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a b s t r a c t

The Kalman filter (KF) remains the most popular method for linear state and parameter

estimation. Various forms of the KF have been created to handle nonlinear estimation

problems, including the extended Kalman filter (EKF) and the unscented Kalman filter

(UKF). The robustness and stability of the EKF and UKF can be improved by combining it

with the recently proposed smooth variable structure filter (SVSF) concept. The SVSF is

a predictor–corrector method based on sliding mode concepts, where the gain is

calculated based on a switching surface. A phenomenon known as chattering is present

in the SVSF, which may be used to determine changes in the system. In this paper, the

concept of SVSF chattering is introduced and explained, and is used to determine the

presence of modeling uncertainties. This knowledge is used to create combined filtering

strategies in an effort to improve the overall accuracy and stability of the estimates.

Simulations are performed to compare and demonstrate the accuracy, robustness, and

stability of the Kalman-based filters and their combinations with the SVSF.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The field of state and parameter estimation is impor-
tant for scientists and engineers. In particular, the suc-
cessful control of mechanical and electrical systems
depends on the knowledge of the states and parameters
[1]. States determine the state of operation of dynamics of
a system and are estimated using filters or observers.
The purpose of estimation, as described by Bar-Shalom
et al. in [1], can be one of many reasons: determination
of planet orbit parameters, statistical inference, aircraft
traffic control system (i.e., tracking), use in control
plants with uncertainties (i.e., parameter identification
or state estimation), determination of model parameters
(i.e., system identification), message retrieval from noisy
ll rights reserved.

Shabi),
signals (i.e., communication theory), and also signal and
image processing. A filter may be used to estimate the
state of a dynamic system, whether linear or nonlinear.
Filters are used when the states are estimated from
measured signals in the presence of noise [1,2].

Since its introduction, the Kalman filter (KF) remains the
most studied and one of the most popular tools used for
estimating states. It may be applied to linear dynamic
systems in the presence of Gaussian white noise, and
provides an elegant and statistically optimal solution by
minimizing the mean-squared estimation error [3,4]. The
KF assumes that the system model is known and is linear, the
system and measurement noises are white, and the states
have initial conditions that are modeled as random variables
with known means and variances [1,5]. However, these
assumptions do not always hold in real applications. If one
of these assumptions is violated, the KF becomes sub-optimal
and could potentially become unstable.

To reduce modeling errors effect, several techniques have
been proposed. These techniques are based on increasing the
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a priori covariance matrix, which in turn increases the gain
value and consequently emphasizes the corrective element
due to filter innovations. To increase the covariance matrix a
fictitious process noise is added, or a fading memory is used
[5]. The KF limitation of assuming white noise can be
addressed by using a Gaussian sum to approximate the
probability density function (PDF) by a finite number of
Gaussian PDFs [6]. Subsequently, for each Gaussian PDF, a KF
is computed in parallel and the final estimate is approxi-
mated by combining the results from these filters. In an effort
to further increase numerical stability, the KF has been
combined with a variety of square root algorithms and
methods, such as Cholesky decomposition, UD-factorization,
and triangularization algorithms [7–9]. These methods are
based on reformulating the KF equations to accommodate
sparse matrices and avoid instability due to round off error in
numerical calculation [10].

The KF is applicable to linear systems. Common and
emerging methods for nonlinear estimation include: the
extended Kalman filter (EKF) [10–13], the unscented
Kalman filter (UKF) [14,15], the particle filter (PF)
[16,17], the smooth variable structure filter (SVSF)
[18–20], and the HN filter [21–24]. The SVSF is a
predictor–corrector filter that is based on the sliding
mode control (SMC) concepts, and can be applied to both
linear and nonlinear systems. It benefits from the robust-
ness and stability of SMC [25]. This paper demonstrates
that the SVSF concept can be combined with other
methods (such as the EKF and UKF) to improve their
performance. Previous attempts were made in combining
the EKF with the SVSF, however the results were poor and
the implementation was overly complex [25]. This paper
utilizes the SVSF chattering concept in an easy and
effective manner creating two new filtering strategies
referred to as the EK-SVSF and UK-SVSF. The EKF and
UKF strategies are briefly reviewed in Section 2. Sections 3
and 4 describe the SVSF. The combined methodologies
involving the EKF, the UKF, and the SVSF are presented in
Section 5. Application results are provided in Section 6,
followed by concluding remarks.

2. Kalman filtering strategies

2.1. Extended Kalman filter

The Kalman filter (KF) is a recursive, optimal, and model-
based estimator [26]. The KF is a type of predictor–corrector
filter, which uses a mathematical model of the system
Fig. 1. Kalman filtering strategy is sum
defined by (2.1) and (2.2) to obtain an a priori estimate of
the state. The KF then uses measurements and an optimal
gain to refine the a priori estimates to an a posteriori form in
what is referred to as the update step. The KF process and
equations are given in Fig. 1.

xkþ1 ¼ FkxkþGkukþwk ð2:1Þ

zkþ1 ¼Hkþ1xkþ1þvkþ1 ð2:2Þ

where Fk, Gk, and Hk are the system, input, and measure-
ment matrices, respectively. The corresponding estimated
matrices used by the filter are F̂k�1, Ĝk�1, and Ĥk, respec-
tively. The process (system) and measurement noise vectors
are defined by wk�1 and vk, respectively. The subscripts
k9k�1 and k9k represents the a priori and the a posteriori
values, respectively. The KF gain is defined by Kk; and P, Q,
and R are the state error, process noise, and the measure-
ment noise covariance matrices, respectively. A full list of
the nomenclature used throughout this paper may be found
in Table A1.

The KF assumes that the system model is known and is
linear, system and measurement noise are white, and the
states have known initial conditions [3]. However, these
assumptions do not always hold in real applications.
If one of these assumptions is violated, the KF can
potentially become unstable [27]. The KF may only be
applied to linear systems. For nonlinear systems, the
popular extended Kalman filter (EKF) may be used. The
EKF equations are essentially the same, except the system
and measurement matrices have been linearized about
the previous state estimates according to a truncated
Taylor series expansion. This linearization process in itself
is therefore a source of uncertainty in the estimation
process [28].

2.2. Unscented Kalman filter

A sigma-point Kalman filter (SPKF) draws a certain
number of points, called sigma points, from the prob-
ability distribution function projected for the states.
The SPKF then projects these points by using the non-
linear model of the system to obtain an a posteriori
estimate for the probability distribution, thus avoiding
the requirement for linearization. The SPKF is based on
the weighted statistical linear regression method [29,5].
This eliminates the need for calculating the Jacobian
matrices and accommodates noise distributions that are
not Gaussian [30]. The unscented Kalman filter (UKF) is
marized in the above figure [5].



Fig. 2. Unscented Kalman filtering strategy is summarized in the above figure [5].
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part of the SPKF family. The UKF obtains a minimal set of
sigma points around the mean, using one of the many
unscented transformations that have been proposed in
the literature [5]. By propagating these points through the
nonlinear system model and by using an associated
weight factor, the mean and the covariance of the system
are approximated. The standard UKF methodology is
summarized in Fig. 2.

3. The smooth variable structure filter

The SVSF is a predictor–corrector filter that is based on
SMC principles, and can be applied to both linear and
nonlinear systems. A requirement of this filter is that the
system needs to be differentiable, and hence the word
‘smooth’ is used to name this filter. The SVSF also requires
that the system under consideration be observable
[18,25]. The derivation of the SVSF depends on the rank
of the measurement matrix (i.e., number of independent
measurements compared to the number of states). If the
measurement matrix has a partial rank (i.e., number of
independent measurements is fewer than the number of
states), then the SVSF gain is calculated using Luenberger’s
reduced order technique as described in [25]. Similar to the
KF, the SVSF model (linear or nonlinear) is used to obtain
the a priori estimate, as follows (i.e., for a nonlinear
system):

x̂kþ19k ¼ f ðx̂k9k,ukÞ ð3:1Þ

Utilizing the predicted state estimates x̂kþ19k, the
corresponding predicted measurements ẑkþ19k and mea-
surement errors ezkþ 19k

may be calculated:

ẑkþ19k ¼ Ĥx̂kþ19k ð3:2Þ

ezkþ 19k
¼ zkþ1�ẑkþ19k ð3:3Þ

The SVSF then refines the a priori estimate into an a
posteriori form by applying a gain as follows:

x̂kþ19kþ1 ¼ x̂kþ19kþKkþ1 ð3:4Þ
The gain used in (3.4) is defined, for a full measure-
ment matrix, as follows:

Kkþ1 ¼H�1
ð9ezkþ 19k

9þg9ezk9k
9Þ3signðezkþ 19k

Þ ð3:5Þ

where g is referred to as the SVSF ‘memory’ and is in the
range 0ogo1. The gain defined in (3.5) is a function of
the a priori and the previous time-step’s a posteriori
measurement errors ezkþ 19k

and ezk9k
, respectively. The a

posteriori estimated measurement (3.6) is used to find the
a posteriori measurement error (3.7):

ẑkþ19kþ1 ¼ Ĥx̂kþ19kþ1 ð3:6Þ

ezkþ 19kþ 1
¼ zkþ1�ẑkþ19kþ1 ð3:7Þ

The SVSF has two sets of indicators of performance
associated with each state. The primary indicators of
performance are the estimated errors, and the secondary
indicators of performance are chattering signals resulting
from the application of the discontinuous gains. This gives
the SVSF the ability to explicitly point out and extract
information on modeling uncertainties. The SVSF is a
robust recursive predictor–corrector estimation method
that can effectively deal with uncertainties associated
with initial conditions and modeling errors. It guarantees
bounded-input bounded-output (BIBO) stability and the
convergence of the estimation process by using the
Lyapunov stability condition. The derivation of SVSF gain
and its stability conditions can be found in [25] and are
summarized in the following two subsections.
3.1. SVSF proof of stability

As defined in [25], let Mk be a Lyapunov function
defined in terms of the a posteriori estimation error, such
that:

Mk ¼ 9ezk9k
940 ð3:8Þ
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The estimation process is stable if the following is
satisfied:

MkDMko0 ð3:9Þ

where DMk represents the change in the Lyapunov func-
tion, and in this case, is defined as follows:

DMk ¼ 9ezk9k
9�9ezk�19k�1

9 ð3:10Þ

Substitution of (3.10) into (3.9), and rearranging, yields
the following:

ezk9k
3ezk9k

oezk�19k�1
3ezk�19k�1

ð3:11Þ

Eq. (3.11) is equivalent to the following, which is the
stability condition for the SVSF [25]:

9ezk9k
9o9ezk�19k�1

9 ð3:12Þ

To remove the absolute operator in (3.12), both sides
are expressed in the form of diagonal matrices (i.e.,
diag(e)), and are multiplied by their respective transpose,
as follows:

diagðezk9k
Þdiagðezk9k

Þ
T odiagðezk�19k�1

Þdiagðezk�19k�1
Þ
T

ð3:13Þ

Assuming that the measurement function is well-
defined, constant, and linear; then from (2.1), the a
posteriori measurement error may be calculated as:

ezk9k
¼Hexk9k

þvk ð3:14Þ

Substitution of (3.14) into (3.13) yields:

diagðHexk9k
ÞdiagðHexk9k

Þ

þdiagðvkÞdiagðvkÞ

þdiagðHexk9k
ÞdiagðvkÞ

þdiagðvkÞdiagðHexk9k
Þ

0
BBBBB@

1
CCCCCAo

diagðHexk�19k�1
ÞdiagðHexk�19k�1

Þ

þdiagðvk�1Þdiagðvk�1Þ

þdiagðHexk�19k�1
Þdiagðvk�1Þ

þdiagðvk�1ÞdiagðHexk�19k�1
Þ

0
BBBBB@

1
CCCCCA

ð3:15Þ

If the measurement noise is stationary white, then by
taking the expectation of both sides in (3.15) and simpli-
fying yields the following:

E
diagðHexk9k

ÞdiagðHexk9k
Þ

þdiagðvkÞdiagðvkÞ

" #
oE

diagðHexk�19k�1
ÞdiagðHexk�19k�1

Þ

þdiagðvk�1Þdiagðvk�1Þ

" #

ð3:16Þ

where E diag Hexk9k

� �
diag vkð Þ

h i
and E½diag vkð ÞdiagðHexk9k

Þ�

vanish due to the white noise assumption. For a diagonal,
positive and time-invariant measurement matrix, (3.16)
becomes:

E diag exk9k

� �
diag exk9k

� �h i
oE diag exk�19k�1

� �
diag exk�19k�1

� �h i
ð3:17Þ

If condition (3.12) is satisfied, then from (3.17) [25]:

Eð9exk9k
9ÞoEð9exk�19k�1

9Þ ð3:18Þ

3.2. Derivation of the SVSF gain

The SVSF gain as defined in (3.5) is derived to guarantee
the stability condition of (3.12). Let g be a diagonal positive
matrix with dimensions g 2 Rnxn and with elements less
than unity (i.e., 0ogiio1), then:

g9ezk�19k�1
9o9ezk�19k�1

9 ð3:19Þ

Adding the term 9ezk9k�1
9 to both sides of (3.19) leads to

the following:

g9ezk�19k�1
9þ9ezk9k�1

9o9ezk�19k�1
9þ9ezk9k�1

9 ð3:20Þ

The absolute value of the SVSF gain Kk multiplied by
the measurement matrix H is set to be equal to the left-
hand side of (3.20) such that:

9HKk9¼ 9ezk9k�1
9þg9ezk�19k�1

9 ð3:21Þ

The sign of the gain is made equal to the sign of the a
priori measurement error ezk9k�1

such that (3.21) becomes:

Kk ¼H�1 9ezk9k�1
9þg9ezk�19k�1

9
� �

3signðezk9k�1
Þ ð3:22Þ

Note that the proposed gain satisfies the conditions of
being larger than the a priori estimation error. By apply-
ing the gain to the a priori estimate, and by substituting
(3.22) and (3.5) into (3.4), the a posteriori estimated
measurement is obtained:

ẑk ¼ ẑk9k�1þ 9ezk9k�1
9þg9ezk�19k�1

9
� �

3sign ezk9k�1

� �
ð3:23Þ

Subtracting the measurement zk from both sides of
(3.23) yields:

ezk9k
¼ ezk9k�1

þ 9ezk9k�1
9þg9ezk�19k�1

9
� �

3signðezk9k�1
Þ ð3:24Þ

Eq. (3.24) may be rewritten by using ezk9k�1
¼

9ezk9k�1
93signðezk9k�1

Þ such that:

ezk9k
¼�g9ezk�19k�1

93signðezk9k�1
Þ ð3:25Þ

By taking the absolute value of both sides of (3.25), the
following is obtained:

9ezk9k
9¼ g9ezk�19k�1

9
n o

o9ezk�19k�1
9 ð3:26Þ

Therefore, (3.26) proves that the error decays with
time, such that (3.12) and (3.18) are satisfied and the SVSF
is considered BIBO stable.

4. Exploring the effects of chattering

The SVSF forces the estimate towards the true state
trajectory and then retains it within a subspace, referred
to as the existence subspace. This occurs both for the a
priori and for the a posteriori estimates as shown in Fig. 3.
The widths of the existence subspaces are functions of the
uncertainties, errors in the initial conditions and/or the
modeling [31].

As shown in Fig. 4, the widths are unknown and time
varying for the a priori existence subspace. The a posteriori
existence subspace defines a region that surrounds and
encloses the true trajectory in which the estimate may exist
in its a posteriori form. Its width is equal to the difference
between the width of the a priori existence subspace
and the amplitude of the corrective gain, as shown in Fig. 3.



Fig. 3. Definition of the existence subspace.

Fig. 4. Existence subspace over time.
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The width of the existence subspace can be measured by
using the a priori chattering signal as follows:

The a priori estimation error ezk9k�1
is defined as follows:

ezk9k�1
¼ zk�ẑk9k�1 ¼Hxkþvk�Ĥx̂k9k�1 ð4:1Þ

Using the state space model, (4.1) becomes:

ezk9k�1
¼HðAk�1xk�1þBk�1uk�1þwk�1Þ�ĤðÂk�1x̂k�19k�1

þ B̂k�1uk�1Þþvk ð4:2Þ

Rearranging (4.2) yields:

ezk9k�1
¼HðAk�1H�1zk�1�Ak�1H�1vk�1þBk�1uk�1

þwk�1Þ�ĤðÂk�1Ĥ
�1

ẑk�19k�1þ B̂k�1uk�1Þþvk ð4:3Þ

where the estimated a posteriori measurement ẑk�19k�1 is
defined by:

ẑk�19k�1 ¼ zk�1þg9ezk�29k�2
93sgnðezk�19k�2

Þ ð4:4Þ

Substitution of (4.4) into (4.3) yields:

ezk9k�1
¼

HðAk�1H�1zk�1þBk�1uk�1þwk�1�Ak�1H�1vk�1Þþvk

�Ĥ Âk�1Ĥ
�1

zk�1þ B̂k�1uk�1

� �
�ĤÂk�1Ĥ

�1
g9ezk�29k�2

93signðezk�19k�2
Þ

2
4

3
5

ð4:5Þ

where

ezk�19k�1
¼�g9ezk�29k�2

93signðezk�19k�2
Þ ¼
�g9�g9ezk�39k�3
93signðezk�29k�3

Þ93signðezk�19k�2
Þ

¼�g29ezk�39k�3
93signðezk�19k�2

Þezk�19k�1

¼�gk�19ez090
93sign ezk�19k�2

� �
ð4:6Þ

Substitution of (4.6) into (4.5) yields:

ezk9k�1
¼ ðHAk�1H�1

�ĤÂk�1Ĥ
�1
Þzk�1þðHBk�1�ĤB̂k�1Þuk�1

þHwk�1þvk�HAk�1H�1vk�1

�ĤÂk�1Ĥ
�1
gk�19ez090

93signðezk�19k�2
Þ ð4:7Þ

The existence subspace is then obtained from the estima-
tion error of Eq. (4.7) as follows:

exk9k�1
¼ ðAk�1H�1

�H�1ĤÂk�1Ĥ
�1
Þzk�1

þðBk�1�H�1ĤB̂k�1Þuk�1þwk�1�Ak�1H�1vk�1

�H�1ĤÂk�1Ĥ
�1
gk�19ez090

93signðezk�19k�2
Þ ð4:8Þ

If no modeling errors or uncertainties are present, and
the measurement matrix H is considered to be an identity
matrix, then the SVSF chattering may be defined by:

exk9k�1
¼�Ak�1vk�1þwk�1�Âk�1gk�19ez090

93signðezk�19k�2
Þ

ð4:9Þ

The a priori existence subspace represents the error in
the a priori estimate. In other words, it describes the
chattering of the a priori estimate around the true
trajectory. In this paper, the magnitude of the resultant
chattering is referred to as the a priori chattering. Due to
the predictor–corrector nature of the SVSF and its gain,
the a priori chattering is different from the chattering
observed in other SMOs.

As mentioned earlier, the estimate has two levels of
chattering: the a priori, and the a posteriori chattering.
As the latter decays with time as shown by Eq. (4.6),
it causes the a posteriori estimate to become more
sensitive to measurement noise. In order to eliminate
the a priori and the a posteriori chattering, and to reduce
the sensitivity to noise, the sign function of (3.5) is
replaced by a smoothing function with a known boundary
layer referred to as the smoothing boundary layer,
referred to as c. Inside the smoothing boundary layer,
the corrective action is interpolated based on the ratio
between the amplitude of the output’s a priori estimation
error and the smoothing boundary layer’s width. Outside
the smoothing boundary layer, the discontinuous correc-
tive action with its full amplitude is applied. The SVSF
assigns and requires one smoothing boundary layer per
estimate. The following equation defines the SVSF’s gain
with the smoothing boundary layer:

Kk ¼ Ĥ
�1
ð9ezk9k�1

9þg9ezk�19k�1
9Þ3satðezk9k�1

,cÞ ð4:10Þ

where c is a vector consisting of smoothing boundary
layer widths for each measurement, and sat is a vector of
the saturation functions, defined as follows:

satðezk9k�1
,cÞ ¼ satðez1k9k�1

,c1Þ � � � satðeznk9k�1
,cnÞ

h iT

ð4:11Þ
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The saturation function is defined by:

satðezik9k�1
,ciÞ ¼

ezik9k�1
=ci ezik9k�1

rci

signðezik9k�1
Þ ezik9k�1

4ci

(
ð4:12Þ

The smoothing boundary layer must be larger than the
uncertain dynamics associated with each estimate to
remove the a priori and the a posteriori chattering, and
smooth the a posteriori estimate. A larger width of the
boundary layer causes a slower convergence rate and
degrades the filter performance as shown in Fig. 5.

If the width of the smoothing boundary layer is chosen
to be larger than the width of the a priori existence
subspace and the difference between them is small, then
chattering is removed and the error in the output estima-
tion is limited. When a smoothing boundary layer is used,
the amplitude of the a priori chattering becomes equal to
the difference between the width of the smoothing
boundary layer and the output’s a priori estimation error.
Therefore, the width of the smoothing boundary layer
determines the presence and the level of the a priori
chattering. If the smoothing boundary layer is overesti-
mated then chattering is removed. However, if due to
changes in the system, additional uncertainties are added
such that the amplitude of the output’s a priori estimation
Fig. 5. Smoothing boundary layer effects over time.

Fig. 6. Example of chattering indicator.
error grows larger than the width of the smoothing
boundary layer, then chattering will be observed [25,32].

For example, consider the scenario shown in Fig. 6. The a
priori chattering signal has been tracked for a second order
system that is made to have parametric changes at time
steps t1¼4000 and t2¼7000. These changes last for 1000
and 2500 time steps, respectively. The smoothing boundary
layer was designed to enclose the existence subspace for the
system before the parametric changes (to4000 time steps).
Fig. 6 shows the a priori chattering when uncertainties are
injected into the model at time t1¼4000 and t2¼7000 time
steps. Moreover, the figure shows the lasting period of each
uncertainty injection. The SVSF is very sensitive to added
uncertainties and exhibits chattering that can be used for
detecting the inception of a change in the system. This
capability is very useful for certain applications such as
requiring early fault detection or detecting the presence of
modeling uncertainties.

The smoothing boundary layer width should be
defined based on Eq. (4.7) after eliminating the effect of
the errors in the modeling and in the initial conditions as
follows [32]:

d¼ 9Âk�199ðvÞmax9þ9ðwÞmax9þ9ðvÞmax9 ð4:13Þ

If the smoothing boundary layer width is defined by
(4.13); and chattering occurs, then the upper bounds are
no longer valid and modeling uncertainties are present in
the estimation process.

5. Combined methodologies

The SVSF may be combined with other estimation meth-
ods in an attempt to make use of the SVSF stability, and the
accuracy of other methods, such as the EKF and the UKF.
As such, the combined methods use the chattering equation
of the regular SVSF with a constant smoothing boundary
layer defined by (4.13). Outside this layer, the SVSF is
dominant and its gain is used to ensure convergence to its
existence subspace and stability. Thereafter, within the
smoothing boundary layer, the second method (i.e., EKF or
UKF) dominates the estimation process.

Note that uncertainties impact the stability of the EKF and
UKF methods, as well as their performance. These filters are
limited in parameter estimation applications, especially when
the parameters are not constant. When a parameter changes,
the covariance matrices must be updated to accommodate
the change. However, the EKF and UKF methods do not have
a mechanism to detect the inception of a parametric change.
By combining these strategies with the SVSF, the SVSF
element can be used to track changes in the system para-
meter. Here, the smoothing boundary layer is used to provide
an upper bound on parametric uncertainties. If there is a
change in a parameter and if the upper bound is reached,
then chattering will result, thus indicating the inception of
change in the system. Fig. 7 explains the method for
combining the estimation strategies.

Essentially, when no chattering is observed, the exis-
tence subspace is within the smoothing boundary layer
width where the EKF or UKF gains can be applied to
update the state estimates. If a change occurs in the



Fig. 7. Strategy for combining filtering strategies.
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system, chattering is detected. The SVSF gain ensures
stability by keeping it within an area of the existence
subspace. The limits are set by the width of the existence
subspace, which was presented earlier in the paper.

Fig. 8 illustrates the combined methods. In this paper, two
methods based on the SVSF chattering are presented; the
EKF-SVSF and the UKF-SVSF. The former is developed by
combining the EKF with the SVSF. The EKF and SVSF
strategies run simultaneous. Both methods propagate the a
posteriori estimate obtained from the previous time step.
If chattering is not detected in the estimation process, the EKF
gain is applied. The resultant a posterior estimate and a
posteriori covariance matrix are then used in the next time
step. Conversely, if chattering is present, the SVSF gain is
applied to the a priori estimate, and the a posteriori estimate
is obtained.

First, the a priori covariance matrix is obtained as follows:

Pkþ19k ¼ Fkþ1Pk9kFkþ1
T
þQkþ1 ð4:14Þ

where Fkþ1¼qf/qxkþ19k. Next, the SVSF corrective gain is
calculated by [28]:

K̂kþ1 ¼H�1diag 9ezkþ 19k
9þg9ezk9k

9
� �

3sat c
�1

ezkþ 19k

� �h i
diagðezkþ 19k

Þ
�1

ð4:15Þ

where c
�1
¼

1
c1

0 0

0 & 0

0 0 1
cm

2
664

3
775. The a posteriori covariance

matrix is then calculated as [28]:

Pkþ19kþ1 ¼ ðI�K̂kþ1HÞPkþ19kðI�K̂kþ1HÞTþ K̂kþ1Rkþ1K̂kþ1

ð4:16Þ
The resultant a posterior estimate and a posteriori
covariance matrix are then used in the next step. The
UKF-SVSF has the same steps as above, except that it uses
the UKF gain instead of the EKF.
6. System simulation

6.1. Description of problem

A simulation was performed to demonstrate the use of
chattering to yield more accurate and stable estimates.
Essentially, the presence of chattering provides an indica-
tion of modeling uncertainties or a system fault. At the
presence of chattering, the estimation process is primarily
transferred from the KF gain (EKF or UKF) to the SVSF gain
in an effort to maintain a good estimate. The stability of
the SVSF gain ensures that the estimates remain bounded
to within a region of the true state trajectory.

Fig. 9A and B represent a mass-spring system used for
parameter estimation in a static position and after the
mass has been moved. It is assumed that the mass will not
experience any angular motion, as illustrated by the
connection type of the mass shown in Fig. 9B. For the
purposes of this paper, it will be the goal of the filter to
estimate the two stiffness parameters k1 and k2. This
creates a rather difficult nonlinear estimation problem,
which will be used to compare the filters with and
without the use of SVSF chattering. From Newton’s second
law of motion, two sets of force equations may be found
for each spring, as follows:

F1,x ¼ k1Dr1cosðy1Þ ð6:1Þ



Fig. 8. The EKF-SVSF and UKF-SVSF strategies are explained in the above figure.

Fig. 9. (a) System in stable position. (b) System after movement.
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F1,y ¼ k1Dr1sinðy1Þ ð6:2Þ

F2,x ¼ k2Dr2cosðy2Þ ð6:3Þ

F2,y ¼ k2Dr2sinðy2Þ ð6:4Þ

where Dri refers to the spring i elongation, and yi refers to
the angle that each spring moves. These values are,
respectively, defined as follows:

Dr1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0þxÞ2þy2

q
�x0 ð6:5Þ

Dr2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0þyÞ2þx2

q
�y0 ð6:6Þ
y1 ¼ tan�1 y

x0þx

� �
ð6:7Þ

y2 ¼ tan�1 x

y

� �
ð6:8Þ

Note that x0 and y0 refer to the static position of the
mass, and x and y refer to the distance moved along those
respective axes, as shown in Fig. 9. Summation of the
forces in both the x and y directions, yields the following
two equations, respectively:

m
d2x

dt2
þk1Dr1cosðy1Þþk2Dr2cosðy2Þ ¼ 0 ð6:9Þ
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m
d2y

dt2
þk2Dr2sinðy2Þþk2Dr2sinðy2Þ ¼ 0 ð6:10Þ

The four kinematic states and two spring stiffness’

create the state vector, defined as x _x y _y k1 k2

h iT
:

Utilizing this notation, and (6.9) and (6.10), yields the
nonlinear system equation in a discrete-time state-space
format:

x1

x2

x3

x4

x5

x6

2
6666666664

3
7777777775

kþ1

¼

x1þTx2

x2�T x5
m Dr1cosðy1Þ�T x6

m Dr2cosðy2Þ

x3þTx4

x4�T x5
m Dr1sinðy1Þ�T x6

m Dr2sinðy2Þ

x5

x6

2
6666666664

3
7777777775

k

þ

0

b1

0

b2

0

0

2
666666664

3
777777775

ukþwk

ð6:11Þ

where from (6.5) through (6.8), and (6.11):

Dr1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0þx1Þ

2
þx2

3

q
�x0 ð6:12Þ

Dr2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0þx3

� �2
þx2

1

q
�y0 ð6:13Þ

y1 ¼ tan�1 x3

x0þx1

� �
ð6:14Þ

y2 ¼ tan�1 x1

x3

� �
ð6:15Þ

A random force of magnitude 2 N is applied to the
horizontal and vertical velocities, with input gain values
of b1 ¼ 5 N s=m and b2 ¼ 3 N s=m. A normally distributed
system noise wk of magnitude 1�10�3 was applied to the
states. It is assumed that Q and R are known and well-
defined, and that the sensors studying the system mea-
sure range and bearing, for both position and velocity.
The converted (from polar to Cartesian) measurement
matrix in state-space form is as follows:

z1

z2

z3

z4

2
66664

3
77775

kþ1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1þx2
3

q
tan�1 x3

x1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2þx2
4

q
tan�1 x4

x2

� �

2
6666666664

3
7777777775

kþ1

þvkþ1 ð6:16Þ

The measurement noise vector vkþ1 is normally dis-
tributed with a magnitude of 1�10�3 for each measure-
ment. In order to apply the EKF, linearized forms of the
system (6.11) and measurement (6.16) equations are
required. The linearized system matrix is shown in (6.17).

F ¼

1 T 0 0 0 0

0 1 0 0 � T
mDr1cosðy1Þ �

T
mDr2cosðy2Þ

0 0 1 T 0 0

0 0 0 1 � T
mDr1sinðy1Þ �

T
mDr2sinðy2Þ

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775
ð6:17Þ
The linearized measurement matrix H is defined as
follows:

H¼

x1ffiffiffiffiffiffiffiffiffiffiffi
x2

1
þx2

3

p 0 x3ffiffiffiffiffiffiffiffiffiffiffi
x2

1
þ x2

3

p 0 0 0

�
x3

x2
1
þ x2

3

0 x1

x2
1
þ x2

3

0 0 0

0 x2ffiffiffiffiffiffiffiffiffiffiffi
x2

2
þx2

4

p 0 x4ffiffiffiffiffiffiffiffiffiffiffi
x2

2
þ x2

4

p 0 0

0 �
x4

x2
2
þ x2

4

0 x2

x2
2
þ x2

4

0 0

2
666666664

3
777777775

ð6:18Þ

As per the earlier discussions, it is required to trans-
form (6.18) into a square matrix, such that ‘artificial’
measurements for the stiffness’ k1 and k2 are created.
A number of methods exist, such as the reduced order or
Luenberger’s approach, which are presented in [25,33,34].
Consider a system model involving phase variables. It is
possible to derive a third ‘artificial’ measurement based
on the available measurements. For example, suppose
that one has three kinematic states, but the acceleration
measurement is missing. Consider the following, where y

represents an artificial measurement, let:

y3,k ¼
1
T z2,kþ1�z2,k

� �
ð6:19Þ

The accuracy of (6.19) depends on the sampling rate T.
In this case, applying (6.19) allows a measurement matrix
equivalent to the identity matrix. The estimation process
would continue as in the previous section, where a full
measurement matrix was available. Note however that
the artificial acceleration measurement would be delayed
one time step. In this simulation, suppose that the system
model (6.11) is known with complete confidence, such
that it is possible to derive an artificial measurement for
both stiffness values from the four available measure-
ments. Hence, consider the following from (6.11), without
knowledge of the system noise wk:

x2,kþ1 ¼ x2,k�T
x5,k

m
Dr1,kcosðy1,kÞ�T

x6,k

m
Dr2,kcosðy2,kÞþb1uk

ð6:20Þ

x4,kþ1 ¼ x4,k�T
x5,k

m
Dr1,ksinðy1,kÞ�T

x6,k

m
Dr2,ksinðy2,kÞþb2uk

ð6:21Þ

Eqs. (6.20) and (6.21) may be used to solve for artificial
stiffness measurements based on available measurements
zk, to be used by the SVSF for parameter estimation.
Combining (6.20) and (6.21), and solving, yields:

y5,k

y6,k

" #
¼

Dr1,kcosðy1,kÞ

m
Dr2,kcosðy2,kÞ

m

Dr1,ksinðy1,kÞ

m
Dr2,ksinðy2,kÞ

m

2
4

3
5�1 b1uk

T �
ðz2,kþ 1�z2,kÞ

T

b2uk
T �

ðz4,kþ 1�z4,kÞ

T

2
4

3
5
ð6:22Þ

where from (6.22):

Dr1,k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0þz1,k

� �2
þz2

3,k

q
�x0 ð6:23Þ

Dr2,k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0þz3,kÞ

2
þz2

1,k

q
�y0 ð6:24Þ

y1,k ¼ tan�1 z3,k

x0þz1,k

� �
ð6:25Þ
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y2,k ¼ tan�1 z1,k

z3,k

� �
ð6:26Þ

Note that the artificial measurements would have to
be initialized (i.e., 0 is a typical value). Eq. (6.22) essen-
tially propagates the known measurements zk through the
system model (6.11) to obtain the artificial stiffness
measurements yk. It is conceptually similar to the method
presented in [25] and creates a full measurement matrix
to be used in the SVSF estimation process.

6.2. Simulation results

This section provides the results of running the simu-
lation. Fig. 10 shows the error of the x-position estimate
over time. Note how the UKF and EKF methods are unable
to yield very good position estimates. The SVSF is
bounded closely to a region of the true state trajectory.
The combination of the SVSF with the EKF and UKF allows
for a more accurate state estimate. Fig. 11 further illus-
trates the effect of combining the SVSF with the EKF. The
SVSF is bounded within a region of the position trajectory.
Fig. 10. Estimation results of x-position over time.

Fig. 11. Estimation results of y-position over time.
However, the addition of the EKF further increases the
accuracy, as demonstrated by the lower error amplitude.

Fig. 12 shows the true and estimated spring stiffness k2

over time. The stiffness parameter changes two times
throughout the simulation. The EKF estimate was very
poor, and was omitted. Initially, the UKF had difficulty
obtaining a good estimate of the parameter, but slowly
converged towards a general area of the true stiffness
value. However, the UKF was still unable to obtain a very
good estimate. As shown Fig. 13, the SVSF chattered about
the true state trajectory and then converged around the
true state trajectory. The estimates from the combined
methods were very good, with a limited amount of
chattering.

Table 1 summarizes the overall root mean square
errors (RMSE) of the filters. The EKF and UKF provided
the worst estimates overall. Both methods were unable to
successfully estimate the stiffness of the springs. The SVSF
performed very well. However, the combined EKF-SVSF
and UKF-SVSF methods provided extremely good esti-
mates. Overall, the UKF-SVSF method performed the best
Fig. 12. Estimation of the second spring stiffness over time.

Fig. 13. Magnitude of the SVSF chattering over time.



Table 1
RMSE simulation results.

Filter Position

(m)

Velocity

(m/s)

Stiffness

k1 (kN/m)

Stiffness

k2 (kN/m)

EKF 5.40�10�3 4.16 106 103

UKF 3.46�10�2 1.01 6.64 15.0

SVSF 8.78�10�4 1.21�10�3 2.05�10�1 1.46�10�1

EKF-SVSF 3.73�10�4 6.16�10�3 2.31�10�1 1.68�10�1

UKF-SVSF 3.76�10�4 6.03�10�3 1.30�10�1 1.08�10�1

Table A1
List of important nomenclature.

Parameter Definition

X State vector or values

Z Measurement (system output) vector or values

Y Artificial measurement vector or values

U Input to the system

W System noise vector

V Measurement noise vector

F Linear system transition matrix

G Input gain matrix

H Linear measurement (output) matrix

K Filter gain matrix (i.e., KF or SVSF)

P State error covariance matrix

Q System noise covariance matrix

R Measurement noise covariance matrix

S Innovation covariance matrix

E Measurement (output) error vector

diagðaÞ or a Defines a diagonal matrix of some vector a

sat(a) Defines a saturation of the term a

g SVSF ‘convergence’ or memory parameter

c SVSF boundary layer width

9a9 Absolute value of some parameter a

E{U} Expectation of some vector or value

T Transpose of some vector or matrix

^ Estimated vector or values

kþ19k A priori time step (i.e., before applied gain)

kþ19kþ1 A posteriori time step (i.e., after update)
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in terms of overall accuracy and ability to estimate the
stiffness of the springs.

7. Conclusions

In this paper, a relatively new estimation strategy
referred to as the smooth variable structure filter (SVSF)
was combined with the popular extended and unscented
forms of the Kalman filter (EKF and UKF). The SVSF is a
robust recursive predictor–corrector estimation method
that can effectively deal with uncertainties associated
with initial conditions and modeling errors. It guarantees
bounded-input bounded-output (BIBO) stability and the
convergence of the estimation process by using a Lyapu-
nov stability condition. The SVSF is very sensitive to
added uncertainties and exhibits chattering that can be
used for detecting the inception of a change in the system.
This capability is very useful for certain applications such
as requiring early fault detection or the presence of
modeling uncertainties. In this paper, the concept of SVSF
chattering was introduced and explained. The presence of
SVSF chattering was used to create two new filtering
strategies, based on improving the overall accuracy and
stability of the estimation process. A simulation was
performed which demonstrated the effectiveness of the
combined strategies.
Appendix A. List of nomenclature

The following is a table of important nomenclature
used throughout this paper.

See Table A1.
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