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For linear and well-defined estimation problems with Gaussian
white noise, the Kalman filter (KF) yields the best result in terms
of estimation accuracy. However, the KF performance degrades
and can fail in cases involving large uncertainties such as model-
ing errors in the estimation process. The smooth variable struc-
ture filter (SVSF) is a relatively new estimation strategy based on
sliding mode theory and has been shown to be robust to modeling
uncertainties. The SVSF makes use of an existence subspace and
of a smoothing boundary layer to keep the estimates bounded
within a region of the true state trajectory. Currently, the width of
the smoothing boundary layer is chosen based on designer knowl-
edge of the upper bound of modeling uncertainties, such as maxi-
mum noise levels and parametric errors. This is a conservative
choice, as a more well-defined smoothing boundary layer will
yield more accurate results. In this paper, the state error covari-
ance matrix of the SVSF is used for the derivation of an optimal
time-varying smoothing boundary layer. The robustness and accu-
racy of the new form of the SVSF was validated and compared
with the KF and the standard SVSF by testing it on a linear elec-
trohydrostatic actuator (EHA). [DOI: 10.1115/1.4006628]
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1 Introduction

The successful control of a mechanical or electrical system
depends on the knowledge of the system states and parameters.
Observations of the system are made through the use of sensors
that provide measurements which contain information on the vari-
ables of interest. Filters are used to remove unwanted components
such as noise in an effort to provide an accurate estimate of the
states [1]. Advanced filtering and estimation methods are model-
based and as such are sensitive to modeling uncertainties. The
most popular and well-studied estimation method is the Kalman
filter (KF), which was introduced in the 1960s [2,3]. The KF
yields a statistically optimal solution for linear estimation prob-
lems, as defined by Egs. (1.1) and (1.2), in the presence of Gaus-
sian noise where P(wy) ~ N(0,0;) and P(v) ~ N (0,Ry). A
typical model is represented by the following equations:

Xpt1 = Axg + Buy + wy (1.1)
Zkr1 = Cxpq1 + Uk (1.2)

A list of the Nomenclature used throughout this paper is provided
at the end. It is the goal of a filter to remove the effects that the
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system w; and measurement v, noise have on extracting the true
state values x; from the measurements z;. The KF is formulated in
a predictor-corrector manner. The states are first estimated using
the system model, termed as a priori estimates, meaning “prior to”
knowledge of the observations. A correction term is then added
based on the innovation (also called residuals or measurement
errors), thus forming the updated or a posteriori (meaning
“subsequent to” the observations) state estimates.

The KF has been broadly applied to problems covering state
and parameter estimation, signal processing, target tracking, fault
detection and diagnosis, and even financial analysis [4,5]. The
success of the KF comes from the optimality of the Kalman gain
in minimizing the trace of the a posteriori state error covariance
matrix [6,7]. The trace is taken because it represents the state
error vector in the estimation process [8]. The following five
equations form the core of the KF algorithm and are used in an
iterative fashion. Equations (1.3) and (1.4) define the a priori
state estimate %, based on knowledge of the system A, the
previous state estimate Xy, the input matrix B, and the input uy,
and the corresponding state error covariance matrix Py,
respectively

Kpy1je = Ay + Bug (1.3)

P = APy AT + Op (1.4)

The Kalman gain K, is defined by Eq. (1.5), and is used to
update the state estimate X4+ as shown in Eq. (1.6). The gain
makes use of an innovation covariance S|, which is defined as
the inverse term found in the following equation:

—1
Kir1 = ProquCT [CPLiCT + Ris | (1.5)

K1kt = Stk + Kirr) 2o — Clirap] (1.6)

The a posteriori state error covariance matrix Py ;1 is then cal-
culated by Eq. (1.7), and is used iteratively, as per Eq. (1.4).

Piiiprt = [ = K 1 CIP g (1.7)

A number of different methods have extended the classical KF to
nonlinear systems, with the most popular and simplest method
being the extended Kalman filter (EKF) [9,10]. The EKF is con-
ceptually similar to the KF; however, the nonlinear system is line-
arized according to its Jacobian. This linearization process
introduces uncertainties that can sometimes cause instability [10].
For the purposes of this paper, only linear systems will be
considered.

The optimality of the KF comes at a price of stability and robust-
ness. The KF assumes that the system model is known and linear,
the system and measurement noises are white, and the states have
initial conditions with known means and variances [9,11]. How-
ever, the previous assumptions do not always hold in real applica-
tions. If these assumptions are violated, the KF yields suboptimal
results and can become unstable [12]. Furthermore, the KF is sensi-
tive to computer precision and the complexity of computations
involving matrix inversions [13]. In an effort to further increase sta-
bility, the KF has been combined with a variety of square root algo-
rithms and methods, such as Cholesky decomposition, unit
diagonal-factorization, and triangularization algorithms [14—17].
These methods are based on reformulating the KF equations by
using numerically stable implementations to mathematically
increase the arithmetic precision of the computation [13]. Increas-
ing the arithmetic precision reduces the effects of round-off errors,
which improves the overall numerical stability of the filter.

Other methods have been proposed to reduce the effects of
modeling errors [18,19]. These techniques are based on increasing
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the a priori covariance matrix, which increases the gain value.
This approach puts more emphasis on the system model, as
opposed to the model used by the filter [9].

The effects due to assuming Gaussian noise distributions may
be minimized by implementing a Gaussian sum. This method is
used to approximate the non-Gaussian probability density func-
tion (PDF) by a finite number of Gaussian PDFs [20]. This
approach is computationally complex due to the number of filters
that are used to approximate the overall estimate, however, has
been shown to work well.

A recent robust filtering strategy that is less susceptible to
uncertainties and is computationally efficient is the variable struc-
ture filter [21]. Variable structure system theory originated from
the Soviet Union in the 1940s [22,23]. A special subcategory of it
referred to as sliding mode control (SMC) is commonly used in
control applications as it provides enhanced robustness and stabil-
ity. In a typical sliding mode controller, a discontinuous switching
gain is used to maintain the states along some desired trajectory
[23]. The discontinuous gain is determined based on the distance
of the states from a switching hyperplane. The gain forces the
states to convergence onto the hyperplane, and slide along it [24].
While on the hyperplane and under ideal conditions, the state tra-
jectory becomes insensitive to disturbances and uncertainties. The
discontinuous switching brings an inherent amount of stability to
the control, while in practice introducing chattering due to limita-
tions and delays in switching. To remove chattering, a smoothing
boundary layer is introduced along the sliding surface in order to
interpolate and scale the discontinuous gain within the boundary
region. This results in the discontinuous gain being applied out-
side the smoothing boundary layer, while inside it a continuous
corrective action is applied. A number of sliding mode observers
and filters have been proposed in literature [25,26]. In 2002, an
optimal sliding mode filter design was introduced; however, the
derivation led to more of a robust control strategy, rather than an
estimator [27]. The estimation strategy to be discussed in this pa-
per is significantly different.

The smooth variable structure filter (SVSF) is a relatively new
estimation strategy based on sliding mode theory, and has been
shown to be robust to modeling uncertainties. Similarly to SMC,
the SVSF uses a discontinuous gain and a smoothing boundary
layer y in its formulation. In this paper, an “optimal” smoothing
boundary layer is derived for the SVSF with respect to the state
error covariance matrix. Section 2 provides a brief overview of
the SVSF, followed by the derivation of an optimal smoothing
boundary layer equation. A linear electrohydrostatic actuator
(EHA) estimation problem is then described, and the new form of
the SVSF is compared with the KF and the standard SVSF in
terms of estimation accuracy and robustness to uncertainties. The
paper then concludes with a summary of the results.

2 The Smooth Variable Structure Filter

A revised form of the VSF, referred to as the SVSF, was pre-
sented in 2007 [28]. The SVSF strategy is also a predictor-
corrector estimator based on sliding mode concepts, and can be
applied on both linear or nonlinear systems and measurements. As
shown in Fig. 1, and similar to the VSF, it utilizes a switching
gain to converge the estimates to within a boundary of the true
state values (i.e., existence subspace) [28]. The SVSF has been
shown to be stable and robust to modeling uncertainties and noise,
when given an upper bound on the level of unmodeled dynamics
and noise [21,28]. The origin of the SVSF name comes from the
requirement that the system is differentiable (or ‘“smooth™)
[28,29]. Furthermore, it is assumed that the system under consid-
eration is observable [28].

Consider the following process for the SVSF estimation strat-
egy, as applied to a linear system with a linear measurement equa-
tion. Note that this formulation includes state error covariance
equations as presented in Ref. [30], which was not originally pre-
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Fig.1 SVSF estimation concept

sented in the standard SVSF form [28]. The predicted state esti-
mates X are first calculated as follows:

i1k = AXyx + Buy 2.1

Similar to the KF, the a priori state error covariance matrix Py
may be found as follows:

Pipijp = AP AT + Ok (2.2)

Utilizing the predicted state estimates %, the corresponding

predicted measurements Z;,; and measurement error vector
e j+1x may be calculated

Zrepie = Chipnp (2.3)
Cohi 1k = Zkt1 — i1k (2.4)

Next, the SVSF gain is calculated as follows [6]:

. €z k+1lk
3:,k+l\k‘Abs + V|ez,k\k|Abs) o s1gn (T‘)]

x [diag(e. 1)) 2.5)

Ky = Ctdiag | (

The SVSF gain is a function of: the a priori and a posteriori mea-
surement error vectors e ;i and e. ;s the smoothing boundary
layer widths iy; where i refers to the ith width; the “SVSF” mem-
ory or convergence rate y with elements 0 < 7; < 1; and the lin-
ear measurement matrix C. However, for numerical stability, it is
important to ensure that one does not divide by zero in Eq. (2.5).
This can be accomplished using a simple if statement with a very
small threshold (i.e., 1 x 107'%). The SVSF gain is used to refine
the state estimates as follows:

Ky 1kt = Y1k + Keprez i (2.6)

Following this, the a posteriori state error covariance matrix
Py k41 s calculated as follows [6]:

Piyijsr = (I = Ki 1 C) Py (I — K O) + Ki iR K7
2.7)

Next, the updated measurement estimates Z;y ;.4 and correspond-
ing errors e. ;x4 are calculated
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Zrptpkrt = CXipaper (2.8)
€1l = Zktl — Zhglfkel (2.9)

The SVSF process may be summarized by Egs. (2.1)—(2.9), and is
repeated iteratively. According to Ref. [28], the estimation
process is stable and converges to the existence subspace if the
following condition is satisfied:

lexlabs > lexstjerlaps (2.10)

Note that |e[aps is the absolute of the vector e, and is equal to
le|ans = € - sign(e). The proof, as described in Refs. [28,29],
yields the derivation of the SVSF gain from Eq. (2.8). The SVSF
results in the state estimates converging to within a region of the
state trajectory, referred to as the existence subspace. Thereafter,
it switches back and forth across the state trajectory, as shown ear-
lier in Fig. 1. The existence subspace shown in Figs. 1-3 repre-
sents the amount of uncertainties present in the estimation
process, in terms of modeling errors or the presence of noise. The
width of the existence space f is a function of the uncertain dy-
namics associated with the inaccuracy of the internal model of the
filter as well as the measurement model, and varies with time
[28]. Typically this value is not exactly known but an upper bound
may be selected based on a priori knowledge.

Once within the existence boundary subspace, the estimated
states are forced (by the SVSF gain) to switch back and forth
along the true state trajectory. As mentioned earlier, high-
frequency switching caused by the SVSF gain is referred to as
chattering, and in most cases, is undesirable for obtaining accurate
estimates [28]. However, the effects of chattering may be mini-
mized by the introduction of a smoothing boundary layer /. The
selection of the smoothing boundary layer width reflects the level
of uncertainties in the filter and the disturbances (i.e., system and
measurement noise, and unmodeled dynamics). The effect of the
smoothing boundary layer is shown in Figs. 2 and 3. When the
smoothing boundary layer is defined larger than the existence sub-
space boundary, the estimated state trajectory is smoothed. How-
ever, when the smoothing term is too small, chattering remains
due to the uncertainties being underestimated. Similar to the VSF
strategy, the smoothing boundary layer i modifies the SVSF gain

as follows [28]:
€2 k+1|k
ekl aps) © sat <T+|>}

x [diag(e.piip)] " Q.11

Ky = Ctdiag (

ikl aps T 7

The SVSF gain is considerably less complex than its predecessor
(VSF), which allows it to be implemented more easily (mathe-
matically and conceptually). Furthermore, the SVSF estimation
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Fig.2 Smoothed estimated trajectory y > ff [28]
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Fig. 3 Presence of chattering effect y < § [28]

process is inherently robust and stable to modeling uncertainties
due to the switching effect of the gain. This makes for a powerful
estimation strategy, particularly when the system is not well
known. Note that for systems that have fewer measurements than
states, a “reduced order” approach is taken to formulate a full
measurement matrix [28,31]. Essentially “artificial meas-
urements” are created and used throughout the estimation
process.

3 Derivation of an Optimal Smoothing Boundary
Layer

The partial derivative of the a posteriori covariance (trace) with
respect to the smoothing boundary layer term i/ is the basis for
obtaining a strategy for the specification of /. The approach taken
is similar to determining an optimal gain for the KF. The follow-
ing derivation is applicable to any measurement case provided
that the measurement matrix is completely observable [32]. For
the case when there are fewer measurements than states, one
needs to implement a reduced order form of the SVSF as shown
in Ref. [28]. This allows the creation of a full measurement ma-
trix, typically in the form of an identity. For the case when there
are more measurements than states, the system output can be mul-
tiplied by the inverse of the measurement matrix, thus mapping
the measurements to the states. One could then use a full measure-
ment matrix (i.e., identity) in the estimation process.

Previous forms of the SVSF included a vector form of 1, which
had a single smoothing boundary layer term for each correspond-
ing measurement error [28]. Essentially, the boundary layer terms
were independent of each other such that the measurement errors
would only directly be used for calculating its corresponding gain.
The coupling effects are not explicitly considered thus preventing
an optimal derivation. A “near-optimal” formulation of the SVSF
could be created using a vector form of i/, however, this would
lead to a minimization of only the diagonal elements of the state
error covariance matrix [32]. In this paper, in an effort to obtain a
smoothing boundary layer equation that yields optimal state esti-
mates for linear systems (like the KF), a full smoothing boundary
layer matrix is proposed. Hence, consider the full matrix form of
the smoothing boundary layer

!//ll lpll l//]m
l#;nl l//;nZ T lr[/r.nm

Note that the off-diagonal terms of Eq. (3.1) are zero for the stand-
ard SVSF (presented in Sec. 2 and in Ref. [28]), whereas this is
not the case for the algorithm presented here. This definition
includes terms that relate one smoothing boundary layer to
another (i.e., off-diagonal terms). To solve for a time-varying
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smoothing boundary layer (variable boundary layer (VBL)) based
on Eq. (3.1), consider

O(trace[Py k1)
oy

To solve Eq. (3.2), first consider the following modification of the
SVSF gain defined by Eq. (2.11), where the system is fully meas-
ured. Note that the gain structure remains the same

Kiy1 = C'{diag(E) - Sat(l//qdiag[e:,k+llk])}[diag(ez‘l&l\k)]il
3.3)

=0 (3.2)

where E is a “vector of errors,” defined as follows:

E=

ez 11kl abs T V1€l abs) 34

In an effort to avoid significant chattering or switching, consider
the region only inside the saturation term of the SVSF gain (3.5).
Furthermore, as will be demonstrated later, this will improve the
overall SVSF estimation accuracy. Also, consider the bar notation
a to signify a diagonal matrix formed of the vector a, such that
a=diag(a)

sat(y~e ) =y e, (3.5)

Applying Eq. (3.5) to Eq. (3.3) yields

_ —1
Kio = C By e (e (3.6)

In an effort to help visualize (3.6), consider a system with two
states and measurements (where C=1I), such that Eq. (3.6)
becomes

Koo = | & 01| Vi o e, 0 Z 0
k+1 0 e ||V VY 0 e, 0 L
e,
_ a0y Wy B
a {O al} {‘le %J @7

Note that the notation of Eq. (3.3) does not impact the gain formu-
lations or the state update equation, since the error terms e ;|
eventually cancel out. Simplifying Eq. (3.6), using Eq. (3.7) to
visualize, yields the following definition for the SVSF gain:

Ki1 =C'Ey! (3.8)

In evaluating Eq. (3.2), consider an expansion of the a posteriori
covariance equation (2.7) as follows:

T T
Pisipr1 = Prpte — K1 CPrg 1 — PryinC Ky 4

+ Ki 1 CPapCTKy + KR K (3.9

Note that the measurement covariance R ; and the state error co-

variance Py are symmetric. Furthermore, recall the definition

for the innovation (or measurement error) covariance matrix as
follows:

Skt = CPiqpC" + Riiy (3.10)
Equation (3.10) can be used to simplify Eq. (3.9) as follows:
Pratppst = Proipp — Kt CPiaje — ProipC KL + K Sis K
(3.11)
Substitution of Eq. (3.8) into Eq. (3.11) yields

Pritjerr = Prgr — C_IE_‘//71CPk+1\k - Pk+1\kCT(C_IE‘//71)T
+ CTEY IS (CTTEY YT (3.12)

014503-4 / Vol. 135, JANUARY 2013

Next, to solve for Eq. (3.2) or d(trace[Py.j+1])/0, the individ-
ual terms of Eq. (3.12) will be considered, respectively, as follows
[33]:

o
A(trace[~C'EY ™ (CPyy1 i)
o
d(trace[—Pyy CT(CEY "))
o

=0 (3.13)

=y TECTTP CTyT (314

=y TECT P CTy "
(3.15)

d(trace[C T EY ' Sp (CTEY )
N
x Ef\pilskJrllpiT (316)

=-2'ECcTC!

Combining Eqs. (3.13)—(3.16) into Eqgs. (3.2) and (3.12) yields
O(trace[Py 1k41])

=— 2y TECT P CTy "
oy v kG Y
— 2 TECTTCEY Sy T =0

(3.17)

Now, what remains, is to simplify Eq. (3.17) and solve for the
smoothing boundary layer . First, multiply from the left by
L)', and then from the right by (y7)~"

2
ECTTPy iy CT —ECTC'EY ™ 'Sp1 =0 (3.18)

Next, multiply Eq. (3.18) from the left by £~

CTPpCT —CTCEY ™ 'Si1 =0 (3.19)

Simplify Eq. (3.19) further by multiplying from the left by
E-TC(CT)™", which yields

E7'CPyajCT + Y 'S =0 (3.20)

Rearranging Eq. (3.20) yields a solution for the inverse of the
smoothing boundary layer

Y = ETCP i CTS (3.21)

Finally, a solution for the full smoothing boundary layer matrix
may be found as follows:

Vi = (EiTCPkH\kCTS/Qll)il (3.22)

Note that the square matrix (3.22) 1is invertible if
E~'CP 1y CTSi}| is nonsingular, or if the determinate of the ma-
trix E_ICPHW(C S,;:l is nonzero. Performing a dimensionality
check verifies the correct dimension

Vi = <(m x 1)~ (m x n)(n x n)(n x m)(m x m)7'>_1

= (m x m) (3.23)

The proposed smoothing boundary layer equation (3.22) is found
to be a function of the a priori state error covariance Py |, mea-
surement covariance Sy ; measurement matrix C, a priori and pre-
vious a posteriori measurement error vectors (e.iyix and e. g
and the convergence rate or SVSF “memory” 7. It appears that the
width of the boundary layer is therefore directly related to the
level of modeling uncertainties (by virtue of the errors), as well as
the estimated system and measurement noise (captured by P
and S;;1). The smoothing boundary layer widths can now be
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Upper Limit for Boundary Layer

Upper Optimal Boundary Layer
"v .~ Estimated State Trajectory
~*" Lower Optimal Boundary Layer

Lower Limit for Boundary Layer

Fig.4 Well-defined system case (SVSF-VBL strategy)

obtained according to Eq. (3.22) at each time step, in an optimal
fashion, as opposed to the constant (conservative) width presented
in Ref. [28]. As shown in the Appendix, the units and values of
the smoothing boundary layer matrix have been studied.

4 A Robust Filtering Strategy for Linear Systems

4.1 Description of the SVSF-VBL Strategy. As per the pre-
vious results and as shown in the Appendix, it appears that the
time-varying smoothing boundary layer (VBL) for the SVSF
yields the KF solution (gain) for linear systems. In this case,
robustness to modeling uncertainties using the SVSF strategy is
lost. It is hence beneficial to propose a combined strategy, referred
to here as the SVSF-VBL, such that an accurate estimate is main-
tained (i.e., using the VBL calculation or KF gain) while ensuring
the estimate remains stable (i.e., using the standard SVSF gain).
This strategy is implemented by imposing a saturation limit on the
optimal smoothing boundary layer as follows. Outside the limit
the robustness and stability of the SVSF is maintained, while
inside the boundary layer the optimal gain is applied. Consider the
following sets of figures to help describe the overall implementa-
tion of the SVSF-VBL strategy.

Figure 4 illustrates the case when a limit is imposed on the
smoothing boundary layer width (a conservative value) and the
time-varying (optimal) smoothing boundary layer per Eq. (3.22)
follows within this limit. In the standard SVSF, the smoothing
boundary layer width is made equal to the limit; such that the dif-
ference between the limit and the optimal variable boundary
layers quantifies the loss in optimality. Essentially, in this case,
the SVSF-VBL (or KF) gain should be used to obtain the best
result. Another way to simplify and understand this process is to
consider the SVSF-VBL as using a time-varying boundary layer
with saturated limits to ensure stability.

Figure 5 illustrates the case when the optimal time-varying
smoothing boundary layer is larger than the limit imposed on the
smoothing boundary layer. This typically occurs when there is
modeling uncertainty (which leads to a loss in optimality) or when
the limit on the smoothing boundary layer is underestimated. This
strategy is useful for applications such as fault detection. Recall
that that the width of the smoothing boundary layer (3.22) is
directly related to the level of modeling uncertainties (by virtue of
the errors), as well as the estimated system and measurement
noise (captured by Py and Si ). Therefore, the VBL creates

. Upper Optimal Boundary Layer

System Change , .
(i.e., Presence of a Fault) / Sl

Upper Limit for Boundary Layer

.~ Estimated State Trajectory

Lower Limit for Boundary Layer

. Lower Optimal Boundary Layer

Fig. 5 Presence of a fault or poorly-defined system case
(SVSF-VBL strategy)

another indicator of performance for the SVSF: the widths may be
used to determine the presence of modeling uncertainties, as well
as detect any changes in the system.

To summarize the estimation strategy (SVSF-VBL) proposed
in this section, consider Fig. 6. Essentially, in a well-defined
case, the gain used to correct the estimate is calculated by the
SVSF-VBL or KF gain. When the smoothing boundary layer
calculated by Eq. (3.22) or Eq. (4.7) goes beyond the limits, the
smoothing boundary layer width requires saturation.

4.2 The Computational Process for the SVSF-VBL. This
section briefly summarizes the proposed SVSF-VBL strategy and
equations. Consider the prediction stage for a linear system as
described earlier, where the state estimates and covariance are first
calculated as per Egs. (4.1) and (4.2), respectively.

fip = Ay + Buy 4.1)
P = APgAT + Oy 4.2)

The a priori measurement estimate (4.3) and errors (4.4) are then
calculated

Zrpipe = Cligi 4.3)
Cohpilk = Zhkt1 — Zkyi 4.4)

The update stage is then defined by the following sets of equa-
tions. The innovation covariance (4.5) and combined error vector
(4.6) are calculated, and then used in Eq. (4.7) to determine the
smoothing boundary layer matrix. Recall that a “divide by zero”
check should be performed on Eq. (4.6) to avoid inversion of zero
in Eq. (4.7). As described earlier, this can be accomplished using
a simple if statement with a very small threshold (i.e., 1 x 107"%).

Ser1 = CPrapCT + R 4.5)

Ep1 = ez,k+1\k|Abs + Vlez ikl abs (4.6)

SVSF-VBL or KF Gain

Prediction Time-Varying Smoothing Boundary
Stage Layer Calculation (4.7)

Update
Stage

Standard SVSF Gain

fE

Fig.6 Summary of the SVSF-VBL strategy
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‘Pkﬂ(E;l1CPk+1|kCTS/;:1)7I @.7

The SVSF gain is then calculated (4.8), and then used to update
the state estimates (4.9).

Kip1 = C B}, (4.8)

Ky tfhrt = Y1 + Keprez i 4.9)

Finally, the a posteriori state error covariance (4.10), updated

measurement estimate (4.11), and a posteriori errors (4.12) are
calculated.

Piiijirt = (I = K1 OPpap (I = Ky j©)' + Kiy 1 Re 1 KL

(4.10)
Zrytpkrt = CRigaprrt 4.11)
Coht 1kt = Zktl — Zkp ks (4.12)

Equations (4.1)—(4.12) summarize the proposed SVSF-VBL
strategy.

5 Simulation Results

5.1 Description of the Linear Estimation Problem. In this
section, the proposed algorithm is applied for state estimation on
an EHA. This example uses computer simulations in order to
allow a detailed investigation of the effects of parametric uncer-
tainties. The EHA model is based on an actual prototype built for
experimentation [28,34]. The purpose of this example is to dem-
onstrate that the new SVSF-VBL estimation process is functional,
and that the resulting estimation process is comparable to the KF
for linear and known systems. Furthermore, the addition of model-
ing errors will demonstrate its robustness. For this computer
experiment, the input to the system is a random signal with ampli-
tude in the range of *1 rad/s, superimposed onto a unit step
occurring at 0.5 s [28].

The EHA has been modeled as a third-order linear system with
state variables related to its position, velocity, and acceleration
[28]. Initially, it is assumed that all three states have measure-
ments associated with them (i.e., C =1 ). The sample time of the
system is 7=0.001 s, and the discrete-time state space system
equation may be defined as follows [28]:

1 0.001 0 0
X1 = 0 1 0.001 X + 0 Uy
—557.02 —28.616 0.9418 557.02

(5.1)

For this case, the corresponding measurement equation is defined by

1 0 0
Zipr= [0 1 0 |xey1 (5.2)
0 0 1

The initial state values are set to zero. The system and measure-
ment noises (w and v are considered to be Gaussian, with zero
mean and variances Q and R, respectively. The initial state error
covariance Pgp, system noise covariance Q, and measurement
noise covariance R are defined, respectively, as follows:

Poj = 100 (5.3)

1 x107° 0 0
0= 0 1x1073 0 (5.4)
0 0 1x107!

014503-6 / Vol. 135, JANUARY 2013

1.2 T T T

08} .
5 osr 8
§ N
3 04r f 1
. |
02} / ]
.«\/\-,/\/\2/ ) ' A A True
0 AVATIVAVAY KF :
T A P SVSF
- SVSF-VBL
0.2 L L L I
02 0.4 06 08 1

Time (sec)

Fig. 7 Position estimates for the EHA computer experiment
(normal case)

1x107* 0 0
R = 0 1x1072 0 (5.5)
0 0 1

For the standard SVSF estimation process, the memory or conver-
gence rate was set to y = 0.1, and the limits for the smoothing
boundary layer widths (diagonal elements) were defined as
Y =[0.05 0.5 5]". These parameters were selected based on
the distribution of the system and measurement noises. For exam-
ple, the limit for the smoothing boundary layer width s was set to
5 times the maximum system noise, or approximately equal to the
measurement noise. The initial state estimates for the filters were
defined randomly by a normal distribution, around the true initial
state values xo and using the initial state error covariance Poy.
Two different cases were studied in this section. The first case
was considered “normal,” and the second included system model-
ing error half-way through the simulation.

5.2 Normal Case. The main results of applying the KF,
SVSF, and the SVSF-VBL are shown in Fig. 7. This figure
shows the true position of the EHA, with the corresponding fil-
ter estimates. The estimation results of all filters are practically
the same (note that the lines are nearly overlapping and are
thus difficult to distinguish). It is important to note that the KF
provides the best estimate (i.e., optimal) for a linear and known
system, subject to Gaussian noise. Consequently, the SVSF-
VBL yielded the same results, since the derived gain (4.8) is
the same as the KF. Although the standard SVSF yielded good
results, the estimates were not optimal. The velocity and accel-
eration estimates were relatively the same, and were thus omit-
ted for space constraints. As shown in Table 1, in the normal
(standard) case, the KF and SVSF-VBL provide optimal results
(in terms of estimation accuracy). The SVSF-VBL improved
the SVSF with a constant boundary layer width by roughly
40% (in the position estimate). This is a significant

Table1 RMSE computer experiment results (normal case)

Filter Position (m) Velocity (m/s) Acceleration (m/s?)
KF 372%x1073 489 x 102 0.87
SVSF-VBL 3.72 x 1073 4.89 x 1072 0.87
SVSF 6.11 x 1073 5.93 x 1072 1.21
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Fig. 9 Position estimates for the EHA computer experiment
(uncertainty case)

improvement in terms of estimation accuracy. However, note
that after some tuning by trial-and-error, it may be possible to
improve the SVSF results.

The root mean squared error (RMSE) results of running the
computer experiment are shown in Table 1.

Figure 8 provides an illustration of the individual smoothing
boundary layer widths (found within the / matrix), as they evolve
with time. The standard SVSF results could be improved if the in-
formation contained along the diagonal of the smoothing bound-
ary layer matrix were used to tune the standard SVSF boundary
layer widths.

In its current form, the SVSF-VBL is equivalent to the KF. How-
ever, as shown in the following example, some cases exist such that
the KF no longer provides an optimal and reliable estimate.

5.3 Modeling Uncertainties Case. As per Eq. [28], consider
the introduction of modeling error or uncertainty, such that the

Journal of Dynamic Systems, Measurement, and Control

system used by the filters is modified (5.6) at 0.5 s. The model
changes at this point to coincide with the input step, to exaggerate
the effects of modeling uncertainty.

1 0.001 0 0
Xkl = 0 1 0.001 | x; + 0 w  (5.6)
—240 28 0.9418 557.02

The corresponding position estimates for this case are shown in
Fig. 9.

An interesting result occurs when studying the elements of the
smoothing boundary layer matrix. As shown in Fig. 10, the
smoothing boundary layer widths corresponding to the accelera-
tion state grows larger at the inception of the modeling uncer-
tainty (0.5 s). This is due to the fact that the width of the
smoothing boundary layer is directly related to the level of mod-
eling uncertainties (by virtue of the errors), as well as the esti-
mated system and measurement noise (captured by P and
Si+1), as described in Eq. (3.22). Furthermore, this can be seen
by looking at the value of Eq. (4.6) at the onset of modeling
uncertainties. The average value in E (corresponding to the third
state E5 ) increased by nearly 100 times; which in turn, drasti-
cally increased the smoothing boundary layer width. The system
modeling error leads to an incorrect a priori state covariance
Py 1)1 Which propagates to the smoothing boundary layer calcu-
lation. The smoothing boundary layer matrix ;1 therefore pro-
vides an alternative method for fault detection, as demonstrated
by the immediate changes at the inception of the system model-
ing uncertainties.

The smoothing boundary layers grow to accommodate for the
increased uncertainties at 0.5 s. Injection of uncertainties leads to
a loss of optimality, as the basic assumption related to having
a known model no longer applies. As shown by Fig. 9, at the
inception of the modeling error (0.5 s), the KF failed to yield a
reasonable estimate. However, the SVSF-VBL and SVSF retain
their robust stability and their estimates remained bounded to
within a region of the true state trajectory. In terms of RMSE, the
SVSF-VBL estimation strategy yielded the best results, as shown
in Table 2.
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Fig. 10 Smoothing boundary layer widths (uncertainty case)

Table2 RMSE simulation results (uncertainties case)

Filter Position (m) Velocity (m/s) Acceleration (m/sz)
SVSF-VBL 4.96 x 1073 543 x 1072 0.98
SVSF 6.01 x 1073 5.75 x 1072 1.12

KF 0.31 3.49 17.9

As shown in Table 2, the KF provides the worst result (in terms
of estimation accuracy). However, the standard SVSF and the
SVSF-VBL estimation processes remained relatively stable
(when compared with Table 1). These results would have signifi-
cant implications when attempting the accurate control of a me-
chanical or electrical system.

6 Conclusions

This paper introduced the derivation of an optimal smoothing
boundary layer width for the smooth variable structure filter. A new
estimation strategy which makes use of the KF optimality
and robustness of the SVSF was presented and is referred to as
SVSE-VBL. Prior to this work, a variable smoothing boundary layer
did not exist for the SVSF. In the standard SVSF, the smoothing
boundary layer widths were selected based on upper bounds of the
uncertainties in the estimation process. This was a conservative
choice for the smoothing boundary layer, which resulted in a loss of
optimality. In this paper, a variable smoothing boundary layer was
derived in an optimal fashion based on minimizing the state error co-
variance matrix with respect to the smoothing boundary layer term.
The robustness and accuracy of the new form of the SVSF was dem-
onstrated and compared with the KF by testing it on a linear EHA
estimation problem. It was demonstrated that the SVSF-VBL strat-
egy performed exactly the same as the KF in the absence of model-
ing error. In the presence of system modeling uncertainties (or a
fault), the SVSF-VBL outperformed both the KF and standard
SVSEF, yielding very accurate and stable estimates.

014503-8 / Vol. 135, JANUARY 2013

Nomenclature
X = state vector or values
z = measurement (system output) vector or values
y = artificial measurement vector or values
u = input to the system
w = system noise vector
v = measurement noise vector
A = linear system transition matrix
B = input gain matrix
C = linear measurement (output) matrix
E = combination of measurement error vectors
K = filter gain matrix (i.e., KF or SVSF)
P = state error covariance matrix
Q = system noise covariance matrix
R = measurement noise covariance matrix
S = innovation covariance matrix
e = measurement (output) error vector
diag(a) or a = defines a diagonal matrix of some vector a
sat(a) = defines a saturation of the term a
y = SVSF “convergence” or memory parameter
Yy = SVSF smoothing boundary layer width
|a| = absolute value of some parameter a
E{-} = expectation of some vector or value
T = transpose of some vector or matrix
A = estimated vector or values
k+ 1|k = a priori time step (i.e., before applied gain)
k+ 1]k + 1 = a posteriori time step (i.e., after update)

Appendix A: Closer Look at the Saturation Term

A closer examination of the SVSF gain K., defined by
Eq. (3.3) reveals that the derivation of i/ removes the need for the
saturation term in the gain, as follows. Consider the saturation
term of Eq. (3.3) with Eq. (3.21) as follows:

sat(w”diag[ew“‘k]) = sat(b:’lCPHI‘kCTS,:lldiag[eZ.kH‘k])

(AL)
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From Eq. (A1), consider the following two terms:

term; = CPk+1‘kCTS;J:] (A2)
termy = E~"diag[e. ;. 14] (A3)

Analyzing the first term (A2) and recalling Si:) = CPH”,(CT
+ Ry+1, consider the following:

CPpC Sty = (Sker — Rict)Sichy (A4)
From Eq. (3.10), it is known that S;,; = R;4;. Hence, Eq. (A2) is

bounded between 0 and —1 as per Eq. (A4). Next, the second term
defined by Eq. (A3) will be studied. Note the following definition:

etk avs T V1ezkiklaps = €zprik (AS)
Due to the definition of Eq. (AS), the second term (A3) may only
yield values equal to or between and, depending on the y value of
the convergence rate y. This can be confirmed by looking at the
diagonal elements i of Eq. (A3) given any system

€2kt 1k

—_— A6
ez,k-%—l\k!i"‘yi’ez‘k\k‘i (A0

[E™" o] =

If the convergence rate y is set to zero, Eq. (A6) simply yields the
sign function of the measurement error (and the answer is —1, 0,
or 1). If the convergence rate y is nonzero (however, bounded
between 0, and 1), Eq. (A6) yields a value between —1 and 1.
The argument holds for Eq. (A3). Given the above discussion,
when calculating a time-varying smoothing boundary layer using
Eq. (3.22), the argument inside the saturation term will always be
between —1 and 1. Hence, the saturating function used in Eq.
(A3) is redundant given the definition of  as provided in Eq.
(3.22). Note that this also works with the earlier assumption (3.5)
that the region of interest for the value of the smoothing boundary
layer width is inside the saturation term (i.e., between —1 and 1).

Appendix B: Studying the Revised SVSF Gain

In an effort to study the effects of the time-varying smoothing
boundary layer term on the SVSF gain, consider the following.
Substituting Eq. (3.22) into Eq. (3.8) yields the revised gain, based
on the above derivation

Kir1 = CT'E[ET'CPq i CT S (B1)

Note that Eq. (B1) easily simplifies to the following:
Kiat = PropCSi (B2)

Therefore, based on a full smoothing boundary layer matrix defined
by Eq. (3.22), the gain (3.8) becomes the KF gain (1.5), which
yields the optimal solution for well-defined linear systems. This is
to be expected as the KF yields the best possible estimate for linear,
known systems with Gaussian noise. This implies that the robust-
ness of the SVSF is lost with the use of an optimal smoothing
boundary layer that would make the saturation function redundant.
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