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ABSTRACT
In this paper, a new state and parameter estimation method is introduced based on the particle filter (PF)

and the smooth variable structure filter (SVSF). The PF is a popular estimation method, which makes use
of distributed point masses to form an approximation of the probability distribution function (PDF). The
SVSF is a relatively new estimation strategy based on sliding mode concepts, formulated in a predictor-
corrector format. It has been shown to be very robust to modeling errors and uncertainties. The combined
method, referred to as the smooth particle variable structure filter (SPVSF), utilizes the estimates and state
error covariance of the SVSF to formulate the proposal distribution which generates the particles used by
the PF. The SPVSF method is applied on two computer experiments, namely a nonlinear target tracking
scenario and estimation of electrohydrostatic actuator parameters. The results are compared with other
popular Kalman-based estimation methods.

Keywords: particle filter; smooth variable structure filter; Kalman filter; tracking; nonlinear estimation.

FILTRE À PARTICULES LISSE DE STRUCTURE VARIABLE

RÉSUMÉ
Dans cet article, une nouvelle méthode d’estimation de l’état et des paramètres est introduite basée sur

un filtre à particules (FP) et un filtre à particules lisse de structure variable (FPLSV). Le FP est une mé-
thode d’estimation courante, se servant de masses ponctuelles réparties pour former une approximation de
la fonction de distribution de probabilité (FDP). Le FPLSV est une stratégie d’estimation relativement nou-
velle basée sur des concepts de mode de glissement, formulés dans un format prédicteur-correcteur. Il s’est
avéré très robuste quant aux erreurs de modélisation et d’incertitudes. La méthode combinée, nommé filtre
à particules à surface lisse de structure variable (FPLSV), utilise les estimations et la covariance d’erreur
d’état du FPLSV pour établir l’émission qui génère les particules utilisées par le FP. La méthode est appuyée
par deux expériences informatiques, à savoir un scénario non linéaire cible, et l’estimation des paramètres
du servomoteur électrohydrostatique. Les résultats sont comparés avec d’autres méthodes d’estimation de
Kalman courantes.

Mots-clés : filtre à particules; filtre lisse de structure variable; filtre de Kalman; suivi; estimation non
linéaire.
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NOMENCLATURE

f nonlinear system function
h nonlinear measurement function
q proposal distribution (i.e., typically this may be the system)
p distribution of some mean and covariance
x state vector or values
z measurement (system output) vector or values
y artificial measurement vector or values
u input to the system
w system noise vector
v measurement noise vector
F linear system transition matrix
G input gain matrix
H linear measurement (output) matrix
K filter gain matrix (i.e., KF or SVSF)
P state error covariance matrix, or total number of particles
Q system noise covariance matrix
R measurement noise covariance matrix
S innovation covariance matrix
e measurement (output) error vector
ā defines a diagonal matrix of some vector a, may also be written as diag(a)
sat (a) defines the saturation of some term a
g SVSF ‘convergence’ or memory parameter
y SVSF boundary layer width
|a| absolute value of some parameter a
E{} expectation of some vector or value
T sample time, or transpose of some vector or matrix
^ estimated vector or values
xi

k particles used by the PF
w i

k importance weights used by the PF
Ne f f effective threshold for the PF
ak+1|k a priori value of some parameter a (i.e., before gain is applied)
ak+1|k+1 a posteriori value of some parameter a (i.e., after update)

1. INTRODUCTION

In target tracking applications, one may be concerned with surveillance, guidance, obstacle avoidance
or tracking a target given some measurements [1]. In a typical scenario, sensors measure the output as a
signal that is processed and conditioned. These measurements are related to the target state, and are typically
noise-corrupted observations [1]. The target state usually consists of kinematic information such as position,
velocity, and acceleration. The measurements are processed in order to form and maintain tracks, which are
a sequence of target state estimates that vary with time. Multiple targets and measurements may yield
multiple tracks. Gating and data association techniques help classify the source of measurements, and help
associate measurements to its appropriate track. Typically these gating techniques help to avoid extraneous
measurements which would otherwise cause the estimation process to go unstable and fail [2]. A tracking
filter is used in a recursive manner to carry out the target state estimation.

The behaviour of a target (such as for example, uniform motion, coordinated turn, and weaving) may be
modeled linearly or nonlinearly. The typical nonlinear system and measurement models may be
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represented by the following equations, respectively:

xk+1 = f (xk,uk)+wk , (1)

zk+1 = h(xk+1)+ vk+1 . (2)

It is the goal of a filter to remove the effects that the system noise wk and measurement noise vk have on
extracting the true state trajectory xk from the measurements zk. Note that the system noise and the measure-
ment noise are typically considered to be Gaussian, such that P(wk)⇠ N (0,Qk) and P(vk)⇠ N (0,Rk).

A solution to the estimation problem may be found by using a recursive filter, which provides an estimate
every time a measurement is available [1]. Most recursive filters have two stages: prediction and update.
The most popular and well-studied estimation method is the Kalman filter (KF), which was introduced
in the 1960s [3,4]. The KF yields a statistically optimal solution for linear estimation problems, in the
presence of Gaussian noise [5]. In real-world situations, dynamic systems are often nonlinear, as described
by Eqs. (1) and (2). For nonlinear systems, the posterior density that encapsulates all the information about
the current state cannot be described by a finite number of summary statistics and one has to be content with
an approximate filtering solution.

The standard KF is formulated in a predictor-corrector manner. The states are first estimated using the
system model, termed as a priori estimates, meaning ‘prior to’ knowledge of the observations. A correction
term is then added based on the innovation (also called residuals or measurement errors), thus forming
the updated or a posteriori (meaning ‘subsequent to’ the observations) state estimates. The KF has been
broadly applied to problems covering state and parameter estimation, signal processing, target tracking,
fault detection and diagnosis, and even financial analysis [1,6]. The success of the KF comes from the
optimality of the Kalman gain in minimizing the trace of the a posteriori state error covariance matrix. The
trace is taken because it represents the state error vector in the estimation process [7]. The KF estimation
process and equations have been omitted from this paper as they are readily available in the literature [4,8].

Nonlinear forms of the KF have been created, with the two most popular being the extended (EKF) and
unscented Kalman filters (UKF) [7,9]. The EKF is conceptually similar to the KF; however, the nonlinear
system and measurement models ( f and h, respectively) are linearized according to its Jacobian. It is
possible to use the nonlinear functions f and h to predict the state estimates and the measurements. However,
these functions may not be directly used to calculate the covariance values. The partial derivatives are used
to compute linearized system and measurement matrices F and H, respectively found as follows [6]:

Fk =
∂ f
∂x

����
x̂k|k,uk

, (3)

Hk+1 =
∂h
∂x

����
x̂k+1|k

. (4)

Equations (3) and (4) essentially linearize the nonlinear system or measurement functions around the
current state estimate [4]. This comes at a loss of optimality, as the EKF gain is no longer considered
to be the optimal solution to the estimation problem due to the linearization process [7]. Furthermore,
the linearization process introduces unmodeled or overlooked modeling uncertainties, which can lead to
instabilities [10]. It is well established in literature that the UKF provides advantages over the EKF [6,9].
Essentially, the UKF uses a deterministic sampling technique referred to as the unscented transform [9]. A
finite number of weighted sample points (selected about the mean) are propagated through the nonlinear
functions, which create an approximate solution to the mean and covariance of the desired estimate [9].
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This method works well for nonlinear systems, and typically provides a more accurate result than the EKF
strategy. An advantage of this method is that it does not require any linearization.

The particle filter (PF) is a natural extension of the UKF. The PF makes use of point masses (or ‘particles’)
to approximate the probability density functions, which essentially contains the statistical information of the
state [1]. The PF has become a common method for solving nonlinear estimation problems. In an effort
to further increase the estimation accuracy of the PF for nonlinear estimation problems, the PF has been
combined with both the EKF and UKF [11–13]. The extended particle filter (EPF) and unscented particle
filter (UPF) respectively utilize the EKF and UKF estimates and covariance’s to formulate the proposal
distribution used to generate the particles [4,14]. This paper introduces a new PF combination; which
makes use of the relatively new smooth variable structure filter (SVSF) [15]. This method is applied on two
estimation problems, and is compared with the popular EKF, UKF, PF, and standard SVSF.

2. THE PARTICLE FILTER

The particle filter (PF) has many names: Monte Carlo filters, interacting particle approximations [16],
bootstrap filters [17], condensation algorithm [18], and survival of the fittest [19], to name a few. Particle
filters perform sequential Monte Carlo (SMC) estimation based on weighted particles [1]. As mentioned
in [1], the basic concepts of SMC were introduced in statistics literature in the 1950s [20]. The earliest
implementations of the PF were formed on the principles of sequential importance sampling (SIS) [21–23].
The main idea behind the SIS strategy is to represent the desired posterior density function by a number
of weighted samples, and then compute estimates based on these samples [1]. The larger the number of
samples, the more accurate the representation; however, this comes at the cost of computational demand and
time. The following equations help to describe the SIS strategy. The expectation of some function f () can
be approximated as a weighted average, as follows:

s f (xk) p(xk|z0, . . . ,zk)⇡
P

Â
i=1

w i f
�
xi

k
�
, (5)

where p(xk|z0, . . . ,zk) refers to the desired distribution, w i refers to the weight of the ith particle, xi
k refers

to the ith particle at time k, and P is the total number of particles. The first step of the process involves
drawing the particles from the proposal distribution q (i.e. typically the system function f given the current
measurements and the particles from the previous time step (or initialization):

xi
k ⇠ q

�
xk|xi

k�1,zk
�
. (6)

The next step involves calculating the corresponding particle weights, which are then used to approximate
the desired distribution. The weights may be calculated using the likelihood function p

�
zk|xi

k
�
, which is

defined by the measurement model h and the measurement covariance Rk:

ŵ i
k ⇠ p

�
zk|xi

k
�
·w i

k�1 . (7)

The particle weights are then normalized (as follows), such that the sum of the particle weights is equal to

unity (i.e.
P
Â
i

w i
k = 1):

w i
k =

ŵ i
k

ÂP
j=1 ŵ j

k

. (8)

Finally, the state(s) may be estimated by the weighted summation of the particles, as follows:

x̂k =
P

Â
i=1

w i
kxi

k . (9)
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The previous four equations summarize the SIS strategy, which is the basic form of the PF [1]. This
method is relatively straightforward and yields good results. However, it was discovered that the SIS im-
plementation suffers from a numerical phenomenon referred to as degeneration [17,24]. The degeneracy
problem refers to only a few particles having significant importance weights after a large number of recur-
sions. An important step referred to as resampling was added after Eq. (8), and helps to avoid the degeneracy
problem [17]. This step eliminates particles with low weights and multiplies those with high weights [1].
The concept of effective sample size Ne f f was introduced to help measure the amount of degeneracy present
in the algorithm [25]. Should a significant amount of degeneracy be detected (below a designer threshold)
as per Eq. (9), then the particles should be resampled:

Ne f f =
1

ÂP
i=1

�
w i

k
�2 . (10)

Although resampling helps to avoid the degeneracy problem, it also decreases the amount of particle
diversity (i.e., particles with significant weights will be resampled) [1]. This is referred to as sample im-
poverishment. However, resampling is known to increase the overall accuracy of the estimated state(s) [17].
The aforementioned strategy is referred to as sampling importance resampling (SIR), and forms the standard
PF used in literature.

3. THE SMOOTH VARIABLE STRUCTURE FILTER

A new form of predictor-corrector estimator based on sliding mode concepts referred to as the vari-
able structure filter (VSF) was introduced in 2003 [26]. Essentially this method makes use of the variable
structure theory and sliding mode concepts. It uses a switching gain to converge the estimates to within a
boundary of the true state values (referred to as the existence subspace as shown in Fig. 1). In 2007, the
smooth variable structure filter (SVSF) was derived which makes use of a simpler and less complex gain
calculation [15]. In its present form, the SVSF has been shown to be stable and robust to modeling un-
certainties and noise, when given an upper bound on the level of un-modeled dynamics and noise [26,27].

Fig. 1. SVSF estimation concept [8]
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The SVSF method is model based and may be applied to differentiable linear or nonlinear dynamic
equations. The original form of the SVSF as presented in [15] did not include covariance derivations. An
augmented form of the SVSF was presented in [28], which includes a full derivation for the filter. The
estimation process is iterative and may be summarized by the following set of equations. The predicted state
estimates x̂k+1|k and state error covariances Pk+1|k are first calculated respectively as follows:

x̂k+1|k = f (x̂k|k,uk) , (11)

Pk+1|k = FPk|kFT +Qk+1 . (12)

Utilizing the predicted state estimates x̂k+1|k, the corresponding predicted measurements ẑk+1|k and measure-
ment errors ez,k+1|k may be calculated:

ẑk+1|k = h(x̂k+1|k) , (13)

ez,k+1|k = zk+1 � ẑk+1|k . (14)

The SVSF process differs from the KF in how the gain is formulated. The SVSF gain is a function of:
the a priori and the a posteriori measurement errors ez,k+1|k and ez,k|k; the smoothing boundary layer widths
y; the ‘SVSF’ memory or convergence rate g; as well as the linearized measurement matrix H. For the
derivation of the gain Kk+1, refer to [15,28]. The SVSF gain is defined as a diagonal matrix such that:

Kk+1 = H�1diag
h⇣���ezk+1|k

���+ g
���ezk|k

���
⌘
� sat

⇣
ȳ�1ezk+1|k

⌘i
diag

⇣
ezk+1|k

⌘�1
, (15)

where � signifies Schur (or element-by-element) multiplication, and where ȳ�1 is a diagonal matrix con-
structed from the smoothing boundary layer vector y , such that:

ȳ�1 =

2

64

1
y1

0 0

0
. . . 0

0 0 1
ym

3

75 . (16)

Note that m is the number of measurements, and the saturation function of Eq. (15) is defined by:

sat
⇣

ȳ�1ezk+1|k

⌘
=

8
<

:

1,ezi,k+1|k/yi � 1
ezi,k+1|k/yi,�1 < ezi,k+1|k/yi < 1

�1,ezi,k+1|k/yi �1 .
(17)

This gain is used to calculate the updated state estimates x̂k+1|k+1 as well as the updated state error covariance
matrix Pk+1|k+1:

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k , (18)

Pk+1|k+1 = (I �Kk+1H)Pk+1|k (I �Kk+1H)T +Kk+1Rk+1KT
k+1 . (19)

Finally, the updated measurement estimate ẑk+1|k+1 and measurement errors ez,k+1|k+1 are calculated, and
are used in later iterations:

ẑk+1|k+1 = h(x̂k+1|k+1) , (20)

ez,k+1|k+1 = zk+1 � ẑk+1|k+1 . (21)

The existence subspace shown in Figs. 1 and 2 represents the amount of uncertainties present in the
estimation process, in terms of modeling errors or the presence of noise. The width of the existence space
b is a function of the uncertain dynamics associated with the inaccuracy of the internal model of the filter
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as well as the measurement model, and varies with time [15]. Typically this value is not exactly known
but an upper bound may be selected based on a priori knowledge. Once within the existence boundary
subspace, the estimated states are forced (by the SVSF gain) to switch back and forth along the true state
trajectory. High-frequency switching caused by the SVSF gain is referred to as chattering, and in most cases,
is undesirable for obtaining accurate estimates [15]. However, the effects of chattering may be minimized
by the introduction of a smoothing boundary layer y . The selection of the smoothing boundary layer width
reflects the level of uncertainties in the filter and the disturbances.

(a) (b)

Fig. 2. The above two figures show an example of when the estimated state trajectory is smoothed, and when chattering
is present: (a) smoothed estimated trajectory (y � b ), (b) presence of chattering effect (y < b ) [15].

The effect of the smoothing boundary layer is shown in Fig. 2. When the smoothing boundary layer is
defined larger than the existence subspace boundary, the estimated state trajectory is smoothed. However,
when the smoothing term is too small, chattering remains due to the uncertainties being underestimated.

4. THE SMOOTH PARTICLE VARIABLE STRUCTURE FILTER STRATEGY

The SVSF provides an estimation process that is suboptimal albeit robust and stable. It is hence beneficial
to be able to combine the performance of the PF with the stability of the SVSF. To combine the aforemen-
tioned SVSF strategy with the PF, a similar approach to formulating the EPF and UPF will be taken [14].
Note that this method was also shown in [29], however the formulation remains different. Essentially, the
a posteriori state estimates (Eq. 18) and state error covariance (Eq. 19) are used to formulate the proposal
distribution used by the PF to generate the particles, such that Eq. (6) becomes:

xi
k ⇠ q

�
x̂k+1|k+1,Pk+1|k+1

�
. (22)

Figure 3 helps to describe the combined filtering strategy.
For completeness, the combined estimation process (referred to as the SPVSF) may be summarized by

the following sets of equations. The predicted state estimates x̂k+1|k and state error covariances Pk+1|k are
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Fig. 3. SPVSF estimation concept is shown above.

first calculated respectively as follows:
x̂k+1|k = f (x̂k|k,uk) , (23)

Pk+1|k = FPk|kFT +Qk+1 . (24)

Utilizing the predicted state estimates x̂k+1|k, the corresponding predicted measurements ẑk+1|k and measure-
ment errors ez,k+1|k may be calculated:

ẑk+1|k = h(x̂k+1|k) , (25)

ez,k+1|k = zk+1 � ẑk+1|k . (26)

The SVSF gain Kk+1 is then calculated (Eq. 27), and is used to update the state estimates (Eq. 28) and
calculate the a posteriori covariance matrix (Eq. 29):

Kk+1 = H�1diag
h⇣���ezk+1|k

���+ g
���ezk|k

���
⌘
� sat

⇣
ȳ�1ezk+1|k

⌘i
diag

⇣
ezk+1|k

⌘�1
, (27)

x̂k+1|k+1 = x̂k+1|k +Kk+1ez,k+1|k , (28)

Pk+1|k+1 = (I �Kk+1H)Pk+1|k(I �Kk+1H)T +Kk+1Rk+1KT
k+1 . (29)

Next, the a posteriori state estimates (Eq. 28) and state error covariance (Eq. 29) are used to formulate the
proposal distribution used to generate the particles:

xi
k+1 ⇠ q

�
x̂k+1|k+1,Pk+1|k+1

�
. (30)

The next step involves calculating the corresponding particle weights, which are then used to approximate
the desired distribution. The weights may be calculated using the likelihood function p(zk+1|xi

k+1), which is
defined by the measurement model h and the measurement covariance Rk:

ŵ i
k+1 ⇠ p

�
zk+1|xi

k+1
�
·w i

k . (31)

The particle weights are then normalized (as follows), such that the sum of the particle weights is equal to

unity (i.e.
P
Â
i
w i

k+1 = 1):

w i
k+1 =

ŵ i
k+1

ÂP
j=1 ŵ j

k+1

. (32)

The states may be estimated by the weighted summation of the particles, as follows:

x̂k+1|k+1 =
P

Â
i=1

w i
k+1xi

k+1 . (33)
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Finally, the updated measurement estimate ẑk+1|k+1 and measurement errors ez,k+1|k+1 are calculated as
follows:

ẑk+1|k+1 = h(x̂k+1|k+1) , (34)

ez,k+1|k+1 = zk+1 � ẑk+1|k+1 . (35)

The above process summarizes the SPVSF estimation strategy proposed in this paper. Equations (23–35)
are used iteratively.

5. COMPUTER EXPERIMENTS

Two computer experiments are considered in this paper. The first experiment involves a simulation of
a standard tracking scenario for cases involving a normal scenario (i.e. well-defined system), and another
with modeling uncertainties. The second experiment involves parameter estimation in an electrohydrostatic
actuator (EHA).

5.1. Tracking Scenario
This section describes the tracking problem studied, and illustrates the estimation results. One of the most

well studied aerospace applications involves ballistic objects on re-entry [1]. In this paper, a ballistic target
re-entering the atmosphere is considered, as described in [1]. Figure 4 shows the experimental setup for
ballistic target tracking.

Fig. 4. Ballistic target tracking scenario (e.g. object on re-entry) [1].

Assuming that drag D and gravity g are the only forces acting on the object, the following differential
equations govern its motion [1,30]:

ḣ = v , (36)

v̇ =�r (h)gv2

2b
+g . (37)

ḃ = 0 . (38)

The state vector is defined as x = [h v b ]T , which refers to the target altitude, velocity, and ballistic coeffi-
cient, respectively. The air density r is modeled as follows:

r = ge�hh , (39)
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where from [1], g = 1.754 and h = 1.49x10�4. The discrete-time state equation is defined as follows [1]:

xk+1 = Fxk �G [D(xk)�g]+wk , (40)

with matrices F and G defined as:

F =

2

4
1 �T 0
0 1 0
0 0 1

3

5 , (41)

G =
⇥

0 T 0
⇤T

. (42)

Furthermore, the function for drag D(xk) (the only nonlinear term) is defined as:

D(xk) =
gr (xk,1)x2

k,2

2xk,3
. (43)

As in [1], the system noise wk is assumed to be zero-mean Gaussian with a covariance matrix Q defined by:

Q ⇡

2

64
q1

T 3

3 q1
T 2

2 0
q1

T 2

2 q1T 0
0 0 q2T

3

75 . (44)

Note that the parameters q1 and q2 respectively control the amount of system noise in the target dynamics
and the ballistic coefficient [1]. As shown in Fig. 4, a radar is positioned on the ground below the target.
The measurement equation in this scenario is defined by:

zk = Hxk + vk , (45)

where it is assumed that two measurements are available, such that:

H =


1 0 0
0 1 0

�
. (46)

In this tracking scenario, the initial states are defined as follows: x1,0 = 61.000 m, x2,0 = 3.048 m/s
and x3,0 = 19.161 kg/ms2. Other notable parameters were defined as: q1 = 104, q2 = 10, T = 0.1 sec,
R = diag

�⇥
104 103 ⇤�

and g = 9.81 m/s2. Note that the following settings were used for both the PF
and the SPVSF: the number of particles used was 350, and the effective sample size was set to 0.8. As per
the earlier SVSF discussion, it is required to transform Eq. (46) into a square matrix (i.e., identity), such that
an ‘artificial’ measurement is created. A number of methods exist, such as the reduced order or Luenberger’s
approach, which are presented in [3–5]. Consider a system model involving phase variables. It is possible
to derive a third ‘artificial’ measurement y3,k based on the available measurements (z1,k and z2,k).

In Eq. (46), the ballistic coefficient measurement is not available. If the system model (Eq. 40) is known
with complete confidence, then it is possible to derive an artificial measurement for the ballistic coefficient
from the first two measurements. Hence, consider the following from Eq. (40):

y3,k =
T ggz2

2,k

2(z2,k+1 � z2,k +T g)e�hz1,k
. (47)

The accuracy of Eq. (47) depends on the sampling rate T . Applying Eq. (47) allows a measurement matrix
equivalent to the identity matrix. The estimation process would continue as in the previous section, where
a full measurement matrix was available. Note however that the artificial ballistic coefficient measurement
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would be delayed one time step. Furthermore, note that the artificial measurement would have to be ini-
tialized (i.e. 0 is a typical value). Equation (47) essentially propagates the known measurements through
the system model to obtain the artificial ballistic coefficient measurement. It is conceptually similar to the
method presented in [32] and creates a full measurement matrix.

The initial state estimates x̂0 are set 10% away from the true values x0. The initial state error covariance
matrix is set to P0 = 10Q. Figure 5 shows the object’s true and estimated altitude over time. For this case,

Fig. 5. True object altitude and estimated values.

the filters performed relatively well, with the exception of the convergence rates. Looking at the first five
seconds of Fig. 6, the SPVSF converged to the true state trajectory the fastest. Next was the PF, followed
closely by the SVSF. The UKF was the second slowest, converging in about 3 seconds. The EKF was the
last filter to converge, taking nearly 10 seconds. The root mean squared error (RMSE) was calculated for
each filter, and is shown in Table 1.

Filter Altitude (m ) Velocity ( /m s ) Ballistic ( 2/kg ms ) 
EKF 1,873  29.7  1,923 
UKF 1,060  30.6  2,071 
PF  370   34.8  12,325 

SVSF  471  119  1,923 
SPVSF  360   32.7  1,923 

Table 1. RMSE of the tracking scenario.

Table 1 summarizes the RMSE for the tracking scenario defined earlier. Overall, the proposed SPVSF
algorithm provides the best result in terms of overall estimation accuracy. The PF performs very well, with
the exception of the ballistic coefficient (it fails to provide a good estimate). The SVSF also performed well.
The EKF provided the worst altitude estimate, most likely due to the slower convergence rate; however,
yielded good estimates of the velocity and ballistic coefficient.
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An interesting result occurs when one introduces modeling errors into the system model (Eq. 40). As
an example, in an effort to demonstrate the robustness of the SPVSF and SVSF to modeling uncertainties,
consider the case when the gravity coefficient is doubled. Figure 6 shows the implications of modeling error
being introduced at 15 seconds during the tracking scenario. At this point, the estimates begin to diverge
from the true state trajectory. In fact, at this point, the PF failed to achieve an estimate of the ballistic
coefficient, and the filter broke down. The RMSE for this case was calculated for each filter, and is shown
in Table 2.

Fig. 6. True object altitude and estimated values with modeling error introduced at 15 seconds.

Filter Altitude ( m ) Velocity ( /m s ) Ballistic ( 2/kg ms ) 
EKF 1,867  61.1  1,920 
UKF 852  94.6  2,369  
PF Failed  Failed  Failed  

SVSF 568  311 1,919 
SPVSF 360 35.0  1,919 

Table 2. RMSE of the tracking scenario with modeling errors.

It is interesting to note that the SPVSF estimates remained relatively insensitive to the added modeling
error. In this case, it is demonstrated that the combination of the SVSF with the PF improved the overall
accuracy and stability of the PF estimation strategy.

5.2. Electrohydrostatic Actuator
In this experiment, an electrohydrostatic actuator (EHA) is simulated based on an actual prototype built

for experimentation [15,27]. The purpose of this simulation is to demonstrate that the combined estimation
process (SPVSF) yields a very accurate estimate, without negatively impacting its stability to modeling
errors or uncertainties. The EHA is a third order (typically linear) system with state variables related to
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its position, velocity, and acceleration. It is assumed that all three states have measurements associated
with them (i.e. full measurement matrix). The input to the system is a random normal distribution with
magnitude 1. The sample time T of the system is 0.001 second. The entire EHA system description may be
found in [15]. The open-loop transfer function of the system is defined as follows:

x(s)
u(s)

=

2DpbeAE
MV0

s3 +
⇣

BE
M + L

V0
be

⌘
s2 +

⇣
2beA2

E
MV0

⌘
s
. (48)

For the purpose of this paper, three states (kinematic information) and one parameter (the effective bulk
modulus) will be estimated. The estimation of the parameter creates a nonlinear estimation problem. The
system model equations are defined as follows:

x1,k+1 = x1,k +T x2,k , (49)

x2,k+1 = x2,k +T x3,k , (50)

x3,k+1 = (1�T j3 �T j2x4,k)x3,k �T j1x2,k +GET x4,kuk , (51)

x4,k+1 = x4,k , (52)

where the following are defined:

GE =
2DpAE

MV0
, (53)

j1 =
2A2

E
MV0

, (54)

j2 =
L
V0

, (55)

j3 =
BE

M
. (56)

The EHA parameter values used in this computer experiment are shown in Table 3. The initial state values
are set to zero. The initial true bulk modulus is set to x4,0= 2.1⇥108Pa, whereas the corresponding initial
estimate is x̂4,0= 1.5⇥108Pa. Two cases are studied for this experiment. The first case involves a constant
bulk modulus (set to 2.1⇥108Pa). The second case involves a changing bulk modulus. For this case, the true
effective bulk modulus is changed at 0.5 second intervals from the initial value to 1.5⇥108Pa at 0.5 second,
2.7⇥108Pa at 1 second, and then back to 2.1⇥108Pa at 1.5 seconds.

Parameter Physical Significance EHA Model Value 
!!  Piston area 3.37×10!!!!! 
BE Load friction 1260!!"/! 
Dp Pump displacement 6.69×10!!!!!/!"# 
L Leakage coefficient 5×10!!"!!!/!"# 
M Load mass 20!!" 
V0 Chamber volume 5 38.5 10  m−×  

eβ  Effective bulk modulus 82.1 10  Pa×  

!

! !
Table 3. EHA parameter values
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The system and measurement noises are defined with maximum amplitude corresponding to
Wmax =

⇥
0.0001 0.001 0.1 0

⇤T and Vmax =
⇥

0.0001 0.001 0.1
⇤T and are considered to be Gaus-

sian. The initial state error covariance P0|0, system noise covariance Q, and measurement noise covariance
R are defined respectively as follows:

P0|0 = 10Q , (57)

Q = 5WmaxW T
max , (58)

R = 5VmaxV T
max . (59)

For the SVSF estimation process, the ‘memory’ or convergence rate was set to g = 0.1, and the boundary
layer widths were defined as y = 5Vmax. These parameters were set based on the level of noise and modeling
uncertainty, with the goal of decreasing the estimation error. The main results of applying the filtering
strategies on the EHA problem are shown in the following sets of figures. Figures 7-9 show the effective
bulk modulus estimates provided by all of the strategies. Initially, both the PF and SPVSF responded the
fastest, followed by the SVSF, the UKF, and finally the EKF. After about 0.7 second, all of the estimation
methods converged to within a region of the true effective bulk modulus.

As shown in Table 4, the PF provided the best overall result in terms of estimation accuracy and rate
of convergence. The SPVSF also performed extremely well, followed by the SVSF, UKF, and finally the
EKF. Note that for the EKF to obtain an accurate estimate of the effective bulk modulus, the system noise
covariance for the fourth state (i.e. Q4,4 had to be increased significantly.

Filter Position (m) Velocity (m/s) Acceleration (m/s2) Bulk Mod. (Pa) 
EKF 44.68 10  12.05 10  3.07  11.64 10  
UKF 42.95 10  11.44 10  19.50 10  26.83 10  
PF 52.23 10  32.15 10  22.67 10  21.34 10  

SVSF 56.05 10  33.25 10  11.37 10  23.34 10  
SPVSF 52.44 10  32.58 10  22.87 10  22.84 10  

Table 4. RMSE results (normal case).

Figure 9 shows the estimates of the effective bulk modulus for the second case (when the bulk modulus
changes over time). It is interesting to note that the PF failed to obtain an estimate at 0.5 second, once the
true effective bulk modulus value began to change. This could be attributed to the particles forming weights
for the first 0.5 second, and then not being able to redistribute the particle weights properly once the system
changed. The number of particles was increased from 350 to 3500 for this case, and the PF still failed to
estimate the fourth state properly.

As demonstrated by Fig. 9 and Table 5, the SPVSF strategy yielded the best estimates in terms of RMSE
and convergence rate. The SVSF also yielded good results. The EKF and UKF strategies performed about
the same. It is interesting to note that with the combined PF and SVSF strategy (SPVSF), the estimates
remain close to the true state trajectory via the SVSF, and are further refined by the PF strategy. Another
benefit of this combination includes the ability to reduce the number of particles used by the SPVSF, com-
pared with the standard PF. For example, the number of particles used by the SPVSF could be reduced from
350 to 50 without negatively affecting the overall performance, while also significantly reducing the total
demand on computational resources.
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Fig. 7. Effective bulk modulus estimates for the EHA under a constant scenario.

Fig. 8. Effective bulk modulus estimates for the EHA under a constant scenario (zoomed).

Filter Position (m) Velocity (m/s) Acceleration (m/s2) Bulk Mod. (Pa) 
EKF 31.07 10  12.85 10  4.54  12.31 10  
UKF 31.01 10  13.70 10  3.27  11.34 10  
PF Failed  Failed  Failed  Failed  

SVSF 55.30 10  33.19 10  11.33 10  27.32 10  
SPVSF 52.55 10  32.48 10  22.96 10  21.85 10  

Table 5. RMSE results (changing the effective bulk modulus).
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Fig. 9. Effective bulk modulus estimates for the EHA under a changing modulus case.

6. CONCLUSIONS

In this paper, a new state and parameter estimation based on the combination of the PF and the SVSF was
introduced. The combined method, referred to as the smooth particle variable structure filter (SPVSF), uti-
lizes the estimates and state error covariance of the SVSF to formulate the proposal distribution which gen-
erates the particles used by the PF. The SPVSF method was applied on a nonlinear target tracking problem
and an electrohydrostatic actuator for parameter estimation. The results of the two computer experiments
demonstrate the improved performance and stability of the combined methodology.
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