrupt changes in the
covariance in the estimation process [32].

4. Gaussian filters for nonlinear state estimation

For the general case of nonlinear systems, the predicted distribu-
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tion p (xx411Z;) cannot be computed exactly. Therefore, it needs to use
some kind of approximations that however sacrifices optimality for
computability and searches for a sub-optimal nonlinear filtering
approach that is computationally tractable.

In order to approximate the nonlinear filtering process, there are
two main approaches including the local approach and the global
approach as follows [13]:

1. Local approach: In this approach, the distributions are assumed
to be Gaussian, and then the a posteriori distribution is calculated
using a direct numerical approximation in a local sense. This
approach leads to several estimation techniques that are based on
linearization such as the extended Kalman filter (EKF) [2, 3], and the
central difference filter (CDF) [33, 34], or PDF approximation such
as the unscented Kalman filter (UKF) [2, 3], quadrature Kalman
filter (QKF) [11], and the cubature Kalman filter (CKF) [13]. The
locality approach for the filter designation makes the filters to be
simple and fast for implementation [13].

. Global approach: In this approach, there are no assumptions
pertaining to the a posteriori distribution; it is calculated using an
indirect numerical approximation in a global sense. This leads to
new filtering techniques such as the point-mass filter that uses
adaptive grids [35], the Gaussian mixture filter [36], the mixture
Kalman filter [12], and the well-known particle filter (PF). The
particle filtering technique uses a set of weighted particles to
approximate the state a posteriori PDF that contains nonlinear
and non-Gaussian characteristics. The main disadvantage of estima-
tion techniques categorized in the global approach is their large
computational cost that makes them useless for some on-line state
estimation applications [13].

Based on the method of approximation, the nonlinear Gaussian
filters are classified into different groups. The linearization-based
filtering and numerical integration based-filtering are explained in
the next.

4.1. Linearization-based filtering: The extended Kalman filter (EKF)

The extended Kalman filter (EKF) is used for estimating states of a
nonlinear dynamic system. Local linearization is performed in this
method in order to approximate the nonlinearity of the state or
measurement model at the operating point and to calculate a corrective
gain. The EKF derivation is based on the Taylor series expansion of the
nonlinear state (1) and measurement (2) models with linear terms.
However, these nonlinear f and h functions cannot be applied to the
covariance term directly, and their Jacobian’s must be computed.
Similar to the standard KF, the EKF has two main stages of prediction
and update, whereas the a priori state and measurement estimates are
calculated by [32]:

(30
(31)

Rir 1k = e s Wi,
Zipie = hReg1i0)-

The Jacobian matrices, F and H, for the nonlinear state and
measurement models are calculated by [32]:

ch
Hk+l = -

Ric+ 11k

Fii=— s
(32)

Rict 11k, Uk

The main aspects of the EKF estimation technique may be
summarized as:

If the system is highly nonlinear, or a local linearization assumption
does not fit the estimation problem well, a large estimation error will
be produced and the EKF solution may lead to an estimate that
diverges from the true state trajectory.

Due to linearization, the EKF does not provide optimal state
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estimates in the RMSE sense. Additionally, it does not guarantee
unbiased state estimates and the calculated error covariance matrix
does not necessarily equal to the real error covariance matrix [26].
EKF’s parameters need to be tuned such that the convergence
improves. The convergence of the EKF is also dependent on the
choice of the initial state estimates [26].

4.2. Numerical integration-based filtering

The main difficulty produced within the EKF derivation is the local
linearization at a single point in the state probability densities. In order
to ameliorate this difficulty, several techniques were proposed. Some
techniques use the higher-order terms of the Taylor series expansion
for approximating nonlinearities and lead to the so-called higher-order
filters (e.g., second-order filter [1,37]). However, due to some difficul-
ties appearing in calculation of the Hessian matrix, these approaches
have not been used in the recent state estimation strategies. In order to
overcome the main drawbacks of linearization-based approaches for
nonlinear state estimation, the estimation filter may be constructed
based on the transformation of statistical information. In regards to the
computational issues, it is understood that approximating a probability
distribution is much easier than approximating an arbitrary nonlinear
transformation [37]. It in turn results in using the PDF approximation
techniques for solving the integrals of Egs. (3)—(7). The main basis for
the integration-based estimation approach may be summarized in
three main steps [37]:

1. Calculating the mean and covariance of a probability density via a set
of selected samples

2. Propagating the samples by means of the nonlinear transformation
function

3. Determining parameters of the propagated Gaussian approximation
from the transformed samples

The Bayesian filtering paradigm is mainly based on calculating
Gaussian weighted integrals whose integrands are formulated as:
nonlinear functionxGaussian density. To provide a general formula-
tion for numerical integration-based filtering, one may define a multi-
dimensional weighted integral given by [13]:

1= [, @wedx, 33)

wheref (x) is an arbitrary function, D C R” is the region of integration,
and w(x) > 0 is the known weighting function applied for all x € D. In
Gaussian filtering, w (x) has a Gaussian distribution and preserves the
non-negativity condition in the entire region D. In some cases, it may
be extremely difficult to solve the integral (33) analytically. However,
the integral I may be approximated using a weighted summation in
which a set of points x; and weights w; is used as follows [13]:

I~ ) wif ().

i=1

(34

There are two main approaches for calculating x; and wj;, that
include the product and non-product rules. These two approaches are
described as follows [13]:

1. Product rules: In this approach, the quadrature rule is used to
calculate the integral (33) numerically [38]. In the case of Gaussian
filters, this rule is restated by the Gauss-Hermite quadrature rule,
whereas the weighting function w(x) has a Gaussian distribution.
The integrand f (x) is then approximated by a polynomial in terms of
x, and the Gauss-Hermite quadrature rule is applied to calculate the
Gaussian-weighted integral [13]. Julier et al. introduced the
Unscented Kalman filter (UKF) [39] based on the unscented trans-
form, as another example of this approach. Furthermore, Ito et al.
[40] proposed two different techniques. The first technique is the
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Gauss-Hermite filter (GHF) formulated based on the Gauss-Hermite
quadrature rule and the second technique is the central difference
filter (CDF) formulated based on polynomial interpolations.

. Non-product rules: This approach is used to address the dimen-
sionality issue in the product rules approach. In this context, the
integrals are numerically solved by selecting sample points from the
integration domain and applying the non-product rules. Some of the
main non-product rules include the Monte Carlo technique [41],
quasi-Monte Carlo technique [42], Lattice rules [43], and sparse
grids [44]. The randomized Monte Carlo technique calculates
integrals by utilizing a set of equally weighted sample points that
are selected randomly. The quasi-Monte Carlo technique and lattice
rule use a deterministic approach to produce the sample points from
a unit hyper-cubic region [13]. The sparse grids method is a
numerical technique used to integrate or interpolate high dimen-
sional functions based on the Smolyak’s rule. The sparse grids
method searches to find the more important dimensions and put
more grid points there [13].

The simplest technique among numerical integration-based filters
is the unscented Kalman filter (UKF) invented by Julier et al. [39]. The
unscented transform is used in the UKF to transform statistical
information of the probabilistic densities into a predictor-corrector
form. Lefebvre et al. described the unscented transform as a statistical
linear regression technique that uses the system information at multi-
ple points, in spite of the local linearization (e.g., the EKF) uses
information of only one point [37]. More efficient filters are obtained
by developing the Gauss-Hermite rule for numerical integration, such
as the Quadrature Kalman filter (QKF) [10,11]. In other research,
Norgaard et al. [34] invented the Divided Difference filter (DDF) to
overcome several difficulties that appear in calculation of the deriva-
tives in the EKF formulation. The DDF approximates the derivatives
(e.g., Jacobian/Hessian matrices) and replaces them by the central
divided difference. This is performed using the Sterling’s polynomial
interpolation criterion that makes the DDF a derivative free filter [37].

More recently, Ito et al. presented the mixed Gaussian filter that
approximates the conditional probability density of states using a linear
combination of multiple Gaussian distributions [40]. In order to update
estimates in the mixed Gaussian filter, a Gaussian filter is applied to
each Gaussian distribution, when each update is independent from the
others and they operate in a parallel manner [40]. Kotecha et al. [45]
invented the Gaussian Particle filter (GPF) technique. Since the GPF
selects an optimal number of random samples and also benefits from
the ability of analytical calculation and transformation of samples, it
may be considered as a near-optimal estimation technique. The GPF is
an extension to the Gaussian filter and applies the Monte Carlo
integration technique to the Bayesian update rule [37]. The main
drawback of any random-based sampling method (e.g., the GPF) is its
high computational cost that makes it useless for on-line applications
[46]. In the subsequent section, some of the main Gaussian filters that
use the numerical integration-based approach are reviewed and
compared in terms of accuracy, efficiency and complexity.

4.2.1. The unscented Kalman filter (UKF)

The sigma-point Kalman filter (SPKF) [32] is formulated using a
weighted statistical linear regression approach that linearizes the
nonlinear state model statistically [25,47]. The SPKF method produces
a certain number of points called the sigma points from the projected
probability distribution of the states. To provide the a posteriori
estimate of the probability distribution, the sigma points are then
mapped through the system’s nonlinear model. This strategy makes
any linearization unnecessary. Therefore, the calculation of Jacobin
matrices is avoided and the accuracy of the state estimation increases
considerably [25,48]. In this context, the unscented Kalman filter
(UKEF) utilizes a deterministic sampling approach, called the unscented
transform, to select a minimal set of sample points around the mean.
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Fig. 7. Schematic of the unscented transformation used in the UKF [124].

They are propagated using the nonlinear functions. It is possible to
approximately determine the mean and covariance of the density using
the Monte Carlo sampling technique or Taylor series approximation
[49]. The UKF can capture the a posteriori mean and covariance to the
third order for any nonlinearity, and is therefore more accurate than
the EKF. Another advantage of the UKF is that there is no need to
compute the Jacobian or partial derivatives [39,49]. The UKF has a
number of different forms that include the general unscented [32,50],
the simplex unscented [32,50,51], and the spherical unscented
[32,50,51]. Fig. 7 shows a schematic representation of the unscented
transformation. To formulate the UKF, assume an n-dimensional state
vector x;, with a mean Xy, and covariance P, that are approximated by
2n+1 sigma points. The UKF process is recursive, and is formulated in
the prediction and update steps as [49]:
1. The prediction step [49]:

e Calculation of the sigma points as follows [49]:

A0 = Ktk i=0
X = Xuk + OyPaiis
2 = K= Parr,

where the parameter y = /n + « is the associated weight of samples,

determined as follows [49]:

wo = k/(n + «), i=0
w; = 112(n + x), i=1, ..

i=1,..,n;

i=1,...n

(35)

2n’ (36)

where « is a scaling factor. Note that (\/(n + k)P, ); is the ith row
or column of the matrix square root of (n + x)P,, . Note that
summation of the normalized weights is equal to one.

e Predicting the state mean and covariance by propagating sigma
points, as follows [49]:
2n
Kiste =F Up)> Rew1ix = Z Wil jes 1> Pht 1k
i=0
2n
=Q + Z wi D — Rernid [y — Kl -
i=0 (37)
e Calculating the measurement predictions as [49]:
2n
Erve = MOy s B = Z Wi 1o
i=0 (38)
2. The update step [49]:
e Calculating the UKF gain [49]:
2n
P = Z Wi [k — Zernid (8 — FARTA 0 ST
i=0
2n
= Z Wi e = Xernid (8 — PARTA 5 O
i=0
=Pt tlPohs 1 (39)

e Calculating the state mean and covariance updates [49]:
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. . . T
Rtk = Kertie + Kip1 @it — Zer1o)s Prviier1 = Prepie — K PKG
(40)

The main aspects of the UKF estimation technique are summarized
below:

1. The UKEF is similar to Monte Carlo methods, as it uses a number of
points to estimate the system’s mean and covariance. The main
difference is that UKF only uses a small number of points that are
not generated randomly such that the computational cost decreases.
The convergence of the UKF is highly dependent on the choice of
sigma points [50].

. The UKF is better than the EKF in terms of the accuracy and
computational cost. Tuning the EKF can be problematic when the
Jacobian matrix is not derived easily. Furthermore, the EKF can only
handle limited level of nonlinearities.

. Although the particle filter may account several arbitrary distribu-
tions and nonlinearities, it remains computationally expensive. The
UKF provides a trade-off between the particle filter and EKF in
terms of accuracy and computational cost.

4.2.2. The Gauss-Hermite filter (GHF)

The Gauss-Hermite quadrature rule is the main basis for construct-
ing the Gauss-Hermit filter (GHF). The rule states the weight function
is assumed to be Gaussian density with zero mean and unit
varianceN (x, 0, 1), when the interval of interest is (—o0, o). It is
difficult to calculate quadrature points g, and weights w; analytically
for a nonlinear system. In this context, some appropriate points should
be chosen as the quadratic points based on the problem under study.
Then after, the weights w; may be obtained by calculating the moments
M; of the integral for the m number of quadrature points as follows
[11]:

b i .
M = f YW dx, for i€{0.1,...m— 1}, )

The Vandermonde system of equations is stated as follows [11]:

1 IS T Y My
9 D Ay || wy M
@' @ e gy ) M, 42)

Thereafter, the set (g;, w;) may be used to approximate an integral
using the quadrature rule [40]:

N
1 —IxI2
fw F O e dx ~ 3w (@),

i=1

(43)

where %y and Py are starting values for the mean and covariance of
the random variable x. More details on the Gauss-Hermite quadrature
rule and its applications for numerical integration are provided in [11,
40].

4.2.3. The quadrature Kalman filter (QKF)

The quadrature Kalman filter (QKF) was introduced and imple-
mented by Arasaratnam and Haykin in 2007 [11]. The QKF was firstly
formulated for nonlinear systems with an additive Gaussian distribu-
tion of the noise. In this formulation, the process and measurement
models are linearized by using the statistical linear regression approach
that projects the Gaussian density function based on a set of Gauss-
Hermite quadrature points [11,52]. The main concept of the new QKF
was extended to cover discrete-time nonlinear systems with an additive
non-Gaussian distribution of the noise. In this extension, a bank of
parallel QKFs referred to as the Gaussian sum-quadrature Kalman
filter was used to approximate the a priori and a posteriori density
functions. This approximation was alternatively performed using a
finite number of weighted summations of Gaussian distributions, when
the weights are calculated from the residuals of the QKFs [11].
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Arasaratnam et al. reported that the Gaussian sum-quadrature Kalman
filter is more accurate than other nonlinear filtering methods, such as
the basic particle filters [11].

In this paper, only the general formulation of the QKF for nonlinear
systems with an additive Gaussian distribution of noise is explained. At
first the a priori and the a posteriori error covariance must be factored
respectively as: Pklk = MMT and Pk+l|k = N/Pk-f—llk 1/Pk.'_”kT. The
QKF may be summarized in two steps that include the prediction
and update steps as follows [11]:

1. The prediction step [11]:

® Calculation of the quadrature points {Xrurls, and their predicted
values {Xj, )., for states as [11]:
Xiuk = VPur& + Rees Xion = F Kper 1k W) (44)
e Calculation of the predicted state and covariance estimates, respec-
tively as follows [11]:
m m
Riytik = Z O Xtk Perik = Z O X 1k X 10"
=1 =1
— Ryt Gae—)” + Qx. (45)
® Calculation of the predicted quadrature points {Z;;.ix})., for
measurement as well as the predicted measurement vector, respec-
tively as follows [11]:
m
Zi e = hXppenies W), Zgprix = Z O Ly 11k
I+1 (46)
e Evaluation of the predicted error covariance matrix and cross
covariance matrix [11]:
P vk = Rpyr + Z O Zyjr iy pe e — Bt g P 11k
=1
= Z . YNRTIY /JURTIE T/faene
=1 47)
2. The update step [11]:
e Evaluation of the QKF gain as [11]:
Kir1 = Peir P s e (48)
e Calculation of the update state and covariance estimates, respec-

tively as [11]:

Rt 1ik+1 = Rer ik + K1 (Zer1 — Ze1n)s

Peitikst = Pesiie — Keat P 16Ky 1 (49)

The main aspects of the QKF estimation technique may be
summarized as:

1. If the a priori mean is far from the a posteriori mean, the EKF will
fail to make accurate estimates. Since the QKF needs only to
calculate some functions and not the derivatives of f(J) and
h([D), it may be applied to non-smooth and non-analytical systems
[11].

. The QKEF is able to estimate systems with correlated or non-additive
Gaussian process and measurement noise, by adding terms to the
state vector and relevant covariance [11].

. The main disadvantage of the QKF is evident when applied to high
dimensional systems, especially when the state vector size is greater
than six. In high dimensional systems, the QKF’s error covariance
matrix may diverge from its nominal value [11].

. Another disadvantage of the QKF is evident when applied to
estimate systems. When applied to estimate systems with a limited
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word length for a long period of time, the round-off errors will
accumulate and the QKF’s accuracy may decrease. This may even
cause numerical instability for the QKF in some cases [11].

4.2.4. The Cubature Kalman filter (CKF)

The Cubature Kalman filter (CKF) is a nonlinear state estimation
technique for large-dimensional systems. It was invented and imple-
mented by Arasaratnam and Haykin in 2009 [13]. The CKF formula-
tion is based on a cubature transformation [53] that makes it possible
to numerically calculate the Gaussian-weighted integrals for nonlinear
Bayesian filtering. In order to produce a set of cubature points that will
be later mapped through the state transition model, a third-degree
spherical-radial cubature rule is used [13]. The cubature transforma-
tion overcomes the divergence and dimensionality issues that are the
main issues with running the EKF, UKF or QKF estimation techniques.
Furthermore, the CKF provides more accurate state estimates for
nonlinear systems subjected to white Gaussian noise [54]. The
cubature transformation helps the CKF to reduce the computational
difficulties of calculating conditional density for some solvable multi-
dimensional integrals.

The CKF uses the cubature rule to numerically approximate n-
dimensional integrals such that [13]:

T Prx ~ i 3 XX £
fRnf(x)N(x, %P7 dx & f (€4 VPR, 50)

where the covariance is factorized as P = vP= P* and a set of 2n
cubature points is given by:

£ = Jn e, i=1,2,....n .
T = vr e, i=n+l,n+2,.. 20 (51)
where ¢; € R" represents the i elementary column vector.

Arasaratnam et al. proposed the third degree cubature rule to
approximate polynomial integrands [13]. The main structure of the
CKF is similar to the UKF, but they are based on a thoroughly different
set of deterministic points that provide weights for Gaussian integrals.
The UKEF utilizes the unscented transform to weight the selected sigma
point set, whereas the CKF utilizes the cubature rule to provide weights
for cubature point set. Fig. 8 presents a comparison of the point set
distributions for the UKF and CKF estimation techniques. As illu-
strated by Fig. 8, the location and the height of each point represent the
sample point and its weights respectively. The main advantage of using
the cubature-point set made by the CKF over the sigma-point set made
by UKF, is to increase the filter stability as well as its numerical
accuracy. Note that to increase the accuracy of the CKF, Jia et al. have
introduced a new family of CKFs with arbitrary degrees of accuracy that
calculate the spherical and radial integrals [55]. The described third-
degree CKF is a special example of this family. The accuracy and
performance of the high-order CKFs is similar to the Gauss-Hermite
filter (GHF). In order to achieve (2m + 1)” degree of accuracy, the
number of points that are required for the cubature transform
increases by the dimension n polynomially. Since the computational
complexity of CKFs is a polynomial function of the point’s dimension,
CKFs are more efficient than the GHF computationally [55].

The main advantages of the CKF over other estimation methods are
summarized [13]:

1. Note that the cubature rule is a derivative-free transformation and
hence, it removes the difficulties that may appear in the calculation
of the Jacobian and Hessian of systems with complicated nonlinea-
rities. This derivative-free characteristic allows writing the prepack-
aged computer programs [13].

. The cubature rule involves 2n cubature points, where n is the
number of state variables. Hence, 2n functional computations are
required at each iteration cycle. The computational complexity is
linearly changing with the state vector dimension n and this makes
the CKEF effective for estimating high dimensional systems [13].
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(a) Sigma point set for the UKF (b) Third degree spherical-radial cubature point set for CKF

Fig. 8. Comparison of the two-dimensional point set distribution in UKF and CKF [13].

3. Negative weight in the CKF formulation prevents the factorization of
the covariance matrix in a squared form. The CKF formulation of the
filter guarantees that the sample weights are positive definite, hence
the squared form of the CKF is always available [13].

4.2.5. The Monte Carlo Kalman filter (MCKF)

In the Monte Carlo Kalman filter (MCKF), the Monte Carlo
numerical integration technique is used to approximate the expected
values in the integral forms. In this way, N, samples are drawn from the
state Gaussian distribution N (x, X, P*), where {x®, i=1, .. ,N;} is a
set of random samples (or particles) with  weights
{w =1/N,, i=1,..,N}. The state distribution is approximated by
the Monte Carlo technique as [56]:

N
N(x, X, P = 3 wisx — x@),

i=1 (52)
where N, is the number of samples and § is the Dirac function. Note
that the probability density near the sample x is obtained by the
density of points in a region around x®. If N, - oo, the approximation
of the integral will converge to its true value. The MCKF is constructed
based on approximating the predicted values of state, measurement,
and their covariance through the Monte Carlo numerical integration
technique. The MSKF is extensively explained in [56]. The main points
regarding the MCKF are as:

1. The Monte Carlo integration rule is similar to the quadrature
integration rule presented previously. The two rules are similar,
however, a difference between the two rules exist. In the quadrature
rule, the sample points are selected at fixed intervals, while in the
Monte Carlo rule they are selected randomly [56].

2.In the Monte Carlo integration process, the variance of state
estimation is proportional to 1/N, which means for a simulation
study with 10* samples, the error in variance is equal to 1%. Since
the numeric integration of the Monte Carlo process is recursive, it
may result in increased error and the filter’s divergence [57, 58].

3. The computational cost of the MCKEF is independent of the number
of dimensions of the integrands. The GHF computational cost is
proportional to M" and therefore, by increasing the system dimen-
sion, growth occurs rapidly. Hence, for such cases with a large
dimension, the MCKF is more popular than the GHF [56, 57].

5. Adaptive filtering for state estimation

The previous state estimation techniques are all formulated under
the assumption that statistics of the input and measurement noise and
system parameters are known. However, in real applications, there is
often some degree of uncertainty or inaccuracy in the values of physical

parameters, initial conditions, or noise characteristics. Applying the
filter without any modification to such cases degrades the optimality of
the estimation method and increases the state estimation error. In
order to alleviate such effects, one solution is to estimate the uncertain
parameters and noise statistics during the filtering process and then
augment an adaptation mechanism to the filter. This mechanism is
referred to as an adaptive filter, which tunes the filter gain based on the
parametric variations or noise statistics. Note that adaptation is
considered into the filtering process such that robustness against
statistical variation of parameters increases. Adaptation does not affect
optimality of the filter with respect to a specific statistical model [59].

There are two main approaches for adaptive state estimation
including the adaptive filter design based on gain adaptation, and the
Multiple Models (MM) approach. In the adaptive filter with gain
adaptation approach, there is only one model of the system and some
techniques are augmented to estimate the state and known parameters
recursively based on statistic properties of noise and uncertainties. In
contrast, in the MM approach, several state-space models are used to
cover all operating regimes of the system. Each model presents a
particular operating regime of the system under certain conditions. The
state and covariance estimates are calculated as a weighted summation
of each filter output.

5.1. Adaptive filtering with gain adaptation

There are three main approaches for adapting the filter gain that
include: 1- the adaptive filter with noise tuning [60,61], 2- the adaptive
filter with parameter tuning [60—62], and 3- the joint filtering of states
and parameters [62—64]. In the adaptive filter with noise tuning
approach, whenever the filter starts to diverge, some techniques are
applied for tuning the levels of measurement noise and or modeling
uncertainties. The main symptom of the filter divergence is the
characteristics of the measurement error (innovation) vector. By
starting divergence, the measurement error vector is not white and
its covariance does not match with the predicted measurement error
covariance. In the adaptive filter with parameter tuning approach,
some off-line techniques are used to estimate the system and noise
parameters based on a batch of measurements. For instance, the
expectation-maximization technique may be directly used to calculate
the Maximum Likelihood Estimate (MLE) [65]. The success of this
approach depends on a number of factors such as the number of
uncertain parameters, the magnitude of uncertainty, the functional
dependence of the system outputs on uncertain parameters, and the
quality of measurements [65].

In the joint filtering of states and parameters, the system’s
unknown parameters are considered as new states. Hence, the new
state vector contains the former states and unknown parameters and
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Fig. 9. Schematic of the adaptive Kalman filter (AKF) estimation process [60].

used to estimate both the states and unknown parameters. There are
several techniques that may combine with estimation filters (e.g. the
EKF [62], the UKF [63], or the particle filter [64]) and tune their gain
to jointly estimate the unknown states and parameters. However, this
approach is not efficient in some situations and may cause numerical
instability. Following sections describe the adaptive filter with noise
tuning [60], the adaptive filter with parameter tuning [66], and the
joint filtering of states and parameters [62].

5.1.1. The adaptive Kalman filter (AKF) with noise tuning

The Kalman filter extracts all the available information from the
measurement vector z;, where the measurement error e, is zero-mean
white noise. Following the Kalman filter formulation, assuming
E{xvi"} = E{&v} = 0, e,,and its covariance S are calculated using
Egs. (20) and (21), respectively. In this context, if e, is not white or its
corresponding covariance does not equal to Eq. (21), the filter is not
optimal. This issue may be due to a number of factors such as the input
disturbance, sensor and instrumentation noise, modeling and para-
metric uncertainties, and the case in which the measurement error
covariance is different from the one generated by Q and R. In order to
check whiteness of the measurement error signal e,, a whiteness test
may be defined in terms of the autocorrelation function Cof the
measurement error e,, as follows [60]:

C, = 1 ﬁ: e, el
N = e (53)
where N is the number of samples. In this context, if the measurement
error is white, C;should be non-zero only when k is zero. Assuming that
the cross-correlation of the measurement elements is negligible, the
whiteness test can only be applied on diagonal elements of C; [60].
The adaptive Kalman filter (AKF) with noise tuning may be used to
estimate systems with a color measurement error. It applies an off-line
adaptive estimation procedure to estimate the process noise covariance
Q, and the measurement noise covariance R, as follows [60,65]:

1. Estimate bias ¥, of the measurement error (innovation) and its
covariance S, as [60]:

N N
1 A 1
Vi=— ) Vi, Sy = —— Vi — V) (v — V).
k N;k % N—lg(k (Vi — V)

54
2. Estimate R based on the above relations as [60]:
. 1 ¥
Ripr =S — H[ > PkHlk]H"‘.
NS (55)
The state estimation error is calculated  by:

€x k+11k & Xiy1 — )A(k+1|k = F(Xk - ﬁklk) + W. Hence, the state error
covariance matrix Q is calculated by [60]:

Qp+1 = F cov(ey ) FT — cov(ex k). (56)

Note that cov(ey,) may be approximated usingP;;, whereas
cov(ey 1) cannot be approximated by Pi.iy through the AKF. It
is because if the AKF approximates Py such that
Pii1ix = FPyF + Qg then it leads to Q with a wrong covariance. To
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overcome this issue, x;.needs to initially be approximated by
Ri+114+1, and then, the following equation is used [60]:

ex itk X Xpptkt1 = Xer1ik = degr- 67)

3. Estimate cov(ey+11x) as the empirical covariance of d;, as follows
[60]:

N N
o 1 1 - -
X=—=D d, Py =——Q, (de — X)(dx — X)".
W Z b= 2 (58)
4. Estimate Q using the following relation [60]:
. 1 &
Qrr1 = Pryri — F(— Z Pk+1k+l]FT-
Nia (59)

The AKF is now formulated using the estimated values of Q and
Rwithin the Kalman filter formulation. Fig. 9 presents a block-diagram
scheme of the AKF process.

5.1.2. The adaptive filter with parameter tuning

Zhong Ji and Brown [66] have introduced an adaptive filter
technique based on tuning the unknown parameters over time. In this
method, the system dynamics are described using two sets of equations
that include the state model and the parameter model. Thereafter, two
EKFs, named as the state filter and the parameter filter, are run in
parallel to estimate values of states and parameters respectively. The
system dynamics is initially described in state-space, as follows [66]:

Xie1 = F(xp, g, 0) + Wy, 2 = h(xy, 0) + v, (60)

where x € R” is the vector of state variables, and 6 € R” is the vector of
unknown parameters. The state filter operates similar to the EKF
method, as described in Section 4.1. It predicts the states and their
covariance using the state and measurement models and then updates
them by calculating the gain.

The parameter filter moreover predicts the parameters and their
covariance, as follows [66]:

(61)

R A o
Ors 11k = Ok, Poss e = 47 Posirs

where A is the forgetting factor and is selected such that 0 < 4 < 1. The
parameter filter’s gain is given by:

eskrtik = Zke1 — D Rip 11t O 10)s Keos1 = Pogrin

Ho 1" (Ho 1 Posr1kHo i1’ + Rogen) ™ (62)

Note that Hy is the parameter measurement matrix and is given by
[66]:
[
= H,, Dbk ’

k11 1004 11k

Ok
04 11

Ho 1 =
(63)

Finally, the parameter filter updates the predicted parameters and
their covariance, as follows [66]:

O 1ike1 = Oy + Kosy1€ziriiks Posstiner = (U — Kosy tHo i D Posr 114
(64)

5.1.3. The adaptive filter with joint estimation of states and
parameters

Sun et al. [62] have introduced a method for joint filtering of states
and parameters that applies to systems with Eq. (60). In this method,
uncertain parameters of the model are considered as additional states
and the EKF method is used to estimate the augmented state vector.
The augmented state vector is hence given by: X = [x', 071", where
X € R"*?. The augmented state equation is restated as [62]:
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X ] [ fxgs g, 6) Wil _
X“‘_[ek+1]_[ 0 ]+[“k]_g(xk’ s

where n,is the uncorrelated Gaussian noise on uncertain para-
meters with the covariance matrix ®;. The measurement model
corresponding to the augmented state vector is given by [62]:

(65)

7, = h(Xi, wp) + v (66)

In order to use the EKF method for estimating the augmented state
vector, Jakobian matrices of for the state and measurement models are
respectively calculated by [62]:

o o R
Eo=]a of s Hipr = [y W] .
0 I koen Rt 11k Ot 11k 041

Thereafter, the EKF is applied to the augmented state vector in two
steps including prediction and update. Note that the process noise
QO
0 @]

(67)

covariance matrix is equal to: [

5.2. The multiple models (MM) adaptive filtering

An interesting approach for the modeling and estimation of
complex nonlinear systems is to describe the system by a finite number
of possible operating regimes. Such systems are generally classified as
hybrid dynamical systems. A hybrid dynamical system is defined as a
system that contains two types of time-varying elements [4]. The first
type referred to as state variables, includes elements that vary with
time. The second type includes elements that only transit from one
operational mode to another. This is referred to as the mode or modal
state. Note that the state variables only describe the systems dynamic
behavior, while the mode states represent a possible system’s regime
among a finite number of possible operating regimes. These formula-
tions are often referred to as the Markovian jump or hybrid estimation
phenomenon [4]. Further studies regarding the above phenomena are
found in [4,67-70].

The multiple models (MM) approach is the most well-known
approach used to describe a hybrid dynamic system in which a set of
models is considered that covers all of the possible operating regimes.
The first generation of the MM algorithms were produced by Magill
[69] and Lainiotis [71,72], and were widely implemented and pro-
moted by several researchers. These researchers included Maybeck
[73-77], Bar-Shalom [4,78—-80], Rong Li [80—83], and a number of
other prominent researches. In the MM approach, it is assumed that
the dynamic system operates according to one of a finite number of
models, each corresponding to a particular operating regime. These
models may differ in their mathematical structure or in their noise and
uncertainty characteristics. The structural differences include dimen-
sions of state variables, system inputs, and outputs. Noise and

v(k+1)
wk+1) r 2(kt1)
: Plant H Measurement %—b
u(k+D] "

£ 00k 1K), P0Gk k)

u(k+1)

3 (k+1]k+1),B(k+1]k+1)
'—‘E Filter 1 vi(k+1)

S(ke1k+1).BLk+1k+1) —® State estimate
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uncertainties may differ in the level or their probability distributions
and can be represented as an additive or multiplicative term [2,4]. MM
filters are generally classified into two categories: static and dynamic.
In the static MM method, the system follows a fixed operating mode
and no switching occurred from one mode to another during the
estimation process. In contrast, the dynamic MM estimator switches
from one mode to another automatically in order to provide the most
accurate estimate of the operating situation [4].

Tugnait presented a survey on suboptimal MM methods for discrete
dynamic systems with abruptly changing structures [68]. He stated that
the transition probability matrix is available and the abrupt changes
can be modeled by finite states of a Markov chain. Note that
partitioning a complex system into several simpler systems is a
powerful approach, and results in parallel processing of the original
system that provides optimal and robust solutions [84-86]. Some
studies have been performed on the MM algorithm when the transition
probability matrix is unknown [68,87]. Other studies contain situations
that model the system’s switching structure through a semi-Markov
chain [88,89]. Rong Li et al. presented a MM technique for the purpose
of noise identification, which is applicable for both stationary and non-
stationary noise with rapidly or slowly varying statistics [80,82,90].
Since the performance of the MM estimation strategy is directly related
to the model sets selection, the primary difficulty in the implementa-
tion of MM methods lies in the correct identification of the model set. It
has been proven that the use of too many models (i.e., over-designing
the solution) may have as bad an effect on the solution as the use of too
few models (i.e., under-designing) [83].

To formulate a MM filter, assume a general form of state and
measurement models, respectively [4]:

Xir1 = BuiXi + Gk + Lok Wonks Zke = HptXie + Vi (68)

Where m and M denote the current model and the set of all possible
modes respectively. The event that model m; is operating at time k is
presented as: M;; = {m; = m;}. It is assumed that the system model
sequence is a homogenous Markov chain with transition probabilities
calculated as follows [4]:

P{mjiyilmiptmi;, Vi,jeEM,

(69)

where 7; is the Markovian transition probability from mode i to mode j,
where Z;:] mjx = 1. [4]. The mode probabilities are updated at each
new measurement and the resulting weights are used to estimate the
state. Fig. 10 shows a block-diagram scheme of one cycle of a static MM
filter.

As long as each mode sequence is matched to a filter, the number of
filters required for the state estimation process will grow exponentially.
In order to avoid this numerical problem, suboptimal techniques
should be considered. A simple technique for obtaining a suboptimal
solution is to keep the N samples of histories with the largest

M: Number of modes
A: Likelihood function
p: Mode probability

v: Estimation residual

B0k k), B2k )

> Filter 2

wy(k+1)

e (a2 Y4 (a2

X(k+1|k+1)

and covariance —
Pll+1]k +1)

—»{ combination

0,0 | )P ) Filter M|, ck+1y
l' ‘v

Y
Likelihood —2¢

u(k+1)

k+1) | Mode probability
update

Fig. 10. Block-diagram scheme of one cycle of a static MM filter.
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probabilities, ignore the rest, and renormalize the selected N prob-
abilities in a way their summation will equal to unity. Within this
approach, there are three methods: the 1st-order Generalized Pseudo
Bayesian (GPB1), the 2nd-order version (GPB2), and the Interacting
Multiple Model (IMM) strategy. In the GPB1 method, only the possible
models in the last sampling period are taken into account. The
algorithm will only need to run r parallel filters to formulate the best
estimate. The GPB2 method uses the last two sampling periods, and
hence 12 filters are required. The IMM algorithm is computationally
more efficient than the GPB1 and GPB2 algorithms [4]. For the IMM
strategy, with r hypotheses, each filter utilizes a different weighted
combination of the previous model conditioned estimates. This model
condition is referred to as the mixed initial condition. Based on this,
there is an interaction between different possible modes of the system
at each period of time. In addition to the reduction of the computa-
tional cost of the IMM filter, the accuracy of the overall estimate and
the convergence rate is increased significantly [4].

5.2.1. The interacting multiple model (IMM) filter

The interacting multiple model (IMM) algorithm is the most
popular type of MM filter, and is capable of estimating the system
state variables among several switching modes. Bloom is among the
first researchers to propose the IMM algorithm with a suitable
compromise between the performance and complexity in MM systems
[91]. Tts computational cost is close to other methods such as those
with small quadratic components, while its performance is similar to
GPB2 [79]. The IMM filter is able to estimate the state of a dynamic
system that operates in several operating modes (regimes), which can
‘switch’ from one mode to another. In this form, multiple state
equations are used to describe each of the operating regimes. These
regimes are typically referred to as linear models, where each model
captures a particular operating point of a general nonlinear time-
varying model. A Markov transition matrix is then used to determine
the probability that the system is in one of the operating regimes [4].
Fig. 11 shows a block diagram representation of one cycle of an IMM
estimation filter.

In order to formulate the IMM filter, let a hybrid linear system of
(68) be used to describe a nonlinear dynamic system. The IMM filter
consists of three steps that are briefly described as [81]:

1. Interaction Step: The mixing probabilities are calculated,
which refer to the probability of an event when mode m; was in effect at
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time k-1, given that the mode my; is in effect at time k conditioned on
Zk=1, In this step, the initial state estimate and covariance estimate are
calculated from r different Kalman (or other) filters corresponding to
the r different operation modes [81].

2. Filtering Step: In this step, mode-matched filtering is per-
formed. The likelihood function associated to each of the r filters is also
computed. Any estimation method or filter may be used during this
step; however, the most commonly implemented method is the Kalman
filter. The mixed initial state and covariance are used as inputs to the
Kalman (or other) filter matched to mode m;. The filtering step starts
by predicting the state and covariance of each mode, calculating the
measurement error, the filter gain, and finally updating the state and
covariance estimates as well as the mode probability [81].

3. Combination Step: In this step the overall state mean and
covariance are estimated suing a weighted summation of the state and
covariance estimate from each individual mode [81].

6. Robust filtering for state estimation

In this section, the three main approaches used for robust state
estimation of stochastic systems are reviewed. The first approach is the
robust Kalman filter [92] in which some techniques are used to
robustify the KF given norm-bounded noise and uncertainties. The
second approach, referred to as the variable structure filtering (VSF),
was firstly introduced by Habibi and his co-researchers [93]. The VSF
is a model-based filter and benefits from the robustness characteristic
of the variable structure systems. The VSF-type filters provide robust
state estimates against a large amount of structural and parametric
uncertainties. The third approach, referred to as H, filtering, had been
introduced by Zames in 1980 [94]. The H,, filtering approach focuses
on the worst-case energy gain designation that produces estimation
error with small energies for all small disturbance energies. These three
approaches are explained in the next.

6.1. The robust Kalman filter (RKF)

The main idea of the KF designation is minimizing the estimation
error covariance. However, the KF is only accurate when there are
small amounts of uncertainties and noise in the process model, initial
conditions and measurements. There are a large number of publica-
tions that describe the robust Kalman filter (RKF) techniques. Xie et al.
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K+ W(k+1) . [ | Z(k+1) Pr: Transition matrix
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Fig. 11. Block-diagram scheme of the interacting multiple model (IMM) strategy.
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have proposed a RKF technique for linear systems subjected to norm-
bounded parametric uncertainty in the state and measurement ma-
trices [95]. Masreliez et al. have introduced a robust Bayesian
estimator that can operate under two different scenarios [96]. The
first situation is when the state x is Gaussian and the measurement z is
non-Gaussian (heavy-tailed). The second scenario is when the state is
non-Gaussian (heavy-tailed) and the measurement z is Gaussian [96].
Furthermore, Hsieh has proposed a RKF technique that is insensitive
to unknown inputs [97]. This filter is an alternative to the Kitanidis’s
unbiased minimum variance filter [98]. Wang et al. also introduced a
RKF algorithm as applied to linear systems with stochastic parametric
uncertainties [99]. This method is designed to minimize an upper
bound of the mean square estimation error at each step. Benavoli et al.
also designed a RKF by considering the uncertainty characterizations in
terms of coherent lower previsions [100].

Bertsekas et al. presented the set-valued approach for state
estimation that is based on defining ellipsoids around state estimates
that are consistent with the measurement data [92,101]. Note that the
centers of ellipsoids are assumed to be the estimated states. In this
context, there are several recursive algorithms to account for uncertain
models, particularly the one proposed by Savkin et al. [102]. The
Guaranteed-cost design is another important approach in which the
filter is designed by preserving an upper bound on the variance of the
state estimation error. This approach is mostly applied to quadratically
stable systems in the steady-state phase of the operation [92,95]. In
this section, the Sayed’s robust Kalman filtering technique is reviewed
as a general framework for linear robust state estimation.

Assume an uncertain dynamic model with bounded uncertainties in
the state model such that [92]:

Xir1 = (B + 6EB)x; + (G + 6Gpuy, (70)

wheresE.and 6Gidenote small uncertainties in state and control
matrices. It is assumed that uncertainties in F, and G; satisfy the
following equality [92]:

[6F. 6Gi] = MiA[Eri Egil, 7D

where {M, E¢, E;} are known matrices, and Ais selected such that
1ALl < 1. The a posteriori state estimate %, is obtained from the a
priori state estimate %, by solving the following criterion [92]:

min max

lIx; — )Ai/dk”%,l + ||uk||2,1 + Nz — HX/(_H”%,] .
{xr.ug} SF6Gy kik k k+1

(72)
Sayed has presented a solution {Ri;i — Grpi} to the above
problem by solving the corresponding set of equations. In order to
follow his solution, it is assumed that x,, u;, and v, are uncorrelated
zero-mean white stochastic processes with following variances [92]:

x %) [M 0 o0
E [ui] ul|=[0 Qé; 0 [
vi [ Vi 0 0 RS

where I, Q;, and R; are given weighting matrices and are assumed to
be positive-definite. 5; denotes the Kronecker delta and is equal to one
when i = j and equal to zero otherwise. The initial conditions for the
filter are set to Xoi0 = Po\ngRO_IZO and Py = (Hal + H()TRO_IH())_I,
alternatively. The RKF presented by Sayed may be summarized into
the following three steps [92]:

Step 1: If H;, {M; = 0, then put 1; = 0. If not, the construct the cost
function G(4), as presented by (74), and determine by by minimizing
G(2) [92].

(73)

G() = XA + AEX(A) — Epl? + IAX(2) — bl ;. (74)

Wherex = col {x; — Ry, we}, b =y — Heni Bk, A = Hen[B Gy,
Q=Py'® Qi "W=R_"!, H=H M, E,=[E{EK} E{Gy}].
and E;, = —E {F}X. Moreover, the non-negative scalar parameter is
determined from the optimization problem, and functions W(1), Q(4),
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and x(1) are given by [92]:

W) £ W + WHUI - HFWH)*H'W, Q(1) £ Q + 1E,"E,, x

() £ [Q() + ATWAT'[ATW ()b + AE,TEy). (75)

Step 2: Replace matrices Q;, Ryt 1, Pux, Gi, and K, from the KF
method by following matrices [92]:

Q;l =Q' + ikEgT,k [T+ /i\kEf,kPklkE§,k]7lEg,k7 Ryt
= Reer — A& He MUMTHL, By
= Py — PkaEjT,k U:k_ll + Ef,kPk\kEz:',k]_IE_/“kPklka Gy
=Gy — ikalA)k\kEj,kTEg,k’ B =& - 4 ékaEg,kEf.k)(I

- /ik}sklkE;,kEf,k) (76)

If =0, then it will be obtained that
Qi = Q. Ry =Ry, Py =P, Gy = Gy, and E, = E[46].
Step 3: Estimate the state and the state error covariance using the

KF formulations and the above matrices.
6.2. The variable structure filtering (VSF)

The variable structure filter (VSF) is a model-based state estimation
strategy that was introduced and implemented by Habibi et al. [93].
The VSF-type filters use the variable structure system’s concept to
preserve stability given bounded parametric uncertainties. Thus, the
main objective is to increase stability and convergence of the filter for
situations with higher degrees of modeling or parametric uncertainties.
In such situations the performance of common estimation techniques
such as Kalman-type filters may degrade significantly. The degradation
occurs as a result of filter instability, inappropriate definition of initial
conditions, modeling uncertainties and measurement noise. The VSF-
type filtering and its newer extension (e.g., the Smooth Variable
Structure Filter (SVSF) [103] uses the robustness property of variable
structure systems that results in stability within an upper bound for
uncertainties and noise levels.

In variable structure systems, the control input often contains a
discontinuous term, called the sliding variable s, that is defined as a
function of the state variable in the following form [103]:

_Jute i
u. t)_{u’(x, 0 if

s(x) >0

sx) <0’ 77

where u*(x, t) and u~(x, r) are continuous functions. Following the
variable structure theory, the VSF’s gain contains a discontinuous
corrective term that preserves stability given bounded noise and
uncertainties. It refines the a priori state estimates into the a posteriori
state estimates. In order to formulate the VSF method, the sliding
variable is defined as: S; = Ae,,,, where e, = z; — % is the estimation
error and A € R™" is a diagonal matrix with constant positive
elements. Here, the objective is to eliminate the sliding variable S
and satisfy the sliding condition given by S = 0. This condition
eliminates the estimation error even in highly uncertain noisy situa-
tions.

In this section, the first generation of the VSF-type filtering, namely
the VSF method [93], is described. Following this, a more efficient
version of the VSF, referred to as the smooth variable structure filter
(SVSF) [103] is described in details. Newer versions of this filter such
as the SVSF with covariance derivation [25, 104], and the SVSF with a
variable boundary layer (SVSF-VBL) [25, 105].

6.2.1. The variable structure filtering (VSF)

Habibi et al. introduced the simplest generation of the VSF in 2003
[93]. In order to implement the VSF for state estimation, the system
must be completely observable. One cycle of the VSF method, as it
applies to a linear system of Egs. (16) and (17), contains following
steps [93]:
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1. Prediction Step:

e Calculation of a priori state and measurement estimates [93]:

Rir ik = B + Grwg, 2 = Hyxy. (78)
2. Update Step:
e Calculation of the VSF’s corrective gain that is stated as [93]:
Ki+1 = By HY(H By | { YH| €l T Bt 1" H*E ax Ziea 1|
+ [HY + By ™ 'HY (Emax + D1 X Vinax
+ B H Sy Wit + (Fer ™! + 1Bt ™ H i ) Wi} |
osgn(ey, ;) (79)

where sgnis the signum function, ° is the Schur product, and + is the
pseudo-inverse transform. Y is a diagonal matrix with positive
elements that contain the convergence rate y, for measurement z;.
Moreover, Vy.x and Wy, denote upper bounds for the measurement
and process noises, and €., , Smax , and H,, denote the upper bound
for small uncertainties in the state model F, control matrix G,
measurement matric H, respectively [93].

o Refine the a priori state estimate into the a posteriori state estimate
[93]:

(80)

Rer ka1 = X1k + Kigro

The discontinuous formulation of K produces high frequency
chattering that degrades the estimation performance. In order to
reduce these unwanted effects, the smoothing boundary layer concept
may be considered. Utilizing the smoothing boundary layer concept,
outside the smoothing layer yp the signum function may be applied to
guarantee stability, when inside the layer a saturation function is
applied to approximate the signum function and eliminate high
frequency chattering [93]:

L, €W > 1
Cipee 1V T LS eqndv <,
-1, e < 1

sat (e /) =
(81)

The width of the boundary layer indicates the level of uncertainties
in the estimation process. However, in order to remove the chattering
completely, the width of the smoothing boundary layer should be
sufficiently large. However, increasing the smoothing layer’s width
decreases the average level of accuracy in state estimates and hence,
there needs to be a compromise between the level of uncertainties and
the VSF’s performance [93]. Stability of the VSF is proven based on the
Lyapunov’s second law of stability [93]. Habibi has also presented the
derivation of the VSF corrective gain with explicit consideration of
modeling uncertainties [93]. In subsequent research, Habibi intro-
duced the extended variable structure filter [106] that is an extension
to the VSF applied to nonlinear systems.

6.2.2. The smooth variable structure filter (SVSF)

The smooth variable structure filter (SVSF) is a more advanced
generation of the variable structure filters, introduced and implemen-
ted by Habibi in 2007 [103]. Similar to the VSF concept, the SVSF is a
model-based robust state estimation method that can be used to
estimate state variables of smooth nonlinear dynamic systems. It has
an inherent switching action that guarantees convergence of the state
estimates to within a region of the real values. The switching
characteristic of the SVSF is due to the variable structure formulation
of the discontinuous gain, which provides robustness to bounded
uncertainties. Most filters only provide the estimation error (filter
innovation) and its covariance as measures of performance. The SVSF
also provides another indicator that is linked to modeling uncertainties
[103].

Fig. 12 shows the main concept of the SVSF method. It presents the
system state trajectory, estimated state trajectory, and existence sub-
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Fig. 12. Representation of the SVSF estimation concept [25].

space versus time. To start the estimation process, an initial value is
selected for the state estimation process based on a prior knowledge of
the systems. Then after, the estimated state is pushed towards a
neighborhood of the system’s true value referred to as the existence
subspace. Once the value enters into the existence subspace, the
estimated state is forced into switching along the system state
trajectory via the SVSF gain. The estimated state trajectory remains
within the existing subspace that has a width proportional to modeling
uncertainties, measurement noise, and disturbances. There has been a
great amount of research to improve the SVSF method and prepare it
as a useful tool for FDI applications [25,93,103,106]. The SVSF method
differs with the VSF method in the derivation approach and the
corrective gain formulation. The derivation of the VSF’ gain is based
on the explicit consideration of the upper bounds for modeling
uncertainties and measurement noise. The derivation of the SVSF’s
gain is based on introducing a positive definite Lyapanov candidate
that contains squared value of the estimation error as: V; = le,,|.
Stability is then achieved by proving that the negative definiteness of
the Lyapunov difference. It is proven that the SVSF process is stable
and convergent if [103]:

ezl < legypy |-

(82)

The SVSF estimation process has the same steps as the VSF process,
but its corrective gain formulation is different. For a linear system with
one measurement corresponding to each of the state variables, the
SVSF’s gain is stated as [103]:

K1 = Hﬁl(lezkﬁ-l\kl + 7 leg i Desar (W71e1k+1\k)’ (83)

where ° denotes the Schur product (element-by-element multiplica-
tion), y is the convergence rate matrix that is diagonal and is defined
such that 0 < y; < 1. Moreover, y~! is a diagonal matrix denote the
constant smoothing boundary layer widths [103]. The saturation
function is defined as same as Eq. (81) [103]. It is proven that the
corrective gain of (83) pushes the estimated states across the switching
hyper plane and guarantees stability. By adopting the Luenberger
observer into the SVSF method, the SVSF method may be applied to
systems with fewer measurements than states [103].

Note that there are two different boundary layers in the SVSF
concept including the existence layer, and the smoothing layer. The
existence layer is referred to as the neighborhood of the estimated state
trajectory in which the stability of the estimation process is ensured.
The width of the existence layer varies in time as a function of the
modeling uncertainties. Although the width of the existence layer is
unknown, it is possible to obtain an upper boundary S for it. The
smoothing boundary layer is defined to approximate the sign function
in the corrective gain formulation and filter out chattering. Its width is
known as p and outside this layer the sign function is applied to
achieve the stability, while inside the smoothing layer the discontinuity
of K is interpolated by the saturation function to provide smooth state
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Fig. 13. Effect of the smoothing boundary layer width i on the SVSF performance [103].

estimates. As presented in Fig. 13 (a), when the smoothing layer width
is larger than the existence layer width w > f, chattering is filtered out.
Otherwise as presented in Fig. 13 (b), if the smoothing layer width is
smaller than the existence layer width y < , then the smoothing layer
will be ineffective and chattering will appear [103].

Generally speaking, the filter gain construction is the main differ-
ence between the KF and SVSF. The KF gain depends on the a priori
and the a posteriori measurements error values, whereas the SVSF
gain depends on the smoothing boundary layer widths, convergence
rate y, and the measurement matrix H [103]. A significant amount of
research has been conducted to improve the SVSF’s performance.
Gadsden et al. combined the SVSF with other filters such as the PF
[107], the cubature Kalman filter (CKF) [108], and the IMM filter
[109]. New research also concentrated on the derivation of a state error
covariance term for the SVSF [104], formulating a continuous-time
form of the SVSF [110], and defining an optimal smoothing boundary
layer [105]. Further details and developments on the SVSF may be
found in [25], and [111]. The main features of the SVSF that make it a
unique and attractive tool for state estimation may be summarized as
follows:

a) It provides robustness and guarantees stability within a predefined
boundary layer for bounded uncertainties and noise levels [103].

b) Other estimation techniques such as the KF, UKF, CKF, and PF
provide the innovation and the error covariance as measures of
performance. However, the SVSF also provides a secondary in-
dicator of performance based on the chattering function [111],
which explicitly relates to uncertainties and modeling errors [103].

6.2.3. The SVSF with a variable boundary layer (SVSF-VBL)
The former version of the SVSF is introduced when the width of the
smoothing boundary layer remains constant. As discussed, the width of

Upper limit for boundary layer

Upper optimal boundary layer

“w Estimated state trajectory

(a) SVSF-VBL for a system in normal condition

/~ Lower optimal boundary layer

Lower limit for boundary layer

the smoothing boundary layer is selected based on available knowledge
of the upper bound of modeling uncertainties and maximum levels of
measurement noise and parametric errors. However, considering a
constant width for this layer is a conservative choice that decreases the
accuracy of state estimations. A more efficient smoothing boundary
layer may be obtained when its width is changing as a function of
uncertainty and noise levels. Gadsden introduced the state error
covariance matrix for the SVSF and then used it to derive an optimal
time-varying width for the smoothing boundary layer [112]. The
calculation process of the error covariance matrix is similar to that of
Kalman filtering [104]. The key idea for specifying the boundary layer
width matrix  is to take the partial derivative of the a posteriori error
covariance matrix with respect to y. This idea is similar to calculating
an optimal gain for the Kalman filter. This leads to an optimal
formulation of the SVSF that optimizing the diagonal entries of the
state error covariance matrix. Hence, a time-varying smoothing
boundary layer for the SVSF method is calculated by [112]:

olrrace Py iie Dl _

oy

It is proven that the optimal time-varying smoothing layer for the
SVSF leads to the well-known Kalman filter solution for linear systems.
Following this, Gadsden proposed a method entitled the SVSF-VBL. It
is a combination of the SVSF and KF. In this method, the SVSF
guarantees stability for estimates that are outside the smoothing
boundary layer and provides optimality for estimates inside the
boundary layer [112]. Fig. 14 (a) presents the SVSF-VBL concept. In
the SVSF method, the smoothing boundary layer width is equal to the
limit. It results in the loss of optimality demonstrated as the difference
between the limit and the optimal boundary layer. However, the SVSF-
VBL (KF) gain should be applied to provide efficient estimates. Fig. 14
(b) presents the SVSF-VBL concept for estimating systems with high

0.
(84)

--- Upper optimal boundary layer

System change R
(i.e., Presence of a fault) \ W
B (./,

- Upper limit for boundary layer

Estimated state trajectory

Lower limit for boundary layer

_-Lower optimal boundary layer

(b) SVSE-VBL for a system with a fault condition

Fig. 14. Main concept of SVSF-VBL for a system in normal and faulty conditions [112].
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Fig. 15. Main concept of the dynamic 2nd-order filter for state estimation [113].

amount of uncertainties such as a system with a fault condition. In this
case, the optimal smoothing boundary layer is larger than the limit
enforced by the SVSF method. Hence, the SVSF-VBL gain is made
equal to the SVSF gain to use its robust characteristic and guarantee
stability in uncertain conditions [112]. Inside the limit, the SVSF-VBL
optimal boundary layer is used. One cycle of the SVSF-VBL state
estimation technique contains the following steps [112]:
1. Prediction Step [112]:

e Calculation of the a priori state and covariance estimates using (18)
and (19) respectively.
e Derivation of the a priori measurement error using (20).
2. Update Step [112]:
e Calculation of the combined error vector as:
B = leg ] + vleg, | (85)
e Derivation of the smoothing boundary layer matrix given by [112]:
Wy = (B H Py HY S, 7 h7h (86)
e Calculation of the SVSF-VBL gain given by [112]:
Ki+1 = H! Ei1 ‘I’k+1_l- (87)
e Refinement of the a priori state and covariance estimates into the a

posteriori estimates that are respectively obtained using (23) and
(24) [112].

6.2.4. The dynamic second-order filter (dynamic 2nd-order filter)
The basic idea of the dynamic 2nd-order filter [113] is based on the
second-order sliding mode concept in which chattering is suppressed
by means of preserving the second sliding condition. Afshari used this
concept to design the dynamic 2nd-order filter in 2014. He implemen-
ted this method for several real-world applications such as fault
detection and diagnosis [114-118], battery management systems
[119], and vehicle tracking [120, 121]. The dynamic 2nd-order filter
provides a powerful tool for estimating state variables of highly
uncertain dynamic systems while the measurement error (innovation)
and its time-difference are pushed towards zero. It is important to note
that although adding a smoothing boundary layer yp to the gain
formulation of the SVSF-type filtering can decrease chattering, it
compromises accuracy and robustness. The smoothing layer interpo-
lates the discontinuous corrective action within a small neighborhood
of the switching surface and hence, the real sliding motion doesn’t
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occur. To overcome this problem, the dynamic 2nd-order filter is
designed to avoid chattering by preserving a robustness criterion that
results in elimination of the measurement error and its difference over
time [113].

In order to formulate the dynamic 2nd-order filter, a dynamic
manifold 6, € R”¥! is defined as a linear combination of the measure-
ment error and its time-difference. The dynamic manifold is given by
[113]:

o = Aeyy, + Ceyys (88)

where e,,, denotes the measurement error (innovation sequence),
Ae,,, denotes its time-difference, and C € R™*™ represents the cut-off
frequency coefficient matrix. Note that C = diag(c;) is a diagonal
matrix and its entries are defined such that ¢; > 0. Introducing the
cut-off frequency coefficient into the filter formulation provides the
dynamic 2nd-order filter as a second-order filter with an adjustable
bandwidth. It is available to tune the cut-off frequency in order to
remove the noise, chattering, and any high-frequency dynamics from
state estimates. Stability of the dynamic 2nd-order filter was proven
using the Lyapunov’s second law of stability, whereas the Lyapunov
function was defined in discrete-time, as follows:

Vi = 010" = (Aeyy, + Ceyy)(deyy, + Ceyy))' (89)

Note that satisfaction of the Lyapunov function (89) results in
decreasing the measurement error and its difference over time [113].
Fig. 15 illustrates the main concept of the dynamic 2nd-order filter. As
shown, the existence boundary layer for each measurement is a
cylindrical form subspace with a center line at o, = Ae,,, + cie,, [113].

The dynamic 2nd-order filtering process is similar to the SVSF
method [103], but the corrective gain formulation is different. It is
stated as [113]:

Kyt = Hﬁ][eZan = (7 + Megy, + Aey_ ], (90)

where A = diag(4;) € R™™ denotes the cut-off frequency matrix such
that 0 < 4; < 1. It was proven that the dynamic 2nd-order filter with
the corrective gain of Eq. (90) satisfies the stability condition (89)
[113]. The corrective gain (90) represents a second-order Markov
process providing higher degrees of smoothness in the state estimated
trajectories. It is because the corrective gain applies separate con-
straints to the measurement error and its difference that suppress both
of them in finite time. The 2nd-order formulation of gain provides
higher amount of information from the past and this allows the
dynamic 2nd-order filter to update estimates at time k+1 based on
the information available from step k and k-1. This improves the filter’s
performance in terms of accuracy, smoothness and robustness without
the need for approximation [113]. Fig. 16 shows the concept of
decreasing the error by means of the dynamic 2nd-order filter.

6.3. The H, Filtering

The first systematic approach into the robustness concept was
firstly introduced by Zames in 1980 [94]. He presented the H, theory
for design and implementation of robust controllers that are insensitive
to modeling uncertainties, and lack of statistical knowledge of inputs.
The H. theory may be considered as an extension to the linear
quadratic Gaussian (LQG) theory introduced in 1960s [122]. The
LQG design was performed based on a perfect model of the system
and complete knowledge of input statistics. In contrast to the LQG
concept, the H,, method was proposed to negate the necessity of a
perfect model or complete knowledge of the input statistics. The H.,
theory is designed based on tracking the energy of signal for the worst
possible values of modeling uncertainties w and measurement noise v
[122] (Table 1 and 2).

In order to clarify the H., concept, one may define a measure of how
good the estimator is as:
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Fig. 16. Decreasing the error by means of the dynamic 2nd-order filter [113].

min max J
X LAY

o1

where w and v are the process and the measurement noise that try to

Table 2
Symbols and math operations with their definitions.

b) Error by Nonlinear 2" Filter= 0 (&, x€,,)

. . . . . K Symbol Definition Symbol Definition
degrade the state estimates. The main objective of the H filtering is to ym ym
provide state estimates by minimizing the worst possible effect of w 0 Mean value c Autocorrelation function
and v on the estimation error. The cost function J may be defined as =] Estimated value e Error
[122]: ] Error (residual) value i Information content
or Transpose operator k Sample time
_ ave|lx; R HQ F State matrix m Mode number in the MM
= 5 filtering
ave||willw + avel|vi|lv 92
Iwell Il ©2) G Control matrix p(@) Probability distribution
where Q, W, and V, each denotes the weighting matrix corresponding . function
. H Measurement matrix r Residual vector
to a parameter, when the averages are calculated on the weighted . - ) 3
i IR ) I Identity matrix sgn(o) Signum function
norms overall time steps k. Note that minimizing the cost function (92) N Sample size u Control vector
means that the H filter tries to calculate the state estimates X, to be as N[o] Normal distribution v Measurement noise
close to x; as possible, when noise terms make function J large. It is too E{o} Expected value w Process noise
difficult to mathematically find a solution for the described problem. It Pux(@)  Covariance X State vector
. bl 1 th bl for 7 < 1/0 h 9 i tant Py (D) Cross covariance z Measurement vector
18 pOSSlb e to solve the problem for J < > W en. 1s a constan Pk Conditional Probability o H,, performance bound
parameter, and called the performance bound. It is chosen by the Prc] Probability function n Markovian transition
designer and its value depends on the case under study. Satisfying the probability
condition J < 1/6 through the H filter, it is not important how large Q Process noise covariance n Mixing probability in the
. . matrix IMM filter
the magnitudes of noise terms w and v are. The H, filter ensures that . .
N K i X . i R Measurement noise L Variance
the ratio of the estimation error to noise will always remain less than covariance matrix
1/60 [122]. S Residual covariance matrix  y Weight for the UKF
In order to formulate the H,, filter recursively, based on the game computations
theory approach [123], let assume a linear stochastic system of Egs. T Sample rate 5 Sigma points of the UKF
d h N bi d . Tr Trace of a matrix 3 Kronecker delta
(16) and (17). The system is moreover subjected to [32]: K Filter's gain w Smoothing boundary layer
Z, = Lka, (93)
Table 1
Abbreviations with their complete descriptions.
Abbreviation Description Abbreviation Description
CDF Central Difference Filter MLE Maximum Likelihood Estimator
CKF Cubature Kalman Filter MM Multiple Models
DDF Divided Difference Filter MMSE Minimum Mean Square Error
EHA Electro-Hydraulic Actuator MSE Mean Square Error
EKF Extended Kalman Filter PDF Probability Density Function
GHF Gauss-Hermite Filter PF Particle Filter
GPB Generalized Pseudo Bayesian QKF Quadrature Kalman Filter
He H-infinity Filter RKF Robust Kalman Filter
IMM Interacting Multiple Model SPKF Sigma-Point Kalman Filter
KF Kalman Filter SVSF Smooth Variable Structure Filter
LQG Linear Quadratic Gaussian SVSF-VBL SVSF with a Variable Boundary Layer
MAP Maximum A Posteriori UKF Unscented Kalman Filter
MCKF Monte Carlo Kalman Filter VSF Variable Structure Filter
MKF Mixture Kalman Filter WF Wiener-Kolmogorov filter
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where the objective is to estimate z;, as a linear combination of the
state. Note that L; is a full rank weighting matrix, and in the case of
directly estimating the states, it is set to L; = I. Similar to (92), the cost
function J for this system of equation is defined as [32]:

N—1 A2
Zk=0 Ilzk - zkIISk

J =
ENNTY) N-1 2 2
o = Rolfy 1 + Ziy (Hwknok_] + ||vk||Rk_])

94

where Py, Qi, Ry, and S; are symmetric and positive definite matrices
selected by the designer based on the case under study. As discussed,
the cost function J should be enforced to be less than 1/6. The gain for
the H., estimation process may be calculated as [32]:

§k = LkTSkLk, Ki=F[I-06 §kPk + HkTRk_lHkPk]_lHkRk_l. (95)

The state vector and the state error covariance matrix may be
predicted as [32]:

%1 = B + BEKu(z — Hik), Py = BRI - 0S,P, + H/RHP™
Fk_l + Q. (96)

Note that the following condition needs to be satisfied during the
state estimation process [32]:

Pk_l -0 Sk + HkTRk_lHk > 0. 97)

The following points are addressed by comparing the H, filter with
the Kalman filter [32]:

e In the H. filter, matrices P;, Q;, and R; are design parameters
chosen by the designer based on the prior knowledge of noise,
uncertainties, and the initial error. The noise and uncertainties may
be nonzero mean. In the Kalman filter, noise, uncertainties and the
error must be zero mean, when Q;, R;, and P, are their correspond-
ing covariance [32].

® One may assume that L; = S; = I in the H, filter formulation. If the
performance bound is set as @ = 0 for estimation, then the H, filter
reduces to the Kalman filter. It means that the Kalman filter is a
min-max filter, when the performance bound is set to § = co. Hence,
the H filter may be considered as a robust version of the Kalman
filter, but it is not optimal in the MMSE sense [32].

e The Kalman filter may become more robust by increasing Q
artificially, which enlarges the covariance P,,; and gain K;, alter-
natively. Similarly, by subtracting the term 0 S P, from the H., gain,
it makes P, and K; larger. It intuitively results in increasing
robustness of the H, filter [32].

Conclusion

In this paper, an exhaustive survey of Gaussian filters for the state
estimation task was provided and recent trends and developments were
discussed in detail. The state estimation task was described based on
the well-known Bayesian paradigm. In order to obtain a general
framework for the Gaussian filter, the estimation paradigm was
regenerated under the Gaussian assumption of process and measure-
ment noise. The main Gaussian filters, presented in the literature, were
then classified into several groups. Classification was based on certain
characteristics that included linearity or nonlinearity of the process
model, numerical integration techniques used for the state’s PDF
propagation, and methods for providing robustness or adaptive
characteristics. The main issue common to all of the discussed filters
is centered on how to properly extract the states from uncertain,
inaccurate, and noisy measurements.
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