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Lay Abstract
This thesis explores a new way to model how diseases spread using a deterministic
mathematical framework. We focus on estimating the changing transmission rate and
the effective reproduction number, key factors in understanding and controlling disease
outbreaks. Our method, incorporated into the macpan2 software, uses advanced tech-
niques to estimate these changing rates over time. We first prove the effectiveness of our
approach with simulations and then apply it to real data from Scarlet Fever, COVID-
19, and Measles. We also compare the model performance. Our results show that this
flexible and user-friendly approach is a valuable tool for modelers working on disease
dynamics.
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Abstract
This thesis presents a novel approach to ecological dynamic modeling using non-
stochastic compartmental models. Estimating the transmission rate (β) and the effec-
tive reproduction number (Rt) is essential for understanding disease spread and guiding
public health interventions. We extend this method to infectious disease models, where
the transmission rate varies dynamically due to external factors. Using Simon Wood’s
partially specified modeling framework, we introduce penalized smoothing to estimate
time-varying latent variables within the R package macpan2. This integration provides
an accessible tool for complex estimation problems. The efficacy of our approach is
first validated via a simulation study and then demonstrated with real-world datasets
on Scarlet Fever, COVID-19, and Measles. We infer the effective reproduction number
(Rt) using the estimated β values, providing further insights into the dynamics of dis-
ease transmission. Model fit is compared using the Akaike Information Criterion (AIC),
and we evaluate the performance of different smoothing bases derived using the mgcv
package. Our findings indicate that this methodology can be extended to various ecolog-
ical and epidemiological contexts, offering a versatile and robust approach to parameter
estimation in dynamic models.
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Chapter 1

Introduction

Ecological dynamic models describe how ecological processes drive populations to change
over time by estimating the parameters of the deterministic process, observation error,
and process error from a single time series [1]. However, estimating parameters for dy-
namic models is challenging. One simplification is to assume that the dynamic model
only has observation error, which can be implemented by starting with the initial condi-
tions of the system and computing the entire trajectory over the domain at once. This
approach assumes there is no uncertainty in the predicted values of the states at each
time step, meaning there is no process error. Since the trajectory at every time step is
determined solely by the starting parameters and initial conditions, the model is deter-
ministic. The only error accounted for is the difference between observed and predicted
values.

To fit the model to data and compute the maximum likelihood estimate (MLE) for a
given set of parameters, one assumes independent observations and sums the likelihood
for each observation based on the chosen model of observation error. Using a Quasi-
Newton method, parameter estimates are updated based on the current iteration of
trajectory matching until convergence is achieved. If the observation error is normally
distributed with constant variance, this process simplifies to least squares fitting.

In modeling infectious diseases, for example, one may be interested in estimating
the unobserved process of the transmission rate between an infectious individual and a
susceptible one. Assuming a fixed value for the transmission rate at every time step is
often inaccurate because many diseases have dynamic transmission rates influenced by
factors such as seasonality or non-pharmaceutical interventions (e.g., social distancing,
masking, and changes in mobility patterns). Therefore, it is reasonable to assume that
the transmission rate is a time-varying parameter, computed at each observed data point.

A standard method for dealing with time-varying parameters is to introduce a para-
metric model and estimate its parameters as part of the MLE process. However, imposing
a particular shape on the unknown function describing the unobserved process, is often a
phenomenological characterization rather than one derived from known biological mech-
anisms. This can lead to mismatches between the model and data not due to biological
inaccuracies but due to the chosen parametric form of the latent variable.
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Fitting dynamic ecological models with time-varying latent variables is a challeng-
ing task. Rather than specifying the functional form of the unknown function a priori,
we can adopt a more flexible function estimation method that minimizes incidental as-
sumptions and model misspecification. [2] and [3] developed methodologies for general
non-parametric statistical modeling, which have been applied to ecological modeling.
Wood and Nisbet [4] used flexible spline models in population ecology modeling. Ellner
et al. [5] described how to infer information about underlying or unobserved processes in
a dynamical system using only time series data. Ellner et al. [6] introduced the concept
of semi-mechanistic models, which combine deterministic specifications and parametric
models for components supported by known biological mechanisms with non-parametric
methods for flexible function estimation when insufficient information is available to jus-
tify a specific parametric form. Simon Wood [7] presented a general methodology using
penalized smoothing to estimate time-varying latent variables for dynamic ecological
models through iterations of Quasi-Newton methods with generalized cross-validation.

Implementing Wood’s methodology requires expertise in statistical inference, non-
linear optimization, splines, numerical analysis, and statistical computing, making it
complex for many domain-specific modelers. Our goal was to develop a user-friendly way
for modelers to estimate time-varying latent variables in non-stochastic compartmental
models. We integrated Simon Wood’s methodology for smoothing parameter estimation
into the general-purpose compartmental modeling tool macpan2, which uses TMB for
optimization. We use the mgcv package in R to obtain low-rank smoothing matrices for
the basis and penalty, resulting in a software module within macpan2 that allows users
to easily formulate and fit semi-mechanistic models.

Being able to quickly and easily estimate the transmission rate at each observation is
crucial for infectious disease modelers. The transmission rate is integral to calculating
other epidemiological quantities, such as the effective reproduction number (Rt), and
provides the basis for many downstream applications, including evaluating intervention
strategies, forecasting disease dynamics, identifying high-risk periods and populations,
validating models, understanding transmission dynamics, assessing the impact of vari-
ants, and developing and testing hypotheses about factors influencing disease spread.

In Chapter 2, we review the basic theory of univariate smoothing in the context of
Gaussian regression and fitting compartmental models to data. We discuss the construc-
tion of linear smoothers, review different bases available in the R package mgcv, explore
general penalized likelihood methods, and examine the relationship between smooths
and random effects, including a Bayesian perspective. Chapter 3 covers the techni-
cal details required to implement the smoothing parameter estimation methodology in
macpan2. Chapter 4 presents the results of the simulation study and applications to scar-
let fever, COVID-19, and measles datasets. Finally, Chapter 5 discusses the results, the
assumptions and simplifications used in our modeling methodology, and future research
avenues.

The code for this thesis is freely available at [8].
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Chapter 2

Background

This chapter contains two sections. The first section outlines the theory required to
understand how to use univariate Gaussian regression smoothers in statistical modeling.
It finishes by describing the relationship between Gaussian random effects and smoothing
splines within a Bayesian framework, which is crucial for fitting semi-mechanistic models
to data.

The second section provides a brief introduction to the basic concepts of using com-
partmental models in the statistical modeling of infectious diseases.

2.1 Smoothers
Linear model methods make the assumption that the true function f(x) is linear in x.
To extend beyond this linearity, one approach is to employ a linear transformation of x.
This leads to:

f(x) =
M∑

m=1
βmhm(x),

which is a linear basis expansion of x, where hm(x) : Rp → R represents the m-th
transformation of X.

A notable class of these transformations is restriction methods, where the class of
functions that f() can assume is limited. A common example within this class is splines,
which define m basis functions βmhm(x) as local polynomial representations. These
specific transformations hm(x) in the context of splines translate the input space into
a set of polynomial pieces that are smoothly joined together. The domain is divided
into contiguous intervals, each represented by a separate polynomial function. The
boundaries of these intervals are known as knots. An order-M spline with knots ξj ,
j = 1, . . . , K, is a piecewise-polynomial of order M and has continuous derivatives up to
order M − 2.

When the location, derivative order, and number of knots are predetermined, the
technique is referred to as regression splines. Natural cubic splines are a specific type

3
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where the spline function is composed of cubic polynomial segments. Then it is linear
beyond the outermost knots. This spline is represented by K basis functions βmhm(x),
one for each specified knot.

The complexity of the fit can be adjusted by incorporating regularization to manage
the trade-off between data fidelity and smoothness of the curve fit. This is achieved by
minimizing a residual sum of squares with an additional penalty term. The penalty term
includes a parameter that controls this trade-off, allowing the fit to range between the
extremes of pure interpolation and a linear least squares fit. Splines used in this context
are known as smoothing splines.

For a higher-level overview of this topic, see [9]. For a more detailed exposition,
refer to [10]. Additionally, a comprehensive mathematical treatment of splines and their
applications can be found in [11].

2.1.1 Natural cubic splines

Suppose we have a dataset consisting of points (xi, yi) for i = 1, . . . , n, with each xi

strictly less than xi+1. A natural cubic spline g(x) is defined as a function that smoothly
interpolates between these points. This spline is constructed from cubic polynomial
segments, where each segment corresponds to an interval [xi, xi+1]. These polynomial
segments are connected such that g(x), g′(x), and g′′(x) are all continuous across the
entire domain.

Furthermore, the spline satisfies the interpolation condition g(xi) = yi for each point,
with the additional constraint that the second derivatives at the endpoints of the domain,
x1 and xn, are set to zero. This constraint ensures that the spline is linear beyond the
boundary points, contributing to its ‘natural’ behavior.

Among all functions that are continuous over [x1, xn], possess absolutely continuous
first derivatives, and interpolate the given data points (xi, yi), the natural cubic spline
g(x) is uniquely the smoothest, meaning that it minimizes the integral:

J(f) =
∫ x2

x1
f ′′(x)2 dx, (2.1)

which quantifies the overall curvature of the function. Minimizing this integral promotes
a function with less curvature and smoother transitions between the interpolated points.

A detailed proof and further discussion on this property of natural cubic splines can
be found in [12], which explores the mathematical underpinnings and optimizations that
define these splines.

2.1.2 Cubic smoothing splines

With a natural cubic spline, g(x), we have two main options: we can interpolate the
data by setting each g(xi) = yi, or we can smooth the data by treating the values g(xi)

4
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as variables to be optimized, as in cubic smoothing splines. Smoothing is achieved by
minimizing the following objective function:

J2(f) =
n∑

i=1
(yi − g(xi))2 + λ

∫
g′′(x)2 dx. (2.2)

Here, λ serves as a tuning parameter that balances the fidelity to the data with the
smoothness of the function g. A higher λ value places greater emphasis on minimizing
the integral of the squared second derivative, which encourages a smoother curve for
g. Conversely, a lower λ value focuses on closely matching the actual data points,
minimizing the sum of squared differences

∑n
i=1(yi − g(xi))2.

The formulation given in Equation 2.2 is flexible and does not depend on a predefined
set of basis functions. Instead, the model itself dictates the structure, leading to the
derivation of optimal basis functions based on the specified terms for data fidelity and
smoothness.

Solving Equation 2.2 involves addressing a variational problem in which the basis
functions for the cubic spline are obtained using the Euler-Lagrange equation. A detailed
derivation of this process can be found in [13]. However, this derivation is lengthy and
involves extensive algebraic manipulation, which can obscure the conceptual foundations
of the proof. In Appendix A.1, we extract and explain key lines from the proof to
provide a deeper understanding of why these basis functions take their particular form.
We present this outline for two primary reasons: historically, cubic smoothing splines
were among the first types of smoothers to be thoroughly investigated. Furthermore,
the general approach of penalized likelihood methods can be effectively abstracted from
the solution to the minimization problem presented by cubic smoothing splines. For a
broader definition of penalized splines, refer to subsection 2.1.7

2.1.3 Cubic regression splines

Using the results from appendix A.1, we can define the cubic spline function f(x) with
k knots x1, . . . , xk as follows:

f(x) = aj(x)f(xj) + bj(xj)f(xj+1) + cj(x)f ′′(xj) + dj(xj)f ′′(xj+1), (2.3)

where xj ≤ x ≤ xj+1 and aj , bj , cj and dj are the basis functions of the cubic spline
function, derived in Equation A.6.

This formulation ensures continuity at each knot, as the continuity conditions Equa-
tion A.5 imply that the derivatives at the knots must match:

B · (f ′′(x2), . . . , f ′′(xk−1))T = D · (f(x2), . . . , f(xk−1))T , (2.4)

5
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where B defines the relationships among the second derivatives and D defines the rela-
tionships between the second derivatives and the function values. B and D are therefore
the matrix elements expressing the continuity and smoothness constraints as defined in
Equations A.7 and A.8.

By integrating these conditions into Equation 2.3, and redefining f(x) in terms of
the basis functions, we arrive at:

f(x) =
k∑

i=1
bi(x)βi, (2.5)

where βi = f(xi) and bi represents the transformed basis functions obtained by applying
B−1D to the original basis functions A.6. This defines a cubic regression spline. The
full details of how to derive equation 2.5 from equation 2.4 can be found in [14].

This structure effectively maps the spline basis to the spline evaluated at a specified
set of knots. Furthermore, a computationally efficient form of Equation 2.1 in terms of
these basis functions and matrix elements is:

∫ xk

x1
f ′′(x)2 dx = βT DT B−1Dβ = βT Sβ,

where S ≡ DT B−1D is the called the penalty matrix for this basis.

In subsection 2.1.7, we show how the method of penalizing cubic splines lead to a more
general method of penalized regression and the abstract notion of penalized likelihood
methods.

In the following sections we investigate some other penalized regression splines that
are are used in chapter 4 as smoothers (available as basis and penalty matrices in the
R package mgcv) for estimating time-varying parameters in discrete time deterministic
compartmental models.

2.1.4 B-splines

B-splines offer another basis for representing polynomials that are used in constructing
smoothing splines. Detailed explanations of B-spline basis functions and their mathe-
matical properties can be found in [9] and [11]. For a concise definition of B-spline basis
functions, refer to [10].

B-splines allow an (m + 1)th order spline to be expressed uniquely using the B-spline
basis functions Bm

i (x):

f(x) =
k∑

i=1
Bm

i (x)βi,

6
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where each Bm
i (x) is defined by a local combination of knots. The means any nice curve

can be uniquely represented as a linear combination of B-splines and hence as a linear
smoother.

2.1.5 P-splines

P-splines are a low-rank smoother (the number of knots is less than the length of the in-
put vector) that adapt a B-spline basis with a penalty to control wiggliness by penalizing
adjacent βi = f(xi). The penalty term P is defined as:

P =
k−1∑
i=1

(βi+1 − βi)2.

To express this penalty in matrix form, let R be defined as follows:

R =


−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . ...
0 · · · 0 −1 1

 .

Using this matrix R, the differences between adjacent βi can be written as:


β2 − β1
β3 − β2

...
βk − βk−1

 = Rβ.

The penalty term for adjacent basis coefficients can then be written as:

P = βT RT Rβ.

When we multiply out RT R, we obtain:

RT R =


1 −1 0 · · · 0

−1 2 −1 · · · 0
0 −1 2 −1 · · ·
... . . . . . . ...
0 · · · 0 −1 1

 .

Thus, the penalty term can be fully expressed as:

7
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P = βT


1 −1 0 · · · 0

−1 2 −1 · · · 0
0 −1 2 −1 · · ·
... . . . . . . ...
0 · · · 0 −1 1

β.

2.1.6 Thin plate regression splines

So far, the discussion has focused on smoothing methods that apply to a single predictor
variable. While univariate smoothing is useful, multivariate smoothing techniques are
available as well. One such technique is the thin plate spline (TPS). We follow the
method given by Simon Wood in [15].

In the general case, a thin plate spline (TPS) is defined for a number of predictor
variables d and a penalty of degree m such that 2m > d. The TPS penalty, Jmd, is given
by:

Jmd =
∫
Rd

∑
ν1+···+νd=m

m!
ν1! · · · νd!

(
∂mf

∂xν1
1 · · · ∂xνd

d

)2

dx1 · · · dxd,

where ν1, ν2, . . . , νd are non-negative integers representing the orders of the partial deriva-
tives with respect to each predictor variable xi.

The function that minimizes this penalty is expressed as:

f̂(x) =
n∑

i=1
δiηmd(∥x − xi∥) +

M∑
j=1

αjϕj(x),

where δ and α are vectors of coefficients to be estimated. The δ coefficients must satisfy
the linear constraints TT δ = 0, with Tij = ϕj(xi). Here, M =

(m+d−1
d

)
, representing the

number of linearly independent polynomials ϕi(x) that span the space of polynomials in
Rd of degree less than m. These polynomials form the null space of Jmd.

The remaining basis functions ηmd(r) are defined as:

ηmd(r) =

(−1)m+1+d/2 22m−1πd/2(m−1)!
Γ(m−d/2)! r2m−d log(r), if d is even,

Γ(d/2 − m)22mπd/2(m−1)!
Γ(m) r2m−d, if d is odd.

Therefore thin plate splines are an expansion of δi in radial basis functions ηmd(r).

In the univariate case with derivative penalty of degree two, i.e d = 1 and m = 2,
equation 2.8 is equivalent to that of the cubic smoothing spline, with objective function
equation 2.2.

8
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In this case, the minimizing function has the form:

f̂(x) =
n∑

i=1
δi|x − xi| log(|x − xi|) + α0ϕ1(x) + α1ϕ2(x),

where the basis function η21(r) = |x − xi| log(|x − xi|) is a specific radial basis function
for the univariate TPS. The basis functions ϕi are:

ϕ1(x) = 1, ϕ2(x) = x1.

Here, δi and αj are coefficients to be estimated, with α0 and α1 accounting for the
polynomial part of the spline, which form the familiar ‘linear’ null space of the univariate
Gaussian objective function we have seen so far.

The expression of a TPS as a linear mixed model, with a separation of basis functions
into null and non-null spaces, shows how the smoothness penalty operates. We construct
the model matrix for the basis functions E for the radial basis functions Eij = |xi −
xj | log(|xi − xj |) and T for the polynomial basis functions Tij = ϕj(xi). By expressing
the function f̂(x) in terms of δ and α, the minimization problem becomes:

minimize ∥y − Eδ − Tα∥2 + λδT Eδ subject to TT δ = 0,

where y is the vector of observed data points yi, Eδ captures the non-null space (penal-
ized) part of the basis functions, Tα captures the null space (unpenalized) part of the
basis functions and the constraint TT δ = 0 ensures that the non-null space coefficients
δ do not interfere with the polynomial terms.

See subsection 2.1.8 for background on thinking about smoothers as random effects
in a linear mixed model framework.

Now Simon Wood constructs a low rank version of TPS called thin plate regression
spline (TPRS) by leaving the α parameter space unchanged and instead finding a trun-
cated basis in the δ parameter space. Details of this construction are done in [16]. TPRS
are the low rank approximation to TPS that are used in the R package mgcv, that we
use to obtain the basis and penalty matrices for our smoothers. See chapter 3 for more
details on how mgcv is used in constructing compartmental model using smoothers to
estimate time varying latent variables.

2.1.7 General definition of a penalized spline

The penalized regression problem, formulated to minimize:

∥y − Xβ∥2 + λβT Sβ, (2.6)

leads to a solution for the smoothing coefficients β expressed as:

9
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β̂ = (XT X + λS)−1XT y, (2.7)

with the corresponding hat matrix:

A = X(XT X + λS)−1XT ,

often called the smoother matrix. In a typical data model y = f(x) + ϵ, the estimate ŷ
is computed as:

ŷ = Ay.

Although A renders the smoother non-linear in nature due to its dependency on λ, it
can be treated as linear for fixed λ, simplifying the use of penalized regression splines in
practical applications.

Now, consider the general case of flexible function estimation within a statistical
model defined over the domain Rn. The functional can be expressed as:

S(f) = L(f |data) + J(f), (2.8)

where L(f |data) represents the likelihood of the function f given the data—essentially
the deterministic part of the model—and J(f) is a functional that defines what it means
for functions f on the domain Rn to be smooth.

In the examples discussed previously, such as cubic smoothing splines, P-splines, B-
splines, and thin-plate regression splines, each represents a specialized case of this general
equation tailored for Gaussian regression. Typically, the data model is assumed to be y =
f(x) + ϵi, where ϵi follows a Gaussian distribution. This assumption gives the likelihood
function L(f) the form of a least squares functional, and the roughness penalty J(f) the
form of a quadratic penalty. This follows from the theory of reproducible kernel Hilbert
spaces, which we do not consider further. See Gu [17] for further details. However, one
could alternatively assume a different distribution (e.g., from the exponential family) for
the residual errors in the data model, which would modify L(f) accordingly. The choice
of a quadratic functional as the roughness penalty is also based on this assumption.
Specializing to Gaussian Regression simplifies equation 2.8 to the specific form seen in
equation 2.2.

By focusing on Gaussian regression within the framework of penalized likelihood esti-
mation, we derive an objective function that integrates both a stochastic component, the
least squares functional and a roughness penalty component, the quadratic functional.

2.1.8 Empirical Bayes and the duality of smooths and random effects

In a Bayesian context, prior beliefs about parameters before observing the data are
specified through a prior distribution. For smoothing, the penalty term βT Sβ suggests

10
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a prior on β:

β ∼ N (0, S−/λ), (2.9)

where S− is the pseudoinverse of S, accounting for its rank deficiency. This prior implies
that the values of β are normally distributed with a mean of zero and a covariance
matrix S−, tightening around zero as λ increases and becoming flatter as λ decreases.
This Bayesian interpretation of smoothing is discussed in [10].

Consequently, the maximum posteriori (MAP) estimate of β is given by:

β | y ∼ N (β̂, (XT X + λS)−1σ2), (2.10)

which aligns with the solution of Equation 2.7 derived from Equation 2.6.

This reveals that methodologies designed for smoothing problems are applicable for
estimating Gaussian random effects.

It is possible to conceptually link penalized smoothing splines with linear mixed mod-
els (LMMs). This connection was first explored in depth in [17]. In this framework,the
smooth function in flexible function estimation is represented by a high-dimensional ba-
sis. The penalty on spline coefficients, represented as βT Sβ, can be interpreted as an a
priori distribution, yielding a mixed linear model by treating the smooth components
of the model as random effects. The parametric components and the components of
the smooth in the null space are treated as fixed effects. For a deep exploration of this
duality see [2] or [18]. For a computational overview see [15].

The primary advantage of using the mixed model formulation for penalized splines
is that the computational methods developed to estimate random effects in software
like lme4 can also be employed to estimate smooth functions. However, it is possible to
write the objective function out explicitly with the penalty term expressed as a quadratic
form using the penalty matrices computed via the mgcv package. Optimization of the
objective function is handled by macpan2, which uses Template Model Builder as the
optimization engine [19]. Therefore in this case it is not necessary to write out the model
in the mathematical form of a mixed model. However, should one choose to adopt this
modeling methodology with another optimization engine, detailing the model in the form
of a mixed model could be essential.

2.1.9 Gaussian processes regression smoothers

A random field is a function f that assigns a random value f(xi) at each point xi within
its domain X . If we assume that the collection of values f(x) for any finite selection of
points {xi}n

i=1 follows a multivariate Gaussian distribution, then the subset {f(xi)}n
i=1

is jointly normally distributed. This distribution is characterized by a mean function
µ(x) and a covariance function C(x, x′), which measures how correlations decay with
distance between any two points, thereby defining a Gaussian Random Field (GRF).

11
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Unlike being restricted to fixed or discrete locations, a GRF can be generalized by
defining a distribution over functions, making the model continuous with respect to its
domain. How is this achieved? The covariance function C of the GRF, initially defined
on a set of discrete points such as a lattice, can be generalized through a kernel k(x, xi).
This kernel extends the covariance function to a continuous domain, ensuring that its
realization over any finite subset of this domain yields a positive semi-definite matrix.
This requirement extends the univariate requirement of a positive variance parameter
σ2 to a multivariate scenario.

A Gaussian process is thus defined as the model where any finite collection of realiza-
tions (i.e., n observations) is treated as having a multivariate normal distribution. The
characteristics of these realizations are determined by the mean function µ(x) and the
kernel k(x, xi), with the latter’s realization forming a positive semi-definite symmetric
matrix K.

The function f can be represented as:

f(x) = (1, xT )β +
∑

i

biC(x, xi),

where C(x, xi) is a non-negative function measuring the distance between two points.
The value of C(x, xi) should equal one when points are identical (indicating maximum
correlation) and approach zero as the distance between points increases to infinity. Given
the vector b, its prior distribution is b ∼ N (0, S−1/λ). Here, β is a vector of fixed effect
parameters (in the sense of the mixed model formulation), and the model depicts f as
a linear combination of these fixed effects and a random effect weighted by the kernel
function C(x, xi).

In matrix form, f is represented as:

f = Bβ + Cb.

To find the covariance matrix of f , compute:

Cov(f) = Cov(Cb) = CCov(b)CT = C(λC)−1CT = C/λ,

leveraging the fact that C = S−1 and C is symmetric.

Minimizing the objective function:

∥y − Bβ − Cb∥2/σ2 + λbT Cb

is equivalent to maximizing the posterior probability of the parameters given the data,
usually incorporating σ2 into the smoothing parameter λ. The values of β and b that
minimize this function are the MAP estimates given in equation 2.10.

This methodology is known as Gaussian process regression. Gaussian process re-
gression’s complexity primarily resides in the choice of the kernel. The kernel encodes
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assumptions about the function f by defining the concept of proximity or similarity used
in the estimation. For an introduction to Gaussian Processes, including many covariance
functions and further details, see [20].

2.1.10 Ornstein–Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process emerges as a special case of the Matérn covariance
function with ν = 1

2 . This formulation leads to a stationary first-order Gauss Markov
process.

The Matérn class of covariance functions is a Gaussian processes defined as:

k(r) = σ2 21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Kν

(√
2νr

ℓ

)
,

where r is the distance between points, σ2 is the variance, ℓ is the length scale, ν is a
smoothness parameter and Kν is a modified Bessel function of the second kind.

When ν = 1
2 , the Matérn function simplifies significantly because the modified Bessel

function of the second kind, K1/2(z), has a known simple form that relates to the expo-
nential function. The formula for K1/2(z) is:

K1/2(z) =
√

π

2z
e−z.

Substituting ν = 1
2 into the Matérn formula, using Γ(1

2) =
√

π, we get:

k(r) = σ2e−r/ℓ.

Here, ℓ acts as a scale parameter, and the resulting covariance function is the exponential
covariance function.

The Ornstein-Uhlenbeck process is a continuous-time stochastic process that is both
Gaussian and Markov, characterized by its mean-reverting property. The covariance
function of the OU process over time t with mean reversion rate θ is given by:

k(t) = σ2e−θ|t|,

where θ > 0 is the rate at which the process reverts to its mean.

Comparing this with the exponential covariance function derived from the Matérn
function, we see that they are essentially the same form when interpreted over time
rather than space, with θ = 1/ℓ. Thus, the OU process, which has this exponential form
of the covariance function, is a Gaussian Markov process.

Setting ν = 1
2 in the Matérn covariance function yields an exponential covariance

function, which corresponds to the covariance structure of the OU process. The first-
order Markov property in the OU process is given from the memoryless feature of the
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exponential decay in its covariance function. This demonstrates how the OU process,
as a stationary first-order Gaussian Markov process, is a special case of the Gaussian
processes modeled by the Matérn covariance function with ν = 1

2 .

2.2 Conditional Akaike information criterion
How can we account for overfitting in statistical modeling when comparing the fit of two
different models, which incorporate penalization, to data?

See appendix A.2 for the background on the using Akaike information criterion (AIC)
for comparison between models with unpenalized parameters. Given equation A.12, we
now have a measure for model performance that takes into account complexity by pe-
nalizing for the number of parameters in the model. However, the notion of degrees of
freedom for penalized smoothing coefficients is more complicated than in the unpenal-
ized case. To address this complexity, it is helpful to introduce the concept of natural
parameterization and the effective degrees of freedom (EDF). These concepts explain
the impact of penalties on model coefficients and for defining a correction notion for
what p should be in expression A.12.

In the context of penalized smoothers, Simon Wood [10] describes a ‘natural’ param-
eterization, that simplifies the understanding of how penalties affect model degrees of
freedom. The natural parameterization transforms the parameter estimators such that
they are independent with unit variance in the absence of a penalty, and the penalty
matrix becomes diagonal.

Consider a model with a design matrix X, parameter vector β, wiggliness penalty
matrix S, and smoothing parameter λ. Using the QR decomposition, X is factorized as
X = QR. Re-parameterizing in terms of β′′ = Rβ transforms the model matrix to Q
and the penalty matrix to R−T SR−1.

The penalty matrix is then eigen-decomposed as R−T SR−1 = UDUT , where U is
orthogonal and D is diagonal. Further re-parameterization via a rotation/reflection of
the parameter space yields parameters β′ = UT β′′, resulting in a model matrix QU
and penalty matrix D. This ‘natural’ parameterization allows for a clear understanding
of the penalty’s role in limiting parameter variance.

Each unpenalized coefficient has one degree of freedom. The penalized estimates are
shrunken versions of the unpenalized estimates: β̂′

i = (1 + λDii)−1β̃′
i, where Dii are

the eigenvalues of the penalty matrix. The shrinkage factor (1 + λDii)−1 represents the
effective degrees of freedom for each penalized coefficient.

The total EDF for the smooth is the sum of the individual shrinkage factors:

∑
i

(1 + λDii)−1 = tr(τ) where τ = (XT X + λS)−1XT X.
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τ can be interpreted as the matrix that maps the un-penalized coefficient estimates
to the penalized coefficient estimates. This means that the trace of τ can be understood
as having the effect of being the average shrinkage of the coefficients, multiplied by the
number of coefficients. This measure is bounded between the number of zero eigenvalues
of the penalty (as λ → ∞) and the total number of coefficients (when λ = 0). The ‘trace
of the hat matrix’ is an idea also found elsewhere, e.g Hastie and Tibshirani [9].

The unpenalized estimators are unbiased, leading to the expected value of the penal-
ized estimates: E(β̂′

i) = (1 + λDii)−1βi. The shrinkage factors determine the relative
smoothing bias.

The penalty suppresses variability in parameters corresponding to high eigenvalues
Dii, effectively reducing model complexity.

Therefore, the AIC formula corrected to incorporate the effective degrees of freedom
is the conditional AIC :

AIC = −2ℓ(β̂) + 2τ. (2.11)

The effective degrees of freedom for the calibrated models are computed as the model
degrees of freedom, facilitating the comparison of models using different smoothing bases
with the same data set, as in Chapter 4.

Although the model degrees of freedom take into account the value of the smoothing
parameter, they do not take into account the uncertainty of the estimates of the fitted
smoothing parameter. From Appendix A.2, the effective degrees of freedom is equal to:

τ = tr2E
[1

2(β̂ − βK)T IK(β̂ − βK)
]

= trE[χ2
p] = p,

where βK is the coefficient vector minimizing the K-L divergence and IK is the expected
negative Hessian of the log likelihood. In [21], Wood et al defines the corrected AIC as

τ2 = tr(V′
βÎ), (2.12)

where V′ is an approximation of the covariance matrix of the Bayesian large sample
approximation

β | y, λ ∼ N (β̂λ, Vβ)

and Vβ = (Î + P)−1. Î is the Hessian of the negative log likelihood at IK . The
goal is to calculate a first-order adjustment to the posterior distribution of the model
coefficients, taking into account the uncertainty in the smoothing parameter. After that,
the penalty term in the AIC is represented using the Bayesian covariance matrix of the
coefficients.
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2.3 The SIR and SIRS compartmental models
The SIR model (Figure 2.1) categorizes the population into three distinct compartments:
S(t), I(t), and R(t), which represent the number of susceptible, infected, and recovered
individuals, respectively. As the disease progresses, the number of individuals in each
compartment changes over time, thus these compartments are represented as functions of
time. The transitions between these compartments are guided by the processes depicted
in the schematic shown in Figure 2.1.

The model incorporates two primary parameters: the transmission rate (β) and the
recovery rate (γ). The transmission rate, β, is the per capita rate at which two different
individuals come in effective contact per unit time. This rate is used to calculate βSI,
where SI is the total number of interactions between susceptible and infected individuals;
βSI thus represents the expected number of new infections per unit time.

On the other hand, the recovery rate, γ, indicates how quickly infected individuals
recover and gain immunity. If an individual is infectious for a period D, then γ is
defined as γ = 1

D . Therefore, γI calculates what proportion of the infected population
will recover during any given time interval, moving from the infected compartment to
the recovered compartment, based on the infectious period D.

Figure 2.1: A Susceptible-Infected-Recovered (SIR) model. The
edges are the flows from one compartment to another. The nodes are the
compartments that represent an element in the stratification of the total
population.

The rates of transition between compartments in the SIR model can be derived from
Figure 2.1 and expressed as a system of nonlinear ordinary differential equations:

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI.

(2.13)
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The basic SIR model can be modified to include a process where recovered individuals
become susceptible again after losing immunity. This adaptation introduces a waning
immunity parameter, ϕ, which quantifies the rate at which recovered individuals lose
their immunity and return to the susceptible compartment. This extended model, illus-
trated in Figure 2.2, is known as the SIRS model or SIR model with waning immunity.

Figure 2.2: A SIR model with waning immunity (SIRS). The
waning parameter represents the flow of individuals who have lost their
natural immunity from the recovered back to the susceptible compart-
ment.

2.3.1 Force of Infection and the Basic Reproduction Number (R0)

In equation 2.13, for dS
dt , the term βSI

N represents the rate at which susceptible are
becoming infected. Here, λ = β I

N is the force of infection, which means that each
susceptible individual has a probability λ of becoming infected per unit time. The force of
infection is defined as as the per capita rate at which susceptible individuals contract the
disease. Essentially, it quantifies the risk that a susceptible individual faces of becoming
infected at a given time, depending on the current prevalence and contagiousness of the
disease in the population. The force of infection is directly proportional to the number
of infectious individuals in the population.

An infectious individual contacts β individuals per unit time, and the proportion of
susceptibles in the population is S

N . Therefore, the effective contacts that can result in
a new infection are β S

N . An infectious individual remains infectious for 1
γ units of time,

on average (since γ is the rate at which individuals recover and cease being infectious).

The basic reproduction number R0 is defined as:

R0 = β

γ
.
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Therefore R0 is the average number of secondary cases of disease caused by a single
infected individual over their infectious period. [22] discusses the subtleties in defining
and estimating the reproductive number.

If R0 > 1, each infectious individual, on average, infects more than one other person,
leading to the potential for an epidemic. Conversely, if R0 < 1, the disease will likely die
out in the population over time. Understanding R0 helps in predicting disease behavior
and controlling outbreaks. For instance if we can reduce β (e.g., through vaccination,
social distancing, or wearing masks), or increase γ (e.g., through faster diagnosis and
treatment), R0 can be brought below 1, aiming to control the spread of the disease.
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Chapter 3

Materials and methods

This chapter covers the technical details of using semi-mechanistic models. There are two
main aspects. The first aspect explains how to construct linear smoothers using the mgcv
package. The second aspect describes how to implement these linear smoothers within
a compartmental modeling framework using macpan2. If your goal is to implement your
own model in macpan2 using the smoothing parameter estimation methodology to infer
a latent variable by fitting the model to data, this chapter provides the general method-
ology to do so. It also addresses some of the unique technical issues we encountered and
their solutions.

3.1 Software
McMaster Pandemic 2 (macpan2) is an R modeling package designed as a compartmental
modeling tool that is agnostic about its underlying computational framework, though it
currently uses Template Model Builder (TMB). It allows users to write complex, bespoke
compartmental models in a user-friendly way.

Template Model Builder (TMB) is an R package specifically designed to fit latent
variable models efficiently to data. With macpan2, users can write the negative log-
likelihood of their objective function with respect to the parameters to be fit to the
data in R code. macpan2 then implements this objective function in C++. It supports
maximum likelihood estimation and uncertainty calculations by maximizing the Laplace
approximation of the marginal likelihood.

The use of the Laplace approximation to estimate model parameters and their uncer-
tainties (using the delta method) involves the computation of first and second-order
derivatives, respectively. Nonlinear optimization algorithms that use Quasi-Newton
methods (such as nlminb or BFGS) leverage differences of gradients to iteratively ap-
proximate the Hessian matrix. Accurate estimates of the gradient function are essential
for the Quasi-Newton algorithm to obtain efficient parameter updates. Inaccuracies in
the gradient can lead to suboptimal parameter updates, slow convergence, or conver-
gence to non-optimal points. TMB harnesses the capabilities of automatic differentiation
(AD), a computational technique for accurately calculating derivatives of functions. Un-
like numerical or symbolic differentiation, AD operates by exploiting the fact that all
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computationally implemented functions decompose into a finite sequence of elementary
arithmetic operations and functions [23]. Using the chain rule, AD breaks down these
complex functions into simpler operations, computing derivatives in a sequence that par-
allels the function’s evaluation. This method enables the precise calculation of derivatives
up to machine precision. AD helps efficiently implement the Laplace Approximation be-
cause finite differences is a crude and slow method. For its implementation of automatic
differentiation (AD), TMB uses its own C++ library, TMBad, instead of CppAD. TMB also
utilizes Eigen for handling both sparse and dense matrix computations.

In macpan2, specifying that the optimizer includes uncertainty estimates for parame-
ters is straight forward. This functionality enables the computation of Wald confidence
intervals with specified uncertainty levels using the delta method. This requires the com-
putation of the Hessian matrix, which AD makes computationally efficient. Confidence
intervals, as discussed in chapter 4, are computed using this method.

For further reading on TMB, refer to [24]. For more information on the Laplace Ap-
proximation, see [25]. Refer to section 3.4 for details on deriving the objective function
for the semi-mechanistic model and its implementation in macpan2.

3.2 Time varying transmission rate
We specify the time-varying transmission rate β in our model using a linear smoother
defined as

β = exp(b0 + Xb), (3.1)

where b0 is the intercept, X is the basis matrix of dimensions n × (k − 1), and b is a
vector of basis coefficients of length k − 1. The structure of X depends on the selected
type of basis functions.

The R package Mixed GAM Computation Vehicle with Automatic Smoothness Esti-
mation (mgcv), developed by Simon Wood, implements a variety of smoothers that can
be used for penalized generalized additive models. In our approach, we utilize smoothCon
to create the model matrix X and its corresponding penalty matrix P for β. This func-
tion facilitates the capture of the nonlinear relationships of the latent process β from the
data by constructing a univariate Gaussian regression smoother. While typically used
internally by mgcv in calls to the gam function for fitting generalized additive models,
smoothCon serves as a critical low-level function for constructing smooth terms in our
model.

This function is configured via the bs argument to select the type of smoother
and the k argument to determine the number of basis functions, which we refer to
as num_variables. The number of observations in the data is represented by n. The
initial step involves constructing a simple data frame dd = seq(from = 0, to = n,

20



Master of Science– Greg Forkutza; McMaster University– Mathematics & Statistics

by = 1), which discretizes our time variable into intervals that map directly onto the
domain over which the smoother operates.

The command to execute this configuration in R is as follows:
s <- smoothCon(object = s(time, bs = smooth, k = num_variables),

absorb.cons = TRUE, data = dd, knots = NULL)

This function call yields two components for the model: the basis matrix X and the
penalty matrix P.

For instance, specifying bs = cr configures the basis and penalty matrices for a cubic
regression spline, which is detailed further in the subsection 2.1.3. Alternatively, when
using bs = gp for a Gaussian process regression smoother, it becomes necessary to define
the kernel type within the additional arguments (...). Guidelines on kernel specification
and available smooths can be found in Simon Wood’s mgcv package documentation [26].

Details on the range of smoothers implemented in our models and their respective
kernel choices are discussed in the chapter 4.

The argument absorb.cons = TRUE absorbs the identifiability constraints into the
basis matrix, instead of treating them as external conditions or adding them through ad-
ditional penalty terms. The default identifiability constraint in mgcv ensures the smooth
sums to zero over the observed values of xj , i.e,

1T Xb = 0.

This implies 1T X = 0. mgcv implements this constraint by constructing the following
QR decomposition.

Let

CT = U
[
P 0

]
,

where U is a p × p orthogonal matrix and P is an m × m upper triangular matrix. The
zero matrix appended to P is m × (p − m) to match the dimensions of U. Now, U is
partitioned as U ≡ (D : Z), where D is a p × m matrix and Z is a p × (p − m) matrix.

Given that b = Zbz and bz is a (p − m)-dimensional vector, we compute:

Cb =
[
PT

0

] [
DT

ZT

]
Zbz =

[
PT DT

0

]
Zbz =

[
PT

0

]
bz = 0,

where we used the fact that DT Z = 0, and ZT Z = Ip−m because U is orthogonal, hence
UT U = Ip.

To minimize equation 2.6 such that 1T b = 0, find the k × (k − 1) matrix Z and
reparameterize the basis matrix to XZ and the penalty matrix to ZTPZ.
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While zero-centering X is a computationally more expensive method to address iden-
tifiability issues, it is still valuable to explain because it provides a clearer understanding
of how the spline components and intercept interact in the model. By default, the basis
matrix X produced by mgcv::smoothCon doesn’t include an intercept. Zero-centering
the spline basis functions ensures that the spline components represent deviations or
variations around a central tendency, rather than absolute values. This allows the inter-
cept, b0, in the model to uniquely capture the central tendency of the response variable.
Consequently, the intercept and the spline coefficients are identifiable as distinct con-
tributors to the model: the intercept as the average response and the spline coefficients
as the adjustments from this average. Each spline coefficient can be interpreted as the
effect of that basis function relative to the central tendency captured by the intercept.

Zero-centering is implemented by subtracting the column mean from each column of
X, which effectively reduces the rank of X by one. This process removes one degree of
freedom, corresponding to the zero eigenvalue, from the basis matrix. To resolve this,
we exclude the row and column associated with the zero eigenvalue from X, and we also
remove the corresponding element from the vector of coefficients, b. This adjustment
ensures that the remaining components of X and b are identifiable.

X and b now have one fewer dimension than the number of knots due to the null
space of the penalty matrix. The penalty matrix’s null space dimension of one means
the function can vary linearly without penalty. As λ increases, the model reverts to a
linear trend because this minimizes penalized complexity under high penalty values.

There are difficulties encountered when working with the penalty matrix that has
been transformed into the constraint space of the sum to zero constraint. Computing
the eigendecomposition of the penalty matrix, returned by mgcv::smoothCon, one of
the eigenvalues is essentially zero, in terms of numerical precision, being on the order
of ≤ 10−10. This implies that the penalty matrix is singular. It is not possible to
take the logarithmic determinant of a singular matrix when taking numerical precision
limitations into account. Computing the log determinant is part of the objective equation
(3.2). To overcome this we can take the regularized determinant by adding a small value
(≈ 10−10) to the diagonal of the penalty matrix. Another option (which we did not
implement) is to take the singular value decomposition P = UΣVT and use the fact
that logdetP =

∑
i logΣii.

We scaled X to make it comparable across bases, with a choice of the standard
deviation used to simulate the starting values for b. Each column of the basis matrix X
is normalized by dividing it by its Euclidean norm, resulting in each column having a
unit norm. Then Xb is on the range of about of plus or minus log(2) (i.e Xb ± 1), since

b ∼ N (0, σ).

When the sum-to-zero constraints are absorbed into the basis matrix, this also sets
the penalty matrix for the Gaussian process to have the last row and column equal to
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zero, effectively absorbing the null space constraints into the penalty matrix. This makes
P singular. If we remove the final row and column of P, then we get a non-singular
matrix.

3.3 Time-varying effective reproduction number
The effective reproductive number

Rt = R0 × S

N
= β

γ
× S

N
,

dynamically reflects the average number of secondary infections that an infectious indi-
vidual can cause at a specific time t in a population where not all members are suscep-
tible. This equation implies that Rt will decrease over time as S(t) decreases. It also
implies that Rt can be effectively reduced by decreasing the contact rate β(t) through
interventions. Unlike R0, which assumes that the entire population is susceptible, Rt

adjusts for changes in susceptibility due to factors such as immunity from previous in-
fections or vaccinations.

As the epidemic progresses, the proportion of susceptible individuals decreases either
through infection—which can lead to immunity or death—or through vaccination. This
reduction in the susceptible population is quantified by S(t)/N , where S(t) represents
the number of susceptible individuals at time t, and N is the total population.

Instead of treating β as a constant, it is estimated as a smooth function. This allows
β, the time-varying transmission parameter, to adapt and change over time, resulting
in the sequence {β(ti)}n

i=1. Meanwhile, the recovery rate γ remains fixed at its initial
value. Consequently, this framework enables the calculation of the time varying effective
reproductive number

Rt = β(t)
γ

× S(t)
N

,

based on the dynamically adjusting β.

Note that in some definitions of the time varying effective reproduction number,
both γ and β are estimated as time-varying parameters. However, in this context, γ is
treated as a constant. In Chapter 4, the starting value of γ for each disease is derived
from existing literature. Meanwhile, in the simulation study, γ is assigned a reasonable
fixed value.

In section 3.2 we described how to estimate a time varying transmission parameter
to compute estimates for the force of infection. This estimate is then used to compute
the time varying effective reproduction number.
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3.4 Inititial conditions and parameters
The simulation study employs the SIRS model, while the examples use the SIR model.
The simulation study initializes the starting values of S, I, and R to the following
endemic equilibrium states:

S = γN

β
,

I = ϕN(β − γ)
β(ϕ + γ) ,

R = γN(β − γ)
β(ϕ + γ) .

By initializing the compartment values deterministically as functions of the total pop-
ulation N , the transmission rate β, the recovery rate γ, and the waning rate ϕ, we can
start the simulation close to the endemic equilibrium. This approach stabilizes the influ-
ence of the starting parameters, particularly β, on the model dynamics. Consequently,
the system begins in a balanced state, reducing the transient effects that might otherwise
occur due to arbitrary initial conditions. This transformation was not necessary for the
real-world data examples.

For the real data examples, the state vectors are initialized as follows:

S = N − I0,

I = I0,

R = 0.

The initial number of infected individuals, I0, at time t = 0 is modeled as a fixed
parameter. To account for uncertainty about I0, we employ a log-normal prior distribu-
tion. We use a similar approach for the recovery rate γ, also modeled with a log-normal
prior to ensure positivity and reflect our uncertainty regarding its value. Specifically,
we set the mean of the priors to the logarithmic values of I0 and γ, and the standard
deviation for each parameter is set to a small reasonable value σ = 0.1 to instill a sharp
prior.

The smoothing coefficients vector b = (b1, . . . , bk−2) is initialized using k − 1 random
draws from a standard normal distribution.

The intercept b0 of the linear smoother (3.1), for the time varying transmission, is
estimated in the model. It starting value is set to the logarithm of the starting value of
β at time t = 0.

We can compute the log likelihood of the basis coefficients by making the assumption
that the spline basis coefficients b follow a multivariate Gaussian distribution, i.e., b ∼
N (0, Σ). The log likelihood function for b is then
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L(b) = −k

2 log(2π) − 1
2 log(det(Σ)) − 1

2(x − µ)T Σ−1(x − µ).

Now let b = x − µ and Σ−1 = aS, where a = 1
σ2 , σ2 ∈ R and S is the penalty matrix.

This implies Σ = a−1S−1 = σ2S−1.

Then,

L(b) = −k

2 log(2π) − 1
2 log(σ2) − log(det(S)) + 1

2σ2 bT Sb. (3.2)

The term σ2 represents a variance component that scales the penalty matrix S. It acts
as a global variance parameter that moderates the extent to which the penalty is applied.
By scaling S with σ2, you effectively adjust the strength of the regularization relative to
the variance of the data. Consequently, λ = 1

2σ2 functions as a regularization parameter,
controlling the ‘wiggliness’ of the fit by influencing the variance of the distribution of
the smoothing coefficients. This setup can be viewed as placing a prior distribution on
b, with S acting as the precision matrix of the prior. This approach is analogous to
the Bayesian perspective of smoothing, as discussed in equation 2.9. Here, σ2 scales the
precision matrix of the prior, influencing how strongly the prior beliefs (e.g., smoothness)
affect the posterior estimates.

Therefore L(b) is the derived form of the penalty functional J(f) in equation 2.8
when the smoothing coefficients are assumed to be Gaussian.

Considering the data model Yi = f(xi) + ϵi, where i = 1, . . . , n and ϵi ∼ N(0, σ2), the
likelihood functional L(f |data) in equation 2.8 simplifies to a least squares functional.
This is proportional to

∑n
i=1(Yi − f(xi))2, aligning with the Gaussian likelihood. There-

fore, the likelihood can be expressed using a Gaussian density function evaluated at the
vector of observed values Y, with mean f(x) and variance σ2

Y .

Thus, to fit the combined objective function L(f |data) + J(f), we estimate both the
smoothing parameter λ and the variance σ2

Y .

The number of basis functions or knots to use in the model is not algorithmically
optimized. The basis dimension k was chosen to be just large enough that the plotted
fits appeared to converge to a stable fit. In [10], Simon Wood outlines the methodology
to compute a quantitative measure of whether a particular choice of basis dimension is
appropriate. However, in our case, the smoothing parameter does most of the work in
avoiding overfitting.

3.5 Model formulation
Recall the following assumptions in the model:
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I0 ∼ Lognormal(µI0 , σ2
I0)

γ ∼ Lognormal(µγ , σ2
γ)

y ∼ N (f(x), σ2
y)

b ∼ N (0,
S−

σ2 ),

where f(x) is the fitted values (incidence). Note that we are not estimating the observed
values y but estimating the variance σ2

y corresponding to its likelihood equation. In this
way the fitted values f(x) behave as a sort of Gaussian process.

The model assumptions and starting conditions are specified and passed to a simulator
object in macpan2. TMB simulates the trajectory using the Euler method.

At t = 0 the smoothing basis X, the vector of smoothing coefficients b and its
intercept b0 are used to construct the transmission rate β, a vector equal to the number
of observations, of size n. At each time step, 1 ≤ t ≤ n, βi is used to compute the number
of new infections (incidence), which in turn is used to compute the total number of
infected (I) and susceptible (S) at that time point. Additionally, β is used to compute
the instantaneous effective reproduction number Rt.

After simulating the trajectory, the negative log likelihood is minimized subject to
finding the optimal values of the starting values of the initial number of infected I0,
the recovery rate γ, the variance σ2

y of the likelihood of the observed data and the
regularization/smoothing parameter σ2. Note that the priors on the recovery rate and
the initial number of infected are not ‘fully Bayesian’ in the sense that there are not
priors placed on the mean and variance of the prior distribution, i.e., no there are no
hyper-priors. Parameter estimates for the intercept b0 of the linear smoother are also
obtained.

For each iteration, the simulated trajectory is matched to the observed values and the
likelihood is calculated using the Laplace approximation. New parameter estimates are
updated using Quasi-Newton methods via nlminb. This process is then iterated until
the parameter estimates converge.

Here is an example of what the simulator object for an SIR model in macpan2 looks
like using the above formulation:
---------------------
Before the simulation loop (t = 0):
---------------------
1: I_0 ~ exp(log_I_0)
2: gamma ~ exp(log_gamma)
3: lambda ~ exp(log_lambda)
4: I_sd ~ exp(log_I_sd)
5: S ~ N - I_0
6: R ~ 0
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7: I ~ I_0
8: S ~ N - I - R
9: eta ~ b_0 + (X %*% b)

---------------------
At every iteration of the simulation loop (t = 1 to n):
---------------------
1: beta ~ exp(eta[time_step(1)])
2: R_t ~ (log(beta) - log(gamma) + log(S) - log(N))
3: incidence ~ S * I * beta/N
4: recovery ~ gamma * I
5: S ~ S - incidence
6: I ~ I + incidence - recovery
7: R ~ R + recovery

---------------------
After the simulation loop (t = n+1):
---------------------
1: nll ~ - sum(dnorm(incidence_obs, incidence_fitted, incidence_sd))

- dnorm(log_gamma, mean_log_gamma, sd_log_gamma)
- dnorm(log_I_0, mean_log_I_0, sd_log_I_0)
+ log(det(P))
- 1/2 * log(sigmaˆ2)
+ t(b) %*% P %*% b) / (2 * sigmaˆ2)

Sometimes it is useful to simulate the trajectory for n time steps and then calibrate
the model over a smaller time series by aggregating the data into n

k time steps by
averaging the trajectory and data over a period of k steps. For example, in the case of
the Ireland Covid-19 dataset (4.3), the reported incidence was inconsistent on a daily
scale. By averaging the observations over a weekly scale, the variance is reduced as the
averaging process diminishes the day-to-day fluctuations caused by sporadic reporting.

Extra care is needed to handle the uncertainty estimates of aggregated trajectory
simulations. For un-aggreggated data, macpan2, which has TMB for its optimization
engine, uses the Laplace Approximation to compute uncertainty estimates with the delta
method. By averaging the trajectory over a time period of size k, we are in effect making
a transformation of a random variable. The uncertainty estimates are required to take
this into account. The variance of a function h(β) = Hβ of β is computed as

V ar(Hβ) = HT Cov(β)H,

where H is a n×nk indicator matrix, where nk is the integer ceiling of n
k such that n

nk
∈ Z.

The transformed variance is then used to compute the Wald confidence intervals as in
the unaggreggated case.
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Chapter 4

Results

This chapter presents examples demonstrating the application of semi-mechanistic mod-
els in infectious disease modeling. These examples illustrate the capabilities of semi-
mechanistic models. We begin with a simulated data example to showcase the effective-
ness of fitting semi-mechanistic models with a single unknown function. The structure of
the compartmental models is intentionally kept simple to demonstrate that estimating
unknown functions using penalized smoothers is straightforward when integrated into
the syntax and optimization engine of macpan2. The objective is to illustrate this ap-
proach so that modelers can use it without extensive knowledge of spline and nonlinear
optimization literature. Following this, we provide three real-world examples: an epi-
demic of scarlet fever in Ontario from 1929 to 1931, the initial SARS-CoV-19 outbreak
in Ireland at the start of the pandemic, and four decades of measles in London, UK.

4.1 SIRS Model with Simulated Data
One challenge in epidemiological modeling is the lack of direct observation of the trans-
mission rate within datasets containing incidence or prevalence data. Consequently, the
true shape of the function used to estimate the transmission rate remains unknown.
Our goal is to develop a compartmental model, formulated as a deterministic system
of ordinary differential equations, incorporating a linear smoother component. If this
model can accurately predict population dynamics based on the time-varying transmis-
sion rate, it should enable us to infer the transmission rate by fitting the model to the
data. This approach allows us to validate the effectiveness of the smoothing parameter
estimation methodology and demonstrate the applicability of these methods with models
formulated as discrete systems of ordinary differential equations.

Consider the time-varying transmission rate β as a latent process. ‘Time-varying’
means that at each observation xi in the dataset, the model—comprising a system of
ordinary differential equations—contains an estimated value for the transmission rate
for each 1 ≤ i ≤ n, where n is the number of observations.

β is constructed as the linear smoother b0 + Xb, where b0 is the intercept, X is the
model matrix associated with the particular smoother, and b is the vector of smoothing
coefficients. Both b0 and b are parameters that need to be estimated. This linear
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smoother, which estimates β, is a non-parametric component inside a deterministic
system of differential equations, whose trajectory is determined entirely by the starting
parameters. This is why the model is called semi-mechanistic or partially specified.
Some components of the model contain unknown functions, while the rest of the model
comprises conventional elements with only unknown scalar parameters.

To prove that semi-mechanistic models within the macpan2 modeling framework are
capable for this problem, we conduct a simulation study. For a chosen smooth, we
simulate data and add Gaussian noise to the incidence. The simulated data is used to
calibrate the model using various smoothers available in the mgcv package. In Figure
4.1, we illustrate the shape of the basis functions for each of the univariate smoothing
bases used in this methodology.

Consider a SIRS compartmental model with a fixed waning immunity parameter ϕ.
The total number of individuals in the population is given by N . The initial values of
S, I, and R are fixed at the endemic equilibrium solutions.

We construct the data-generating model as follows. The smoother type and the
number of knots k are specified using a particular mgcv smooth. This determines the
form of X and the penalty matrix P. The smoothing coefficients b, of dimension k − 2,
are assumed to be multivariate Gaussian. Thus, b is defined as random normal deviates
at the k − 2 evenly spaced quantiles with a mean of 0 and a standard deviation specified
as bsd. As the variation of this distribution increases, the true function describing the
time-varying transmission rate for the data model will become more complex. An initial
value for b0 is chosen as the log of the initial value of β. The recovery rate γ is fixed.
Initial values for the remaining parameter estimates are set to .

The model trajectory is simulated from these initial conditions using Euler steps.
Gaussian noise (sd = 0.2) is added to the log-transformed simulated incidence vector,
and then the inverse transformation is applied. This vector is used to test the efficacy of
the semi-mechanistic models. The models are calibrated using macpan2, which uses the
Laplace approximation via TMB to optimize the objective function and update parameter
estimates using Quasi-Newton methods.

To investigate the effect of temporal aggregation on model performance, we conducted
an additional study where we aggregated the simulated data on a weekly scale before
fitting the model. This process involved summing the predicted incidence over each week
and then fitting the model to these aggregated observations. Both the unaggregated
and aggregated models use the same simulated trajectory with added noise, ensuring
consistency between the two approaches. We used k = 20 knots to simulate the data.
The aggregated data was obtained by summing the noisy unaggregated data on a weekly
basis.

We performed cross-model comparison by varying the smoothing basis used to cali-
brate the models across the smoothing basis used to simulate the data. The variance used
to generate the starting values for the smoothing coefficients bsd = 1 is fixed for starting
values. γ = 1/7, which represents a one-week period of an infectious individual being
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capable of transmitting the disease to a susceptible individual. ϕ = 1
300 , which means

that at each time point, that proportion of the recovered individuals lose immunity. An
equivalent interpretation of the waning immunity parameter is that it represents the
period of immunity for an individual, which in this case represents 300 days. We have
kept γ fixed in the simulation study, but in the real-life data examples, we have used a
log-normal prior to allow flexible deviation from the initialized starting value of γ.

In Figures 4.2, 4.3, 4.4, and 4.5, we present the results for unaggregated data simu-
lated using the Gaussian process (GP), thin plate regression spline (TP), cubic regression
spline (CR), and B-spline (BS) bases, respectively. In Figures 4.6, 4.7, 4.8, and 4.9, we
present the results for aggregated data. We have chosen to omit the results of the cali-
bration models utilizing a P-spline basis, as they show poor ability to predict incidence
and infer the underlying true transmission rate when the number of knots used is less
than the number used to generate the data.

For the predicted incidence, the red line represents the true value from the simulated
trajectory with Gaussian noise. The blue line indicates the predicted incidence, with light
and dark blue bands representing the 95% and 50% confidence intervals, respectively.

For the estimated transmission rate (βt), the red line represents the true transmission
rate function from the simulated data. The green line indicates the estimated transmis-
sion rate, with light and dark green bands representing the 95% and 50% confidence
intervals, respectively.

For the estimated effective reproduction number Rt, the black line represents the true
reproduction number from the simulated data. The purple line indicates the estimated
reproduction number, with light and dark purple bands representing the 95% and 50%
confidence intervals, respectively.

The number of knots used to calibrate the models was k = 20 for simulated data sets,
except the TP basis for both the unaggregated and aggregated data. For the GP, CR,
and BS data, the value k = 20 was chosen as the smallest value of k to fit the predicted
and estimated values without introducing overfitting. This was evaluated by visually
inspecting the results of the figures below. For the TP basis, the optimization procedure
for the model calibration did not converge for values of k ≥ 10. None of the bases were
able to match the highly oscillating trajectory observed in the last 75 days of Figures
4.3 and 4.7.

In Tables 4.1 and 4.3, we present a comparison of the conditional AIC scores for all
sixteen models for the unaggregated and aggregated data sets, respectively. We observe
that the cubic regression spline (CR) model consistently has the lowest AIC score across
all datasets. A lower conditional AIC score indicates that the model is relatively the best
fit for the data, taking into account the effect of penalization on the number of knots
used, i.e., effective degrees of freedom. The best model is the most likely to minimize
information loss when approximating the true data-generating process, compared to the
other models tested. The AIC score, which balances model fit and complexity, suggests
that the CR model provides the best trade-off between these two aspects among the
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models compared. However, the ∆AIC values are within two points of each other,
indicating that this difference is negligible and one model is not significantly better than
the others.

In Tables 4.2 and 4.4, we present a comparison of the mean square error (MSE) for
all sixteen models for the unaggregated and aggregated data sets, respectively. For the
unaggregated data, we observe that models using the same basis for generation and
fitting have the lowest MSE for all bases except the B-spline basis. For the aggregated
data, the models using the same basis for generation and fitting have the lowest MSE
for all bases except the thin plate spline basis.
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Figure 4.1: Basis functions for calibrating smoothers. Basis ma-
trices are obtained via mgcv::smoothCon() with number of knots k = 20
and domain of n = 200 days. Each basis matrix is determined only by the
input domain and the number of knots. Each basis function is a single
column of the basis matrix. The acronyms for the smoothers are defined
as follows: "gp" = Gaussian process, "tp" = thin plate regression spline,
"cr" = cubic regression spline and "bs" = B-spline.
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Figure 4.2: SIRS Model with Simulated Data (GP). The columns
represent the predicted incidence, the estimated transmission rate and
effective reproduction number. The rows correspond to the different
smoothing basis used to fit the model to the data. k = 20 knots were
used to calibrate the model.
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Figure 4.3: SIRS Model with Simulated Data (TP). The columns
represent the predicted incidence, the estimated transmission rate and
effective reproduction number. The rows correspond to the different
smoothing basis used to fit the model to the data. k = 9 knots were
used to calibrate the model.
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Figure 4.4: SIRS Model with Simulated Data (CR). The columns
represent the predicted incidence, the estimated transmission rate and
effective reproduction number. The rows correspond to the different
smoothing basis used to fit the model to the data. k = 20 knots were
used to calibrate the model.
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Figure 4.5: SIRS Model with Simulated Data (BS). The columns
represent the predicted incidence, the estimated transmission rate and
effective reproduction number. The rows correspond to the different
smoothing basis used to fit the model to the data. k = 20 knots were
used to calibrate the model.
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Figure 4.6: SIRS Model with Aggregated Data (GP). The
columns represent the predicted incidence, the estimated transmission
rate and effective reproduction number. The rows correspond to the dif-
ferent smoothing basis used to fit the model to the data. The data was
simulated on a daily scale and then aggregated to a weekly scale for model
calibration. k = 20 knots were used to calibrate the model.
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Figure 4.7: SIRS Model with Aggregated Data (TP). The
columns represent the predicted incidence, the estimated transmission
rate and effective reproduction number. The rows correspond to the dif-
ferent smoothing basis used to fit the model to the data. The data was
simulated on a daily scale and then aggregated to a weekly scale for model
calibration. k = 9 knots were used to calibrate the model.
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Figure 4.8: SIRS Model with Aggregated Data (CR). The
columns represent the predicted incidence, the estimated transmission
rate and effective reproduction number. The rows correspond to the dif-
ferent smoothing basis used to fit the model to the data. The data was
simulated on a daily scale and then aggregated to a weekly scale for model
calibration. k = 20 knots were used to calibrate the model.
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Figure 4.9: SIRS Model with Aggregated Data (BS). The columns
represent the predicted incidence, the estimated transmission rate and
effective reproduction number. The rows correspond to the different
smoothing basis used to fit the model to the data. The data was sim-
ulated on a daily scale and then aggregated to a weekly scale for model
calibration. k = 20 knots were used to calibrate the model.
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Table 4.1: Conditional AIC Scores for SIRS Model with Simu-
lated Data. The columns represent the smoothing basis used to fit the
model, while the rows indicate the basis used to generate the simulated
data. ∆cAIC values are calculated relative to the best score within each
row.

BasisType gp tp cr bs

gp 0.91 0.50 0 1.01
tp 0.49 0.03 0 NA
cr 0.87 0.46 0 0.97
bs 0.94 0.54 0 1.05

Table 4.2: Mean Square Error (MSE) for SIRS Model with
Simulated Data. The columns represent the smoothing basis used to fit
the model, while the rows indicate the basis used to generate the simulated
data. ∆MSE values are calculated relative to the best score within each
row.

Basis Type gp tp cr bs

gp 0 10678.8 70174.8 87100.2
tp 68244 0 13228 NA
cr 61176.8 71138.9 0 123283.5
bs 20945.7 9691.2 0 13889.7

Table 4.3: Conditional AIC Scores for SIR Model with Simu-
lated Data Aggregated to a Weekly Scale. The columns represent
the smoothing basis used to fit the model, while the rows indicate the
basis used to generate the simulated data. The trajectories were simu-
lated on a daily scale and then aggregated to a weekly scale for model
calibration. ∆cAIC values are calculated relative to the best score within
each row.

BasisType gp tp cr bs

gp 1.93 2.02 0 1.01
tp 0.90 0.69 0 NA
cr 1.78 1.98 0 0.93
bs 1.90 2.28 0 1.10

4.2 Scarlet Fever in Ontario 1929-1931
We consider an epidemic of scarlet fever in Ontario from 1929 to 1930. The dataset
comes from the International Infectious Disease Data Archives (IIDDA) [27].
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Table 4.4: Mean Square Error (MSE) for SIR Model with Sim-
ulated Data Aggregated to a Weekly Scale. The columns represent
the smoothing basis used to fit the model, while the rows indicate the
basis used to generate the simulated data. The trajectories were simu-
lated on a daily scale and then aggregated to a weekly scale for model
calibration. ∆MSE values are calculated relative to the best score within
each row.

Basis Type gp tp cr bs

gp 0.0 3608396 652617.0 257866.70
tp 570236.7 2558394 683489.6 0.00
cr 3327258.5 2616685 0.0 62911.79
bs 1092529.9 NA 1878868.7 0.00

The calibration model is constructed using the basic SIR model, with an initial re-
covery rate of γ = 1/7 and an initial number of infected of I0 = 50.

In Figure 4.10, we show the predicted incidence, estimated transmission rate, and
effective reproduction number for the best model, which uses k = 9. This model em-
ploys the Ornstein-Uhlenbeck (OU), thin plate regression spline (TPRS), cubic regression
spline (CR), and cyclic cubic regression spline (CC) bases for the linear smoother com-
ponent. The power OU kernel for the GP basis was chosen to be consistent across all
the real data examples. We observed little difference when varying the kernel type.

The shape of the estimated transmission rate and reproduction number varies across
the smoothing bases for this example. The GP basis shows a positive slope as the rate
of transmission reaches its maximum, whereas the TPRS, CR, and CC bases start at or
very near the maximum.

In Table 4.5, we present the conditional AIC scores and MSE calculations for the four
models. We provide the delta values, which are calculated by subtracting the best score
from each result for both the AIC and MSE calculations. The AIC score for the cubic
regression spline (CR) basis is the lowest compared to the other bases. However, the
difference in AIC scores between the bases is less than 2, implying that no single model
should be chosen over the others based solely on the AIC. In the same table, we observe
that the mean square error (MSE) is lowest for the thin plate spline (TP) model rather
than the CR model.
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Figure 4.10: Combined analysis of predicted incidence, esti-
mated transmission rate, and effective reproduction number for
weekly observed scarlet fever cases in Ontario, from 1929 to
1930. Each column represents the predicted incidence, estimated trans-
mission rate, and effective reproduction number, respectively. Each row
corresponds to different smoothing bases used to calibrate the data, all
fitted with k = 20 knots. The true incidence is shown in red. The co-
variance function of the GP basis uses a power exponential kernel, with
power parameter κ = 1 and range parameter ℓ = 2. The figures display
95% and 50% confidence intervals.
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Table 4.5: ∆cAIC and ∆MSE Scores for Ontario Scarlet Fever
(1929-1930). ∆cAIC and ∆MSE values are calculated relative to the
best score.

Basis Type ∆ MSE ∆ cAIC

bs 137.422 0.55687
cr 42.982 0.00000
gp 91.939 0.72060
tp 0.000 1.15344

4.3 COVID-19 in Ireland 2020
Next, we fit the model to observations of the daily number of COVID-19 cases in Ireland
from the onset of the outbreak, spanning February 20, 2020, to May 9, 2020. This data
is sourced from the publication by Andrade and Duggan [28].

The calibration model is constructed using the basic SIR model, with an initial re-
covery rate of γ = 1/6, which is obtained from the results of Park et al. [29].

Figure 4.11 presents the results of the models using the GP, TPRS, and CR smoothing
bases. The BS basis functions exhibited extremely large uncertainty estimates, so we
did not include the results. All bases displayed an excellent fit to the observed incidence
data with appropriately sized uncertainty estimates.

Table 4.6 provides the delta values for the conditional AIC scores and the MSE
calculations. The CR basis has the best AIC score, while the GP basis has the lowest
MSE calculation. The difference in AIC scores between the model with the CR basis
and those with the GP and TP bases is less than two, suggesting that the AIC score
alone cannot distinguish the best basis for fitting the data.

The model’s sensitivity to changes in the starting value of γ (ranging from 7 to 14
days) does not alter the shape of the functional form of β, but it changes the amplitude
of the peak, leading to an increase in Rt. Increasing the variance of the log-normal
prior on γ causes the model to tend to select a larger γ. However, this also results in a
dramatic increase in uncertainty estimates. We observed that when the starting value
of γ is lowered and the variance of the log-normal prior is increased simultaneously, the
model still predicts larger values of γ.

Andrade and Duggan (2022) used COVID-19 data to infer the effective reproduction
number by employing an SEIR model with three different data-generating processes for
the transmission rate. One of the processes they used was Geometric Brownian Motion
(GBM). GBM is similar to the Ornstein-Uhlenbeck (OU) process that we used, but it
is non-stationary, non-mean-reverting, and the response is log-normally distributed. In
our thesis, we implemented the OU process as a special case of a Gaussian Process (GP)
with an exponential covariance function. By viewing the OU process as a GP, we focus
on the joint distribution of values at different times, characterized by the mean and
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covariance functions. These functions describe the decay rate of the covariance and the
process variance, respectively, emphasizing the correlation structure. Computationally,
this approach allows us to use linear algebra. Andrade and Duggan define the transmis-
sion rate using GBM formulated as an SDE. They also assume that the response, the
incidence data, follows Poisson and Negative Binomial distributions. Additionally, they
use Apple mobility data to adjust the transmission rate by assuming that the effect of
social distancing is correlated with the transmission rate.

We compared our results, using the OU process basis for our linear smoother, with
those of Andrade and Duggan. They aggregated their incidence data to a weekly scale
to account for irregularities in daily reporting. We implemented this by computing the
trajectory on a daily scale, aggregating the predicted incidence to a weekly scale, and
then fitting the model to the weekly aggregated observed data. The daily trajectory of
the transmission rate and reproduction number estimates are then averaged over each
week.

The predicted incidence fits the data well, with very reasonable uncertainty bounds,
and the shape is very similar to Andrade and Duggan’s results. The estimated transmis-
sion rates, ignoring the first week in our plots, both show approximately the same shape,
an exponential decay. The magnitude of the transmission rate is about twice as large
for Andrade and Duggan compared to our results. The estimated effective reproduction
number, which is the transmission rate scaled by the recovery rate and the proportion of
susceptibles at any time t, also shows a similar pattern. Although Andrade and Duggan
compute an analytical expression for the basic reproduction number and we compute
ours as the transmission rate scaled by the recovery rate, we both scale the basic re-
production number by the ratio St

Nt
to obtain the effective reproduction number. Most

notably, we observe that the estimated effective reproduction number has not only the
same shape as Andrade and Duggan’s but also a similar magnitude. The uncertainty
estimates are tighter in our model, but our model is simpler.

Table 4.6: ∆cAIC and ∆MSE Scores for Calibrating Models
with Varying Smoothing Basis, Calibrated to Ireland Covid-19
(2020). ∆cAIC and ∆MSE values are calculated relative to the best
score.

Basis Type ∆ MSE ∆ cAIC

cr 39706.28 0.000000
gp 0.00 1.239482
tp 59513.85 0.137893
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Figure 4.11: Combined analysis of predicted incidence, esti-
mated transmission rate, and effective reproduction number for
observed Covid-19 cases in Ireland, 2020. The data is given on
a daily scale, and the trajectory is simulated daily but aggregated to a
weekly scale for fitting the model. Each column represents the predicted
incidence, estimated transmission rate, and effective reproduction num-
ber, respectively. Each row corresponds to different smoothing bases used
to calibrate the data, all fitted with k = 7 knots. The true incidence is
shown in red. The covariance function of the GP basis uses an exponen-
tial kernel function, which makes the basis an Ornstein-Uhlenbeck process,
with exponent parameter κ = 1 and range parameter ℓ = 2. The figures
display 95% and 50% confidence intervals.
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4.4 Measles London UK 1944-1984
We now present a more challenging problem than the previous examples. We consider
weekly observed measles cases in London, UK, from 1944 to 1984. This dataset was first
utilized in a publication by David Earn et al. [30].

The calibration model is constructed using the basic SIR model. The starting value for
the recovery rate is γ = 1/8, aligning with the initial value used in [30]. A key assumption
we make is that the total population remains constant over time. This is due to the
nature of the SIR model, which does not account for a time-varying total population
component. We fixed the total population to N = 8, 615, 050, which is the population
of London at the start of this dataset. This assumption is reasonable, as the population
of London has fluctuated between six and ten million from then until the present day.
However, since the disease predominantly affects children, a more sophisticated model
could include a time-varying total population component, partitioned according to age
and weighted by the incidence rate per age demographic. We initialize the number of
infected individuals at I0 = 250.

The full dataset extends to 1994, but we had difficulty tuning the model to fit the
last decade. During this period, the observed incidence was relatively flat compared
to the previous years. We observed that the calibrated model inflated the predicted
transmission rate to unreasonable levels. By truncating the last decade, reducing the
observations from 2,660 to 2,140, we were able to calibrate the model more effectively.

We exclusively present the results for a Gaussian process basis for the linear smoother
component of the model. Other smoothing bases were tested, but the optimizer failed to
converge for more than 100 to 200 observations, as the Newton-Raphson method failed
to find a minimum. In Figure 4.12, we show the predicted incidence, transmission rate,
and effective reproduction number for the SIR model with a Gaussian process basis for
the linear smoother component. The covariance function is the exponential kernel with
a range parameter ℓ = 20. Other kernels, such as the Matérn function, were tested by
iterating over different range parameters ℓ = 30, 40, 50. The resulting models showed
little difference in optimized parameter values and conditional AIC scores. For simplicity,
we present the parsimonious model with the simplest kernel function and the smallest
range parameter. Each model took about 20 minutes to fit.

Figure 4.12 displays the optimized values of the parameters in the calibrated model
and their uncertainty measurements. These are the log transformed values. Exponenti-
ating, the partial prior on γ produced an optimal value of 1

11.84 .
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Figure 4.12: Predicted incidence and estimated transmission
rate and effective reproduction number for weekly observed
measles cases in London, UK, from 1944 to 1984 using a Gaus-
sian Process smoother. The linear smoother component of the semi-
mechanistic compartmental model employs an Ornstein-Uhlenbeck (OU)
process with a range parameter ℓ = 20 and k = 100 knots. The model
estimates a recovery rate of approximately γ = 11.84 days and an initial
number of infected individuals of approximately I0 = 250. The figures
display 95% and 50% confidence intervals.
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Chapter 5

Discussion

This thesis presents a method for formulating infectious disease compartmental mod-
els without relying on unjustified biological assumptions about the disease transmission
process, as required by fixed or parametric models. By integrating this approach into
the macpan2 and TMB frameworks, we provide a user-friendly way for modelers to fit
models, select the best model, and infer estimates of latent variables over time. We ac-
complished this by adapting the general methodology of Simon Wood [7] and utilizing it
in conjunction with the aforementioned model formulation tool and optimization engine.

Our work differs from that of Simon Wood by making this methodology accessible
to quantitatively minded modelers who may not be experts in nonlinear optimization
and smoothing theory. This was achieved because macpan2 is designed from a software-
engineering perspective. It wraps all the necessary C++ code to interact with TMB in an
R wrapper, eliminating the need for modelers to write bespoke optimization code, which
can be a significant barrier to using such models.

Through simulation studies, we demonstrated the efficacy of penalized smoothing
parameter estimation. The mgcv package greatly facilitated the construction of low-rank
smoothing bases and penalty matrices for a given domain and model granularity. We
compared different smoothing bases, evaluating their performance based on uncertainty
estimates, AIC scores, MSE and the shapes of the estimated functions.

We successfully fitted the models to real-world incidence data, with the goodness of
fit controlled by smoothness inferred through penalization. These results indicate that
this methodology can be beneficial to any modeler wishing to estimate a time-varying
latent variable by inferring the shape of an unknown function. Although we focused on
modeling infectious disease with unknown transmission rates and reproduction numbers,
it seems reasonable that this approach can be applied to arbitrary compartmental models
with unknown time-varying functions. This methodology can even extend to dynamic
ecological models formulated using compartmental models.

The models were effective in inferring fixed parameters. Unlike most epidemiological
studies [31], we did not fix the recovery rate and the initial number of infected individ-
uals to their initial values. Instead, we introduced an empirical Bayesian approach by
applying a sharp partial Bayesian log-normal prior, treating the quantile of this prior as
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a parameter calibrated using the data. For future research, a fully Bayesian approach
could be adopted by specifying prior distributions for both the mean and variance of the
log-normal distribution.

The relative performance of different smoothing bases across all examples can be
analyzed. In all examples (subsections 4.1, 4.2, 4.3, and 4.4), the cubic regression spline
(CR) basis now has the lowest AIC score across almost all simulated data sets. However,
the mean square error (MSE) in the simulation study is lowest when the same basis is
used to generate the data. In the real data examples, CR continues to have the lowest
AIC but does not have the lowest MSE. Given that the AIC difference is less than two
across models with differing bases and that the MSE for the CR basis is not the lowest,
it suggests two things. First, there is not one basis that is a clearly better choice than
the others. Second, there may be something unaccounted for in the AIC calculation. It
is possible that we are not accounting for the uncertainty in the smoothing coefficient
estimates as described in equation 2.12. It would be informative to calculate the AIC
scores using this method for formulating the effective degrees of freedom of a penalized
model by accounting for the uncertainty estimates in the estimated coefficients of the
linear smoother.

The SIR and SIRS compartmental models used in this work are basic compartmental
models. Theoretically, a compartmental model can be as complex as the modeler wishes,
but in practice, certain assumptions are made to make the fitting process tractable. The
models we used serve as toy examples that demonstrate the proof of concept for the
efficacy of the methodology presented in this thesis.

In contrast, more realistic compartmental models can be highly complex, including
numerous compartments (or nodes) and connections (or edges) between them, each with
associated parameters or unknown functions that need to be estimated. These models
can account for various factors such as different stages of infection, varying rates of
transmission, recovery, and immunity, as well as heterogeneity in the population.

Despite their simplicity, our models effectively demonstrate the potential of the
methodology. However, they do not capture the full complexity of real-world scenarios,
where the intricate dynamics of disease spread necessitate more sophisticated models.
By starting with these simpler models, we establish a solid foundation for understanding
and validating the methodology before potentially extending it to more complex and
realistic compartmental models in future research.

Assuming the unknown function is simply linear, as done in this thesis (when the
smoother parameter is fixed for each iteration), is a step towards constructing more
complex forms of the unknown function. If the modeler wishes to incorporate biological
information about the transmission process into the model, they might impose quali-
tative conditions on the unknown function. For instance, if the unknown function is
assumed to be monotone, the modeler can impose specific conditions of monotonicity
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and boundedness on the smoother. Extending this methodology to include specific con-
straints on the smoother allows the literature to guide the shape of the fitted unknown
function by applying qualitative constraints to the smoothing functional.

In summary, this thesis presents a proof of concept for estimating time-varying un-
known functions in deterministic compartmental models. There are many possible av-
enues for extension, some of which we have discussed above. More generally, this thesis
suggests that it should be possible to adapt this methodology to be used within any
optimization framework that fits mixed models by using the theory of the duality of
smooths and random effects, to rewrite the smoothing basis as random effects matrices,
as discussed in subsection 2.1.8. Another avenue of research is to estimate more than
one unknown function. All the methods presented here are easily extensible to fitting
models to data with more than one unknown function, each with its own smoothing
parameter. Wood [32] and Gu [17] describe how to formulate models with more than
one smoothing parameter.
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Appendix A

Mathematical derivations

A.1 Matrix formulations and basis functions for cubic
smoothing splines

The following is adapted from the proof in [13] for deriving the basis functions and matrix
elements of a natural cubic spline. We extract the key equations and essential conceptual
steps, omitting computational details and expanding on the equations’ meanings. This
approach highlights how the natural boundary conditions and continuity conditions at
the knots constrain the solution of the Euler-Lagrange equation over each continuous
interval to be a cubic spline which vanishes outside the endpoints of its domain.

To determine the function f that minimizes

J2(f) =
n∑

i=1
(yi − g(xi))2 + λ

∫
g′′(x)2 dx,

we apply the Euler-Lagrange equation to a more general functional form J(x) =∫
L(x, x′, x′′, t) dt. The Euler-Lagrange equation for this functional becomes:

∂L

∂x
− d

dt

∂L

∂x′ + d2

dt2
∂L

∂x′′ = 0. (A.1)

When the function f(x) extends beyond the range of the data points, or knots, we
avoid imposing fixed boundary values for x and x′ at the domain boundaries (i.e., x(ta),
x(tb), x′(ta), and x′(tb)). Instead, we use natural boundary conditions.

Natural boundary conditions are designed to ensure that the contributions from the
boundary conditions to the first-order variation δJ = J(x + δx) − J(x) vanish, thus
optimizing the solution. In standard scenarios, fixed values might be set for δx and
δx′, where δ represents an infinitesimal change. However, this could potentially lead to
undesirable behavior at the boundary points, especially outside the region defined by
the knots.
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From the application of the Euler-Lagrange equation A.1 and the principle that the
first-order variation δJ should vanish at the optimal solution, we derive two critical
natural boundary conditions:

∂L

∂ẋ
− d

dt

∂L

∂ẍ
= 0 and ∂L

∂ẍ
= 0,

where these conditions are each evaluated at ta and tb. These conditions help ensure
that the function f(x) not only fits the data within the knot range but also behaves
optimally at the boundaries without artificial constraints.

Now, we can express Equation 2.2 in a variational form as follows:

J =
N−1∑
n=0

wn(yn − x(tn))2 + λ

∫ tb

ta

x′′(t)2 dt,

where the Lagrangian L is defined by:

L =
N−1∑
n=0

wn(yn − x(t))2δ(t − tn) + λx′′(t)2.

Applying the Euler-Lagrange equation to this formulation yields:

∂L

∂x
− d

dt

∂L

∂x′ + d2

dt2
∂L

∂x′′ = −2
N−1∑
n=0

wn(yn − x(t))δ(t − tn) + 2λx(4)(t) = 0. (A.2)

The natural boundary conditions for this setup are:

x(3)(ta) = 0, x′′(ta) = 0, x(3)(tb) = 0, x′′(tb) = 0.

By rearranging Equation A.2 to solve for x(4)(t), we derive:

x(4)(t) = λ−1
N−1∑
n=0

wn(yn − x(tn))δ(t − tn), (A.3)

This equation indicates that the third derivative of the spline function, x(t), is zero
except at the designated knot points tn. Consequently, within each interval between
knots, x(t) must be represented as a cubic polynomial. The coefficients of these cubic
polynomials may vary between intervals. The spline function transitions to first-degree
polynomials in the endpoint intervals [ta, t0] and [tN−1, tb], defining what is meant by
‘natural’ in the context of natural cubic splines.

The explicit form of x(t) is given by:
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x(t) =


p−1(t) = a−1 + b−1(t − ta), ta ≤ t ≤ t0

pn(t) = an + bn(t − tn) + 1
2cn(t − tn)2 + 1

6dn(t − tn)3, tn ≤ t ≤ tn+1

pN−1(t) = aN−1 + bN−1(t − tN−1), tN−1 ≤ t ≤ tb

(A.4)

The coefficients are determined as follows:

an = x(tn) = pn(tn),
bn = p′

n(tn),
cn = p′′

n(tn),
dn = p′′′

n (tn), for n = 0, 1, . . . , N − 1.

From Equation A.3, we can establish the continuity and discontinuity conditions at
the knots in terms of Equation A.4:

pn(tn) = pn−1(tn), for n = 0, 1, . . . , N − 1,

p′
n(tn) = p′

n−1(tn),
p′′

n(tn) = p′′
n−1(tn),

p′′′
n (tn) − p′′′

n−1(tn) = λ−1wn(yn − an).

(A.5)

These conditions ensure that each spline segment smoothly transitions into the next,
preserving the continuity of the first, second, and third derivatives, except at the knots,
where the third derivative may be discontinuous.

For the cubic spline model, there are N − 1 cubic polynomials—one for each interval
between knots—and two linear polynomials for the intervals at the domain boundaries,
leading to a total of 4(N − 1) + 4 = 4N coefficients to solve in equations A.4. The
equations derived using the constraints in equations A.5 form the basis functions for a
cubic spline between knots xj and xj+1, with each interval defined by hj = xj+1 − xj .
These basis functions are defined as:

aj(x) = xj+1 − x

hj
,

bj(x) = (xj+1 − x)3/hj − hj(xj+1 − x)
6 ,

cj(x) = x − xj

hj
,

dj(x) = (x − xj)3/hj − hj(x − xj)
6 .

(A.6)

The matrix elements for the non-cyclic spline are defined as follows:
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B =



h1+h2
3

h2
6 0 · · · 0

h2
6

h2+h3
3

h3
6 · · · 0

0 h3
6

h3+h4
3

h4
6 · · ·

... . . . . . . . . .
0 · · · 0 hk−2

6
hk−2+hk−1

3

 (A.7)

and

D =



1
h1

−
(

1
h1

+ 1
h2

)
1

h2
0 · · · 0

0 1
h2

−
(

1
h2

+ 1
h3

)
1

h3
· · · 0

0 0 1
h3

−
(

1
h3

+ 1
h4

)
· · · 0

... . . . . . . . . . ...
0 · · · 0 1

hk−3
−
(

1
hk−3

+ 1
hk−2

)
1

hk−2

0 · · · 0 0 1
hk−2

−
(

1
hk−2

+ 1
hk−1

)


.

(A.8)

Thus, these matrix formulations and the associated spline basis functions emerge
from the process of optimizing the objective function outlined in Equation 2.2.

A.2 Akaike information criterion (AIC)
The following derivation of AIC is adapted from the proof sketch in [10], which omits
many steps and lacks clarity in some areas. To address these issues, we have filled in
the missing computations, expanded on the derivations, and added explanations where
needed. Our goal is to provide a comprehensive and clear explanation of how AIC works.
This detailed derivation is included in the appendix of this thesis for reference.

Suppose we have two possible models P and Q for a data vector X. We can think of
these models as being a null hypothesis H and an alternative hypothesis A. Let fH(x)
be the probability density of X under H and fA(x) under A. Define the log-likelihood
ratio as

η(x) = log fA(x)
fH(x)

Computing the expected value of η(x) with respect to A is

EA[η(x)] =
∫

fA(x) log fA(x)
fH(x) dx.

55



Master of Science– Greg Forkutza; McMaster University– Mathematics & Statistics

This expected log-likelihood ratio can be interpreted as having the same form as the
Kullback-Leibler (KL) divergence defined from the density fA to the density fH . When
the alternative model fA fits the data better than the wrong model fH , i.e., A is true,
the two models are well separated and the log-likelihood ratio will be positive. The ratio
will be negative when fH fits the data better than fA, i.e., when H is true.

Let’s consider the scenario where the alternative hypothesis is misspecified for a model
Q with density fQ(x). This misspecification can be interpreted through the Kullback-
Leibler (KL) divergence from fA to fQ, representing the loss of power in a likelihood ratio
test due to the incorrect specification of the alternative hypothesis A as Q. Similarly, if
we mistakenly assume the null hypothesis fH(x) to be fQ(x), the KL divergence from fH

to fQ reflects the power loss resulting from this misspecification of the null hypothesis
[33].

Thus, the interpretation of the expected log-likelihood ratio statistic of two statistical
models as the loss of power for specifying the model in terms of type one and type two
error can be insightful for finding the solution of the problem of accounting for model
complexity in model selection.

If we were to judge between nested models on the basis of their fit to new data,
not used in estimation, using the Likelihood Ratio Test (LRT), the model with the
higher number of parameters will always have the higher likelihood. This is because
the more complex model can better capture the nuances in the data. However, the
Neyman-Pearson (NP) Lemma tells us that while the LRT is the most powerful test for
simple hypotheses, in the context of model selection with multiple parameters (composite
hypotheses), we need to balance model fit with complexity to avoid overfitting.

The Akaike Information Criterion (AIC) addresses this by incorporating a penalty for
the number of parameters. This penalty helps control overfitting by favoring models that
generalize better to new data, not just those that fit the training data well. Therefore,
while the LRT tends to favor more complex models due to higher likelihoods, AIC pro-
vides a more balanced approach by considering both fit and parsimony. It accomplishes
this in the following way.

Consider a scenario where our data are actually generated from a true density fθ0(y),
while our model assumes a density fθ(y), where θ represents the model parameters. Both
y and θ are typically vectors, with θ having p dimensions. The Kullback-Leibler (KL)
divergence between these densities is given by:

K(fθ, fθ0) =
∫

[log fθ0(y) − log fθ(y)]fθ0(y) dy (A.9)

This divergence quantifies how much the model fθ deviates from the true density fθ0 .
When θ̂ is the maximum likelihood estimate (MLE) of θ, the KL divergence K(fθ̂, fθ0)
serves as an indicator of the model’s expected performance on new data, distinct from
the data used to estimate θ̂. It’s important to note that, for the purpose of evaluating
this divergence, θ̂ is treated as a fixed value, independent of y.
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We don’t know what the density of the true model is. This can be overcome by
constructing a truncated Taylor expansion of log(fθ0) about the unknown parameters
θK , as the minimizer to equation A.9.

log fθ̂(y) ≈ log fθK
(y) + (θ̂ − θK)T g + 1

2(θ̂ − θK)T H(θ̂ − θK) (A.10)

where g and H are the gradient vector and Hessian matrix of the first and second
derivatives of log fθ(y) with respect to θ, evaluated at θK .

Substitute the Taylor expansion of log fθ̂(y) into the KL divergence expression A.9:

K(fθ̂, fθ0) =
∫ [

log fθ0(y) −
(

log fθK
(y) + (θ̂ − θK)T g + 1

2(θ̂ − θK)T H(θ̂ − θK)
)]

fθ0(y) dy

Separate the terms in the integral:

K(fθ̂, fθ0) =
∫

[log fθ0(y) − log fθK
(y)] fθ0(y) dy

−
∫

(θ̂ − θK)T gfθ0(y) dy

−
∫ 1

2(θ̂ − θK)T H(θ̂ − θK)fθ0(y) dy

The first term is the KL divergence between fθK
and fθ0 :

K(fθK
, fθ0) =

∫
[log fθ0(y) − log fθK

(y)] fθ0(y) dy

Since θK minimizes the KL divergence K(fθ, fθ0), the gradient vector g at θK will
integrate to zero:

∫
gfθ0(y) dy = 0

The remaining term involves the Hessian H:

∫ 1
2(θ̂ − θK)T H(θ̂ − θK)fθ0(y) dy

This term represents the second-order approximation of the KL divergence around
θK .

Combining these results, we obtain:
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K(fθ̂, fθ0) ≈ K(fθK
, fθ0) + 1

2(θ̂ − θK)T IK(θ̂ − θK)

Here, IK is the Fisher information matrix evaluated at θK , which is equivalent to the
negative expected value of the Hessian matrix H.

Since we don’t know θK , we take the expectation of the KL divergence approximation
over the distribution of θ̂. This yields:

E[K(fθ̂, fθ0)] ≈ K(fθK
, fθ0) + E

[1
2(θ̂ − θK)T IK(θ̂ − θK)

]

Under the assumption that the model is correct or nearly correct, θ̂ is approximately
normally distributed around θK with covariance matrix I−1

K . Therefore, (θ̂−θK)T IK(θ̂−
θK) follows a chi-squared distribution with p degrees of freedom (p being the number of
parameters).

The expected value of a chi-squared distribution with p degrees of freedom is p. Thus:

E
[1

2(θ̂ − θK)T IK(θ̂ − θK)
]

= 1
2E[χ2

p] = p

2

Substituting this back into our expression, we get:

E[K(fθ̂, fθ0)] ≈ K(fθK
, fθ0) + p

2 (A.11)

The goal is to find an approximately unbiased estimator for K(fθK
, fθ0), which is the

Kullback-Leibler (KL) divergence between the true distribution fθ0 and the model fθK
.

Given the log-likelihood function l(θ) = log[fθ(y)], we start with

E[−l(θ̂)]

where θ̂ is the maximum likelihood estimator (MLE) of θ. We decompose E[−l(θ̂)]
as

E[−l(θ̂)] = E[−l(θK)] − E[l(θ̂) − l(θK)].

Next, we use the linearity of expectation:

E[−l(θ̂)] = E[−l(θK)] − E[l(θ̂) − l(θK)].
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The term E[−l(θK)] corresponds to the expected log-likelihood under the true model,
which can be linked to the KL divergence. Specifically,

E[−l(θK)] = −
∫

log[fθK
(y)]fθ0(y) dy.

The second term, E[l(θ̂) − l(θK)], needs a bias correction. Considering the large
sample result that 2(log fθ̂ − log fθK

) is approximately chi-squared distributed with p
degrees of freedom, we use:

2(log fθ̂ − log fθK
) ∼ χ2

p.

Thus, the bias correction term is p/2, leading to:

E[l(θ̂) − l(θK)] ≈ p

2 .

So, we get:

E[−l(θ̂)] = E[−l(θK)] − p

2 .

Recall the definition of the Kullback-Leibler (KL) divergence:

K(fθK
, fθ0) = −

∫
log[fθK

(y)]fθ0(y) dy −
∫

log[fθ0(y)]fθ0(y) dy.

Notice that the first term on the right-hand side of our expectation equation is the
negative expected log-likelihood of the model evaluated at θK :

E[−l(θK)] = −
∫

log[fθK
(y)]fθ0(y) dy.

So, we can express the KL divergence as:

K(fθK
, fθ0) = E[−l(θK)] +

∫
log[fθ0(y)]fθ0(y) dy.

We have:

E[−l(θ̂)] ≈ K(fθK
, fθ0) − p

2 −
∫

log[fθ0(y)]fθ0(y) dy.

Rearranging this for K(fθK
, fθ0):
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K(fθK
, fθ0) ≈ E[−l(θ̂)] + p

2 +
∫

log[fθ0(y)]fθ0(y) dy.

The log-likelihood evaluated at the MLE θ̂ is a random variable that converges in
probability to the log-likelihood evaluated at the true parameter value θ because in
this case the MLE is a consistent estimator. This means that The probability that the
estimator is within an ϵ-neighborhood of the true parameter value approaches 1 as the
sample size increases.

The expectation E[−l(θ̂)] involves the distribution of θ̂, which, for large samples, is
concentrated around θ. Therefore we can approximate E[−l(θ̂)] with −l(θ̂) for large
sample sizes. This approximation is justified because θ̂ is close to θ, and the observed
log-likelihood −l(θ̂) will be close to its expected value.

Since E[−l(θ̂)] is the expectation of the negative log-likelihood, we approximate it
with the observed value −l(θ̂). We obtain the unbiased estimator for the KL divergence
between the true distribution fθ0 and the model fθK

.

̂K(fθK
, fθ0) ≈ −l(θ̂) + p

2 +
∫

log[fθ0(y)]fθ0(y) dy.

Substituting this into A.11 we obtain:

E[K(fθ̂, fθ0)] ≈ l(θ̂) + p +
∫

log[fθ0(y)]fθ0(y) dy..

Since we don’t have fθ0(y), we drop the last term, as it is a constant across any set
of models compared using the same data set:

E[K(fθ̂, fθ0)] ≈ − log fθ̂ + p = −l(θ̂) + p

Scaling the above equation by a factor of 2, the Akaike Information Criterion (AIC)
is:

AIC = −2 log L̂ + 2p (A.12)
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