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Abstract

Advances in machine learning for visual recognition and ultra-low surface brightness

imaging have made it possible to detect older and fainter historic supernova light

echoes (SN LEs). We are particularly interested in the historic core-collapse SN

(CCSN) Crab (SN 1054), as it is the only CCSN with records of direct-light observa-

tions in the last 1000 years. We have improved the SN LE machine-learning Python

package ALED (Automated Light Echo Detection), created by Bhullar et al. (2021),

by adding false positive masks as an additional input. ALED is visual recognition

software that identifies and locates LEs in difference images. Before the invention

of ALED, LE images had to be categorized by visual inspection, which was a very

time-consuming task. Additionally, we have developed a method for manufacturing

and augmenting LE training sets, which has previously not been applied to LEs.

We manufactured Dragonfly Telephoto Array (DTA) LEs by extracting LEs from

Canada-France-Hawaii Telescope difference images and overlaying them on DTA dif-

ference images. The DTA is a promising tool for LE detection because of its ability

to observe ultra-low surface brightness structures. Additionally, we augmented the
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only existing DTA LE image by overlaying it on other DTA images. Both of these

procedures provided options for further augmentation, such as changing the LE’s

brightness and width. We also created a process to mask the bright star difference

artifacts in DTA images. These stars are typically mislabeled as LEs, and hence

masking them makes LE identification simpler. We have created an effective DTA

training set for ALED, which is prepared to search for LEs around the historic CCSN

Crab (SN 1054), once more DTA images in that region are procured.
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Chapter 1

Introduction to Supernovae

A supernova (SN) is a fantastically energetic event that expels the majority of the

star’s material (Leibundgut, 2008). They can briefly reach 100 million times the

luminosity of the Sun, outshining the combined light of all other stars in their galaxy

(Stephenson & Green (2002); Leibundgut (2008)). These brief, catastrophic events

are one of the final stages of a star’s life, either as it collapses into a compact object

or as its dense core remnant is disrupted. The resulting SN remnant (SNR) can be

observed through electromagnetic radiation for several thousand years (Stephenson

& Green, 2002).

The interest in supernovae (SNe) goes beyond their internal processes - they can

trigger star formation and influence galactic chemical evolution, as they are a dom-

inant source of heavy elements recycled into the interstellar medium (Filippenko,

1997). They are involved in compact object production, emit cosmic rays, and are
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used in the calibration of the cosmic distance scale (Filippenko (1997); Branch &

Tammann (1992); Riess et al. (1998)).

1.1 Types of Supernovae

Minkowski (1941) identified two classifications of SNe by observing the optical spec-

tra of fourteen supernovae in IC 4182, NGC 4636, and NGC 4725. SNe are sorted

into these two groups by the nonexistence (Type I) or existence (Type II) of H ab-

sorption lines in their optical spectra (Filippenko, 1997), see Figure 1.1. The Type I

SNe are further divided into those with singly ionized silicon lines (Type Ia), those

without silicon lines but with He lines (Type Ib), and those without silicon or He

lines (Type Ic) (Leibundgut, 2008). Further investigation showed that the Type I

and II classification system had little physical relevance. A clear distinction between

Type Ia and Type Ib/c categories, both in luminosity and emission, indicated that

they were produced by different processes (Weiler & Sramek, 1988). Type Ia SNe

have a more luminous peak by ∼ 1.5 − 2 magnitudes and they do not emit in radio

frequencies, unlike Type Ib/c SNe (Weiler & Sramek (1988); Weiler et al. (2002)).

Furthermore, observations of SNe, such as SN 1993J, that have H lines in early stages

and lose them in later stages, show a possible transition from Type II to Type Ib/c

SNe (Leibundgut, 2008). This metamorphosing class of SNe has been labelled Type

IIb and suggests a connection between Type Ib/c and Type II SNe. Therefore, it

was finally concluded that two physical classifications can be made: Thermonuclear

SNe (Type Ia) and Core-collapse SNe (Type Ib, Ic, and II). Zwicky (1965) proposed

the addition of Type III, IV, and V classifications after observing a few unusual SNe.

However, Doggett & Branch (1985) argued that since all of their spectra had H lines,

2
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Figure 1.1: Supernova classification based on the existence of certain absorption
lines. Adapted from Leibundgut (2008).

these SNe should be classified as Type II SNe.

Clearly, the spectrum of the SN is required for classification. However, for the

historic SNe in Section 1.2, the direct light was observed several hundred years ago

- before the advent of astronomical spectroscopy (Rest et al., 2008a). Therefore,

modern, alternative methods are required to reconstruct the spectra of historic SNe,

see Section 2.3.2.

1.1.1 Thermonuclear Supernovae

Thermonuclear SNe, or more commonly Type Ia SNe, do not have H or He lines

in their spectra because their progenitor stars have shed those outer layers, leaving

only their compact core, a white dwarf (WD) (Leibundgut, 2008), refer to Figure

1.1. If the WD becomes more massive than its internal pressure can support, the

WD’s collapse launches a thermonuclear explosion, which disrupts the object. These

SNe are extremely luminous, with an absolute magnitude of −19.4 ± 0.5 and can

3



M.Sc. Thesis – N. Mulyk

produce ∼ 1051 ergs of energy (Branch & Tammann (1992); Maoz et al. (2014)).

They are known for having very homogeneous light curves which are easily calibrated

for measuring cosmological distances (Leibundgut, 2008).

Thermonuclear Supernovae Progenitors

As thermonuclear SNe do not have any H lines, the progenitor must have < 0.1M� of

H in its atmosphere (Hillebrandt & Niemeyer, 2000). However, a deeper investigation

of the spectra leads to a compact progenitor with a mass of ∼ 1M� and a radius

< 104 km, composed mainly of C and O; likely a C-O WD (Hillebrandt & Niemeyer,

2000).

Additionally, Type Ia SNe have been observed in many types of galaxies and dif-

ferent locations within those galaxies (Filippenko, 1997). Elliptical galaxies typically

do not contain massive stars (Hillebrandt & Niemeyer, 2000). Therefore, observations

of Type Ia SNe in elliptical galaxies support WDs as progenitors, as they form from

low-mass stars. However, it cannot be ruled out that Type Ia SNe that are observed

in spiral galaxies have a different class of progenitors. For example, Type Ia SNe with

bright peaks and slow declines are not found in elliptical galaxies and hence could

be a separate class. Hillebrandt & Niemeyer (2000) states that different explosion

mechanisms and white dwarf progenitors could account for the minor variations in

the light curves.

Aside from minor variations, Type Ia SNe have uniform light curves, which is

further evidence for only one class of progenitors (Hillebrandt & Niemeyer, 2000).

Chandrasekhar-mass WDs are a likely candidate. WDs are supported by electron-

degeneracy pressure, therefore, there is a maximum mass (Chandrasekhar mass limit)

4
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that can be endured before they succumb to gravitational pressure and collapse (Lei-

bundgut, 2008). Therefore, all progenitors would have approximately the same mass

before erupting, resulting in a similar light curve (Hillebrandt & Niemeyer, 2000).

Currently, a C-O WD has been accepted as the probable progenitor of thermonu-

clear SNe (Hillebrandt & Niemeyer, 2000). As C-O WDs typically form with a mass

of ∼ 0.6 M�, a companion is required to increase the WDs mass to the Chandrasekhar

limit (∼ 1.4 M�), which is required to launch the explosion. Two scenarios have been

proposed to achieve this: a single-degenerate binary or a double-degenerate binary.

1. Single-Degenerate Scenario:

In this scenario, a WD is in a binary with a companion (Hillebrandt & Niemeyer,

2000). The companion has overflowed its Roche lobe and the WD is accreting

material onto its surface until it reaches critical mass. Although this model

has been generally accepted, there are a few problems that are discussed in

the literature, mainly regarding the accretion rate. Various ranges of accretion

rates could result in smaller (nova) explosions. If more mass is ejected than

is being accreted, then the critical mass will not be reached. The companion

could also envelope the WD if the accretion rate is high enough. However, a

better understanding of WD winds and required accretion rates that result in

H burning without novae could potentially dismiss these issues (Hillebrandt &

Niemeyer, 2000).

2. Double-Degenerate Scenario:

Double-degenerate models consist of two C-O WDs in a binary, which merge to

launch the supernova (Hillebrandt & Niemeyer (2000); Pakmor et al. (2012)).
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This model would explain the lack of H but also has a few complications (Hille-

brandt & Niemeyer, 2000). First, there is little observational evidence for WD

binaries that are massive enough to reach the Chandrasekhar limit. Second, it is

difficult to explain how merging WDs would result in a consistent light curve, as

the progenitor WDs could have varying mass and composition. Third, merger

models suggest that gravitational collapse is more likely than thermonuclear

disruption due to off-center ignition.

Several studies of Type Ia SN remnants (Badenes et al., 2007), rates (Ruiter et al.,

2009), delay times (Maoz et al., 2010), and emission (Hancock et al. (2011); Leonard

(2007); Gilfanov & Ákos Bogdán (2010)) lead to the double degenerate scenario being

the favoured model (Pakmor et al., 2012). However, no definitive evidence has yet

been found.

The Thermonuclear Supernovae Explosion Mechanism

The explosion mechanism for the single-degenerate model has historically been more

thoroughly researched (Pakmor et al., 2012). In this scenario, the companion star

is accreting 4 × 10−6 − 10−8 M� of material per year onto the C-O WD (Branch &

Nomoto, 1986). Through H and He flashes, the accreted material is converted to C

and O. As the mass of the WD approaches the Chandrasekhar limit, the internal

temperature and pressure increase in the core, eventually igniting the C core. This

event launches a subsonic (slower than the speed of sound) front of nuclear burning

outward from the core, which converts the C and O into Ni-56 and other isotopes

(Branch & Nomoto (1986); Leibundgut (2008)). This slow-moving front, or deflagra-

tion, transitions to detonation, a supersonic burning front (Leibundgut, 2008). These
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runaway thermonuclear reactions result in the complete detonation of the star, releas-

ing approximately ∼ 1051 ergs of kinetic energy, with no dense remnant left behind

(Branch & Nomoto, 1986).

Recently, high-resolution simulations have made it possible to explore double-

degenerate merger models (Pakmor et al., 2012). It was initially thought that the

larger of the two WDs could tidally disrupt the smaller WD companion and accrete

its remains (Maoz et al., 2014). However, more recent models predict violent, head-on

collisions, and He WD accretion. Violent mergers are more likely to occur in dense

environments, as the probability of collision increases (Maoz et al., 2014). These

mergers could result in a Type Ia SN, even if the total mass of the binary is below

the Chandrasekhar limit. A head-on collision between two WDs is most likely to

occur in a dense environment or a tertiary system. A system with three WDs, or

a hierarchical triple, typically has two WDs in a stable binary and a low-mass WD

with an eccentric outer orbit. However, as only 10-20% of all stars can be found in

tertiary systems, it is unlikely that there are enough tertiary WD systems to produce

the observed number of Type Ia SNe. Furthermore, such a system would need to form

WDs before merging. Lastly, similar to the single-degenerate scenario, a He WD can

accrete He onto its degenerate companion. The accreted He forms an outer layer on

the WD, which can ignite He burning and launch the SN.

Thermonuclear Supernovae Light Curves and Spectra

Thermonuclear SNe emissions have been primarily observed in optical and near-

infrared wavelengths (Leibundgut, 2008). During the outburst peak, singly ionized

Si, Ca, Mg, O, and S lines can be found in the optical spectra, along with some Fe and

7
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Figure 1.2: The spectra of a Type Ia (SN 1987N & SN 1987L), Ib (SN 1984L), Ic
(SN 1987M), and II (SN 1987A) SNe. The left plot shows the early-time spectra

(one week after the optical peak) and the right plot shows the late-time spectra (five
months after the optical peak). Filippenko (1997), Figures 1 & 2.

Co lines at shorter wavelengths (Hillebrandt & Niemeyer (2000); Filippenko (1997)),

as can be seen in Figure 1.2 (left). These early emission lines are quite broad, due to

fast ejecta velocities (Filippenko, 1997). The emission is powered by the decay of Ni-

56 into Co-56 and Fe-56 (Leibundgut, 2008). A 1.4 M� (Chandrasekhar mass) WD is

expected to produce ∼ 0.6M� of Ni-56 during C and O burning (Maoz et al., 2014).

The decay of this uniform amount of Ni-56 results in the standardized post-outburst

light curve that is observed for Type Ia SNe (Weiler & Sramek, 1988). In the weeks

following the peak, permitted Fe II lines begin to dominate, followed by forbidden

Fe II, Fe III, and Co III lines during the tail of the light curve (Leibundgut, 2008),

see Figure 1.2 (right). After the ejecta has cooled, thermal infrared emission is more

predominant than optical and near-infrared.

As mentioned previously, Type Ia SNe have very homogeneous light curves and

spectra, as shown in Figure 1.3. Hillebrandt & Niemeyer (2000) notes that 85% of

8
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Figure 1.3: The spectra of three Type Ia SNe (SN 1990N, SN 1987N, and SN
1987D) one week after the optical peak. All three SNe show similar peaks and

troughs. Filippenko (1997), Figure 6.

thermonuclear SNe have a standard light curve and spectrum, and show 0.2-0.3 mag-

nitudes of dispersion in their peak luminosity. Although Type Ia SNe are considered

to be homogeneous, some variations and correlations do exist. In general, explosions

with lower luminosity peaks also decline from the peak more rapidly, are redder, and

have lower ejection velocities (Branch, 1998). There is a correlation in the light curves

between the width and height of the peak (Hillebrandt & Niemeyer, 2000). Further-

more, there is a relation between the SNe and their host galaxies. Elliptical galaxies

host Type Ia SNe that are dimmer (by 0.2-0.3 magnitudes), with more rapidly evolv-

ing light curves and slower ejecta. However, similar dimmer Type Ia SNe have been

found in the outer parts of spiral galaxies.
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Thermonuclear Supernovae as Standard Candles

Type Ia SNe have a characteristic light-curve shape and are extremely luminous, with

an absolute magnitude of −19.4 ± 0.5 (Branch & Tammann (1992); Stephenson &

Green (2002)). Both of these factors make Type Ia SNe helpful standard candles for

measuring cosmological distances, up to z ≈ 1, making them useful tools for studying

the expansion of the universe (Stephenson & Green (2002); Krause et al. (2008b);

Hillebrandt & Niemeyer (2000); Leibundgut (2008)). Standard candles are useful for

determining distances because their absolute magnitude M is known (Leibundgut,

2001). The distance modulus (m − M), see Equation 1.1.1, assumes the universe

expands linearly, hence only holds true in the local universe.

m−M = 5 log z + 5 log
c

Ho

+ 25 (1.1.1)

Due to the homogeneity of their light curves, Type Ia SNe are useful for finding

the Hubble constant H0 (Hillebrandt & Niemeyer, 2000). The Hubble diagram, see

Figure 1.4, is a plot of the distance modulus (Equation 1.1.1) or normalized distance

modulus versus redshift (Leibundgut, 2008). By plotting the Type Ia SNe data, the

Hubble constant can be estimated. It is assumed that the local expansion is linear and

all Type Ia SNe have the same absolute magnitude (i.e. standard candles). Type Ia

SNe are good (especially in infrared), but not perfect, standard candles. In practice,

each distance modulus must be determined individually, by normalizing the peak

luminosity with the shape of the light curve (Leibundgut (2001); Leibundgut (2008)).

Additionally, Type Ia standard candles have been used for estimating the density

parameters of matter ΩM and dark energy ΩΛ (Hillebrandt & Niemeyer, 2000), and
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Figure 1.4: Hubble diagram constructed with Type Ia SNe. The distance modulus
(top panel) or the normalized distance modulus (middle and lower panels) are

plotted against redshift. In addition to the SNe, four cosmological models are also
plotted: the empty universe (solid), the matter-dominated model (long-dashed), the
vacuum-dominated model (dashed), and the flat universe (dotted). The middle and
lower panels show the High-z SN Search Team data and the Supernova Cosmology

Project data, respectively. Leibundgut (2001), Figure 1.

therefore are useful for determining the equation of state of the universe (Hillebrandt

& Niemeyer, 2000). Type Ia SNe were fainter than was expected as a function of z,

implying the existence of “dark energy”, which has negative pressure (Leibundgut,

2001). As shown in Figure 1.4, Type Ia SNe measurements are consistent with a flat

universe that contains matter and dark energy (ΩM = 0.3 and ΩΛ = 0.7).

Riess et al. (1998) performed a cosmological study with 16 high-redshift Type

Ia SNe and 34 local SNe. They measured the distance modulus of these SNe to

constrain cosmological parameters, such as H0, ΩM and ΩΛ. They determined that
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the universe had a dynamical age of 14.2± 1.7 Gyr and the expansion of the universe

is accelerating.

1.1.2 Core-Collapse Supernovae

Core-collapse SNe (CCSNe) comprise of all other classifications (Type Ib, Ic, and

II) (Leibundgut, 2008). All CCSNe have one common progenitor, a massive star (>

7 M�) (Smartt, 2009). However, the various possible combinations of absorption lines

observed are dependent on the layers of the star present before collapse (Leibundgut,

2008). For example, Type II SNe still have a H layer prior to collapse, whereas Type

Ib SNe have already shed this layer through stellar winds or binary interactions. A

Type Ic SN occurs if the He layer has also been shed. Type IIb SNe have been

proposed as a transitional class, initially showing a Type II typical spectra (with H

lines) and transforming into a Type Ib/c spectra later. In some of the literature,

Type II SNe have been divided into Type II-P and Type II-L depending on whether

there is a plateau in the light curve directly after the peak, see Figure 1.5 (Smartt,

2009).

CCSNe occur when nuclear burning in the core of the massive star ends (Smartt,

2009). Without outward thermal pressure to support the star, the star collapses.

The outer layers rebound off the dense core, launching massive shock waves that

blow away the outer layers of the star (Leibundgut, 2008). In general, CCSNe are far

less homogeneous than Type Ia SNe, showing variation in their spectra, light curves,

peak luminosity, and evolution (Weiler & Sramek, 1988). CCSNe have an average

magnitude of −18.0 ± 0.8, about 2 magnitudes fainter than Type Ia. Additionally,

CCSNe, unlike Type Ia SNe, also emit in radio.
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Core-Collapse Supernovae Progenitors

Massive stars (> 7 M�) have been accepted as the progenitors of CCSNe (Smartt,

2009). However, given the variations in CCSNe spectra, further investigation into

each sub-type’s progenitor is required. The CCSNe progenitor stars must be massive

so that the core pressure and temperature are high enough to produce Fe or O-Mg-Ne

cores. The location where CCSNe are detected may also reveal information about

the progenitor. Unlike Type Ia SNe, CCSNe are preferentially found in spiral arms

and HII regions, where young stars have recently formed (Filippenko, 1997). This is

especially true for Type Ic SNe, which are frequently found in HII regions. HII regions

are associated with young stars that are ionizing the regions around them. Such an

environment suggests a massive progenitor, as massive stars evolve quickly and die

young. Type Ib SNe have been found in HII regions, although not as exclusively as

Type Ic SNe. Type II SNe do not have a preference toward HII regions. Hence, Type

Ic SNe have the youngest progenitors, followed by Type Ib and Type II, in order of

increasing age of progenitor.

Type Ibc SNe differ from Type II SNe by the absence of H lines in the ejecta.

Therefore, the progenitor of Type Ibc SNe likely lost its H envelope prior to collapse

(Smartt, 2009). One possible progenitor class is Wolf-Rayet stars, which shed their H

envelope during earlier stages of their evolution. Another potential progenitor class

is a massive star in a binary with a low-mass star. The H envelope of the massive

star is accreted onto the low-mass companion, through Roche lobe overflow, before

it erupts. The literature favours interacting binaries as Type Ibc progenitors because

such binary systems are common in the Milky Way. Too few Wolf-Rayet stars have

been observed to agree with the rate of Type Ibc SNe. Furthermore, Wolf-Rayet stars
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are massive enough to collapse into black holes, which are unlikely to eject enough

material to produce bright electromagnetic emission.

Type II-P SNe are classified by the presence of a plateau directly after the peak of

the light curve, refer to Figure 1.5 (Smartt, 2009). These SNe are the most frequently

observed core-collapse SNe and therefore the best understood. Red supergiants have

been accepted as the progenitors of Type II-P SNe. Such red supergiants form as

massive, 8 − 30M�, stars expand and cool when they have begun He burning in

their core. Smartt (2009) used the Salpeter Initial Mass Function, with a slope of

α = −2.35, to predict that Type II-P have progenitors with masses between 8.5 −

16.5 ± 1.5 M�. No Type II-P red supergiant progenitors have been detected with

masses between 17− 30 M�. This is the “Red Supergiant Problem”. These massive

stars may produce other types of CCSNe or extremely faint explosions. Additionally,

the assumed α value, red supergiant metallicities, or other assumptions could be

incorrect. Despite such ambiguities, these progenitors have been observed before the

SNe launches, making them the most thoroughly researched SNe progenitors.

Type II-L SNe do not have a plateau following the peak of the light curve. Com-

pared to other types of SNe, Type II-L SNe are extremely rare. Therefore, little is

known about their progenitors and whether they differ from Type II-P.

Core-Collapse Supernovae Explosion Mechanism

While fusion is ongoing in the core of a massive star, hydrostatic equilibrium is main-

tained (Leibundgut, 2008). But after iron peak elements are produced, exothermic

reactions cease and there is no longer thermal pressure to support the star against col-

lapse (Leibundgut (2008); Smartt (2009)). In the core, electrons and protons merge
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into neutrons, as densities increase (Leibundgut, 2001). The inward falling material

bounces off the proto-neutron star, causing outward shock waves (Leibundgut (2008);

Stephenson & Green (2002)). However, these shock waves do not have sufficient en-

ergy to breach the surface of the star (Smartt, 2009). Escaping neutrinos carry away

a large fraction of the available energy, 3 × 1053 ergs, and deposit some energy in

the outer layers, which assists with launching the SNe (Stephenson & Green (2002);

Smartt (2009)). Ni-56 is produced as the shock wave heats the outer layers, initi-

ating Si and O explosive burning. These explosions have immense kinetic energy,

∼ 1051 ergs (Smartt, 2009). Once the outer layers of the star are blown away, only

the neutron-dense core remains (Stephenson & Green, 2002).

Core-Collapse Supernovae Light Curves and Spectra

Historically, there has been significantly more interest in Type Ia SNe light curves,

due to their use as standard candles in the study of cosmology. As a consequence,

CCSNe light curves have been followed less completely after discovery. However, more

recent work has found that CCSNe have great diversity in their light curves.

Type Ib SNe are set apart from Type Ic SNe by the presence of He in their spectra.

These He I lines become easy to identify in the weeks following peak brightness

(Filippenko, 1997), see Figure 1.2. Unlike Type Ib SNe, Type Ic SNe do not show H

or strong He lines.

At the early stages of Type II-P SNe, they have high temperatures (≥ 104 K) and

blue spectra (Filippenko, 1997). At later times, Hα lines are strong during the tail

of the light curve. Type II-L SNe also have a blue near-featureless peak, with faint

Hα lines. The Hα lines become more dominant as time passes. However, Filippenko
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(1997) notes that Hα absorption features have not been observed for Type II-L SNe.

This could be an identifying feature for Type II-L SNe, however too few have been

observed to be conclusive.

Type II SNe are divided into two classes by features in their light curves, as

shown in Figure 1.5. As previously mentioned, Type II-P SNe have plateaus directly

following their peak (Woosley & Weaver, 1986). Type II-L SNe have a near-linear

decline in their light curve after the peak, followed by a change to a more gradual

linear slope after 100 days. The plateau in Type II-P SNe light curves is thought to

be caused by a rapid injection of energy into the H envelope (Smartt, 2009). Whereas,

Type II-L SNe have very low-mass H envelopes, hence do not have a plateau. During

the plateau phase of a Type II-P SNe, H recombination occurs as the photosphere

cools (Filippenko (1997); Smartt (2009)). Following this, the tail of the light curve is

powered by the decay of Co-56 to Fe-56 (Smartt, 2009). Depending on the quantity

of Ni-56 ejected, and correspondingly the amount of Co-56, there can be variation in

the luminosity of the tail of the light curve.

Observations of the direct light from SNe contain emission along one line-of-sight

(Rest et al., 2011b). Therefore, it is not possible to study the asymmetry of SN explo-

sions from the direct light. However, there are other techniques to study asymmetry,

explained in Section 2.3.3. Theoretical evidence suggests that CCSNe emit asymmet-

rically (Wang & Wheeler, 2008). As discussed in more detail in later sections, this

was verified using light echo spectra by Rest et al. (2011b) and Sinnott et al. (2013).

They discovered that two CCSNe, Cas A (Rest et al., 2011b) and SN 1987A (Sinnott

et al., 2013), had asymmetric explosions.
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Figure 1.5: The light curves of Type Ia, Ib (and Ic), II-P, and II-L SNe. SN 1987A
has also been included. Filippenko (1997), Figure 3.

1.2 Historic Supernovae in the Milky Way

The appearance of a “new star”, or “stellae novae” in Latin, would have been an

intriguing discovery for ancient astronomers (Leibundgut, 2008). These SNe were

comparable to, or brighter than the most luminous stars in the sky (Stephenson &

Green, 2002), and some were even visible during the day. The early pre-telescopic ob-

servations are important to modern astronomers because they cover a longer timescale

than modern observations and are therefore more likely to capture rare local events,

such as supernovae (Stephenson & Green, 2002). Although these observations have

lower precision than what is attainable with modern instrumentation, they often

include useful information about the brightness, location, and duration of the super-

novae. Information about the change in brightness, whether it was smooth or rapid,

can help modern astronomers approximate the light curve and determine whether a
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historic event was a SN or a nova. Additionally, proximity to a SNR can also indi-

cate whether it was a SNe. Ancient astronomers often compared the guest star with

nearby stars and planets, making it possible for modern astronomers to estimate their

apparent magnitude.

Although thousands of extragalactic SNe have been detected, few Milky Way SNe

have been observed (Stephenson & Green, 2002). The predicted SN rate in the Milky

Way is 1-2 per century. However, throughout history, only five galactic supernovae

have reliable observational records: SN 1006, 1054, 1181, 1572, and 1604, where the

SN identification corresponds to the year in which it was observed. Additionally,

there are a few potential SNe sightings recorded in ancient texts prior to 1000 AD.

Although the SN was not directly observed, evidence of a SNR called Cassiopeia A

(Cas A), would suggest that an additional galactic SN occurred around 1680 AD.

Each of these events is discussed in Sections 1.2.1 - 1.2.6. There are many other

(200+) SNRs in the Milky Way observable in radio wavelengths, similar to Cas A,

that have no recorded direct detections.

Ancient astronomers across Asia, Europe, and northern Africa recorded observa-

tions of new stars in historic texts. Stephenson & Green (2002) comments that the

historic SNe records were mainly found in the northern hemisphere. While there is

a bias for recorded SN observations in the northern hemisphere, SNe were likely ob-

served in the southern hemisphere as well. However, these observations were probably

not recorded or the records were destroyed. Chinese astronomers has been recording

celestial events since 700 BC (Stephenson & Green, 2002). Detailed records dating

back to 200 BC include the appearance of several new stars. Following 1000 AD,

several SNe recordings were made in Japan and Korea, including SNe 1006, 1054,
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1181, and 1604. SN 1006 was also observed by several Arab and European historians.

There was a notable shift to more detailed astronomical records during the Renais-

sance period in Europe. Astronomers, such as Tycho Brahe and Johannes Kepler,

recorded SN 1572 and 1604, along with many other astronomical events. Their re-

search showed that these “new stars” appeared at distances far beyond the planets.

The idea that distant objects could evolve was revolutionary, as it was thought that

distant stars were “fixed” in the sky.

1.2.1 SN 1006

SN 1006 was observed for several years following its appearance in 1006 AD (Stephen-

son & Green, 2002). Multiple records from Europe, the Middle East, northern Africa,

and Asia noted this exceptionally bright “new star”. Using these historic records, it

was possible to find the approximate coordinates of the SN at RA 15.23h and Dec

−43.1◦±1◦ in the constellation Lupus, identify the SNR as G327·6+14·6, and classify

it as a Type Ia SNe (Stephenson & Green (2002); Branch & Tammann (1992)).

1.2.2 SN 1054 (Crab)

SN 1054 is well-known for leaving behind the Crab Nebula (Messier 1) (Stephenson

& Green, 2002). The Crab Nebula is optically very bright and is therefore the earliest

SNR to be discovered, in 1731 AD. Hubble (1928) and Lundmark (1921) were the first

to suggest that the Crab Nebula was a remnant of the “guest star” recorded in China

and Japan in 1054 AD. These ancient records included the duration and location of

SN 1054, making it possible to verify the connection between SN 1054 and the Crab

Nebula (Stephenson & Green, 2002). The Japanese and Chinese records suggest that
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it was visible for nearly two years. Additionally, SN 1054 would have been bright

enough to see during daylight for ∼ 23 days, with a magnitude of ∼ 3. Chevalier

(1977) classified SN 1054 as a CCSNe. It is important to note that SN 1054 is the

only historic CCSNe with reliable observations in the last 1000 years.

1.2.3 SN 1181

SN 1181 was observed for six months in China and Japan in 1181-1182 AD (Stephen-

son & Green, 2002). Although there is no evidence that it was visible during the day,

reports of a large guest star would indicate that it was very bright, with a luminosity

of at least magnitude 0 during its peak. Its estimated location is 2h 5m and +64.5◦,

based on the relative position of nearby stars. Ritter et al. (2021) provides evidence

that it is a Type Iax SN, formed in a double-degenerate merger. Type Iax is a re-

cently added SN sub-classification that includes Type Ia SNe with slower expansion

velocities (2 − 7 × 104 km s−1 rather than the typical 105 km s−1), see Figure 1.1.

Ko et al. (2024) has confirmed that IRAS 00500+6713 is the SNR of SN 1181.

1.2.4 SN 1572 (Tycho)

Tycho Brahe’s SN 1572 is a well-known historic example of a thermonuclear SN

(Krause et al., 2008b). Records from Europe, China, and Korea indicate that SN 1572

was located in the constellation Cassiopeia and was visible during the day (Stephenson

& Green, 2002). It was observed in Korea and China for 18 months, but no records

were found in Japan during this time. SN 1572 also had a luminosity of magnitude

-4, which is comparable to Venus (-4.5 during its peak). Tycho Brahe’s measurements

made it possible to firmly determine the SNR as G120·1+1·4 and approximate the
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light curve.

1.2.5 SN 1604 (Kepler)

Johannes Kepler observed SN 1604 extensively, and so his name is associated with it

(Stephenson & Green, 2002). Observers of this SN in Korea and Europe commented

on how it appeared to “twinkle”, as a result of its low altitude in the sky. The Korean

and Chinese records span six months. Both Kepler and David Fabricius’ positional

observations were incredibly precise, indicating that SN 1604 was positioned at RA

17h7.1m and Dec −21◦5′. The European measurements included several dated bright-

ness comparisons with nearby stars and planets. Although it was not visible during

the day, at its peak SN 1604 would have had a luminosity of about magnitude -3.0,

which is brighter than Jupiter (-2.0 at the time of observations). A light curve has

been estimated using the European and Korean measurements. These detailed ob-

servations have made it possible to confidently classify it as a Type Ia SN (Branch &

Tammann, 1992).

1.2.6 Cas A

Cassiopeia A (Cas A) is a young SNR located in the constellation of Cassiopeia

(Stephenson & Green, 2002). Unlike the other SNe previously discussed, the SN that

created Cas A was not directly observed. Cas A was first discovered as a bright

radio source in the late 1940s. There are visible circular filaments surrounding the

central radio source. The uniform expansion of these filaments confirms that it is the

remnant of a SN that erupted in 1671.3 ± 0.9. The SN should have been observable

in Europe and Asia, and circumpolar in the northern latitudes. Therefore, the lack of
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reliable observational evidence is unexpected. However, if the progenitor had shed its

H envelope, then the resulting SN may have been optically subluminous, accounting

for the lack of its detection (Woosley & Weaver, 1986). The Cas A SNe was classified

as a Type IIb SN by Krause et al. (2008a) using light echoes.

1.2.7 Potential SN Records prior to 1000 AD

Early records in 70, 185, 369, 386, 393, and 837 AD include potential SNe sightings

(Stephenson & Green, 2002). Little is known about the guest star observed in 70

AD. It is thought to have been a nova, but, as the position is poorly known, that

conclusion is not definitive. The guest star from 185 AD has been convincingly

identified as a SN, due to its long duration (between 8-20 months) and many potential

nearby SNRs. SN 185 is often categorized as a potential Type Ia SN in the literature

(Branch & Tammann, 1992). It was not possible to determine whether the guest

star in 369 AD was a SN because the position of the star is not accurately known

(Stephenson & Green, 2002). Despite having a very short duration (∼ 3 months),

the guest star from 386 AD is potentially a SN, with several potentially associated

SNRs. Of the three guest stars from this century, the guest star of 393 AD is the

most promising SN candidate, due to its long duration (∼ 8 months) and proximity

to several potential SNRs. Two individual guest stars were observed in 837 AD. Both

stars were determined to have been novae as they both had a short duration (22 days

and 75 days).

22



Chapter 2

Introduction to Supernova Light Echoes

Light echoes (LEs) occur when light from a transient source scatters off the surround-

ing interstellar or circumstellar dust (Sugerman, 2003). As the light must travel first

to the dust and then to the observer, the scattered light takes a longer path and

reaches the observer after the direct light (Rest et al., 2015). Therefore, LEs are

potentially observable centuries after the direct light (Rest et al., 2011a). One com-

mon source of LEs is a SN, hence LEs are useful for studying historic SNe (Rest

et al., 2005). Without LEs, there is only a brief period when the direct light is visible

from Earth, during which spectra, light curves, and other information about the SN

can be recorded (Rest et al., 2012b). Therefore, light echoes have the potential to

greatly expand the data collection period for temporary astronomical events. LEs

have been found near a few of the historic Milky Way SNe introduced in Section 1.2,

however, there are several remaining historic Milky Way SNe without LE detections.
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LEs can provide information about the distance, spectra, classification, and asymme-

try of SNe, as well as the structure of the surrounding dust. When combined with

observations of the remnant, LEs may provide an opportunity to observe both light

from the event and the aftermath simultaneously. LEs should not be confused with

so-called infrared echoes. Such features, like ones discovered by Krause et al. (2005),

are caused by dust absorbing light in the optical part of the spectrum and re-radiating

the energy as thermal infrared radiation (Rest et al., 2012b).

2.1 History

The first LEs were observed by Ritchey (1901) around Nova Persei. Kapteyn (1902)

and Perrine (1903) recognized that these expanding annuli were created by light

scattering off the dust, hence a so-called “echo”. However, a deeper understanding

of LEs was established by Couderc (1939), who described much of the LE physics

outlined in Section 2.2. Over the past 100 years, LEs have been discovered around

several sources including variable stars, novae, Cepheids, young stars, and SNe, see

Table 2.1. Zwicky (1940) was the first to propose that LEs could be observed around

ancient SNe. There were several attempts to do this, including van den Bergh (1965)

and van den Bergh (1966), in the twentieth century that were unsuccessful. Although

SNe are the brightest objects known to produce LEs, they are also very rare in a given

galaxy so few local candidates are available (Sugerman, 2003). Additionally, LEs are

very faint, extended features making them very difficult to image (Rest et al., 2012b).

With the invention of CCDs and larger telescopes, wide-field time-domain surveys

made the detection of LEs from historic SNe possible (Rest et al., 2013). Before this

point, LEs had only been discovered while the SN’s direct light was visible (Crotts
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(1988); Suntzeff et al. (1988)). Rest et al. (2005) made the first observations of

historic SN LEs around three SNe in the Large Magellanic Cloud (LMC) with the

SuperMACHO survey. Since then, they have found LEs around SN 1572 (Tycho)

and Cas A (Rest et al., 2008b), and other non-SN sources. Further work by Rest

et al. (2008a) refined the process for classifying the SN based on the LE spectrum.

Additionally, as multiple angles of the SN can be viewed with its LEs, Rest et al.

(2011b) and Sinnott et al. (2013) were able to show the asymmetry of Cas A and SN

1987A, respectively.

2.1.1 Historic Supernova Light Echoes in the Milky Way

Of the six SNe introduced in Section 1.2, only two have successfully identified LEs

(Rest et al., 2008b). Rest et al. (2008b) discovered LEs around Cas A, a CCSN, and

SN 1572 (Tycho), a thermonuclear SN, with the Mayall 4 m Telescope at the Kitt

Peak National Observatory. They observed several light echo arclets and used their

apparent motion vectors to determine the origin of the emitted light, as described

more thoroughly in Section 2.3.1. They found twelve LE clusters, half converged on

the Cas A remnant and the remaining six on the Tycho remnant, see Figure 2.1.

Although Cas A, Tycho, and SN 1181 are all in a similar region of the sky, no LEs

were associated with SN 1181. Due to their relative line-of-sight (LOS) proximity, it

is suspected that some of the Cas A and Tycho LEs were produced in the same dust

structure. Krause et al. (2008b) measured Tycho’s LE spectrum with the Subaru

telescope. They identified broad emission and absorption Si lines, classifying Tycho

as a Type Ia SN. As described in Section 2.3.2, the LE spectrum is the time-integrated

SN spectrum, and hence can be used for SN classification. Rest et al. (2011b) explored
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Figure 2.1: The apparent motion vectors of several LE arclets surrounding SN 1572
(Tycho), Cas A, and SN 1181. Six clusters of arclets were found to originate at each
of the Tycho and Cas A remnants. None of the LEs were associated with SN 1181.

The yellow arrow indicates the apparent motion vector of the LEs and blue line
indicates the reverse of this vector, showing the origin of the light. Panel A includes

all motion vectors and Panel B has the average of each cluster. The green boxes
represent the fields that were imaged. Rest et al. (2008b), Figure 2.

the asymmetry of the Cas A SN explosion by examining the spectra of LEs scattered

at three different locations, as described in Section 2.3.3. Each LE has a perspective

of the SN from a different angle. They were able to confirm that Cas A had an

asymmetric explosion.

LEs have yet to be found for SNe 1006, 1054, 1181, or 1604. Rest et al. (2008b)

and McDonald (2012) both attempted to look for SN 1181 LEs. However, SN 1181 is

considerably older than Tycho and Cas A, and would likely have LEs with a fainter

surface brightness (Rest et al., 2008b). This work focuses on a survey of SN 1054

(Crab) fields, which is the only CCSN with recorded historic observations of the
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direct light over the past 1000 years. Similarly to SN 1181, SN 1054 is quite old and

likely had a low intrinsic luminosity. McDonald (2012) was unable to detect SN 1054

or SN 1181 LEs with the Canada-France-Hawaii Telescope’s MegaCam and visual

inspection.

2.1.2 Extra-galactic Supernova Light Echoes

Thus far, only SNe within the Milky Way have been discussed. However, LEs have

been detected for extra-galactic SNe, including several in the LMC (Rest et al., 2011a).

As previously noted, Rest et al. (2005) used the SuperMACHO survey to capture the

first historic SN LE images from SNe 0519-69.0, 0509-67.5, and 0509-68.7 (N103B), in

addition to the more recent SN 1987A (see Figure 2.2). They began by extrapolating

the apparent proper motion vectors, similar to Figure 2.1, to find the origin of the

LEs. In addition to the location of SN 1987A, there were three other points of

convergences, that were each in proximity to a known SNR. All three of these SNRs,

0519-69.0, 0509-67.5, and 0509-68.7 (N103B), are suspected to have been produced

by Type Ia SNe. LE spectra obtained for 0509-67.5 by Rest et al. (2008a) confirmed

the association. Rest et al. (2005) also estimated the age of two of the SNRs as

∼ 600± 200 years and ∼ 410± 120 years, respectively.

LEs have been observed from non-Milky Way SNe 1980K, 1991T, 1993J, 1995E,

1998bu, 2002hh, 2003gd, 2004et, 2006X, 2006bc, 2006gy, 2007it, 2008bk (Rest et al.,

2013). SN 1980K was located in NGC 6946, known as the “Fireworks Galaxy” because

of the nine SNe observed in the galaxy (Sugerman et al., 2012). This Type II-L SN

had evidence of LEs from light interacting with a thin circumstellar shell, created by

the progenitor. Sugerman & Crotts (2002) discovered two LEs in the vicinity of SN

27



M.Sc. Thesis – N. Mulyk

Figure 2.2: LEs from SN 1987A. Rest et al. (2005), Figure 1.

1993J with archived Hubble Space Telescope data. SN 1993J was previously classified

as a Type IIb SN. As it was located in the spiral arm of M81, it was in an ideal position

to produce LEs in the interstellar and circumstellar medium. Another LE was also

found near SN 2003gd with archival Hubble Space Telescope data (Sugerman, 2005).

SN 2002hh and SN 2003gd were both Type II-P SNe located in NGC 6946 and NGC

628 (M74), respectively.

2.1.3 Light Echoes from Other Sources

In addition to SNe, LEs have been detected from novae, Cepheids, variable stars, and

young stellar objects. Several examples of non-SN LEs can be found in Table 2.1.

η Carinae was a significant LE discovery. It is a massive, binary variable star in

the Milky Way. (Rest et al., 2012a). In the mid-nineteenth century, η Carinae ejected

> 10M� and greatly increased its luminosity for two decades (Rest et al. (2012a);

Rest et al. (2015)). This event was named the “Great Eruption” and has been called

a “SN imposter” (Rest et al., 2012a). This LE discovery, with the Blanco CTIO 4-m
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Name Type of object Citation

Nova Persei 1901 Nova Ritchey (1901)

Sagittarii 1936 Nova Swope (1940)

Nova 1975 Cygni Nova Bode & Evans (1985)

V838 Monocerotis Variable star Bond et al. (2003)

η Carinae Variable star Rest et al. (2012a)

RS Puppis Cepheid Westerlund (1961)

S CrA Young star (T Tauri) Ortiz et al. (2010)

R CrA Young star (Herbig Ae/Be) Ortiz et al. (2010)

Table 2.1: Non-SN LE Sources.

telescope, was significant because of the long duration of the transient (Rest et al.,

2015). As described in Section 2.3.2, a LE spectrum can contain several epochs of

the transient’s spectrum. This is significantly easier for long-term transients, such as

η Carinae, making it possible to study how the spectrum evolved.

2.2 Light Echo Geometry

Figure 2.3 shows the imaginary ellipsoid which represents all possible scattering loca-

tions that will produce LEs visible for the observer (Rest et al., 2011a). The ellipsoid

has the source and observer at the focal points. As light is emitted from a source, it

expands out in all directions. If it encounters dust along the imaginary ellipsoid, then

it has the potential to be scattered toward the observer. The ellipsoid expands as the

light continues to travel outward. As the scattered light must first travel a distance

r to the dust located on the ellipsoid and then to the observer, it takes a longer

path than the direct light, which travelled distance D along the LOS. Therefore, the

scattered light arrives at the observer with a delay time t after the direct light. The
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Figure 2.3: LE Geometric Diagram. Modified from Partoush et al. (2024), Figure 1.

horizontal distance of the plane of the dust from the source, z, can be represented by

the LE equation when z << D (Couderc, 1939):

z =
ρ2

2ct
− ct

2
(2.2.1)

where ρ is the vertical distance of the dust from the LOS, such that r2 = ρ2 + z2

and ρ = (D − z) tan(θ) (Rest et al. (2008b); Partoush et al. (2024)). Therefore, if D

and t are known, then the structure of the dust can be mapped with Equation 2.2.1

(Rest et al., 2005).

If the light scatters at multiple places along the ellipsoid, each LE contains a

perspective from a different LOS (Rest et al., 2011a), as shown in Figure 2.4. Hence,

it is possible to compare the spectra of the SN along different LOS. As SN 1987A

had dust sheets nearly perpendicular to the LOS, as shown in Figure 2.3, nearly

complete circular LEs were observed in Figure 2.2. Furthermore, if light scatters off

dust at multiple planes D−z from the observer, as shown in Figure 2.4, then multiple

concentric circles of LEs will be visible, as is seen with SN 1987A in Figure 2.2.
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Figure 2.4: Path of the light from seven different LEs observed around SN 1987A.
Each LE was emitted in a different direction and scattered at a different location.
Each LE contains spectral information along a different LOS. Rest et al. (2013),

Figure 1.

2.3 Light Echoes as Possible Tools for Studying

Supernovae

LEs have proved to be useful tools for studying historic supernovae. Examination

of SN LEs and SNRs provides an unusual opportunity to examine the explosion and

resulting remnant simultaneously (Rest et al., 2015). Furthermore, historic SNe can

sometimes be studied even if their direct emission was not observed with modern

instrumentation (Rest et al., 2011a). The observation and detection of LEs from

historic SNe can expand our current understanding of SNe and their remnants.
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2.3.1 LE Apparent Motion

The apparent proper motion of the LE can reveal the age and the origin of the LE.

As shown in red in Figure 2.5, the LE arclet can be fit with a line (Rest et al., 2008b).

The apparent proper motion vector (yellow) is assumed to be perpendicular to this

arclet. If multiple LE features associated with the same SN are found, it is possible to

determine the origin of the light, and hence the location of the SN, by extrapolating

these motion vectors backward. If the SNR has not migrated since the explosion,

it may be possible to find the remnant in the vicinity of the SN origin (Rest et al.,

2005). This method was used by Rest et al. (2005) to determine that SNRs 0519-69.0,

0509-67.5, and 0509-68.7 (N103B) produced a set of LE arclets.

2.3.2 Spectroscopy

Historic SNe can be classified by analyzing the LE spectra (Rest et al., 2008b). This

is possible because the LE spectrum represents a weighted, time-integrated spectrum

of the original SN outburst (Rest et al., 2008a). More plainly, the annulus of scattered

light is made up of many rings, each with the spectrum of a different epoch of the SN.

The outermost ring was emitted earliest and the innermost ring was emitted most

recently (Partoush et al., 2024). Hence, the SN’s light curve is projected onto the

sky. However, interpreting the LE spectrum is further complicated by observational

factors, such as the point-spread function, finite slit size and orientation, and physical

factors, such as the orientation of the dust sheet and LE arclet. Additionally, if the

dust sheet was infinitely thin, then light would be scattering at one point on the

ellipsoid. However, it is more realistic to have a dust sheet with a finite width,
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Figure 2.5: The images in the top panel show a region near Tycho taken at two
different epochs: Oct. 20, 2006 (left) and Dec. 13, 2007 (right). The lower left is the

subtraction of the above images with the bright star difference artifacts masked
with grey. The difference image is repeated in the lower right with a linear fit to the
arclet (red), the apparent motion vector (yellow), and the reverse direction (blue).

Rest et al. (2008b), Figure 1.

where the light is scattered at multiple locations and angles. Spectral models, such

as those by Rest et al. (2011a) and Partoush et al. (2024), use an effective light curve

to counteract these effects, making it possible to approximate the original SN light

curve.

Even with early models, it was possible to classify a SN’s type and subtype (over-

luminous, under-luminous, etc.) with its LE spectrum hundreds of years after it was

directly observed (Rest et al. (2011a); Rest et al. (2008b)). Rest et al. (2008a) was the

first to achieve this, by identifying that the spectrum of a LE near the SNR 0509-67.5

matches the profile of an over-luminous thermonuclear SN, similar to SN 1991T. Rest

et al. (2008a) compared the LE spectrum to 28 time-integrated Type Ia and 6 Type
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Ib/c spectra by minimizing the χ2 value. Krause et al. (2008b) was able to verify that

Tycho (SN 1572) was a Type Ia SN with the LE spectra. The LE spectra showed

clear silicon lines, which is a Type Ia identifier.

2.3.3 Supernova Asymmetry

Other than ancient SN classification, LE 3D spectroscopy can be used to study the

asymmetry of the SN photospheric explosion (Rest et al., 2013). SNe can be observed

from multiple perspectives with LEs if there are several concentrations of dust sur-

rounding the SN (Rest et al., 2011b). Each LE contains hemispheric light from the

SN with a different photospheric centre location.

Rest et al. (2011b) were the first to use observations of LEs to provide evidence

that the Cas A SN was an asymmetric explosion. They were working with three

different LEs evenly spaced around the SNR. They found that the spectra of one of

the LEs differed from the other two, showing strong He I and Hα absorption lines.

Furthermore, that entire spectrum was blue-shifted, compared to the other two LEs,

suggesting an asymmetric explosion. As the remnant has been thoroughly studied,

the asymmetry of the SN could be compared to its (projected) structure.

Sinnott et al. (2013) also found evidence for an asymmetric structure in SN 1987A

LEs. There are three dust sheets in the vicinity of SN 1987A, all roughly parallel

to the plane of the sky. Given the large amount of dust and the recent occurrence

of the SN, many LEs were detected (Rest et al., 2015), see Figure 2.4. SN 1987A

also showed varying strengths of Hα lines in different directions, which suggests a

one-sided asymmetric outburst (Sinnott et al., 2013).
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2.4 Core-Collapse Supernova Light Echoes

Of the five historic SNe with reliable observations from the last 1000 years, only SN

1054 (Crab) is a CCSN (Stephenson & Green, 2002). Cas A is also a CCSN, although

it does not have historic observations of the direct light, it remains the only historic

CCSN in the Milky Way with LE detections (Rest et al., 2008b). Currently, many

more thermonuclear SN LEs have been observed than CCSN LEs (McDonald, 2012).

The current non-detection of CCSN LEs is likely due to their lower average intrinsic

luminosity. Furthermore, SN 1054 is nearly a thousand years old. Older SN LEs

have had more time for the light to expand outward. Hence the intensity of the light

decreases by 1
r2

, where r is the distance between the SN origin and the LE. Therefore,

older CCSNe LEs are considerably fainter and a wider angle of the sky may need to

be searched to locate them. Prior attempts by McDonald (2012) to find LEs near the

regions of the Crab SN (SN 1054) in the Milky Way with the Canada-France-Hawaii

Telescope were unsuccessful. McDonald (2012) relied on visual inspection to detect

LEs. This project is the preparatory work to begin the search for Crab LEs with the

Dragonfly Telephoto Array, presented in Section 3.1.2, and with the machine-learning

code ALED, discussed in Section 3.2.3. The discovery of LEs from the Crab SN would

be a significant opportunity to research a CCSN that occurred several centuries before

modern instrumentation had been invented.
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Chapter 3

Light Echo Imaging and Detection

3.1 Light Echo Imaging

LEs are difficult to image because they are faint, extended sources (Rest et al., 2012b).

Therefore, the telescope required for LE searching must have a large field of view and

sufficient sensitivity to detect objects with low surface brightness. Although there

were several attempts to image historic SN LEs in the twentieth century, including

van den Bergh (1965) and van den Bergh (1966), the invention of mosaic CCDs made

historic SN LE imaging and detection easier. Rest et al. (2005) used the wide-field

time-domain survey, SuperMACHO, to image the first historic SN LEs in the LMC.

They also utilized difference imaging, a technique involving subtracting two images of

the same field taken at different epochs. Difference imaging removes the background

and constant sources but highlights objects that have changed brightness and/or
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position between epochs (Rest et al., 2005). As LEs constantly expand outward from

the location of the SN and will show changes on a scale of months to years (for

observable regions in the plane of the Milky Way disk), difference imaging can draw

attention to LEs while removing much of the distracting background. Unfortunately,

other transient objects, such as variable stars, reveal themselves in difference images.

Figure 2.5 illustrates this process with a field containing Tycho SN LEs. Both images

in the top panel are of the same field, but the images were taken more than a year

apart. The resulting subtracted image, in the bottom left, has the bright stellar

artifacts removed or masked and the LE prominently revealed diagonally from top-

left to bottom-right.

3.1.1 Imaging Historic Supernova Light Echoes in the Milky

Way

This project focuses on SN LEs in the Milky Way. Imaging LEs within our galaxy has

advantages and disadvantages. A high dust density environment is required to scatter

the light and produce LEs (Rest et al., 2012b). Such dust can be found in locations

in the plane of the Milky Way (Stephenson & Green, 2002). However, dust can also

make it difficult to detect more distant SNe. The distance to the SN and size of

the LE search radius are inversely proportional for the same forward-scattering angle

(Rest et al., 2015). Therefore, SN LE surveys in the Milky Way must cover a larger

fraction of the sky than extra-galactic SN LE surveys. Hence, wide-field surveys are

necessary for the detection of historic Milky Way SN LEs.
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3.1.2 Light Echo Telescopes

Canada-France-Hawaii Telescope (CFHT)

Recent work by McDonald (2012) and its reanalysis by Bhullar et al. (2021) searched

for LEs with MegaCam images from the Canada-France-Hawaii Telescope (CFHT).

The CFHT is stationed on Maunakea, Hawaii (CFHT Observing Assistants, 2003).

One of the instruments at this facility is MegaCam, a wide-field optical imager (CFHT

Team, 2024). MegaCam’s features include:

• 40 2048 x 4612 pixel CCDs

• 378 megapixels

• Field-of-view of 1 square degree

• 0.187 arcseconds per pixel resolution

MegaCam was ideal for such a search because of its wide field-of-view and high

angular resolution due to excellent conditions at Maunakea (McDonald, 2012).

Dark Energy Camera (DECam)

The Dark Energy Camera (DECam) was originally built for the Dark Energy Sur-

vey, to study the observational imprint of cosmological models on the distribution

of distant galaxies (Abbott et al., 2016). DECam is located in Cerro Tololo, Chile

and is part of the 4 m Blanco Telescope facility at the Cerro Tololo Inter-American

Observatory (NOIRLab, 2023a). DECam is also a wide-field optical imager with the

following properties (NOIRLab (2023b); NOIRLab (2024)):
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Figure 3.1: The Dragonfly Telephoto Array. This image shows 24 of the 48
telephoto lenses and CCD cameras.

Source: https://www.dragonflytelescope.org/

• 62 CCDs

• 520 megapixels

• Field-of-view of 3 square degrees

• 0.263 arcseconds per pixel resolution

Due to the nature of the Dark Energy Survey, DECam was required to perform

large-scale surveys with high resolution, making it similarly ideal for LE searches

(Abbott et al., 2016). The LE DECam surveys covered a few hundred square degrees

near known remnants. Our work with DECam LEs is discussed in Section 4.2.

The Dragonfly Telephoto Array (DTA)

The Dragonfly Telephoto Array (DTA) is a unique visible wavelength facility that is

designed to capture extended, faint structures (Abraham & van Dokkum, 2014). The

DTA is designed to be sensitive to ultra-low surface brightnesses and consequently

has a high dynamic range, meaning it can differentiate between minor variations in
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surface brightness. The DTA has the distinctive ability to capture objects with a sur-

face brightness brighter than µB = 32 mag arcsec2. At very low surface brightnesses,

diffraction and scattering light “ghosts” can become problematic, as discussed thor-

oughly in Chapter 4. To mitigate such issues, the enhanced anti-reflection coatings

of the DTA optics and the use of all-refractive surfaces minimize light scattering and

the appearance of ghosts (Abraham & van Dokkum (2014); Danieli et al. (2020)).

For wide-angle observation, refractive lenses reduce scattering by a factor of 10 more

than reflective mirrors (Danieli et al., 2020). Furthermore, the DTA does not have a

central obstruction, as these do cause significant diffraction patterns.

A single-fast-large refracting telescope would be ideal for low surface brightness

imaging (Abraham & van Dokkum, 2014). However, such optics are very costly

and difficult to create. On a smaller scale, high-end commercially made telephoto

lenses have many of the same features as refracting telescopes, as they can image

distant, quickly moving objects. The configuration of the DTA used for these ob-

servations employed 48 Canon telephoto lenses, each mounted on a commercially-

available, thermoelectrically-cooled CCD camera (Abraham & van Dokkum (2014);

Danieli et al. (2020)), see Figure 3.1. These lenses are all pointed at the same field

and the final image is a combination of the images from all of the cameras. Each lens

has a 143 mm aperture (dindividual) (Abraham & van Dokkum, 2014). However, com-

bining multiple cameras and lenses creates a very low f-ratio system with an effective

aperture Deffective =
√
n dindividual (∼ 1 m) (Danieli et al., 2020). The combined

image contains the entire dynamic range of all images but with the noise reduced by

√
n. The combined field-of-view of the entire array is 2.6◦ × 1.9◦.

DTA is suited for observing LEs. Hence, utilizing DTA for LE detection and
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imaging is the main focus of this work. The DTA is a promising tool for the detection

of older and less luminous LEs. At the time of writing, we have 31 DTA difference

images. These images were differenced with Properimage (Zacharias et al., 2013) and

include one LE from the Cas A SN (Figure 5.1) and 30 non-LE images near the Crab

SNR.

3.2 Light Echo Detection and Machine Learning

Identifying faint LEs in an image containing other bright objects (stars, etc.) is not

easily accomplished. Difference imaging can assist with this process, by highlighting

regions that have changed in brightness and/or position between two epochs. To

create a difference image, two images of the same field that are taken months or years

apart are required. By subtracting these images, any differences will be emphasized,

as shown in Figure 2.5. However, LEs can be difficult to detect visually even in such

difference images.

3.2.1 Visual Inspection

In work prior to 2021, detecting LEs in difference images was achieved solely by visual

inspection. This method requires manually inspecting each image on a high-resolution

display monitor to look for LE features (McDonald, 2012). Visual inspection requires

a trained eye, is a very time-consuming task, and is susceptible to the usual challenges

of the human attention span and fatigue. To provide a reference to the scale of

this process, McDonald (2012) visually inspected 24,000 difference images in regions

around the Crab and 1181 SNe, which did not result in any detections attributable
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to the Crab SN or SN 1181. However, they did discover LEs from the Tycho and Cas

A SNe, in the same portion of the sky where SN 1181 was seen.

3.2.2 Introduction to Machine Learning and Image Recogni-

tion

When discussing machine learning, we say that the computer is ”learning” because

it can improve its ability to perform an automated task without being explicitly told

how to improve (Brown, 2021). A machine learning package utilizes a so-called neural

network. A neural network, modelled after the human brain, is made up of many

nodes (or neurons) which are organized into layers. The specific architecture of the

network can vary greatly. For example, Convolutional Neural Networks (CNN) are

commonly used for image recognition, however, Capsule Neural Networks (CapsNet)

can also be used for this purpose in cases with small training sets (Hinton et al.,

2018). Both of these networks contain several layers which each learns to identify

different features in the images, but their specific organization is different.

A CapsNet is made of several layers of capsules (Bhullar et al., 2021). Each

capsule contains the parameters required to identify/recreate an object in the form

of a vector. In each subsequent capsule layer, there are more degrees of freedom,

hence higher-dimension filters. The first layer can only identify simple objects, and

the subsequent layers can recognize more complex objects while being influenced by

previous capsules. For binary classification, the final layer is only required to identify

whether or not a specific feature is included, as is the case with ALED. However,

intermediate layers may identify other features while learning.
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Why use a Capsule Neural Network?

Both CapsNets and CNNs require training sets to be input, that include several

different sample images of the objects they are identifying. In cases with few training

images, a CapsNet is preferential because CNNs require more weights and hence

large training sets in practice. “Over-fitting” occurs when irrelevant features of the

individual training examples are too heavily weighted. Furthermore, CapsNets can

identify features in relation to each other and can locate which regions of an image

are being triggered, using the following methods:

1. Pose Invariance

A CapsNet can recognize the relative spacing, orientation, and ordering of sev-

eral features (Hui, 2017). Because CNNs are not designed to do this, they

struggle to identify a recognized object at different orientations and scales. CNN

would require multiple layers for each transformation of the object, making it

more computationally expensive. More practically, this would require a large

training set or risk over-fitting. CapsNets perform better with recognizing ob-

jects that have undergone transformations because the capsules can extrapolate

from the training set examples to potential variations through what is known

as a pose matrix. For example, both a CapsNet and a CNN could learn that a

face is made up of two eyes, a nose, and a mouth, but only a CapsNet would

learn that eyes are typically found above and on either side of the nose, and the

mouth is directly below the nose. This property is called “pose invariance”.

2. Routing Path Visualization

The purpose of routing path visualization (RPV) is to identify the regions of the
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image that are being triggered. For binary classification, the triggered regions

are those that have a high probability of containing the desired object. These

images are useful for locating the objects and identifying potential mistakes

that the network is making.

3.2.3 Automated Light Echo Detection (ALED)

Recent advancements in machine learning have made it possible to semi-automate LE

detection. Bhullar et al. (2021) created ALED (Automated Light Echo Detection), a

Python package that applies supervised machine learning to identify LEs in difference

images. ALED uses TensorFlow 2 packages (Abadi et al., 2016) in a Capsule Neural

Network (CapsNet) to identify and locate LEs within an image. ALED learns to

identify LEs through a training set of human-tagged images and performs binary

classification on candidate LE images. Such an approach greatly reduces the number

of images that must be visually inspected.

Bhullar et al. (2021) created a training set with 22 2400 x 4900 pixel CFHT

images containing LEs discovered by McDonald (2012). Each 2400 x 4900 image was

cropped into 350 200 x 200 pixel images, 175 of which contained at least a fraction of

a LE. ALED had great success identifying LEs from CFHT difference images, with

an accuracy of 90%, and was able to detect a set of Cas A LEs that had been missed

during visual inspection by McDonald (2012).

ALED’s Training Set

In its original version, ALED required a training set of LE example images, masks that

identified the locations of those LEs, and a few false positive (FP) example images.
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Figure 3.2: Each image that is input into ALED is cropped into 200 x 200 pixel
images as shown.

Masks are a transparent overlay that indicates the location of an object of interest.

Further discussion of the purpose of FPs in the training set and our improvements

regarding FPs can be found in Section 4. The input images were cropped into multiple

200 x 200 pixel images, as shown in Figure 3.2 (Bhullar et al., 2021). If the number of

pixels was not divisible by 200, then the edges of the image were padded with zeroes.

Then, ALED sorted the cropped images into those with and without probable LEs.

LEs account for only a small fraction of the entire image, 0.1 - 8 % of the total pixels,

and the remaining pixels include the surrounding background sky. Therefore, many of

the cropped images will not contain LEs. A cropped image was considered to contain

a LE if it had at least 2500 masked pixels. Such background (BG) cropped images

became part of the non-LE training set, along with the cropped false positive images.

The resulting LE and non-LE sets were further divided into training, validation, and

testing sets.
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Figure 3.3: The layers of ALED: input image, ReLU activation layer, ConvCaps
layer, and three capsule layers. Bhullar et al. (2021) Figure 2.

The Architecture of ALED

The layers of ALED are shown in Figure 3.3 (Bhullar et al., 2021). The input image

is fed into the activation ReLU (Rectified Linear Unit) function. Then, a tensor, or

“feature map”, is created that represents the image. This tensor is then convolved

with 256 filters in the ConvCaps layer. The final three layers are capsule layers,

containing 24, 8, and 1 capsules. The first capsule layer detects many features,

including LEs and other artifacts and the second layer has a preference for saturated

(and therefore zeroed-out) locations of bright stars. Only the capsule in the final

layer is intended to specifically look for LEs. The identification of bright stars by the

second capsule layer is informative but may influence the LE detection done by the

final layer.

ALED’s Outputs

After the CapsNet was trained, a failure rate was output using the test set. The

failure rate is the inverse of the accuracy:

accuracy =
True Positives+ True Negatives

Number of Images
× 100% (3.2.1)
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The weights created during training are used to test a new set of images and

sort them into those with at least one LE and those without any (Bhullar et al.,

2021). During this testing stage, a RPV image is produced, that shows regions of

the image with a high probability of containing a LE. Additionally, several values

that represent the likelihood of an image containing a LE, called counts, are printed

for each image. In the original ALED, images with Count1 > 0 are considered LE

candidates. Then, only the LE candidates need to be visually inspected, greatly

reducing the time required.

Why does ALED use a Capsule Neural Network?

Bhullar et al. (2021) chose to use a CapsNet for ALED because the number of LE

images available for the training set was limited, so it was necessary to be able to

train ALED with a small training set. CapsNets perform better than CNNs with

small training sets and hence are the ideal choice here.

The Importance of Pose Invariance

Pose invariance is particularly important for LE identification. Dust is rarely located

around the entire circumference of the SN, as with Figure 2.2. In most cases, only a

very small portion of the annulus of a LE is captured. These LE segments may have

varying lengths and orientations, but can all nominally be identified by ALED.

Routing Path Visualizations of LEs

Figure 3.4, includes a sample RPV image for CFHT (right). The yellow/green pixels

have a high probability of being part of a LE, while the blue/purple pixels have a low
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Figure 3.4: The image on the left is a CFHT difference image containing a large LE
that arches from the upper left to the lower right. The image on the right is the
corresponding RPV. The yellow/green regions, which have a high probability of

being a LE, line up very well with the LE in the left image.

probability. The corresponding difference image (left) shows a LE diagonally across

the upper half of the image. This example was chosen due to the clarity of the LE.

Therefore, the average LE will not be so easy to identify visually. Figure 5.1 is a

better example of a hidden LE, which may require a RPV to detect. During the

process explained in Chapter 4, we often used original ALED RPV images to identify

false positives for the training sets.

The Importance of Adapting Training Sets

identify Although ALED has previously performed very well with data from the

Canada-France-Hawaii Telescope, we should not expect ALED to perform well with

a new set of data without some adaptations. Most importantly, the training set will
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need to be adjusted to include images from the new dataset. It is ideal to include LE

and potential false positive images taken with the new telescope. If it is not possible

to capture images in regions where LEs have already been detected with the new

telescope, then steps can be taken to manufacture LE images - an innovation not used

in the original ALED package. This augmentation approach is discussed in depth in

Chapter 5. Different telescopes can produce a variety of LE-type artifacts, depending

on their structure. False positives can be produced by several processes, such as light

internally scattering within the optical path or diffraction from optical obstructions.

These diffraction patterns appear in the difference images, as the alignment of the

pattern in each image is rarely the exactly the same. Therefore, several distinct

false positives need to be selected for the training set, as discussed in Chapter 4.

Additionally, masks will need to be created for these new images and added to the

training set.
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Chapter 4

False Positives

False positives (FPs) are regions in a difference image that are known not to be LEs

but share one or more properties of actual LEs. They are often mislabelled as LEs

by the original version of ALED. Some FPs are known to be generated by the light

from bright stars reflecting off the surface of the CCD and other surfaces, internal

scattering in the telescope, diffraction patterns from central obstructions, and satellite

trails. Difference images from a variety of telescopes will contain different mixes of

FPs, so training with similar data is essential.

Type No. of cropped images Fraction of training set

LEs 155 0.50

BG 152 0.49

FPs 3 0.01

Table 4.1: Original ALED Training Set
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Figure 4.1: An example of a CFHT diffraction pattern FP (left), a detailed FP
mask (middle), and a less detailed FP mask (right). These masks were hand drawn
with GIMP. We found that a more detailed mask produced better results and had a

lower average failure rate.

Bhullar et al. (2021) found that 40% of the LE candidates identified by ALED

were actually slightly offset diffraction patterns due to bright stars. To improve

ALED performance regarding FPs, we focused on the choice and treatment of FPs

in the training set. In its original version, ALED allowed for the inclusion of FP

images. However, the FP images included in the training set were randomly chosen

BG images, without any significant LE-type FP features. Additionally, the location

of each image had to be individually added, and the cropped FP images were chosen

manually. As a result, the influence of FPs on the overall training was small (only

1% of the training set), see Table 4.1.

A description of our versions of ALED can be found in Appendix A. We began by

reviewing the LE examples in the original ALED training set, removing redundant

and incorrectly labelled images (Version 1). Our first consideration to improve the
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treatment of FPs in the training set was the selection of FP images. We examined

the objects that ALED had mislabelled in the past, particularly diffraction patterns

from bright stars. We searched through our collection of CFHT images and looked

for potential FP examples with great diversity. An example of the images we chose

can be seen in the left portion of Figure 4.1.

Table 4.3 includes the average failure rates of all CFHT versions of ALED for

28-30 retraining runs. We chose to retrain ∼ 30 times because there was significant

variation in the results between individual trainings. After ∼ 30 retraining runs, the

average failure rate had an uncertainty of approximately ±0.02.

Table 4.3 also contains the fraction of correctly identified FPs and LEs, using

Count1 > 0 as an indicator of LE identification, as suggested by Bhullar et al. (2021).

These Counts represent the likelihood that there is at least one LE in the image and

are determined using the RPV. In an RPV image, such as the one shown on the right

of Figure 3.4, the value of each pixel indicates the probability of the corresponding

image pixel being part of a LE. The Counts are determined by counting the number

of pixels in the RPV with a probability above a threshold. The thresholds in the

original ALED are as follows:

Threshold for Count1 = 0.00042

Threshold for Count2 = 0.00037

Threshold for Count3 = 0.00030

The FP and BG images should be labelled with Count1 = 0 for non-LE and the

LE images should be labelled with Count1 > 0.

In Version 3, we added a set of nine false positive images, and carefully chose 20

cropped images. As was expected, the average failure rate of Version 3 was higher
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than the original version due to the addition of more false positives into the train-

ing set. This increase was not surprising as Bhullar et al. (2021) carefully adjusted

the parameters of ALED to maximize performance with CFHT images. We did not

optimize the parameters with CFHT FP data, although we did this for the DTA

training sets, see Chapters 6. However, the 20 cropped FP images remain a signif-

icantly smaller fraction of the training set because manually selecting the cropped

images was time-consuming. Our solution was to create false positive masks for the

original full-size difference images.

4.1 False Positive Masks

We have updated ALED so that it accommodates masks for FPs. The mask contains

the same number of pixels as its corresponding image but with a pixel value of one

in all regions of importance and zero elsewhere. Therefore, these masks tell ALED

which regions of the images contain FPs. By using the masks, ALED can automat-

ically include the false positive containing cropped images into the training set. By

incorporating FP masks, we can increase the fraction of FP cropped images in the

training set without the increased time required to manually select cropped images.

The final version (12) has 16 FP images in the training set, with a choice of up to 819

FP containing cropped images to include. A consequence of this is that we were able

to choose what fraction of FP images we wanted to include in the non-LE portion of

the training set. A more detailed discussion of this choice can be found below. With

the addition of FP masks, ALED can learn to ignore commonly misidentified objects,

such as satellite trails, if they are relatively common in the FPs.

Before searching for FPs in a new dataset, ALED is run with just LEs in the
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Figure 4.2: Workflow Diagram for retraining ALED with FP images.

training set. Figure 4.2 shows the details of this process. First ALED must be fully

trained and tested with a LE-only test set. The RPVs from this trial will indicate the

sorts of objects that are mislabelled as LE by ALED. After these FPs are revealed,

they can be masked and used in the training set for the next trial. The FP masks

were made with the same method as the LE masks, with GIMP (GIMP Team, 2019).

GIMP is an image editing software, that we used to create a transparent layer over

the image and paint black over the regions of interest. Then, the original image layer

is removed, leaving only the transparent overlay with important pixels indicated by

black.
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We gave some consideration to the level of detail that these masks should contain.

Figure 4.1 shows two masks for the same FP image (left): the detailed mask (middle)

has the features of the diffraction pattern masked and the imprecise mask (right)

has the entire diffraction pattern covered. When comparing the results of version

5 (which included only the imprecise version) and version 7A (which had a similar

fraction of detailed masks), there is not a significant difference in the average failure

rate for detailed and non-detailed masks. However, the detailed mask training sets

were moderately better at identifying FPs as non-LEs. Therefore, we chose to use

detailed masks for the remaining trials.

We also needed to consider whether the fraction of FPs and BG cropped images

in the non-LE training set affect ALED’s ability to correctly categorize LEs and non-

LEs. The A-E variations of versions 7 and 12 have different fractions of FP and BG

cropped images in the non-LE training set, as shown in Table 4.2. Versions 7 and

12 are identical, except for 10 additional FPs in the non-LE training set added to

Version 12. See Appendix A for details about these versions.

Variation Label Fraction of FPs Fraction of BG

A 80% 20%

B 75% 25%

C 85% 15%

D 90% 10%

E 70% 30%

Table 4.2: Fractions of FP and BG cropped images in the non-LE training set in
Versions 7 and 12.

As shown in Table 4.3, variations A-E result in no major differences in the av-

erage failure rate for either Versions 7 or 12. Furthermore, no variation consistently
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Figure 4.3: A poorly differenced DECam FP (left) and its corresponding RPV
(right). ALED is triggered by the regions with high contrast, which are

unfortunately a result of poor differencing.

performs better at categorizing LEs and non-LEs. Therefore, we can conclude that

the exact fraction of FPs and BG cropped images included in the non-LE training

set does not have a significant effect on ALED’s performance. Therefore, our default

fractions for the remaining training sets had 80% FP and 20% BG images.

It was not surprising that all of our CFHT versions of ALED did not perform

as well as the original ALED. Bhullar et al. (2021) adjusted the parameters of their

version to minimize the failure rate. We did not do any specific fine-tuning for our

CFHT versions, as we were focused on adapting ALED to work with DTA data.

4.2 DECam False Positives

Although ALED has performed very well with data from the Canada-France-Hawaii

Telescope, some adaptations needed to be made for ALED to perform equally well on a

new set of data. While waiting for the DTA data, we decided to attempt using ALED

with DECam images. The DECam images of SN 1987A contain a large selection of

LEs from full, obvious LE arcs to LEs near the detection limit. We created masks for

these LEs with GIMP and added them to the existing CFHT training set (Versions
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9-11 in Appendix A). However, the overall LE detection results with DECam and

ALED did not meet expectations.

Although the DECam images contained full arcs of LEs generated by dust sheets

between SN1987A and the observer, there were many differencing errors that ALED

misidentified as LEs. Figure 4.3 shows an example of the gradient that can occur in

images due to poor differencing (top). The gradients can be created by scattered light

which was not accounted for during differencing, such as the difference images being

taken with varying levels of background light. Once the new DECam training set was

tested by ALED, the resulting RPV (Figure 4.3, right) showed that ALED is being

triggered by these high contrasting regions. Differenced LEs often contain adjacent

dark and light pixels, so it makes sense that ALED is triggered by this phenomenon.

Even when we added FP images such as these to the training set, we still saw ALED

being triggered by differencing errors. Unfortunately, without redoing the DECam

differencing, it is unlikely that ALED would be able to be used to identify LE in

DECam images.
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Version No.
Average
Failure Rate
(±0.02)

Fraction of
Correctly
Identified FPs

Fraction of
Correctly
Identified LEs

Original 0.06 0.12 0.99

3 0.07 0.02 0.98

5 0.09 0.09 0.99

7A 0.08 0.12 1.00

7B 0.09 0.03 1.00

7C 0.07 0.08 0.99

7D 0.08 0.08 1.00

7E 0.08 0.11 0.99

12A 0.10 0.04 0.98

12B 0.08 0.08 0.97

12C 0.09 0.08 1.00

12D 0.11 0.08 0.96

12E 0.10 0.06 1.00

12A retest 0.06 0.98

12B retest 0.07 0.97

12C retest 0.05 1.00

12D retest 0.09 0.96

12E retest 0.05 1.00

Table 4.3: The average failure rates, fractions of correctly identified FPs and LEs
based on ∼ 30 retraining runs with CFHT training sets. Each version was tested
with ∼ 180 cropped FP images and ∼ 450 cropped LE images. Version 12 was
retested with 300 additional cropped FP images, which are labelled as “retest”.

Unsurprisingly, our CFHT versions do not perform as well as the original ALED by
Bhullar et al. (2021), as they carefully adjusted the parameters to maximize

performance with those images.
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Chapter 5

Manufacturing and Augmenting Light Echo

Images

To test whether the DTA would be able to image LEs, a single region where LEs had

already been detected by CFHT, near the Cas A SN, was imaged. Figure 5.1 is to

date the only LE captured by the DTA and is notably almost a degree long. Clearly,

one DTA LE does not comprise a sufficient training set. Even if the CFHT LE images

from the previous training sets are included, a DTA training set requires the majority

of examples to be captured with the DTA. Fortunately, augmentation can be used to

expand such modest training sets. Sections 5.1 - 5.3 outline our methods to create a

usable DTA training set. All of the code we used for these methods can be found in

the GitHub repository LE Augmentation (Mulyk & Welch, 2024).
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Figure 5.1: The only LE captured with the DTA to date. The LE was produced by
the Cas A SN and is circled in red. As Cas A LEs had already been detected by

CFHT in this region, this image was a test that the DTA could capture LEs.

5.1 Overlaying CFHT Light Echoes onto Dragon-

fly Images

The first method we used to extend our DTA training set was manufacturing DTA LEs

from the CFHT detections. These manufactured DTA LEs were made by isolating

and overlaying the CFHT LEs onto DTA images, see manufacture LE.py (Mulyk &

Welch, 2024).

There are two major differences between the CFHT and DTA LE images, shown

in Table 5.1, which need to be considered during this process. First, the time interval

between the difference images is significantly longer for the DTA. While the CFHT

difference images were taken only months apart, the DTA difference images had

intervals of a few years. In the latter case, the LE has more time to change its apparent

position between the captured images, so that it won’t be partially or completely self-

subtracted during differencing.
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Image Differences CFHT DTA

Scale (arcsec/pixel) 0.185 2.5

Time interval between difference images months years

Table 5.1: Differences between DTA and CFHT Images

Second, the resolution of the DTA images is significantly larger than CFHT im-

ages. Therefore, the LEs in the DTA images cover a smaller fraction of the overall

image than LEs in the CFHT images, as shown in Table 5.2. Additionally, the DTA

cropped image with the largest fraction of LE pixels was only 27% of the cropped

image. Where as CFHT had LEs which entirely consumed their cropped images.

Telescope
Average Fraction of LE
Pixels

Largest Fraction of LE
Pixels

CFHT 0.27 1.00

DTA 0.04 0.27

Table 5.2: Average Fraction of LE Pixels in 200 x 200 Cropped Images

The following steps were taken to manufacture a DTA LE from an existing CFHT

LE:

1. Isolate the CFHT LE pixels by using the LE mask to set non-LE pixels to zero.

2. Pad the edges of the CFHT image so it is the same shape as the DTA image.

3. Reproject the isolated CFHT LE to rescale it to match the DTA’s scale.

4. Optional: Adjust the brightness of the LE. This option is used to test whether

a dimmer LE can be recognized by ALED.

5. Optional: Randomly change the LE’s orientation and location. This step helps
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increase the variation in the manufactured images but, due to the pose invari-

ance property of capsule networks, is not expected to linearly improve training.

6. Change the resolution of the LE with a Gaussian filter of σ = 1 pixel to match

the DTA image.

7. Overlay the LE onto the DTA image. As the DTA image only contains the sky

and artifacts from differencing bright stars, it serves as the background for the

new image.

8. Create a mask for the new LE by setting all LE-containing pixels to one and

all non-LE pixels to zero.

Figure 5.2 contains the original CFHT LE (left) and the LE reprojected onto the

DTA image (right). The LE (circled in red) is considerably smaller in the DTA image.

The change in scale required significant changes in ALED as these small LEs are often

visually indistinguishable from some of the artifacts left by bright star differencing.

These adaptations are discussed more completely in Section 6.4.

5.2 Augmenting Existing Light Echoes

We also wanted to utilize the only real DTA LE image to expand our training set.

We augmented Figure 5.1 in a similar method as described above, by overlaying

the isolated real LE onto different DTA images while varying the position, orien-

tation, brightness, and width of the gap between linear segments of the LE, see

augment real LE.py (Mulyk & Welch, 2024). The steps undertaken were as follows:

1. Create a detailed mask for the real LE using GIMP.
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Figure 5.2: The original CFHT LE (left) was overlaid on a DTA image. The
reprojected LE is circled in red in the DTA image (right). Note the noticeable

change in the size of the LE.

2. Isolate the real LE pixels by using the LE mask to set non-LE pixels to zero.

3. Pad the edges of the real LE image so it is the same shape as the DTA image.

4. Reproject the isolated real LE onto the new DTA image.

5. Optional: Adjust the brightness of the LE.

6. Optional: Adjust the width of the gap between line segments of the LE. This is

done by rotating the LE so that the two LE line segments are vertical, isolating

the pixels associated with each line segment, and shifting the pixels horizontally.

By doing this, it mimics a SN with long emission (wide) or short emission

(narrow).

7. Optional: Randomly change the LE’s orientation and location.

8. Overlay the LE onto the new DTA image.
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9. Create a mask for the new LE by setting all LE-containing pixels to one and

all non-LE pixels to zero.

This process allows us to view the same LE with several different backgrounds,

orientations, brightnesses, and widths.

5.3 Masking Out Bright Stars Difference Artifacts

As discussed more thoroughly in Section 6.1, many of the objects being misidentified

as LEs by ALED in the DTA data were bright star difference artifacts (BSDA). The

DTA LEs are difficult to distinguish from BSDA as they have comparable sizes and

contrast. Therefore, by masking out these artifacts before training, it is less impor-

tant for ALED to identify these objects correctly, see mask bright stars.py (Mulyk &

Welch, 2024). We located the stars using the Fourth U.S. Naval Observatory CCD

Astrograph Catalog (UCAC4) (Zacharias et al., 2013). The following steps were used

to mask out the stars in a DTA image:

1. Locate the region encompassed by the image using the image header.

2. Find the same region in the UCAC4 data and list the locations of all stars in

this region.

3. Create a circular aperture around each star with the radius r found with a
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piece-wise function of the stars’ magnitude m:

r(m) =



5.0 m > 15.0

7.0 13.0 < m ≤ 15.0

10.0 11.0 < m ≤ 13.0

13.0 10.0 < m ≤ 11.0

18.0 m ≤ 10.0

(5.3.1)

where the units of r are pixels and the units of m are magnitudes.

4. Mask out the stars by setting all pixels within the circular apertures to zero.

After the stars are masked out, the previously described LE manufacturing and

LE augmentation processes can be used to create a large training set without stellar

FP difference artifacts.
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Chapter 6

Dragonfly Light Echoes

Our original DTA training set (DF1 in Appendix A) had 18 CFHT LEs that had

been overlaid and re-scaled onto DTA images, as explained in Section 5.1, and the

single real Cas A DTA LE. These 19 images were cropped into 49 100 x 100 pixel

images. We realized that more DTA LE images were required to create a training

set with a similar number of LE containing cropped images as we had in the CFHT

versions, because of the scale of the DTA LEs. Therefore, the next training set (DF2)

contained an additional 35 (54 total) manufactured DTA LEs and the real LE, for a

total of 115 cropped images.

We chose to crop the images in the training set to 100 x 100 pixels, rather than

200 x 200 pixels as in the original ALED. We chose a smaller cropped image size

because the DTA LEs contributed to a considerably smaller fraction of the image,

as shown in Table 5.2. Section 6.4.1 contains more discussion about the choice of
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cropped image size.

An additional parameter that needed to be adjusted to adapt ALED for smaller

LEs was the threshold number of pixels for which a cropped image is considered to

contain a LE. In new training set.py, this parameter is labelled num ones, as in the

number of ones in a cropped mask. num ones indicates the number of pixels which

are associated with a LE. For the original ALED, if a cropped image contained more

than 2499 LE pixels, then it was placed in the LE-containing training set. When we

used this threshold for the DTA images, we found that many LE-cropped images were

being categorized with the non-LE training set because they contained too few LE

pixels. Therefore, we initially chose a threshold of num ones = 100 pixels for the DTA

training sets. However, Section 6.4 discusses other trials with different thresholds.

Versions DF3 and DF4, contained versions DF1 and DF2, respectively, with the

addition of the CFHT LE images from Version 1. Table 6.5 shows the average failure

rate and the fraction of correctly identified FP, LE, and BG images for 20 retraining

runs for all DTA versions. These first four DTA training sets (DF1, DF2, DF3, and

DF4) did not perform very well, with average failure rates > 0.1. DF1 and DF2

only identified 16.3% and 9.5% of the tested LE images. DF3 and DF4 performed

considerably better, and recognized 88.4% and 91.9% of the tested LE images. The

addition of CFHT LEs, creating a larger training set, greatly improved the results.

DF4 shows the most improvement with the addition of the CFHT images, as it already

had a larger training set. We chose to continue improving DF4 with the addition of

FPs, see Section 6.1.

Most DTA versions, except for DF21, were tested with a standard set of test
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images that included 70 cropped FP images, 290 cropped LE images (including man-

ufactured and augmented LEs, and the real LE), and 220 cropped background images.

The results of these tests can be found in Tables 6.5 and 6.6, at the end of this chapter.

In the original ALED, an image was considered to contain at least one LE if it had

a Count1 > 0. This Count suggested the likelihood of the presence of at least one LE

in an image. It was calculated by tallying the number of pixels in the corresponding

RPV with a probability > 0.00042. Table 6.5 uses this threshold to determine whether

the LE or non-LE (BG or FP) images had been correctly categorized. However, this

threshold had been chosen to determine the presence of LEs in CFHT training sets,

without a prominent focus on FPs. Therefore, we expected that this threshold was

not ideal for our DTA training sets. The trials in Table 6.5 with 100% of the LEs

correctly identified, and none of the non-LE images correctly identified, are not very

informative. Therefore, Table 6.6 uses Count > 0 determined by counting the RPV

pixels with a probability > 0.001. This threshold is more informative for comparing

two DTA versions of ALED, although it may underestimate the performance. Ap-

pendix B contains all of the DTA versions with the fraction of correctly identified LE,

FP, and BG images for probability thresholds ranging from 0.0003 - 0.0010. It is diffi-

cult to determine which probability threshold provides the clearest picture of ALED’s

performance with DTA data. Larger thresholds show moderately better performance

correctly labelling non-LE features (FPs and BG), but poor performance with LEs.

However, the failure rate, calculated during retraining, can be used as a consistent

measure of success across all versions. For this work, we use the threshold > 0.00042

to compare the DTA versions with CFHT versions, and the threshold > 0.001 to

compare DTA versions to each other.
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As has been said multiple times throughout this work, the training set must

contain images from the dataset that will be tested. To prove this statement, we

tested the newly manufactured DTA LEs in DF1 with the CFHT weights from the

original ALED. ALED was able to identify 78.2% of the DTA LE images with the

CFHT weights, as shown in Table 6.5. This moderate result shows that ALED

can satisfactorily identify LEs with a generalized training set, but an individualized

training set is required for peak performance.

6.1 Dragonfly False Positives

We found that the objects that ALED was typically misidentifying as LEs in DTA

images were very different from those in CFHT images. Our CFHT FPs were typically

bright star diffraction pattern differences, such as the one on the left of Figure 4.1.

We used the RPV images from the first four DTA trials to search for DTA FPs. As

the DTA LEs were very similar in size to BSDA, these stars were the most common

FPs in DTA images, therefore ALED had a difficult time distinguishing BSDA from

LEs. An example of these BSDA is shown in Figure 6.1 (left). The RPV on the right

side of Figure 6.1 shows how BSDA can trigger ALED.

DF5 was the first DTA model that contained FPs. Table 6.5 shows that the av-

erage failure rate decreased significantly to 0.043 after the addition of FPs in the

training set. Since the inclusion of CFHT LEs in the DTA training set greatly im-

proved the fraction of correctly identified LEs, we also included CFHT FPs in the

training set for DF6. However, the addition of CFHT FPs greatly increased the av-

erage failure rate, to similar levels as versions without FPs. Therefore, we performed

further tests with the DF5 training set, with some alterations. The increased average
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Figure 6.1: An example of BSDA (left) which were misidentified by ALED and were
used as FPs in the DTA training sets. The corresponding RPV (right) shows how

the BSDA triggered ALED, see regions highlighted with yellow/green.

failure rate is unsurprising, as the CFHT FPs (Figure 4.1, left) are very different from

the DTA FPs (Figure 6.1, left). This result shows the importance of individualizing

a training set for a new data set.

6.2 Results with Manufactured and Augmented

Dragonfly LEs

All training sets up to and including DF9 include only the manufactured LEs, which

were CFHT LEs overlaid on DTA images, as explained in Section 5.1, and the unal-

tered real DTA LE. DF7, DF8, and DF9 were used as test sets and are discussed in

more detail in Section 6.6. DF10 has the same base training set as DF5 but with the

addition of the augmented real LEs, see Section 5.2 for a description of this process.

When we compare DF5 and DF10 with a probability threshold > 0.001, the addition

of augmented real LEs leads to a larger fraction of non-LE (BG or FP) images being

correctly identified, see Table 6.6. However, the fraction of correctly identified LEs
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also decreases, leading to a larger failure rate. DF11 through DF20 are all variations

on DF 10 and are discussed in Sections 6.4 and 6.6.

6.3 Results with Masked Bright Stars Diffraction

Artifacts

The images with the BSDA masked out, as described in Section 5.3, were included in

DF21. These images had all BSDA in the DTA images masked out first. Then, the

CFHT LEs and augmented real DTA LEs were overlaid onto the masked DTA images.

This process created a similar training set to DF10, including the DTA FPs, but with

the BSDA masked out of the background. As shown in Table 6.6, DF21 performed

similarly to its unmasked counterpart (DF10) in regard to the average failure rate.

When testing with unmasked backgrounds with a probability threshold > 0.001, this

version performs very poorly at correctly categorizing non-LEs (FPs and BG), but

very well at identifying LEs. This is unsurprising, as we are testing whether ALED

can differentiate between LEs and BSDA without inputting a sufficient number of

differenced bright star examples. There was no significant improvement when the

test images also had the BSDA masked out.

6.4 ALED Adaptations for Dragonfly Light Echoes

In this section, the parameters that can be adjusted in ALED are explored. As

previously discussed, the original version of ALED had the parameter set to maximize

performance with CFHT images. However, the DTA images are significantly different
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from the CFHT images, as discussed in Section 5.1. Most notably, the LE size in

comparison to the entire image is considerably smaller, see Table 5.2. Therefore,

adjustments may need to be made to improve ALED’s success with DTA images.

6.4.1 Adjusting Cropped Image Size

As explained in the introduction of this chapter, we chose to crop the images in the

training set to 100 x 100 pixels, instead of 200 x 200 pixels, because the average scale

of the LEs is considerably smaller in the DTA images. Another benefit of decreasing

the cropped image size is that it decreases the training time and the runtime of the

testing code, and it allows the LEs to cover a larger portion of the cropped images.

However, we were unsure how this would affect the overall performance of ALED.

Therefore, we tested two variations of DF10 with larger cropped sizes, see Table 6.1,

with our standard test set.

Version No.
Cropped
Image Size

DF10 100

DF13 150

DF14 200

Table 6.1: Cropped Image Size for DTA Versions

Table 6.6 shows that, although it decreased runtime, reducing the cropped image

size did minimally affect performance. The average failure rate does not vary greatly

between DF10, DF13, and DF14. However, DF14 correctly categorized nearly all of

the LEs but misidentified nearly all of the non-LE (BG or FP) images. Given the

mixed results, we continued to crop images to 100 x 100 pixels, to maximize efficiency.
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6.4.2 Adjusting Pixel Threshold for Sorting Training Images

The second parameter, num ones, is the number of LE pixels required for a cropped

image to be placed in the LE training set. This value is determined by counting the

number of ones in the corresponding cropped mask. For CFHT images, the original

ALED used a threshold of 2499 pixels. However, as the fraction of LE pixels is

considerably smaller in the DTA-cropped images, see Table 5.2, we found that this

threshold excluded several LE examples from the LE training set. Therefore, we chose

a threshold of 100 pixels for the DTA training sets. A threshold of 100 pixels was

chosen because we found through trial and error that it encompassed the majority

of the LE images. But, we also wanted to explore how varying num ones affected

the overall performance of ALED with DTA images. We varied the pixel threshold,

num ones, for versions DF15 - DF20 to compare performance. Table 6.2 contains the

exact num ones value for each version.

Version No. num ones

DF10 100

DF15 0

DF16 50

DF17 250

DF18 500

DF19 1000

DF20 2500

Table 6.2: Pixel Threshold num ones for DTA Versions

Table 6.6, shows that the average failure rate decreases considerably with larger

pixel thresholds. Although the fraction of correctly identified LEs initially improves

with an increased threshold, the performance for identifying LEs with num ones =
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2500 is very poor. However, with num ones = 2500, we see a larger fraction of non-LE

(BG or FP) images correctly categorized than any other version.

6.5 The Size of Light Echoes Successfully Identi-

fied

Given that many DTA FPs were near-point source BSDA, we suspected that ALED

would have more difficulty identifying smaller LEs. To test this assertion, we divided

the LE images in the DF10 training set into three groups by the fraction of LE pixels

to total pixels in the image, using the corresponding masks. The DTA image with

the largest LE had only 0.185% of the total pixels contributing to the LE. Since

there were more images with a small fraction of LE pixels, we grouped the images as

shown in columns 1 and 2 of Table 6.3. The choice of these ranges of LE sizes was

somewhat arbitrary, but chosen to try to make the size of each group roughly equal.

Then, we tested these groups with the same pixel thresholds, num ones, as used in

Tables 6.5 and 6.6. Overall, there was not a significant difference in the fraction of

correctly identified LEs across the three sizes. One could argue that ALED’s ability

to identify small LEs was marginally weaker than with larger LEs, but this distinction

is insignificant.

74



M.Sc. Thesis – N. Mulyk

Category Fraction of LE Pixels
Probability
Threshold

Fraction of
Correct LE

Small frac < 0.0001 0.00042 1.00

0.001 0.68

Medium 0.0001 < frac < 0.0003 0.00042 1.00

0.001 0.82

Large frac > 0.0003 0.00042 0.99

0.001 0.77

Table 6.3: The LEs were split into small, medium, and large based on the fraction
of LE pixels in the image. The fraction of correctly identified LE pixels is given for

probability thresholds 0.00042 and 0.001.

6.6 The Brightness of Light Echoes Successfully

Identified

With the processes described in Sections 5.1 and 5.2, we could change the brightness

of LEs. We chose to adjust the brightness of our two base training sets DF5 and DF10

by multiplying the LE brightness by the factors given in column 3 of Table 6.4. These

new brightened/dimmed images were tested with weights from the original unaltered

training sets (DF5 and DF10). Table 6.4 shows that ALED’s ability to identify LEs

does not change drastically when the tested LEs are brightened or dimmed.
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Weights
Used

Test Set
Brightness
Factor

Probability
Threshold

Fraction of
Correctly
Identified
LEs

DF5 DF5 N/A 0.00042 1.00

0.00100 0.93

DF5 DF7 0.1 0.00042 1.00

0.00100 0.93

DF5 DF8 10 0.00042 1.00

0.00100 0.93

DF5 DF9 100 0.00042 1.00

0.00100 0.95

DF10 DF10 N/A 0.00042 0.99

0.00100 0.76

DF10 DF11 10 0.00042 0.99

0.00100 0.77

DF10 DF12 0.1 0.00042 0.99

0.00100 0.76

Table 6.4: The fraction of correctly identifies LEs for thresholds 0.00042 and
0.00100, with test images with the brightness of the LEs varied by the factors in

column 3. These tests were performed with DF5 and DF10 weights, the results of
training with images that had the original LE luminosity. A complete list of all

probability thresholds can be found in Appendix C.
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Version
No.

Average
Failure
Rate
(±0.02)

Fraction of
Correct
FPs

Fraction of
Correct
LEs

Fraction of
Correct
BG

DF1 0.181 0.16

DF1 orig 0.78

DF2 0.159 0.10

DF3 0.113 0.88

DF4 0.101 0.92

DF5 0.043 0.00 1.00 0.01

DF6 0.150 1.00

DF10 0.054 0.00 0.99 0.01

DF13 0.062 0.00 1.00 0.00

DF14 0.057 0.00 1.00 0.00

DF15 0.053 0.00 1.00 0.00

DF16 0.051 0.00 0.99 0.00

DF17 0.049 0.01 0.97 0.03

DF18 0.042 0.00 1.00 0.01

DF19 0.032 0.00 1.00 0.00

DF20 0.013 0.56 0.40 0.60

DF21 0.057 0.00 1.00 0.00

Table 6.5: The average failure rates, fractions of correctly identified FP, LE, and
BG images based on 20 retraining runs with DTA training sets. Most versions were
tested with 70 cropped FP images, 290 cropped LE images (including manufactured
and augmented LEs, and the real LE), and 220 cropped background images, except
for DF21 which was tested with 265 cropped FP images, 1096 cropped LE images,

and 830 cropped background images. The determination of whether or not an image
contains a LE was done using a probability threshold > 0.00042, as in the original

ALED. A complete list of all count values can be found in Appendix B.
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Version
No.

Average
Failure
Rate
(±0.02)

Fraction of
Correct
FPs

Fraction of
Correct
LEs

Fraction of
Correct
BG

DF5 0.043 0.04 0.90 0.08

DF10 0.054 0.16 0.76 0.26

DF13 0.062 0.20 0.78 0.26

DF14 0.057 0.01 0.97 0.05

DF15 0.053 0.10 0.84 0.16

DF16 0.051 0.00 0.96 0.02

DF17 0.049 0.03 0.93 0.06

DF18 0.042 0.04 0.91 0.13

DF19 0.032 0.00 1.00 0.01

DF20 0.013 0.80 0.15 0.83

DF21 0.057 0.00 1.00 0.01

Table 6.6: The same data as Table 6.5, but using a probability threshold > 0.001. A
complete list of all count values can be found in Appendix B.

78



Chapter 7

Discussion and Conclusion

During this thesis, we focused on creating effective training sets with FP images, for

the machine-learning package ALED. We adapted ALED to identify DTA LEs at its

significantly different image scale from ALED’s CFHT difference images. During this

process, we made the following improvements to ALED:

1. We showed that the selection of training set images, especially FPs, is vital

to successful LE identification. A general rule for comparing DTA versions of

ALED is that larger training sets typically perform better. We found this to

be true when comparing the first four models with DTA training sets. How-

ever, the results from these versions also revealed that the selection of images

in the training set is far more important. For example, DF2 included 35 more

LE images than DF1. There was moderate improvement between these ver-

sions. However, the addition of 19 substantially different CFHT LE images,
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rather than 35 similar DTA LE examples, resulted in a significant performance

improvement for DF3. More remarkably, adding 7 FP images in DF5 had a

similar improvement as 19 CFHT LEs. These results reinforce the need for a

diverse set of FP images in the training set. Furthermore, the addition of im-

ages to the training set can significantly increase the computational expense and

running time. Therefore, it is most economical to carefully choose the images

in the training set to maximize diversity.

2. We focused on the inclusion of FP features in the training sets by adapting

ALED to accept FP masks. By incorporating FP masks, we greatly increased

the fraction of cropped FP images in the non-LE training set from only 1%, in

the original ALED, to 70-90%. Although the exact fraction of FP images in the

training set does not matter, the more detailed masks performed better overall.

3. Given the limited number of DTA LEs, we created a process to overlay known

true LEs from a different telescope (CFHT) onto a difference image to manufac-

ture a LE image. This procedure requires that the LE be isolated and rescaled,

and have the resolution changed to match the new images. Options were also

included to augment the new LE images, by changing the LE’s position, orien-

tation, and brightness in the new image.

4. We also created a procedure to augment the existing DTA LE and overlay it

over other DTA images. This augmentation process was similar to the previous

process but also allowed the width between the LE line segments to be ad-

justed. Hence, replicating a LE with longer (several months or years) or shorter

(weeks or a few months) emission. The addition of the augmented images into
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the training set increased the fraction of non-LE images that were correctly

categorized.

5. We identified BSDA as the most common FPs for DTA images and added DTA

FPs to the training sets with FP masks. This significantly improved the average

failure rate.

6. We created a procedure to mask out BSDA before training and testing using

the UCAC4 data from Zacharias et al. (2013). We performed this masking by

creating a circular aperture around the star and setting all pixels within that

aperture to zero. The size of the aperture was determined as a function of the

stars’ magnitude by a piece-wise function. This process is useful for removing

potential FPs from the training and test sets.

7. We made several adaptations to ALED to adjust for the smaller scale of DTA

LEs, including the pixel threshold for LE identification and cropped image size.

8. We found that there was no substantial evidence that ALED preferentially

identified small or large LEs, as well as bright or dim LEs.

With the exception of DF20, with the largest pixel threshold num ones = 2500,

ALED is still showing poor performance with identifying FPs as non-LEs. However,

DF20 also performed very poorly at identifying LEs. Good performance with LEs

corresponding to poor performance with non-LEs (FP and BG images) was common

among all variations. Therefore, time would still be required to remove FPs from the

LE candidates. Future work with ALED that allowed it to identify FPs as a separate

category may resolve this issue. Currently, ALED performs binary classification, so

it can only categorize images as containing at least one LE and not containing any
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LEs. Non-binary classification could allow for three categories: LE-containing, FP-

containing, and not containing either LEs or FPs. This adaptation should not require

significant changes to the architecture, as ALED is already triggered by FPs in the

capsule layers. Additionally, further improvements on the DTA differencing pipeline

could remove many of the FP artifacts before training.

Overall, our DTA versions of ALED had a comparable or lower average failure rate

than the original version. The low average failure rate shows that ALED has been

successfully adapted to identify DTA LEs. This achievement is significant because

the DTA’s ability to observe extended ultra-low surface brightness structures makes

it ideal for imaging LEs. When combined with ALED’s capacity to efficiently and

accurately identify LEs, it should be possible to detect older, less luminous LEs.

Generally, CCSNe have a lower average intrinsic luminosity and are older than Type Ia

SNe, so the light is spread over a larger area and hence has lower intensity. Therefore,

fewer CCSN LEs have been detected. To date, no LEs have been found around the

historic CCSN Crab (SN 1054). We have completed the preparatory work for a search

for SN LEs around the Crab SN once more DTA images in the region around the

Crab SN are acquired.
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Appendix A

Versions of ALED

Telescope

being

Tested

Version

Name
Description

CFHT Original
Original version of ALED created by Bhullar et al.

(2021).

1
Removed duplicate and incorrectly labelled LEs

from training set.

2

Replaced the background FP training set with 3

images that contained diffraction patterns, and

carefully selected 8 cropped images (instead of 3).

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

3

Added 6 more images with greater diversity to FP

training set, and carefully selected 20 cropped

images.

4 Added masks for FPs. See Section 4.1.

5

Adjusted none-LE training set to contain 80%

randomly chosen FPs cropped images and 20%

randomly chosen background cropped images.

6 Created more detailed masks.

7A

Version 6 with 80% randomly chosen FPs cropped

images and 20% randomly chosen background

cropped images.

7B

Version 6 with 75% randomly chosen FPs cropped

images and 25% randomly chosen background

cropped images.

7C

Version 6 with 85% randomly chosen FPs cropped

images and 15% randomly chosen background

cropped images.

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

7D

Version 6 with 90% randomly chosen FPs cropped

images and 10% randomly chosen background

cropped images.

7E

Version 6 with 70% randomly chosen FPs cropped

images and 30% randomly chosen background

cropped images.

8
Adjusted size of batches for training. Tried 5

(default), 2, and 8 elements in each batch.

DECam 9
Added DECam LE images to existing CFHT LE

training set

10

Removed CFHT LE images from training set, but

retained DECam LE images. Kept CFHT FPs

images.

11
DECam LEs and FPs images only in the training

set

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

CFHT 12A

Returned to version 6 training set. Added 10 more

CFHT FP images. 80% randomly chosen FPs

cropped images with detailed masks and 20%

randomly chosen background cropped images.

12B

Version 12 with 75% randomly chosen FPs

cropped images and 25% randomly chosen

background cropped images.

12C

Version 12 with 85% randomly chosen FPs

cropped images and 15% randomly chosen

background cropped images.

12D

Version 12 with 90% randomly chosen FPs

cropped images and 10% randomly chosen

background cropped images.

12E

Version 12 with 70% randomly chosen FPs

cropped images and 30% randomly chosen

background cropped images.

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

DTA DF1

New DTA training set with manufactured LE

images, see Section 5.1 split into 49 cropped

images. No FPs images included. Images cropped

to 100x100 pixels. Threshold number of pixels for

LE classification is 100 pixels.

DF1 orig
Manufactured DTA LEs images tested with

original CFHT weights.

DF2

Added new manufactured LE images to DTA

training set for a total of 115 cropped images. No

FPs images included.

DF3 Added CFHT LE images to version DF1.

DF4 Added CFHT LE images to version DF2.

DF5 Version DF4 with DTA FPs.

DF6 Version DF4 with DTA and CFHT FPs.

DF7
Version DF5 with the brightness of the

manufactured DTA LEs dimmed by a factor of 10.

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

DF8

Version DF5 with the brightness of the

manufactured DTA LEs brightened by a factor of

10.

DF9

Version DF5 with the brightness of the

manufactured DTA LEs brightened by a factor of

100.

DF10
Added 10 augmented real DTA LEs to DF5

training set, see Section 5.2.

DF11

Version DF10 with the brightness of the

augmented real DTA LEs brightened by a factor

of 10.

DF12

Version DF10 with the brightness of the

augmented real DTA LEs dimmed by a factor of

10.

DF13 Version DF10 images cropped to 150x150 pixels.

DF14 Version DF10 images cropped to 200x200 pixels.

Continued on the next page
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Continued from previous page

Telescope

being

Tested

Version

Name
Description

DF15
Version DF10 with threshold number of pixels for

LE and FP classification changed to 0 pixels.

DF16
Version DF10 with threshold number of pixels for

LE and FP classification changed to 50 pixels.

DF17
Version DF10 with threshold number of pixels for

LE and FP classification changed to 250 pixels.

DF18
Version DF10 with threshold number of pixels for

LE and FP classification changed to 500 pixels.

DF19
Version DF10 with threshold number of pixels for

LE and FP classification changed to 1000 pixels.

DF20
Version DF10 with threshold number of pixels for

LE and FP classification changed to 2500 pixels.

DF21

Recreated DTA augmented and manufactured LEs

with images that have bright stars masked out,

see Section 5.3. Images cropped to 100x100 pixels.

Threshold number of pixels for LE classification is

100 pixels.
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Appendix B

Fractions of Correctly Identified False Positive,

Light Echo, and Background Images in Versions of

ALED with Dragonfly Training Sets

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

DF1 0.00042 0.163

DF1 orig 0.782

DF2 0.095

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

DF3 0.884

DF4 0.919

DF5 0.0003 0.000 0.997 0.005

0.00037 0.000 0.997 0.005

0.00042 0.000 0.997 0.005

0.0005 0.000 0.997 0.005

0.0006 0.000 0.997 0.005

0.0007 0.000 0.997 0.005

0.0008 0.000 0.997 0.005

0.0009 0.000 0.968 0.023

0.0010 0.043 0.895 0.077

DF6 0.00042 0.000 1.000 0.000

DF7 0.0003 0.000 0.976 0.014

0.00037 0.000 0.972 0.014

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.00042 0.000 0.969 0.018

0.0005 0.014 0.959 0.023

0.0006 0.029 0.938 0.036

0.0007 0.029 0.924 0.050

0.0008 0.086 0.866 0.100

0.0009 0.086 0.817 0.173

0.0010 0.157 0.748 0.236

DF8 0.0003 0.000 0.993 0.005

0.00037 0.000 0.993 0.005

0.00042 0.000 0.993 0.005

0.0005 0.000 0.983 0.009

0.0006 0.000 0.979 0.009

0.0007 0.000 0.979 0.014

0.0008 0.000 0.979 0.014

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0009 0.000 0.979 0.014

0.0010 0.014 0.976 0.014

DF9 0.0003 0.000 0.969 0.045

0.00037 0.000 0.966 0.055

0.00042 0.014 0.952 0.059

0.0005 0.043 0.917 0.082

0.0006 0.071 0.907 0.109

0.0007 0.100 0.883 0.127

0.0008 0.100 0.869 0.145

0.0009 0.100 0.862 0.159

0.0010 0.114 0.831 0.177

DF10 0.0003 0.000 1.000 0.005

0.00037 0.000 0.993 0.009

0.00042 0.000 0.993 0.009

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0005 0.000 0.976 0.018

0.0006 0.000 0.976 0.023

0.0007 0.029 0.945 0.055

0.0008 0.071 0.910 0.095

0.0009 0.114 0.855 0.173

0.0010 0.157 0.759 0.259

DF11 0.0003 0.029 0.966 0.027

0.00037 0.029 0.966 0.027

0.00042 0.029 0.966 0.027

0.0005 0.029 0.962 0.027

0.0006 0.029 0.959 0.036

0.0007 0.029 0.959 0.041

0.0008 0.043 0.952 0.045

0.0009 0.043 0.941 0.064

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0010 0.057 0.921 0.082

DF12 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.000

0.0005 0.000 1.000 0.000

0.0006 0.000 0.997 0.005

0.0007 0.000 0.986 0.023

0.0008 0.000 0.972 0.036

0.0009 0.029 0.938 0.064

0.0010 0.029 0.921 0.082

DF13 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.000

0.0005 0.029 0.966 0.045

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0006 0.100 0.910 0.082

0.0007 0.100 0.886 0.123

0.0008 0.114 0.869 0.164

0.0009 0.157 0.821 0.200

0.0010 0.200 0.776 0.259

DF14 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.000

0.0005 0.000 1.000 0.000

0.0006 0.000 1.000 0.000

0.0007 0.000 0.993 0.014

0.0008 0.000 0.990 0.023

0.0009 0.000 0.986 0.036

0.0010 0.014 0.972 0.050

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

DF15 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.000

0.0005 0.000 1.000 0.000

0.0006 0.000 0.990 0.005

0.0007 0.000 0.983 0.014

0.0008 0.014 0.959 0.027

0.0009 0.029 0.907 0.100

0.0010 0.100 0.838 0.164

DF16 0.0003 0.000 0.997 0.000

0.00037 0.000 0.993 0.000

0.00042 0.000 0.990 0.000

0.0005 0.000 0.990 0.000

0.0006 0.000 0.990 0.000

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0007 0.000 0.986 0.009

0.0008 0.000 0.976 0.018

0.0009 0.000 0.969 0.018

0.0010 0.000 0.962 0.23

DF17 0.0003 0.000 0.979 0.023

0.00037 0.000 0.972 0.027

0.00042 0.014 0.966 0.027

0.0005 0.014 0.962 0.027

0.0006 0.029 0.955 0.027

0.0007 0.100 0.886 0.123

0.0008 0.029 0.931 0.041

0.0009 0.029 0.931 0.055

0.0010 0.29 0.937 0.059

DF18 0.0003 0.000 1.000 0.000

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.005

0.0005 0.000 0.993 0.014

0.0006 0.000 0.986 0.027

0.0007 0.000 0.983 0.032

0.0008 0.000 0.959 0.064

0.0009 0.014 0.917 0.100

0.0010 0.043 0.907 0.132

DF19 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

0.00042 0.000 1.000 0.000

0.0005 0.000 1.000 0.000

0.0006 0.000 1.000 0.000

0.0007 0.000 1.000 0.000

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.0008 0.000 1.000 0.000

0.0009 0.000 0.997 0.009

0.0010 0.000 0.997 0.009

DF20 0.0003 0.500 0.448 0.550

0.00037 0.529 0.414 0.577

0.00042 0.557 0.397 0.595

0.0005 0.557 0.386 0.609

0.0006 0.600 0.362 0.627

0.0007 0.629 0.314 0.677

0.0008 0.743 0.241 0.745

0.0009 0.786 0.183 0.800

0.0010 0.800 0.148 0.832

DF21 0.0003 0.000 1.000 0.000

0.00037 0.000 1.000 0.000

Continued on the next page
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Continued from previous page

Version

No.

Probability

Threshold

Fraction of

Correctly

Identified

FPs

Fraction of

Correctly

Identified

LEs

Fraction of

Correctly

Identified

Background

0.00042 0.000 1.000 0.000

0.0005 0.000 1.000 0.000

0.0006 0.000 1.000 0.000

0.0007 0.000 0.998 0.002

0.0008 0.000 0.998 0.002

0.0009 0.000 0.998 0.002

0.0010 0.000 0.996 0.005
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Appendix C

Fractions of Correctly Identified Light Echo

Images using DF5 and DF10 Weights with Test

Sets that have Various Brightness Levels

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

DF5 DF5 none 0.00030 0.998

0.00037 0.998

0.00042 0.998

Continued on the next page
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Continued from previous page

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

0.00050 0.998

0.00060 0.998

0.00070 0.998

0.00080 0.998

0.00090 0.985

0.00100 0.931

DF5 DF7
dimmed by a factor of

10
0.00030 0.998

0.00037 0.998

0.00042 0.998

0.00050 0.998

0.00060 0.998

0.00070 0.998

0.00080 0.998

0.00090 0.986

Continued on the next page
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Continued from previous page

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

0.00100 0.934

DF5 DF8
brightened by a factor

of 10
0.00030 0.996

0.00037 0.996

0.00042 0.996

0.00050 0.996

0.00060 0.996

0.00070 0.996

0.00080 0.996

0.00090 0.991

0.00100 0.928

DF5 DF9
brightened by a factor

of 100
0.00030 0.998

0.00037 0.998

0.00042 0.998

Continued on the next page
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Continued from previous page

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

0.00050 0.998

0.00060 0.998

0.00070 0.998

0.00080 0.998

0.00090 0.995

0.00100 0.945

DF10 DF10 none 0.00030 0.997

0.00037 0.992

0.00042 0.992

0.00050 0.977

0.00060 0.975

0.00070 0.942

0.00080 0.903

0.00090 0.847

Continued on the next page
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Continued from previous page

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

0.00100 0.758

DF10 DF11
brightened by a factor

of 10
0.00030 0.997

0.00037 0.994

0.00042 0.994

0.00050 0.977

0.00060 0.976

0.00070 0.948

0.00080 0.904

0.00090 0.846

0.00100 0.766

DF10 DF12
dimmed by a factor of

10
0.00030 0.997

0.00037 0.992

0.00042 0.992

Continued on the next page
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Continued from previous page

Weights

Used
Test Set

Brightness

Variation

Probability

Threshold

Fraction of

Correctly

Identified

LEs

0.00050 0.978

0.00060 0.975

0.00070 0.946

0.00080 0.908

0.00090 0.846

0.00100 0.763
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Gilfanov, M., & Ákos Bogdán. 2010, Nature, 463, 924, doi: 10.1038/nature08685

GIMP Team. 2019, GIMP - GNU Image Manipulation Program (2.10.34). https:

//www.gimp.org

Hancock, P. P., Gaensler, B. M., & Murphy, T. 2011, ApJ, 735, L35, doi: 10.1088/

2041-8205/735/2/L35

Hillebrandt, W., & Niemeyer, J. C. 2000, Annu. Rev. Astron. Astrophys., 38, 191,

doi: 10.1146/annurev.astro.38.1.191

Hinton, G. E., Sabour, S., & Frosst, N. 2018, in International Conference on Learning

Representations. https://openreview.net/forum?id=HJWLfGWRb

Hubble, E. P. 1928, ASP, 1, 55, doi: 1928ASPL....1...55H

Hui, J. 2017, Understanding Matrix capsules with EM Routing - Based on Hinton’s

Capsule Networks (Jonathan Hui blog). https://jhui.github.io/2017/11/14/

Matrix-Capsules-with-EM-routing-Capsule-Network/

Kapteyn, J. C. 1902, Astronomische Nachrichten, 157, 201

Ko, T., Suzuki, H., Kashiyama, K., et al. 2024, ApJ, 969, 116, doi: 10.3847/

1538-4357/ad4d99

Krause, O., Birkmann, S. M., Usuda, T., et al. 2008a, Science, 320, 1195, doi: 10.

1126/science.1155788

Krause, O., Tanaka, M., Usuda, T., et al. 2008b, Nature, 456, 617, doi: 10.1038/

nature07608

110

http://doi.org/10.1038/nature08685
https://www.gimp.org
https://www.gimp.org
http://doi.org/10.1088/2041-8205/735/2/L35
http://doi.org/10.1088/2041-8205/735/2/L35
http://doi.org/10.1146/annurev.astro.38.1.191
https://openreview.net/forum?id=HJWLfGWRb
http://doi.org/1928ASPL....1...55H
https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-Network/
https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-Network/
http://doi.org/10.3847/1538-4357/ad4d99
http://doi.org/10.3847/1538-4357/ad4d99
http://doi.org/10.1126/science.1155788
http://doi.org/10.1126/science.1155788
http://doi.org/10.1038/nature07608
http://doi.org/10.1038/nature07608


M.Sc. Thesis – N. Mulyk

Krause, O., Rieke, G. H., Birkmann, S. M., et al. 2005, Science, 308, 1604, doi: 10.

1126/science.1112035

Leibundgut, B. 2001, Annu. Rev. Astron. Astrophys., 39, 67, doi: 10.1146/annurev.

astro.39.1.67

—. 2008, Gen Relativ Gravit, 40, 221, doi: 10.1007/s10714-007-0545-9

Leonard, D. C. 2007, ApJ, 670, 1275, doi: 10.1086/522367

Lundmark, K. 1921, PASP, 33, 225, doi: 10.1086/123101

Maoz, D., Mannucci, F., & Nelemans, G. 2014, Annu. Rev. Astron. Astrophys., 52,

107, doi: 10.1146/annurev-astro-082812-141031

Maoz, D., Sharon, K., & Gal-Yam, A. 2010, ApJ, 722, 1879, doi: 10.1088/

0004-637X/722/2/1879

McDonald, B. J. 2012, The Search for Supernovae Light Echoes from the Core-

Collapse Supernovae of AD 1054 (Crab) and AD 1181 (McMaster University).

https://macsphere.mcmaster.ca/handle/11375/12461

Minkowski, R. 1941, PASP, 53, 224, doi: 10.1086/125315

Mulyk, N., & Welch, D. 2024, LE Augmentation. https://github.com/nmulyk/LE_

Augmentation

NOIRLab. 2023a, Mid-Scale Observatories — Cerro Tololo Inter-American Observa-

tory (National Science Foundation). https://noirlab.edu/science/programs/

ctio

111

http://doi.org/10.1126/science.1112035
http://doi.org/10.1126/science.1112035
http://doi.org/10.1146/annurev.astro.39.1.67
http://doi.org/10.1146/annurev.astro.39.1.67
http://doi.org/10.1007/s10714-007-0545-9
http://doi.org/10.1086/522367
http://doi.org/10.1086/123101
http://doi.org/10.1146/annurev-astro-082812-141031
http://doi.org/10.1088/0004-637X/722/2/1879
http://doi.org/10.1088/0004-637X/722/2/1879
https://macsphere.mcmaster.ca/handle/11375/12461
http://doi.org/10.1086/125315
https://github.com/nmulyk/LE_Augmentation
https://github.com/nmulyk/LE_Augmentation
https://noirlab.edu/science/programs/ctio
https://noirlab.edu/science/programs/ctio


M.Sc. Thesis – N. Mulyk

—. 2023b, Dark Energy Camera (DECam) (National Science Foundation). https:

//noirlab.edu/science/programs/ctio/instruments/Dark-Energy-Camera

—. 2024, NOIRLab Capabilities 2024 (National Science Foundation), 8. https:

//noirlab.edu/public/media/archives/brochures/pdf/brochure027.pdf

Ortiz, J. L., Sugerman, B. E. K., de la Cueva, I., et al. 2010, A & A, 519, A7,

doi: 10.1051/0004-6361/201014438

Pakmor, R., Kromer, M., Taubenberger, S., et al. 2012, ApJ, 747, L10, doi: 10.1088/

2041-8205/747/1/L10

Partoush, R., Rest, A., Jencson, J. E., et al. 2024, APJ, accepted. http://arxiv.

org/abs/2310.01501

Perrine, C. D. 1903, ApJ, 17, 310, doi: 10.1086/141032

Rest, A., Sinnott, B., & Welch, D. L. 2012a, PASA, 29, 466, doi: 10.1071/AS11058

Rest, A., Sinnott, B., Welch, D. L., et al. 2011a, ApJ, 732, 2, doi: 10.1088/

0004-637X/732/1/2

Rest, A., Sinnott, B., Welch, D. L., Prieto, J. L., & Bianco, F. 2013, Proceedings of

the International Astronomical Union, 9, 126, doi: 10.1017/S1743921313009356

Rest, A., Sinnott, B., Welch, D. L., et al. 2015, Fifty Years of Wide Field Studies in

the Southern Hemisphere, 491, doi: 10.48550/arxiv.1502.03705

Rest, A., Suntzeff, N. B., Olsen, K., et al. 2005, Nature, 438, 1132, doi: 10.1038/

nature04365

112

https://noirlab.edu/science/programs/ctio/instruments/Dark-Energy-Camera
https://noirlab.edu/science/programs/ctio/instruments/Dark-Energy-Camera
https://noirlab.edu/public/media/archives/brochures/pdf/brochure027.pdf
https://noirlab.edu/public/media/archives/brochures/pdf/brochure027.pdf
http://doi.org/10.1051/0004-6361/201014438
http://doi.org/10.1088/2041-8205/747/1/L10
http://doi.org/10.1088/2041-8205/747/1/L10
http://arxiv.org/abs/2310.01501
http://arxiv.org/abs/2310.01501
http://doi.org/10.1086/141032
http://doi.org/10.1071/AS11058
http://doi.org/10.1088/0004-637X/732/1/2
http://doi.org/10.1088/0004-637X/732/1/2
http://doi.org/10.1017/S1743921313009356
http://doi.org/10.48550/arxiv.1502.03705
http://doi.org/10.1038/nature04365
http://doi.org/10.1038/nature04365


M.Sc. Thesis – N. Mulyk

Rest, A., Matheson, T., Blondin, S., et al. 2008a, ApJ, 680, 1137, doi: 10.1086/

587158

Rest, A., Welch, D. L., Suntzeff, N. B., et al. 2008b, ApJ, 681, L81, doi: 10.1086/

590427

Rest, A., Foley, R. J., Sinnott, B., et al. 2011b, ApJ, 732, 3, doi: 10.1088/0004-637X/

732/1/3

Rest, A., Prieto, J. L., Walborn, N. R., et al. 2012b, Nature, 482, 375, doi: 10.1038/

nature10775

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009, doi: 10.1086/

300499

Ritchey, G. W. 1901, ApJ, 14, 293, doi: 10.1086/140868

Ritter, A., Parker, Q. A., Lykou, F., et al. 2021, ApJL, 918, L33, doi: 10.3847/

2041-8213/ac2253

Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026, doi: 10.1088/

0004-637X/699/2/2026

Sinnott, B., Welch, D. L., Rest, A., Sutherland, P. G., & Bergmann, M. 2013, ApJ,

767, 45, doi: 10.1088/0004-637X/767/1/45

Smartt, S. J. 2009, Annu. Rev. Astron. Astrophys., 47, 63, doi: 10.1146/

annurev-astro-082708-101737

Stephenson, F. R., & Green, D. A. 2002, Historical Supernovae and their Remnants

(Oxford University Press), doi: 10.1093/acprof:oso/9780198507666.001.0001

113

http://doi.org/10.1086/587158
http://doi.org/10.1086/587158
http://doi.org/10.1086/590427
http://doi.org/10.1086/590427
http://doi.org/10.1088/0004-637X/732/1/3
http://doi.org/10.1088/0004-637X/732/1/3
http://doi.org/10.1038/nature10775
http://doi.org/10.1038/nature10775
http://doi.org/10.1086/300499
http://doi.org/10.1086/300499
http://doi.org/10.1086/140868
http://doi.org/10.3847/2041-8213/ac2253
http://doi.org/10.3847/2041-8213/ac2253
http://doi.org/10.1088/0004-637X/699/2/2026
http://doi.org/10.1088/0004-637X/699/2/2026
http://doi.org/10.1088/0004-637X/767/1/45
http://doi.org/10.1146/annurev-astro-082708-101737
http://doi.org/10.1146/annurev-astro-082708-101737
http://doi.org/10.1093/acprof:oso/9780198507666.001.0001


M.Sc. Thesis – N. Mulyk

Sugerman, B. E. K. 2003, AJ, 126, 1939, doi: 10.1086/378358

—. 2005, ApJ, 632, L17, doi: 10.1086/497578

Sugerman, B. E. K., & Crotts, A. P. S. 2002, ApJ, 581, L97, doi: 10.1086/346016

Sugerman, B. E. K., Andrews, J. E., Barlow, M. J., et al. 2012, ApJ, 749, 170,

doi: 10.1088/0004-637X/749/2/170

Suntzeff, N. B., Heathcote, S., Weller, W. G., et al. 1988, Nature, 334, 135, doi: 10.

1038/334135a0

Swope, H. H. 1940, Harvard College Observatory Bulletin, 913, 11

van den Bergh, S. 1965, PASP, 77, 269, doi: 10.1086/128214

—. 1966, PASP, 78, 74, doi: 10.1086/128299

Wang, L., & Wheeler, J. C. 2008, Annu. Rev. Astron. Astrophys., 46, 433, doi: 10.

1146/annurev.astro.46.060407.145139

Weiler, K. W., Panagia, N., Montes, M. J., & Sramek, R. A. 2002, Annu. Rev. Astron.

Astrophys., 40, 387, doi: 10.1146/annurev.astro.40.060401.093744

Weiler, K. W., & Sramek, R. A. 1988, Annu. Rev. Astron. Astrophys., 26, 295,

doi: 10.1146/annurev.aa.26.090188.001455

Westerlund, B. 1961, PASP, 73, 72, doi: 10.1086/127622

Woosley, S. E., & Weaver, T. A. 1986, Annu. Rev. Astron. Astrophys., 24, 205,

doi: 10.1146/annurev.aa.24.090186.001225

114

http://doi.org/10.1086/378358
http://doi.org/10.1086/497578
http://doi.org/10.1086/346016
http://doi.org/10.1088/0004-637X/749/2/170
http://doi.org/10.1038/334135a0
http://doi.org/10.1038/334135a0
http://doi.org/10.1086/128214
http://doi.org/10.1086/128299
http://doi.org/10.1146/annurev.astro.46.060407.145139
http://doi.org/10.1146/annurev.astro.46.060407.145139
http://doi.org/10.1146/annurev.astro.40.060401.093744
http://doi.org/10.1146/annurev.aa.26.090188.001455
http://doi.org/10.1086/127622
http://doi.org/10.1146/annurev.aa.24.090186.001225


M.Sc. Thesis – N. Mulyk

Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, AJ, 145, 44, doi: 10.1088/

0004-6256/145/2/44

Zwicky, F. 1940, Rev. Mod. Phys., 12, 66, doi: 10.1103/RevModPhys.12.66

—. 1965, In Stars and Stellar Systems, Vol. 8 (Univ. Chicago Press Highlight), 367–

423

115

http://doi.org/10.1088/0004-6256/145/2/44
http://doi.org/10.1088/0004-6256/145/2/44
http://doi.org/10.1103/RevModPhys.12.66

	Abstract
	Acknowledgements
	Abbreviations
	Introduction to Supernovae
	Types of Supernovae
	Historic Supernovae in the Milky Way

	Introduction to Supernova Light Echoes
	History
	Light Echo Geometry
	Light Echoes as Possible Tools for Studying Supernovae
	Core-Collapse Supernova Light Echoes

	Light Echo Imaging and Detection
	Light Echo Imaging
	Light Echo Detection and Machine Learning

	False Positives
	False Positive Masks
	DECam False Positives

	Manufacturing and Augmenting Light Echo Images
	Overlaying CFHT Light Echoes onto Dragonfly Images
	Augmenting Existing Light Echoes
	Masking Out Bright Stars Difference Artifacts

	Dragonfly Light Echoes
	Dragonfly False Positives
	Results with Manufactured and Augmented Dragonfly LEs
	Results with Masked Bright Stars Diffraction Artifacts
	ALED Adaptations for Dragonfly Light Echoes
	The Size of Light Echoes Successfully Identified
	The Brightness of Light Echoes Successfully Identified

	Discussion and Conclusion
	Versions of ALED
	Fractions of Correctly Identified False Positive, Light Echo, and Background Images in Versions of ALED with Dragonfly Training Sets
	Fractions of Correctly Identified Light Echo Images using DF5 and DF10 Weights with Test Sets that have Various Brightness Levels

