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In this paper, nonlinear state estimation problems with modeling uncertainties are
considered. As demonstrated recently in literature, the cubature Kalman filter (CKF)
provides the closest known approximation to the Bayesian filter in the sense of preserving
second-order information contained in noisy measurements under the Gaussian assump-
tion. The smooth variable structure filter (SVSF) has also been recently introduced and has
been shown to be robust to modeling uncertainties. In an effort to utilize the accuracy of
the CKF and the robustness of the SVSF, the CKF and SVSF have been combined resulting in
an algorithm referred to as the CK–SVSF. The robustness and accuracy of the CK–SVSF was
validated by testing it on two different computer problems, namely, a target tracking
problem and the estimation of the effective bulk modulus in an electrohydrostatic
actuator.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The term “Bayesian filtering” refers to the problem
of estimating the current state of a dynamic system in
an optimal and consistent fashion as noisy measurements
arrive sequentially in time using Bayes' rule. The first land-
mark contribution to optimal Bayesian filtering in discrete
time was made by Kalman [1]. He formulated the recursive
filtering solution to linear Gaussian problems using a state
space model. The Kalman filter (KF) has been broadly applied
to problems covering state and parameter estimation, signal
processing, target tracking, fault detection and diagnosis,
and even financial analysis [2,3]. The success of the KF comes
from the optimality of the Kalman gain in minimizing the
trace of the a posteriori state error covariance matrix [4,5].
All rights reserved.
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However, the optimality of the KF does not guarantee stabi-
lity and robustness.

The KF assumes that the system model is known and
linear, the system noise and the measurement noise are
white, and the states have initial conditions with known
means and variances [6,7]. However, the previous assump-
tions do not always hold in real applications. If these
assumptions are violated, the KF yields suboptimal results
and can become unstable [8]. Furthermore, the KF is sensi-
tive to computer precision and the complexity of compu-
tations involving matrix inversions [9]. In an effort to
further increase stability, the KF has been combined with
a variety of square-root algorithms, such as the Cholesky
decomposition, UD-factorization, and triangularization
algorithms [10–13].

These methods are based on reformulating the KF
equations by using numerically stable implementations to
mathematically increase the arithmetic precision of the
computation [9]. Increasing the arithmetic precision reduces
the effects of round-off errors, which improves the overall
numerical stability of the filter. Other methods have been
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proposed to reduce the effects of modeling errors [14,15].
These techniques are based on increasing the a priori covari-
ance matrix, which increases the gain value. This approach
puts more emphasis on the measurement, as opposed to the
model used by the filter [6]. The effects due to assuming
Gaussian noise distributions may be minimized by imple-
menting a Gaussian sum. This method is used to approx-
imate the non-Gaussian probability density function (PDF)
by a finite number of Gaussian PDFs [16]. This approach is
computationally complex due to the number of filters that
are used to approximate the overall estimate [16].

In real-world situations, however, dynamic systems are
nonlinear. For nonlinear systems, the posterior density
that encapsulates all the information about the current
state cannot be described by a finite number of summary
statistics and one has to be content with an approximate
filtering solution. Popular suboptimal nonlinear filters
include the extended Kalman filter (EKF) [5], the unscented
Kalman filter (UKF) [8], and the recently introduced cuba-
ture Kalman filter (CKF) [17,18]. Of these filters, the CKF is
reportedly the most numerically stable and accurate [17].
Equally important is that the CKF does not require Jacobians
and is hence applicable to a wide range of problems.

Since nonlinear Bayesian filters are suboptimal, they
are robust to modeling errors to some extent. However,
when a fault occurs in the system, the parameters that
characterize the system can drastically change. That is,
in this case, one may expect a substantial deviation of the
assumed system description from the true one. Moreover,
in practice, accurate information about the noise statistics
is not readily available. Fortunately however, to handle
modeling errors and noise uncertainties, one may use the
H1 filter (or minimax filter) [9]. The H1 filter does not
make any assumption about the noise and minimizes the
worst case estimation error. The main disadvantage is
that its performance is highly sensitive to the choice of a
number of weighting functions and a user-defined perfor-
mance bound. Alternatively, given upper bounds on the
level of parameter or modeling uncertainties, the smooth
variable structure filter (SVSF) is proved to yield extremely
robust and stable results [19,20]. The EKF and UKF have
been combined with the SVSF in [21]; the results show
improved stability and estimation accuracy.

The key motivation for this paper is to introduce a new
estimation method, referred to as the CK–SVSF, which
makes use of the accuracy of the CKF and the robustness
of the SVSF. The rest of the paper is structured as follows:
Section 2 briefly reviews the CKF and the SVSF. In
Section 3, the CK–SVSF estimation process is described.
In Section 4, the CK–SVSF is applied on two different
problems: a target tracking problem, and the estimation of
the bulk modulus in an electrohydrostatic actuator (EHA).
Section 5 concludes the paper. Note that Appendix A lists
the nomenclature used in this paper.

2. Estimation methods

2.1. Cubature Kalman filter

The CKF is derived by assuming that the predictive density
of the joint state-measurement variable is Gaussian. Under
this assumption, the Bayesian filter reduces to the problem
of how to compute integrals in which the integrands are all
of the form “nonlinear function � Gaussian.” The CKF uses a
third-degree cubature rule to numerically compute Gaussian-
weighted integrals, as opposed to the sigma point set used by
the UKF. The cubature rule approximates an n-dimensional
Gaussian-weighted integral as follows:Z
ℝnx

f ðxÞN ðx; μ;∑Þdx� 1
2n

f ðμþ
ffiffiffiffiffi
∑

q
ξiÞ ð2:1Þ

where a square-root factor of the covariance ∑ satisfies the
relationship ∑¼

ffiffiffiffiffi
∑

p ffiffiffiffiffi
∑

p T
and the set of 2n cubature points

are given by

ξi ¼
ffiffiffi
n

p
ei; i¼ 1; 2;…; n

� ffiffiffi
n

p
ei�n; i¼ nþ1; nþ2;…; 2n

(

where eiAℝn denotes the ith elementary column vector. The
third-degree cubature rule is exact for polynomial integrands
up to the third degree or for any odd-degree polynomial. For
a detailed account of how the cubature points are derived,
the reader is referred to [17]. The objective of the CKF
algorithm is to recursively compute the probability pðxkþ1j
z1:kþ1Þ ¼N ðx̂kþ1jkþ1; Pkþ1jkþ1Þ given the posterior density
pðxkjz1:kÞ ¼N ðx̂kjk; PkjkÞ at time k. Its procedural steps are
described next. The initial set of cubature points X are calcu-
lated based on the previous a posteriori state estimate x̂kjk,
the previous a posteriori state covariance Pkjk, and the
cubature-point set ξi (described earlier)

Xi;kjk ¼
ffiffiffiffiffiffiffiffi
Pkjk

q
ξiþ x̂kjk i¼ 1; 2;…; 2n ð2:2Þ

These cubature points are then propagated through the
system equation, as follows:

Xn

i;kþ1jk ¼ f ðXi;kjk;ukÞ i¼ 1; 2;…; 2n ð2:3Þ

Next, the predicted state x̂kþ1jk and predicted state
error covariance Pkþ1jk are calculated, respectively

x̂kþ1jk ¼
1
2n

∑
2n

i ¼ 1
Xn

i;kþ1jk ð2:4Þ

Pkþ1jk ¼
1
2n

∑
2n

i ¼ 1
Xn

i;kþ1jkX
nT
i;kþ1jk�x̂kþ1jkx̂

T
kþ1jkþQkþ1 ð2:5Þ

The predicted cubature points Xi;kþ1jk are then evalu-
ated based on the predicted stated x̂kþ1jk and predicted
state error covariance Pkþ1jk

Xi;kþ1jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pkþ1jk

q
ξiþ x̂kþ1jk i¼ 1; 2;…; 2n ð2:6Þ

The predicted cubature points Xi;kþ1jk are then propagated
through the measurements Zi;kþ1jk, and the corresponding
predicted measurement is calculated ẑkþ1jk, respectively
as follows:

Zi;kþ1jk ¼ hðXi;kþ1jk;ukþ1Þ i¼ 1; 2;…; 2n ð2:7Þ

ẑkþ1jk ¼
1
2n

∑
2n

i ¼ 1
Zi;kþ1jk ð2:8Þ

In order to calculate the corresponding cubature Kalman
gain Wkþ1, the innovation covariance Pzz;kþ1jk and
cross-covariance Pxz;kþ1jk matrices need to be evaluated,
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respectively as follows:

Pzz;kþ1jk ¼
1
2n

∑
2n

i ¼ 1
Zi;kþ1jkZ

T
i;kþ1jk�ẑkþ1jkẑ

T
kþ1jkþRkþ1 ð2:9Þ

Pxz;kþ1jk ¼
1
2n

∑
2n

i ¼ 1
Xi;kþ1jkZ

T
i;kþ1jk�x̂kþ1jkẑ

T
kþ1jk ð2:10Þ

The CKF gain may now be calculated as follows:

Wkþ1 ¼ Pxz;kþ1jkP
�1
zz;kþ1jk ð2:11Þ

Finally, the updated states x̂kþ1jkþ1 and corresponding
error covariance Pkþ1jkþ1 may be found

x̂kþ1jkþ1 ¼ x̂kþ1jkþWkþ1ðzkþ1�ẑkþ1jkÞ ð2:12Þ

Pkþ1jkþ1 ¼ Pkþ1jkþWkþ1Pzz;kþ1jkW
T
kþ1 ð2:13Þ

The CKF process may be summarized by the previous
equations, and is repeated iteratively. For further informa-
tion on the CKF and its derivation, the reader may refer
to [17].

2.2. Smooth variable structure filter

A new form of predictor–corrector estimator based on
sliding mode concepts referred to as the variable structure
filter (VSF) was introduced in 2003 [22]. Essentially this
method makes use of the variable structure theory and
sliding mode concepts. It uses a switching gain to converge
the estimates to within a boundary of the true state values
(i.e., existence subspace). In 2007, the smooth variable
structure filter (SVSF) was derived which makes use of a
simpler and less complex gain calculation [19]. In its
present form, the SVSF has been shown to be stable and
robust to modeling uncertainties and noise, when given an
upper bound on the level of un-modeled dynamics and
noise [22–24]. The SVSF method is model based and may
be applied to differentiable linear or nonlinear dynamic
equations. The basic estimation concept of the SVSF is
shown in Fig. 1.

The estimation process is iterative and may be summar-
ized by the following set of equations. The predicted state
estimates x̂kþ1jk and state error covariance Pkþ1jk are first
calculated respectively as follows:

x̂kþ1jk ¼ f ðx̂kjk;ukÞ ð2:14Þ

Pkþ1jk ¼ FkPkjkF
T
k þQk ð2:15Þ

Note that the partial derivative of the nonlinear system
function is used to create the linearized system matrix Fk as
follows:

Fk ¼
∂f
∂x

����
x̂kjk ;uk

ð2:16Þ

Utilizing the predicted state estimates x̂kþ1jk, the corre-
sponding predicted measurements ẑkþ1jk and measurement
errors ez;kþ1jk may be calculated

ẑkþ1jk ¼ hðx̂kþ1jkÞ ð2:17Þ

ez;kþ1jk ¼ zkþ1�ẑkþ1jk ð2:18Þ
The SVSF process differs from the KF in how the gain is
formulated. The SVSF gain is a function of: the a priori and
the a posteriori measurement errors ez;kþ1jk and ez;kjk;
the smoothing boundary layer widths ψ; and the “SVSF”
memory or convergence rate γ. The SVSF gain Kkþ1 is
defined as follows [19,20]:

Kkþ1 ¼Hþ
k diag½ðjezkþ 1jk jþγjezkjk jÞJ

�satðψ�1ezkþ 1jk Þ�diagðezkþ 1jk Þ�1 ð2:19Þ

where J signifies Schur (or element-by-element) multi-
plication and the superscript þ refers to the pseudoin-
verse of a matrix. Note that the partial derivative of
the nonlinear measurement function is used to create a
linearized measurement matrix Hk as follows:

Hk ¼
∂h
∂x

����
x̂kjk ;uk

ð2:20Þ

The saturation function of (2.19) is defined by the
following equation:

satðψ�1ezkþ 1jk Þ ¼
1;
ezi ;kþ1jk=ψ i;

�1;

8><
>:

ezi ;kþ1jk=ψ iZ1
�1oezi ;kþ1jk=ψ io1
ezi ;kþ1jk=ψ ir�1

ð2:21Þ

where ψ�1 is a diagonal matrix constructed from the
elements of the smoothing boundary layer vector ψ

ψ�1 ¼

1
ψ1

0 0

0 ⋱ 0
0 0 1

ψm

2
664

3
775 ð2:22Þ

Similar to the KF strategy, the state estimates x̂kþ1jk and
state error covariance matrix Pkþ1jk are updated respec-
tively as follows:

x̂kþ1jkþ1 ¼ x̂kþ1jkþKkþ1ez;kþ1jk ð2:23Þ
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Pkþ1jkþ1 ¼ ðI�Kkþ1HkÞPkþ1jkðI�Kkþ1HkÞT þKkþ1Rkþ1K
T
kþ1

ð2:24Þ
Finally, the updated measurement estimate ẑkþ1jkþ1

and measurement errors ez;kþ1jkþ1 are calculated, and are
used in later iterations

ẑkþ1jkþ1 ¼ hðx̂kþ1jkþ1Þ ð2:25Þ

ez;kþ1jkþ1 ¼ zkþ1�ẑkþ1jkþ1 ð2:26Þ

The existence subspace shown in Figs. 1 and 2 repre-
sents the amount of uncertainties present in the estima-
tion process, in terms of modeling errors or the presence
of noise. The width of the existence space β is a function of
the uncertain dynamics associated with the inaccuracy of
the internal model of the filter as well as the measurement
model, and varies with time [19]. Typically this value is
not exactly known but an upper bound may be selected
Fig. 2.
based on a priori knowledge. Once within the existence
boundary subspace, the estimated states are forced (by
the SVSF gain) to switch back and forth along the true
state trajectory. High-frequency switching caused by the
SVSF gain is referred to as chattering, and in most cases, is
undesirable for obtaining accurate estimates [19].
However, the effects of chattering may be minimized by
the introduction of a smoothing boundary layer ψ . The
selection of the smoothing boundary layer width reflects
the level of uncertainties in the filter and the disturbances
(i.e., system and measurement noise, and un-modeled
dynamics).

The effect of the smoothing boundary layer is shown in
Fig. 2. When it is defined larger than the existence subspace
boundary, the estimated state trajectory is smoothed. How-
ever, when the smoothing term is too small, chattering
remains due to the uncertainties being underestimated.
3. CK–SVSF estimation method

The SVSF provides an estimation process that is sub-
optimal albeit robust and stable. It is hence beneficial to
be able to combine the accurate performances of the CKF
with the stability of the SVSF. A recent development, as
described in [20,25], provides a methodology for calculat-
ing a variable smoothing boundary layer ψkþ1.

The partial derivative of the a posteriori covariance
(trace) with respect to the smoothing boundary layer term
ψkþ1 is the basis for obtaining a time-varying strategy for
the specification of ψkþ1. In linear systems, this smoothing
boundary layer yields an optimal gain (exactly the KF) [20].
Previous forms of the SVSF included a vector form of ψ ,
which had a single smoothing boundary layer term for
each corresponding measurement error [19]. Essentially,
the boundary layer terms were independent of each other
such that the measurement errors would not mix when
calculating the corresponding gain, leading to reduced
estimation accuracy. In an effort to obtain a smoothing
boundary layer equation that yielded more accurate state
estimates, a full smoothing boundary layer matrix was
proposed in [20,25]. Hence, considering the following
smoothing boundary layer form:

ψ ¼

ψ11 ψ12 ⋯ ψ1m

ψ12 ψ22 ⋯ ψ2m

⋮ ⋮ ⋱ ⋮
ψm1 ψm2 ⋯ ψmm

2
66664

3
77775 ð3:1Þ

This definition includes terms that relate one smooth-
ing boundary layer to another (i.e., off-diagonal terms).
To solve the time-varying smoothing boundary layer based
on (3.1), the following in conjunction with (2.24) is
considered:

∂ðtrace½Pkþ1jkþ1�Þ
∂ψ

¼ 0 ð3:2Þ

As described in [26], a solution for the smoothing
boundary layer from (3.2) is defined as follows:

ψkþ1 ¼ ðA�1
HkPkþ1jkH

T
kS

�1
kþ1Þ�1 ð3:3Þ
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where Skþ1 and A are defined respectively by

Skþ1 ¼HkPkþ1H
T
k þRkþ1 ð3:4Þ

A¼ ðjezkþ 1jk jþγjezkjk jÞ ð3:5Þ

Note that in (3.3), A refers to forming a diagonal matrix
of elements consisting of A. The CKF and SVSF strategies
will be combined using this smoothing boundary layer
calculation. Considering the following sets of figures to
help describe the overall implementation of the CK–SVSF
strategy.

Fig. 3 illustrates the case when the constant smooth-
ing boundary layer width used by the SVSF is defined
larger than the time-varying smoothing boundary layer (i.
e., a conservative choice) calculated by (3.3). The differ-
ence between the constant and upper layers leads to a
reduction in estimation accuracy for the SVSF. Essentially,
in this case, the CKF gain should be used to obtain the
best result.

Fig. 4 illustrates the case when the time-varying
smoothing boundary layer is calculated to exist beyond
the constant smoothing boundary layer. This typically
occurs when there is modeling uncertainty (which leads
to a reduction in estimation accuracy) that exceed the
limits of a constant smoothing boundary layer. The
limits are set by the width of the existence subspace,
which was discussed earlier. In a situation defined by
Fig. 4 when ψvblZψ lim, to ensure a stable estimate, the
SVSF gain (2.19) should be used to update the state
estimates. The smoothing boundary layer widths calcu-
lated by (3.3) are saturated at the constant values. This
ensures a stable estimate, as defined by the proof of
stability for the SVSF [19]. Furthermore, to improve the
SVSF results (i.e., without the use of (3.3)), the averaged
smoothing boundary layers (for the well-defined sys-
tem) can be used to set the constant boundary layer
widths. Doing so provides a well-tuned existence sub-
space that yields more accurate estimates.

Essentially, in a well-defined case, the gain used to
correct the estimate is calculated by the CKF. When the
smoothing boundary layer calculated by (3.3) goes beyond
Fig. 3
the defined constant value, the smoothing boundary layer
width requires saturation (at the constant value). This
process effectively combines the CKF and SVSF estimation
methods and creates a new estimation strategy referred to
as the CK–SVSF.

For implementation, the CK–SVSF equations are sum-
marized. Essentially, the CKF equations are used to predict
the state estimates and state error covariance matrix.
At this point, the time-varying smoothing boundary layer
is calculated and compared with a fixed, conservative
value. If the boundary layer value is smaller than the fixed
value, then the CKF gain should be used to update the state
estimates and state error covariance matrix. However,
if the boundary layer value is calculated to exist beyond
the conservative value, then the SVSF gain should be
implemented. For completeness, the equations are pro-
vided in Appendix B.
4. Computer experiments

In this section, the CK–SVSF is applied on two different
problems: a nonlinear target tracking scenario, and the
estimation of the bulk modulus parameter in an electro-
hydrostatic actuator (EHA). The purpose of the simulations
is to demonstrate that the CK–SVSF method provides an
accurate and stable estimation process when compared
with the standard CKF and SVSF.
4.1. Nonlinear target tracking

The nonlinear estimation problem consists of tracking a
target (i.e., aircraft) with nonlinear range and bearing
measurements from a sensor (i.e., radar) located at the
origin. The system is represented by four states (target
position and velocity, both in the x- and y-directions
respectively). Uncertainty is added to the system by the
lack of knowledge of the true target turn rate ω. The
nonlinear system xkþ1 and measurements zkþ1 are defined
.
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as follows [2]:

xkþ1 ¼

1 sin ðωTÞ
ω 0 �ð1� cos ðωTÞÞ

ω

0 cos ðωTÞ 0 � sin ðωTÞ
0 �ð1� cos ðωTÞÞ

ω 1 sin ðωTÞ
ω

0 sin ðωTÞ 0 cos ðωTÞ

2
66664

3
77775xkþwk ð4:1Þ

zkþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21;kþ1þx23;kþ1

q
tan�1 x3;kþ 1

x1;kþ 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22;kþ1þx24;kþ1

q
tan�1 x4;kþ 1

x2;kþ 1

� �

2
6666666664

3
7777777775
þvkþ1 ð4:2Þ

The measurements corresponding to (4.1) consist of the
target's range, bearing, resultant speed, and resultant
bearing speed. The initial state estimates were defined
based on a random distribution of the true initial state
values and the initial state error covariance matrix. The
system noise and the measurement noise were derived
based on their covariance matrices, respectively as follows
[2,7]:

Q ¼
q1M zerosð2;2Þ

zerosð2;2Þ q2M

" #
ð4:3Þ

R¼ diagð½s2r s2θ �Þ ð4:4Þ

where the following are defined [2,7]:

M¼
T3

3
T2

2

T2

2 T

2
4

3
5 ð4:5Þ

sr ¼ 10 ð4:6Þ

sθ ¼ 0:25
π

180
ð4:7Þ
q1 ¼ 0:001 ð4:8Þ

q2 ¼ 0:01
π

180
ð4:9Þ

The initial state error covariance was defined as follows:

P0j0 ¼ diagð½100 10 100 10 �Þ ð4:10Þ
For the standalone SVSF estimation process, the constant
smoothing boundary layer widths were defined as ψ ¼
½5 15 5 10 1:5 �T , and the SVSF “memory” or conver-
gence rate was set to γ ¼ 0:1. These parameters were tuned
based on some knowledge of the uncertainties (i.e.,
magnitude of noise) and with the goal of decreasing the
estimation error. In this problem, two different cases were
studied. The first case involved the target turning once.
The second case involved the target turning twice, intro-
ducing further uncertainty in the estimation process. Also,
note that the sample rate T of the radar was 1 s. The target
tracking results are shown in the following sets of figures.
The EKF, CKF, SVSF, and the new CK–SVSF methods were
applied.

The RMSE results of running the simulation are listed
in two tables (for each case respectively), shown in
Appendix C. As shown in these tables, the new CK–SVSF
method performed the best in terms of accuracy (i.e.,
RMSE). The SVSF switching “effect” is shown clearly in
Figs. 5 and 6. The switching, inherent to the SVSF gain,
ensures that the estimation process is robust and stable.
However, note that the SVSF yielded the worst turn rate
estimate for both cases, but estimated the position and
velocity of the target very well. As demonstrated in Fig. 6,
the EKF and CKF methods were unable to provide a good
estimate of the target after the second turn. Bounding the
CKF to within a region of the measurements by use of the
SVSF further increased the stability and the performance
as shown by the results of the CK–SVSF method. The
strategy effectively combined the accuracy of the CKF
and the stability of the SVSF.



Fig. 5.

Fig. 6.

Table 1
EHA parameter values.

Term Physical significance EHA model value

AE Piston area 3:37� 10�4 m2

BE Load friction 1260 Ns=m
Dp Pump displacement 6:69� 10�3 m3=rad
L Leakage coefficient 5� 10�12 m3=s Pa
M Load mass 20 kg
V0 Chamber volume 8:5� 10�5 m3

βe Effective bulk modulus 2:1� 108 Pa
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4.2. Estimation of the effective bulk modulus in an EHA

In this experiment, an electrohydrostatic actuator (EHA)
is simulated based on an actual prototype built for experimen-
tation [19,23]. The purpose of this simulation is to demon-
strate that the combined estimation process (CK–SVSF)
yields a very accurate estimate, without negatively impact-
ing its stability to modeling errors or uncertainties.

The EHA is a third order (typically linear) system
with state variables related to its position, velocity, and
acceleration. It is assumed that all three states have
measurements associated with them (i.e., full measure-
ment matrix). The input to the system is a random normal
distribution with magnitude 1. The sample time T of the
system is 0:001 s. The entire EHA system description may
be found in [19]. The open-loop transfer function of the
system is defined as follows:

xðsÞ
uðsÞ ¼

2DpβeAE=MV0

s3þððBE=MÞþðL=V0ÞβeÞs2þð2βeA2
E=MV0Þs

ð4:11Þ

For the purpose of this paper, three states (kinematic
information) and one parameter (the effective bulk
modulus) will be estimated. The estimation of the para-
meter creates a nonlinear estimation problem. The system
model equations are defined as follows:

x1;kþ1 ¼ x1;kþTx2;k ð4:12Þ

x2;kþ1 ¼ x2;kþTx3;k ð4:13Þ

x3;kþ1 ¼ ð1�Tφ3�Tφ2x4;kÞx3;k�Tφ1x2;kþGETx4;kuk ð4:14Þ

x4;kþ1 ¼ x4;k ð4:15Þ
where the following are defined:

GE ¼
2DpAE

MV0
ð4:16Þ

φ1 ¼
2A2

E

MV0
ð4:17Þ

φ2 ¼
L
V0

ð4:18Þ

φ3 ¼
BE

M
ð4:19Þ

The EHA parameter values used in this computer experi-
ment are given in Table 1.

The initial state values are set to zero. The initial true
bulk modulus is set to x4;0 ¼ 2:1� 108 Pa, whereas the
corresponding initial estimate is x̂4;0 ¼ 1:5� 108 Pa.

Half-way through the simulation the true effective
bulk modulus is changed to 1:5� 108 Pa. The system and
measurement noises are defined with maximum ampli-
tude corresponding to Wmax ¼ ½0:0001 0:001 0:1 �T and
Vmax ¼ ½0:0001 0:001 0:1 �T and are considered to be
Gaussian. The initial state error covariance P0j0, system
noise covariance Q , and measurement noise covariance
R are defined respectively as follows:

P0j0 ¼ 10Q ð4:20Þ

Q ¼ 5WmaxW
T
max ð4:21Þ

R¼ 5VmaxV
T
max ð4:22Þ

For the SVSF estimation process, the “memory” or
convergence rate was set to γ ¼ 0:1, and the smoothing
boundary layer widths were defined as ψ ¼ 5Vmax. These
parameters were set based on the level of noise and
modeling uncertainty, with the goal of decreasing the
estimation error. The main results of applying the EKF,
CKF, SVSF, and the CK–SVSF on the EHA problem are
shown in the following sets of figures. Fig. 7 shows the



Fig. 7.

Fig. 8.

Table A1
List of nomenclature.

Parameter Definition

x State vector or values
z Measurement (system output) vector or values
w System noise vector
v Measurement noise vector
F Linear system transition matrix
H Linear measurement (output) matrix
K SVSF gain matrix
P State error covariance matrix
Pxz Covariance matrix between x and z
Pzz Covariance matrix between z and z
Q System noise covariance matrix
R Measurement noise covariance matrix
S Innovation (measurement error) covariance matrix
W CKF update weight or gain
ez Measurement (output) error vector
ξ Array of cubature points
N ðμ;∑Þ Normal distribution with mean μ and variance ∑
E½a� Expectation of some vector or matrix a
γ SVSF “memory” or convergence rate
ψ SVSF smoothing boundary layer
diag½a� or a Diagonal of some vector or matrix a
satðÞ Saturation function
|a| Absolute value of a
T Transpose of a vector (superscript) or sample rate
1 Denotes a Schur product
� Denotes error or difference
^ Estimated vector or values
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effective bulk modulus estimates provided by all of the
strategies. Initially, both the CKF and CK–SVSF responded
the fastest, followed by the SVSF and the EKF. The CKF
responded well because the initial covariance matrix was
well-defined. However, when the bulk modulus changed
half-way through the simulation, the CKF was unable to
estimate the parameter very well. The CK–SVSF worked
the best in this case. Note that the CK–SVSF estimate was
nearly on-top of the true value, thus it is difficult to
distinguish in Fig. 7 (and its label was omitted).

As shown in the first table of Appendix D, the CK–SVSF
provides the best overall result in terms of estimation
accuracy and rate of convergence. In the next case, the
robustness of the combined method is shown when model-
ing errors are introduced into the experiment. The next
figure shows the estimates of the parameter, but with
the addition of modeling errors. This was accomplished
by adding 10% uncertainty to the mass value used by the
filters.

The RMSE results for this case are shown in the second
table of Appendix D. The effect of changing the mass used by
the filters in the estimation process is clearly shown
at one second. The “switching” or chattering characteristics
of the SVSF gain are clearly present, as shown in Fig. 8. The
combined methodology provided the best para-
meter estimate. However, the SVSF yielded the best state
estimates. In this example, the system is only mildly nonlinear,
and the measurement matrix is linear. “Mildly nonlinear”
refers to a system that may be approximated by a piece-wise
linear system as opposed to a higher-order function. As such,
it may be sufficient to represent the nonlinearities using a
first-order Taylor series approximation, as opposed to the
statistical approximation performed by the CKF.
5. Conclusions

This paper introduced a new estimation method referred
to as the CK–SVSF, which utilizes the accuracy of the CKF
and the stability of the SVSF. The combined method may
be applied to linear or nonlinear systems which may be
affected by uncertainties. A nonlinear target tracking pro-
blem was used to demonstrate and compare the accuracy
and robustness of the new filter with their standalone
estimation strategies. In addition, a mechatronic system
was used to study further and compare the combined
method with other popular methods. It is recommended
that this method be applied on the control of mechanical or
electrical systems where one may be concerned with an
accurate and robust estimation strategy.
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Appendices

A. Nomenclature

See Appendix Table A1.

B. Summary of the CK–SVSF estimation process

The following is a pseudocode for the CK–SVSF estima-
tion process.
4.
1.
2.

Tab
RM

F

E
S
C
C

Tab
RM

F

E
S
C
C

Ta
RM

Tab
RM

F

E
S
C
C

Initialization stage:
a. Initialize state estimates (e.g., zeros).
b. Initialize state error covariance matrix (e.g., typically

a diagonal matrix).
c. Initialize measurement errors (e.g., zeros).
le C
SE r

ilter

KF
VSF
KF
K–S

le D
SE r

ilter

KF
VSF
KF
K–S

ble
SE

Filte

EKF
SVS
CKF
CK–

le C
SE r

ilter

KF
VSF
KF
K-SV
Prediction stage:
a. Predict state estimates using cubature rules.
b. Predict state error covariance matrix using cubature

rules.
c. Predict measurements using cubature rules.
1
esults: single-turn maneuver.

x-Position (m) x-Vel. (m/s) y

11.53 11.64 1
9.33 7.11 1

10.61 13.22 1
VSF 9.26 6.73 1

1
esults: normal case.

Position (m) Velocity (m/s)

2.92�10�4 6.07�10�2

5.03�10�5 3.48�10�3

1.23�10�3 2.43�10�1

VSF 2.19�10�5 1.99�10�3

D2
results: modeling uncertainty case.

r Position (m) Velocity (m/s)

1.96�10�4 8.52�10�2

F 4.76�10�5 3.48�10�3

7.56�10�4 3.31�10�1

SVSF 5.07�10�5 1.91�10�2

2
esults: two-turn maneuver.

x-Position (m) x-Vel. (m/s) y

1490 852 1
9.37 7.12 1
2642 3680 2

SF 9.29 6.79 1
d. Predict measurement error covariance matrix using
cubature rules.

e. Calculate a priori measurement error.
-Po

5.46
5.48
5.65
5.45

-Po

685
5.78
974
5.75
Smoothing boundary layer stage:
a. Calculate the time-varying smoothing boundary

layer.
b. Compare the calculated value (from 3a) with the

fixed value.

i. If 3a value is greater than fixed value, proceed to 4a.
ii. If 3a value is less than or equal to fixed value,

proceed to 4b.

Update stage:
a. Calculate the SVSF gain.
b. Calculate the CKF gain.
c. Update the state estimate using the gain.
d. Update the state error covariance matrix.
e. Calculate the a posteriori measurement error.
The CK–SVSF estimation process is iterative, and is
summarized above. Note that for the linear systems case,
s. (m) y-Vel. (m/s) Bearing (rad)

9.39 0.044
1.53 0.264

12.79 0.036
0.33 0.012

Accel. (m/s2) Bulk modulus (Pa)

1.07 5.13�10�2

0.13 4.32�10�2

4.11 2.78�10�1

0.68 2.69�10�2

Accel. (m/s2) Bulk modulus (Pa)

1.37 1.14�10�1

0.13 2.70�10�1

5.16 2.59�10�1

0.64 1.04�10�1

s. (m) y-Vel. (m/s) Bearing (rad)

1080 0.255
3.10 3.101
3831 1.254
0.55 0.013
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the KF has been combined with the SVSF by utilizing the
calculated smoothing boundary layer [26].

C. Nonlinear target tracking results

See Appendix Tables C1 and C2.

D. Estimation of the effective bulk modulus in an EHA results

See Appendix Tables D1 and D2.
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