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Abstract
In this project, the sensitivity of the phase behaviour of AB diblock copolymers to the

addition a single C-monomer is investigated using self-consistent mean-field theory.

The reference diblock copolymers are composed of the minority A block with NA = 12

monomers and the majority B block with NB monomers. The blocks are mutually

repulsive and their interaction is characterised by χij and acts over range σij, where i

and j represent the monomer species. When a C-monomer is added to the junction of

the diblock copolymers, we observe a notable shift of the phase boundaries to the larger

NB and smaller χAB. The shift to larger NB is due to an increased polymer stretching.

When the C-monomers is nearly-neutral, the shift does not strongly depend on the

interaction strength. Similarly, the shift is not visibly affected by changing σAC and

σBC. However, when the the strength of the interaction is selective such that χAC =

χAB + α and χBC = χAB − α, the shift size decreases with increasing α. Conversely,

when the selective C-monomer is added to the majority end, the phase boundaries

are shifted to the smaller NB, with the smallest α giving the largest shift. The shifts

can be generically understood to be cause by the interplay between the changes in

the interfacial tension and polymer stretching due to the C-monomer. These results

demonstrate sensitivity of phase behaviour of AB diblock copolymers to the addition

of a C-monomer and may provide a useful link between experiment and theory.

iii



Acknowledgements
During my time at McMaster, I have been supported by many amazing people

to whom I would like to express my sincere gratitude. First, I would like to thank

my supervisor, Dr An-Chang Shi. You have been an amazing supervisor and I have

learned so much from you. I really appreciate the time spent in conversation and

your support throughout my degree. I would also like to thank the other members

of our research group, Tom Lai, Jiayu Xie, Yu Li and Yang Yang, I have enjoyed

working with all of you in various ways throughout my time at McMaster. I would

especially like to thank Tom and Jiayu for the many conversations we had on many

topics surrounding the research projects. Your time and effort is appreciated. I would

like to thank Jiayu, for providing the base code that I modified for this project. I

would also like to thank the members of my supervisory committee, Dr Paul Higgs

and Dr Kari Dalnoki-Veress. I appreciate the time and feedback that you have given.

Further, I would like to thank my family for their support. You were always there,

encouraging me and believing in me. I also want to thank the many friends outside

of McMaster, including and especially, Jamie, Sneha, and Rachel. You all been such

amazing friends and I appreciate your support.

iv



Contents

Abstract iii

Acknowledgements iv

Declaration of Contribution x

1 Introduction 1

1.1 What is Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Frustration and Self-Assembly of Block Copolymers . . . . . . . . . . 5

1.3 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Theory 21

2.1 Polymer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Triblock terpolymers in a melt . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Self-consistent field theory . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Numerical procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

v



3 Results: A-c-B Type Polymers 42

3.1 A-c-B Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Results: A-B-c Type Polymers 62

4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions 67

A Mixing Methods 71

A1 Simple Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A2 Anderson Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

vi



List of Figures

1.1 Homopolymers and heteropolymers . . . . . . . . . . . . . . . . . . . 2

1.2 Polymer flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Polymer architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Illustration of various micelles . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Deformation in packed micelles . . . . . . . . . . . . . . . . . . . . . 8

1.6 Experimental and theoretical phase diagrams of AB diblock copolymers 11

1.7 Frank-Kasper polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Unit cells of select Frank-Kasper phases . . . . . . . . . . . . . . . . . 13

1.9 Phase diagram of nonfrustrated triblock terpolymer . . . . . . . . . . 15

1.10 Frustrated triblock terpolymer partial phase diagram . . . . . . . . . 16

2.1 Polymer models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Freely-jointed chain model of diblock copolymers and triblock terpoly-

mers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Candidate phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Reference phase diagram for AB diblock copolymers . . . . . . . . . . 43

3.2 Phase boundaries for diblock copolymers near the ODT . . . . . . . . 44

vii



3.3 Phase diagram comparison with known results . . . . . . . . . . . . . 45

3.4 Phase diagram for diblock copolymers with a nearly-neutral C-monomer

added to the junction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Closer view of phase boundaries for diblock copolymers with a nearly-

neutral C-monomer added to the junction . . . . . . . . . . . . . . . 47

3.6 Overlaid phase diagrams for diblock copolymers with a C-monomer

added to the junction where χAC and χBC are temperature dependent 49

3.7 Separate phase diagrams for diblock copolymers with a C-monomer

added to the junction where χAC and χBC are temperature dependent 50

3.8 Phase diagram for diblock copolymers with a C-monomer added to

the junction where χAC and χBC are temperature dependent and the

σAC = σBC ̸= σAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Closer view of phase boundaries for diblock copolymers with a C-

monomer added to the junction where χAC and χBC are temperature

dependent and the σAC = σBC ̸= σAB . . . . . . . . . . . . . . . . . . 52

3.10 Illustration of Lx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Plot of the free energy vs domain spacing . . . . . . . . . . . . . . . . 56

3.12 Lamellar density profiles . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Overlaid phase diagrams for diblock copolymers with a C-monomer

added to the majority end where χAC and χBC are temperature dependent 63

4.2 Separated phase diagrams for diblock copolymers with a C-monomer

added to the majority end where χAC and χBC are temperature dependent 64

viii



List of Tables

3.1 Lx for hexagonal-packed cylinders for the various A-c-B block copoly-

mers examined with χAB = 0.75 and NB = 25. . . . . . . . . . . . . . 55

3.2 γ for lamallae for the various A-c-B block copolymers examined with

χAB = 0.85 and NB = 13. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Lx,A for lamellar for A-c-B block copolymers with χAB = 0.85 and

NB = 13 for varying α . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Lx for hexagonal-packed cylinders for A-B-c block copolymers with

χAB = 0.75 and NB = 25 for various values of α . . . . . . . . . . . . 65

4.2 γ for lamallae for the various A-B-c block copolymers examined with

χAB = 0.85 and NB = 13. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Lx,A for lamellar for A-B-c block copolymers with χAB = 0.75 and

NB = 15 for various values of α . . . . . . . . . . . . . . . . . . . . . 66

ix



Declaration of Contribution

I, Desiree Rehel, modified existing SCFT code that was provided by Dr. Jiayu Xie.

I wrote relevant codes and scripts to submit jobs on the Digital Research alliance of

Canada’s computer clusters and to process the data. I also followed notes by Dr. Jiayu

Xie and the PhD thesis of Dr. Chi To Lai in writing the theory chapter of the thesis.

I wrote the entirety of the thesis, after which edits were made based on suggestions

from Dr An-Chang Shi. Conclusions regarding the behaviour of the polymers were

made through discussion with Dr. Shi.

x



Chapter 1

Introduction

1.1 What is Polymer

Polymers are long, flexible molecules composed of many covalently-bonded subunits,

called monomers. It has been over 100 years since this understanding of polymers

was first proposed by Staudinger in 1920 [1, 2]. In that 100 years, polymers, both

synthetically produced and naturally occurring, have become an almost irreplaceable

part of our everyday lives [1, 3, 4]. Naturally occurring polymers are present in and

produced by living organisms, for example, the DNA and proteins found in living

beings [5]. Moreover, both synthetically produced and naturally occurring polymers

are used in many common objects such as plastics, rubbers, coatings, dental fillings,

and more [1, 3, 4]. Combining these applications and natural occurrences of polymers,

we find that polymers touch almost every aspect of our current way of life. [1, 3, 4]

Due to the ubiquity of polymers, it is expected that having a good understanding
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of their properties and behaviour under a wide variety of conditions is desirable. One

method to classify the widely-varying polymers is by their molecular properties. For

example, a polymer may be classified by its chemical structure as either a homopoly-

mer, composed of chemically identical monomers, or a heteropolymer, composed of

least two chemically distinct types of monomers [2]. The arrangement of the distinct

monomers in heteropolymers can vary from having large blocks of identical monomers

connected, to arrangements of single monomer sequences [2]. Polymers containing two

blocks of chemically distinct monomers are called diblock copolymers, while polymers

containing three blocks are called triblock terpolymers, [2, 6]. Schematic illustrations

of both homopolymers and select block copolymers are shown in Fig. 1.1.

Figure 1.1: Schematic illustration of a homopolymer (top left) and
several variations of heteropolymers.

Another characteristic of a polymer chain is its flexibility. One way in which the

polymers flexibility is characterized is the Kuhn length, b, which is defined as the

length over which the direction of the unit vectors tangent to the polymer become

uncorrelated. A rigid polymer will have a large Kuhn length to total length ratio [7],

and therefore, there is a high energetic cost to the chain bending along its contour.
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This type of polymer will resemble a rod [7]. On the opposite end of the flexibility

spectrum where the Kuhn length to total length ratio is small, there is very little

energetic cost to the chain bending, and the polymer is considered fully-flexible [7].

This type of polymer will resemble a soft string. In between these two extremes

where the polymer retains some resistance to bending but not so much so that it

resembles a rod, the polymer is considered to be semi-flexible [7]. Illustrations of

rigid, semi-flexible and fully flexible chains are shown in Fig. 1.2.

Figure 1.2: Illustration of polymer chains with varying degrees of
flexibility.

A third defining feature of a polymer is its architecture. In Fig. 1.1, we only show

linear polymers, or polymers whose monomers are all sequential from start to finish

such that the polymer has two free ends. However, polymers may have a wide variety

of architectures such as ring polymers, where the two ends of a linear polymer are

covalently bonded together, star polymers, where three or more branches originate

from a single point in the chain, and grafted polymers, where several branches are

tethered to a linear backbone [2]. Some examples of different polymer architectures

are displayed in Fig. 1.3.

3
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Figure 1.3: Schematic illustration of various polymer architectures
for both homopolymers and heteropolymers

In this thesis, we are concerned with the behaviour of block copolymers. There are

many ways to produce block copolymers [8–10]. The methods to obtain block copoly-

mers typically fall into one of two categories [8, 10]: The first, known as controlled

polymerization techniques, adds monomers in a sequential fashion to grow a chain.

Some methods that fall under this category are atom transfer racial polymerization

(ATRP) and radical addition-fragmentation chain transfer (RAFT) [10].

The second category that the production methods exploit reactions that bond

the ends of two already-grown chains together [10]. One such highly efficient and

important method in this category, albeit less versatile than some other methods, is

the click method [9, 10]. In this method the end groups can either undergo a click

reaction without modification or will be modified to be able to undergo the click

reaction. This reaction bonds the blocks together and creates the diblock copolymer

4
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[9]. One noteworthy consequence of this method is that there is small section of chain

where the blocks join together that is distinct from both the A and B blocks.

1.2 Frustration and Self-Assembly of Block Copoly-

mers

Now we turn our attention to the behaviour and characteristics of block copolymer

melts, which is a fluid state where the monomer concentration is 100%. Due to the

various, competing interactions in the system which cannot all be simultaneously be

minimized, block copolymer melts are frustrated on several length scales [6]. On

a molecular length scale, one force contributing to the frustration arises from the

interactions between the monomers in the blocks. This interaction is characterised by

the Flory-Huggins parameter, χ, defined as,

χ = z

2
2UAB − UAA − UBB

kT
, (1.1)

where UIJ is the contact energy between monomers of type I and J [2], z is the number

of nearest-neighbours, k is the Boltzmann constant and T is temperature. In many

cases the chemically distinct blocks are mutually repulsive, resulting in a positive

value of χ and the different blocks tending to separate. The second force contributing

to the frustration on the molecular scale arises from the covalent bond that holds the

distinct blocks together. This bond does not allow the polymer blocks to break apart

and fully separate. Therefore, there is frustration in the system since the two energy

5
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associated with these two forces cannot be simultaneously minimized [6].

In order to minimize the frustration on the molecular level, the polymers tend to

segregate into structures known either as block copolymer assemblies or micelles, con-

taining A-rich and B-rich regions [6, 11]. These micelles vary in shape from lamellae

to cylinders to spheres depending on the characteristics of the block copolymers [6,

11, 12]. Some examples of what a micelle might look like are illustrated in Fig. 1.4.

Figure 1.4: Illustration of some of the various possible micelle shapes.

Frustration present on larger length scales also partially determines the shape and

packing of the micelles [6, 12]. Another contributing factor is that polymers behave as

entropic springs, and therefore, there is a cost to chain stretching [6, 11, 12]. Finally,

the interfacial energy, due to the polymer blocks being mutually repulsive, will also

contribute to the frustration. [6, 11, 12]. These different and opposing interactions

lead to frustrations in the system that must be balanced [6, 12].

6
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By understanding the frustrations present, we can predict when different micelle

shapes shown in Fig. 1.4 could be stabilized. First consider chains where one block

is much shorter than the other. If these polymers were arranged with the blocks in a

lamellar domain there would be a higher energetic cost for the longer block to stretch

away from the interface [11]. Therefore, we expect interface to curve towards the

shorter blocks [6, 11, 12] to relax the stretching of the longer block [11]. With a large

length asymmetry between blocks, we expect spherical micelles to form [6, 11, 12].

Building on this, as the length of the blocks becomes more symmetric, the need for

interfacial curvature lessens to allow the formation of cylinders and eventually, when

the block are either symmetric or almost symmetric in length, lamellae. Overall,

the predicted sequence with increasing the block-length asymmetry, is lamellar to

cylinders to spheres [6, 11, 12]. It should be noted that micelles can also take other

shapes, such as in bicontinuous structures which will be seen in later chapters [6, 11,

12].

There is another factor that contributes to the frustration at this length scale, the

requirement of the monomers to completely fill space [6, 11, 12]. This along with the

other factors, determine how the micelles are arranged with respect to each other. Of

the micelles in Fig. 1.4, the only one that can fill space without deforming its shape

is the lamellae micelle [6]. However, as mentioned above, there are situations where

lamellae is not the ideal micelle shape to satisfy all other sources of frustration present

in the system. In these situations, where we the cylindrical or spherical micelles are

preferable, the micelles cannot pack in a way that fills space undeformed, as shown

7
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in Fig. 1.5. Therefore, the micelle corona becomes distorted to that of the relevant

Wigner-Sietz cell [6, 11] as illustrated in Fig. 1.5. Due to the cost of chain stretching,

the distortion of the corona in turn distorts the shape of the core. This core distortion

is less though and is determined by the rigidity of the blocks forming the corona [6,

11], as shown in Fig. 1.5. The deformed micelles can also vary in size and shape from

other micelles in the same melt to allow optimum packing. Depending on the system

parameters, these micelles can form various phases [6]. Some of the simpler examples

being lamellar, hexagonally-packed cylinders, hexagonal close-packed spheres, and

body centered cubic [6, 11].

Figure 1.5: Illustration showing the distortion of cylindrical micelles
in order to fill space when arranged in a hexagonal-closed-packed pat-
tern. Left: undeformed cylinders unable to fill space. Right: cylindrical
micelles deformed to fill space. Note: Cylinders are not drawn to scale.

Block copolymers and their self-assembly into complex structures have been stud-

ied, experimentally and theoretically, for many years with the first records dating back

to the 1960s [10]. Since this time, the amount of interest, reflected in the number of

8

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

yearly papers mentioning diblock copolymers, has skyrocketed, from only a few in the

1960s to thousands in the 2010s [10].

One particular study in 1995 by Bates et. al. [13], examined the phase behaviour

of polyisopropene-polystyrene diblock copolymers. While polyisopropene-polystyrene

diblock copolymers had already been examined in other previous studies [14–18], most

other studies had examined regions far from the the order-disorder transition (ODT)

[13]. The ODT is where the stable phase of the melt transitions from one which

exhibits microphase separation to one where the polymers are uniformly distributed

and display no ordered structures (disordered). The phase diagram from this study is

shown in Fig. 1.6 a) and contains 5 stable phases. Two of these phases are the double

gyroid, or Ia3̄d, phase that had recently been confirmed by Hadjuk et al in 1993

[17], and the ABC stacked hexagonally-perforated lamellar [13]. Another study by

Winey et al in 1994 also predicted a similar phase diagram in the strong segregation

limit and a similar location for the order-disorder transition. Backed by other recent

research [13, 17, 19], Hadjuk et. al. also determined that another phase that had been

reported, the ordered bicontinuous double diamond, was not a stable phase. They

determined that previous studies reporting this phase to be stable likely confused it

with the double gyroid phase due, in part, to the similarities between the two phases

[13].

On the theoretical side, in 1994 Matsen and Schick [20] employed a spectral method

of self-consistent field theory (SCFT) to theoretically study the phase behaviour of

diblock copolymers whose A and B-block Kuhn length were identical [20–22]. The

9
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resulting phase diagram is shown in Fig. 1.6 b). One difference between the studies is

that in the theoretical study, the Kuhn lengths of the two block were equal, while in

the experiment they were not. This conformational asymmetry between block plays

an important role in the phase behaviour, and explains some of the discrepancies

observed [23, 24]. One discrepancy seen is the presence of the PL phase in the exper-

imental phase diagram, but not in the theoretical phase diagram. Later studies both

experimentally [25] and theoretically [26] showed that the PL phase is a metastable

transition state of AB diblock copolymer melts, not a thermodynamically stable phase

[22]. Another discrepancy noted is that the ODT transitions in Fig. 1.6 a) are from

various phases to disorder, while in 1.6 b)the are only from the cubic phases. This

discrepancy can be explained by fluctuations that are not accounted for in SCFT [27].

Overall, the theoretical phase diagram agrees quite well with the experimental results

in Fig. 1.6 a) from Ref [13].

10
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Figure 1.6: Phase diagrams of AB diblock copolymers. a) Ex-
perimentally obtained phase diagram of conformationally asymmet-
ric PI-PS block copolymers from Ref. [13]. b) Theoretically obtained
phase diagram of conformationally symmetric diblock copolymers from
Ref. [21]. The phase labels are as follows: Lam=L=Lamellar,
HEX=H=Hexagonally-packed cylinders, Ia3d=G=Double gyroid,
D=Disordered, HPL=Hexagonally-perforated Lamellar, Im3̄m=BCC,
and C=cubic. Both of the diagrams are reproduced with permission
from their publishers.

In the earlier studies, the spherical phases were found to be simple ones, such

as BCC and HCP; however, there are other spherical phases that are more complex.

One family of these complex spherical phases is the Frank-Kasper (FK) phases. These

phases consist of micelles whose WS cells take the shape of 4 possible polyhedra with

coordination numbers of 12, 14, 15, and 16 [28–30]. An illustration of these polyhedra

are illustrated in Fig. 1.7, which is reproduced from Ref. [28]. When these polyhedra

pack together they form tetrahedrally close packed phases and are called the Frank-

Kasper phases [28–31].
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http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

Figure 1.7: Illustration of the 4 Frank-Kasper polyhedra from Ref.
[28]. Reproduced with permission from publisher

While the FK phases are commonly observed in metals, they have also been found

in several soft matter systems [31]. In 2003, the FK A15 phase was found to be

metastable in diblock copolymers and stable in branched copolymers [31, 32]. Later

in 2010, Bates et. al., found that the FK σ phase is stable in diblock copolymer

melts [31, 33]. The two other FK phases found in copolymer systems are C14 and

C15. Discovering FK phases in block copolymer systems is exciting because not only

does it open new areas of potential research in what was thought to be a fairly well

understood area, but it also provides a broad connection between the block copolymer

systems and various other soft and hard matter systems that also for these phases

[31]. These phases are equilibrium phases in some complex systems, such as in diblock

copolymer blends, where polymers of different lengths are blended together, but not

12
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in diblock copolymer melts where all of the constituent polymers have the same length

[31]. Unit cells for these four FK phases, A15, σ, C14, and C15 are shown in Fig. 1.8.

Figure 1.8: Unit cells of A15, σ, C15 and C14. The atoms, or mi-
celles, colored according to their Wycoff numbers. Made with Vesta
[34]

The phase behaviour of triblock copolymers is much more complex than that of

diblock copolymers. The parameter space to be explored is much larger due to the

extra parameters [6, 35, 36]. Due to this increase in complexity, there is currently

no complete phase diagram for this type of melt [37]. In this discussion, we mo-

mentarily narrow focus, and examine the so-called nonfrustrated ABC systems. In

these systems the order of monomer-monomer repulsion strengths is the same as the

order of blocks along the contour of the chain, or χABN ∼= χBCN < χACN for an

ABC-type triblock terpolymer [6]. Therefore, the name nonfrustrated is because even

though the previously-mentioned frustrations are clearly still present, the ordering of

the repulsion strengths do not create any further frustration [6]. While there have

been many studies on triblock terpolymers, one major contribution came from an
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early experimental study by Bailey et al [38] on nonfrustrated diblock copolymers

using Poly(isoprene-b-styrene-b-ethylene oxide). This study suggested the presence

of a phase that became known as Fddd or O70 [35, 38–40]]. This was later confirmed

experimentally by Epps et. al. in 2004 [40–42] and Tyler et al in 2005 using self-

consistent field theory [39, 43]. This finding lead researchers to reexamine the phase

diagram of simple diblock copolymer melts and find the Fddd phase to be stable in a

narrow region of the diblock copolymer phase diagram [43].

A 2007 study by Tyler, Bates and Morse [35], continued examining the phase be-

haviour of nonfrustrated triblock copolymer melts using SCFT. This study produced

complete phase diagrams for χAB = χBC ≪ χAC for specific values of χAB, χBC,

and χAC in the triangle of fA, fB, and fC. One of resultant phase diagrams with

χABN = chiBCN = 13 and χACN = 35 is shown in Fig. 1.9. Looking along the edge

in which the fB = 0, and hence where the system is reduced a diblock copolymer melt,

the progression of phases matches the progression found in Refs. [13] and [21], as ex-

pected. However, as the volume fraction of the C-block increases we see several new

phases emerge, including the alternating gyroid (GA) and the alternating diamond

(DA) phases. A later study by the same group [44], expanded this work to other val-

ues of k = χAC/χAB to explore how the value of k affects the phase behaviour. They

found, among other things, that for slightly asymmetric triblocks the Fddd remains

stable [44].
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Figure 1.9: Phase diagram of a nonfrustrated triblock terpolymer
melt for χABN = chiBCN = 13 and χACN = 35 from Ref. [35].
Recreated with permission from publisher.

Now we briefly turn our attention to frustrated triblock copolymer systems where

the order of the monomer-monomer repulsion do not align with the order of the blocks

along the contour of the chain, χAC < χBC. In this type of melts, structures which

place the B-monomers in smaller domains arranged around AC interfaces are preferred

[6]. This arrangement leads to a larger number of structures available than what is

seen in nonfrustrated systems [36]. One 2012 study by Liu. et al [37], examined the

phase behaviour of frustrated ABC triblock copolymers melts using SCFT. In part of

this study, they investigated the phase behaviour of a melt with parameters close to

polystyrene-poly(ethylene-co-butylene)-poly(methyl methacrylate), otherwise known

as PS-PEB-PMMMA. Several complex phases with two length scales were found, in-

cluding lamellae in cylinders (LC) and perforated circular lamellar-on-cylinders (PC).
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The phase diagram produced is shown in Fig. 1.10. Further, a theoretical study in

2012 by Li et al [45], found that helical superstructures emerge as the stable structure

in some frustrated triblock terpolymer melts.

Figure 1.10: Frustrated triblock terpolymer partial phase diagram
with parameters set to closely match those of PS-PEB-PMMMA, or
with χABN=40, χBCN=80, and χACN=15 with ϵB=2.0 and ϵC=1.5.
Recreated from [37] with permission from publisher.

Over the years there has been much progress in understanding the behaviour of

block copolymers through many studies. Some have looked at developing methods,

such as those described earlier, to synthesize block copolymers with various architec-

tures [46–57]. Others have looked at the behaviour and structures these polymers form

in various circumstances both experimentally and theoretically [12–19, 21, 23, 24, 26,

31–33, 35, 37, 44, 45, 58–66]. In a 2020 publication, the editors and advisory board

of the journal, Macromolecular Chemistry and Physics, reflected on what the future

of polymer science could look like[1]. Along with several other areas, the authors

suggested sustainability as a possible major area of growth for polymers. One class
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of polymer that fits the criteria of green polymers is sugar-based polymers [66], such

as those examined in a recent study by Chen et al [66]. In this study, the authors ex-

amined the phase behaviour of sugar-based diblock copolymers that were fabricated

by a click method. The observed order of phase transitions for the linear diblocks

that were studied is Lamellar ->Hexagonally-Perforated Lamellar->Double Gyroid-

>Hexagonal Cylinders. Finding the Hexagonally-Perforated Lamellar phase to be

thermodynamically stable is interesting as it is typically considered to be unstable in

coil-coil diblock copolymer melts [22].

In many studies, the polymers examined are considered to be neat AB diblock or

ABC triblock copolymers. This assumption overlooks the commonly-seen presence of

different chemical structures at the junctions or at the ends of the polymers. In more

recent years, this feature been investigated, not only to better understand its effects,

but also as way of tuning the phase behaviour and morphology of the melts. A 2015

study by Hawker et. al. [67, 68], explored the effects of introducing an ionic junction

in diblock copolymers and found the ODT temperature significantly affected by the

junction. Another study in 2017 [69] examined the effects of introducing hydrogen

bonding to the junction of PS-b-PMMA diblock copolymers. They found that the

interfacial width and line roughness were both decreased by the introduction of the

introduction of hydrogen bonding [68, 69]. Further studies such as Refs. [70, 71] have

also studied the effects of changing the junctions, finding that the phase behaviour,

ODT temperature and domain spacing of the resultant phases can all be notably

effected.
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Further, single C-monomers can also be found or placed at the ends of the block

copolymers. There are several studies that clearly demonstrate the versatility of

using this strategy to tune their phase behaviour [68, 72]. There have been several

experimental studies exploring this effect, such as a 2013 study by Park et. al. [72,

73] which clearly demonstrated that the phase behaviour of diblock copolymers can

be tuned by modifying the end groups of PS-b-PEO diblock copolymers with either

SO3H or SO3Li. They found that the modification leads to an increase in block

segregation and allows the formation of the double gyroid phase, where the melt

would otherwise be disordered [68, 72, 73]. Similarly a 2017 [74] study noted that

desirable cocontiuous phase could be formed by modifying the end-groups using click

reactions [68, 72, 74]. More recently a study [72, 75] examined the effects of adding

diphosponic end groups to PS-b-PEO block copolymers using either ether or amine

linkers. By using the amine linker, the researchers stabilized the Fddd and Ia3̄d

phases, and by using the ether linker, the double-plumbers nightmare were stabilized

[72, 75].

1.3 Thesis Motivation

Due to the prevalence of polymers in our everyday world, understanding the be-

haviours of diblock copolymers is relevant to many areas. Recently, exploring the

effects of adding one C-type monomer to either the ends or the junctions of block

copolymers has become an area of interest since the C-monomers are often present

as a result of the experimental methods used to synthesize the polymer and could
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provide an efficient way to tune and modify the resultant phase behaviour [68]. While

there has been several experimental studies on these types of systems, many theoret-

ical studies overlook the possibility of the junctions or polymer ends being different.

Therefore, in this thesis, we fill this gap and further our understanding of the effects

of adding a single C-monomer by examining the sensitivity of the phase behaviour of

AB diblock copolymers to the addition of a C-type monomer either to one of the ends

of the polymer or to the junction using SCFT.

1.4 Notation

In this thesis, we examine the phase behaviour of AB diblock copolymer that have

a C-monomer added to either the junction of the polymer or to one of the ends. In

order to avoid long descriptions, we will use the following notation:

• A will always refer to the minority block.

• B will always refer to the majority block.

• The single C-monomer will be denoted with a lowercase c to indicate that it is

only a single monomer.

• The position of the blocks and C-monomer will be indicated by the ordering of

the name.

For example, a A-c-B block copolymer is an AB diblock copolymer with a C-

monomer added to the junction. Note, we have also added in dashes for neatness.
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter two gives an overview of the

methods and relevant theoretical background. Chapter 3 presents the main results for

A-c-B type polymers. Chapter 4 presents the main results for A-B-c type polymers.

Finally Chapter 5 brings everything together to discuss the main conclusions and

possible future work.
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Chapter 2

Theory

2.1 Polymer models

Over the years, several polymer models have emerged with various levels of detail. In

many cases the chemical structure of the polymers in question are known, and thus

one could, in principle, account for them in the model. However, adding such details

to the polymer model comes at a significant computational cost. Therefore, many

models are coarse-grained, meaning many of the chemical details are ignored, only

retaining the main overall features describing the polymers. Some of these models

describe the polymers in a discrete manner, where all of the monomer positions are

specified [76]. These types of models can incorporate various interactions between

beads [76]. Two examples of such models would be the discrete Gaussian chain model

and the freely-jointed chain (FJC). The main difference between these models is the

nature of the bonded interaction between the monomers. In the Gaussian chain model,
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the monomers are connected by Gaussian springs, while in the FJC model the beads

are connected by freely-rotating, rigid rods [76]. Both of these models are illustrated

in Fig. 2.1.

Other polymer models fall into the continuous class of models. Here the polymer is

described by some continuous path R⃗(s), where s the position along the contour of the

chain. One common and useful model in this class is the continuous Gaussian chain

model. In this model the polymer is modelled as linearly elastic when stretched,

and fully flexible [76]. Another, continuous model, the wormlike chain, describes

the polymer as a semi-flexible, continuous path that cannot be stretched [76]. An

illustration of these models is shown in Fig. 2.1.

Figure 2.1: Labelled illustrations of different polymer models. Below
each model the illustration illustrates if the polymer can be stretched
on short length scales.

Applying the FJC model to diblock or triblock copolymers is straightforward. Now,

instead of having just a single bond length, we will have a bond length for each of the
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blocks and another bond length for the bond between the blocks. We can also vary the

interactions between the different types of bead pairs, and potentially three different

monomer volumes. An illustration of diblock and triblock copolymers modelled as

FJCs is shown in Fig. 2.2

Figure 2.2: Illustration of the freely-jointed chain model of a) diblock
copolymers and b) a triblock terpolymer

The downfall to using coarse-grained models is that there is some inherently in-

formation lost about any behaviour of the polymers that come from to their specific

chemical structure. Typically though, this is valid since we are generally interested in

the global behaviours that are insensitive to the molecular details. In this thesis, we

employ the freely-jointed chain model with Ni monomers joined by bonds of length

bi, where the subscript i indicates the monomer or bond type. We choose the bond

length of the C-monomers, and the bonds between any two types of monomers was

taken to be equal to bA and the bond length between two B monomers was taken to

be 0.5bA. Further, we have chosen the same volumes for the all monomer types.
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2.2 Triblock terpolymers in a melt

The polymers considered in this thesis are a limiting case of triblock copolymers,

where one block has only one C-type segment. Therefore, in this section we derive

the self-consistent mean-field equations for ABC triblock terpolymer melts, which can

then be directly applied to this project. When examining the statistical properties

of any system, one very useful quantity is the partition function of the system [77],

defined as,

Z = Tr(e−βH(p⃗,r⃗)) (2.1)

where β = kBT , H is the Hamiltonian of the system, r⃗ and p⃗ are the relevant position

and momenta coordinates, and the trace is over the energy eigenstates of the Hamil-

tonian. Extending this to a freely jointed chain with N particles and therefore N − 1

bonds, we obtain [76–78],

Z0 =
∫

dr⃗N exp(−βH(r⃗N)) (2.2)

where the integral is over all possible particle positions and H is the Hamiltonian of

the polymer with the configuration given by the N position vectors of the particles.

In order to derive the SCFT equations, we first need to specify the partition func-

tion of a the triblock copolymers melt. First, we define our Hamiltonian, which will
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contain 2 parts: the part dues to the bond interactions, and the part due to the non-

bonded interactions. We first consider the bond component. In the FJC model, each

type of bond can only have one length, b, therefore, the bond-length distribution is a

delta function [78],

P(R⃗) = 1
4πb2 δ(R⃗ − b) = exp(−βHbond,1(R⃗)),

where Hbond,1 is the Hamiltonian associated with the bond energy attributed to a

single bond. Rearranging, we obtain,

Hbond,1 = −kT ln
( 1

4πb2 δ(R⃗ − b)
)

.

The extension to a melt with n polymers with N bonds yields [78]

Hbond = −kT
n∑

j=1

(
N∑

i=1
ln
(

1
4πb2

i

δ(R⃗j,i − bi)
))

, (2.3)

where R⃗i
j = r⃗ i

j − r⃗ i−1
j is the vector pointing from the ith monomer to the i − 1th

monomer in the jth chain and bi is the relevant bond length between the i − 1th and

the ith monomers and may change along the chain.

To consider the non-bonded component, we first define the density operators for

each of the monomer types [78],

ϕ̂A(r⃗) =
n∑

j=1

NA∑
i=1

δ(r⃗ − r⃗j,i), (2.4)
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ϕ̂B(r⃗) =
n∑

j=1

NB∑
i=NA+1

δ(r⃗ − r⃗j,i), (2.5)

ϕ̂C(r⃗) =
n∑

j=1

NC∑
i=NB+1

δ(r⃗ − r⃗j,i). (2.6)

It is of note that the above expressions have been simplified by employing the as-

sumption that vA, vB, and vC are all 1.

The non-bonded interactions between monomers of type α and β are then given

by the Flory-Huggins interaction [78],

kTχα,β

∫
uαβ(|r⃗ − r⃗′|)ϕ̂α(r⃗)ϕ̂β(r⃗′)dr⃗dr⃗′, (2.7)

where α and β can be A, B, or C but α ̸= β, and uαβ(|r⃗ − r⃗′|) is typically given by

[78],

uαβ(R) =
(

3
2πσ2

αβ

)3/2

exp
(

− 3R2

2σ2
αβ

)
(2.8)

with R = |r⃗ − r⃗′|. Therefore, we find the non-bonded component of the Hamiltonian

to be,
Hnb =kTχAB

∫
uAB(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′

+ kTχAC

∫
uAC(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

+ kTχBC

∫
uBC(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

(2.9)
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and the complete Hamiltonian, excluding the irrelevant kinetic energy component

[77], becomes,

H = − kT
n∑

j=1

N∑
i=0

ln
(

1
4πb2

i

δ(R⃗j,i − b)
)

+ kTχAB

∫
uAB(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′

+ kTχAC

∫
uAC(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

+ kTχBC

∫
uBC(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

(2.10)

From this, the configurational partition function of an n chain melt in the canonical

ensemble is [78],

Z = 1
n!

n∏
j=1

∫
dr⃗N

j exp

−βHbond

− χAB

∫
uAB(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′

− χAC

∫
uAC(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

− χBC

∫
uBC(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

,

(2.11)

where, for simplicity we have used Hbond in place of Eq. 2.3.

Now our goal is to change it the form of the partition function from one where

we integrate over positions to one where we integrate over fields so that the SCFT

approximation can be applied. The first step is apply the identity [76, 78],

1 =
∫

Dϕα(r⃗)δ[ϕα(r⃗) − ϕ̂α(r⃗], (2.12)
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to Eq. 2.11 for each of the three types of monomers:

Z = 1
n!

n∏
j=1

∫
dr⃗N

j

∫
DϕA(r⃗)

∫
DϕB(r⃗)

∫
DϕC(r⃗)

δ[ϕA(r⃗) − ϕ̂A(r⃗)]δ[ϕB(r⃗) − ϕ̂B(r⃗)]δ[ϕC(r⃗) − ϕ̂C(r⃗)]

exp

−βHbond − χAB

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′

− χAC

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′ − χBC

∫
u(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

.

Now we take advantage of the delta functional identity [76, 78],

δ[ϕα(r⃗) − ϕ̂α(r⃗)] =
∫

Dωα exp
(

ι
∫

dr⃗ωα[ϕα(r⃗) − ϕ̂α(r⃗)]
)

(2.13)

to obtain,

Z = 1
n!

n∏
j=1

∫
dr⃗N

j

∫
DϕA(r⃗)

∫
DϕB(r⃗)

∫
DϕC(r⃗)

∫
DωA

∫
DωB

∫
DωC

exp
(

ι
∫

dr⃗ωA[ϕα(r⃗) − ϕ̂A(r⃗)]
)

exp
(

ι
∫

dr⃗ωB[ϕα(r⃗) − ϕ̂B(r⃗)]
)

exp
(

ι
∫

dr⃗ωC [ϕα(r⃗) − ϕ̂C(r⃗)]
)

exp

−βHbond

− χAB

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′ − χAC

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

− χBC

∫
u(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

,

where ωα is the real conjugate field to ϕα and is interpreted as the chemical potential

field. Now, using the definition of the density operator and absorbing the ι into the
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conjugate fields we obtain,

Z = 1
n!

∫
DϕA(r⃗)

∫
DϕB(r⃗)

∫
DϕC(r⃗)

∫
DωA

∫
DωB

∫
DωC

exp


∫

dr⃗ϕA(r⃗)ωA(r⃗) +
∫

dr⃗ϕB(r⃗)ωB(r⃗) +
∫

dr⃗ϕC(r⃗)ωC(r⃗)

− χAB

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′ − χAC

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

− χBC

∫
u(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′


n∏

j=1

∫
dr⃗N

j exp

−βHbond −
NA∑
i=1

ωA(r⃗j,i) −
NB∑

i=NA+1

ωB(r⃗j,i) −
NC∑

i=NB+1

ωC(r⃗j,i)

.

(2.14)

Defining the normalized single chain partition function, [76, 78]

Q = Z1[ωA, ωB, ωC]
Z1[0, 0, 0] , (2.15)

with Z1[ωA, ωB, ωC] as the partition function of a single chain in the fields ωA, ωB and

ωC,

Q×Z1[0, 0, 0] =
∫

dr⃗N
j exp

−βHbond −
NA∑
i=1

ωA(r⃗j,i)−
NB∑

i=NA+1

ωB(r⃗j,i)−
NC∑

i=NB+1

ωC(r⃗j,i)

.

(2.16)

But Z1[0, 0, 0], is a constant and therefore will not actually need to be calculated, and

therefore, we exclude it. Finally, adding in η(r⃗) as a Lagrange multiplier to enforce
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incompressibility, we obtain,

Z = 1
n!

∫
DϕA(r⃗)

∫
DϕB(r⃗)

∫
DϕC(r⃗)

∫
DωA

∫
DωB

∫
DωC

Qn exp


∫

dr⃗ϕA(r⃗)ωA(r⃗) +
∫

dr⃗ϕB(r⃗)ωB(r⃗) +
∫

dr⃗ϕC(r⃗)ωC(r⃗)

− χAB

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′ − χAC

∫
u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

− χBC

∫
u(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′ −

∫
dr⃗η(r⃗)(1 − ϕB(r⃗) − ϕA(r⃗) − ϕC(r⃗))


.

(2.17)

Now by applying Sterlings approximation, n! = (n/e)n, n = V/N , where V is the

total volume of the system, and employing the definition of the Helmholtz free energy,

we can define the free energy functional per chain [78],

F

nkT
= ln Q − ln( e

n
) − 1

V


∫

dr⃗NϕA(r⃗)ωA(r⃗) +
∫

dr⃗NϕB(r⃗)ωB(r⃗)

+
∫

dr⃗NϕC(r⃗)ωC(r⃗) − χABN
∫

u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂B(r⃗′)dr⃗dr⃗′

− χACN
∫

u(|r⃗ − r⃗′|)ϕ̂A(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′ − χBCN
∫

u(|r⃗ − r⃗′|)ϕ̂B(r⃗)ϕ̂C(r⃗′)dr⃗dr⃗′

−
∫

dr⃗η(r⃗)(1 − ϕB(r⃗) − ϕA(r⃗) − ϕC(r⃗))

,

(2.18)

where we have absorbed N into the definition of η(r⃗).
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Now, we note that there is a more convenient and intuitive way to express Q. To

see this, start with Eq. (2.15) [78],

Q =

∫
dr⃗N ∏N−1

i=1 exp
{

−βHbond,1(R⃗i)
}∏N

i=1 exp
{

−ω(r⃗i)
}

V
(∫

dr⃗N exp
{

−βHbond,1(R⃗)
})N−1

= 1
V

∫
dr⃗N

N−1∏
i=1

exp
{

−βHbond,1(R⃗i)
}

V
∫

dr⃗N exp
{

−βHbond,1(R⃗)
} N∏

i=1
exp

{
−ω(r⃗i)

}

= 1
V

∫
dr⃗Ne−ω(r⃗N )g(r⃗N − r⃗N−1)e−ω(r⃗N−1)g(r⃗N−1 − r⃗N−2)e−ω(r⃗N−2)g(r⃗N−2 − r⃗N−3)

...e−ω(r⃗3)g(r⃗3 − r⃗2)e−ω(r⃗2)g(r⃗2 − r⃗1)e−ω(r⃗1)),

(2.19)

where g(r⃗i+1 − r⃗i) is the normalized bond transition probability [78],

g(r⃗i+1 − r⃗i) = δ(r⃗i+1 − r⃗i − b)
4πb2 , (2.20)

with Fourier transform,

g(k) = sin(kb)
kb

. (2.21)

Therefore, defining the forward integrated chain propagator with [76, 78],

q(r⃗1, 1) = e−ω(r⃗1), (2.22)
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and

q(r⃗i+1, i + 1) = e−ω(r⃗i+1)
∫

dr⃗ig(r⃗i+1 − r⃗i)q(r⃗i, i), (2.23)

we obtain [78],

Q = 1
V

∫
dr⃗Nq(r⃗N , N). (2.24)

Similarly, we define the backwards integrated what propagator [78],

q†(r⃗N , N) = e−ω(r⃗N ), (2.25)

and

q†(r⃗i−1, i − 1) = e−ω(r⃗i−1)
∫

dr⃗ig(r⃗i − r⃗i−1)q(r⃗i, i), (2.26)

we obtain [78],

Q = 1
V

∫
dr⃗Nq†(r⃗N , N). (2.27)

2.3 Self-consistent field theory

If the expressions of the partition function could be evaluated exactly, we would be

done; however, that is not the case [76]. Therefore, in order to obtain solutions,

we assume the functional integrals are mainly governed by a single set of chemical

potential fields; [11, 76]; this assumption is the mean-field approximation. The mean-

field approximation leads to a set of self-consistent equations that need to be solved.

Solutions of the the mean-field equations can be approximately obtained analytically

in a few cases such as in the strong segregation regime [6, 11, 22, 76, 79], by using
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theories such as those developed by Semenov[22, 79, 80], and in the weak segregation

regime using theories such as the random phase approximation developed by Leibler

[11, 22, 76, 79, 81]. To solve for the free energy in general, numerical methods have

been developed and used widely including the work reported in this thesis. In this

method, we numerically solve the self-consistent field equations to obtain the set of

fields that minimize the free energy functional with respect to the monomer density

fields, auxiliary fields, and Lagrange multipliers [11, 76, 78].

Taking the functional derivative with respect to ϕA, ϕB, and ϕC and setting those

to zero in order to minimize the free energy yields,

δf

δϕA(r⃗) = − 1
V

(NωA −χABN
∫

u(|r⃗ − r⃗′|)ϕBdr⃗′ −χACN
∫

u(|r⃗ − r⃗′|)ϕCdr⃗′ +η(r⃗)) = 0,

δf

δϕB(r⃗) = − 1
V

(NωB −χABN
∫

u(|r⃗ − r⃗′|)ϕAdr⃗′ −χBCN
∫

u(|r⃗ − r⃗′|)ϕCdr⃗′ +η(r⃗)) = 0,

and

δf

δϕC(r⃗) = − 1
V

(NωC −χBCN
∫

u(|r⃗ − r⃗′|)ϕBdr⃗′ −χACN
∫

u(|r⃗ − r⃗′|)ϕAdr⃗′ −η(r⃗)) = 0.

with f = F/nkT . Leading to,

NωA = χABN
∫

u(|r⃗ − r⃗′|)ϕB(r⃗′)dr⃗′ + χACN
∫

u(|r⃗ − r⃗′|)ϕC(r⃗′)dr⃗′ + η(r⃗) (2.28)

NωB = χABN
∫

u(|r⃗ − r⃗′|)ϕA(r⃗′)dr⃗′ + χBCN
∫

u(|r⃗ − r⃗′|)ϕC(r⃗′)dr⃗′ + η(r⃗) (2.29)
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NωC = χBCN
∫

u(|r⃗ − r⃗′|)ϕB(r⃗′)dr⃗′ + χACN
∫

u(|r⃗ − r⃗′|)ϕC(r⃗′)dr⃗′ + η(r⃗) (2.30)

The derivative with respect to η(r⃗) simply yields,

1 = ϕA(r⃗) + ϕB(r⃗) + ϕC(r⃗). (2.31)

Finally, the derivative with respect to auxiliary fields yeild,

δf

δωA(r⃗) = − δ ln Q

δωA(r⃗) − N

V
ϕA = 0,

δf

δωB(r⃗) = − δ ln Q

δωB(r⃗) − N

V
ϕB = 0,

δf

δωB(r⃗) = − δ ln Q

δωB(r⃗) − N

V
ϕB = 0.

To complete the above expression, we still need δ ln Q
δωB(r⃗) . This is easy to obtain from

Eqs. 2.23, 2.24, 2.26, and 2.27 as,

δ ln Q

δωB(r⃗) = −eωA(r⃗)

V

NA∑
i=1

q(ri, i)q†(ri, i), (2.32)

thus yielding,

ϕA = eωA(r⃗)

QN

NA∑
i=1

q(ri, i)q†(ri, i), (2.33)

ϕB = eωB(r⃗)

QN

NB∑
i=NA+1

q(ri, i)q†(ri, i), (2.34)

ϕC = eωC(r⃗)

QN

NC∑
i=NB+1

q(ri, i)q†(ri, i). (2.35)
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All together, we obtain the self-consistent field equations:

1 = ϕA + ϕB + ϕC

NωA = χABN
∫

u(|r⃗ − r⃗′|)ϕBdr⃗′ + χACN
∫

u(|r⃗ − r⃗′|)ϕCdr⃗′ + η(r⃗)

NωB = χABN
∫

u(|r⃗ − r⃗′|)ϕAdr⃗′ + χBCN
∫

u(|r⃗ − r⃗′|)ϕCdr⃗′ + η(r⃗)

NωC = χBCN
∫

u(|r⃗ − r⃗′|)ϕBdr⃗′ + χACN
∫

u(|r⃗ − r⃗′|)ϕCdr⃗′ + η(r⃗)

ϕA = eωA(r⃗)

QN

NA∑
i=1

q(ri, i)q†(ri, i)

ϕB = eωB(r⃗)

QN

NB∑
i=NA+1

q(ri, i)q†(ri, i)

ϕC = eωC(r⃗)

QN

NC∑
i=NB+1

q(ri, i)q†(ri, i)

(2.36)

Additionally, in the calculations we perform, we allow the box parameters, θbox, to

be vary, therefore, we will also need to minimize the stress of the system, which is

defined as,

δf

δθbox
=
∑

h

∑
k

∑
l

{
χAB

duAB(G⃗hkl)
dk2

dk2

dθbox
ϕ̂A(G⃗hkl)ϕ̂B(G⃗hkl)

+ χAC
duAC(G⃗hkl)

dk2
dk2

dθbox
ϕ̂A(G⃗hkl)ϕ̂C(G⃗hkl)

+ χBC
duBC(G⃗hkl)

dk2
dk2

dθbox
ϕ̂B(G⃗hkl)ϕ̂C(G⃗hkl)

+ dg(G⃗hkl)
dk2

dk2

dθbox

N−1∑
i=1

q̂(G⃗hkl, i)q̂†(G⃗hkl, i + 1)
}

(2.37)
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where q̂ is Fourier transform of q and Ghkl is a the reciprocal lattice vector defined by

h, k, and l.

2.4 Numerical procedure

Now that we have the theoretical background and necessary equations, we will briefly

outline the numerical procedure, called pseudo-spectral SCFT, and steps used in

implementation.

1. Initialise the monomer density fields and box dimensions to be approximately

that of the desired phase. In this project, we examined 13 phases, however,

sometimes a few of the phases would not converge for a given set of parameters.

The candidate phases examined are shown below. It should be noted however

that not all phases were run for each point. Generally, all of the phases were

run for the lowest value of χAB and the highest value of χAB and then at least

2 other values on the phase diagram. All other values, only had the phases that

showed up in those 4 other values run.

2. Initialise the chemical potential fields from ϕA(r⃗), ϕB(r⃗), and ϕC(r⃗) using,

ωA(r⃗) = χABϕB(r⃗) + χACϕC(r⃗)

ωB(r⃗) = χABϕA(r⃗) + χBCϕC(r⃗)

ωC(r⃗) = χBCϕB(r⃗) + χABϕA(r⃗).
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It is to be stressed that the above equations are only used for computational

convenience in the first step, as they only give an approximation to the fields

and are not an accurate relation between the chemical potential fields and the

monomer density profiles.

3. Using the current chemical potential fields and monomer density profiles, obtain

the forward- and backward-integrated propagators, q(r⃗, i) and q†(r⃗, i), given by

Eqs. 2.23 and 2.26. Once q(r⃗, i) and q†(r⃗, i) are obtained, use a Fourier transform

to obtain q(k⃗, i) and q†(k⃗, i).

4. Using Eqs. 2.33, 2.34, and 2.35, calculate ϕA(r⃗), ϕB(r⃗), and ϕC(r⃗).

5. Obtain the Fourier transforms, ϕA(k⃗), ϕB(k⃗), ϕC(k⃗), ωA(k⃗), ωB(k⃗), and ωC(k⃗).

6. Now we need to compute η(r⃗). By rearranging Eqs. 2.28, 2.29, 2.30, we obtain

η(r⃗) = 1
3

(
NωA(r⃗) + NωB(r⃗) + NωC(r⃗) + χAB

∫
uAB(|R⃗ − r⃗′|)(1 − ϕC(r⃗′))

+ χAC

∫
uAC(|R⃗ − r⃗′|)(1 − ϕB)(r⃗′) + χBC

∫
uAC(|R⃗ − r⃗′|)(1 − ϕA(r⃗′))

)
.
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Now, take the Fourier transform and add in λ(1 − ϕA(k⃗) − ϕB(k⃗) − ϕC(k⃗)) to

encourage faster convergence, with λ is a numerical value:

η(k⃗) = 1
3

(
NωA(k⃗) + NωB(k⃗) + NωC(k⃗) + NχAB

∫
uAB(k)(δ(k⃗) − ϕC(k⃗))

+ NχAC

∫
uAC(k)(δ(k⃗) − ϕB)(k⃗′) + NχBC

∫
uAC(k)(δ(k⃗) − ϕA(k⃗))

)
+ λ(1 − ϕA(k⃗) − ϕB(k⃗) − ϕC(k⃗))

(2.38)

Use this equation now to evaluate η(k⃗)

7. Evaluate the new chemical potential fields using

Nωout
A (k⃗) = χABNuAB(k⃗)ϕB(k⃗) + χACNuAC(k⃗)ϕC(k⃗) + η(k⃗) (2.39)

Nωout
B (k⃗) = χABNuAB(k⃗)ϕA(k⃗) + χBCNuBC(k⃗)ϕC(k⃗) + η(k⃗) (2.40)

Nωout
C (k⃗) = χACNuAC(k⃗)ϕA(k⃗) + χBCNuBC(k⃗)ϕB(k⃗) + η(k⃗), (2.41)

and using a backward Fourier transform to calculate ωout
A (r⃗), ωout

B (r⃗), and ωout
C (r⃗).

8. Find the residuals for the chemical potential fields, defined by,

dωA(r⃗) = ωout
A (r⃗) − ωA(r⃗)

dωB(r⃗) = ωout
B (r⃗) − ωB(r⃗)

dωC(r⃗) = ωout
C (r⃗) − ωC(r⃗)

(2.42)
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and for the lattice parameters, defined by,

dθbox = − df

dθbox
∆θbox, (2.43)

where ∆θbox is chosen to have some numerical value.

9. Update the chemical potential fields and the lattice parameters using either

simple mixing for the first 5000 steps or Anderson afterward, as described in

appendix A.

10. Calculate the free energy

F = − ln Q − N
∑

k⃗

(ωA(k⃗)ϕA(k⃗) + ωB(k⃗)ϕB(k⃗) + ωC(k⃗)ϕC(k⃗)

− χABuAB(k⃗)ϕA(k⃗)ϕB(k⃗) − χACuAC(k⃗)ϕA(k⃗)ϕC(k⃗)−

χBCuBC(k⃗)ϕB(k⃗)ϕC(k⃗))

(2.44)

and the error

Err =
(∑

r⃗(dω2
A + dω2

B + dω2
C)∑

r⃗(ω2
A + ω2

B + ω2
C)

)
(2.45)

11. If the criteria of Eq. 2.46 is not satisfied, go back to step 3 using the chemical

potential fields and monomer density profiles from step 9 as inputs. Repeat this

process until the desired accuracy is obtained.
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Max[|1 − ϕA(r⃗) − ϕB(r⃗] − ϕC(r⃗)) ≤ 10−7

Err ≤ 10−5

∆F ≤ 10−8

dLx,box ≤ 10−5

dLy,box ≤ 10−5

dLz,box ≤ 10−5

(2.46)
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Figure 2.3: Monomer density profiles of the candidate phases
and their abbreviations. a) Lamellar (LAM) b) Hexagonal cylin-
ders (HEX) c) Body-centred cubic (BCC) d) Hexagonal close-packed
spheres (HCP) e) Hexagonally-perforated lamellar (HPL) f) double gy-
roid (DGY) g) double diamond (DDI) h) diamond (DIA) i) C14 j) A15
m) σ k)C15
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Chapter 3

Results: A-c-B Type Polymers

In this chapter, we explore the sensitivity of the phase behaviour of AB diblock

copolymers to the addition of a single C-monomer at the AB junction. We also explore

the effects of changing the characteristics of the C-monomer. To better understand

the sensitivity of the phase behaviour, we compare the results to the phase diagram

of an AB diblock copolymer melt with NA = 12, as shown in Fig. 3.1. Note, there is

a small area where BCC is stable near the ODT; however, since it is so small is not

labelled but is shown in Fig. 3.2. It is also of note that all of the ODT and sometimes

the BCC->HEX phase boundaries have a significantly larger error than the others

plotted due to the inability to converge ordered phases past the ODT.

42
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Figure 3.1: Reference phase diagram in the χAB − NB plane for AB
block copolymers, with NA=12 and bB = 0.5bA.
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Figure 3.2: Phase boundaries near the ODT for AB diblock copoly-
mers, with NA=12.

Upon first glance, the results in Fig. 3.1, may not appear to be the same as the

results in Fig. 1.6. There are a few reasons for these observed differences. The first

is that the conformational asymmetry is different. In the SCFT results in Fig. 1.6,

block copolymers with bA/bB = 1 are used, while here bA/bB = 2. The phase diagram

in Fig. 1.6 also does not contain the σ phase, because it had not yet been discovered

and therefore would not have been considered a candidate phase. Finally, the phase

diagrams are plotted in different planes. In Fig 1.6, the phase diagram is plotted in

the χABN -fA plane, while in Fig. 3.1, the phase diagram is plotted in the χAB − NB

plane. In Fig. 3.3 c), we replot the phase diagram from Fig. 3.1 in the χAB − fA

plane, with the red outline indicating the area for which we obtained results. In Fig.

3.3 a), we show a phase diagram for diblock copolymers with bA/bB = 2 from Ref.

[58]. We note that this study did not consider the presence of the σ phase, so the
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only phase boundaries that should be compared to the results in Fig. 3.3 c) are those

that are between phases with non-spherical micelles. In Fig. 3.3 b), a phase diagram

containing the phases with spherical micelles for diblock copolymers from Ref [59] is

displayed. By comparing a) and b) to c), we can see that the results are consistent.

Figure 3.3: Phase diagram comparison with known results for
bA/bB = 2 from a) [58], b) [59], and c) Fig. 3.1. The labelling of
the phases are as follows: L=LAM, G=DGY, C=HEX, S=bcc=BCC,
Scp = HCP , fcc=Face-centred cubic, and disordered=dis=DIS. Fur-
ther f = fA and χ = χAB. Figures reproduced with permission of
publisher.

3.1 A-c-B Results

We first present the results for the various A-c-B scenarios examined. The first case

adds a C-monomer that is either nearly-neutral or neutral, and it interacts with the

A and B blocks in the same manner, χAC = χBC. The resultant phase diagram is

shown in Fig. 3.4.

45

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

Figure 3.4: Phase diagram in the χAB − NB plane for A-c-B block
copolymers, with NA=12. The interactions with the C-monomer are
such that χAC = χBC = −0.1, 0, 0.1. The Ds with the dashed lines
are the equivalent phase boundaries for an AB diblock copolymer melt
with NA=12.

The main notable feature is the marked shift of all phase boundaries to larger

values of NB and lower values of χAB than the corresponding phase boundaries of

the AB diblock copolymers. Upon closer inspection of the phase boundaries, we note

that they do not perfectly overlap, but rather are slightly shifted with respect to each

other, as shown in Fig. 3.5. If we first examine the DGY to HEX and LAM to DGY

boundaries (triangles and squares, respectively), we see that as χAC = χBC decreases,
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the boundaries are increasingly shifted to the higher values of NB. In contrast, the

HEX to σ boundary (circles) exhibits the opposite effect, but overall this is a very

small effect.

Figure 3.5: Closer view of phase boundaries for diblock copolymers
with a nearly-neutral C-monomer added to the junction. Results are
shown for the HEX to σ (circles) junction for χAB=0.7 and the DGY to
HEX (triangles) and LAM to DGY (squares) boundaries at χAB=0.8.

While the previous model showed that the C-monomer does have an effect, the

choice of χAC and χBC is not likely to be a good model of what could be seen experi-

mentally since the interactions between monomers of types i and j can be expressed

as [2],

χij = C1,ij + C2,ij

T
, (3.1)

where C1,ij and C2,ij are constants that that depend on the monomer species and T is

temperature. Thus changing χAB without changing monomer species means changing

T. It is therefore more reasonable to expect χAC and χBC to depend on temperature.

In a very broad sense, we have 4 independent parameters related to the C-monomer

that can be change independently: C1,AC, C2,AC, C1,BC, and C2,BC. However, in this
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thesis, we choose a simplified model where χAC and χBC are given by,

χAC = χAB + α, (3.2)

χBC = χAB − α, (3.3)

where α is constant. In employing this model, we are effectively setting the C2,AC =

C2,BC = C2,AB and defining α ≡ χAC − χAB = C1,AC − C1,AB. The resultant phase

diagrams, plotted in two different ways, for various values of α are shown in Figs. 3.6

and 3.7.

48

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

Figure 3.6: Phase diagram in the χAB −NB plane for diblock copoly-
mers with a C-monomer added to the junction where χAC = χAB + α
and χBC = χAB − α. Results are overlaid for α = ±0.3, ±0.1, 0. The
dashed lines are the same as in Fig. 3.4. Not that some areas are not
labelled near the ODT.
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Figure 3.7: The same phase diagrams as in Fig. 3.6, except now the
various values of α are plotted separately

In Figs. 3.6 and 3.7, we again notice a shift of all phase boundaries to larger values

of NB and smaller χAB. The various values of α also display different sized shifts with

the largest value of α displaying the smallest shifts.

Finally, in chapter 2, it was stated that monomers of type i and j interact with

each other through the finite-range interaction given in Eq. 2.8, where σij gives a

measure of the distance over which the monomers feel this interaction. In all of the
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other results of this thesis, we take σAB = σAC = σBC =
√

3, or defining δ as

δFR = σAC

σAB
= σBC

σAB
, (3.4)

we have δFR = 1. However, we also examine the effects of changing δFR. The results

are shown in Fig. 3.8 for χAB = χAC = χBC, or α = 0.

Figure 3.8: Phase diagram in the χAB −NB plane for diblock copoly-
mers with a C-monomer added to the junction where χAC = χAB + α
and χBC = χAB − α and the σAC = σBC ̸= σAB. Results are shown for
σAC = σBC = 0.5σAB andσAC = σBC = 0.75σAB. The dashed lines are
the same as in Fig. 3.4.
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Once again, we note the same type of shift of all phase boundaries to larger NB

and smaller χAB. If we take a closer look, as displayed in Fig. 3.9, we can see that

both δFR =0.5 and 0.75 are slightly shifted from δFR = 1, with δ = 0.5 having the

largest shift. It is also interesting to note that the direction of the shift is to larger

values of NB for the LAM to DGY (squares) and DGY (triangles) to HEX boundaries

and to smaller values NB for the HEX to SIG (circles) boundary. This effect however

is very small.

Figure 3.9: Closer view of phase boundaries for diblock copolymers
with a C-monomer added to the junction where χAC and χBC are
temperature dependent and the σAC = σBC ̸= σAB for the HEX to
σ (circles), DGY to HEX (triangles), and LAM to DGY (squares)
boundaries at χAB=0.8

3.2 Discussion

The main result from the above phase diagrams is that the addition of a single C-

monomer to the junction of the AB diblock copolymers does have a noticeable effect

on the phase boundaries. However, since the effect is simply a shift, the phases that

are present and the sequence of the phase transitions remains unchanged. In order to
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understand the roots of this behaviour, we consider two important factors that play

a role in determining the position of the phase transitions: the interfacial tension and

the polymer stretching energy.

The first factor to consider is the polymer stretching energy. To evaluate the effects

of the C-monomer on the polymer stretching, we examine the domain size, Lx, of the

HEX phase as shown in Fig. 3.10. In Table 3.1, results for Lx are shown for the

various scenarios investigated here and for the AB diblock copolymers as a reference.

The results display a notable increase in the domain size of the A-c-B type copolymer

melts from that of the AB copolymer melts. While, we would expect a slight increase

due to the polymer now being slightly longer, this would leave the ratio of Lx to the

average size of the polymer to remain the same. To check this, we take the size of the

polymer to be given by the root-mean-square end-to end distance:

Ree =

√√√√N−1∑
i=1

b2
i =


√

19, A-c-B
√

18, AB
(3.5)

where i labels bond and the numerical results are for NB = 25. As displayed in Table

3.10, there is an increase in the domain size that is not accounted for by just the

increase in polymer length. These results indicate increased chain stretching due to

the presence of the C-monomer. This increased chain stretching causes the melt to

prefer phases that decrease this stretching, or the less spherical phases.
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Figure 3.10: Illustration of Lx for hexagonal-packed cylinders
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AB diblock 10.5853 2.4950

χAC = χBC Lx Lx/Ree

0.1 11.0839 2.5428

0 11.0815 2.5423

-0.1 11.0793 2.5418

α Lx Lx/Ree

0.3 11.1060 2.5479

0.1 11.1015 2.5469

0 11.0990 2.5463

-0.1 11.0964 2.5457

-0.3 11.0908 2.5444

δ Lx Lx/Ree

1 11.0990 2.5463

0.75 11.1011 2.5468

0.5 11.1022 2.5470

Table 3.1: Lx for hexagonal-packed cylinders for the various A-c-B
block copolymers examined with χAB = 0.75 and NB = 25.

The other factor to consider is the interfacial tension. While this is not straightfor-

ward to calculate, we can get a measure of the apparent interfacial tension by following

the procedure set out in Ref. [82]. In this paper, Shi and Noolandi showed that the

interfacial tension of the diblock copolymer blends can be estimated by fitting the low
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Lx part of the free energy curves to a γ/Lx function and then taking γ as an estimate

of the interfacial tension. Example curves and fits are shown in Fig. 3.11. Using

this method, we find the resultant apparent interfacial tensions that are displayed in

Table. 3.2. We see an increase in the γ in all cases, which would result in the phase

boundaries moving to lower values of NB and lower values of χAB.

Figure 3.11: Plot of the free energy of the lamellar phase vs domain
spacing for AB diblock copolymers on the left and A-c-B polymers with
α = 0.3 on the right. In both plots χAB = 0.85 and NB = 13 The black
dashed lines are fits to A/Lx+B.
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System γ ± 0.2

AB diblock 5.6

χAC = χBC

0.1 7.7

0 7.7

-0.1 7.7

α

0.3 8.0

0.1 7.8

0 7.7

-0.1 7.5

-0.3 7.4

δ

1 7.7

0.75 7.7

0.5 7.8

Table 3.2: γ for lamallae for the various A-c-B block copolymers
examined with χAB = 0.85 and NB = 13.

Combining these effects, we understand the shifts as follows. The increased stretch-

ing energy due to the increased domain size accounts for the main generic shift to

larger values of NB. On the other hand, the increased apparent interfacial tension

57

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

accounts for the shift to lower values of χAB.

Looking at the more detailed effects of changing the properties of the monomers,

the difference in shift due to changing χAC and χBC in the case of the nearly-neutral

C-monomers or of changing the range of the finite-range interaction is very small and

in normal phase diagram is not visible. Therefore, we conclude that these two changes

do not have any visible effect on the shift.
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Figure 3.12: Lamellar density profiles for A-c-B melts with χAB =
0.75 and NB = 15. Top: Monomer density profiles for A, B and c
monomers with α = 0.3. Bottom: C-monomer density profiles for
various α = ±0.3 and 0
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α Lx,A/d

0.3 0.4233

0.1 0.4244

0 0.4249

-0.1 0.4254

-0.3 0.4264

Table 3.3: Lx,A for lamellar for A-c-B block copolymers with χAB =
0.85 and NB = 13 for varying α

Conversely the shift is strongly dependant on α. More specifically, we note that

larger values of α lead to smaller shifts. To understand this we examine the density

profiles of the lamellar phase as plotted in Fig. 3.12. We also simultaneously consider

the A-rich domain size, Lx,A/d which is displayed in Table 3.3 which is calculated

by taking the points where ϕA = ϕB as the boundaries between the two domains.

In the lower plot of Fig. 3.12 notice that as α decreases, the distribution of the C-

monomers favours the A-rich region. This behaviour is expected given the definition

of χAC and χBC and has the effect of effectively increasing the size of the A-rich region.

The second thing to note, is that by examining the apparent interfacial tension, we

see that while changing χAC = χBC or the finite-range interaction range does not

change γ significantly, changing α has a noticeable effect on the interfacial tension

suggesting that the change in γ is associated with the change in shift size due to

changing α. Therefore, we conclude that the increase in the A-rich domain size
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together with decrease in interfacial tension as α decreases causes the melts with the

smallest α to more strongly favour the less spherical configurations and have a larger

shift, consistent with Fig. 3.6.
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Chapter 4

Results: A-B-c Type Polymers

4.1 Results

We now examine the effect of placing a C-monomer at the free end of the majority

block. The C-monomer will be modelled as having the same finite-range interaction

range as the A and B monomers and with χAC and χBC given by Eqs. 3.2 and 3.3,

respectively. The results are shown in Figs. 4.1 and 4.2.
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Figure 4.1: Overlaid phase diagram in the χAB−NB plane for diblock
copolymers with a C-monomer added to the majority end where χAC =
χAB + α and χBC = χAB − α. Results are shown for α = ±0.1, and 0.
The dashed lines are the same as in Fig. 3.4. Note, some areas in the
phase diagram are not labelled.
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Figure 4.2: The same phase diagrams as in Fig. 4.1, except now the
various values of α are plotted separately

Looking at Figs. 4.1 and 4.2, we see two notable features. First, there is a notable

shift in the phase boundaries to lower values of NB and higher values of χAB when

compared to the AB diblock copolymer phase boundaries.We further note that the

shift size varies with α with the smallest α having the largest shift.

4.2 Discussion

Once again, we examine two main properties to help elucidate the physics behind

the shift. The first important factor is the polymer stretching energy. Table 4.1

shows the domain sizes for the various values of α. We see that there is a notable

decrease in both Lx and Lx/Ree when compared to the diblock copolymer domain

size. This decrease means that the polymers are stretched less and therefore the melt

can transition to more spherical phases at smaller values of NB.
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α Lx Lx/Ree

0.1 10.5133 2.4119

0 10.4563 2.3988

-0.1 10.4563 2.3854

AB diblock 10.5853 2.4950

Table 4.1: Lx for hexagonal-packed cylinders for A-B-c block copoly-
mers with χAB = 0.75 and NB = 25 for various values of α

The other main important factor to consider is the interfacial tension. By measur-

ing the apparent interfacial tension in an identical manner to what was done in Ch.

3, we obtain the results displayed in Table. 4.2. There is a notable decrease in the

apparent interfacial tension from that of the AB diblock melt. We also note that the

decrease is most significant for the lowest value of α

System γ ± 0.2

AB diblock 5.6

α

0.1 4.8

0 4.3

-0.1 3.9

Table 4.2: γ for lamallae for the various A-B-c block copolymers
examined with χAB = 0.85 and NB = 13.
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Finally, we consider the size of the A-rich domain, as displayed in Table. 4.3, we

see the opposite trend to what we expect. When the domain size of the A-rich region

is largest, the boundaries are at the smallest NB. However, in this system, the change

in the size of the A-domain is small compared to the change in the total domain size,

and therefore, we do not expect the this change to play a large role in determining

the shift size.

α Lx,A/d

0.1 0.4150

0 0.4155

-0.1 0.4159

Table 4.3: Lx,A for lamellar for A-B-c block copolymers with χAB =
0.75 and NB = 15 for various values of α

Combining these results, we see that the large changes noted in the apparent

interfacial tension and in the polymer stretching will dominate the results, while the

change in the A-domain size is small and therefore will not play a large role. Further,

we see that the decrease in polymer stretching causes the main shift to lower values

of NB. Further, the significant decrease in the γ will cause the shift to larger χAB.

Further, since the magnitude of the change in γ is dependant on α with the smallest

α displaying the largest change, the shift for smallest α will be the largest, consistent

with Figs. 4.1 and 4.2.
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Chapter 5

Conclusions

In this study, we have examined the sensitivity of the phase behaviour of AB diblock

copolymers to the addition of a single C-monomer. To accomplish this, we model the

polymers as short freely-jointed chains with an A-block length of NA = 12. We then

employ self-consistent mean-field theory (SCFT) to construct phase diagrams which

are compared to the phase diagrams of comparable AB diblock copolymers.

The first scenario examined adds various types of C-monomers to the junction of

the AB diblock, thus making A-c-B type block copolymers. In all cases examined, one

of the most notable effects is a shift of all phase boundaries to larger values of NB and

lower values of χAB than that of the AB diblock copolymers. Upon examination, we

find that the domain size increases in all cases for A-c-B type copolymers with little

variation among the different types of C-monomers. This increase will increase the

stretching of the polymers and will cause the shift in phase boundaries to larger values

of NB. Further, we find an increase in the apparent interfacial tension that causes
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the phase boundaries to shift to lower χAB. We also examined the sensitivities of the

phase boundaries to the properties of the C-monomers. One of the cases examines

adding nearly-neutral C-monomers, where χAC = χBC and both are close to zero and

do not depend on temperature. In this case, the value of χAC = χBC did not visibly

change in the size of the shift. When examining the effects of changing the range of

the finite-range interaction between different monomer species, this also was found to

not have a significant effect on the size of the shift. However, when examining the

case where χAC = χAB + α and χBC = χAB − α, α was found to to significantly effect

the size of the observed shift with larger αs exhibiting a larger shift. This variation

is due to an increase in the A-rich domain size that increased with decreasing α and

the interfacial tension further increasing as α increased.

The next scenario that was examined adds the C-monomer to the majority end

of the AB diblock copolymer. The C-monomers added are characterised by χAC =

χAB+α and χBC = χAB−α. Due to this addition, all phase boundaries were shifted to

the lower NB and larger χAB when compared to those of the AB diblock copolymers.

Examination of the domain size shows a decrease in domain size when the C-monomer

is present, thus decreasing the stretching energy and causing the general observed shift

to smaller Nb. The apparent interfacial tension was also found to decrease with the

smallest α displaying the largest decrease, causing the shift of the phase boundaries

to larger χAB. Further, the size of both the horizontal and vertical shift depends α,

with the smallest α having the largest shift. Closer examination of the domain sizes

reveals that the decrease in domain size is largest for the smallest value of α, and
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that there is very little variance in the A-rich domain size. Thus, the combination of

the domain size variation and the variation in the apparent interfacial tension with α

leads to the observed variation in shift size.

The motivation of this project is to provide a link between experiments, which often

have the C-monomers, and theoretical techniques, which often do not examine the

sensitivity of the phase behaviour to the addition of a single C-monomer theoretically.

This area of research is important because several experimental techniques, such as

the click-method, have these single C-monomers at either the junction or the ends

and experimentally these single monomers have shown promise to be used in tuning

the phase behaviour of block copolymers melts. In this study we were able to show

that while an observable difference is seen in the position of the phase boundaries,

the main sequence was not affected.

There is still much to explore in this area to further understand the effects of

having a C-monomer added to AB diblock copolymers. One very closely related

project would be to examine c-A-B type polymers. A further interesting project

would be to examine how strong this effect is in longer polymers, since the ones used

in this study were rather short, with NA = 12. Further the cases considered here are

fairly simple cases to start to explore their effects, however exploring more complex

cases or other types of C-monomers could yield interesting results. One interesting

point would be to examine the effects on adding a C-monomer on both ends, or one

at the centre along with one at either one or both ends. Another area that could
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be examined is changing the temperature-dependence of the interactions with the C-

monomers. Adding in electrostatic interactions could also prove very useful as many of

the experiment studies examining these types of systems also include electrostatics.
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Appendix A

Mixing Methods

In this section we briefly describe the mixing methods that are used in the program.

A1 Simple Mixing

The first method that is used is simple mixing. In simple mixing the chemical potential

fields are updated using:

ωnew
A (r⃗) = ωA(r⃗) + λSMdωA(r⃗), (A.1)

ωnew
B (r⃗) = ωB(r⃗) + λSMdωB(r⃗), (A.2)

and

ωnew
C (r⃗) = ωC(r⃗) + λSMdωC(r⃗) (A.3)
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where λSM is a numerical factor chosen to be 0.05. Further, since we allow for variable

box dimensions, the box parameters are similarly updated by

θnew
box = θbox + λSMdθbox(r⃗) (A.4)

A2 Anderson Mixing

As seen in the previous section, simple mixing uses the input of residuals from only a

single time step back. While this method works, it may be time consuming to reached

the desired accuracy. Therefore, after we have used simple mixing to ensure that we

have a good history of residuals and fields, we employ variable-cell Anderson mixing,

which uses the optimal combination of residuals from nAnd previous iterations. While

a general derivation is not given here, it can be found in Refs [11, 78, 83].

We first define the matrix U with elements given by,

Umn = ⟨dωA,i − dωA,i−n|dωA,i − dωA,i−m⟩

+ ⟨dωB,i − dωB,i−n|dωB,i − dωB,i−m⟩

+ ⟨dωC,i − dωC,i−n|dωC,i − dωC,i−m⟩

+ ⟨dθbox,x,i − dθbox,x,i−n|dθbox,x,i − dθbox,x,i−m⟩

+ ⟨dθbox,y,i − dθbox,y,i−n|dθbox,y,i − dθbox,y,i−m⟩

+ ⟨dθbox,z,i − dθbox,z,i−n|dθbox,z,i − dθbox,z,i−m⟩,

(A.5)
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where we use the convention,

⟨f |g⟩ =


∫

f(r⃗)g(r⃗)dr⃗, when f = f(r⃗) and g = g(r⃗)

f ∗ g, otherwise.

(A.6)

and the subcripts i, i − n, and i − m indicate the residuals are from the ith, i − nth

and i − mth interation. Then, we define the matrix V with matrix elements,

Vn = ⟨dωA,i − dωA,i−n|dωA,i⟩

+ ⟨dωB,i − dωB,i−n|dωB,i⟩

+ ⟨dωC,i − dωC,i−n|dωC,i⟩

+ ⟨dθbox,x,i − dθbox,x,i−n|dθbox,x,i⟩

+ ⟨dθbox,y,i − dθbox,y,i−n|dθbox,y,i⟩

+ ⟨dθbox,z,i − dθbox,z,i−n|dθbox,z,i⟩,

(A.7)

Using these we obtain the matrix A

An = U−
nm1Vm (A.8)

And, the chemical potential fields are then updated by,

ωA,i+1(r⃗) = ωnew
A (r⃗) +

∑
n

An(ωnew
A,i−n(r⃗) − ωnew

A,i (r⃗)) (A.9)

73

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Desiree Rehel; McMaster University– Department of Physics
and Astronomy

ωB,i+1(r⃗) = ωnew
B (r⃗) +

∑
n

An(ωnew
B,i−n(r⃗) − ωnew

B,i (r⃗)) (A.10)

ωC,i+1(r⃗) = ωnew
C (r⃗) +

∑
n

An(ωnew
C,i−n(r⃗) − ωnew

C,i (r⃗)) (A.11)

and the box widths are updated by,

θbox,x,i+1 = θnew
box,x +

∑
n

An(θnew
box,x,i−n − θnew

box,x,i), (A.12)

θbox,y,i+1 = θnew
box,y +

∑
n

An(θnew
box,y,i−n − θnew

box,y,i), (A.13)

θbox,z,i+1 = θnew
box,z +

∑
n

An(θnew
box,z,i−n − θnew

box,z,i), (A.14)

where θnew
box is as in Eq. A.4 with λSM = 1.
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