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This paper discusses the application of four nonlinear estimation
techniques on two benchmark target tracking problems. The first
problem is a generic air traffic control (ATC) scenario, which
involves nonlinear system equations with linear measurements.
The second study is a classical ground surveillance problem,
where a moving airborne platform with a sensor is used to track a
moving target. The tracking scenario is set in two dimensions,
with the measurement providing nonlinear bearing-only observa-
tions. These two target tracking problems provide a good bench-
mark for comparing the following nonlinear estimation
techniques: the common extended and unscented Kalman filters
(EKF/UKF), the particle filter (PF), and the relatively new
smooth variable structure filter (SVSF). The results of applying
the SVSF on the two target tracking problems demonstrate its sta-
bility and robustness. Both of these attributes make use of the
SVSF advantageous over other popular methods. The filters per-
formances are quantified in terms of robustness, resilience to poor
initial conditions and measurement outliers, and tracking accu-
racy and computational complexity. The purpose of this paper is
to demonstrate the effectiveness of applying the SVSF on nonlin-
ear target tracking problems, which in the past have typically
been solved by Kalman or particle filters.
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1 Introduction

In the estimation world, even after 50 years, the Kalman filter
(KF) method remains the most studied and one of the most popu-
lar tools used to estimate states from systems [1-3]. It may be
applied on linear dynamic systems in the presence of Gaussian
white noise, and it provides an elegant and statistically optimal so-
lution by minimizing the mean-squared estimation error.

In practice, all systems in nature are in fact nonlinear, such that
linear estimation techniques may not be used to provide optimal sol-
utions. However, suboptimal techniques may be applied to handle
the nonlinearities. Such techniques include the extended and
unscented Kalman filters, the particle filter, and the smooth variable
structure filter. The EKF is a popular extension of the KF and is
commonly used in target tracking [4]. It uses partial derivatives of
the nonlinearities in the state dynamic and measurement models,
such that linearized approximations are obtained and then used in
the estimation process [2,4]. The UKEF is different from the EKF in
the sense that it does not approximate any of the nonlinear functions
[4]. The UKF approximates the posterior distribution of the states,
using a set of deterministically chosen sample points, which, after a
transformation, capture the true mean and covariance up to the sec-
ond order of nonlinearity [4]. The PF takes the Bayesian approach to
dynamic state estimation, in which one attempts to accurately repre-
sent the probability distribution function of the values of interest [4].
The SVSF is a relatively new predictor—corrector method based on
sliding mode concepts used for state and parameter estimation [5,6].

In target tracking applications, one may be concerned with sur-
veillance, guidance, obstacle avoidance, or tracking a target given
some measurements [4]. In a typical scenario, sensors provide a
signal that is processed and output as a measurement. These meas-
urements are related to the target state, and are typically noise-
corrupted observations [4]. The target state usually consists of ki-
nematic information such as position, velocity, and acceleration.
The measurements are processed in order to form and maintain
tracks, which are a sequence of target state estimates that vary
with time [4]. Gating and data association techniques help classify
the source of measurements, and help associate measurements to
the appropriate track [4]. Typically, these gating techniques help
to avoid extraneous measurements which would otherwise cause
the estimation process to go unstable and fail. A tracking filter is
used in a recursive manner to carry out the target state estimation.

2 State Estimation

State and parameter estimation techniques are quite useful for
systems when not all of the dynamics are known. Estimation theory
involves finding a value of some parameter of interest, which
affects the output of the system, often in the presence of inaccurate
or uncertain observations [3]. States are representative of the dy-
namics of a system. For example, for space vehicles, inertial meas-
uring units may be used to calculate the acceleration. However,
since their alignment deteriorates over time, calculating the acceler-
ation by other means (i.e., state estimation) may be desirable [7].

The purpose of estimation, as described by Bar-Shalom et al. [3],
can be one of many reasons: determination of planet orbit parame-
ters, statistical inference, aircraft traffic control system (i.e., track-
ing), use in control plants with uncertainties (i.e., parameter
identification or state estimation), determination of model parame-
ters (i.e., system identification), message retrieval from noisy sig-
nals (i.e., communication theory), and also signal and image
processing. A filter may be used to estimate the state of a dynamic
system, whether linear or nonlinear. The word filter is used because
when finding the best estimate, one has to filter out the noisy signals
or uncertain observations [3]. In this paper, four filters (the com-
monly used EKF, UKF, PF, and the relatively new SVSF) are
applied on two target tracking problems, and the performances in
terms of robustness, stability, and accuracy are compared.

2.1 Kalman and Extended Kalman Filters. As previously
mentioned, the KF may be applied on linear dynamic systems in the
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presence of Gaussian white noise, and provides an elegant and stat-
istically optimal solution by minimizing the mean-squared estima-
tion error. However, in the presence of nonlinearities, one may
implement the extended form (i.e., EKF). Conceptually, the EKF is
very similar to the standard KF. The nonlinear system and measure-
ment functions (f and /, respectively) are used to predict the state
estimates and predicted measurements. However, it is not possible
to use these functions to calculate the predicted and updated state
error covariance matrices. The EKF requires that the functions f and
h be linearized (as per its Jacobian). Although this allows the KF to
handle mildly nonlinear estimation problems, it introduces a number
of instabilities [8]. For example, the linearization process may over-
look unmodeled nonlinear modeling uncertainties, which may cause
the estimate to go unstable [2]. Furthermore, the calculation of the
Jacobian increases the computational complexity of the filter. The
partial derivatives are used to compute linearized system and mea-
surement matrices £ and H, respectively, found as follows [2]:

F— () @2.1.1)
Ox Y=gk Uk
Oh
Hyy = a(x) 2.12)
X X=R 1k

Equations (2.1.1) and (2.1.2) essentially linearize the nonlinear
system or measurement functions around the current state estimate
[9]. This comes at a loss of optimality, as the KF gain is no longer
considered to be the best solution to the estimation problem [10].
The EKF process may be summarized by Eqgs. (2.1.3)—(2.1.9). The
state estimate %, is predicted using the nonlinear system model
(2.1.3), and the corresponding state error covariance matrix Py
is found in Eq. (2.1.4).

St = I e, e) (2.1.3)

P = FiPyyFy + Ok (2.1.4)

The measurement error (or innovation) y; is then found in Eq.
(2.1.5), based on the nonlinear measurement model /4, followed by
the measurement error (innovation) covariance matrix S, | (2.1.6).

Verr = Zkrt — h(Reae) (2.1.5)

Sk = Hi PepH, + Rist (2.1.6)

The near-optimal KF gain K, is calculated by Eq. (2.1.7).
This gain is then used in conjunction with the predicted state
estimate X;1; and the measurement error y;.; to update the state
estimate (2.1.8).

Kip1 = ProapHi Siy 2.1.7)
Xirifkr1 = Fppipe + Kir i (2.1.8)

Finally, the state error covariance matrix is updated as per
Eq. (2.1.9).

Piiijert = (I = K1t Hir1) Pig e (2.1.9)

Equations (2.1.1)~(2.1.9) form the EKF estimation process. The lin-
earization process of Egs. (2.1.1) and (2.1.2) introduces uncertain-
ties that can sometimes cause the filter to go unstable [11].
However, for mildly nonlinear systems, the EKF provides a very
good estimate of the states, and is relatively easy to implement [12].

2.2 Unscented Kalman Filter. The next major progression
of KF theory involved the introduction of the sigma point Kalman
filter (SPKF) [12]. The SPKF is based on a weighted statistical
linear regression strategy which linearizes the nonlinear model
statistically [13,14]. Essentially, SPKF methods draw a certain
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number of points (referred to as sigma points) from the projected
probability distribution of the states [15]. These points are then
projected using the nonlinear system model, in an effort to obtain
an a posteriori estimate for the probability distribution. Note that
this strategy avoids the requirement of linearization, which gener-
ally leads to a more accurate estimation strategy since it avoids
the calculation of Jacobian matrices [16,17]. The most popular
type of SPKF is the UKF [18,19]. A number of different forms
exist, and include [15] the unscented [12,19], general unscented
[12,16], simplex unscented [12,17,20,21], and spherical unscented
[12,21]. The standard UKF method will be presented and dis-
cussed in this paper [19]. The UKF strategy makes use of a deter-
ministic sampling technique referred to as the unscented
transform. It is well established in literature that this method pro-
vides a more accurate estimate of the state mean and covariance
than the EKF [2]. As shown in Fig. 1, a finite number of weighted
sample points (selected about the mean) are propagated through
the nonlinear functions, which create an approximate solution to
the mean and covariance of the desired estimate [18,19].

The following equations help summarize the UKF estimation
method [19]. The first step to applying the UKF is to generate the
sigma points. The n-dimensional random variable x; with mean
Xy« and covariance Py, may be approximated by (2n+ 1) sigma
points. The initial sigma points (corresponding sample and
weight) may be calculated as follows:

Xoap = Sk (2.2.1)
Wo=k/(n+k) (22.2)
The next n number of sigma points may be calculated as follows:

Xikk = X + ( (n+ k)Pk\k>l, (22.3)

Wi =1/[2(n+ k)] (2.2.4)

Likewise, the remaining » number of sigma points may be found as

Xignilk = X — (\/ (n+ k)Pk\k>i (2.2.5)

Wiiw = 1/[2(n + k)] (2.2.6)

The parameter k is a design value (typically a small value, sig-
nificantly less than 1), (1/(n + k)Pk‘k)i is the ith row or column of
the matrix square root of ((n + k)Py), and W; is the weight that is
associated with the ith sample point [18]. The sigma points are
then propagated through the nonlinear system model (2.2.7), and
then are used with their corresponding weights to calculate the
predicted state estimate (2.2.8).

04

0.34. - : TR |

-2 =2

Fig. 1 Distribution of sigma point set for the UKF in 2D space [22]
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X = F (Xiaw e (2.2.7)

2n
Beripe = > WiKipe (2.2.8)
i=0

From Egs. (2.2.7) and (2.2.8), it is possible to calculate the pre-
dicted state error covariance as follows:

2n
Pryx = Z Wi (Xigertie — Beenpe) (X — fkmk)T (2.2.9)
=0

Next, the sigma points are propagated through the nonlinear
measurement model (2.2.10), and the predicted measurement is
calculated by Eq. (2.2.11).

ZALkH\k = h(Xi‘kHlk? Mk) (2.2.10)

2n

Zhr1k = E WiZi k11
i=0

(2.2.11)

The measurement (or innovation) covariance is then calculated as
follows:

2n
. . N . T
Pk = ¥ WilZigsk — Zerip) i — Zriap) (2:2.12)
=0

Likewise, the cross-covariance (between the state and the
measurement) is then calculated as follows:

2n
N . A . T
P = Z Wi (Xt — Zerape) (Zigrr — Zrap) (22.13)
=0

From Egs. (2.2.12) and (2.2.13), the Kalman gain K ,; may be
calculated by Eq. (2.2.14).

K1 = szAkJrl\kP;,lkJr]‘k 2.2.14)

The remaining UKF process is conceptually similar to the
standard KF or EKF. The updated (or a posteriori) state estimate
may be calculated by Eq. (2.2.15), and the updated state error co-
variance may be found in Eq. (2.2.16).

Rptirt = S + Kirt (2o — Zesp) (2.2.15)

Pivijirn = Pesip — Kist Poogr i Ki (2.2.16)

By the nature of its derivation, the UKF may appear to be more
computationally demanding than the EKF. However, both meth-
ods are roughly the same, as the UKF does not require lineariza-
tion of the nonlinear functions [2]. For mildly nonlinear
estimation problems, both the EKF and the UKF will yield the
same solution [23]. However, the UKF becomes more advanta-
geous when the nonlinearities are increased.

2.3 Particle Filter. The PF has many names: Monte Carlo fil-
ters, interacting particle approximations [24], bootstrap filters [25],
condensation algorithm [26], and survival of the fittest [27], to
name a few. Particle filters perform sequential Monte Carlo (SMC)
estimation based on weighted particles [4]. As mentioned in Ref.
[4], the basic concepts of SMC were introduced in statistics litera-
ture in the 1950s [28]. The earliest implementations of the PF were
formed on the principles of sequential importance sampling (SIS)
[29-31]. The main idea behind the SIS strategy is to represent the
desired posterior density function by a number of weighted sam-
ples, and then compute estimates based on these samples [4]. The
larger the number of samples, the more accurate the representation;
however, this comes at the cost of computational demand and time.

Journal of Dynamic Systems, Measurement, and Control

The following equations help to describe the SIS strategy. The ex-
pectation of some function f{-) can be approximated as a weighted
average, as follows:

,
[rptatan, = Yooy @
i=1

where p(x¢|zo, ...,z;) refers to the desired distribution, ' refers to
the weight of the ith particle, x} refers to the ith particle at time &,
and P is the total number of particles. The first step of the process
involves drawing the particles from the proposal distribution ¢ (i.e.,
typically the system function f) given the current measurements and
the particles from the previous time step (or initialization)

X~ q(xlxf_y, ze) (2.3.2)

The next step involves calculating the corresponding particle
weights, which are then used to approximate the desired distribu-
tion. The weights may be calculated using the likelihood function
p(zk\x;'(), which is defined by the measurement model ~ and the
measurement covariance Ry.

@ ~ p(zelxy) - o, (2.3.3)

The particle weights are then normalized as follows, such that
the sum of the particle weights is equal to unity (i.e., Zf wy, = 1).

(2.3.4)

Finally, the state(s) may be estimated by the weighted summation
of the particles, as follows:

»
B=) o (2.3.5)
i=1

Equations (2.3.2)—(2.3.5) summarize the SIS strategy, which is
the basic form of the PF [4]. This method is relatively straightfor-
ward and yields good results. However, it was discovered that the
SIS implementation suffers from a numerical phenomenon referred
to as degeneration [25,32]. The degeneracy problem refers to only a
few particles having significant importance weights after a large
number of recursions. An important step referred to as resampling
was added after Eq. (2.3.4), and helps to avoid the degeneracy prob-
lem [25]. This step eliminates the particles with low weights and
multiplies with high weights [4]. The concept of effective sample
size N.g was introduced to help measure the amount of degeneracy
present in the algorithm [33]. Should a significant amount of degen-
eracy be detected (below a designer threshold) as per Eq. (2.3.6),
then the particles should be resampled.

1
Nefp = —— (2.3.6)

(o)”

-

i=1

Although resampling helps to avoid the degeneracy problem, it
also decreases the amount of particle diversity (i.e., particles with
significant weights will be resampled) [4]. This is referred to as
sample impoverishment. However, resampling is known to
increase the overall accuracy of the estimated state(s) [25]. The
aforementioned strategy is referred to as sampling importance
resampling, and forms the standard PF used in literature.

2.4 The Smooth Variable Structure Filter. In 2002, the
variable structure filter (VSF) was introduced as a new
predictor—corrector method used for state and parameter estima-
tion [5,6]. It is a type of sliding mode estimator, where gain
switching is used to ensure that the estimates converge to true
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state values. An internal model of the system, either linear or
nonlinear, is used to predict an a priori state estimate. A correc-
tive term is then applied to calculate the a posteriori state esti-
mate, and the estimation process is repeated iteratively. The
SVSF was later derived from the VSF, and used a simpler and
less complex gain calculation [34]. In its present form, the SVSF
is stable and robust to modeling uncertainties and noise, given
an upper bound [34]. The basic concept of the SVSF estimation
strategy is shown in Fig. 2.

Assume that the solid line in Fig. 2 is a trajectory of some state
(amplitude versus time). An initial value is selected for the state
estimate. The estimated state is pushed toward the true value.
Once the value enters the existence subspace, the estimated state
is forced into switching along the system state trajectory [12].
Consider the following process for the SVSF estimation strategy,
as applied to a nonlinear system with a linear measurement equa-
tion. The predicted state estimates ;. are first calculated as
follows:

S =f (e 1e) (2.4.1)

Utilizing the predicted state estimates X1, the corresponding
predicted measurements Z;y; and the measurement error vector
e i+1)x may be calculated

Zipie = Chipai (24.2)
Chrllk = Zktl — Zrpik (24.3)

Next, the SVSF gain K, , | is calculated as follows [34]:
-t ) © 50t <“T““) (2.4.4)

The SVSF gain is a function of the a priori and a posteriori
measurement error vectors e ;i 1k and e. i, the smoothing bound-
ary layer widths ¥, the “SVSF” memory or convergence rate 7
with elements 0 <7y; <1, and the linear measurement matrix C.
The SVSF gain is used to refine the state estimates as follows:

Ky =C* (‘ez‘,kﬁ»l\k!Abs‘FV

Xirifkr1 = Xepipe + Kir (2.4.5)

The updated measurement estimates Z; ;1 and corresponding
errors e. 41k are then calculated

Existence Subspace

Amplitude

3 Estimated State Trajectory
o
Initial Estimate

v

Time

Fig.2 SVSF estimation concept [8]
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Zirikr1 = CRppifes (2.4.6)
€kt llhtl = Zktl — Ziglfk+l (2.4.7)

The SVSF process may be summarized by Egs. (2.4.1)—(2.4.7),
and is repeated iteratively. According to Ref. [34], the estimation
process is stable and converges to the existence subspace if the
following condition is satisfied

‘ek|k|Abs> }ekJrW"*l |Abs (248)

Note that |e|aps is the absolute of the vector e, and is equal to
le|abs = € - sign(e). The proof, as described in Refs. [15] and [34],
yields the derivation of the SVSF gain from Eq. (2.4.8).

3 Nonlinear Target Tracking Problems

This section describes two target tracking problems that were
used as benchmarks for comparing four nonlinear estimation
techniques.

3.1 Air Traffic Control Scenario. The first target tracking
problem is based on a generic ATC scenario found in Ref. [3]. Ra-
dar stationed at the origin provides direct position only measure-
ments, with a very large standard deviation of 1000 m in each
coordinate. As shown in Fig. 3, an aircraft starts from an initial
position of (25,000 m, 10,000 m) at time t=0 s, and flies west-
ward at 120 m/s for125 s. The aircraft then begins a coordinated
turn for a period of 90 s at a rate of 1 deg/s. It then flies southward
at 120 m/s for1235 s, followed by another coordinated turn for 30 s
at 3 deg/s. Finally, it continues to fly westward.

In ATC scenarios, the behavior of civilian aircraft may be mod-
eled by two different modes: uniform motion (UM), which
involves a straight flight path with a constant speed and course,
and maneuvering which includes turning or climbing and de-
scending [3]. In this case, maneuvering will refer to a coordinated
turn (CT) model, where a turn is made at a constant turn rate and
speed. The uniform motion model used for this target tracking
problem is given by Eq. (3.1.1) [3,35]

10T 0 I o
01 0T 0 177

X1 = 001 0 Xi + T 20 Wi (311)
0 0 0 1 0 T

The state vector of the aircraft may be defined as follows:

x 10

2.5 T T T :
2 . 4
15¢ R
1 L 4
0.5¢ _
E o |

>

-0.5+ E
At Trajectory i
A5l — 2/ O Initial |

‘ X T O  Final
25 {Q Sensor i

X Measurements

25 I I L 1 1
-2 -1 0 1 2 3
x (m) x 10°

Fig. 3 Aircraft trajectory
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30 T T T
Platform
25¢ / Trajectory i
. Motion
4 —ﬁ' & o, 3P, :""‘ |
€ 15 1
=
10 1
5 Platform Target §
------------------ Platform (with Noise) Trajectory
Target ~a
0 e Target (with Noise) et
0 20 40 60 80 100

X (m)

Fig. 4 Platform and target trajectory

w=[& n & Wl (3.12)

The first two states refer to the position along the x-axis and y-
axis, respectively, and the last two states refer to the velocity
along the x-axis and y-axis, respectively. The sampling time
used in this simulation was 5 s. When using the CT model, the
state vector needs to be augmented to include the turn rate, as
shown in Eq. (3.1.3) [3]. The CT model may be considered non-

x 10
2.5 T T T T T
2 L 4
151 1
Xx Koo X
1+ - i
0.5F A
E ot 0o 1
>
-0.5F 4
1L Trajectory
- Initial
ke S O Final
S5 TR, O Sensor i
2 EKF 2 1
x  Measurements
25 . . . . T
-2 -1 0 1 2 3
(@ x (m) x 10°
x 10*
25 T T T T T
2 . 4
15¢ i
X
1F 2 4
0.5F ]
E o ,
>
-0.5F b
Trajectory
r O Initial 1
geoTs O Final
L
-1.5¢ X O Sensor 1
.................. PF 1
2r PF 2 §
x  Measurements
25 . . . . N
-2 -1 0 1 2 3
© x (m) x10°

linear if the turn rate of the aircraft is not known. Note that a left
turn corresponds to a positive turn rate, and a right turn has a
negative turn rate. This sign convention follows the commonly
used trigonometric convention (the opposite is true for naviga-
tion convention) [3]. As per Refs. [3,35], the CT model is given
by Eq. (3.1.4)

. T
X = [fk me Sk Tk wk} (3.1.3)
r | sin w; T 7 1 —coswyT 7
Wy Wy
0 1 1 —coswT sin w; T 0
X1 = Wi Wk Xr
0 0 cos o T —sin T 0
0 0 sin w; T cos wy T 0
LO O 0 0 1]
1
-T2 0 0
2 1
1.0
+ 0 2T 0 Wy 3.1.4)
T 0 O
0 T 0
0 0o T

Note that the measurements of the state vector (3.1.3) are m, m,
m/s, m/s, and rad/s, respectively. Since the radar stationed at the
origin provides direct position measurements only, the measure-
ment equation may be formed linearly as follows:

x 10
25 T T T T T
2r d
151 1
1r 4
0.5F d
E of ]
>
-0.5F ]
Trajectory
AT Initial
O Final
1.5 { Sensor i
.................. UKE 1
2r UKF 2 :
x  Measurements
2.5 L L I L T
-2 -1 0 1 2 3
(b) x(m) x10°
x10*
25 T T T T T
2r 4
15 4
1r 4
05F ]
E of ]
>
0.5F 1
1k Trajectory
- Initial
L Final
A5¢ o a1 Sensor
e SVSF
2r SVSF 2
Measurements
25 . L .
2 -1 0
(d) X (m)

Fig. 5 Results for Sec. 4.1.1, normal conditions: (a) EKF results, (b) UKF results, (¢) PF results, and (d) SVSF

results
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Table 1 Summary of RMSE for estimation strategies (normal
conditions, UM model)

RMSE per state EKF UKF PF SVSF
Position (states 1, 2), m 1518 1299 702 667
Velocity (states 3, 4), m/s 53.6 45.7 36.7 43.7
1 0 0 0O
— ) 1.
Zk {0 100 0 } Xp + Vi (3.1.5)

Equations (3.1.1)—(3.1.5) were used to generate the true state
values of the trajectory and the radar measurements for this target
tracking scenario.

3.2 Bearing-Only Tracking Scenario. The benchmark prob-
lem that is studied here is shown in Fig. 4. This problem is described
in Refs. [3,36], and will be presented as such. An elevated platform
with a sensor travels according to the following equations:

Xpk = fp‘k + Axp‘k (3.2.1)
Ypk = )_7[),k + Ayp,k (3.2.2)

where x,,; and y, , are the horizontal and vertical position coordi-
nates, respectively. The first term on the right-hand side of the
Egs. (3.2.1 and 3.2.2) refers to the average platform position
coordinates. The last term represents perturbations (i.e., random
wind disturbances), and are assumed to be zero-mean Gaussian
and independent with variances of R,=1 m? and Ry=1 m?,
respectively. Note that k represents the discrete-time sequence
(from O to 20 s).

The average platform motion is assumed to be horizontal with
constant velocity, and may be described by the following two
equations [36]:

Xp = 4k (3.2.3)
Yok =20 (3.2.4)
The system equation (for the target) is defined according to the
following:
1T T2/2
X1 = |:0 1:|X/{ + |: T/ :|Wk 3.2.5)

The state vector is defined by the position (m) and velocity
(m/s) of the target. The sampling period used in this simulation
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EKF RMSE

e JKE RMSE
2000} PF RMSE
SVSF RMSE

1500 -

1000

RMS Position Error (m)

500N
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(@) Time Step (k)

Table 2 Summary of RMSE for estimation strategies (normal
conditions, CT model)

RMSE per state EKF UKF PF SVSF
Position (states 1, 2), m 1906 m 2033 1144 781
Velocity (states 3, 4), m/s 11,948 76.7 494 126.5
Omega (state 5), rad/s 1.96 1.84 1.79 1.84

was 1 s. The system noise described by wy is zero-mean Gaussian
with a variance of Q = 107> m*/s". For the normal case, the initial
position of the target was set to 80 m, and the initial velocity was
set to 1 m/s. For case of poor initial estimates, the position of the
target was set to 40 m. The nonlinear measurement (sensor) equa-
tion is defined by:

1 Ypk+1
X1k+1 — Xpk+1

Zr41 = tan— + Vit (326)

The first term on the right-hand side of Eq. (3.2.6) is the meas-
ured bearing between the horizontal and the line-of-sight from the
sensor to the target [36]. The measurement noise v, is defined
as zero-mean Gaussian with a variance of R, = (3°)°.

4 Computer Experiments

This section describes the results of applying the four nonlinear
estimation techniques on the two target tracking problems. Further
to the calculation of the root mean square error (RMSE), the
Cramér-Rao lower bound (CRLB) is used as an indicator of the
performance of each filter. The CRLB is defined as the inverse of
the Fisher information matrix (FIM), which quantifies the avail-
able information found in the observations about a state [3]. The
CRLB provides a lower bound on the achievable variance in the
estimation of a parameter. A derivation that can be used for
discrete-time nonlinear filtering is the posterior form (PCRLB)
[37-39]. This allows meaningful evaluations of estimation techni-
ques, such that the RMSE for each filter can be determined and
compared with the PCRLB. Ideally, one would want the RMSE to
reach the PCRLB, or be as close as possible. The CRLB of the
error covariance matrix is defined as the inverse of the FIM [3]

C=E{f—xt—x"}>J"! (4.1)

The inverse of the PCRLB may be calculated recursively as fol-
lows [37]:

T = (FJOFD+00) '+ Ho) 'R H()  (42)
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Fig.6 Results for Sec. 4.1.1, PCRLB and RMSE results: (a) uniform motion model and (b) coordinated turn model
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4.1 Results of the Air Traffic Control Scenario. Both the _1 sinaxT 1 —cosayT 7. |
UM and the CT models were used by each filter. Note that in the on on ol
following figures, “Filter” 1 refers to a filter being applied to the ] T i ouT
UM model, and “Filter” 2 refers to a filter being applied to the CT 0 — C?S Dk smfok Fin
model. For each simulation, a total of 500 Monte Carlo runs were |:V,\’ Fr ] T _ W Wy
generated to obtain thf? results. ‘ . ko oy 0 0 cos i T —sind T Fis

As previously mentioned, the EKF uses a linearized form of the
system and measurement matrices. In this case, the system defined 0 0 sin T cos o T Fiu
in Eq. (3.1.4) is nonlinear, such that the Jacobian of it yields a lin-
earized form as shown in Eq. (4.1.1). The terms in the last column L0 0 0 0 1]
of Eq. (4.1.1) are correspondingly defined in Eq. (4.1.2). (4.1.1)

[ (cos d)kT)Tg _ (sindyT) g ~ (sin d)kT)TﬁA (=1 +cosanT) P |
Fo o F a2 ek a7 £
F‘f’ (sinaT)T = (1 —cosayT) = (cosayT)T ~ (sinaT) ~
a2 | - Sk — > Sk — - Me———3 4.1.2)
Fgs Wi wy Wy y
Fiu —(sin d)kT)Ték — (cos & T)Tj,
I (cos @ T)TE, — (sindyT)Ti, |
R 0 0 0 0
To generate the results for this section, the following values were 0 Rn O 0 0
use",d for the 1n1t1ahsthate error covarianc.e matrtl)§ f;g‘o, the system Poo=| 0 0 100 0 0 (4.1.3)
noise matrix Q, and the measurement noise matrix R. 0 0 0 00 0
0 0 0 0 1
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Fig. 7 Results for Sec. 4.1.2, poor initial conditions: (a) EKF results, (b) UKF results, (¢) PF results, and (d) SVSF

results
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- - i
— 0 — 0 0
3 3 2 2
T T
0 — f
;7 0 5 0
T2
0=1L 5 0O T 0 0 (4.1.4)
T2
0 — 0 T 0
2 L
0o 0 0 0 =2
L Ly
B S[1 0
R = 1,000 {0 ]} (4.1.5)

Note that L, and L, are referred to as power spectral densities, and
were defined as 0.16 and 0.01, respectively [35]. The system and
measurement noises (w; and v;) were generated using their respec-
tive covariance values (Q and R). Also, when using the UM model,
the fifth row and column of Egs. (4.1.3) and (4.1.4) were truncated.

For the UKF estimation process the design parameter k£ was set to
0.001. For the standalone SVSF estimation process, the limit on the
smoothing  boundary layer widths were defined as
Y =[500 500 1,000 1,000 1 }T, and the SVSF “memory”
or convergence rate was set to y = 0.1. These parameters were tuned
based on some knowledge of the uncertainties (i.e., magnitude of
noise) and with the goal of decreasing the estimation error. A large
number of particles were used (5000) to implement the PF, with an
effective number of particles set to N.g = 0.8. Furthermore, note that
the initial state estimates Xo|o are set to the initial measurements z.

25

Trajectory
2+ O Initial
0O  Final
15 O Sensor

Trajectory
Initial

x  Measurements

(©) X (m) x 10°

4.1.1 Normal Conditions. This case involved normal condi-
tions, without poor initial conditions and the presence of outliers.
The initial state estimates were set to the true initial state values.
The PF and the SVSF performed better than the two Kalman-
based filters for both models. The simulation results obtained
using the EKF are shown in Fig. 5(a). While the EKF was using
the UM model, the trajectory was not tracked well. After the first
turn, the EKF was unable to recover and performed poorly for the
remainder of the tracking. The EKF did perform better using the
second model; however, there was a significant amount of chatter-
ing across the target trajectory resulting in a higher RMSE. The
simulation results obtained using the UKF are shown in Fig. 5(b).
The UKF results obtained using the UM model were similar to the
EKF. After the first turn, the UKF was unable to recover and per-
formed poorly for the remainder of the tracking. The UKF did not
perform very well using the second model; however, compared
with the EKF the estimates were smoother.

The simulation results obtained using the PF are shown in Fig.
5(c). Note how the PF was able to follow the trajectory fairly
well, using both models. The simulation results obtained using the
SVSF are shown in Fig. 5(d). Note how the SVSF was also able to
track the trajectory and measurements relatively well with each
model. The SVSF appeared to be impartial to both models, with
the exception of a higher velocity RMSE for the second model.
Tables 1 and 2 summarize the RMSE) for the filtering strategies.
Table 1 refers to when the filters were implemented using the uni-
form motion model. Table 2 refers to the results obtained using
the coordinated turn model. Note how the EKF was unable to
accurately track the velocity estimates. The following is the list of
filters, ordered in terms of RMSE accuracy: SVSF, PF, UKF, and
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Fig. 8 Results for Sec. 4.1.3, presence of a measurement outlier: (a) EKF results, (b) UKF results, (c¢) PF results,

and (d) SVSF results
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Fig. 9 Results for Sec. 4.1.4, poor initial conditions and outlier: (a) EKF results, (b) UKF results, (c) PF results, and

(d) SVSF results

EKF. Note how the SVSF performed relatively the same, regard-
less of which model was implemented.

The PCRLB and root mean square (RMS) position errors for 500
Monte Carlo runs are shown in Fig. 6. Figure 6(a) shows the results
when the filters were implemented using the uniform motion
model, whereas Fig. 6(b) is for the coordinated turn model. When
studying these figures, it was found that the EKF and UKF per-
formed similarly for the uniform motion case. Quite surprisingly,
the EKF performed better than the UKF for the coordinated turn
model. It was expected that the UKF would provide a more accu-
rate estimate based on the fact that no linearization of the coordi-
nated turn model was required. For this estimation problem, it was
found that the PF was able to obtain a good track of the target.
However, overall the SVSF was found to perform the best in terms
of estimation accuracy and filter stability, as the RMS position
errors were low and bounded fairly close to the PCRLB.

4.1.2  Poor Initial Conditions. This case involved poor initial
conditions (the starting estimates were increased by a factor of
100), such that 100 x %o and 100 X Pgp. Changing the initial
estimates by a factor of 100 greatly affected the quality of the
results obtained by the EKF, as demonstrated in Fig. 7(a). The

Table 3 Values for the SVSF variable boundary layer

State 1/y, 1/ Error range
Position (state 1), m 0.1 200 >|2.0]
Velocity (state 2), m/s 80 50,000 >|0.4]

Journal of Dynamic Systems, Measurement, and Control

EKF was unable to recover using any of the two models, thus
resulting in an unstable estimate. The UKF, as demonstrated in
Fig. 7(b), was unable to yield a stable estimate. The PF was
unable to recover using any of the two models, thus resulting in
an unstable estimate, as shown in Fig. 7(c). Changing the initial
conditions did not greatly affect the behavior of the SVSF, as
shown in Fig. 7(d). The SVSF recovered after only a few time
steps, and was stable for the remainder of the simulation.

4.1.3  Presence of a Measurement Outlier. This case involved
the presence of an outlier among the measurements (the middle
measurement—scan 50 of 100—was multiplied by a factor of
500), without poor initial conditions. The presence of an outlier
greatly affected the results of the EKF, as shown in Fig. 8(a). Af-
ter the onset of the outlier (about half-way through tracking the
target), the EKF became unstable and was unable to accurately
continue with the estimation. The UKF yielded a similar result, as
shown in Fig. 8(b). As shown in Fig. 8(c¢), the PF was slightly less
affected when compared with the EKF and UKF. The presence of
an outlier did have some effect on the SVSF. As shown in
Fig. 8(d), chattering began at the onset of the outlier. However,
the presence of the chatter was beneficial as it allowed the SVSF
to remain stable and bounded to within the target trajectory. The
remainder of the estimation continued as in the normal case
shown in Sec. 4.1.1.

4.14 Poor Initial Conditions and the Presence of a
Measurement Outlier. This case involved both the poor initial
conditions and the presence of an outlier among the measure-
ments. In this case, the EKF did not perform well at all. In fact,
as shown in Fig. 9(a), the EKF was completely unstable and
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Fig. 10 Results for Sec. 4.2.1, normal conditions: (a) estimated position of target and (b) estimated velocity of

target

was unable to provide any sort of estimate. Likewise, the UKF
was unable to yield a stable estimate, as shown in Fig. 9(b).
Note that the PF performed similarly to the previous case.
Unlike the EKF, UKF, and PF, the SVSF was able to overcome
the poor initial conditions and additional presence of an outlier.
Figure 9(d) clearly demonstrates the stability and robustness of
this filter.

4.2 Results of the Bearing-Only Tracking Scenario. The
EKF was implemented in what is referred to as mixed coordinates.
The measurement was left in polar coordinates (bearing-only),
while the states of the target were in Cartesian coordinates. The
system matrix in this case is already linear; however, the measure-
ment matrix is nonlinear. Taking the partial derivative of the non-
linear component in Eq. (3.2.6) with respect to the first state
yields

oh _ _ e “.2.1)
o )

Furthermore, note that only the knowledge of the average plat-
form positions are used such that the linearized form of the non-
linear measurement matrix becomes

RMS Position Errors

5 . , ‘
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] EKF RMSE |1
al | e UKF RMSE
PF RMSE
E3sf SVSF RMSE |]
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[e]
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(@ Time Step (k)

H=|-—2_ ¢ (4.2.2)
(1 — %) "+ 52

Two cases were studied: normal conditions and poor initial con-
ditions. Under the first scenario, the initial position used by the fil-
ters was set to the true value (80 m) and the initial velocity was
set to 1 m/s. During the second scenario, the initial position esti-
mate was set to 40 m. The initial covariance matrix used by the
EKF was defined as follows:

30 O} (4.2.3)

Pmo:{o 1

The nonlinear measurement matrix was linearized as per
Eq. (4.2.2). There are two main SVSF design parameters. The first
parameter (set to y=0.2) controls the speed of convergence,
whereas the second (1) refers to the boundary layer width which is
used to smooth out the switching action. These parameters were
tuned by trial-and-error, based on minimizing the estimation error.

To increase the quality of the estimate (in terms of convergence
speed and estimation accuracy), the boundary layer was made to
change with time. Essentially, the variable boundary layer allows
the state estimate to approach the true value as quickly as possible
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Fig. 11 Results for Sec. 4.2.1, normal conditions: (a) RMS position error and (b) RMS velocity error
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Fig. 12 Results for Sec. 4.2.2, poor initial conditions: (a) RMS position error and (b) RMS velocity error

by using a large boundary layer width. Once the state estimate is
within an acceptable range of the true value, the layer width is
decreased, and the estimate is smoothed out. A simple two-stage
approach was used, as shown in Table 3, where the values were
determined by trial-and-error.

For example, if the absolute position error (between the esti-
mate and the true value) was greater than 2.0, a value of 10 was
set for the boundary layer width. Once the absolute position error
was less than 2.0, the boundary layer was reduced to a smaller
value (5 x 107%). Implementing this type of variable boundary
layer yielded a more accurate result when compared to a fixed
boundary layer width.

Furthermore, since there is no velocity measurement available,
the SVSF algorithm described in Sec. 2.4 needs to be slightly
modified. The measurement function described by Eq. (3.2.6)
needs to be augmented such that a position estimate is formed
based on the horizontal and vertical platform positions and the
measurement as follows:

Yp,k+1

P X 424
an (o) + Xp it ( )

O1k+1 =

Furthermore, an estimate of the velocity based on Eq. (4.2.4)
may be defined by Eq. (4.2.5). The output errors used in
Egs. (4.2.4) and (4.2.5) are then determined by Eq. (4.2.6), where
the second term is found by Eqgs. (2.4.1) and (4.2.5)
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02411 =
Cokiilk = 0241 — Xopt1k (4.2.6)

Furthermore, the PF was implemented using 5000 particles with
an effective number of particles set to Ney=0.8. The code was
initialized by sampling from the distribution used to initialize the
EKF.

4.2.1 Normal Conditions. An example of the position and ve-
locity target estimates (single run) is shown in Fig. 10. Under nor-
mal conditions, when compared with the EKF and UKF, the
position was estimated more accurately using the PF and SVSF.
Since there was no measurement directly associated with the ve-
locity, the performance of the four filters was found to be signifi-
cantly worse when attempting to estimate the velocity. However,
the filters remained relatively stable, with the EKF providing a
slightly worse estimate for the velocity.

The PCRLB and RMS position and velocity errors for 10,000
Monte Carlo runs are shown in Figs. 11 and 12. For the normal
conditions case, it was found that the PF and SVSF performed sig-
nificantly better than the EKF and UKEF, in terms of estimation
error. For the RMS position error, the PF and SVSF yielded rela-
tively the same results. However, when estimating the velocity,
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Fig. 13 Results for Sec. 4.2.2, poor initial conditions: (a) estimated position of target and (b) estimated velocity of

target
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Table 4 Performance ranking of the estimation strategies

Performance characteristic EKF UKF PF SVSF
Robustness 4 3 2 1
Stability 4 3 2 1
Accuracy 4 3 2 1
Complexity 1 3 4 2

the SVSF initially had difficulty due to the lack of a velocity mea-
surement. The velocity estimate had to be extracted from the esti-
mated position, as described earlier by Eqgs. (4.2.4)—(4.2.6). This
estimation process was sensitive to error due to the relatively large
sampling time. If a smaller sampling time was used, it is expected
that the SVSF would yield a more accurate velocity estimate. The
SVSF was able to overcome the lack of information after a few
time steps, and provide a relatively stable estimate.

4.2.2  Poor Initial Conditions. Under poor initial conditions,
as shown in Fig. 13, the SVSF converged toward the true position
value faster than the other three filters. Notice how the EKF over-
shot the estimate, whereas the SVSF did not. The SVSF appears
to be more robust, mainly due to the inherent switching function
shown in Eq. (2.4.4) that allows the estimate to stay within a close
proximity of the true value. Once within an accurate range of the
true value trajectory, the EKF, UKF, and SVSF yielded relatively
the same performance as in the normal case. However, the initial
estimation errors (about 50%) were too significant, as the PF was
unable to maintain the target track and provide an accurate esti-
mate. Note that the EKF and UKF were found to be more sensitive
than the SVSF to the influence of the poor initial condition, as
shown in the estimate of the target velocity.

The main difference between the filters becomes apparent in
the case of the poor initial conditions. The PF was unable to over-
come the large initial estimate error; however, the estimates were
approaching the correct values and most likely would have
reached them given enough time. The PF yields better results if
one were to increase the number of particles from 5000 to 20,000.
However, this increases the computational time required for the
estimation process. Since the PF was already running the slowest,
it was not desirable to increase the number of particles. The EKF
had difficulty with estimating the velocity but was able to yield a
relatively stable estimate after about 10—12 time steps. The overall
RMSE was significantly lower for the SVSF, thus suggesting that
the SVSF is more robust to handling initial errors in the estimation
process. As already mentioned, this is most likely due to the inher-
ent switching found within the SVSF gain.

5 Summary of Computer Experiments

In the first target tracking problem, a generic air traffic control
scenario was studied under four different cases: normal, poor ini-
tial conditions, presence of an outlier, and a combination of the
latter two. It was demonstrated throughout that the EKF was less
robust to modeling uncertainties, poor initial conditions, and the
presence of outliers. The chattering that is present in the SVSF,
caused by the gain switching, brings an inherent amount of stabil-
ity and robustness to the filter. This is clearly demonstrated in the
third case, where the EKF failed due to the outlier. However, due
to the switching function of the SVSF gain, the estimates were
forced to chatter about the target trajectory, which helped to main-
tain the target track and yield an accurate estimate.

The performance of these algorithms was ranked in terms of
robustness, resilience to poor initial conditions and measurement
outliers, and tracking accuracy and computational complexity. Ta-
ble 4 shows the ranking of the estimation strategies for the results
of the simulation. The SVSF is thought to be slightly more com-
plex (computationally) when compared with the EKF. However,

054501-12 / Vol. 134, SEPTEMBER 2012

the SVSF was demonstrated to be more robust, stable, and
accurate.

In the second target tracking problem, a nonlinear bearing-only
target tracking scenario was studied using the four estimation
strategies, and their performances were compared. This scenario
was based on a classical ground surveillance problem, which
appears to be deceptively simple. The nonlinear position measure-
ment and lack of a velocity measurement created an interesting
estimation problem. For the normal conditions case, the simula-
tion shows that both the PF and the SVSF performed relatively the
same in terms of estimation accuracy. The EKF and UKF yielded
less accurate state estimates. In the poor initial conditions case,
the SVSF yielded more accurate results suggesting that the SVSF
is more robust to handling initial errors in the estimation process.
In its current form, the SVSF offers two very important advan-
tages: robustness to modeling errors and uncertainties, as well as
estimation stability. Currently, the main disadvantage of the SVSF
point is the tuning process in determining the SVSF parameters.

It is important to remind the reader that gating and data associa-
tion techniques help classify the source of measurements, and
help associate measurements to the appropriate track [3]. Typi-
cally these gating techniques help to avoid extraneous measure-
ments which would otherwise cause the estimation process to go
unstable and fail. Obviously the above simulations were designed
to test the robustness and stability of the aforementioned estima-
tion techniques. The standalone filters were tested, without any
measurement data verification techniques. Furthermore, it is
expected that the four filters would work significantly better if
multiple-model techniques were implemented [3,8]. Multiple-
model techniques assume that the system behaves according to
one of a finite number of models. The estimation process would
switch between whichever model yields the smallest covariance,
or estimated state error [3]. Overall, this would increase the accu-
racy of the estimation. However, for the purpose of this paper, the
filters themselves were tested without the addition of multiple-
model techniques.

6 Conclusions

The results of applying the SVSF on two common target track-
ing problems demonstrate its stability and robustness. It is shown
in the above scenarios that the EKF and the UKF perform poorly
in the presence of bad initial conditions and measurement outliers.
Likewise, the PF appears to have some difficulty when presented
with poor initial conditions or uncertain models. However, the
SVSF is able to overcome these difficulties, and provide a stable
estimate of the states. Furthermore, the EKF appears to be sensi-
tive to model mismatch, as demonstrated in the ATC scenario by
the different estimates of the same target, which was calculated
using two different target motion models. The SVSF was not as
affected, and yielded relatively the same estimate for both models,
and is further demonstrated based on the RMSE calculation. Its
stability to model mismatch and robustness to poor initial condi-
tions and outliers make using the SVSF advantageous over the
well-known extended and unscented Kalman filters. In the past,
target tracking problems have typically been solved by Kalman or
particle filters. However, the above computer experiment results
demonstrate that the SVSF may also be an effective method for
handling these types of nonlinear estimation problems.

Nomenclature
C = Cramér-Rao lower bound (CRLB)
e = state estimation error vector
f, F = nonlinear, linear system function or matrix
h, H = nonlinear, linear output or measurement function or
matrix
J = Fisher information matrix (FIM)
k = time step index
K = gain value (EKF, UKF, or SVSF)
m = number of measurements
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= number of states

= effective number of particles

error covariance matrix

probability or proposal distribution

system noise covariance matrix

measurement noise covariance matrix
saturation function

= simulation, sample time

= input to the system

measurement noise

system noise

sample weight (UKF)

system states

= sample point (UKF)

measurement output

Cartesian coordinate (position) along the x-axis
constant diagonal gain matrix with elements having values
between 0 and 1

Cartesian coordinate (position) along the y-axis
turn rate of the target

particle weight

= smoothing boundary layer

= denotes an estimated value

denotes an error value

- = on top of a parameter denotes a time derivative

=
[¢]
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Furthermore, note that subscript (k + 1|k) refers to an a priori time
step and the subscript (k + 1|k + 1) refers an a posteriori time step.
A superscript of 7' denotes a matrix transpose.
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