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Lay Abstract

This study presents an implementation of Physics-Informed Neural Networks to model

complex mechanical systems with hidden variables, exemplified by Magnetorheolog-

ical (MR) dampers. This research focuses on the development of an experimental

setup to analyze real-world data, emphasizing data collection for validation of devel-

oped methods. Through Physics-Informed Neural Networks, known dynamics of the

system may be incorporated into the training process of machine learning algorithms,

allowing for predictions that adhere to physical principles. This is employed to re-

solve many of the difficulties associated with accurately modelling an MR damper.

Overall, this research demonstrates proof of concept for the application and use case

of PINNs in mechanical systems.
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Abstract

Physics-informed neural networks (PINNs) provide an alternative to traditional solvers

for differential equations, specifically in tasks such as system identification and inverse

problems. This study applies the recently popularized paradigm of PINNs for system

identification and surrogate modelling in Magnetorheological (MR) dampers. A task

hindered by the nonlinear behaviour, hysteresis effects and the presence of latent vari-

ables in certain interpretations of the MR damper dynamic model. An experimental

setup was developed to analyze empirical data collected from MR dampers, incor-

porating a voltage-controlled MR damper, with motions actuated through a linear

actuator, and various sensors for capturing damping forces and motion profiles. A

data collection pipeline was developed and allows for synchronous data collection from

a multitude of devices, and database storage. Collected data is useful for validating

developed models, as well as setting up a foundation for experimental validation of

novel methods in future work. A literature review was performed, highlighting the

limitations of existing models and the potential of PINNs, cases of deployments, and

innovations by authors within the literature. The research additionally constructs and

validates a discretized state space model from estimated parameters. Overall, this

research demonstrates proof of concept for the application of PINNs in mechanical
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systems modelled by differential equations. Results demonstrated satisfactory accu-

racy in parameter identification, with implications for system behaviour prediction,

demonstrating the potential and limitations of PINNs in this context.
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Chapter 1

Introduction

Physics-informed neural networks (PINNs) have emerged as an alternative to classi-

cal solvers for differential equations and have seen applications in various engineering

systems described by differential equations [27, 149, 5, 168]. Though introduced in

recent years, they have rapidly gained traction as a viable alternative for the solutions

of inverse problems and system identification tasks [110, 158]. As such, their capa-

bilities may be naturally extended for characterizing the behaviour of systems with

latent variables and nonlinear dynamics, such as the parametric models developed for

Magnetorheological (MR) dampers utilised in this study.

MR dampers, upon application of an external magnetic field, exhibit variable

stiffness and damping characteristics in response, and present inherent challenges in

modelling accuracy due to their nonlinear behaviour and the presence of hysteresis

effects [148, 1, 108]. Hysteresis is a nonlinear phenomenon defined as the lag between

magnetic flux and changes in magnetic field strength, present in ferromagnetic mate-

rials. This nonlinearity is extended to the response of the MR damper to excitations
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and presents a challenge for the development of accurate mathematical models. Nu-

merous models, parametric and non-parametric, have been developed over the years

to capture this behaviour to varying degrees of accuracy. A prominent model within

literature is the Bouc-Wen model, characterized by Bouc [11] initially and later ex-

tended by Wen [153]. Spencer and colleagues later proposed a further extension

that is capable of better capturing the roll-off region behaviour [136]. The increased

accuracy of the model, however, comes at the cost of increased complexity with nu-

merous parameters introduced. Addressing this issue, the use of PINNs within the

identification and modelling process allows for the incorporation of known physical

principles of prior works governing MR damper dynamics as learning biases, ensuring

adherence to said principles while maintaining a degree of adaptability due to the ML

implementation, presenting a valid alternative for system identification [72, 33, 16].

PINNs are utilized in this study to address the challenge of latent variables in MR

damper modelling, which traditional identification may struggle with. The core op-

erations of PINNs are based on deep learning architectures, such as Neural Networks

(NNs), renowned for capturing complex, nonlinear mapping through purely sampled

data of the system due to capabilities for generalization and universal approxima-

tion [42, 123]. However, conventional NNs often require an extensive quantity of

representative data for proper generalization and cannot generalize beyond the scope

provided. They are referred to as black box models due to the non-interpretative

nature of their inner operations, which poses questions of reliability. These concerns

may be partially alleviated in the PINN model through the incorporation of prior

knowledge within the optimization process[110, 21]. The developed model based on

2
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the PINN paradigm in this study involves a hybrid approach utilizing both the mea-

sured experimental data and the known physics of the MR damper system. Based

on results from the identification algorithm a discretized state space model was con-

structed and validated on experimental data, as a foundation for future work in the

area involving novel machine learning and estimation techniques.

To demonstrate the feasibility and effectiveness of the proposed methodology, a

dedicated experimental setup for MR damper analysis was constructed for the collec-

tion of real-world empirical data. This setup includes an MR damper powered by a

controlled programmable power supply and actuated through a linear actuator. The

setup is equipped with various sensors, on-board and external, for the observations of

the effective damping force with respect to motion and velocity profiles. A program

was developed for the synchronous collection of sampled readings from the plethora of

devices involved within the experimental setup, with options for storage in an estab-

lished database for use in future experiments. Data collected from this experimental

setup serve as the foundation for developing and validating techniques employed. Ef-

fectively, the constructed setup provides a tangible platform for demonstrating the

applicability of PINNs for modelling non-linear systems with latent variables.

In all, the study presented herein has the objective of developing methodologies

for the identification of physical parameters in systems characterized by parametric

equations under a variety of operating conditions. From this, the developed model is

expected to aid in further developments in setting a foundation for validating modern

control, estimation and machine-learning strategies.

3
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1.1 Research Objectives and Motivation

In recent years, PINNs have gained popularity as a framework for solving the vari-

ous forms of differential solutions pertaining to physical systems, as well as system

identification through the solution of inverse problems. One such system that this

framework may be extended to is the MR dampers, which present challenges in ob-

taining said solution due to the inherent nonlinear behaviour, as well as the existence

of latent variables inherent to certain established physics-based models. As such, the

primary motivations for this research may be summarized as:

1. Development of an experimental setup data collection system: Devel-

oping a data collection system for an MR damper experimental setup, which

involves multiple devices, stemming from the requirement to gather empirical

data for validating theoretical machine learning and estimation strategies.

2. Capturing nonlinear dynamics in systems with latent variables: MR

dampers exhibit highly nonlinear behaviour and are characterized in certain

models by unobservable variables. Through the expressiveness of conventional

neural networks, it is the objective to capture the behaviour of latent variables,

as well as nonlinear mappings directly, enabling a more interpretable represen-

tation of the system dynamics.

3. System identification: Estimating the parameters of MR damper models

from experimental data is necessitated to ensure model accuracy and robust-

ness to a variety of operating conditions. PINNs provide a suitable framework

for incorporating observational data and prior knowledge into the estimation

process for a principled inference of physical parameters.

4
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4. Developing models for efficient simulation and optimization: Circum-

venting certain limitations associated with conventional neural networks and

deep learning in general in dealing with scenarios with limited data available.

This is performed through the incorporation of physical knowledge of the gen-

eral form of the governing equations, enforced within the training process of the

networks. Through this, the behaviour of MR dampers may be modelled with

minimal data requirements.

5. Empirical validation for developed models: With the data from the exper-

imental setup developed as detailed in this study, the validation of the accuracy

and robustness of the PINN strategy implemented herein may be performed,

demonstrating proof of concept in applications to real-world engineering sys-

tems. In addition, methodologies developed for future work within this domain

may utilize this implementation of the experimental setup for development and

validation as well.

Overall, this research endeavours to demonstrate proof of concept for the imple-

mentation of PINNs in a broader variety of mechanical systems, providing a founda-

tion for future studies in domains such as condition monitoring and anomaly detec-

tion.

1.2 Organization of Thesis

The subsequent sections of this research are structured to offer an examination of the

application of physics-informed machine learning in the context of mechanical systems

5
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and are arranged as follows: Section 2 provides background information and a litera-

ture review, covering the fundamental concepts of physics-informed machine learning

alongside established models of MR dampers. Following this, Section 3 details the

experimental setup of the MR damper and describes the data collection pipeline.

Moving forward, Section 4 explores system identification and surrogate modelling us-

ing physics-informed neural networks, presenting insights into their effectiveness in

this domain. Section 5 discusses the state space modelling of the system. Finally,

Section 6 concludes the paper, summarizing contributions and outlining avenues for

future research.

6
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Chapter 2

Background and Literature Review

This section explores recent developments in PINN techniques employed in real-world

engineering scenarios, as well as popular methodologies in the literature for represent-

ing the behaviour MR dampers mathematically.

The content of this chapter is structured into two independent sections; The first

section examines the prominent literature available for PINN, with the primary focus

of the review being the application to physical systems and their implementation for

addressing challenges in the physical representation of the system, system identifica-

tion, and condition monitoring. Within this section, the theoretical foundations of

PINNs, variations and algorithmic developments by various authors, and practical

applications of the technique are examined in detail. The focus of this review section

is primarily on their relevance to mechanical system modelling.

The second section of this chapter explores the existing literature on existing

techniques for characterizing the behaviour of MR dampers mathematically. In this

section, the review will primarily encompass modelling approaches and their effective-

ness in representing the non-linear hysteresis phenomena inherent to MR dampers.
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This section will also provide brief comments on the advantages and limitations of

each model introduced, framing it within the context of their applicability to accu-

rately represent different aspects of MR damper.

2.1 Physics-Informed Neural Networks

This section detailing current applications of PINNS is an excerpt from a review ar-

ticle by the author of this thesis, which has also been published on arXiv pre-prints,

available as reference: [158]. As of writing, the review article has completed the re-

view process with the Expert Systems with Applications (ESWA) Journal by Elsevier,

available as reference: [157]

Throughout the last decade, ML algorithms have witnessed rapid development

in a variety of industries for their efficacy and ability to extrapolate patterns from

data. Through available data, ML models are capable of accurately representing the

relation between a given set of inputs and outputs with minimal human interference.

This property rendered ML models suitable for the representation of complex systems

in which the relation and parameters governing behaviour are not easily obtained, as

evident by the influx of interest in recent years [142].

In general, ML algorithms fundamentally operate as data-driven processes de-

signed to map the relationship between specific inputs and their corresponding out-

puts. These algorithms typically follow a structured optimization procedure, wherein

the model’s predictions are assessed and iteratively refined to more accurately reflect

the provided data. As can be expected, the performance of ML models is heavily

reliant on the data upon which they are optimized.

8
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Indeed, restrictions to data quality and availability are amongst the main con-

cerns when choosing to work with ML [85]. For many engineering applications, the

collection of sufficient quantities of data to build a reliable model may be challenging,

costly, and/or not feasible due to time and resource constraints [85, 112, 125]. A con-

siderable amount of clean, representative, and non-sparse data is required to properly

formulate the model [85]. Conventional implementations often leverages synthetic

data and data augmentation techniques [131]. Insufficient quantities and/or non-

representative data often lead to a skewed representation of system behaviour that

is inconsistent with the true underlying physical relationship, ultimately resulting in

misleading conclusions.

Furthermore, ML models are considered to be ”black box” models, in which in-

termediary information between input and output is not relevant nor required in

producing a correlation between some input and output. That is to say, the un-

derlying mechanism of a system is often not considered in the development of these

models, and while effective in representing a system, may not further contribute to

the understanding of said system [117].

Concerning the representation of systems based on prior knowledge, physics-based

modelling has also been traditionally employed. However, models developed purely

on the understanding of the system see limited use in modelling real-world systems,

due to the many challenges to its applicability. First and foremost, physical models

are often computationally expensive to model. Due to the computational complexity

of most real-world physical systems, and the variety of governing equations involved

for each specific physical agent or phenomenon, the cost required to fully model

said systems is considerable [51]. Furthermore, physical models often represent an

9
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imperfect interpretation of the system, due to a missing or incomplete understanding

[166].

Researchers have come to the realization that the combination of physical and

data-driven models was the next step in the prediction and modelling of system be-

haviour. Indeed, varying methodologies of varying degrees of interpretability, seeking

to combine insights prior knowledge with conventional black-box models have been

proposed, ranging from the the combination of ML theories with state space models

[2, 167], or alternatively digital twins [129, 132, 130, 133]. The paradigm of PIML

was initially conceptualized by Lagaris and colleagues[69], who first demonstrated the

use of artificial neural networks for solving ordinary and partial differential equations.

Karpatne et al. formally introduced this paradigm in their study of theory-guided

data science, outlining various avenues of integration between domain knowledge and

data-driven solutions, through which, new physics-informed models are capable of

benefiting from both physics-based and data-driven methods concurrently [57]. Since

their publication, a plethora of studies regarding the PIML paradigm have been con-

ducted. Various authors, most notably Raissi and colleagues, further advanced the

integration between theory and data science with the introduction of PINNs, whereby

physical laws in the form of governing equations are encoded within the NNs [110].

The properties of deep learning architectures made it suitable in their use case, for

approximating the solutions of PDEs modelling physical systems [110]. Raissi et al.

made use of the NN architecture in their demonstration of a systematic methodology

for solving non-linear partial differential equations [110]. Karniadakis and colleagues

reviewed popular methodologies by which the integration of physics and data-driven

10
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techniques takes place, as well as presented their insights on limitations and poten-

tial applications of the technique [56]. Meng and colleagues also surveyed a variety

of work in the area of PIML and presented a summary of core motivations behind

their development, popular physical governing equations employed in various appli-

cations, as well as methods of integration [91]. From the literature, it is evident that

applications of PIML have been prominent in a variety of fields.

The paradigm of PIML combines the interpretive capabilities of machine learning

algorithms with the foundational understanding of physics, employing prior knowl-

edge to guide the learning process. PIML methods benefit from reduced reliance on

labelled training data, as physics-based guidelines for optimization can constrain the

solution space and provide further insights with regard to intermediary computations,

even in data-scarce scenarios. These methods offer better explainability to the end

user in the context of explainable artificial intelligence (XAI), which is a growing

consideration for the wide adoption of AI techniques.

Regularization techniques have been fundamental in training ML models since

their inception. Conventional regularization techniques, such as the Lasso (L1) or

Ridge (L2) regressions, incorporate additional penalty terms within the loss function

established, with the objective of reducing the model’s capacity to overfit data; Cer-

tain interpretations of data by the model that may not be reflective of the general

behaviour of the system. Ultimately, this is performed to obtain simpler and more

robust solutions.

While this has been used extensively, authors have extended its usage, whereby

the usage of physics-based regularizers is employed within conventional deep learning
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algorithms, an approach seeking to leverage the explainability and fidelity of physics-

based models to enhance the accuracy, interpretability, and robustness of conventional

data-driven solutions. Prior knowledge regarding the physical system is integrated as

a part of the learning process, either as constraints or regularizers, effectively encod-

ing the physical constraints to aid in guiding the optimization process in producing

physically meaningful solutions.

Past implementations of physics-based regularization involved solving the physical

equations and incorporating them as constraints in the optimization problem [118, 98].

This approach was computationally expensive and is limited to well-understood phys-

ical systems. Techniques have been developed that more effectively utilize physics-

based modelling and ML in tandem. In prominent studies, such as the work of Raissi

and colleagues [110], regularization based on the residuals of the governing differen-

tial equations was proposed, utilizing the approximative capabilities of conventional

NNs in tandem. This foundational work, termed PINNs, has seen numerous citations

since its inception. A summary of compiled literature employing variations of this

technique, with varying engineering applications is provided in Table A in Appendix

A.

Physics-guided regularizations consist primarily of tailoring constraints that di-

rectly alter the data-driven model in the training phase to favour predictions that

are consistent with underlying physics. Constraints of this type are also known as

learning biases, as characterized in the work of Karniadakis and colleagues [56], and

implemented through physics-informed loss functions. These loss functions penalize

deviations from physics, making the model more likely to produce physically plausible

solutions.
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Conventionally, the loss function employed in ML algorithms is a measure of

the empirical difference between the model prediction and ground truth, with the

objective of minimizing the loss function through an iterative process. Model loss

is optimized by adjusting the parameters of the model to reduce the aforementioned

difference in model predictive capabilities versus ground truth. In contrast, a physics-

informed loss function incorporates additional information about the system being

modelled, such as physical constraints, conservation laws, and other known proper-

ties of the system in tandem with the penalization of deviations from ground-truth

observations. Through this framework, the ML algorithm may more effectively con-

strain the prediction space to avoid violations of physical principles.

Algorithms introduced in this format simultaneously minimize errors in both the

labelled data and physical constraints through penalization of deviations, reflected

in the structure of the loss functions implemented, whereby the physics-informed

loss function is comprised of a data-driven loss term and a physics-based loss term.

The data-driven loss term measures the error between the predicted output of the

model and the observed response. The physics-based loss term enforces the solution

that satisfies the prior known physics of the problem through adherence to governing

equations specific to the problem.

Conventionally, compliance with observed data (data-driven loss) is achieved by

minimizing the residual between predictions of the network and true state and is

performed with a variety of distance evaluators such as the mean squared error (MSE)

or cross-entropy error (CSE). Compliance with known physical laws is case-specific

and varies in implementation, however, the aforementioned methods for evaluation

have seen many implementations in the literature. The general form of the loss
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function then, may be represented as:

Losstotal = λdataLdata(Yprediction, Ytarget) + λphysLphys(Yprediction) (2.1.1)

Where the parameters λdata and λphys are the regularization factors to adjust loss

terms to best-fit system characteristics. Thus in this format, authors have introduced

a methodology for the incorporation of governing equations to influence the direction

of loss minimization in networks. In literature, physics-informed regularization has

been employed to incorporate knowledge of the expected fault signatures of the system

under different failure modes, to ensure that the model is able to accurately detect

and classify faults, even in the presence of noise or other confounding factors.

For instance, Sun and colleagues proposed a methodology for the non-destructive

detection and quantification of micro-crack defects, a framework based on the elec-

tromagnetic acoustic transducer, which functions by exciting guided waves for crack

detection [141]. Sun developed a novel physics-informed architecture that they have

termed GuwNet [141]. The proposed network seeks to employ various deep learn-

ing modules such as convolutional layers, dense layers, and GRU layers in conjunc-

tion with the introduction of physical parameters for the approximation of variables

of crack propagation. The physical process is represented through various connec-

tions within the data-driven and physics-based layers and parameters within the

network[141]. The network is optimized by hybrid feed-forward and feedback loss

functions, comprised of empirical and physics-informed error terms to integrate the

physics of ultrasonic wave testing into the training process of the network. Physics-

informed terms are derived from the relationship of defect depth, and quantified by
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transmitted wave intensity and reflected wave intensity of the ultrasonic guided wave

nondestructive testing method. The method demonstrated great promise in the de-

tection of length, depth, and direction of crack propagation, and was shown to have

significant improvements in accuracy in comparison to conventional deep learning

approaches[141].

Freeman and colleagues proposed a hybrid approach for anomaly and fault de-

tection in turbine rotor blades, whereby fault features acquired from turbine power

signals are combined with environmental data to ensure conformity to the dynamics of

the hydro-kinematic rotor[31]. The framework extracts statistical features by means

of continuous wavelet transforms, and categorized via multi-nomial regression. The

time domain features selected were proven by the authors to be physically significant,

accurately reflecting the high-frequency fluctuation behaviour in signals with respect

to turbulence intensity[31]. Turbulence intensity is classified with a NN, based on

time-domain features extracted from the reduced feature space and physically con-

strained through a hybrid loss function, whereby deviation from the dynamics of

turbulence intensity is penalized [31].

Regularization has also been applied with respect to applications in fatigue stress

and life monitoring. Zhang and colleagues constrained the process of creep-fatigue life

estimation in a stainless steel specimen with physics-augmented feature engineering

and physics-informed regularization [173]. The developed feed-forward model intro-

duces two physics-informed loss terms that take into account and penalize physical

violations with regard to fatigue life [173]. From the expected behaviour of creep-

fatigue in the specimen, the authors added physical constraints in the form of penal-

ization for negative values, as well as extreme values of creep-fatigue life within the
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loss function. The model constructed boasted superior performance when compared

with benchmark empirical and purely data-driven methods [173].

In a similar vein, Kim and colleagues adopted a data-driven prognostics model that

incorporates low-fidelity physical features in the optimization process [61]. The au-

thors presented an innovative methodology for obtaining training parameters for un-

labelled extrapolation data[61]. In general, the process for obtaining the extrapolated

region, that is, the target of the prognostics framework, involves the physics-based

regularization term that penalizes deviation from the low-fidelity physical model [61].

To this effect, the model is optimized to minimize interpolation error with available

data, as well as extrapolation error, from the embedded physical model. The authors

validated their approach with their verification of fatigue crack growth with respect

to Paris’s law.

De Santos and colleagues built upon conventional frameworks for monitoring the

progression of fatigue on off-shore wind turbines by extending the monitoring time

period [23]. Conventional evaluation of damage monitoring models is based upon

the model’s ability in ten-minute fatigue damage estimations, whereas De Santos et

al. have extended this methodology for monitoring long-term fatigue accumulation.

The PINN model proposed focuses on minimizing the Minkowski logarithmic error,

providing a more conservative estimation of fatigue damage in the form of damage

estimation moments [23]. The loss function was derived such that accuracy between

the model’s ability to predict short-term and long-term damage is not compromised.

Li and colleagues further extended the physics-informed loss function to meta-

learning, in their proposed strategy for estimating tool wear [79]. The method inte-

grates both physically derived model inputs, as well as physics-informed loss terms
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with data-driven models over a series of ML models for the purposes of meta-learning.

Meta-learning is defined as the systematic observation and learning of learning from

meta-data or the observed experience accrued by ML models and their performance

on various tasks. Meta-learning may be classified as a sub-field of ML, whereby ar-

tificial intelligence models are trained to solve tasks or problems more efficiently and

effectively automatically [79]. In their work, the inherent principles of tool wear are

learned for applications in tool wear predictions under varying tool wear rates [79].

Through the various parameters derived from the dynamic relationships governing

tool wear, the authors derived the input feature space of the various deep learning

and ML algorithms tested, for enhanced interpretability and robustness. Individual

ML models are constructed on the basis of physics-informed data-driven modelling

with cross physics-data fusion. Initially conceptualized by Wang et al. [150], the

model represents a methodology to fuse data from both the physics and data-driven

features. The meta-learning model is employed to learn the experiences of three ML

models and their predictions of the degradation state of the asset at different stages

of wear [79]. The algorithms tested were optimized via the physics-informed loss

function, whereby constraints to the tool wear rate are imposed based on inherent

attributes of tool wear and relations governing tool wear and cutting force.

Physics-Informed Neural Networks

PINNs are a rapidly growing field that utilizes NNs to learn patterns and relation-

ships while also incorporating the underlying physics as learning biases, referred to as

”physics-informed” in that they incorporate physics-based knowledge or constraints

into the model training process. In literature, PINNs have been shown to be capable
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of generating accurate predictions with small quantities of labelled data as collocation

points, rendering them suitable for applications where data acquisition is expensive or

challenging. Furthermore, the implicit constraints to the system and produce phys-

ically meaningful predictions, providing a pragmatic alternative for the solution of

differential equations, as well as inverse and surrogate modelling.

The concept of employing NNs, with their computational capabilities, for solu-

tions to differential equations was initially presented in the work of Lagaris [69].

Raissi and colleagues [110] popularized the concept through their more recent study,

demonstrating the effectiveness of their methodology in solving forward and inverse

problems pertaining to the governing partial differential equations of various well-

established physical systems. The effectiveness of PINNs, as defined in Raissi’s work

[110], is derived in part, from their usage of the universal approximation capability of

NNs [43], which states that a NN with a single-layered feed-forward network with an

activation function may approximate any function, provided that it is comprised of

a sufficient number of neurons. Researchers have extended this property to the solu-

tion of a variety of complex, non-linear differential equations, in which numerical or

empirical solutions are difficult or impossible; the PINN learns the mapping between

the input data and the output variables while enforcing the physical constraints of

the system [110]. Through this framework, researchers can build accurate models

that provide insights into the underlying physical processes, making them a viable

alternative in many scientific and engineering applications [114].

The original PINN architecture by Raissi is based on the feed-forward NN struc-

ture, and employed to solve the first-order non-linear PDE [110]. Various names
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exist for this structure in literature such as Feed-Forward Neural Networks, Artifi-

cial Neural Networks (ANNs), Multi-layer Perceptron Neural (MLP) Networks, and

Deep Neural Networks (DNNs). The feed-forward NN consists of multiple layers of

interconnected nodes, or neurons, that transmit information through weighted con-

nections. In the context of PINNs, the input layer of the network corresponds to

the physical domain, while the output layer represents the solution to the problem of

interest. The intermediate layers, also known as hidden layers, provide the necessary

computational power to map the input to the output.

An ANN may be described as a series of non-linear transformations. In terms of a

mathematical definition of the network: for a given input layer of N neurons, and may

be denoted as X = {x1, ..., xn], whereby xi represents a feature within the input space

X. The network may be defined to host H hidden layers, with each layer containing

M neurons. From this, the output of the I-th hidden layer may be represented as

AI = {aI1, ..., aIm}, where aIj represents the j-th neuron in the I-th hidden layer. For

each hidden layer, the output AI is computed through an element-wise application of

non-linear activation function σi to the weighted sum of inputs from the prior layer

I − 1, which may be written as:

zIj =
∑(

wIji ∗ aI−1i

)
+ blj (2.1.2)

Where wji represents the weight connecting the i-th neuron in the prior layer I−1

to the j-th neuron in the current layer I, aI−1i represents the output of the i-th neuron

in the prior layer, and Bi represents the bias term associated with the j-th neuron in
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the I-th hidden layer. The output of the i-th hidden layer is computed as:

aIj = σI
(
zIj
)
. (2.1.3)

The output layer is comprised of K neurons, with predicted output denoted as

Y = {y1, ..., yk). Thus, the output of the NN may be computed as:

zH+1
j =

∑
(wH+1

ji ∗ aHi ) + bH+1
j , (2.1.4)

where wH+1
ji represents the weight connecting the i-th neuron in the H-th hidden layer

to the j-th neuron in the output layer, aHi is the output of the i-th neuron in the

H-th hidden layer, and bH+1
j is the bias term associated with the j-th neuron in the

output layer. Collectively, this may be referred to as:

zH+1 = wH+1 ∗ aH + bH+1. (2.1.5)

The PINN employs this existing framework to be an approximator of the solution

to the differential equation. In the general case, the non-linear PDE parameterized

by γ, as well as its initial and boundary conditions may be represented by the form:

F
(
x, t, u,∇u, ...; δu

δt
...; γ

)
= 0, x ∈ Ω, t ∈ [0, t] (2.1.6)

u(x, t = t0) = g(x), x ∈ Ω (2.1.7)

u(x, t) = h(x, t), x ∈ δΩ, t ∈ [0, t] (2.1.8)

Defined in the domain Ω, where Ω ∈ Rd with boundaries δΩ. F represents the
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non-linear function that defines the relationship between unknown function u, its

derivatives, and its parameters. The PDE defined has hidden solution u (x1...xn, t),

with input space that may be composed of spatial variables x and temporal variables

t. The PDE has initial conditions g and boundary conditions h. The NN seeks to

make a computational approximation of the solution uNN from input space [110, 55].

The approximation of solution space by the NN is denoted as:

uNN (x1...xn, t) ≈ zH+1 (2.1.9)

The derivatives of this approximation are calculated through automatic differen-

tiation, functions through the application of the chain rule of calculus to compute

the exact derivatives of a function with respect to the spatial and or temporal input

variables [7]. Utilizing the predicted solution uNN and its derivatives, the PDEs and

their initial and boundary conditions are reconstructed. This deviation of predic-

tions is evaluated with respect to the sampled observations, and with respect to the

reconstructed differential equation itself, represented as:

Losstotal = λ1LossData + λ2LossPDE + λ3LossBC + λ4LossIC (2.1.10)

With parameters λ1, λ2, λ3, λ4 representing weights for the adjustment of each loss

term. Deviations are typically evaluated as an L2 norm and are minimized during the

back-propagation process, whereby NN parameters (weight and biases) are adjusted

iteratively following the governing equations, as represented in 2.1. Minimization

of the total deviation through the optimization algorithms such as gradient descent
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allows the network to learn the mapping between the input and output space, while

simultaneously complying with known physical laws and constraints. Through the

introduction of learning biases, PINN significantly relaxes restrictions in terms of the

quantity of data required to properly train deep learning algorithms [159].

   Physics Informed Neural Networks

Neural Network
Automatic

Differentiation

x1

xn

t

uNN

𝛿x1

𝛿xn

𝛿t

I

Physics-Informed Loss

Differential Equation Loss: ℒDE

Initial Condition Loss: ℒIC

Minimize:
ℒTotal = λ1ℒData  + λ2ℒPDE + 

λ3ℒIC +λ4ℒBC

Boundary Condition Loss: ℒBC

Data Loss: ℒData

Figure 2.1: General form of the Physics-informed Neural Network structure,
consisting of a NN for the prediction of latent solutions, followed by an automatic

differentiation process to obtain derivatives of latent solution. The network is
trained based on a reconstruction of differential equations and initial / boundary

conditions.

In the context of condition monitoring applications, PINNs allow for accurate

predictions by incorporating both data-driven and physics-based approaches. PINNs
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can handle sparse and noisy data, extrapolate beyond training data [61], and pro-

vide interpretable results. They also enable early fault detection, reduce false alarms,

and can be used for online monitoring. Since their initial popularization, a plethora

of subsequent implementations that followed their publication have employed the

same feed-forward architecture. However, experimentation with other popular deep

learning architectures, such as the CNN, RNN and its variants, encoder and decoder

networks, as well as graph NNs have seen relatively smaller quantities of deploy-

ment in literature. The following sections will detail the integration of physics-based

regularization with a variety of NN architectures.

Data-Driven Solutions to Differential Equations

Applications of PINNs to the solution to governing differential equations of physical

systems methods vary greatly across industries and have been applied to numerous

areas in which the system dynamics are known beforehand. For instance, within

the domain of solid mechanics, PDEs of physical parameters such as elasticity, de-

formation, and structural response are determined with the purpose of continued

structural health monitoring. One such example is evident in the work of Haghighat

and colleagues [41], who developed a method for surrogate modelling and model in-

version with respect to behaviour in structures defined by the principles of linear

elasticity. This is performed through the incorporation of governing PDEs and var-

ious constitutive equations into a PINN for parameter estimations. Through their

experimentation, the authors demonstrated the proof of concept through a model of

the displacement field under elastic plane-strain conditions. For their use case, the

authors compared the effects of a collective network with shared hidden layers 2.2
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(A), as opposed to utilizing the PINN framework to solve for individual outputs irre-

spective of the others 2.2 (B), with each output being solved by a PINN drawing data

from a collective input space. The authors have concluded that, while in principle, a

wider network will allow individual associations to be made between sections of the

network and output, it was more effective for each variable of the solution to be cal-

culated separately. The authors attributed this to the hyperbolic tangent activation

function used, being incapable of accurately representing the cross-dependencies of

the network outputs in a manner faithful to kinematic relations.

 (B) Branched Network for Solving Multiple Variables (A) Single Unified Network for Solving Multiple Variables

Network Solving Variable 1Unified Neural Network Network Solving Variable 1

Output
Variable 2

Output
Variable 1

Output
Variables

Network Solving Variable 2

Input
Variables

Input
Variables

Figure 2.2: Architectures for the solutions of unknown variables (A) for a unified
NN, (B) for independent networks.

Anton and colleagues applied the PINN framework for material parameter esti-

mation with inputs in the form of full-field displacement data [4]. With respect to

structural health monitoring on existing infrastructure, the estimation of material

parameters of structural components may be a method of evaluation of degradation.

To that effect, the authors derived the solutions to the momentum balance equation,

as well as the constitutive equations for linear-elastic materials with the classic PINN
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architecture [4]. Physical regularization was implemented with respect to the PDE

established, as well as labelled data available for boundary conditions and observed

deformation.

Similarly, Kharazmi and colleagues estimated the structural parameters of a flexi-

ble cylinder structure subjected to vortex-induced vibrations from the hydrodynamic

force, with the objective of evaluating structural damage due to fatigue [60]. Utiliz-

ing the PINN framework, the authors solved the linear beam-string equation, which

governs the motion of the cylindrical structure in question [60].

Bharadwaja and colleagues utilize a PINN to model and quantify uncertainty

in the elastic deformation of heterogeneous solids [10]. More specifically, isotropic

linear elastic behaviour is assumed to solve the governing differential equation for the

approximation of momentum balance and constitutive equations governing elasticity.

The proposed PINN is optimized via the physics-based loss function, representing

model error to governing differential equation, as well as the Dirichlet, Neumann

boundary conditions, the boundary conditions associated with fibers and voids, and

initial conditions. From their analysis, the proposed physics-informed methodology

returned results that are similar to that of the Monte Carlo finite element simulation

model, designated as the benchmark model in this scenario [10].

As another example, Rautela simulated guided waves for monitoring structural

health with applications in aerospace applications [113]. The framework revolves

around using a PINN to solve governing PDEs associated with wave propagation. In

their study, the one-dimensional wave equation with Dirichlet boundary conditions

is formulated as the target of the loss function, and predictions by the PINN are

continuously optimized by the loss function to more accurately reflect the physical
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governing PDE [113].

Zhou and colleagues proposed a methodology for fatigue life estimation, physically

constrained by a hybrid loss function within a probabilistic PINN framework [176].

Through the feed-forward model, the stress-life relationship is approximated. Physical

violations are determined through the evaluation of select collocation points, whereby

the ground truths are approximated by the probability distribution out-putted by the

feed-forward model [176].

Finally, Mai and colleagues employed the PINN architecture in predicting struc-

tural instability in truss structures [86]. The network outlined is a representation

of the displacement field of the structure, and analysis of parameters allows for the

location of critical points susceptible, given the input load factors [86]. Optimization

is performed via the minimization of the physics-informed loss function, which rep-

resents, physically, the residual load and stiffness characteristics of the structure. In

all, the method yields superior accuracy through the various example validations on

several truss structures [86].

With applications to machinery fault detection and classification, Shen and col-

leagues proposed a novel machine fault classification framework employing a unique

PINN framework based on Hamiltonian mechanics, whereby the model is trained to

represent the energy conservation of the system in healthy and abnormal states [127].

Hamiltonian systems are those that obey Hamilton’s equations of motion, which de-

scribe the time evolution of a system’s state variables in terms of its energy. Based

on the principle of Hamiltonian mechanics, the evolution of a physical system is de-

scribed via the energy of the system as a function of its position and momentum.

This network is termed Hamiltonian Neural Network (HNN) and may be considered
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a class PINNs specifically tailored towards the modelling dynamical systems governed

by Hamiltonian equations. This incorporation allows networks to predict the evolu-

tion of a system over time [40]. In the work by Shen and colleagues, the authors

applied this concept for the classification of faults in rotating machinery. Estimations

of system energy signatures are derived from observed sensor measurements through

the HNN. Subsequently, parameters of the HNN are extracted to form the total energy

function, which is used as the input features for the classification algorithm based on

the conventional RF algorithm [127].

An abundance of studies has also been performed in optimizing or complementing

the available data from sensors for monitoring applications. Through optimization,

the objective of designed systems is to maximize the relevant and informative data

for monitoring the system. An example of this optimization process with PINNs

may be seen in the work of Zhu and colleagues, who optimized sensor placement

locations for the monitoring of low-rise buildings in response to wind pressure [178].

The ML model is trained on data generated from a physical simulation by means of a

high-fidelity finite element computational fluid dynamics model [178]. From the data

provided, the ML model seeks to construct a surrogate model of pressure-field in real

time. This surrogate model is further embedded within a NN for the optimization of

sensor placement locations.

For inference of non-observable sensor data, jadhav and colleagues performed con-

dition monitoring for fouling conditions on system health with respect to an air pre-

heating system in thermal power plants [48]. Issues arising from the lack of available

sensors on the interior of the system are resolved with the proposed PINN architecture

based on the non-dimensionalized governing equations for heat transfer for fluid and
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metal interfaces [48]. The authors employed a series of multiple PINNs in parallel,

operating from the same set of input features to resolve a plethora of equations gov-

erning heat transfer. PINNs are regularized via the physics-informed loss function,

composed of the loss components of the governing equations, boundary conditions,

and interface conditions.

From the various applications listed, the accuracy of sensor data is critical for the

collection of data faithful to the system. Decisions based on inaccurate or incomplete

information may lead to sub-optimal outcomes or catastrophic consequences, and as

such, one direction of this architecture has been the reconstruction of corrupt sensory

data to allow users a holistic view of system operations. In particular, in the work

by Peng and colleagues, the authors proposed a PINN structure to reconstruct data

with significant corruption from sensor errors [103]. The networks proposed are based

upon the Least Absolute Deviation and median absolute deviation, whereby the PINN

architecture is continuously optimized by minimizing the residual between data-driven

and physical models. The design of the architecture was validated on several classical

problems involving PDEs, such as the Navier-Stokes equation, Poisson’s equation,

and wave equations, whereby the algorithm was capable of accurately recovering

governing equations from corrupted observation data [103].

In other avenues of research, PINNs have been applied for the modelling of dy-

namic systems, as demonstrated in the work of Zhou and colleagues [177]. The authors

applied the PINN framework for the evaluation of reliability in multi-state systems.

The governing equations for Markov processes take the form of differential equations,

and asu such, aligns with the PINN framework. The authors utilized the gradient

surgery method for multi-task learning as outlined in the work by Yu et al. [169] to
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improve the PINN’s precision in approximating solutions to differential equations by

alleviating issues with imbalanced gradients during training phases. For multi-state

system reliability evaluation, the PINN solves for the state estimates of systems with

the input of time instant. As with the traditional PINN, the network is penalized

based on loss with respect to boundary conditions, and with respect to approximation

of governing equations.

Physics-Informed Regularization in Tandem with Other Deep Learning

Architectures

A plethora of literary works employ the inherent symmetries and invariances encoded

by various conventional deep-learning architectures in compliance with the philosophy

of physics-guided regularizations. Literary works presented in this section mainly uti-

lize physics-informed regularizations as the primary methodology to encode physical

knowledge into the system, taking advantage of the efficacy of certain architectures

for specific data types, researchers have drastically innovated upon the structure of

the original PINN and employed the framework in their own fields of specialization.

For instance, with respect to the CNN architecture, their unique convolutional

layers are valued for their capabilities in automatically extracting features without

the need for manual feature engineering, making them invaluable in complex appli-

cations whereby the relevant features are difficult to understand or quantify. Studies

employing the CNN architecture can be seen in the works of McGowan and col-

leagues, who monitored the porosity during the additive manufacturing process with

their introduction of a set of loss functions [90]. The regularization of the network

comprises standard cross-entropy data loss, as well as losses informed by physical
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parameters that penalize deviations from ideal simulated melt pool temperature and

length-to-width ratio and relative error prior to normalization.

As another example, Zhang and colleagues established a surrogate model for the

estimation of structural seismic response, informed via equations of motion represent-

ing a dynamic system subjected to ground excitation [172].

Several instances of literature attempt to employ the physics-informed loss func-

tion as a methodology to minimize deviations between established physical and data-

driven domains. For example, Shen and colleagues adopted a hybrid approach in

their development of a physics-informed CNN model for fault detection in bearings

under varying rotational speeds [128]. The proposed CNN model and the physics-

based threshold model operated co-currently to evaluate the health class of bearings.

The threshold model is established based on known limits with regard to the am-

plitude of envelope spectra of healthy and damaged bearings [128]. Subsequently, a

customized physics-informed loss function is implemented, which serves to penalize

the model for predictions that deviate from known physics, as represented by the

threshold model. Through this format, however, the authors have made the simpli-

fying assumption that predictions of physics-based models are correct, or rather the

probability of predictions being correct is very high, due to the extreme thresholds

set [128].

Huang and colleagues explored a similar approach for the combination of the

physical and data domains [46]. The authors trained a CNN employing a finite ele-

ment model for applications in structural health monitoring. Through their designed

framework, the authors sought to incorporate predictions from both the physics-based

finite element model and data-driven method [46]s. The CNN proposed functions as a
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set of feature extractors that operates simultaneously based on inputs from the finite

element model-driven physics domain, and the data domain [46]. Physical constraints

are encoded in a classifier through a novel cross-physics-data domain loss function,

whereby predictions of the classifier are evaluated with respect to the labelled data, as

well as the discrepancy of features between the physical domain and the data domain.

Of a similar nature, Yin and colleagues monitored structural damage localization

in bridge structures due to loads applied by vehicles [165]. The authors developed

a numerical simulation of the structure and, using the physics-informed loss func-

tion sought to fuse features from the physics and data domains, the workflow of

which is visualized in Figure 2.3. Processed data from both domains are fed through

the Visual Geometry Group 16 architecture [134], whereby damage features are ex-

tracted from the time-frequency map of acceleration signals. The optimization was

carried out with a hybrid loss function comprised of data-driven cross-entropy loss

and physics-informed loss penalizing deviations from the physical domain established

via numerical simulations. Effectively, the network seeks to minimize discrepancies

between the physical and numerical models [165].
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    Feature Fusion through Minimization of Discrepancy between Domains

Data-driven domain

Physics-Based domain

CNN Feature extractor

CNN Feature extractor

Weight Sharing Feature
Fusions

Physical Domain Inputs

Data Domain Inputs

Minimize:
ℒTotal = ℒCSE  + λ*[Discrepancy(Xphys,  XData)]

Figure 2.3: Integration of physics-based and data-driven domains through feature
fusion: The CNN architecture is employed as a feature extractor. Adapted from

[46] and [165]

Another implementation of physics-informed regularization is with structures in-

volving the encoder-decoder style networks, or autoencoders. The structure of net-

works of this style may be described as two components working in tandem: an

encoder and a decoder network. Through the encoder network, input data is com-

pressed through multiple transformations to a low-dimensional representation. This

representation is subsequently decompressed and transformed back into the original
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representation through various transforms in the decoder, with the objective of accu-

rate reconstruction of input data [37]. Intermediate layers typically consist of lower

quantities of neurons, which in effect force the network to learn a compressed repre-

sentation. In general, autoencoders are well-suited for condition monitoring tasks as

they are able to learn the representations of the normal operating state of a system

and detect anomalies or deviations from that state [174]. Implementations of the

autoencoder learn to identify these changes by encoding the normal behaviour of the

system into a lower-dimensional representation, and then detecting anomalies in the

reconstruction error when the system deviates from this normal behaviour.

This strategy has been employed in subsequent literary works for the effective

detection of deviant behaviour without the need for additional labelled data. For

example: Li and colleagues designed a physics-informed convolutional autoencoder

for the detection of high impedance faults in power distribution grids to overcome

the issue of the lack of labelled data from conventional approaches [78]. The physics

hybrid physics-informed loss term featured in the network serves to regularize the

prediction of voltage, taking advantage of the physical relationship, the elliptical

trajectory between measured voltage and current.

As another example, Russell and colleagues proposed a framework for signal com-

pression and reconstruction of large quantities of data in the setting of industrial CM

through a physics-informed deep convolutional autoencoder [119]. A hybrid loss func-

tion was developed comprised of the traditional MSE, Pearson’s correlation coefficient

loss, and a physics-informed loss term. As the primary objective of an autoencoder is

to reconstruct a given signal, dominant frequencies in the signals must be preserved
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post-reconstruction [119]. This fact is leveraged by the authors to impose a physi-

cal constraint on the data-driven solution through a loss term sensitive to frequency

[119]. The authors also elected to learn latent representations of operating conditions

individually, effectively isolating the compressed representations, with the objective

of optimal representation for individual faults.

  Cross Physics Data fusion
 Shared Feature space

  Data-Driven Domain Prediction Process

  Physical Domain Prediction Process

+

Physics-
Guided Input

Vector

Known
Empirical
Equations

Unlabeled
Monitoring

Data

Labeled
Monitoring

Data

Local
Features

Feature
Extraction

Physical
Mapper

Data-driven
model

+

Physical
Prediction

Data
Prediction

Regression
Layer

Final Prediction

Figure 2.4: Cross Data-Physics Fusion, as presented by [150] predictions based on
information from both the data domain (comprised of features derived from

labelled monitoring data), and physics domain (comprised of features derived from
unlabelled data) are simultaneously mapped to a shared space and concatenated.

Both are processed through a regression layer for the final prediction.

Several examples in literature also take advantage of the RNNs’ ability to extract

temporally invariant data, for use in applications involving time-domain monitor-

ing. For example, Wang and colleagues fused features from the data-driven and

physics domain through their applications of the cross physics-data fusion, with ap-

plication in modelling damage accumulation in tools [150]. Features from the data

domain and physics domain are extracted separately, and subsequently mapped to
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a shared feature space, representing tool wear [150]. Predictions from both domains

are concatenated, and evaluated in the final regression layer of the network whereby

a physics-informed loss function is employed to minimize discrepancies between the

data-driven Bi-directional Gated Recurrent Unit model and empirical equations [150].

Liu and colleagues proposed a physics-informed RNN for offshore structural moni-

toring. The methodology proposed employs an optimal singular value decomposition

procedure for modal identification of the structure [81]. Through their study, the

authors formulated the physics-informed modal identification process into an eigen-

system and employed an RNN for the solution of the governing differential equations

of the eigensystem. Through their proposed framework, the authors improved upon

conventional monitoring methods to devise an efficient strategy for modal identifica-

tion and monitoring in real-time, and under dynamic environmental conditions [81].

Researchers have also innovated upon the methodology by which the loss is eval-

uated. Traditionally, the vast majority of literature explores the minimization of

deviations from a target value. Chen and colleagues instead proposed an LSTM dif-

ferentiation strategy for the state of health focusing on maximizing deviations between

known states [19]. In their developed strategy for the selection of LSTM hyperparam-

eters in the detection of gearbox faults, rather than the conventional minimization of

mean squared error of the labelled data, the selection strategy proposed maximizes

the discrepancy, in this case, evaluated by the Mahalanobis distance, between healthy

and physics-informed faulty states. Data of vibration signatures correlating to the

fault state are generated based on prior knowledge of the system and used to establish

the target of evaluation [19].

In all, physics-informed regularization presents a guided process by which the
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algorithm can acclimate to the domain of physical feasibility, as illustrated in the

numerous works discussed in this particular section. Though effective, the main

limitations of this approach are primarily regarding the increased complexity of the

loss landscape, and difficulties in achieving generalization, to be detailed in section

4.2.1.

2.2 Magnetorheological Dampers and Modelling

Magnetorheological (MR) fluids are a class of smart materials exhibiting changes in

rheological properties when subjected to an external magnetic field and consist of

micron-sized ferrous particles suspended in a liquid carrier. The configuration of

which enables the rapid manipulation of viscosity and flow characteristics through

controlled alignment of the said ferrous particles. The ferrous particles undergo a

magnetic flux-induced alignment along field lines with the application of an induced

external magnetic field, effectively transitioning from a free-flowing liquid to a semi-

solid state [179, 95, 75]. The degree of viscosity alteration is proportional to the

strength of the applied magnetic field, allowing for minute adjustments in the fluid’s

rheological behaviour.

Due to the MR fluid’s properties, the MR Dampers allow for the design of en-

gineering systems with precise damping properties through the use of appropriate

control systems. The increasing popularity of MR dampers in automotive, industrial

machinery, and large-scale civil engineering applications is often attributed to the MR

damper’s relatively lower power consumption and extensive range of damping control

[116]. With the vast majority of practical applications, the design of implemented MR
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Dampers are of a semi-active design [95, 75, 50]. MR dampers are capable of func-

tioning in passive, active, or semi-active modes. However, fully active MR dampers

are not commonly employed due to their dependency on a constant power supply.

With a similar design to conventional dampers, semi-active MR dampers are capable

of producing significantly more damping force when power is applied [50]. Semi-active

MR dampers have the capability of achieving significant damping force and allow for

large changes in damping force with a relatively fast response time [95, 75].

For the operation of the MR damper: the displacement of the piston as it moves

through the cylinder causes the MR fluid to flow through narrow channels or orifices

in the piston. Electromagnetic coils in the damper may exert an induced magnetic

field depending on applied excitation, influencing fluid viscosity. A labelled diagram

of the MR damper, consisting of the components of a typical single-ended linear MR

damper, is provided in Figure2.5.
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Figure 2.5: A labelled depiction of an MR damper.
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The damping capability of MR dampers may be altered via the application of a

magnetic field, which is generated by an electromagnetic coil within the damper and

controlled through an external power source. The MR damper behaves like a conven-

tional fluid damper with the piston moving freely in the absence of a magnetic field,

with minimal damping force in its passive state [50]. With increasing magnetic field

strength, ferrous particles within the MR fluid are magnetized and aligned along the

magnetic field lines, with the increased viscosity from this alignment creating restric-

tions to the flow of the fluid through the channels, thereby increasing the resistance

[50].

The process of developing mathematical models of MR dampers poses a challenge

due effects of hysteresis and the complexity associated with representing said effect

mathematically, with the dynamic response of MR fluids exhibiting a high degree

of non-linearity [179, 116, 120]. Rather extensive research has been performed with

the objective of accurately characterizing the non-linear response observed in MR

dampers, aiming to understand and predict MR damper response under varying op-

erating conditions. These include, for example, curve fitting methodologies adapting

the response for use in estimation, as seen in the work of Lee [72, 75]. In the litera-

ture, MR damper modelling has been explored thoroughly, with methods varying in

terms of accuracy and complexity [179, 116, 120, 148]. These dynamic models may

be categorized into parametric and non-parametric models.

Parametric models require predefined parameters and initialization with an initial

estimation of value for parameters [1, 148], whose values are then adjusted based on

the error relative to experimental data. Prominent examples of parametric models

developed for the MR damper in literature are the Bingham models, the Biviscous
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model, and the Bouc-Wen models, each with their respective extensions to better

account for certain phenomena or to characterize certain intricacies in the response.

Non-parametric models do not have a set form and are derived from experimental

data [1]. The non-parametric model structure is not predetermined but inferred from

the data, with the most common forms of non-parametric models being black box

models and NN models [1].

2.2.1 Bingham Model and Derivatives

Among the earliest models introduced in this domain is the one proposed by [139].

Derivation of this model, titled the Bingham model is based on the stress-strain

relationship characteristic of the Bingham visco-plastic model, which was initially

outlined by Shames and colleagues [126].

With respect to the Bingham visco-plastic model, the total stress experienced

by the fluid for positive values of the shear rate is represented as a combination of

the shear stress induced by the magnetic field and the shear stress arising from fluid

movement [126, 138, 139]. The induced shear stress by the applied magnetic field is

a function of the applied magnetic field strength, as well as the shear stress resulting

from movement through the fluid. Wherein the latter component is dependent upon

the material properties of the fluid, namely the viscosity and the shear rate. The

relationship outlined above is represented as:

τ = τfield · sgn(γ̇) + ηγ̇, (2.2.1)

where τ denotes the total shear stress within the MR fluid. The term τfield represents

the yield stress resulting from the influence of the applied magnetic field. γ̇ denotes
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the shear rate, while parameter η denotes the viscosity of the fluid.

Figure 2.6: Depiction of the Bingham model of MR dampers, adapted from [139]

The Bingham model may be visualized as comprising a Coulomb friction element

arranged in parallel with an ideal viscous damper, as depicted in Figure 2.6. Within

this model, the Coulomb friction element accounts for the yield stress, in effect,

the stress required to initiate flow in the presence of a magnetic field. While the

dashpot, characterized by damping coefficient c0, captures the fluid’s response to

ongoing shear once the yield stress has been surpassed. The effective damping force

may be mathematically modelled as:

F = c0ẋ+ fcsgn(ẋ) + f0, (2.2.2)

for damper coefficient c0, yield force fc, and initial offset force from the accumulator

f0.

From prior works in the domain, the Bingham model has shown adequate efficacy

in modelling the forced response of MR dampers [148, 1]. However, the model has

notable limitations. It has been demonstrated that the model does not replicate the
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nonlinear force-velocity response observed in the experimental data under conditions

where the acceleration and velocity have opposite signs and the velocity magnitude

is small [136]. Considering that the hysteretic loop developed in the Bingham model

is singular, the model encounters difficulties in accounting for the response to the

magnetization and or demagnetization of ferrous particles in MR dampers [136].

To alleviate the above limitations, variants of the Bingham model have been pro-

posed. One such extension involves combining the original Bingham model (i.e., a

frictional element in parallel with a dashpot) in series with a series of ideal springs

and dashpot, as initially described in the work of Gamota and Filisko [36], illustrated

in figure 2.7.

Figure 2.7: Depiction of the extended Bingham model of MR dampers, adapted
from [36]

The approach aims to improve the accuracy of the force-velocity relationship by

integrating additional mechanical elements that can better simulate the observed

behaviours of MR dampers [36]. The resultant damping force is modelled as:

F =


k1(x2 − x1) + c1(ẋ2 − ẋ1) + f0 = c0ẋ1 + fcsgn(x1) + f0 = k2(x3 − x2) + f0, if |F | > fc,

k1(x2 − x1) + c1(ẋ2) + f0 = k2(x3 − x2) + f0, if |F | ≤ fc,

(2.2.3)

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

for sping constants k1, k2, as well as damping factors c0, c1, and c2 [36].

The force-velocity relationship is more accurately represented and closer to mea-

sured values in comparison to the default Bingham model [36, 148]. However, this

improved accuracy comes at the cost of increased complexity in calculations, due to

the additional elements, and intermediary displacement items introduced.

2.2.2 Biviscous models

Biviscous models conceptualize the MR fluid dynamics by assuming that the fluid

exhibits plastic behaviour in both the pre-yield and post-yield phases [154, 101, 54].

These models capture the hysteresis loop by delineating its shape into three discrete

linear sections. The inherent structure of biviscous models is thus characterized by

piecewise linear segments as:

F =


cpoẋ+ fy, if ẋ ≥ fy

cpr−cpr

cprẋ, if − fy
cpr−cpr ≤ ẋ ≤ fy

cpr−cpr ,

cpoẋ− fy, if ẋ ≤ − fy
cpr−cpr ,

(2.2.4)

whereby the model is characterized by parameters cpr and cpo, representing pre-yield

and post-yield damping coefficients respectively, as well as yield force fy.

The same authors also devised a hysteresis biviscous model, which introduces an

additional parameter compared to the earlier nonlinear bi-viscous model [154]. This

alteration, as presented in equation 2.2.5, allows for a more accurate representation

of the velocity at which the damping force is zero, taking into account the direction of

acceleration [154]. This alteration introduces the parameter of the zero force velocity

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

intercept, v0, and the resultant damping force is modelled as:

F =



cpoẋ+ fy if ẋ ≤ −fy−cprv0
cpr−cpo and ẍ > 0,

cpr(ẋ− v0) if − fy−cprv0
cpr−cpo ≤ ẋ ≤ fy+cprv0

cpr−cpo and ẍ > 0,

cpoẋ+ fy if fy+cprv0
cpr−cpo ≤ ẋ and ẍ > 0,

cpoẋ+ fy if fy−cprv0
cpr−cpo ≤ ẋ and ẍ < 0,

cpr(ẋ+ v0) if − fy+cprv0
cpr−cpo ≤ ẋ ≤ fy−cprv0

cpr−cpo and ẍ < 0,

cpoẋ+ fy if ẋ ≤ −fy+cprv0
cpr−cpo and ẍ < 0.

(2.2.5)

However, in both cases of the model, their piecewise linear approach does not

accurately depict the smooth transitions typically observed in force-velocity curves of

real fluids. The simplification inherent in the biviscous model means that accuracy

and fidelity to observed response will fall short in regions representing the transi-

tion between each piecewise equation; In addition, with scenarios where a detailed,

continuous representation is required analysis or simulation.

2.2.3 Bouc-Wen Models and Derivatives

The Bouc-Wen model has emerged as a prominent model in literature with modelling

nonlinear hysteretic systems, originally introduced by Bouc [11], and extended by

[153]. Since its introduction, the Bouc-Wen model has been recognized for its ca-

pability to model the effect of hysteresis in a mathematically tractable form. The

capability to represent the shape of hysteretic cycles analytically is achieved through

a system of differential equations. Equations incorporate parameters for tuning the

model to match the observed behaviour.
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Figure 2.8: Depiction of the: (A) Bouc-Wen model of MR dampers, adapted from
and (B) The Modified Bouc-Wen model, adapted from the work of [136]

The simple Bouc–Wen model, depicted in Figure 2.8(A), is commonly employed

for its capacity to capture hysteretic behaviours through parameter adjustments. The

model expression solving for predicted damping force F for a displacement x is defined

by the equations:

F = αz + c0 (ẋ) + k0 (x− x0) , (2.2.6)

ż = −γ |ẋ| z |z|n−1 − βẋ |z|n + Aẋ. (2.2.7)

where α, β, γ, A, n, c0, k0 are the model parameters and z is the hysteretic dis-

placement, a variable with the units of length, characterizing the effect of hysteresis.

The bias force generated by the accumulator is to be represented via the initial off-

set x0 of the ideal spring with spring constant k0. The Bouc–Wen model has been

demonstrated in various works to be capable of fitting characteristics of MR dampers

[136]. However, the presence of a differential term renders parameter identification

challenging in this context.
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The simple Bouc-Wen model has been shown to have certain limitations in accu-

rately capturing hysteresis at certain points within a cyclical motion of the damper,

more specifically, in the specific case in which the damper is operating at low velocity

and experiencing acceleration in the opposite direction to its velocity. In the work

of Spencer and colleagues, the authors introduced a modified version of the Bouc-

Wen model to enhance accuracy, albeit with a higher level of complexity than the

original model [136]. This increased complexity in computations is primarily due to

the incorporation of an intermediary differential displacement variable, denoted as

y, in addition to the various new parameters to be identified before use. The model

utilizes the dashpot with damping coefficient c1 to characterize viscous damping at

low velocities, and the dashpot with damping coefficient c0 to characterize viscous

damping at high velocities. Similar to the simple Bouc-Wen model, the model also

incorporates the accumulator stiffness through representation by ideal spring with

stiffness k1 with initial equivalent displacement x0. An illustration of the aforemen-

tioned modifications may be seen in Figure 2.8(B). The modified Bouc-Wen model is

defined as follows:

F = αz + c0 (ẋ− ẏ) + k0 (x− y) + k1 (x− x0) , (2.2.8)

which may be simplified to:

F = c1ẏ + k1 (x− x0) . (2.2.9)

The evolutionary variable z, and the intermediary displacement y are represented
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in the following differential equations:

ż = −γ |ẋ− ẏ| z |z|n−1 − β (ẋ− ẏ) |z|n + A (ẋ− ẏ) , (2.2.10)

ẏ =
1

c0 + c1
(αz + k0 (x− y) + c0ẋ) . (2.2.11)

Alterations to the applied voltage induce changes within the magnetic field strength,

resulting in changes to damping characteristics. In their research, Spencer and col-

leagues have extended the modified Bouc-Wen model to accommodate the impact of

voltage application on MR dampers [136]. Through experiments, they observed that

parameters c0, c1, and α exhibit variations with the efficient voltage term u, and is

given as:

α = αa + αbu (2.2.12)

c0 = c0,a + c0,bu, (2.2.13)

c1 = c1,a + c1,bu. (2.2.14)

Commonly referred to in the literature as the efficient voltage, the term u denotes

a differential voltage term that signifies a low-pass filtered response to the applied

voltage v .

u̇ = −η (u− v) . (2.2.15)

Spencer and colleagues demonstrated in their work that the dynamics associated

with the attainment of rheological equilibrium may be achieved using a first-order

filter, wherein the filter system tracks variations in applied voltage, with rapid changes
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being attenuated [136].

2.2.4 Dahl models

Dahl developed the Dahl friction model[22], which characterizes friction through a

differential equation between stress and strain. A significant advantage of the modified

Dahl model is its simplicity in parameterization.

The Dahl model for frictional force is given as:

dF

dx
= σ

(
1− F

fc
sgn(ẋ)

)ζ
, (2.2.16)

where fc represents the Coulomb friction force and σ represents the stiffness coeffi-

cient. Parameter ζ controls the shape of the resultant stress-strain curve [22]. For

the special case in which ζ = 1, introducing the hysteretic variable z, the Dahl model

can be expressed as:

F = σz, (2.2.17)

ż = ẋ− σ

fc
|ẋ|z, (2.2.18)

which bears great resemblance to the simple Bouc Wen model introduced in the prior

section. In fact, it is to be acknowledged that the Dahl model can be viewed as a

particular case of the more generalized model by Bouc [11] and Wen [153].

Building upon Dahl’s foundational work, Zhou and colleagues implemented a mod-

ified Dahl model tailored for MR dampers [175]. Similar to the Bouc Wen model, the

Dahl model implemented features a hysteresis element in parallel with ideal springs
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and dashpots. The damping force of their implementation may be represented as:

F = k0x+ c0ẋ+ Fcz − f0, (2.2.19)

whereby the hysteretic variable z, dimensionless in this case, has the relation:

ż = σẋ(1− z sgn(ẋ)), (2.2.20)

for parameters k0, c0, representing the spring constant and damping factor respec-

tively. Fc represents the coulomb force, which is subject to change based on the

applied magnetic field [175]. f0 represents the initial offset force from the accumula-

tor. The parameter σ controls the shape of the hysteresis loop formed. The authors

have also extended this to account for varying applied voltage, with parameters c0

and Fc varying linearly with efficient voltage u in equation2.2.15.

c0 = c0,a + c0,bu, (2.2.21)

Fc = Fc,a + Fc,bu. (2.2.22)

Ikhouane and colleagues further expanded the application of the Dahl friction

element by incorporating it into a viscous Dahl model tailored for shear mode MR

dampers [47]. The viscous model is represented by a single dashpot in parallel with

the hysteretic element, and the resultant damping force is given as:

F = c0ẋ+ αz, (2.2.23)
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with constants α and c0 being voltage-dependant parameters, governed by the efficient

voltage defined in equation2.2.15. The relation is identical to the one outlined in

equations2.2.13 and 2.2.12.

2.2.5 LuGre Friction Model

The LuGre friction model is a widely used mathematical framework for capturing

the behaviour of friction in mechanical systems, and an extension of the Dahl model.

Central to the LuGre model is the bristle deformation concept, which represents the

microscopic interactions between contact surfaces [24, 80]. This concept visualizes the

surfaces as covered in microscopic bristles that deform as the surfaces move relative

to each other, whereby the deformation of these bristles accounts for both the static

and dynamic friction forces observed in real-world systems. The average deflection of

aforementioned bristles, referred to by the authors as internal variable z, is modelled

by:

ż = ẋ− |ẋ|
g(ẋ)

z, (2.2.24)

whereby the function g(ẋ) is positive and dependent on various material properties

and state factors [24]. These factors include but are not limited to, lubrication and

temperature [24]. The resultant resistant force may be modelled as a function of

the resistance from the aforementioned internal variable, and the relative velocity

between surfaces, ẋ:

F = σ0z + σ1ż + σ2ẋ, (2.2.25)

for the model parameters σ0, σ1 and σ2.

Jimenez and colleagues presented a modification and extended the application of
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the existing LuGre friction model for MR damper modelling specifically [53, 52]. This

modification is aimed at accounting for the response of MR dampers under varying

operational conditions, also taking into account the applied voltage, v. The resultant

damping force of this model by Jimenez is modelled as:

F = σ0zv + σ1ż + σ2ẋ. (2.2.26)

While in the original LuGre friction model, the internal state z represents the av-

erage bristle deflection, for the MR damper model developed by Jimenez, this model

has been adapted to account for the specific characteristics of MR fluids. More specif-

ically in this context, the variable z is redefined to represent the transient deformation

within the MR fluid caused by the movement of the damper, as modelled by:

ż = ẋ− σ0η0(v)|ẋ|z, (2.2.27)

where parameters function η0(v) represents a function capturing effects of the applied

voltage, defined as:

η0(v) = α0(1 + α1v), (2.2.28)

for constant parameters α0, and α1. A significant limitation of the modified LuGre

model is the absence of a term that accounts for the Stribeck effect. The LuGre model

adapted for MR dampers demonstrates satisfactory accuracy in literature, albeit with

notable discrepancies observed primarily at higher velocities [148, 53, 52].
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2.2.6 Other Models

Aside from the models covered earlier in this section, several other models have been

developed since. In consideration of the study’s specific focus, this research has se-

lectively explored the most prominent parametric models pertaining to MR dampers.

Table 2.1 summarizes some of the range of models available in the literature, in ad-

dition to previously detailed methods.
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Model Name Citation

Bingham Models:
Simple Bingham model [138, 139]
Gamota and Filisko: Extended Bingham model [36]
Hysteretic Bingham model [135]
Occhiuzzi: Extended Bingham model [96]

Biviscous models:
Non-linear Biviscous model [154, 137]
Hysteresis Biviscous model [154]
Nonlinear hysteretic arctangent model [3]

Bouc-Wen models:
Simple Bouc-Wen Model [11]
Modified Bouc-Wen [136, 161]
Bouc-Wen model for shear mode MR dampers [50]
Current dependent Bouc-Wen Model [44]
Current-frequency-amplitude dependent Bouc Wen-model [25]
Non-symmetrical Bouc-Wen model [68]

Dahl Models:
Modified Dahl model [175]
Viscous Dahl model [47]

LuGre Friction Models:
LuGre Friction model [53, 52]
Modified LuGre model [121, 146]

Viscoelstic plastic:
Viscoelastic-plastic model [101]
Stiffness–viscosity-elasto-slide [155, 44]

Sigmoid model:
Sigmoid model [149]

Hyperboic Tangent model:
Hyperbolic Tangent model [67]

Equivalent model:
Equivalent model [97]

Table 2.1: Summary of popular methods within the literature for parametrically
modelling MR dampers.
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For the purposes of this study, subsequent sections will focus on the modified

Bouc-Wen model. This choice is motivated by the model’s enhanced capability to

describe the pre-yield and post-yield stiffness, as well as its ability to provide a smooth

transition between these states.
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Chapter 3

Experimental Setup

3.1 Physical Setup

The experimental setup was constructed to fulfil the academic objective of validating

the performance of various estimation and machine learning algorithms through em-

pirical data. The objective is to gather data on the dynamic response of the Lord RD

8041-1 damper, a widely employed Magnetorheological (MR) damper with applica-

tions across both academic research and industrial domains [95]. MR dampers, such

as the Lord RD 8041-1, are utilized in various engineering applications due to their

ability to rapidly adjust damping characteristics in response to dynamic loading con-

ditions, in accordance with an applied magnetic field. A visualization of the physical

setup may be seen in Figure 3.1, and its corresponding view in the CAD software

Solidworks in 3.2. The physical setup outlined in this section was constructed at

McMaster University with reference [95].
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Figure 3.1: The experimental setup constructed, consisting of an MR damper,
linear actuator, force sensor, and programmable power supply. Setup is controlled

via a unified program run on the main computer.
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Figure 3.2: Solidworks model of the entirety of the experimental setup, adapted
from [95].

MR dampers consist of several sub-components and a detailed visualization may

be seen in Figure 2.5. The operation of an MR damper involves the conversion of

mechanical energy into friction loss by harnessing the rheological properties of the

MR fluid present within the damper [164, 6, 73, 70].

The Lord RD 8041-1 MR damper is characterized as a monotube shock, and is

pressurized with high-pressure nitrogen gas to 300 psi [20]. The presence of nitrogen
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gas within the accumulator ensures that the piston is fully extended under no-load

conditions. An accumulator is required to account for the change in volume due to

the displacement of the piston [75, 73].

In operation, the MR fluid flows between chambers through orifices in the piston

as an external force is applied to displace the piston. An electrical current may be

supplied to the damper, which induces a magnetic field that, in turn, influences the

alignment of the ferrous particles suspended within the MR fluid. The presence of the

induced field has the effect of altering the viscosity of the fluid and by extension, mod-

ulating the damping characteristics [164]. The response time of the Lord RD 8041-1

to changes in the magnetic field is estimated by the supplier to be approximately 15

milliseconds [20].

It is noted that the performance of the MR damper is influenced by ambient

temperatures. Operating temperature primarily affects the coil resistance, and by

extension, the strength of the magnetic field imposed. For the MR damper employed

in this study, the coil resistance is typically measured at 5 Ω at room temperature (22.0

degrees Celsius), while at elevated temperatures (71 degrees Celcius), the resistance

increases to approximately 7 Ω [20]. Variation in resistance directly impacts the

efficacy by which the electromagnetic coil generates the magnetic field for particle

alignment. The system is operated within standard room temperature conditions,

with an operational temperature of 22.0 degrees Celsius [92].

In terms of operational electrical properties: the Lord RD 8041-1 operates at a

continuous applied current of 1 A or intermittently at 2 A, at a maximum voltage

of 12 VDC[20]. The operating parameters, as well as technical data of the damper

utilized, are summarized in Table B.1. Additional information regarding the electrical
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properties of the MR damper may also be found in Appendix B in Table B.2.

The actuation system of the experimental setup utilizes a linear actuator linear

servo by Ultramotion and incorporates a rod-style actuator paired with a configurable

brushless DC motor controller [92]. The actuator employs multi-turn absolute posi-

tion feedback, with position feedback resolution of 3.1 micrometres. In addition, the

linear actuator features a self-locking acme screw mechanism, which is implemented

to prevent back drive. [92].

Regarding loading capacity, the actuator demonstrates a dynamic continuous load-

ing capability of 756 Newtons and a dynamic peak loading capacity of 1512 Newtons.

Operating with a power rating of 180 watts, it achieves a maximum speed of 356

millimetres per second and offers a total stroke length of 76.2 millimetres, [92].

Control of the linear actuator is performed via the RS-422 serial communication

protocol for command transmission. The actuator itself integrates several onboard

sensors for monitoring various operational variables, including but not limited to:

position, torque, temperature, and humidity. Positional tracking is achieved through

a phase index absolute position sensor employing a multi-turn magnetic encoder,

delivering an output resolution of 1024 counts per revolution for measurement of the

actuator’s absolute position [92].

The force sensor utilized in this research is the RAS1-500S-S resistive S-Beam

load cell, which has an operating force capacity of 226.80 kgf or 2224.11 N, and is

constructed from tool steel [124]. It maintains an accuracy of ±0.02%. Calibra-

tion measurement equipment is traceable to the National Institute of Standards and

Technology (NIST) through Pacific Calibration Services.

Data collection for overall force within the system from the load cell sensor is
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achieved via serial communication using the DI-10000UHS-1K USB interface, en-

abling data streaming at a rate of 1000 Hz [124]. The assembly of the linear actuator,

force sensor and MR damper is illustrated in 3.3.

Figure 3.3: Solidworks model of the experimental setup, depicting the Linear
actuator, force sensor, brackets and mounting, and the MR damper.

Within the experimental setup, the KORAD programmable power supply serves

as the means of delivering a regulated current to the MR damper [63]. Adjustments

to the voltage supplied to the damper itself open up exploration for a range of op-

erating conditions and the investigation of varied damping effects. This particular

power supply was chosen for its digital control features and programmable capabili-

ties, including its encoder-controlled interfaces and USB control functionality.

A summary of parameters and properties that may be measured from the experi-

mental setup is provided in Table 3.1.

The provided sample data collected for constant oscillation along the entire stroke
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Properties Device

Stroke length Linear actuator

Velocity (Encoder Counts per 10
ms)

Linear actuator

Acceleration Linear actuator

Motor torque feedback Linear actuator

Time Stamp Linear actuator

Force Force sensor

Time Stamp Force sensor

Applied Voltage Programmable power supply

Applied Current Programmable power supply

Time Stamp Programmable power supply

Table 3.1: Values measured from experimental setup.

length of the damper, illustrated in Figures 3.4, 3.5, and 3.6 shows the measured

force-time, force-velocity, and force-displacement curves respectively. Of Note, the

hysteretic loop of the MR damper response may be seen.

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

Figure 3.4: Sample data collected for measured force over time for incrementally
increasing applied voltages.
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Figure 3.5: Sample data collected for measured force over measured damper
velocity for incrementally increasing applied voltages.
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Figure 3.6: Sample data collected for measured force over measured external
damper velocity for incrementally increasing applied voltages.

3.2 Data Collection

Within the framework of the experimental setup, an important aspect involves de-

vising a method for efficiently collecting data from diverse devices in a concurrent

manner. A block diagram of the experimental setup illustrating directional commu-

nication between components may be seen in Figure 3.7.

This subsection details the rationale, as well as the details in employing multi-

threading and its integration into the data acquisition process, with the objective of

mitigating bottlenecks associated with parallel data collection from the multitude of
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Figure 3.7: Block Diagram illustrating communication between components in the
experimental setup.

devices within the experimental setup and managing heterogeneous device environ-

ments.

Multithreading represents a technique that allows for multiple sub-processes, also

called threads, to exist within a single overall process, which enables the parallel exe-

cution of tasks [94]. Each thread operates independently, although threads share the

overall process’s resources. For example, resources such as memory and file descriptors

[94]. Multithreading is commonly employed in applications requiring simultaneous

operations performed in parallel. Due to the existence of multiple processes accessing

the same resources at the same time, proper management is a requirement to ensure

that shared resources are being accessed safely, avoiding common issues present in fast

parallel processes such as race conditions and deadlocks [94, 17]. For this implemen-

tation, in the graphical user interface (GUI) and data collection program established,

multiple threads are instantiated to handle user input, and background processing,

keeping the interface responsive, necessitating the usage of multi-thread operations.
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The data collection program code serves the following functions: A data collection

system is established, aimed at communication between distinct devices within the

experimental setup and the main computer independently. More specifically, devices

that the program communicates with are the linear actuator and power supply at a

baud rate of 115200 baud and the force sensor at a baud rate of 230400 baud, rep-

resenting the default rate at which aforementioned devices communicate over serial.

Data from devices at a lower baud is interpolated to match that of devices at higher

baud rates at each sampling time.

The initialization of the program involves instantiating the configuration of the

data collected within a database to organize collected data efficiently. In the presented

data collection system, structured query language (SQL) is utilized for the storage and

organization of collected data within the database, established using the relational

database management system, MySQL. Upon initialization, the program establishes

connections to the locally hosted MySQL server using Python connectors, providing

a repository for storing collected data. The option for users to create a new database

or append to existing databases is provided. Within each created database, data is

organized into tables, initialized upon selection of said database, for the organization

of data from each device.

Each table within the database is structured to accommodate specific data at-

tributes and types. The table pertaining to information gathered from the force

sensor contains the measured force values and the respective timestamps of data

collection from the device. In a similar fashion, relevant parameters to the linear

actuator’s operation such as absolute position, position command setpoint, velocity

and acceleration are stored in the table associated with the linear actuator device.

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

Applied voltage to the MR damper may be obtained from the KORAD programmable

power supply. The relevant measurements that may be recorded from this setup are

listed in table 3.2.

Measurement Device Units

Position Linear actuator m

Velocity Linear actuator m
s

Acceleration Linear actuator m
s2

Time Stamp Linear actuator s

Force Force sensor N

Time Stamp Force sensor s

Applied Voltage Programmable power supply V

Applied Current Programmable power supply A

Time Stamp Programmable power supply s

Table 3.2: Values measured from the experimental setup.

To interact with the database and perform data storage operations, the program

utilizes SQL queries executed through MySQL connectors. These queries create the

organizational structure within each database, insert and or delete data as required,

and manage database transactions based on the ongoing data collection activities.

Data collected from each device is inserted and modified within their respective tables

using SQL queries. By default, the process is designed to incorporate mechanisms

for batch data insertion to optimize efficiency, more specifically, the throughput and

scalability in processing. Batch queries reduce the overhead associated with individual

data insertions.
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The program utilized a predefined class, or a user-defined constructor for objects

in object-oriented programming languages such as Python, for each device, encapsu-

lating functionalities specific to their operation. The object instantiated by the lin-

ear actuator class orchestrates interactions with the linear actuator device. Within

its initialization method, it configures the GUI elements necessary for user interac-

tion. The object instantiated manages serial communication with the actuator device,

utilizing threading to facilitate concurrent data retrieval and user interface respon-

siveness. In terms of functionality, it implements the program capability for reading

actuator operating variables and parameters in real-time, toggling and configuring

actuation motion profiles, and recording data to the database. A visual of elements

from the GUI is depicted in Figure 3.8.
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Figure 3.8: GUI display for controlling and readings from the Linear actuator,
featuring elements for connection, data-streaming, motion control and recording

data from all synced/connected devices.

Similarly, the force sensor and power supply classes encapsulate functionalities

relevant to the force sensor device readings and applied voltage readings. As detailed

for the linear actuator, the objects instantiated from these constructors establish se-

rial communication, configure GUI elements, and manage the continuous retrieval
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and storage of sampled data. Again, threading is required in this implementation as

well, to ensure non-blocking execution and real-time data acquisition while simulta-

neously maintaining GUI responsiveness. The constructors also include institutions

for updating the user interface with real-time data for observations. The GUI element

of the force sensor is depicted in Figure 3.9.

Figure 3.9: GUI display for readings from the Force Sensor, featuring elements for
connection, data-streaming.

As alluded to above, within the implemented data collection system, threading

orchestrates concurrent tasks and ensures the smooth operation of the data collection

process without blocking the user interface interactiveness. Operations such as com-

munication with the connected devices, enabling parallel execution of data retrieval

processes, and user interface displayed all rely upon proper management of shared

program resources through multithreading. In terms of the organizational structure
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of these sub-processes, in general, separate threads are instantiated for individual pro-

cesses with each device, which enables independent and asynchronous interactions.

A visualization of the initialization process of the controller and worker threads may

be seen in Figure 3.10.
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Figure 3.10: Flowchart illustrating the process of initialization and operation of the
controller and created worker threads.

For synchronization within the program, locks are utilized to ensure thread safety
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and minimize undesirable conditions such as race conditions and deadlocks during

concurrent access to shared resources [170, 29, 87]. Due to the multi-device nature of

the setup, it necessitates coordination to avoid data corruption or inconsistencies due

to concurrent access. Instantiated lock objects serve as synchronization primitives,

which allow established threads to coordinate access to resources such as internal

data buffers for batch reads and storage, as well as scheduling sent commands. Locks

are utilized within the program to manage access to shared resources accessed con-

currently by multiple threads.

The primary purpose of this implementation is to maintain parallel access to

serial port while maintaining responsiveness to new inputs. Lock objects are further

employed to manage access to internal data structures: for example, internal buffers

for storing incoming data from the devices. Internal buffers, ie. the data reading

method detailed within the linear actuator constructor are preserved by the serial

lock object, acquired prior to accessing and modifying the buffer to prevent data

corruption from concurrent accesses. This process may be visualized in Figure 3.11.
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Figure 3.11: Reading process. Items read from the serial ports are filtered through
regular expressions for key information, where it is then appended to a buffer. As
the serial port reading process is FIFO, in the scenario where the read information
is deemed incomplete, the partial variables are saved and appended to the start of

the next iteration.

More specifically on the operation of sub-processes within the program, for the

object instantiated by the linear actuator class, upon establishing the serial connec-

tion with the actuator device, a dedicated thread is initiated to continuously retrieve

data from the serial port, in which the linear actuator device continuously streams its

readings. This sub-process operates independently in the background and periodically
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checks for and stores incoming data in batches, updating internal buffers accordingly.

Stored data is discarded on a FIFO basis, under the assumption that the option for

data storage is not toggled within the main thread. The main thread remains respon-

sive during this process which primarily serves to maintain the responsiveness of GUI

elements Sub-processes are also created to facilitate pre-set excitation commands for

the actuator.

In a similar process with objects instantiated by the force sensor and power supply

constructor, continuous data reading is facilitated while maintaining the responsive-

ness of interface elements. Upon connecting to the device, a separate thread is instan-

tiated to handle retrieval operations, updating the internal buffer from sensor reading

and queuing data for processing.

Overall, threading ensures efficient utilization of system resources through parallel

execution. Decoupling data retrieval operations from the main thread, the system can

allocate processing resources more effectively, and retain the capability to handle user

inputs separately. Overall, the program instantiates instances of instantiated objects

from defined constructors within the Tkinter application, which governs the inter-

action with its respective devices, as well as facilitates data collection and database

recording.

Moving forward, the system data collection pipeline lays a foundation for sub-

sequent experimentation and analysis in the following chapters, where the acquired

data will be subjected to be employed to train and validate a model developed based

on the PINN methodology.
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Chapter 4

Surrogate Modelling and System

Identification

This section contains excerpts from a review article by the primary author, which has

also been published on arXiv pre-prints, available as reference: [158]. As of writing,

the review article has completed the review process with the Expert Systems with

Applications (ESWA) Journal by Elsevier, available as reference: [157]

In recent years, PINNs have emerged as a paradigm for the solution of differential

equations. This is, in part, due to the universal approximation capabilities of NNs,

which have been shown in the literature to be effective for approximating complex

functions. The universal approximation theorem, as proven in the work of Hornik

and colleagues [43], states that an NN is capable of approximating any continuous

function to an arbitrary precision, for a sufficiently large quantity of neurons in its

hidden layers [83].

Their approximative capabilities have naturally been extended for identifying the

solutions to differential equations, as illustrated in the work of Lagrais and colleagues,
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who initially conceptualized the idea [69]. As in many real-world scenarios, the physi-

cal parameters of a system are often challenging to directly measure or quantify [171].

Therefore, the specific implementation considered in this study employs the use of

PINNs as a solution to the parameter estimation task via the integration of governing

ODEs delineated by the modified Bouc-Wen model for the MR damper.

This section, building upon the initial work in the area conducted by Raissi [109],

as well as many other authors in the domain, explores the application of PINNs within

the context of identifying solutions to differential equations [18, 49, 110, 109]. More

specifically, the methodology involves utilizing PINNs to discern optimal physical

parameters that effectively describe and characterize the system. The utilization of

NNs is advantageous due to their inherent ability to be configured as inverse models

[76], which may efficiently learn and approximate the values of parameters of physical

importance through optimization. This approach aligns with the inherent capability

of NNs to adapt and generalize patterns from data, which is conventionally performed

through the minimization of discrepancies between their predictions and the training

dataset, and extends this capability to handle additional parameters with inherent

physical meaning. Overall, it is the objective of this research to contribute to the

growing domain of applied machine learning in physical systems by employing the

developed network architecture to estimate and fine-tune the various parameters of

parametric models, demonstrating proof of concept, as well as the validity of this

approach for system identification.
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4.1 Physics-Informed Neural Networks Applied to

Non-linear Dynamic Systems

It should be noted that various authors have already recognized the potential of PINNs

for parameter estimation and surrogate modelling and have applied it to diverse

engineering applications [100, 143, 145, 163, 171, 89]. This application of PINNs for

identifying the solutions to inverse problems has gained traction due to the inherent

challenges associated with the complexity of models, for example, such as the modified

Bouc-Wen model for MR dampers.

More generally, the challenge of parameter estimation is commonly formulated as

an inverse problem, wherein the objective is to infer the parameters of a given model

based on observed data [144, 84]. For a system defined in domain Ω, with unknown

physical parameters θp the PINN establishes a surrogate solution to the ODE solution,

u(x), as ũ(x; θn) ≈ u(x), for an input x ∈ T . The NN parameters θn represent the

set of weights and biases employed to calculate ũ.

This surrogate solution is optimized through a loss function that restricts the

NN solutions to satisfy the physics imposed by the ODE and is applied by enforcing

the solution u on points sampled from the domain. The training data set T ⊂ Ω is

typically comprised of separate sets, which are fed into the NN independently [110, 84].

Sets typically include the points within the domain Tf ⊂ Ω, and additionally sampled

observed points Ti ⊂ Ω. The intuition is that the optimized solution should conform

to both the ODE and the data observed. Restrictions to the network are typically
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imposed, as mentioned in Section2 as the weighted sum of the MSE loss or L2 norm:

L(T ; θp, θn) = λphysLphys(Tf , θp, θn) + λobservedLobserved(Ti, θp, θn), (4.1.1)

for weights λphys and λobserved, whereby the optimal parameters, θ∗p, θ
∗
n desired may

be extracted by minimizing the loss function.

θ∗p, θ
∗
n = argmin

θp,θn

(L(T ; θp, θn)) . (4.1.2)

Recurrent Neural Networks

A popular deep-learning architecture popular within the community is the RNN.

RNNs have been prevalent since their inception due to their capabilities in processing

sequential data: taking into account the context of the previous inputs in a sequence

[122, 93]. For time t, information from the previous time state, h(t−1), is passed along

with the conventional input data x(t), as the inputs to a new time state, thereby

enabling the network to have access to, and incorporate information from previous

inputs into its current processing at time t. RNNs are inherently designed to encode

temporal invariance and have been well-established in literature for tasks involving

temporal dynamics and relationships [93].

Conventional RNNs map some input x(t) at time t to an output y(t) through

possessing information from both the input space x(t) and prior time state h(t−1), also

known as the hidden state. An illustration of the RNN architecture may be seen in

figure 4.1 (A).
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(A)

(B)

RNN Cell

RNN Cell

Input:
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Output:
(y)
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(g)
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h(t-1) h(t)

Figure 4.1: An illustration of (A) the general Recurrent Neural Network
architecture, and (B) the inner computational processes within each RNN cell.

The mathematical representation of an RNN and its respective computational

procedures is presented as follows. At time t, for a given input x(t) and prior hidden
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state h(t), the hidden state of a cell is presented as:

z(t) = Whhh
(t−1) +Whxx

(t) + bh, (4.1.3)

where Whh and Whx represent the weight matrix associated with the prior temporal

state, and current input state respectively, and bh represents the associated bias for

the current hidden state. A non-linear activation function g (.) is applied element-wise

to produce the hidden state of the cell:

h(t) = g
(
z(t)
)
. (4.1.4)

Following this, the output at time t, y(t), may be represented as:

y(t) = g(Whyh
(t) + by), (4.1.5)

whereby Why and by represent the associated weights and biases respectively. In

essence, the activation function g (.) is applied to a linear transformation of the input

and prior cell state in order to produce the cell state output [93]. The computational

process outlined in equations 4.1.3 , 4.1.4, and 4.1.5 is visually represented in Figure

4.1 (B).

As a result of connections from prior time states, the NNs have the capability to

maintain hidden cell states with information from the previous time, thereby granting

the ability to capture temporal dependencies. In addition, RNNs were selected, as

the network and their variants, such as the LSTMs and GRUs, have the flexibility in

processing and outputting sequences of varying lengths, which extends their usefulness
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in processes involving data with dynamic lengths, a common property in real-world

monitoring applications.

4.1.1 System Identification and Surrogate Modelling

The identification of variables and parameters in nonlinear structural systems is facili-

tated by the incorporation of physics-based terms as regularizers, which may be specif-

ically designed for different aspects of the system. Regularizers provide a favourable

condition for facilitating generalization, as well as a bias for adherence to known

physics in nonlinear systems with external excitations. An issue that conventional

modelling techniques often encounter, in certain nonlinear structural systems is the

presence of latent variables, that is, variables that are not directly observable but

influence the system’s dynamic response.

Conventional identification methods often encounter issues in the presence of la-

tent variables, resulting in limitations in their predictive capability. For example,

a rather prominent method in literature, the Sparse Identification of Nonlinear Dy-

namical systems (SINDy) has been demonstrated to have great success in system

identification for nonlinear systems [12]. However, SINDy requires prior knowledge

of the latent variables to act as the ground truth on which to base the identified

model, and without this knowledge, the method’s effectiveness is significantly com-

promised. Thus, this issue emphasizes the requirement for approaches that can infer

and incorporate latent variables without requiring extensive prior information.

Utilizing PINNs, the approach outlined in this section addresses this issue with

latent variables, enabling the identification and simulation of said variables, as well

as the use of said latent variables to construct a training curriculum. This curriculum
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guides the training process of the NN, allowing the network to learn and refine its

predictions progressively.

System Model, Setup and Data The physics-based knowledge to be incorpo-

rated within the PINN developed is the non-linear, time-invariant dynamic model

presented as follows. The Bouc-Wen model of hysteresis utilized herein is a promi-

nent example of a model that captures dynamic hysteretic behaviour; where the

output does not follow the input path directly but depends on the history of past

inputs, leading to a looped response curve seen in Figures3.5. For a mass m and

input excitation µ(t), the damped system of ODEs from an MR damper modelled by

a modified Bouc-Wen model may be expressed by the following equations adapted

from Section 2.

mẍ+ c1ẏ + k1x = µ (4.1.6)

ż = −γ |ẋ− ẏ| z |z|n−1 − β (ẋ− ẏ) |z|n + A (ẋ− ẏ) , (4.1.7)

ẏ =
1

c0 + c1
(αz + k0 (x− y) + c0ẋ) , (4.1.8)

For the dynamics governed above, and in a discrete sequence with N samples,

parameters c0 ∈ RN , c1 ∈ RN , and α ∈ RN represent the voltage-dependant parame-

ters of the MR damper, and are characterized based on the efficient voltage u ∈ RN ,

characterized by the following equation:

u̇ = −η(u− v). (4.1.9)
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Equations 4.1.9 effectively represent a low-pass filter. For a response time of 15 ms,

as specified in the technical specifications of the MR damper, an η value of 66.6 s−1

representing a time constant of 1 ∗ τ is employed [20]. The PINN established serves

to approximate the solution of the ODE with given initial conditions:

x(t0) = x0, y(t0) = y0, z(t0) = 0, v(t0) = v0. (4.1.10)

where initial conditions vary by test case. For parameter estimation, the above system

of ODEs may be expressed in a condensed form as:

mẍ+ f(x, y; θx) = µ(t), (4.1.11)

ẏ = g(x, ẋ, z; θy), (4.1.12)

ż = h(x, z; θz), (4.1.13)

where items θx, θy, θz represent the physical parameters to be identified within the

Bouc wen model of hysteresis. Where predictions regarding the system behaviour may

be made based on observations of external displacement, velocity, and acceleration

x, ẋ, ẍ, as well as an externally applied voltage v and excitation µ.

The input data I = [t, Fin, uin] ∈ RNx3 for the network consists of sampled colloca-

tion points. Collocation points, T , also referred to as residual points in the literature

[84], represent the measured data points made available to the PINN to serve as

points to identify the particular solution, whose purpose is to assist with identifying
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the exact solution that also fits with the ODE simultaneously.

Sampling these residual points is performed in accordance with varying method-

ologies., of which, the most commonly used techniques include methods such as eq-

uispaced uniform sampling and uniformly random sampling [156, 84]. In literature,

these aforementioned methods have been used extensively and generally perform ad-

equately in many scenarios [156].

Selecting collocation points for PINNs presents several difficulties, particularly

when solutions exhibit steep gradients [84]. The primary challenge lies in ensuring

that these points are adequately distributed across the domain to capture the de-

tails of more complicated behaviours in the solution. As a direct result of numerical

instability introduced by steep gradients and phenomena such as aliasing, a denser

concentration of collocation points is often necessary for regions with steep gradi-

ents to accurately characterize the exact solution [84, 104, 156]. Of note, Lu and

colleagues proposed a residual-based adaptive refinement method for selecting collo-

cation points, which aims to address these challenges by adaptively refining the points

based on the solution’s residuals [84]. However, for the purposes of this study, a more

straightforward uniformly equispaced sampling method was employed.

Model Architecture Inspired by the work of [82], an extension for the MR damper

identification process is presented herein, designed for the extraction of physical pa-

rameters from a set of input data via a split identification process. More specifically,

the prediction of forced response and latent response.

This approach employs the use of fragmented networks, with each individual net-

work utilized for the identification of differing physically relevant variables, which

allows for modularity. This specialization allows for a more flexible identification of
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variables as individual networks may be optimized and fine-tuned for the specific char-

acteristics and dynamics of their assigned domains. This is advantageous as the scale

of the problem is uncertain, and the added flexibility may be ideal for facilitating con-

vergence [82]. As will be discussed further in the limitation section, PINNs have been

shown in the literature to have struggled with multi-scale problems, chiefly due to

challenges in resolving fine-scale features, balancing contributions from varying scales

in the loss function, handling stiff differential equations, and the high computational

resources required for complex network architectures.

The structure of the implemented workflow utilizes several RNNs operating in

parallel. For this implementation, RNNs were chosen over the more prominent LSTM

networks chiefly due to their relatively more straightforward architecture, and ease of

implementation. This property is advantageous when rapid prototyping and iteration,

such as the case with hyperparameter tuning strategies, are necessary.

Within this framework, the physical model parameters that require identification

are embedded as additional parameters. These parameters are optimized through

a training process that leverages a physics-informed loss curriculum, to be detailed

later in this section.

A visualization of the workflow of this program is shown in Figure 4.2. The

identification process is divided into multiple fragmented networks. Each network is

designed to handle a subset of the variables within the MR damper model.
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Figure 4.2: An illustration of (A) the general Recurrent Neural Network
architecture, and (B) the inner computational processes within each RNN cell.

The NN aims to approximate the individual equations of the system of ODEs

modelling the MR damper, defined by NN parameters: {θp, θq, θr}. For a given

input, the network approximates the following equations: x̃ = Nx(I, θp) ∈ RN , ỹ =

Ny(I, θq) ∈ RN , and z̃ = Nz(I, θr) ∈ RN representing the dependent variables of

the system. Leveraging the universal approximation property, the NN function is

expressed as an approximation for the solution to a system of ODEs. The universal

approximation theorem originally established for feedforward NNs states that an NN

with a single hidden layer can approximate any continuous function to any desired

accuracy, given sufficient neurons in the hidden layer [42]. As an extension of this

initial work, the proof for universal approximation has been extended to RNNs in
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the work presented by Schafer and colleagues [123]. This is significant as the proof

of universal approximation provides a theoretical guarantee that RNNs employed

have the capability to approximate any continuous function to any desired degree of

accuracy.

Normalization : For data preprocessing in ML algorithms, data normalization is

widely employed to scale input and target data features to a comparable level, the

primary purpose of which is to enhance the convergence of the learning process and

balance the effect of multi-scaled features. Data normalization has been extensively

studied and has seen numerous implementations in conventional, data-driven NNs.

Both the input and target features are normalized to facilitate convergence during

training, then subsequently de-normalized to obtain the original scale for the desired

results [45]. Z-score normalization is amongst the most commonly utilized methods

for normalization, being a statistical technique that transforms the data to have a

mean of zero and a standard deviation of one [102].

This preprocessing step is necessary such that relevant individual features con-

tribute to the learning process, as opposed to the learning process being dominated

by a single feature as a result of differences in their original scale. Mathematically,

Z-score normalization is defined as follows:

X ′i =
Xi − µ
σ

, (4.1.14)

where Xi is the i-th element of the original feature, X ′i is the normalized value, µ is

the mean of the feature, and σ is the standard deviation of the feature.

With the case of conventional NNs and deep learning, normalization of both inputs

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

and target data serves to stabilize the training process when employed with many

gradient descent type optimizers, improving convergence rates [46].

However, implementation in PINNs remains scarce, due to the inherent physical

meaning attached to data, whereby alterations to the data based on statistical dis-

tribution would not be appropriate, as it would result in the loss of said physical

meaning inherent. As is the case in PINNs, the physical significance of the inputs is

required in the application of governing equations-based learning biases fundamen-

tal to the PINN framework. As such, normalizing inputs in PINNs results in severe

inaccuracies due to the nature of the framework itself.

While early implementations of PINNs did not rely on the normalization of data

due to the nature of their specific implementations, a more pragmatic approach

adopted by certain researchers, and in this research, entails normalizing features sub-

sequent to the input layer, which effectively treats normalization as a hidden layer

operation [111]. Thus, the network simultaneously preserves the physical meaning of

original input values, while still providing some of the benefits of normalization in

providing convergence and consistency across features during the training process. Ef-

fectively, based on the distribution of the training set, standard Z-score normalization

is performed without distorting the physical relevance of the inputs.

Although the method has been adopted, it should be noted that this implemen-

tation does have certain limitations. The target data remain unnormalized, which

results in potential issues depending on the expected scale of the output. If pre-

dicted outputs vary significantly, the optimization process may encounter difficulty in

achieving desired accuracy and convergence, as a result of discrepancy in magnitudes.

This effect is more pronounced in multiscale problems whereby outputs are expected
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to represent physical variables with vastly different scales.

A depiction of the method is illustrated in Figure 4.3.

Figure 4.3: Depiction of the normalization layer employed to normalize inputs for
processing by the NN, while maintaining the physical meaning of input data, as

adapted from [111]

It is also noted that it is theoretically possible to normalize both inputs and out-

puts and subsequently propagate the variance and mean of said distributions through

the network, as has been demonstrated in the work of Xu and colleagues [160]. How-

ever, the approach outlined proves unfeasible in the specific context of this implemen-

tation, due to the presence of latent, unobservable target variables. Latent variables

present a challenge in the determination and utilization of mean and variance of la-

tent distributions. Consequently, the lack of availability of these statistical measures

prevents the effective normalization of outputs, thereby complicating the implemen-

tation of normalization techniques. It is hypothesized, based on prior works on the

modified Bouc-Wen model [136, 82], that resultant outputs are of consistent scale,
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and that the lack of output normalization does not pose significant issues. Nonethe-

less, this method’s efficacy is limited, and the efficient normalization techniques for

PINNs remain a promising area of future exploration.

Approximation via Neural Network and Automatic Differentiation Ap-

proximate values of response and latent response are utilized to inform the training

curriculum through physics-informed loss components. An iterative process is fol-

lowed, adjusting the network parameters and physical parameters respectively to

minimize aforementioned loss components.

A sequential initialization strategy is implemented consistent with the work of Liu

and colleagues [81], and makes use of information gained from prior training iterations,

ensuring continuity in the learning process and building upon previous knowledge

progressively. The process of updating physical parameters based on previous batch

predictions also contributes to the stability of the training process. More generally,

the identification process maintains a connection between consecutive training steps,

which can lead to more coherent and consistent parameter updates.

The optimization of both the NN parameters and the unknown structural parame-

ters is performed with the Adaptive Moment Estimation (ADAM) optimizer, initially

introduced by Kingma and Ba [62]. ADAM is an optimization algorithm which adap-

tively adjusts learning rate of parameters during training through estimates of the

first and second moments of gradients. The optimizer adjusts the learning rate based

on the average of the gradients (first moment) and the uncentered variance (second

moment) [62].

Automatic Differentiation (AD) is conventionally utilized to compute the gradients

of loss for a tested set of network parameters, during the backpropagation process

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

[93]. It is emphasized here, as in addition, AD is also employed to capture gradients

of resultant predictions with respect to inputs, typically time, effectively calculating

the derivative of certain physically relevant variables with respect to time. AD is

a computational technique designed to efficiently and systematically compute the

derivatives of functions and is widely used in deep learning, through applying the

chain rule of calculus to each elementary operation within the computational graph

of the NN, which itself is effectively a function composed of simpler operations. The

process of the optimization process employing AD may be outlined as follows:

• Forward Pass: The forward pass involves computing the outputs of the NN,

including output at each layer level. Condensing the representation of desired

parameters (ie. weights, biases, physical parameters) as θ, the output of each

layer may be represented as follows:

z(1) = θ(1)x,

a(1) = σ(z(1)),

...

z(L) = θ(L)a(L−1),

ŷ = σ(z(L)).

• Loss Function: A loss L is defined based on observations and deviations from

known physics. Additional details on the derivation of the loss will be presented

in the subsequent sub-section.
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• Backward Pass: AD computes the derivatives of the output with respect

to each input by propagating gradients backward through the network layer.

Initially starting from the loss L, the gradient of loss with respect to the output

may be obtained:

∂L
∂ỹ

This is propagated backwards throughout the network. For the output layer,

the gradient is:

δ(L) =
∂L
∂ỹ

∂ỹ

∂z(L)
=
∂L
∂ỹ
· σ′(z(L))

∂L
∂θ(L)

=
∂L
∂ỹ

∂ỹ

∂z(L)
∂z(L)

∂θ(L)
= δ(L)(a(L))T

and for prior hidden layers l, where l = {L− 1, L− 2, . . . , 1}:

δ(l) = (θ(l+1))T δ(l+1) · σ′(z(l))
∂L
∂θ(l)

= δ(l)(a(l−1))T

• Update Parameters: Relevant parameters are updated in the direction that

minimizes the loss function. This iterative process is typically carried out using

optimization algorithms like gradient descent or its variants:

θ(l) ← θ(l) − η ∂L
∂θ(l)
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where σ is the activation function, and σ′ is the derivative of the activation function.

η represents the learning rate, and L is the number of layers in the network.

AD requires a single forward pass and backward pass through the network to

compute the necessary derivatives with respect to prior operations in the network

irrespective of input dimensionality. This efficiency is pertinent when dealing with

high-dimensional inputs, where methods such as finite difference would be slow and

computationally expensive.

Loss Function The above equations outlined are in alignment with the original

formulation by Raissi [110], whereby the network is trained to minimize discrepancies

between predicted time derivatives of solution space, with the calculated value of time

derivatives utilizing governing differential equations:

The physics-based loss functions are defined, and subsequently minimized by the

network. The loss function is defined for each sample point i of total samples taken

N for the sequence:

Lobserved =
1

N

N∑
i=1

[xi − x̃i]2 +
1

N

N∑
i=1

[ẋi − ˙̃xi]
2 (4.1.15)

Lobserved consists of two primary components designed to guide the network to-

wards accurate predictions. The first component, 1
N

∑N
i=1[xi− x̃i]2 , focuses the opti-

mization algorithm on minimizing the squared differences between observed response

values xi and their corresponding predictions x̃i. Complementing this, the second

term, 1
N

∑N
i=1[ẋi− ˙̃xi]

2, penalizes deviations in predicted derivatives ẋi from observed

derivatives ˙̃xi, and in general ensures that the network adheres to the observed forced

response dynamics of the damper system. In addition to enforcing observed responses,
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the ODE governing the behaviour is also enforced, represented as:

Lz =
1

N

N∑
i=1

[
( ˙̃zi)−

(
−γ
∣∣ ˙̃xi − ˙̃yi

∣∣ z̃i |z̃i|n−1 − β ( ˙̃xi − ˙̃yi
)
|z̃i|n + A

(
˙̃xi − ˙̃yi

))]2
,

(4.1.16)

Ly =
1

N

N∑
i=1

[
( ˙̃yi)−

(
1

c0,i + c1,i

(
αiz̃ + k0 (x̃− ỹ) + c0,i ˙̃xi

))]2
. (4.1.17)

The equation 4.1.16 presented defines the loss based on the explicitly defined

equation governing rate of change of hysteretic displacement, denoted as Lz, This

component penalizes the discrepancy between the derivative of the hysteretic dis-

placement and a reconstructed form of the differential equation that represents the

same derivative. For each sample i in a sequence of N samples, the loss is calculated

as the squared difference between z̃i and the expression involving physical parameters

and the predicted displacements x̃i, ỹi, and z̃i, with hysteretic loop characteristics

governed by the parameters γ, β, and A. This is in accordance with equation 2.2.10

as detailed in Section 2.

A similar process was followed for the loss function represented by the equation

4.1.17, for intermediary displacement, corresponding to the original equation 2.2.11.

The function Ly penalizes deviations between the derivative of intermediary displace-

ment and the reconstructed differential equation that models this derivative. More

specifically, the loss measures the squared difference between ˙̃yi and the terms in-

volving parameters: αi, c0,i, c1,i, k0, k1 as well as the predicted variables. Further

to this, an additional component was applied to enforce adherence to observations in
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damping force:

Lresponse =
1

N

N∑
i=1

[
Fmeasured,i − (αiz̃i + c0,i

(
˙̃xi − ˙̃yi

)
+ k0 (x̃i − ỹi) + k1x̃i)

]2
,

(4.1.18)

where the unction Lresponse penalizes the residual between the measured force, Fmeasured,i,

and the reconstructed predicted force.

The optimization process minimizes the weighted sum of component losses from

various contributions and may be expressed as:

Θ∗phys,Θ
∗
net = argmin

Θphys,Θnet

(λobservedLobserved(θx, θp) + λyLy(θy, θq) + λzLz(θz, θr)+

λresponseLresponse(θx, θy, θz,θp, θq, θr)) , (4.1.19)

where Θphys = {θx, θy, θz} and Θnet = {θp, θq, θr} represents the parameters to be

determined through the optimization algorithm. The weights λx, λy and λz allow for

tuning the model to prioritize certain component losses, which serves to ensure that

the network balances adherence to physical principles while fitting the data.

4.1.2 Hyperparameter optimization

Hyperparameter optimization is often resource-intensive in evaluating the objective

function over the full range of specified parameters, involving training the model and

calculating the metric for each set of hyperparameters [28]. This process becomes

increasingly cumbersome with an increasing number of hyperparameters and compu-

tationally expensive models.
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As a result, manual execution of this process becomes impractical. While grid

search and random search offer some improvement over manual tuning by automating

the train-predict-evaluate cycle within a predefined hyperparameter space, they still

exhibit inefficiencies [8]. These methods cannot intelligently select the next set of

hyperparameters based on past evaluations. Both grid and random search operate

without taking advantage of knowledge gained from prior assessments, which leads

to substantial time expenditure on evaluating sub-optimal hyperparameters.

Bayesian optimization approaches the optimization problem by formulating it as

a probabilistic model [30], with typical implementations using a Gaussian Process

(GP) or Tree-structured Parzen Estimator (TPE) model, to represent the unknown

objective function [30]. The surrogate model gives the probabilistic estimation of the

objective function and its uncertainty within the hyperparameter space.

In this implementation, the TPE is employed to estimate the objective function

within the hyperparameter space. The TPE involves the identification of two density

functions. Through this, a probabilistic model is constructed to guide the search for

optimal hyperparameters as follows:

1. The TPE initiates by randomly selecting a subset of hyperparameters and

subsequently arranging them according to their performance scores [152, 99].

Through the random sampling of hyperparameter sets from predefined priors,

this approach provides an initial approximation of regions within the search

space that yield proficient models.

2. Subsequent to the initial sampling from our priors, the hyperparameter set un-

dergoes division into two distinct groups based on predefined quantiles. Specif-

ically, a quantile threshold γ, where γ ranges from 0 to 1, is applied to partition
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the hyperparameter search space. Combinations resulting in models performing

within the top γ∗100% of all previously generated models form one distribution

denoted as l(x), while the remaining hyperparameter combinations constitute

another distribution designated as g(x) [9, 152, 99]. Thus for a set of hyper-

parameters θ the TPE defines the probability distribution utilizing probability

densities l(θ) and g(θ):

p(θ|L) =


l(θ) if L < L∗

g(θ) if L ≥ L∗
(4.1.20)

where L∗ represents the threshold loss corresponding to the quantile threshold.

3. Applying Parzen Estimators, the two groups, denoted as g(x) and l(x), un-

dergo modelling into estimated densities using kernel density estimators. To

guide the selection of the next hyperparameter configuration for evaluation, the

Bayesian optimization process incorporates the Expected Improvement (EI) ac-

quisition function, which evaluates the potential improvement over the current

best-observed value and decides the next set of hyperparameters to evaluate.

The identification of hyperparameters with the highest expected improvement

is evaluated in accordance with the ratio of g(x) to l(x), as illustrated in the

work of [9].

EI(x) ∝
(
γ +

g(x)

l(x)
(1− γ)

)−1
(4.1.21)

whereby the point x is where the algorithm expects the highest improvement

in the objective function.

98

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

4. Following the selection of each hyperparameter configuration, the chosen set

of hyperparameters that maximizes the EI undergoes evaluation with its per-

formance metrics with respect to the objective function recorded. The model

is updated accordingly to the newly acquired observations, incorporating the

latest performance data, an iterative process that continues for a predefined

number of iterations or until the convergence criterion is met.

4.2 Results and Discussion

The results from employing the PINN approach outlined in Section 4.1 to estimate the

physical parameters of a modified Bouc-Wen model are presented in this section. The

established framework was implemented using PyTorch within a Python environment.

Table 4.1 presents the parameters determined through the aforementioned processes.

From the above process, the best hyperparameters refined through this Bayesian

optimization strategy with TPE are returned as the optimal configuration for the

given problem. The hyperparameter optimization of the NNs yielded a series of ad-

justments across various parameters. Using the Optuna library, the hyperparameters

are refined via Bayesian optimization to identify optimal configurations for each net-

work. For the NNs employed, the learning rate was set to 0.003083, the number

of layers to 4, and the number of neurons per layer to 116. The dropout rate was

adjusted to 0.2995. Other parameters included a weight initialization method set to

Xavier initialization [66]. The activation function was set to the hyperbolic tangent,

which is typical to PINNs [110], and the optimizer type was configured as the ADAM

optimizer. Each network was trained for a maximum of 500 epochs to allow sufficient

iterations for the learning process, with the execution terminated prior in the case all
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Parameter Value Units

αa 9.6341e+01 kN
m

αb 1.2555e+02 kN
m
· V

β 8.2089e+03 m−2

γ 8.1997e+03 m−2

A 2.3086e+01 −

c0a 1.8059e+01 kN ·s
m

c0b 1.7504e+01 kN ·s
m
· V

c1a 9.8029e-01 kN ·s
m

c1b 2.6244e+01 kN ·s
m
· V

k0 9.7866e-01 kN
m

k1 1.4645e-01 kN
m

n 1.9928e+00 −

Table 4.1: List of parameters and their corresponding values, as determined by the
PINN parameter estimation algorithm outlined in Section 4.1.
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parameters and composite loss have reached convergence (¡1% change). Weights for

the composite loss function were set at λobserved = 1, λresponse = 0.001, λy = λz = 10.

The explanation for this is that the weights of the latent variables are prioritized due

to lacking training data [82]. Furthermore, the weight of the response is set as such

due to the scale of the output data being inconsistent with the rest of the loss values.

Figure 4.4 demonstrates the total loss values of the number of trials run for Bayesian

optimization.

Figure 4.4: Hyperparameter optimization history utilizing Bayesian optimization.

In addition to NN hyperparameters, learning rates for added physical parameters

are also fine-tuned. Custom-added parameters representing physical values require

separate adjustments of their learning rates compared to the rest of the NN parame-

ters, due to the nature of these parameters as representations of physical quantities.

Parameters may exhibit different scales or importance, and it would thus be advan-

tageous to mitigate the risk of overshadowing the influence of other NN components

that might dominate training dynamics under uniform learning rate settings. The
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initial learning rates for these parameters are summarized in Table 4.2

Parameter Learning Rate Parameter Learning Rate

β 0.0671615 γ 0.0671615
c0,a 0.000114872 c0,b 2.63448e-05
c1,a 0.000389324 c1,b 0.0234330
αa 0.000102989 αb 1.92305e-05
k0 5.03670e-05 k1 7.96682e-05
A 0.000281767

Table 4.2: Learning rates, as determined from hyperparameter optimization,
tabulated for physical parameters.

The validation process assesses how well the model generalizes to novel scenarios

and unseen variations in experimental conditions; Testing the model’s ability to accu-

rately predict force-time, force-velocity, and force-displacement relationships across a

spectrum of applied voltages and applied forced excitations. Comparisons were drawn

between the model’s predictions derived from the PINN framework and observations

obtained from the experimental setup. Testing was performed on varying unseen data

collected from the experimental setup, which comprises an applied voltage range of

0V to 4.003 and a velocity ranging from 0 cm/s to 10.23 cm/s for constant acceleration

cyclical motion. The consistency between the PINN estimates and the experimental

data is quantified by the Root Mean Square Error (RMSE) and Mean Absolute Per-

centage Error (MAPE) values. The formula for calculating the error metrics based
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on observed force Fi and predicted force F̃i is given as:

RMSE =

√√√√ 1

N

N∑
i=1

(Fi − F̃i)2 (4.2.1)

MAPE =
1

N

N∑
i=1

∣∣∣∣∣Fi − F̃iFi

∣∣∣∣∣× 100% (4.2.2)

A sample of collected data is plotted, visualizing the effect of increasing the

speed of actuation and its effects, illustrated through the force-velocity and force-

displacement hysteresis curves in Figure 4.5a, and 4.5b.

(a) Hysteresis loop generated by predicted
physical parameters and observed values.

(b) Force-displacement plot generated by
predicted physical parameters and

observed values.

Figure 4.5: Hysteresis loop of measured behaviour. Plot generated via varying
actuation speed from 0.5291 cm/s to 2.672 cm/s.

The adherence of the predicted results to the experimental values suggests that the

model accurately is able to capture the non-linear characteristics, as well as the effects

of hysteresis and latent variables of the MR damper system. In addition, the effects of

applied voltage on MR dampers are studied in additional detail, as it is the primary

methodology by which MR dampers may vary their damping response. To further

validate the robustness of the estimated parameters, the force-time, force-velocity,
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and force-displacement relations were plotted at varying applied voltages. These

plots are shown in Figures 4.6 - 4.11, and compare the estimated values obtained

from the PINN framework against the measured data from physical experimental

setups across a variety of sampled tested voltages.

(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.6: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 0 V.

(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.7: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 0.6678 V.
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(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.8: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 1.6342 V.

(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.9: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 2.2703 V.
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(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.10: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 3.2046 V.

(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 4.11: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at an applied voltage of 4.003 V.

The comparisons indicate a general agreement between the estimated values and

the observed data, and to varying degrees, is evident across voltage levels tested. The

results are tabulated for varying applied voltage levels in Table 4.3.
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Applied Voltage [V] RMSE [N] MAPE [%]

0 2.4601 83.6179
0.1335 2.1637 76.6524
0.2671 2.3572 62.6252
0.3870 3.8462 67.1547
0.5342 2.7365 71.1235
0.6678 3.0275 63.1236
0.8013 2.8726 69.0563
0.8832 4.5472 43.9433
1.0684 3.1936 48.2712
1.1218 3.6295 31.9752
1.3355 4.4927 38.6336
1.4691 5.2365 33.2655
1.6342 4.7255 54.3958
1.7362 6.3927 29.8527
1.8697 6.1056 25.1946
2.0033 5.0275 28.9264
2.1368 6.3829 23.4808
2.2703 8.2628 19.0564
2.4039 7.9982 26.8462
2.5374 7.6292 27.2657
2.6711 9.2816 24.8185
2.8045 8.3452 22.3741
2.9378 7.6253 21.6938
3.0712 9.7643 23.5072
3.2046 9.9654 21.1348
3.3380 10.7523 19.5406
3.4713 9.1984 18.3841
3.6048 8.6745 22.7132
3.7382 11.0347 18.8519
3.8716 10.8765 20.1954
4.0030 9.5643 19.7382

Table 4.3: Measured MSE and MAPE values across varying applied voltages.

The predictions generated by the developed parameters generally aligned well with
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the response observed from the experimental setup. However, the model exhibited

varying RMSE and MAPE across the range of applied voltages. The general trend

indicated an increase in RMSE with increased applied voltage, which is to be expected,

due to the scaling effect increasing applied voltage had on the magnitude of force data.

With an increase in applied voltage, the magnitude of resulting resistive damping

forces also increases, resulting in a higher absolute value. On the other hand, MAPE

showed a decreasing trend from lower applied voltages, before stabilizing around a

percentage of 20% at an applied voltage of 2.1368, suggesting that the model’s relative

accuracy improved at higher voltages, even though the absolute error increased. The

behaviour is visualized in the Figure 4.12.

Figure 4.12: RMSE and MAPE with increasing applied voltage.

While the model demonstrated improvement in modelling responses at higher

applied voltage, it has encountered issues in accurately capturing sudden jumps or
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spikes in the data, as evidenced by plots depicted in Figures4.6 to 4.11. There exist

rapid changes in the resultant damping force, as observed in experimental force-time

graphs during movements. These responses were less pronounced with the prediction

of the model, leading to a lower maximum absolute value and a reduced range in the

predictions, indicating that while the model performed reasonably well in capturing

the overall trends in the dynamic behaviour, it falls short in modelling transient peaks

and dynamic responses accurately at higher voltages.

The discrepancy observed in prediction accuracy at varying voltage inputs, partic-

ularly the significant disproportionate deviation in capturing hysteresis at low voltage

inputs for MAPE, may be attributed to several factors inherent to both the physics

of the system and the limitations of the implemented machine learning approach.

At lower applied voltage, the response of the MR damper is relatively weaker,

making it more susceptible to external effects, with the effect emphasized at the

extremities of the stroke length. While the force measurements have been zeroed to

account for the initial offset force, the lower magnitude of response at the lower end

of input increases vulnerability to external influences.

A significant factor contributing to these discrepancies is the effect of the accumu-

lator within the MR damper. The force exerted by the diaphragm and compressed

nitrogen gas, especially at low velocities, low applied voltages and extended stroke

lengths examined in the study, becomes non-negligible. As explored in other, previous

publications on the subject, the influence of the accumulator is non-negligible at lower

speeds, applied voltage, and long stroke lengths [72, 75]. The interference outlined

has been attributed to the fact that systems involving pneumatics often have inherent

compliance or elasticity, due to the compressibility of the gas and the flexibility of the
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system components. With lower magnitudes of applied excitations, these compliant

elements absorb and transmit small forces which affect the piston’s response profile.

At a higher applied voltage, the overall damping forces and the dynamics of the sys-

tem become more dominant, and this effect is not as obvious, evidenced by relatively

lower MAPE values.

It is also evident that the model encounters challenges in capturing sudden shifts

in force effects such as abrupt changes in acceleration across all applied voltage lev-

els. A variety of factors may contribute; The model’s training primarily focused on

gradual transitions and continuous data. Sudden shifts in force, which may occur due

to unexpected external factors or rapid changes in experimental settings (ie. such as

brief delays in sending/receiving commands, jolts to the systems et cetera.) may not

be accounted for in established physics, nor collocation points selected. Consequently,

the model’s ability to generalize and predict accurately under such dynamic condi-

tions is compromised. The PINN framework, while robust in incorporating physical

laws into its predictions, may require additional specific collocation point selection

strategies to learn and adapt to rapid changes in regions of significant deviation due

to circumstances not predicted by known physical models, as have been explored in

the work of Lu and colleagues [84].

In experimental setups, measurements capture the transient spikes and peaks

that arise from abrupt changes in voltage or mechanical conditions imposed by the

experiment. A predictive model such as the model in this study smooths out these

transient effects due to filtering mechanisms inherent in their formulation and required

for numerical stability. In addition, the process of parameter estimation utilizing

PINNs emphasizes fitting the average behaviour or cyclic trends rather than capturing
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transient/extreme values seen in experimental data. This discrepancy primarily arises

from the optimization criteria used during parameter estimation, which while there

do exists component that minimizes loss with respect to data points, are outweighed

by the components that minimize the discrepancy in known ODEs with predictions

or are simply not selected at locations of concern.

Due to collecting data from devices of varying baud rates, data points gathered

during data collection are irregular in time, albeit with small time increments (¡0.005s)

between them. As a result, this introduces a degree of variability in the model inputs

and targets. Irregular sampling intervals lead to uneven distribution of data points

across the force-time domain, resulting in slight gaps or clusters in the dataset, and

a greater chance that data points are mismatched in terms of their positioning in the

time domain. This phenomenon renders it difficult to discern rapid changes in force

that occur between sparsely sampled points.

It is also important to note that the modified Bouc-Wen model, which serves as

the basis of physics-based regularization in this implementation, does not perfectly

capture the behaviours of MR dampers. The model has been shown to have inherent

limitations with respect to representing the damper’s response [116, 120, 148]. Due

to the fixed-form nature of the parametric model itself, certain complexities may not

be captured as well.

Despite these shortcomings, however, the use of PINNs has demonstrated its ca-

pabilities in capturing the overall dynamics of the MR damper across a range of

operating conditions. In addition, the framework’s flexibility allows for the adap-

tation of alternate systems for the characterization of their response. With altering

neural network parameters, data from a degraded or faulty system may potentially be

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

accounted for through purely data-driven adjustments to the neural network param-

eters, while simultaneously freezing previously identified physical parameters. The

flexibility of the PINN framework also enables its application to various types of

differential equations and physical models beyond the Bouc-Wen model.

4.2.1 Limitations of methodology and recommendations

This section details some of the limitations associated with this implementation of

PINNs.

The computational cost associated with PINNs is substantial due to the complex-

ity of the deep learning architecture backbone and the potential high-dimensional

parameter space involved. An issue that may be further exacerbated by the addition

of physical parameters within the optimization process. As shown in the literature,

despite the promise it has demonstrated, PINNs may not consistently outperform

traditional numerical analysis methods such as FE analysis, especially so for well-

established problems, in which said conventional methods have been extensively op-

timized [84].

The curse of dimensionality, as with conventional deep learning models, represents

a challenge for PINNs, as the computational cost of training increases exponentially

with the number of input dimensions. While PINNs offer a quick and pragmatic

approach to learning dynamics from high-fidelity simulators that are expensive to

run, this expedited learning process may compromise accuracy for computational

efficiency. The complexity of deep learning models increases with the number of di-

mensions, drastically inflating the number of parameters and, consequently, the com-

putational cost and data needed for training. High-dimensional ODEs exacerbate
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these difficulties, as the network depth and architecture complexity must scale appro-

priately to adequately approximate certain responses, resulting in increased training

times.

In addition, as alluded to in the prior sections, PINNs struggle with slow conver-

gence and poor accuracy in dealing with multiscale problems, causing PINNs to fail

to accurately capture the dynamics of all variables or parameters involved. This issue

has been outlined in the works of many authors in the area. This has been attributed

to the spectral bias inherent in NNs [105], which suggests that NNs are biased towards

learning less complex functions, prioritizing low-complexity functions. This feature,

which has been utilized by authors to explain the generalization ability of NNs, has

also exacerbated the issue of convergence in a multiscale setting. It has been shown

that even for simple problems, PINNs struggle to approximate the high-frequency

features within the solutions [151].

The addition of a physical regularizer, depending on the problem being solved,

may introduce additional degrees of complexity to the loss function overall. Current

methods of optimization rely primarily on gradient descent and its variants, in which

the network adjusts its parameters in steps toward the direction of minimal error

with respect to loss. With the varying, potentially competing loss components, there

exists added complexity of the loss function landscape, further complicating the pro-

cess of optimizations through the introduction of local minima, for example. This

aspect of physics-based regularization has been noted in the work of [65], whereby

the characteristic increase in model complexity has been noted with the introduction

of soft regularization terms.
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The additional complexity hinders the practical application of PINNs in high-

dimensional scenarios, with various authors in the field currently working to extend

PINNs to be able to accommodate. Of note, a study by Yang and colleagues saw

the implementation of a physics-informed Generative adversarial network (GAN) to

address the challenges associated with high dimensionality in solving stochastic dif-

ferential equations [162]. Their work has demonstrated effectiveness in managing

problems up to 30 dimensions.

PINNs are flexible in the incorporation of physics within the learning process, their

approximation of boundary conditions and solutions to PDEs may not always achieve

the desired numerical accuracy. In numerous complex systems, the precise form of

PDEs may be unknown, as well. In addition, the approximation quality heavily

depends on the network architecture, the optimization process, and the methodology

by which boundary conditions are enforced. While the integration of physical laws

into the learning process is advantageous, it does not guarantee precise numerical

accuracy.

In addition, through the physics-informed loss functions, physics-based loss terms

act as a penalization for the network in the case of violations, however, they are not

enforced as hard constraints. This proves an issue in hybrid loss functions involving

penalization terms with respect to labelled data as inaccuracies in the data may cause

the corresponding loss term to dominate within the hybrid loss function. To a lesser

extent, with respect to physics-based regularization and PINNs in general, as the

physical loss is not strictly enforced, physical violations or deviations from expected

physical behaviours may still be produced by the network.

In addressing the issue of computational efficiency in PINNs, the exploration of
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PINNs coupled with Random Projections should be highlighted. While the direct

examples within the recent literature specifically highlighting PINNs integrated with

Random Projections are sparse, the concept of Random Projections itself is well-

established, and their application for dimensional reduction has been recognized for its

capability to enhance computational efficiency when working with high-dimensional

data. The integration may represent a practical reduction in computational complex-

ity, utilizing the efficacy of Random Projections to manage the high dimensionality

of data. The sparse random projections technique, as discussed by Li and colleagues

in their work, illustrates the potential benefits of random projections in process-

ing high-dimensional data to enhance computational efficiency with minimal loss of

information[77] . Applied concurrently with the PINN, this suggests a promising di-

rection for future research where the strengths of both methodologies are synergized.

A study in this area by Fabiani and colleagues introduces a strategy for solving ini-

tial value problems of nonlinear ODEs and index-1 differential-algebraic equations,

using random projections and focusing on estimating the weights from the hidden

to the output layer using Newton iterations [26]. The proposed strategy by Fabiani

and colleagues utilized a singular value decomposition for low-dimensional systems

and sparse QR factorization with regularization for large-dimensional systems. The

proposed strategy has been evaluated against various benchmark problems by the au-

thors, and comparative analyses with traditional MATLAB solvers (ode15s, ode23s,

and ode23t) demonstrate the strategy’s potential as a viable alternative to conven-

tional solvers [26].

Another avenue for addressing the uncertainty surrounding the form and presence
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of governing differential equations could utilize the equation-free appr. The equation-

free approach is used in analysis where equations describing the system’s behaviour

are difficult or impossible to derive. It utilizes a detailed microscopic simulation to

gather information about the system’s state and then applies the information on a

macroscopic scale to guide the overall analysis and prediction. This methodology

allows for bypassing the derivation of detailed macroscopic descriptions [58, 59]. This

synergy is explored through the work of Roberts and colleagues, in their presenta-

tion of an Equation-Free Patch Scheme [115], which enables large-scale simulations

to be conducted through computations on small, distinct microscale patches. The

Equation-Free Patch Scheme was applied in the study for simulating a heterogeneous

elastic beam, showcasing the potential for accurate and efficient multiscale simulation

without macroscopic equations [115].

In addition, manifold learning techniques offer another direction for understanding

the dynamics of systems beyond the reach of classical differential equation-based mod-

els. Manifold learning identifies the hidden structures within high-dimensional data,

represented as a lower-dimensional manifold embedded within the higher-dimensional

space. Manifold learning facilitates the reduction of complex dynamics into a more

manageable, lower-dimensional representation. Through this, it enables visualization,

dimensionality reduction, and feature extraction.

Various authors have attempted to integrate manifold learning for applications

in the discovery of features in latent spaces. Authors such as Galaris integrated

PIML with manifold learning in the context of lattice Boltzmann model simulations

for PDEs [35]. Their study employs the parsimonious Diffusion Maps to identify

the dimension of the manifold. This method is employed for feature selection over
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the parameter space, providing a streamlined method to analyze numerical bifurca-

tions in PDEs from lattice Boltzmann simulations [35]. This approach demonstrates

the potential of combining advanced machine-learning techniques with computational

physics to enhance the understanding and analysis of complex systems.

In other works, Burbulla and colleagues introduced a method that integrates ge-

ometric transformations within PINNs by incorporating a diffeomorphism, which is

a mapping of a reference domain allowing for the robust adaptation to geometric

variations including those on lower-dimensional manifolds [13]. The effectiveness of

this approach is demonstrated across varying problems, including solving the Eikonal

equation on an Archimedean spiral, addressing the Poisson problem on a surface

manifold, simulating incompressible Stokes flow in a deformed tube, and performing

shape optimization with the Laplace operator. Vaquero and coleauges extends this

approach by visualizing the Hamilton-Jacobi PDE as an optimization problem, with

solutions approximated using ML techniques [147]. The authors introduce a method

for constructing Poisson integrators that preserve Poisson geometry on integrable

Poisson manifolds. Graycyk and colleagues discuss a manifold-based autoencoder

method in their work where the manifold latent space evolves based on the Ricci flow

in a physics-informed setting for learning nonlinear dynamics in time [38]. Finally,

Krishnanunni and colleagues introduced a manifold-regularized layerwise sparsify-

ing training approach in the neural architecture adaptation domain, showcasing the

method’s efficacy in learning and iterating over models [64].

With parameter estimation and system identification in general, the robustness

of the parameters estimated to variances within real-world applications is of interest
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for the practical implementation of said strategies. Parameters developed in this im-

plementation of the PINN for system identification in an MR damper experimental

setup were identified and validated within a controlled environment in which exter-

nal factors and perturbations to the system are minimized. In such conditions, the

physical system is well-characterized by the model. Extending this implementation

to real-world applications may introduce discrepancies between the predicted and

observed behaviours of the system due to factors such as environmental variations,

unmodeled dynamics, and measurement noise,

PINNs are advantageous in this regard, in that they can partially accommodate

deviations through the inherent approximative capabilities of NNs. A potential point

to accommodate deviations from the learned parameters may be to freeze identified

physical parameters and adjust NN parameters according to observed residuals. In

effect, the NN serves as a corrective mechanism, whereby NN parameters would serve

to model the residuals between predicted and observed measurements. This is, in

effect, reduced to a black-box model of said residuals, with the results being subject

to inherent limitations of interpretability and transparency inherent to NN models,

as discussed in prior sections on PINNs.

The incorporation of techniques to quantify uncertainties within predictions may

also be advantageous. Uncertainty Quantification (UQ) offers a probabilistic assess-

ment of the model’s output predictions and estimated parameters. UQ allows for

more informed application, such that the risks posed by deviations as a result of per-

turbations may be quantified. For instance, probabilistic methods such as Bayesian

uncertainty quantification, where physical parameters and resulting predictions of

outputs are treated as random variables with associated probability distributions.
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The NN may be modified to predict mean response and associated uncertainties,

with the range of possible outcomes being outputted as well.

Potential research areas may focus on adding adaptive capabilities to PINNs that

are capable of on-line learning, and updating the physical parameters and neural net-

work components as new data becomes available. This may be advantageous in sce-

narios whereby the operating state of the system changes, conditions such as wear or

degradation of components. The implemented model continuously refines predictions

with operational context altered, beneficial in fields such as structural health mon-

itoring in which environmental conditions and system loads can vary unpredictably

over time.

Transfer learning may be employed to enhance training and convergence speed

when adapting to new environments. The model trained in one environment is fine-

tuned in another, adapting the parameters to different operating conditions. With

system knowledge from the controlled environment as a basis, the speed at which the

model adapts and reaches a steady state in foreign environments is accelerated.

Popular in current implementations, ensemble methods are also advantageous in

enhancing robustness. In this case, implementations may be PINNs trained under

varying conditions of system operation, varying sets of collocation points or varying

regions of the physical domain. The ensemble prediction is aggregated to produce a

more robust estimate of the physical parameters. This would have the potential to

increase resilience to real-world changes for more reliable predictions across a range

of conditions.

Overall, while effective and pragmatic, PINNs are still limited by the aforemen-

tioned challenges, necessitating ongoing research and development to fully realize
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their potential.
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Chapter 5

Data Analysis and Modelling

This chapter is dedicated to the construction of a discretized model of state evolution

within the MR damper utilizing the parameters identified in the prior chapter, to be

used for various estimation and machine-learning tasks downstream. This analysis

is relevant in achieving several academic objectives, including the exploration and

validation of approaches within the field. The examination and validation of the model

with experimental data will provide insights necessary for building a foundational

model to be used to extend the application of novel methodologies in estimation,

predictive modelling, machine learning, and other relevant research areas.

5.1 Mathematical Model

The modified Bouc-Wen model [136], as detailed in Chapter 2, is employed to rep-

resent the MR damper. This model is selected due to its well-established ability to

accurately characterize the complex, nonlinear hysteresis behaviour exhibited by MR

dampers under varying operational conditions.
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In a system with mass m connected to the MR damper and input force µ(t), the

damping force equation 5.1.1 forms the restorative force in the equilibrium condition:

mẍ+ c1ẏ + k1x = µ(t) (5.1.1)

mẍ+ αz + c0 (ẋ− ẏ) + k0 (x− y) + k1x = µ(t) (5.1.2)

ż = −γ |ẋ− ẏ| z |z|n−1 − β (ẋ− ẏ) |z|n + A (ẋ− ẏ) , (5.1.3)

ẏ =
1

c0 + c1
(αz + k0 (x− y) + c0ẋ) . (5.1.4)

5.1.1 Discretized form

While the continuous model is essential for understanding the fundamental dynamics,

practical applications often require a discrete representation due to the nature of

sampled observations being discrete themselves [32]. Thus it is the objective to alter

the continuous model into a format suitable for numerical analysis and real-time

implementation. This section presents a discretized version of the modified Bouc-

Wen state space model, through which, enables the application of various estimation

techniques, such as the Kalman filter and its variants [39, 34, 106] and other recursive

algorithms, facilitating their integration into broader systems for real-time monitoring

and control.

As established in prior sections, the Bouc-Wen model is parametric, involving

a set of parameters that characterize the system’s behaviour. These parameters,
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representing the physical properties of the system, have been identified using the

PINN methodology outlined in the prior section: Section 4.1.

The model is discretized using the Euler method to obtain a discrete-time version

[140, 32]. Here, T denotes the sampling interval, with k denoting the counter for

discrete increments within the sequence. The Euler method approximates the contin-

uous system dynamics by iteratively updating the state variables over discrete time

steps defined by T .

The voltage-dependent parameters α[k], c0[k] and c1[k] are frequently employed

in the evaluation of latent and observable variables within the modified Bouc-Wen

equations, and may calculated via input voltage values, u[k], as:

α[k] = αa + αbu[k], (5.1.5)

c0[k] = c0,a + c0,bu[k], (5.1.6)

c1[k] = c1,a + c1,bu[k], (5.1.7)

The dynamics of a system may be described with both external and internal dis-

placements, velocities, and hysteresis effects. The external displacement of the sys-

tem, denoted as x[k], is updated based on the current displacement and the external

velocity vx[k].

x[k + 1] = x[k] + T · vx[k]. (5.1.8)
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The velocity of the external displacement, vx[k], is updated based on the current

velocity, internal forces, and external influences. The equation is expressed as:

vx[k + 1] = vx[k] + T · 1

m
(−c1[k]vy[k]− k1x[k]) . (5.1.9)

The internal displacement, denoted as y[k], is influenced by several factors, and

is incremented per time step based on the derivative of internal displacement defined

explicitly in equation 2.2.11.

y[k+1] = y[k]+T ·
(

1

c0[k] + c1[k]
(α[k]z[k] + k0(x[k]− y[k]) + c0[k]vx[k])

)
, (5.1.10)

where the derivative of the internal displacement vy[k] may be abbreviated as:

vy[k] =
1

c0[k] + c1[k]
(α[k]z[k] + k0(x[k]− y[k]) + c0[k]vx[k]). (5.1.11)

Altogether, the equation representing the internal displacement may be abbreviated

as:

y[k + 1] = y[k] + T · vy[k]. (5.1.12)

The hysteresis component z[k] represents the internal frictional and memory effects

within the system. Of note, it is dependent upon the calculated value of vy from

equation 5.1.11. Its update rule captures the nonlinear and rate-dependent behaviour

of the system:

z[k + 1] = z[k] + T ·
(
−γ |vx[k]− vy[k]| z[k] |z[k]|n−1 − β (vx[k]− vy[k]) |z[k]|n + A (vx[k]− v[k])

)
.

(5.1.13)
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Similar to above the increment per time step, or the derivative of the hysteretic

displacement vz[k] is previously described, and explicitly defined in equation 2.2.10

vz[k] = −γ |vx[k]− vy[k]| z[k] |z[k]|n−1 − β (vx[k]− vy[k]) |z[k]|n + A (vx[k]− v[k]) .

(5.1.14)

The equation representing the update of the hysteretic displacement may be abbre-

viated as:

z[k + 1] = z[k] + T · vz[k]. (5.1.15)

Finally, the resultant damping force is calculated as a function of previously cal-

culated latent variables and is modelled in accordance with equation 2.2.8, expressed

explicitly as:

F [k + 1] = α[k]z[k] + c0[k] (ẋ[k]− ẏ[k]) + k0 (x[k]− y[k]) + k1 (x[k]) . (5.1.16)

In addressing measurement noise covariance, it is important to note that variables

y and z, and by extension their derivatives with respect to time, are not physically

measurable, as they do not correspond to any tangible values due to the phenomeno-

logical nature of the model. Consequently, they are excluded from the noise covariance

matrix. Thus, in this case, the states of concern are: x, vx, and F .

The system dynamics, being relatively well-known and predictable compared to

the uncertainties in measurements, are assumed to have an error covariance an order

of magnitude smaller, consistent with previous studies [75, 72]. The measurement
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error covariance matrix is structured as follows:

Q = R · 10−1 (5.1.17)

R =


5.5134 · 10−4 0 0

0 7.797 · 10−4 0

0 0 22.41

 (5.1.18)

The measurement noise covariance matrix R represents the uncertainties associ-

ated with the sensor readings, arising from various sources: including sensor inaccura-

cies, environmental factors, and other external influences. Factory testing quantified

these uncertainties, allowing for the construction of covariance matrix R. The sys-

tem noise covariance matrix, denoted by Q, was not directly measured during the

testing process but was rather assumed to be an order of magnitude smaller than

the measurement noise covariance matrix, R. This assumption is grounded in the

standard practice that system noise typically exhibits lower variability compared to

measurement noise in similar contexts, as demonstrated in the work of Lee [72].

5.2 Simulation

For future test cases involving condition monitoring, the modified Bouc-Wen model

state space was constructed in three distinct phases. These phases represent different

scenarios of the applied voltage to the MR damper experimental setup, specifically

the default case, undervoltage fault, and overvoltage fault.
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Parameter
Name

Parameter (Nomi-
nal)

Parameter (Un-
dervoltage)

Parameter (Over-
voltage)

Units

α 4.7299e+01 2.2189e+01 7.2408e+01 kN
m

β 8.2089e+03 8.2089e+03 8.2089e+03 m−2

γ 8.1997e+03 8.1997e+03 8.1997e+03 m−2

A 2.3086e+01 2.3086e+01 2.3086e+01 −

c0 2.3310e+01 1.9809e+01 2.6811e+01 kN ·s
m

c1 8.8537e+00 3.6047e+00 1.4103e+01 kN ·s
m

k0 9.7866e-01 9.7866e-01 9.7866e-01 kN
m

k1 1.4646e-01 1.4646e-01 1.4646e-01 kN
m

n 1.9928e+00 1.9928e+00 1.9928e+00 −

Table 5.1: List of parameters and their corresponding values, as determined by the
PINN parameter estimation algorithm outlined in Section 4.1.

For the first phase, representing the default, the MR damper operates under stan-

dard voltage conditions and characterizes the MR damper’s performance in the ab-

sence of voltage anomalies. The parameters associated with this phase reflect the

typical operational state and act as a reference point by which other phases may

be compared against. The undervoltage fault phase simulates conditions where the

applied voltage is lower than the standard operating voltage, while the overvoltage

fault phase explores the effects of an excessive voltage supply.

The parameters for each phase are listed below and serve as the basis for simula-

tions using the above state space model.

From the parameters estimated in section 4.1, the force response is simulated in

accordance. The models depicted in the figure illustrate the force-position hysteresis

relationship of the MR damper at a velocity of 0.903 cm/s, which illustrates the

127

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

dynamic response of the system at varying phases: starting with the default state,

followed by an undervoltage fault, and ending with overvoltage fault.

(a) Force time plot of
measured and predicted

values.

(b) Force displacement plot
of measured and predicted

values.

(c) Force velocity plot of
measured and predicted

values.

Figure 5.1: Overall plots of measured behaviour, contrasted with predicted force
response utilizing parameters identified, consisting of plots of force response with

respect to time, displacement, and velocity at varying applied voltages, representing
the nominal state, undervoltage fault state, and overvoltage fault state.

The linear actuator drove the MR damper for a total of 565.48 seconds for 6

cycles in each phase, with a constant acceleration of 0.1354 cm/s during both the

extension and retraction phases. The position and velocity profiles captured by the

actuator encoder, as shown in the figures, provide a detailed account of the MR

damper’s movement. Initially, a voltage of 2.2703 V was applied to the MR damper,

representing normal operation. During this phase, the MR damper was allowed to

fully extend and retract, establishing a baseline for its performance.

At 190.79 seconds, an undervoltage fault was introduced by decreasing the voltage

to 0.6678 V After completing a total of 6 full cycles of motion, an overvoltage fault

was introduced at 378.98 seconds by increasing the applied voltage to 4.0030 V.

Throughout the test, three modes (normal, overvoltage, and undervoltage) were

experienced, allowing for a range for analysis of the MR damper’s behaviour under

varying applied voltage and fault detection conditions. The results from these tests
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and simulations may be employed in estimation for determining the operational limits

and for developing and applying strategies for condition monitoring and anomaly

detection.

The characterization of the modified Bouc-Wen model and its application across

different voltage scenarios provides a mode of analysis for the operational behaviour

of MR dampers. Validation against measured values is performed and reinforces

the model’s fidelity in capturing the dynamics of the damper system under normal,

overvoltage, and undervoltage conditions.

Looking ahead, this model may serve as a foundation for future research and de-

velopment efforts aimed at demonstrating proof of concept for various novel machine

learning and estimation techniques, such as the sliding innovation filter introduced in

[33], the smooth variable structure filter [71, 74], the Reinforced Lattice Kalman Fil-

ter [107] and other innovations. In conjunction with the experimental setup, outlined

in Chapter 3, the discretized model will serve as a testing setup for implementing the

aforementioned strategies in various engineering and condition-monitoring applica-

tions, whereby real-time monitoring and fault detection methodologies involving the

state space developed are employed for proactive maintenance in diverse operational

environments [88, 14, 15].
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Chapter 6

Conclusion

This study presented the development and implementation of PINNs, with applica-

tion to a mechanical system. The study details the construction of an MR damper

experimental setup for the collection of empirical data. Utilizing data gathered from

the experimental setup, an implementation of PINNs for system identification and

modelling was formulated for the MR damper.

The experimental setup constructed integrated the various devices required for

actuation and sensing, synchronizing and storing collected data systematically. Data

collection from various devices were unified through a custom implementation for

data collection, featuring the collection, processing, and storage of readings through

multi-threading operations within a central user interface. Data collected was stored

in a locally hosted database in Structured Query Langauge. Stored data is employed

in various downstream tasks, primarily serving to validate the effectiveness of novel

strategies utilizing machine learning and estimation, such as the system identification

and modelling procedures introduced within this research. In addition, the data

collected supports future research endeavours in the domain as well.
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An issue addressed in this study is the identification of model parameters in MR

dampers, which involve latent variables. A system identification methodology was

developed around the growing paradigm of PINNs, aimed at extending its capabilities

in solving inverse problems to a system of ODEs with unobservable responses. This

implementation demonstrates the feasibility of this approach, being the introduction

of learning biases through the integration of established physics with the NN training

process. Through validation, this methodology has been shown to have accurate

estimation capabilities for physical parameters and is capable of reconstructing the

observed forced response from inputs.

Based on the collected data and the identified parameters, a discrete state-space

model of the MR damper was developed. The state-space model constructed provides

a framework for describing the behaviour of the dynamic system in nominal and

faulty operating conditions and sets a foundation for future implementations of novel

estimation and machine-learning techniques.

Overall, the study’s findings highlight the potential of physics-informed neural

networks in the system identification of complex systems with latent variables.

6.1 Future Work

Future research directions are aimed at exploring the further refinement of PINNs

as well as extending their application to encompass a larger range of engineering

systems.

While the PINN represents a pragmatic approach to the solution of inverse prob-

lems, they are still limited by various challenges involving high dimensional data,
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inability to deal with multiscale data and sensitivity to how known physics is en-

forced, necessitating ongoing research. As detailed in the section 4.2.1, at its core,

PINNs still suffer from the many limitations associated with conventional deep learn-

ing, which forms its backbone. Techniques such as manifold learning, equation-free

approach, and random projections hold promise in further extending the capabilities

of PINNs. An interesting avenue of research is the incorporation of the prominent

transformer model, incorporating the attention mechanism, enabling effective han-

dling of temporal dependencies inherent in physical systems. which may improve the

performance of the system identification process.

Beyond its application to MR dampers, future research can extend the developed

methodologies to analyze and model other mechanical systems, with the potential to

develop methodologies applicable to a wider range of engineering applications.

Other directions for future work may be extending developed PIML methodologies

condition monitoring techniques. As discussed in section 2, PINNs have already

shown significant potential in various facets of condition monitoring, for example:

estimating remaining useful life to anomaly detection, fault prognosis, and predictive

maintenance.

Overall, these future efforts aim to build upon the foundational work presented

in this study, driving the development of more sophisticated, efficient, and practical

solutions for the analysis of dynamic systems and monitoring.

6.2 Summary of Contributions

The overall contributions of this work may be summarized as follows:

Experimental Setup Development and Data Collection
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• Constructed the physical experimental setup with an MR damper.

• Developed a unified data collection program for a multi-device system.

• Ensured synchronization and storage of data through multi-threading.

• Implemented database for centralized access and analysis of collected data.

Application of PINN method

• Performed literature review, with a focus on the application of PINNs in real-

world engineering processes.

• Developed methodologies for system identification of MR dampers, focusing on

models with latent variables.

• Developed operation and workflow of PINNs

• Employed PINNs to solve the inverse problem, optimizing model and physical

parameters simultaneously to circumvent issues with latent variables.

Validation and Model Development

• Validated the developed methodologies using data gathered from the experi-

mental setup.

• Constructed a discrete state-space model of the MR damper based on identified

parameters, setting up the foundation for validating techniques developed in

future work.
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Appendix A

Compilation of Literature Review

Articles

Article Title Citation Description Application

Microcrack Defect

Quantification Using a

Focusing High-Order

SH Guided Wave

EMAT: The Physics-

Informed Deep Neural

Network GuwNet

[141] Quantification of microc-

rack defects with hybrid

physics-informed archi-

tecture design based on

various deep learning

frameworks, regularized

via network structure and

hybrid feed-forward and

back-propagation loss

structural health

monitoring for

detection of

micro-crack de-

fects
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Article Title Citation Description Application

Physics-informed tur-

bulence intensity in-

fusion: A new hybrid

approach for marine

current turbine rotor

blade fault detection

[31] Feature extraction via con-

tinuous wavelet transform

from vibrational data.

The classification was

performed with a neural

network, with physics-

informed loss function to

obtain turbulence intensity

features

Anomalous be-

havior detection

and fault diag-

nosis in turbine

rotor blades

A physics-informed

neural network for

creep-fatigue life pre-

diction of components

at elevated tempera-

tures

[173] Neural network regular-

ized via physics-informed

loss function, penalizing

the model for unrealistic

predictions (negative or

extreme values) of fatigue

life

Structural health

monitoring for

creep-fatigue life

in steel specimen
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Article Title Citation Description Application

Data-driven prognos-

tics with low-fidelity

physical informa-

tion for digital twin:

physics-informed neu-

ral network

[61] Physics-informed loss func-

tion penalizing deviations

from expected values, de-

termined by low-fidelity

physical model

Structural health

monitoring for

crack propagation

Long-term fatigue es-

timation on offshore

wind turbines inter-

face loads through

loss function physics-

guided learning of

neural networks

[23] Features selected through

recursive feature elimi-

nation from sensors and

monitoring data. Estima-

tion of fatigue via neural

network regularized by

novel physics-informed loss

function, reflective of pri-

ority given to long-term

estimation

Structural health

monitoring for

wind turbines

fatigue life
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Article Title Citation Description Application

Physics-informed

meta-learning for ma-

chining tool wear pre-

diction

[79] Parameters of dynamic

relationships governing

tool wear used to establish

input space for individ-

ual models at different

stages of degradation via

cross physics-data fusion.

Meta-learning model is

employed to learn the ex-

periences of ML models

and optimized via physics-

informed loss

Tool life predic-

tions

A physics-informed

deep learning frame-

work for inversion and

surrogate modelling in

solid mechanics

[41] Physics-informed neural

network for solving differ-

ential equations governing

linear elasticity and non-

linear von Mises elasto-

plasticity

Elastostatics

modelling in solid

mechanics
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Article Title Citation Description Application

Identification of Ma-

terial Parameters

from Full-Field Dis-

placement Data Us-

ing Physics-Informed

Neural Networks

[4] Material parameter es-

timation via solution of

momentum equation and

governing equations of lin-

ear elasticity

Structural health

monitoring

Inferring vortex in-

duced vibrations of

flexible cylinders us-

ing physics-informed

neural networks

[60] Approximation of the lin-

ear beam-string equations

via PINN for simulation of

a cylindrical structure in

uniform flow

Structural health

monitoring

Physics-Informed Ma-

chine Learning and

Uncertainty Quantifi-

cation for Mechanics

of Heterogeneous Ma-

terials

[10] Solution of PDE governing

momentum balance and

constitutive equations of

elasticity, optimized via

physics-informed loss func-

tion penalizing deviations

from PDE and boundary

conditions

Surrogate mod-

eling of elastic

deformations
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Article Title Citation Description Application

Simulation of guided

waves for structural

health monitoring us-

ing physics-informed

neural networks

[113] Solving PDEs governing

wave propagation with

PINNs, regularized by

physics-informed loss func-

tion based on deviations

from PDEs and boundary

conditions

Structural health

monitoring in

aerospace struc-

tures

A physically consis-

tent framework for

fatigue life prediction

using probabilistic

physics-informed neu-

ral network

[176] Probabilistic PINN opti-

mized via hybrid loss func-

tion based on fatigue life

distributions with respect

to stress experienced

State of health

monitoring and

fatigue life esti-

mation

A robust physics-

informed neural net-

work approach for

predicting structural

instability

[86] Feed-forward PINN opti-

mized based on deviation

from data, instability in-

formation, and boundary

conditions

Structural health

monitoring via

estimation of

structural insta-

bility
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Article Title Citation Description Application

Machine Fault Classi-

fication using Hamil-

tonian Neural Net-

works

[127] PINN encoding the laws

of Hamiltonian mechanics

to learn operating state of

system from vibrational

data, machinery state

identification using net-

work parameters as fea-

tures

Machinery fault

diagnosis for ro-

tating machinery

Physics-informed ma-

chine learning for sur-

rogate modeling of

wind pressure and op-

timization of pressure

sensor placement

[178] Finite element based com-

putational fluid dynamics

model for the generation

of input features, PINN

employed for the solution

to Navier–Stokes equations

of incompressible flows,

with Dirichlet and Neu-

mann boundary conditions

Structural health

monitoring in

buildings
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Article Title Citation Description Application

Physics informed neu-

ral network for health

monitoring of an air

preheater

[48] Stacked PINNs for solving

non-denationalized gov-

erning equations for heat

transfer between the flu-

ids and metal interface,

regularized by physics-

informed loss function

based on deviation from

PDEs, boundary and in-

terface conditions

Condition moni-

toring and health

monitoring in air

heating system

Robust Regression

with Highly Cor-

rupted Data via

Physics Informed

Neural Networks

[103] Feed-forward PINN based

on the least absolute de-

viation method to recon-

struct PDE solutions and

parameters from highly

corrupt sensor data

Corrupt data

and parameter

reconstruction
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Article Title Citation Description Application

A generic physics-

informed neural

network-based frame-

work for reliability

assessment of multi-

state systems

[177] Feed-Forward PINN regu-

larized by deviations from

ODE of system state tran-

sition and initial condi-

tions. Individual element

of the loss parse through

projecting conflicting gra-

dients to establish contin-

uous latent function for

reliability assessment

Reliability assess-

ment

Physics-guided con-

volutional neural net-

work (PhyCNN) for

data-driven seismic

response modeling

[172] Physics-Informed Loss

(Dynamic System with

Ground Excitation)

Structural Health

Monitoring

A physics-informed

deep learning ap-

proach for bearing

fault detection

[128] Physics-Informed Loss

(Deviation from Physics-

Based Threshold Model

Penalized)

Machinery fault

detection and

diagnosis in bear-

ings
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Article Title Citation Description Application

Physics-guided deep

neural network for

structural damage

identification

[46] CNN employed as feature

extraction for both the

physics and data domain.

The network was regu-

larized in accordance to

labelled data as well as

the objective of minimiz-

ing feature discrepancy

between domains

Structural health

monitoring in

bridge structures

Bridge damage iden-

tification under the

moving vehicle loads

based on the method

of physics-guided deep

neural networks

[165] Physics-informed loss func-

tion for feature fusion be-

tween the physics-based

numerical model and data-

driven model)

Structural health

monitoring in

bridge structures
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Article Title Citation Description Application

A physics-informed

convolutional neural

network with cus-

tom loss functions for

porosity prediction in

laser metal deposition

[90] Physics-informed CNN

with loss function penaliz-

ing deviations from ideal

simulated parameters)

Process monitor-

ing in additive

manufacturing for

porosity buildup)

Physics-Informed

Learning for High

Impedance Faults De-

tection

[78] Physics-informed convolu-

tional autoencoder, with

physics-informed regular-

ization based on elliptical

relation characteristics of

voltage and current plots

Fault detection in

power grids

Physics-informed deep

learning for signal

compression and re-

construction of big

data in industrial con-

dition monitoring

[119] Physics-informed convolu-

tional autoencoder, featur-

ing loss term incorporating

auto-correlation and Fast

Fourier Transform metrics

Data compression

for collected mon-

itoring signatures

in machinery

fault detection

and diagnosis
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Article Title Citation Description Application

Physics guided neural

network for machining

tool wear prediction

[150] Cross physics-data fusion

for the integration of phys-

ical parameters within

model input. Physics-

informed loss function

employed to enforce re-

lationship between tool

degradation with respect

to operation progress

Condition mon-

itoring for tool

wear

A Novel Physics-

Informed Framework

for Real-Time Adap-

tive Monitoring of

Offshore Structures

[81] Employed a physics-

informed RNN for solution

to governing equations of

eigensystem, representa-

tive of the modal identifi-

cation process

Structural health

monitoring
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Article Title Citation Description Application

Physics-Informed

LSTM hyperparam-

eters selection for

gearbox fault detec-

tion

[19] Maximization of Maha-

lanobis distance between

healthy state and estab-

lished physics-informed

fault state for LSTM opti-

mization process

Machinery fault

diagnosis in gear

boxes

Table A.1: Literature Compiled for physics-guided or physics-informed
regularisation technique employed
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Appendix B

Components and Specifications

This appendix section specifies the technical and operating parameters of the physical

components detailed in Section 3, which describes the experimental setup. Here,

details on the exact technical specifications for each component used in the experiment

are provided.

B.0.1 RD-8041-1 MR Damper

Technical Specifications for the LORD RD-8041-1 MR Damper are provided by LORD

Corporation, available at [20]. Typical and electrical properties are summarized in

Tables B.1 and B.2 respectively.
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Properties Value

Stroke length 74 [mm]

Extended Length 248 [mm]

Body Diameter 42.1 [mm] max

Shaft Diameter 10 [mm]

Tensile Strength 8896 [N ] max

Peak to Peak Damper Forces 5 cm/sec at 1 A > 2447 [N ]

Peak to Peak Damper Forces 5 cm/sec at 1 A < 667 [N ]

Operating Temperature 71 [◦C] max

Table B.1: Typical properties of the LORD RD-8041-1 MR damper, as specified by
[20].

Properties Value

Input Current: Continuous for 30s 1 [A] max

Input Current: Intermittent 2 [A] max

Input Voltage 12 [V ]

Resistance at ambient temperature 5 [Ω]

Resistance at maximum operating Temperature

(71 [◦C])
7 [Ω] max

Table B.2: Electrical properties of the LORD RD-8041-1 MR damper, as specified
by [20].
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B.0.2 RAS1-500S-S Force Sensor

Properties Value

Operating Force 226.80 [kgf ]

Safe Overload
340.2 [kgf ], 680.4 [kgf ]

(Ultimate Overload)

Accuracy ± 0.02 %

Rated Excitation 5-10 [V ]

Full Scale Output 3 mv/V±10%

Input Impedance 385 ± 30 Ω

Output Impedance 350 ± 5 Ω

Insulation > 5,000 MΩ

Creep, 1 hour ± 0.05 %

Operating Temperature Range 350 ± 5 Ω

Compensated Temperature Range 350 ± 5 Ω

Output Impedance 350 ± 5 Ω

Output Impedance 350 ± 5 Ω

Table B.3: Properties of the RAS1-500S-S Force Sensor, as specified by [124].

149

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – Y. Wu; McMaster University – Mechanical Engineering

B.0.3 Ultramotion A1 Linear Actuator

Properties Value

Force (peak) 1512 [N ] max

Force (continuous) 756 [N ] max

Speed 356 [mm/s] max

Stroke length 76.2 [mm]

Resolution 3.1 [µm]

Operating Voltage 8 to 36 [V DC]

Operating Temperature -40 [◦C] to 71 [◦C]

Table B.4: properties of the Ultramotion A1 linear actuator, as specified by [92].
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