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Abstract A multilayered neural network is a multi-input,

multi-output nonlinear system in which network weights

can be trained by using parameter estimation algorithms. In

this paper, a novel training method is proposed. This

method is based on the relatively new smooth variable

structure filter (SVSF) and is formulated for feed-forward

multilayer perceptron training. The SVSF is a state and

parameter estimation that is based on the sliding mode

concept and works in a predictor–corrector fashion. The

SVSF training performance is tested on three benchmark

pattern classification problems. Furthermore, a study is

presented comparing the popular back-propagation

method, the extended Kalman filter, and the SVSF.

Keywords Neural networks � Extended Kalman filter �
Smooth variable structure filter � Estimation

1 Introduction

Artificial neural networks (ANNs) are mathematical mod-

els that process information and adapt in a fashion inspired

by the human brain. ANNs are capable of modeling rela-

tionships between a set of inputs and outputs. ANNs show

enhanced generalization capability, adaptation competen-

cy, and potent nonlinear input–output mapping [1]. In fact,

a neural network with a sufficient number of neurons can

approximately model any continuous function with an ac-

ceptable degree of accuracy [2, 3]. ANNs are applied in

numerous applications such as pattern classification [4],

pattern recognition [2], function approximation, data pro-

cessing, and robotics applications [5]. This section is

divided into two subsections, namely traditional ANN

training strategies and estimator-based ANN training

techniques.

1.1 Traditional ANN training techniques

Since the 1980s, several ANN training techniques have

been proposed. Backpropagation (BP) is one of the first

used techniques in training of multilayer perceptrons [6]. It

was reported by Rumelhart, Hinton, and Williams in 1986

[7]. BP is a first-order stochastic gradient descent method

that iteratively searches for link weights that minimize the

output error in a supervised manner. However, since early

versions of BP involve a constant learning rate, a slow

speed of convergence is attained. In fact, several enhanced

training algorithms have been developed to improve

training performance, mapping accuracy, and speed of

convergence compared to the BP algorithm [8]. For in-

stance, the nonlinear least-squares Gauss–Newton method

is a good candidate to iteratively solve supervised neural

network training problems [7]. Nevertheless, it has been

shown in [9] that the Jacobian matrix may become rank

deficient in some cases, thus resulting in the numerical

instability of the Gauss–Newton algorithm [10]. The sec-

ond-order Levenberg–Marquardt training algorithm [11]

has shown to circumvent the previous problems. Watrous

[12] verified the application of a quasi-Newton method to

neural network training. Quasi-Newton method demon-

strated better convergence performance than the standard
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BP algorithm, but it requires large memory storage to store

the Hessian matrix [13]. The quasi-Newton and Leven-

berg–Marquardt demonstrate better performance than BP

as they involve second-order derivative information. In

addition, these algorithms are implemented in a batch

(multi-streaming) mode where weights are updated based

on more than one training sample in the training set. This is

in contrast to the conventional early versions of BP where

weights are updated by involving only one training sample

(a serial mode) [14].

1.2 State estimation-based ANN training

Even though second-order algorithms have proven to outper-

form the classical first-order BP, they may suffer from poor

convergence properties due to problems with local minima

[15]. Therefore, enhanced ANN training strategies based on

state and parameter estimators such as Kalman filter have been

extensively studied in the literature. The Kalman filter (KF) is

the most popular state estimation tool. It provides a statistically

optimal estimate for linear systems in the presence of Gaussian

white noise. In the case of nonlinear systems, the extended

Kalman filter is applied by linearizing the system or mea-

surement matrices around the current state estimate at each

time. An EKF-based neural network training technique was

first introduced by Singhal and Wu [16]. The EKF provides a

powerful neural network training capability compared to

conventional first-order gradient-based algorithms, such as the

BP [15]. In literature, the EKF has been widely applied for

training of both feed-forward [17] and recurrent networks [18,

19] in both a global form (GEKF) and a decoupled form

(DEKF). Although the EKF demonstrates a close performance

compared to a second-order derivative, batch-based method, it

can avoid local minima problems by encoding second-order

information in terms of a state error covariance matrix [15].

Accordingly, the EKF represents an efficient and practical

alternative to second-order training methods.

Various enhanced ANN training techniques have been

proposed in several studies. A new hybrid learning algorithm

that combines the EKF and particle filter has been presented

in [20]. The new training scheme provides faster speed of

convergence than the stand-alone EKF. An advanced EKF

training technique has been proposed in [21]. The advanced

form of Kalman filter-based parameter estimation method

obtains a more accurate estimate of how a Gaussian distri-

bution evolves under a nonlinear transformation. It has proven

to offer performance advantages over standard EKF training.

Reference [14] provides suggestions on how to initialize the

EKF parameters in addition to presenting a new decoupling

strategy that reduces the update rate of the error covariance

matrix. Wan and van der Merwe [22] stated the effective use

of the unscented Kalman filter (UKF) of Julier et al. [23] for

feed-forward neural networks training.

1.3 The smooth variable structure filter

The smooth variable structure filter (SVSF) is a filtration

strategy that is an extension to the sliding mode concept

[24]. In the SVSF, an estimate of the state trajectory is

generated and is forced toward the actual state trajectory.

The estimates then remain within a neighborhood of the

actual state trajectory, known as the existence subspace.

The width of the existence subspace is a function of

uncertainty in the filter model and varies with time. In the

existence subspace, a switching gain is applied so that the

state estimates switch back and forth along the true (de-

sired) state trajectory. The period for the states to reach the

existence subspace is known as the reachability phase [24].

The recently proposed SVSF provides a robust dynamic

adaptation, high rate of convergence, and can guarantee

estimation stability for bounded uncertainties and noise

levels [24]. The SVSF has been successfully used for pa-

rameter and state estimation [25, 26]. The SVSF has

demonstrated some advantages over the EKF in target

tracking applications with respect to computational com-

plexity, robustness, and tracking accuracy [27]. This is due

to the sensitivity of the EKF to model uncertainties when

used as a parameter estimator. The SVSF can be applied to

both linear and nonlinear dynamic systems. Two versions of

the SVSF have been developed in the literature: an original

form of the SVSF without involving the state error covari-

ance matrix Pkþ1jk and one that includes the covariance

matrix [28]. In this research project, the original form of the

SVSF will be discussed and applied to train feed-forward

MLP networks. The proposed strategy has been applied to

train ANN to detect engine fault conditions in [29].

In this paper, the effectiveness of the proposed strategy

has been compared to well-known, widely used ANN

training strategies on a benchmark, standard set of classi-

fication oriented problems that is used in assessing algo-

rithms. The benchmark problem used is known as

PROBEN1, which has been widely applied to assess ANN-

based training strategies [30]. The SVSF is applied in a

global (GSVSF), multi-streaming mode. The GSVSF’s

performance is compared against the standard first- and

second-order derivative BP algorithms, as well as to the

GEKF on a real-world benchmark problem.

2 Feed-forward multilayered neural network

A multilayer feed-forward network consists mainly of

sensory units that constitute the input layer, one or more

hidden layers, and an output layer.

As shown in Fig. 1, each node is connected to all nodes

in the adjacent layer by links (weights) and computes a

weighted sum of the inputs. An offset (bias) is added to the
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resultant sum followed by a nonlinear activation function

application. The input signal propagates through the net-

work in a forward direction on a layer-by-layer basis.

Consequently, the network represents a static mapping

between inputs and outputs.

Let k denote the total number of layers, including the

input and output layers. Nodeðn; iÞ denotes the ith node in

the nth layer, and Nn � 1 is the total number of nodes in the

nth layer. As shown in Fig. 2, the operation of nodeðnþ
1; iÞ is described by the following equation [31]:

xnþ1
i tð Þ ¼ u

XNn�1

j¼1

wn
i;jx

n
j tð Þ þ bnþ1

i

 !
ð1Þ

where xni tð Þ denotes the output of nodeðn; jÞ for the t

training pattern, wn
i;j denotes the link weight from nodeðn; jÞ

to the nodeðnþ 1; iÞ. bni is the node offset (bias) for

nodeðn; iÞ [31].
The function uð�Þ is a nonlinear sigmoid activation

function defined by [31]:

u wð Þ ¼ 1

1þ e�aw
a[ 0 and �1\w\1 ð2Þ

For simplicity, the node bias is considered as a link

weight by setting the last input Nn to node(nþ 1; iÞ to the

value of one as follows [31]:

xnNn
tð Þ ¼ 1; 1� n� k

wn
i;Nn

¼ bnþ1
i ; 1� n� k � 1

Consequently, (1) can be rewritten in the following form

[31]:

xnþ1
i tð Þ ¼ u

XNn

j¼1

wn
i;jx

n
j tð Þ

 !
ð3Þ

3 Global and decoupled EKF-based NN training

The EKF has been tailored to train feed-forward neural

networks by formulating the network as a filtering problem

[32]. Accordingly, feed-forward multilayer perceptron

network behavior can be described by a nonlinear discrete-

time state-space representation [33] such that:

wkþ1 ¼ wk þ xk ð4Þ
yk ¼ Ckðwk; ukÞ þ vk ð5Þ

Equation (4) represents the system equation. It demon-

strates the neural network as a stationary system with an

additional zero-mean, white system noise xk with a co-

variance described by xkxT
l

� �
¼ dk;lQk: Neural network

weights and biases wk are regarded as the system’s state.

Equation (5) is the measurement (observation) equation. It

is a nonlinear equation relating network desired (target)

response yk to the network input uk and weights wk: The

nonlinear function Ck represents the measurements func-

tion. A zero-mean, white measurement noise vk is added

with a covariance defined as vkv
T
l

� �
¼ dk;lRk [31].

Consider a feed-forward multilayer perceptron network

with two hidden layers as shown in Fig. 3. All activation

functions of the first, second, and output layers are non-

linear sigmoidal functions denoted as uI ; uII and uo,

Fig. 1 Schematic of feed-forward multilayer perceptron network

[31]

Fig. 2 Node ðnþ 1; iÞ representation [31]

Fig. 3 Feed-forward multilayer perceptron with z inputs, two

hidden, layers and m outputs [31]
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respectively. The network transfer function in terms of

network weights, inputs, and activation functions can be

mathematically defined as [34]:

yi kð Þ ¼ uo woi kð ÞuII wII kð ÞuI wI kð Þu kð Þð Þð Þð Þ ð6Þ

where m denotes number of output neurons and wI ;wII ;wo

are group weight matrices for first hidden layer, second

hidden layer, and output layer, respectively.

Linearization is performed by differentiating the net-

work transfer function with respect to network synaptic

weights (i.e., deriving the Jacobian). The Jacobian matrix

Ckjlinearized can be mathematically expressed as follows

[34]:

Ckjlinearized ¼

oy1

ow1

oy1

ow2
oy2

ow1

oy2

ow2

� � �

oy1

owNT

oy2

owNT

..

. . .
. ..

.

oym

ow1

oym

ow2

� � � oym

owNT

2
6666666664

3
7777777775

ð7Þ

where NT denotes total number of synaptic weights (in-

cluding bias) and z specifies number of input neurons. By

differentiating (6) with respect to different weight groups

wI ;wII ;wo; and for i; l ¼ 1; 2; . . .;m; the following is ob-

tained [34]:

oyi

owol

¼
�uo woiuII wIIuI wIuð Þð Þð ÞuII wIIuI wIuð Þð Þ; if i ¼ l

0; otherwise

�

ð8Þ
oyi

owII

¼ �uo woiuII wIIuI wIuð Þð Þð Þwoi �uII wIIuI wIuð Þð ÞuI wIuð Þ

ð9Þ
oyi

owI

¼ �uo woiuII wIIuI wIuð Þð Þð Þwoi �uII wIIuI wIuð Þð ÞwII �uI wIuð Þu

ð10Þ

By placing (8), (9), and (10) in one matrix [34]:

Ckjlinearized ¼
oy

owo

oy

owI

oy

owII

� �
ð11Þ

Ckjlinearized is the m-by-NT measurement matrix of the lin-

earized model around the current weight estimate.

The EKF-based neural network training introduced by

Singhal and Wu [35] is known as the global extended

Kalman filter (GEKF). In the GEKF algorithm, all network

weights and biases are simultaneously processed and a

second-order information matrix correlating each pair of

network weights is obtained and updated [8]. Conse-

quently, the GEKF computational complexity is Oðm N2
TÞ.

A storage capacity of OðN2
TÞ is required, which is relatively

high compared to the standard BP algorithm. The DEKF-

based neural network training algorithm illustrated below

represents the most general EKF-based neural network

training method. The GEKF is a special form of the DEKF

where the weight group number g is set to one. Neural

network training using the DEKF algorithm can be ex-

pressed as follows [31]:

Ck ¼
Xg

i¼1

ðCi
kÞ

T
Pi
kC

i
k þ Rk

" #�1

ð12Þ

Ki
k ¼ Pi

kC
i
kCk ð13Þ

ak ¼ dk � d̂k ð14Þ

ŵi
kþ1 ¼ ŵi

k þ Ki
kak ð15Þ

Pi
kþ1 ¼ Pi

k � Ki
k Ci

k

� �T
Pi
k þ Qi

k ð16Þ

where the following nomenclature applies: C, m-by-m

matrix known as global scaling matrix (or global conver-

sion factor); C, ni-by-m gradient matrix, it involves weight

gradient with respect to every output node; a, m-by-1

matrix representing innovation, which is the difference

between desired (target) and actual network output; P, ni-

by-ni error covariance matrix; Q, ni-by-ni process covari-

ance matrix; K, ni-by-m Kalman gain matrix; R, m-by-m

measurement noise covariance matrix; d̂k, m-by-1 matrix

representing actual network output; dk, m-by-1 matrix

representing target (desired) output.

The above DEKF training algorithm operates in a serial

mode fashion. In serial mode, one training sample is in-

volved in error calculation, gradients computation, and

synaptic weight update. A problem known as the ‘recency

phenomenon’ arises with serial mode when training tends

to be influenced by the most recent samples [8]. Conse-

quently, a trained network fails to remember former input–

output mappings, and thus, serial mode training reduces

training performance. The recency phenomenon can be

circumvented using the multi-streaming training technique

[36–38]. Multi-streaming EKF training allows multiple

training samples to be batched and processed. It involves

training M multiple identical neural networks using several

training samples followed by weight update using overall

networks’ errors. The above algorithm can be adjusted to

multi-streaming mode by replacing matrix dimension m in

C, C, a, K, and R with M � m [14].

4 SVSF-based artificial neural network training

In 2007, the smooth variable structure filter (SVSF) was

introduced based on variable structure theory and sliding

mode concepts [24]. It implements a switching gain to

converge the estimates to within a boundary of the true
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states (i.e., existence subspace) [39, 40]. In its present

form, the SVSF has been shown to be stable and robust to

modeling uncertainties and noise [41, 42]. The basic esti-

mation concept of the SVSF is shown in Fig. 4. The SVSF

method is model based and may be applied to differentiable

linear or nonlinear dynamic equations. The original form of

the SVSF as presented in [24] did not include covariance

derivations. An augmented form of the SVSF was pre-

sented in [28], which includes a full derivation for the filter.

The SVSF can be applied for training nonlinear feed-

forward neural networks by estimating network weights

[43]. In the same fashion as the Kalman filter, the SVSF

has been adapted to train feed-forward neural networks by

visualizing the network as a filtering problem where F, G,

and Ck are the system, input, and output matrices, respec-

tively, follows [24]:

ŵkþ1jk ¼ Fŵkjk þ Guk ð17Þ

yk ¼ Ckðwkjk; ukÞ ð18Þ

The global SVSF training algorithm is iterative and is

summarized by the following steps, assuming a training

dataset defined by xk; zkf g:

Step 1 Network weights initialization

A priori state estimates (network weights) ŵkjk are

randomly initialized ranging from -1 to ?1.

Step 2 Calculation of the predicted (a posteriori) weight

estimates ŵkþ1jk from (17)

For neural networks training, the system matrix F is an

identity matrix and the system input uk is set to zero.

Consequently, when the algorithm is initialized, the a

posteriori weight matrix is the same as the a priori, and

thus, (17) is rewritten as follows [24]:

ŵkþ1jk ¼ ŵkjk ð19Þ

Step 3 Jacobian matrix calculation (linearization) of the

measurement matrix Ck

The algorithm for Jacobian matrix calculation is the same

as that stated earlier in (7). After applying the algorithm,

Ckjlinearized is obtained as in (11).

Step 4 Calculation of the estimated network output

(measurements) ẑkþ1jk
The linearized Jacobian measurement matrix Ckjlinearized
and the a priori network weights ŵkþ1jk yield the estimated

network output as follows [24]:

ẑkþ1jk ¼ Ckjlinearizedŵkþ1jk ð20Þ

Step 5 Measurement error ezkþ1jk calculation

Using the output ẑkþ1jk and the corresponding target (from

the neural network training dataset) zk, the measurement

errors ezkþ1jk may be calculated as follows [24]:

ezkþ1jk ¼ zk � ẑkþ1jk ð21Þ

Step 6 SVSF gain calculation

The SVSF gain is a function of the a priori and the a

posteriori measurement errors ezkþ1jk and ezkjk , the smoothing

boundary layer widths w, the ‘SVSF’ memory or conver-

gence rate c, as well as the linear measurement matrix

Ckjlinearized. For the derivation of the SVSF gain Kkþ1, refer

to [24, 28]. The SVSF gain may be defined diagonally as

follows [24]:

Kkþ1 ¼ Cþ
kjlinearizeddiag ezkþ1jk

			
			þ c ezkjk

			
			


 �
� sat

ezkþ1jk

w

� � �

� diag ezkþ1jk


 ��1

ð22Þ

Step 7 Calculation of the updated state estimates ŵkþ1jkþ1

The updated weights are calculated as follows [24]:

ŵkþ1jkþ1 ¼ ŵkþ1jk þ Kkþ1ezkþ1jk ð23Þ

Step 8 Calculation of a posteriori output estimate ẑkþ1jkþ1

and measurement errors ezkþ1jkþ1

Similar to the EKF strategy, the output estimates and a

posteriori measurement errors are calculated, respectively,

as follows [24]:

ẑkþ1jkþ1 ¼ Ckjlinearizedŵkþ1jkþ1 ð24Þ

ezkþ1jkþ1
¼ zkþ1 � ẑkþ1jkþ1 ð25Þ

Steps 3–8 are iteratively repeated while shuffling (ran-

domly shifting) the training dataset each epoch. TrainingFig. 4 The SVSF estimation concept [24]
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proceeds until one of the stopping conditions (stated later)

occurs. As per [24], the estimation process is stable and

convergent if the following lemma is satisfied [24]:

ekjk
		 		[ ekþ1jkþ1

		 		 ð26Þ

The proof, as defined in [24], yields the derivation of the

SVSF gain from (26). Expanding (16) using (15) and the

standard SVSF gain yields the following [24]:

ez;kþ1jkþ1 ¼ ez;kþ1jk � HKkþ1 ð27Þ

Substitution of (27) into (26) yields [24]:

ez;kjk
		 		[ ez;kþ1jk � HKkþ1

		 		 ð28Þ

Simplifying and rearranging (28) [24]:

HKkþ1j j[ ez;kþ1jk
		 		þ c ez;kjk

		 		 ð29Þ

Based on the fact that HKkþ1j j ¼ HKkþ1 � sign HKkþ1ð Þ,
the standard SVSF gain can be derived from (39) [24]:

Kkþ1 ¼ H�1 ez;kþ1jk
		 		þ c ez;kjk

		 		� �
� sign HKkþ1ð Þ ð30Þ

Equation (30) may be further expanded based on the

fact that sign HKkþ1ð Þ ¼ sign ez;kþ1jk
� �

; as per [24], such

that [24]:

Kkþ1 ¼ H�1 ez;kþ1jk
		 		þ c ez;kjk

		 		� �
� sign ez;kþ1jk

� �
ð31Þ

Note further that the SVSF switching may be smoothed

out by the use of a saturation function, such that (41) be-

comes [24]:

Kkþ1 ¼ H�1 ez;kþ1jk
		 		þ c ez;kjk

		 		� �
� sat ez;kþ1jk

� �
ð32Þ

where the saturation function is defined by [24]:

sat ez;kþ1jk
� �

¼
1; ez;kþ1jk � 1

ez;kþ1jk; �1\ez;kþ1jk\1

�1; ez;kþ1jk � � 1

8
<

: ð33Þ

Finally, a smoothing boundary layer w may be added to

further reduce the magnitude of chattering, leading to [24]:

Kkþ1 ¼ H�1 ez;kþ1jk
		 		þ c ez;kjk

		 		� �
� sat ez;kþ1jk=w

� �
ð34Þ

Note that the gain described in (34) is slightly different

than that presented earlier as (22). A diagonalized form

was created, as described in [28, 44], to formulate an SVSF

derivation that included a covariance function. The form

shown as (34) was presented as the original or ‘standard’

SVSF in [24].

5 Description of benchmark problems

PROBEN1 is a standard set of classification oriented

problems, conventions, and guidelines that are used in

assessing algorithms [30]. PROBEN1 is a collection of 15

datasets form 12 diverse fields that represents real-world

data in both continuous and binary values. In addition,

PROBEN1 includes a set of rules on how to conduct a

benchmark neural network training test to allow easy

comparisons of training algorithms. PROBEN1 consists of

training datasets from the UCI (University of California,

Irvine) learning database archive [30].1

In this paper, the datasets are further used for neural

network training by splitting them into 50, 25, and 25 %

segments representing training, validation, and testing sets,

respectively. Three classification problems with different

training difficulty levels were selected as follows: cancer,

diabetes, and glass problems.

5.1 Cancer problem

Datasets were originally attained from Dr. W. H. Wolberg,

University of Wisconsin Hospitals, Madison [45]. This

problem represents classification of breast tumor to either

malignant or benign. A total of 699 training datasets, with

nine inputs and two outputs each, are collected under mi-

croscopic investigations. Inputs represent attributes used

for cancer classification such as uniformity of cell size,

shape, and clump thickness. Three forms of the same

problem namely ‘cancer1,’ ‘cancer2,’ and ‘cancer3’ are

presented according to the order of dataset. Datasets are

split to 50, 25, and 25 % segments for training, validation,

and testing. Table 1 shows different class distributions and

percentages.2

5.2 Diabetes problem

This dataset is from the ‘Pima Indians diabetes’ folder from

the UCI database archive. The problem tackles classifica-

tion of ‘Pima Indian’ individuals to either diabetes positive

or not. The datasets consist of 768 examples with eight

inputs and two outputs. Inputs3 represent personal and

experimental data such as age, plasma glucose concentra-

tion, blood pressure, and glucose tolerance. 65.1 % of the

examples are diabetes negative. Table 2 shows the distri-

bution and percentage of samples.

5.3 Glass problem

The third dataset is fetched from the ‘glass’ problem in

UCI database archive. This problem tackles classification

of glass to one of six categories. Glass datasets consist of

1 Data are available for download through (ics.ci.edu, directory/

pub/machine-learning-database).
2 There are 16 missing values for attribute (input) 6, and they are

replaced by a constant value of 0.3 instead for network training.
3 The datasets involve zero elements that might be replacing some

missing attributes.
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nine inputs: one represents the glass refractive index, and

the remaining eight inputs represent percentage content of

eight glass splinter chemical elements. Samples are clas-

sified to one of the followings: float processed, non-float

processed building windows, vehicle windows, containers,

tableware, and head lamps. Two hundred and fourteen

datasets are used in this test. All of the inputs are con-

tinuous. This benchmark problem is quite challenging as

only a few number of inputs are available. Hence, it tests

the sensitivity of training algorithms to discard informa-

tion. Table 3 shows the glass distribution of samples.

5.4 Problem attributes

The three benchmark problems previously stated charac-

terize different degrees of classification difficulties. Cancer

provides adequate number of training samples. Classes are

partially overlapped with complex boundaries among

classes. Hence, it is a fairly easy classification task [46].

Diabetes represents higher level of difficulty by overlap-

ping classes as well as complex boundaries. Glass increases

the level of difficulty by providing few training datasets in

addition to complex boundaries and overlapping classes.

Table 4 summarizes the training data attributes. For each

benchmark problem, it shows the number of inputs, input

attributes, output classes, number of training datasets, and

the entropy. Input attributes are classified as: binary input

b, continuous input c, and missing input attribute m. Output

attributes are all binary for all problems under investiga-

tion. The entropy E is a measure of random variable

uncertainty or unpredictability. As entropy increases, the

level of unpredictability increases as well. Entropy for class

probabilities P(c) is defined as follows:

E ¼
X

ClassesC

P cð Þ log2ðPðcÞÞ ð35Þ

As shown in Table 4, cancer and diabetes are relatively

predictable. Glass is highly unpredictable, which makes it a

more difficult classification problem.

5.5 Benchmarking rules

In this paper, benchmarking rules stated in [30] are fol-

lowed. Regarding training algorithms used, the first-order

gradient-based batch BP algorithm is as stated in [47]. The

algorithms used are covered in detail in Chapters 11 and 12

of [48]. The Levenberg–Marquardt algorithm applied in

this paper is described in [49, 50]. The quasi-Newton

technique is described in [51]. The EKF training algorithm

applied is as stated in [37] and was also described earlier.

The measurement noise covariance matrix R elements were

set to 0.1, and the process noise covariance matrix Q ele-

ments were set to 0.01. The initial error covariance matrix

P0j0 elements are set to 0:1� In�n:

The SVSF algorithm, defined earlier, has a smoothing

boundary layer thickness w set to 0.01 and c was set to 0.2.

The state error covariance matrix P, measurement noise

covariance matrix R, and the process noise covariance

matrix Q are not required as in the case of the EKF, and

thus, fewer parameters are required to tune. By using the

SVSF, only one tuning parameter is required that is the

smoothing boundary layer thickness w. However, three

tuning parameters are required for the EKF: the state error

covariance matrix P, system noise covariance matrix Q,

and measurement noise covariance matrix R. For the EKF

and SVSF, weights and biases are updated once at the end

of each epoch, using the multi-streaming approach as dis-

cussed earlier.

Training is stopped whenever one of the following three

conditions occurs: if the GLa stopping criterion discussed

below is achieved, if the training progress is below a spe-

cified value 0.1, or if the maximum number of epochs

(1000) are achieved. For the first stopping criterion, train-

ing is terminated when the generalization loss (GL) is

higher than a certain threshold.

Table 2 Diabetes problem class distribution

Description Diabetes No diabetes Total

Total number 268 500 768

Total percentage 34 66 100

Table 1 Cancer problem class distribution

Description Benign Malignant Total

Total number 458 241 699

Total percentage 66 34 100

Table 3 Glass problem class distribution

Description 1 2 3 4 5 6 Total

Total number 70 76 17 13 9 29 214

Total percentage 32.7 35.5 7.9 6.1 4.2 13.6 100

Table 4 Attribute structure of classification problems

Problem Input values Classes b Training set E

b c m

Cancer 0 9 0 2 699 0.9

Diabetes 0 8 0 2 768 0.9

Glass 0 9 0 6 214 2.1
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According to [30], the generalization loss at epoch t is

defined as the relative increase in the validation error over

the minimum-so-far (in percent).

GL tð Þ ¼ 100
EvalidðtÞ
EOptimalðtÞ

� 1

� 
ð36Þ

EOptimal tð Þ ¼ min
t
0 � t

Evalidðt
0 Þ ð37Þ

where EvalidðtÞ is the validation set squared error at

epoch t, where E is the error function defined in (40).

EOptimal tð Þ is the least validation set squared error ob-

tained up to epoch t. When high generalization loss

occurs, it indicates that the algorithm is focusing on

training signal peculiarities and ignoring general regular

behavior. Accordingly, training should be terminated

whenever a GL exceeds a predetermined threshold value

a (set to 0.01).

The second stopping criterion is called the training

progress. It is performed by calculating the squared error of

training and validation dataset after a prespecified number

of epochs called the strip length k (set to five epochs in this

paper). The sequence is numbered as nþ 1; nþ 2; . . . nþ k

provided that n is divisible by k. Training progress is cal-

culated using the following formula:

Pk tð Þ ¼ 1000

P
t
0 2t�kþ1...t Etrain t

0� �

k �mint0 :2t�kþ1...tEtrain t
0ð Þ � 1

 !
ð38Þ

This ratio specifies the relation between the average

and the minimum training error that occurs within one

strip. The network performance function (error func-

tion) used is the mean squared error between the net-

work and target outputs. For the ith output node, the

squared error per training sample is calculated as

follows:

E o; tð Þ ¼
X

i

ðoi � tiÞ2 ð39Þ

where oi is output target node and ti is the target. Mean

squared error (MSE) is calculated using the whole dataset.

Error normalization is performed, and squared error per-

centage is calculated as follows [30]:

E ¼ 100
omax � omin

N � P
XP

P¼1

XN

i¼1

opi � tPi
� �2 ð40Þ

where N represents the number of output nodes. P indicates

the number of training samples used. omax and omin repre-

sent maximum and minimum values for the output nodes,

respectively. In addition to MSE variations during training,

training algorithms are evaluated according to classifica-

tion performances [46].

6 Results of benchmark problems

A fully connected feed-forward multilayer perceptron with

two hidden layers is used. Table 5 summarizes the net-

works’ architecture used for the three proposed benchmark

problems. A nonlinear sigmoidal activation function uð�Þ
as shown below is used in the hidden layers, while linear

neurons are involved in the output layer.

u wð Þ ¼ 1

1þ e�aw
a[ 0 and �1\w\1 ð41Þ

In this paper, multiple training and testing runs have

been carried out followed by statistical analysis. This is due

to the fact that random initialization arises in training a

neural network. Consequently, different results may occur

even by applying a similar training technique using the

same training dataset. Accordingly, 30 runs have been

carried out followed by calculating the mean, standard

deviation, and the ‘best’ run using test, training, and

validation set error.

Figures 5, 6, and 7 show the changing MSE over time for

the three different cases using the same network initializa-

tion and architecture. For the three benchmark problems,

the SVSF requires fewer epochs until convergence com-

pared with Levenberg–Marquardt, quasi-Newton, and the

batch first-order BP algorithm. The SVSF achieves com-

parable performance to the EKF in regards to the number of

epochs required until convergence. For the cancer problem,

at the second epoch, the SVSF has reached an MSE of

0.060, while the MSE for the EKF was 0.095. At the third

epoch, the MSE for the SVSF was 0.024, and the EKF was

0.032. This makes the SVSF advantageous when online

training is implemented. For the glass problem, at the sec-

ond epoch, the SVSF has reached an MSE of 0.125, while

the MSE for the EKF was 0.147. At the third epoch, the

MSE for the SVSF was 0.095, and the EKF was 0.107.

For the diabetes problem, the SVSF has an MSE of

0.175 at the third epoch, compared with an MSE of 0.201

for the EKF. The quasi-Newton, Levenberg–Marquardt,

and first-order BP achieved an MSE of 0.263, 0.279, and

0.670, respectively. The SVSF provides stability, as de-

scribed by the stability lemma, and reaches the minimum

MSE in the fewest number of epochs compared with the

other popular training techniques.

Table 5 Architecture for the three benchmark problems

Problem Inputs Layer #1 Layer #2 Outputs

Cancer 9 12 12 2

Diabetes 8 11 10 2

Glass 9 12 11 6
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Tables 6, 7, and 8 show the results using the proposed

SVSF training algorithm along with other popular training

algorithms. The tables show training and generalization

(testing) results on the three selected benchmark problems.

Mean square error percentage is shown as the performance

measure. For the cancer problem, the SVSF has shown

better results compared to the EKF, LM, and BP. During

testing, which is the most important performance measure

as it tests trained networks generalization capability, the

SVSF provides the best mean generalization after QN. The

SVSF’s mean testing error is close to quasi-Newton.

However, QN algorithm requires a longer training time, as

well as increased computational complexity, which pro-

vides an advantage for the SVSF.

In addition, the SVSF achieves the least standard de-

viation during testing compared with the EKF, LM, and

BP. The SVSF’s standard deviation is comparable to the

QN. Regarding best and worst runs, SVSF, EKF, LM, and

QN achieve the same best run followed by BP. Regarding

the worst run, QN achieves the best performance, followed

by the SVSF and EKF with the same performance. The LM

method follows these, while the first-order batch BP is far

behind. Regarding the number of epochs, the SVSF, EKF,

and LM achieve the same number of epochs, followed by

QN and first-order BP.

In this paper, an accurate SVSF-based feed-forward

multilayer perceptron (MLP) training technique is devel-

oped and tested on several real-world applications. The

SVSF, in addition to being an excellent parameter and state

estimation strategy, can be tailored to train feed-forward

MLP. The SVSF performance is tested on three real-world

benchmark problems and compared to other classical

training techniques, namely BP, quasi-Newton (QN),

Levenberg–Marquardt (LM), and the extended Kalman

filter (EKF). In general, the proposed technique achieves

guaranteed stability, excellent static input–output mapping,

good generalization capability, and minimum number of

epochs compared to other classical, commonly used,

training methods.

For the three benchmark problems (cancer, glass, and

diabetes), simulation results show that the proposed SVSF

training technique requires minimum number of epochs to

reach convergence similar to the EKF and LM. In addition,

results show that the SVSF-based ANN training technique

Table 6 Error rates using the

cancer dataset for various

training techniques

Technique Training Generalization Epochs

Mean SD Best Worst Mean SD Best Worst

BP 6.05 4.41 3.14 16.28 7.06 3.74 4.60 16.66 28

LM 1.40 0.71 0.57 2.57 5.34 1.67 3.44 8.62 13

QN 2.37 0.55 1.71 3.71 4.31 0.72 3.44 5.17 26

EKF 1.54 0.62 0.57 2.28 4.77 0.94 3.44 6.32 13

SVSF 1.85 0.52 0.85 2.85 4.65 0.73 3.44 6.32 13

Table 7 Error rates using the

glass dataset for various training

techniques

Technique Training Generalization Epochs

Mean SD Best Worst Mean SD Best Worst

BP 69.03 6.86 57.75 88.20 71.32 8.88 52.83 90.57 30

LM 29.48 6.83 17.39 52.17 40.50 7.18 32.08 64.15 12

QN 46.40 6.13 32.30 57.76 53.40 8.23 35.85 64.15 27

EKF 18.36 6.63 8.07 32.30 34.28 3.51 28.30 39.62 12

SVSF 25.61 8.53 14.91 62.11 35.66 4.01 28.30 49.05 12

Table 8 Error rates using the

diabetes dataset for various

training techniques

Technique Training Generalization Epochs

Mean SD Best Worst Mean SD Best Worst

BP 36.15 13.44 21.36 66.14 38.60 12.10 23.96 64.06 41

LM 18.86 2.64 14.32 24.74 25.40 3.01 18.75 33.33 10

QN 21.95 1.56 19.01 26.56 24.15 1.48 20.31 26.56 25

EKF 16.14 2.22 11.46 21.35 26.32 2.00 21.87 30.21 10

SVSF 18.40 6.03 14.32 47.66 26.44 4.40 22.92 47.92 10
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provides comparable performance to other training tech-

niques in terms of generalization capability, which is the

most important aspect, especially for offline training as it

tests the ability of trained networks to classify new data not

previously seen during training phase.

For the cancer problem, QN achieved best generalization

followed by the SVSF, and then, the EKF, LM, and the BP

achieve worst performance. However, QN requires more

epochs to train. For the glass problem, the EKF provides

best generalization followed by the SVSF, then the LM, QN,

and finally the BP. For diabetes problem, QN achieves the

best generalization followed by the LM, EKF, SVSF, and

BP. However, the QN requires more than double the number

of epochs to train compared to EKF, SVSF, and LM.

The SVSF and EKF in their global form are computa-

tionally expensive compared to first- and second-order,

optimization-based training techniques. However, the EKF

and SVSF can avoid premature convergence to local

minima problems by incorporating second-order informa-

tion in the state error covariance matrix P. In addition to the

state error covariance matrix, the SVSF can avoid local

minima problems by using a switching chattering action in

updating network’s weights. By comparing the original

SVSF to the EKF, the SVSF requires only one tuning pa-

rameter (boundary layer thickness w), while three tuning

parameters are required in case of the EKF, namely the

error covariance matrix P, system noise covariance matrix

Q, and measurement noise covariance matrix R.

7 Conclusions

In this research, an accurate SVSF-based feed-forward mul-

tilayer perceptron (MLP) training technique was developed

and tested on several real-world applications. The SVSF, in

addition to being an excellent parameter and state estimation

strategy, can be tailored to train feed-forward MLP. The

SVSF performance was tested on three benchmark problems

and was compared with other popular training techniques,

namely BP, quasi-Newton (QN), Levenberg–Marquardt

(LM), and the extended Kalman filter (EKF). In general, the

proposed technique achieves guaranteed stability, excellent

static input–output mapping, a good generalization capability,

and a minimum number of epochs for convergence, which

makes it an attractive method of training ANNs.
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