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Introduction

The material of this manuscript is divided into two main
parts, The subject matter of the first lies in Sections 1, 2, 3
and deals with conformal geometry; i.e., the geomeiry of circlés.
The second part, found in Sections 4, 5 and 6, involves the geometry
of conics in the projective plane,

A general introduction to each part will be given here as
well as smaller informative additions at the beginning of each section,

for the convenience of the reader,

Part I

As this thesis involves the analysis of certain classes of
arcs and curves with respect to the geometry of circles, a topology
is introduced in Section 1 on the set EZ of circles in the conformal
or inversive plane (which can be regared as the Riemann sphere of
complex analysis, cf, 2,5 of [22]). This topology is compact and
‘Hausdorff; cf, 2,2.3, With this topology on -z , 1limit circles of
sequences of circles can be considered with respect to convergence
and hence tangent and osculating circles at a point of an arc can
be defined; cf. 2.4.

My thesis in this conformal connection is a partial solution
of the characterization of all curves tfh of circular order four

in the conformal plane,'with regard to type and number of singular

pointsj cf, 2.2;
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The conformal proof of a well known theorem about arcs of
circular order four is given in 3,1 using methods that correspond
to the contraction and expansion theorems of O. Haupt and H, Kinneth
(12], while 3,2 is an analogous result to that of N, D, Lane and
P, Scherk ([4], 3.3) for multiplicities of arcs of circular order
four with respect to members of E .

The classical four-vertex theorem states that a closed convex
curve in the euclidean plane which has continuous curvature every-
where has at least four vertices; i.e., extrema of the curvature,
This theorem is supplemented by the result that if this curve has

’order four then it has exactly four vertices., The four-vertex
theorem thus seems to belong to classical euclidean differential
geometry, Hence usual proofs of this theorem were worked out in
this classical setting; ¢f. A. Kneser [16] and H, Kneser [17}, The
result was extended by Wi C. Graustein [18] to any simple closed
curve with continuous curvature. Again his proof involved methods
of differential calculus,

However, the following considerations of N, D, Lane and
P. Scherk show that this approach is not natural, The existence and
continuity of the éurvature can be interpreted geometrically as the
existence and continuity of the osculating circles, At a general
point the osculating circle intersects the curve but at an extremum
it supports the curve. Also a circular transformation (the basic

transformation regarding circles) maps a convex curve onto a curve

which may not be convex anymore., llowever the properties of touching,
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intersecting and supporting are invariant under circular trans-
formations. As such osculating circles of one cur;é are mapped to
osculating circles of the image curves and the vertices of one curve
correspond to vertices of the image curve, Thus the four-vertex
theorem and other corresponding results belong rather in coenformal
differential geometry and the condition of convexity can be replaced
by a weaker condition of normality introduced by O, Haupt and

H, Kinneth [12]; ef, 3.1 S. Mukhopadhyaya [19], [20] seems to be one
of the first to consider extrema of curvature, fom this "geometric
order" viewpoint, as a point of order four, cf., 2,6. Haupt and
Kiinneth also worked with these singular points in a general setting
using order characteristics with a fundamental number % (instead of
EE where k = 3) and a comparison of different kinds of so-called
vertices can be found in [12] and [13]. In 3,3 and 3.4 much of
Jackson's metric discussion of the four-vertex theorem [8] from

an analytic and euclidean framework has been recast iﬁto a synthetic
and conformal one, .

It is well known that a strongly differentiable curve £?1+

of order four contains only points with the characteristic
(1, 3, 1), (1, 1, 2) or (1, 1, 2)0;

cf, 3,3.7, and that such a curve contains exactly four vertices

([12], 4#.,1.4.3.1). 'The guestion can be raised as to the kind of

results that can be obtained when the condition of strong different-

iability is relaxed to ordinary differentiability for curves 1g1+

of order four, Then we have more types of differentiable singular
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points to consider. A number of new results are obtained in 3,3,
as regards the number and types of singulgr points on such a th;
cf, 3.3.9, 3.2.11, 3.3,1% and 3,3.15. As stated earlier, a strongly
differentiable curve 1fq_ of order four contains at most four
vertices, A generalization of this result is derived in Theorem 5
giving the same upper bound for the number of vertices on any
differentiable curve é?h of order four,

It would be nice to be able to drop all differentiability

conditions and classify arcs and curves of order four again with

respect to type and numbers of singular points,

Part II

In the second half of the thesis arcs and curves of conical
order six are analysed with respect to the geometry of conics., With
this in mind, a topology is introduced on the set of conics (both
degenerate and non-degenerate) in the real projective plane; cf.
Section 4, As in the conformal case, this topology is compact and
Hausdorff; cf. 4.6. Convergence can be considered with respect to
this topology and hence limit conics of sequences of conics are
introduced. Using special limit conics; namely, tangent, osculating,
superosculating and ultragsculating, conical differentiability of
an arc at a point can be definedj cf. 53,

An attempt is made to characterize curves of conical order
six in the projective plane, with regard to the number and type

of conically singular pointsj cf, 5.6.

(x)

N e




In 6,1 conical proofs are given of the general monotony,
contraction and expansion theorems of O, Haupt and H, Kinneth [12]
as applied to arcs of conical order six. Using these results a
well-known theorem is obtained as to the number of conically singular
points on an arc of conical order six; ¢f. Theorem 9.

Multiplicities, with respect to the system of conics, for
an arc of conical order six are introduced in 6,2 and an analogous
result to that of N, D, Lane and K, D. Singh ([10], 4,2) is
obtained for such an arc.

Now a curve ;ﬁs of conical order six is either convex or
of linear order threej cf, §,%,1, It is well known that a strongly
conically differentiable convex curve 5?6 of conical order six
contains exactly six conically singular (sextactic) points; cf,
Fr, Fabricius-Bjerre [23] and S, Mukhopadhyaya [201, It is also
well known that a strongly conically differentiable curve ‘E?G of
linear order three contains exactly six conically singular points
{231, As in the conformal analysis, one might ask for respective
results, if j?s is only conically differentiable, New results
are obtained in §;&3 showing that 1?6 contains generally exactly
six conically singular points, if 1?6 is convexiand contains either
exactly four or six, if 1¥6 is of linear order three,

Again, as in conformal geometry, one would like to classify
arcs and curves of conical order six, imposing no differentiability
restrictions, with respect to the number and type of conically singular

-

points,

(xil
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Seqtién 1

A Topology on the Set of Circles in the Inversive Plane

Introduction

Iet 5 = {C} s where C denotes a nondegenerate circle

in the real inversive plane Let X be the union of J, and

‘Eio
all of the points (considered as point circles) of %se Our goal
is to introduce a topology on g+ « We shall do this by introducing

a neigkbourhood filter at each C & 5 .

lele Foreach Ce & ; let Ce and Ci be the “exterior"
and "interior" respectively of Cj; the interior of C 1lying to the
left of C. If C is a point circle, then one of these regions is

void.

1.1,1, Let D and D' be two circles with the property that

' '] , o 1
DcDe.aD CDio Then DiCDi and DeC:Deo

Proof. D D! implies that DJ N D=9, But D' N D=9
Hence (Di U D')ND =@, But then D U D' is a closed connected
set having no points in common with D. Hence D} U D' lies totally
in either D, or Deo However, D' & Di° Therefore, -Di c Die

i

An analogous argument yields De c D;.

1




1,2 Take any C € L, orient it and let D and E be

members of o such that

DcC EC.CB.

39
Then D and E can be oriented such that

c C-Deg c C.Eit

1.2.1 Using the above orientations of C, Dy and E, Ilet

E

U, = {Ke&f-: KD MAE and K can be oriented } .
D e i

guch that D € K:L’ E cKe

Let

E

U, = [DUG} .

where D and E run over all pairs of circles of .Z- with the above

restrictions.

lo2e2 u i8 a filter bhase.
c




Proof. Let

£’ e
U and L}]
¢ LA ¢

by any two members of uc'o Iet D and E be members of g, such

that

] (R L) ) "
D&C NDnNDL, D',D'" & D;, C € D

] . *me ]
EcC, NE NE'; BB cE,CcEs

¥

We now show that

E i Ee
v.€¢ U, N U
D C DY C Dy c*
Let K& DUC« Then by definition D < Ki° K De‘ By1,1.1,
1] ]
Di o K:L and K_e c De. Also D De and D' < Di' By 1,1.1
0 ]
D‘.L et Di and De c De' Now
)
Di [t Ki De < De
? —— - Tt
Dt & D K e D
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Also, by definition, XK C Ei and E ¢ Ke' Then by 2.1.1

Ki < E:L and Ee c Ke' Also E ¢ E;_ and E' c. Ee. By. 1,1,1,

1 ') ’
E, ¢ E! and EecEe. Now

i i
Eec'Ka EiC.Ei'-
— L} '_ 1
£ i3
ECLe Kc.Ei

Finally K € D! N Ef, D' € K, and E' ¢ K imply; by definition,

El Ett
that K& Uc. Similarly K é& Uco
Dt Dte
Thus
E Ei Ell
i.& U U
D c DI C n Dl' c °

1.203 et C be a point circle and suppose that Ci = 9, BaY.

et E be a member of J» such that
EecCo
e
Then E can be oriented such that

C & E,»




Now let

B
Uy = [K €t : K CE; and K can be oriented such that}

c'c:Ki, E cKe

Let
uc = {'EUG] '

where E runs over all the circles of .r, with the above restrictions.

Le20k Y, 1o a filter base.
. .

Proof. lLet

E? Bt

be any two members of 9 . Let E be a member of oy such that
: .

] fte ¢
EcG NE NE'; E,8'cE,CcE.

Then by our choiee of E, as in l.2.2,

B EY B

U, & Ucﬂ Ug e




1.3 Let §, be the filter gemerated by 9l . Consider the
c

family

GF(FC) -
Ce LA

of filters on f'. .

1o3:;1 For each C & Y andall Ve FC’ there is a

Wef, suchthat wc V and Ve fy foreach K € W,

Proof. It is enough to prove that the claim is true for members

of the bhase., lLet

El
U, W,..
v © c

Take D, E € §- with

t ]
Dc.cinDe,CcDe,D cDi

| S i f
E Cce nEi, CGEi.,E CEeo

As in 1,2.2, with this choice of D and E,




D C Dt ¢
and
e
v, e U
Dt Cc K
for each
K
Ke T, .
D Cc

1.3.,2 For each point circle C and all Vv e.j!c, there is a

We§f, suchthat W ¢V and Ve ¥x for each K € We

Proof. Az in le3.1, it is enough to prove that the claim is

true for menbers of the base. Let C, = @ say, and

i

Take E & I,-' with

] v




As in 1,2.4, with this choice of E,

B EY

Uc c Uc
and

L B

- e
e =c% U,
for each
& B
K & Uc .

1,303 “e combine 1o3.1 and le3.2 to obtain:

For each C 6 4 andall Ve §,, thereisa We f;

such that W € V and WV & fK for each K & W,




H

L The following theorem is standard ([1], p. 56):

et X be a set and

S =( F z)
x e X

a family of filters on X indexed by X guch that 1.3.3 is satisfied.

Then there is a topology &) or X such that . is precisely

The neighbourhood system of x with respect to the topology O e

In our case, there is a topology £ on & such that §, is
the neighbourhood systemat C and U is an oper met of f,'.

5
(ices 2 member of D) if T € ;G forall C € U,

We now determine some properties of the topological apace
( 3 9 G@ ).




1.5 (L, D) satisfies the first and second axioms of

gountability.

.
Proofo Forall U Let P and E be determined by three

D

distinet points with rational coordinates.

v

10
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6 (G ®) is a Hausdorff space.

Proof. Let Ci and C_ be two distinct circles of 5 .

2

Case (1), ¢, N Ca = ®s Then C, and C, belohg to a pencil

of the third kind, cf. 241, from which one can easily construct

disjoint neighbomrhoods of C, amd C, (Figure 1).

Case (ii). c, N 02 is a single point. Then C, and C,

belong to a pencil of the second kind, ¢f., 2.1, from which one can

and C. (8ee Figire 1),

construet disjoint neighbourhoods of Gl o

3

Case (iii). C, and C, have two points in common, Then
Cl and pa
which ome can construct disjoint neighbourhoods of C

determine a pencil of the first kind, ¢f. 2.1, from

and C

1 2

('E;:'ee Figure 1),

S't'zppose ‘that one- ofifr ‘both 01 and 02 are 'poini?_c‘itcle‘s.

19 Ca are points circles. Then disjoint

neighbourhoods of C, and C, can easily be constructed (see Figure

Case (1) Both C

2




Case (ii)e Ome of C.,, C., 8ay C., is a point circle while
1* 2 1

cC, € Ir » Then either

(a) ¢y N C, = ®. Then disjoint neighbourhoods as in Figure 2

can be constructed.

o) Glﬂ 02 = Gl. In this case disjoint neighbourhoods as in

Figure 2 can be constructed.




case (ii)

case iii)

Figure 1
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case (i

case (ii)
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E
1,7 I U is a base element, then the smallest closed set
b

B B
containing U, denoted by U, consists of the following circles
D D

of f,; namely, all K such that

Kec (D une) N (EuEi)

DcKv .EcKuKe.

Ky
-

We note that in particular D, E e T,
D

L2l ( Lo ) is remiar.

Proofs Let C € oy and let U be any neighbourhood of Co
Then there exists a base element

Be

-
pt ©

fake circles D, E € o such that

t [}
DeDnC,CcD,Dd D,

ECE NC,Cc E

)
i :l."Ec-’Ee'




By this choice of D and E, as in le2.2,

is a base neighbourhood of C with

T B
n.c U.cCcU.
p¢ pe ©

Let C be a point cirecle with Gi=¢ and let U be a

neighbourhood of C. Then there exists a base element
¥

it
U, C U,

Fake a circie E € Jr such that

? LI o

By this choice of E, as in le2.4,




is a base neighbourhood of C with

E EY

UGC. 'EIGC. 118

R
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Section 2

The Order, Différentiability and Characteristic of Points of an

Arc in the Inversive Plane

O ’ Introduction

This section is purely a collection of background infeormation
with the exception of Theorem 1; cf. 2,2.3, This material is based
upon the properties of order, differentiability and characteristic
of a point of an arc and can be found in [2] and [4], the work of

N,D, lLane and P, Scherk,

2

18
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2,1 Pencils of Circles,

In the following, P, Q, ..., will denote points in the real
inversive plane, The circle through three mutually distinct points
P, Q@ and R is uniquely determined and will be dend¢ted by

c(p, Q, R).

The set of all circles that intersect two given circles at
right angles form a linear pencil = of circles., A pencil = of
the first kind possesses two fundamental points such that = is
identical with the set of all ¢ircles through these points., A
pencil of the second kind has one fundamental point and is identical
with the set of those circles that touch a given non-degenerate circle
at that point, If = is of the third kind, then any two circles
of m are disjoint, Forrany pencil n and for any point Q which is
not a fundamental point of =, there exists a unigue circle C{w, Q)
through @, We consider the fundamental point of a pencil = of

the second kinhd as a point circle belonging to =,
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2:2 Convergence.

In Sectién 1, we introduced a topology B on 5, s the set
of all c¢ireles in the real inversive plane. We have shown that
(g. s D) is a regular Hausdorff space satisfying the second axiom
of countability. With respect to this topology, we can now describe

convergence.

2:2.1 A sequence of circles (Cn) is defined to be
neN
convergent to a circle C if for any neighbourhood U of C there
exists n, € N such that Cn €& U forall n> nge We denote

this convergence ,of Cn to C by

lim c =c°
neiN P

2022 (Y s ) is a countably eompact space.

Proof. let p & C_ for each n g N, where (C ) is
S— n*. ' n 2 eN
an infinite sequence of circles. Then (pn) is an infinite sequence
of points in a compact space. Hence there exists a polnt p, and
a subsequencs (pm) of (p,) such that limp = pe Let (cm)

be the corresponding subseguence of circles of the sequence (Cn).

Let % € Gm, Uom % Py By the same argument as above, there
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exists a point q and a subseguence (qm) of (q nm) such that

lim q 0 = Q. We can assume that p % q, for if limp =3

for every sequence of points on (cnm)' then the po:l;nt Pa considered
as a point circle, will be an accumilation circle of (Cn). By the
same argument, we obtain & third point »r, distinct from p and ¢

and a subseguence (r j]) of points on (C mnl) such that

lin r 1k = Te Then the ¢ircle determined by p, ¢ and r is an
accumrlation circle of (Cn) .

neN

20262 Ve combine 1.5, 1.6 and 2.,2.2 to obtain
(T, ». 1383:

bl 1
o

Theorem 1. (f,, » D) is a compact Hausdorff space.
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203 Support and Intersection at a Point of an Arc

Unless otherwise stated, an arc ([eurve f_.l is the topological
image of an interval [circleJ. Hence our arcs and curves will be
simple. Thus if a sequence of points of that parameter interval
converges to a point s, then their image points converge to the
image of 8. We shall use the same letters 5, t, Uyeesy to denote
both the parameter poinitas and their images on Q. The end
;;[interiozj points of Q. are the images of the end [interior] points
of the parameter interval. The notation P * s will indicate that

the points P and 8 do not coincilde.

%
b

A neig( bourhood of 8 on (& is the image of a neighbourheod
of the parameter s on the parameter interval. If s is an interior
point of a s this neighbourhood is decomposed by & into two

(open) one-sided neighbourhoods.

Suppose . 8 is an interior point. of O . Then we call s a
point of support [interaection] with regpect to the circle C if a
sufficiently small neighbourhoed of & is decomposed by s into
two one=sided neighbourhoods which lie in the same region L:!-.n
Gifferent regiosz bounded by Co C 1is then called a gupporting
[interaecting] circle of a at s« Thus C supports a at 8 if
8 % Co By definition, the point circle s always supports CL at 8.
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Tt can happen that every neighbourhood of S on#({{ -has points

# & in common with C. Then C neither supports mor intersects

a-at Ee




b .

2,4 Differentiable and Strongly Differentiable Points.

2,4,1 An arc @ is said to be (conformally) differentiable at

a point p of QA ir it satisfies two conditions:

Condition C I, There exists a point R ¥ p such that if the

parameter s is sufficiently close to p, then the circle €(p,s,R)

through the points p,s and R exists, It converges if s tends to

p on (2 .

The limiting tangent circle of CZ. at p through R 1is denoted

by C(pa; R).

k3
¥

Condition C I implies [2]:

(i) There is a unique tangent circle C(pa, R) of @ at p
through each point R X p and the union of the set of tangent circles
with the point circle p is a pencil of the second kind with the

fundamental point p,.

(ii) If p is an interior point of &, then the nontangent

circles of CZ through p all intersect ‘2 at p or all support.

Condition C ITI, The arc ‘Z satisfies C I at p and there




e5

exists a circle C(p’) euch that

lim C(pa, 5) = c(p3). ’
B¢ QU
84D

B—=p

We call C(p3) the osculating circle of & at p. C(p3)

may be the point circle o
Differentiability of (& at an interior point p implies [2]:
(1i4) The nonosculating tangent cirgles of: - at. p._all
intersect (I, at P or all support. If C(p:”) % py then all of

them supporte

An arc or curve is said to be differentiable if every point

is differentiable.

2:l42 Strongly Differentiable Points

Lat R*p_, Q=-—>R and let s and t converge on Q to Peo
Then any accumulation circle of the circles C(s, t, Q) is called a

general tangent cirele of ( at p through R.
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Condition C I', There exists a point R § p such that if
Q —>R and distinct points s and ¢t converge on Q to Ps

then
lim C(s, t, Q)

existse

Thus this limit circle is the unique general tangent circle of
a at pe Condition C I' implies that the limit circle depends on p
and R but not on the choice of the particular sequences & and te.
Specializing Q & R and t = p we see that Condition C I* implies
Condition C I and that therefore

lim C(B’ t' Q) = C(pa’ R).

Thus the general tangent circles of a point which satisfies Condition

C It are identical with the ordinary ones.

If three mutually distinct points s, t, u converge on a to Py
then any accumulation circle of the circles c(s, t, u) is called a

general osculating circle of O et pe.
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Condition C II*', If three mutually distinct points s, &, u

gonverge on a to p, then
lim C(s, t, u)
exists.

Thus this 1limit circle is the unique general osculating circle
of a, at pe Condition C II' does mot in general imply C I or
c I* ([3], #)e

If Conditions C I' and G II' are both satisfied then (¥ is said
to be strongly diffeventiable at the point p. An arc or curve is
strongly differentisble if every point is strongly differentiable.

Strong differentiability implies ordinary differentiability and

the following are also valid ([4], 3):
(i) Let p satisfy Condition C I'c Iet R4 py Q—"R and s
gonverge on Q to p. If cl is a general tangent cirele at s

through Q, then

lim G, = C(p°, R).
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(11) Suppose (1 is strongly differentiable at p. Let the two

distinet points s and t converge on (U to p and let C_ be a

2
general tangent circle at s through te Then

1 C, = C(p°)e
(1ii) Suppose a is strongly differentiable at pe. ILet s
converge on a to p and let C. be a general osculating circle

3
at 8. Then

1im 0'3 = C.(pB).

}
(iv) If at the point p of an arc a the general tangent circles

form a unique pencil T of the second kind, then a induces a
unique orientation on the cirgles of T« In particular a induces
a unique orientation on a general osculating circle at pe If the
given condition holds at all points p of a » thez; the oriented

pencil T varies continuously with » [_7].

OV
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205 Classification of Differentiable Points.

We associate with each differentisble interior point p of an
are (A a choracteristic (ao, 8y aa) if c(p3) ¥p or
(ao. 8y aa)o if G(p3 ) = ps The numbers a, and a, are equal

to 1 or 2, whilé is equal to 1, 2 6r ®. They have the

i
following properties:

1) a, 15 even or odd according aB the nontangent circles of P

s@ippo%t. or .iﬁf?rse@i‘:.a;,:at De

('ii} ag * 84 is even or odd according as the nonosculating

tangent circles.support or intersect. a at Pa

(3ii) a5 + a, +a, is even if c(p?) supports; odd if c(p3)
intersects, while a, = © if C(p3 ) neither supports nor intersects.
Thus ay + &y +a, is even if C(p_") = pe From 2,41 (iii),
g2y =8, ‘if c(p°) X p.

We list the types of differentiable points p of an arc a

(Figure 3)s The first eight examples refer to the curves

B gin i .
8

X = sn, ¥ = Bn+m; the lagt two refer to x = sn, y=18

In all cases we consider the point & = Os Congruences are modulo 2.
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NON- TANGENT
CHARAC. | TANGENT | CIRCLES ‘
TERISTT] CIRCEES | & c(p?) EXAMPLES
THROUGH | _, '3
D c(p”)
( y . n =1 | regular
1,1,1) Entersect inter- E
sects . mg0 | point
nz=mnm
(1,1,2) Hntersect supports| _q |vertex
support C(pB) p .n<m
( ‘ n=0 |cuspof
21223 e e P s
kind
' n=m |cusp of
(242,2) [support. supports _ o |secend
= kind
hzn
(l,loa)oﬂ.ntersect support -1
=1
,(1,2,1)cintersec,t tersect me O
point circle - n>m -
o ns= O
(241,1) support fintersect msl
: srn =m
(292,2), | Bupport | support 20
J(lglg o) |[intersect neither supports n= 1
support or n<mn
intersects
2,2, ®) | support . ng0

FIGURE 3
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o6 Circular Order of a Point

An arc (I is said to be of finite circular order if it has
only a finite number of points in common with any circle. If the
least upper bound of these numbers is finite, then this number is
called the {(circular) order of (& « The order of a peint » of (J
is then the minimum of the orders of all neighbourhoods of .p on

a o Note that the order of a point is 2> 3.
¥e list the following results:

(1) Let (I be an arc of finite order. If a circle C intersects
Q at s, then every circle sufficiently close to C intersects -

at some point €[4], 2.

(11) Iet p be an end point of an arc Q of finite order.
Then (1 is aifferentisble at p([k], 3)o

(131) Tet p be a differentiable interior point of an arc a °
Suppose that p has the characteristic (&g, ay, a,) or

(a.o, aqs 8, ) o Then the order of p is not less than a, + &, + a,,

([4]s 2).

i AETS

(1v) An. elementarz pomt p. of an arc @ is one such that

£ —

there ex:.sts a ne:.ghbourhood of p on- “‘A which J.S decomposed by
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p into two one-8ided neighbourhoods of order three,

Let p be an elementary point of a differentiable arc a .

If p has the characteristic (ao, al,.aa) or (ag, aq, aa)o, then

the order of p is ajy +a +a, (4, s).
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2¢7 Ordinary and Singular Points

A point p of an arc A is called ordinary if the order of

p is three (the minimal order)e.

If the order of p 1is strictly greater than three, p is said

to be & singular point.

A'point ™ p of @ differentiable arc (7 .is called a yertex if

p is a point of suﬁportt@f Q with --,r’eép.'c.ec.t. to C(p3 ).




Section 3

Arcs and Curves of Circular Order Four in the Inversive Plane.

Introduction ,

In this section we shall discuss properties of arcs and curves
of circular order four, This larger section is divided into four

subsections, 3.1 - 3,k.

In 3,1 and 3.2 we shall consider normal arcs of order four,
We restrict our attention to differentiable curves of circular drder
four in 3.3, for Ehe most part, Finally in 3.4, the discussion centers

upon strongly differentiable curves of circular order four,

3h
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3,1 Normal Arcs of @der Four,

Introduction

An arc  is called normal if for each C ¢ & s C can be
oriented so that the points of C A & 1lie in the samecorder on
C as they do on & ., We note that a curve }fl* of circular order
four is always normal ([131, 5).

It is well known that a normal arc Czk- of circular order four
is the union of a finite number of arcs of order threej cf, 0, Haupt
[34] and 4,1,3 of [12], To derive this result Haupt basically used
the so-called "Contraction. Theorem'; cf, ([12], 2.4.4), first attributed
to Mukhopadhyaya [19], [20] and the WExpansion Theorem'; cf., ([12], 2.4,5),
These result; génerally deal with specific movement of intersection
points of arcs with members of classes of so-called "order characteristics"y
ef. ([12], 1.1), with a fundamental number k, this number being such
that k distinct points uniquely determiner one member of the class,
The proofs of his results are generally by induction on the fundamental
number k,

In conformal geometry the class of order characteristics is the
set of all circles and k = 3, It would be of interest to find conformal
prbofs of éorresponding results for normal arcs of order four, With

this in mind, 3,1,2, 3,1,4 and Theorem 2 are inciuded for the reader's

convenience. Then it is a simple matter to conclude that an end-point

of such an arc is ordinary and hence strongly differentiablej cf, 3.1.9

a

and 35,1,10,
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5211 Let Cj be a circle which meets Q) at four distinct

points a, b, Py Poe Then as t moves monotonically and continuously

from a on I there is a point

u e C(t, plpz) N Ql&

which moves monotonically and continuously in the opposite direction,

Proof, Without loss of generality we can assume that Py < Poe
. . . .
Since ﬁ?# is of order four, C, = Cla, Py pa) intersects (21+
at a, b, Pys. Py and meets 524 nowhere else; cf, 3,2,2, If t
is Bufficiently close to a, then C(t, Pqs pa) will be close to
CO and will intersect 624 at t, Pyy Ps
} : ,

to b, Also C(%, Pys p,) meets {Q, nowhere else, Thus u depends

and at a point u close
continuously on t,

It is sufficient to show that t and u move in opposite
directions on ‘24 whenever t is close to a, Thus we shall

restrict t to a suitably small neighbourhood of a in the following,

If an even [odd] number of points of [pl, PZ} lie between a

and b on CO’ then the same number of these points will lie between

t and u on .C(t, Pys p2). Since the distinct circles C, and

c(t, Pqs pa) meet exactly at Py and p,, t and u will lie on

the same [on opposite sides] of Cye On the other hand, since

A, ncy= {a, by 0o b}y (), will meet C at an even [odd]
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number of points between a and b, Also C0 intersects Q 4
at a and b, Hence if t and u move in the same direction on
a ) then t and u will lie on opposite sides [on the same sidel]

of Co; contradiction,

Remarks (i) The movement of t and u in 3.,1.1 can continue
as long as none of t, u, Pys Py coincide,
(ii) 3,1.1 remains valid if the arc al} is replaced by a

curve ,f by of order four,

3,1,2 Let C. be a circle which meets dh_ at points

o
Py o <8y IfL @ is the closed subarc of 04 between p,

and 8, then there exists at least one singular point in the interior

of B. ?

<qo<r

Proof, Consider the parameter interval I, = Epo, so], Ve
recall that the same Yetters are used for the points on the arc as
are used for their respective parameter values on the parameter
interval, We define a sequence of intervals and a corresponding

sequence of circles by induction, Having defined

In = I:Pn' E'n:l

with I ¢ T and
n 0

("n = Cn(Pn’ q

0t Tno sn)
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through P, < q, < r < S 0 We define In+1,c'In and Cn+1 as

follows,

Let the length of I, denoted MI), be ¢ and let B,
be the point of In which is ~§ e from P3 i=0,1, ..., 8.

One of the following holds:

(i) Q.4 r lie on the same side of E#
— n’ "n
(ii) q e T, lie on opposite sides of B,

n
(iii) q =35, or r =B (not both since g <r )’

If case (i) occurs, suppose that Gy Tp lie on the same side

of Eh as  p . Hold Pys 9, fixed and let t move from T, toward

E,, If r is already between E, and B, no movement is carried

3 3
i th i int i
out, Ctherwise, by 3.1.1, ere 15 a point n which moves from s,

tovard E,, If u reaches E_ {first, then define -

7 7

-
1

n+1 [pn, ul = [pn, E7] = EEO’ E7]

and

(@]
il

n+1 C(I’ns qn! t, u).

Ir t reaches E3 first, then hold Py t= E3 Tixed and let

t!' move from Qy toward Ez, Ir a, is already hetween E2 and

Eq, no movement is carried out, Otherwise, by 3.1,1, there is a

point u' which moves from u toward E.,. If u' reaches E? first,
; ?

then define
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b |
1

= Epn; u'l = [pn, E7] = [EO, E.]

n+l 7
and
Coup T c(pn, t', t, u'),
If t' reaches E2 first, hold t' = Eg, t = E3 fixed and let
t" move from P, = EO toward El' Then there is a point u'" which
moves from w' toward E?. If u" reaches E7 first, then define
= " ] = T+ F
Ly = [t" wd = (¢, B < [E), E)]
and
Cop = c{tm, ', t, u",
If t" reaches B first, define
In+i = [t", u"] = [El, u'"] « {E,, Egﬂ
and '

:}.
Copy = CCEM, &7, &, uM),
If G Ty lie on the same side of E4 as s , then by a

symmetric construction we define In+l and Cn+l' We noteethat
A ) < A,

If case (ii) occurs, let F, be the point on I = which is

i . .
€ from pji=10,1, ..., 6, One defines T4 @ad C . as

follows, Hold Pps 8y fixed and let t wove from Q, toward Fé.

If q, is already between F, and F,, no novement is carried out.

2 3
Otherwise, by 3,1,1, there is a point u which moves from T toward
F#' if r is already between Fé and F&‘ again no movement is
carried out, Without loss of generality, assume that u reaches

Fj, first. Now hold p, u fixed and let t' move from t toward

FE' Then there is a point u' which moves from 5, toward the point
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F5' If u' reaches F5 first, then define

H
I

= Ip,, u'] = [p,, Fgl = [Fy, F]

nvl 5
and
Copq = Clp , t'y u, u'),

If t' reaches F2 first, hold t' = F2, u fixed and let t"
move from p ' toward Fj, Then there is a point u" which moves
from u' toward F5. If u' reaches F5 first, then define

In+1 = [t", u"] = [t", FS:I C.[Fo, F5]
\ :
and
Co4r © c(t", t', u, u"l,
If " reaches F‘l first, then define
- 1 t -
In+l = [t", u"] = [Fl, u"] < [Fl’ F6]
and
c = C(t", ‘t', u, u'),

n+l
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Then

K1, )< 2 A@).

If case (iii) occurs, without loss of generality, let T, = Fé.

We define In+1 and Cn+i as follows, Hold Ppr Ty = 33 fixed and
let t move from q, toward F2. If a, is already between Fé
and F,, no movement is carried out, Otherwise, by 3,1.1, there is

3

a point u which moves from s toward F5. If u reaches F5

first, then define

Loy = Doy wl = Dpg, Fgl = [ T

and
Cn+1 = C(pn, t, T ul,
If t reaches F_, first, hold t=7F,, r_ = F, fixed and let
2 2' 'n 3
t' move from P, toward Fl‘ Then there is a point u' which
moves from u toward ?55 If u' reaches F5 firét, then define
= ' 17 = '
and

C.q = c(t', t, T, u'),
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If %' reaches F, ~first, then define

1l

(]
|

o1 [t', u'] = [Fl, u'l CEF}L’ F6]

and

Q
i

]l = c(s', t, T u'),
Then
) <5
L ) sg A,
By construction, in each case

K1 ,)< § M)

and (In) is a nested sequence of closed intervals such that

X(In)-—*é 0, Hence

0z = {5
n
([22]1, p. 10). This point y ¢ B is the required singular point.

If y is not an interior point of B, then hold g and T
fixed and let t wmove a small distance from Pq toward 9 before

defining the sequence (In). By 3,1,1, there is a point u which
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moves a small distance from so toward T Now use the interwval

rg» w) as €,

Cn as above, - This will ensure that we obtain a singular point in

[ty ul as I; and C(t, qg,

and construct I and
0 n

[t, u] and hence in the interior of £, as required,

301:5 Let py <qy <r, be three points on Q, znd &

the closed subarc of al.; bounded by P, and r,. Let ac Ql}\B'

Suppose that there exists a circle through the points a, Pgr 95 Toe

if fa is the system of circles passing through the point a, then
there exists at least one fa -~ gingular point y on & i.e.,

for any nelghbourhood N of y on 6 there exists a circle of fa
that meets N at least three times.

b .
Proof, Let I. be the parameter interval [po, ro:l and

(¢}
Cy = C(a, Po» qb, ro). We define a sequence of intervals and a
corresponding sequence of circles by induction., Having defined
I = [pn, rn_] with I &I  and C  through a and the points

P, < q, < r,s We define In+1 c In and Cn+ as follows,

3

. . . i
Let J(In) = ¢ and Di be the ,p.on.nt of In which is e

from p 3 1 =0, 4.0y L, Bither

&) q ¥D,

or
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If case (i) occurs, we can assume, without loss of generality,
that 9, 1lies between Db and D2. Hold a, P, fixed and let t
move from q  toward D,. Then by J.1.1, there is a point u

which moves from r, toward 93. If u reaches D3 first, then

define

Ie1 = Lpys wl = D, D3]
and

Copg = C(a, Py By e

If t reaches D2 first, then hold a, t = D2 fixed and let

t' move from pn} toward Dl' By 3,1.1, there is a point u'

which moves from u toward D,, If u' reaches D3 first, then

3
define
I = [t;, u'l] = [tf, Dj] C[DO, D3]
and
C.q = Cla, t7, £, u'),

If t' reaches D, first, then define

1

In+1 = [t', u'l = [Dl, u'] C[Dl, Dl{-]

wutd
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and

C,q = Cla, t', t, u').

If case (ii) occurs, then we define I .. and C ., asin

the second paragraph of case (i),

By construction ’e(In+1) _<_% j(In) and (In) is a nested

sequence of closed intervals such that ! (In) ~—) 0, Hence

Nz- )

(f22], p. 10),- This point y on B isa fa - singular point.
. i

3,14 Let N, N, be arbitrary neighbourhoods of two singular

points z,, z, on Ay Let B be the closed subarc of 04

between =z, and z.. If ac al{_\Nl Ul v Na, then there

exists a circle of fq. which meets N,y 8 v N, at three distinct

points,

Proof. By the definition of a singular point, for each

neighbourhood Ni of =z

i on aQ j there exists a circle meeting

Ni in exactly four intersection points, i =1, 2, Let (xl, Xy X35 x,*)

1 and Zse

Without loss of .generality, we may take X, and x‘% v 321 eea By

(=, 'y x,', x3', xl*') be respective quadruplets for =z

such that




x"’< LK N §x4<)ﬁ'-<l-o <xl‘+

and a <x, on 624. Since 624 is normal, the four-tuples

1
) | t ] 3 I

(xl, Xpy Xy, x,) and (xl » %" X0, X, ) lie in the same order

on their corresponding circles as they do on CZQJ Now hold x,, Xy

fixed and léf:'f move on 5?4 from x, toward X', Then by

+1.3, there is a point u which moves from % toward a. Continuing

this movement one obtains either

(1)

1 t coincides with x3', while a <u

or

(ii)l u coincides with a, while t < x3'.

If case (11)3 occurs, then we are finished, If case (i)l ' ocours,
then hold x, and t = x;' fixed and let t' move on (7}, from

x, toward x!, By 3,1,1, there is a point u' which.moves from

3 2°
u toward a with the final result that sither

(1)2 t! coincides with x,', while a <u

(ii)2 u', . coincides with a, while t' < xa'.

If case (11)2 occurs, then we are finished, If case (i)2
occurs, then hold t = x3', tt = x2' fixed and let t" move from
X, toward xl‘. Then there is a point u" which moves from u'

toward a, Finally either

(1) t" coincides with x.', while a < u"

3 1
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(ii)3 u" coincides with a, while t"_gxl'.

If case (i:i.)3 occurs, then we are finished., .If case (:’L)3
occurs, then we have a circle which meets al} at u", xl', xz', x3'.
However, the points :-:1', xa', x3' determine a unique circle and
this circle slso meets ai; at x,_l_'. Thus this circle meets QL;
at least five times; contradiction. Hence case (ii)k must occur.:
for some k, 1 <k £3, and the result follows,

I Let zl, Z. be two singular points of aL;. and let

2
ac Qk_ \CB , where B is the closed subaré of {1, betueen

and =z Then there exists at least one fa - singular point

Zl o

D’O_ng.

S

Proof, Let Ni(l) be a neighbourhood of z, on a L with
w ;. : : .
al Ni y =1, 2, By 3.1.4, there exists a circle CO~ meeting

(1)

ai; at a and meeting Nl(l)u B v N2 at three points

Po < qq < e By 3.1,3, there is a fa-singul'ar point,
SD @y gy ®,

Ir 'j'(l) £ 8 s, then we are finished, If y(l) X 6 s then
y(l) € Nl(l) \; 8 , say., Now take suitable smaller neighbourhcods

Ni(a) < Ni(l) of z,,i=1, 2, with y % Ni(z) and apply 3,1.%

i
and 3,1,3 again using the new neighbourhoods Niga) of Zge W

obtain a fa ~ singular point
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y(2) e N (2) By Nz(z)_

1

If y(a) £ B 4 then we again take new neighbourhoods N:i.G ) of z; |

with y(2) X Ni(:j) and apply 3.1.4 and 3,1,3 to obtain a j’a - singular |

point

(3) (3) (3)
72 ew Py 8 v ny 2

(n}

Repeating this process, if necessary, and taking Ni such that

Ni(n) converges to Zsy either we obtain a fa - singular point

(n) of fa. - singular

Y € B at some stage or we obtain a sequence y
points lying outside ﬁ with an accumulation point which ceoincides
with at least one of the Ziy SY  Zqe But then Zqy is a {a - singular

)

point and we have the desired result,

Arguments which are analogous to those used in 3,1,3, 3.1.4 and

5.1.5 yield the following,

3,1,6 Let y,» ¥, be two points of al;. and let && be the

closed subarc of 04 between them, ILet a5, 2, be distinct points

of a,_}\ g . If ¥, and y, are fal - singular points, then

there exists at .least one £a1a2 - singular point y on 4 i.e.,
for any neighbourhood N of y _there exists a circle passing through

a

10 25 and meeting N at least twice,

2.1.7 Let y,, ¥y, be two points of Q, 2ud let & be the
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closed subayrc of Q A between them, Let 1y 8y 85 be mutually

distinct pcints of 04\ g . It ¥q and y, are falaa -
singular points, then there exists at least one fa aa. " singular ‘
123

point y on 8 3 i.e., for any neighbourhood N of y there exists
a_circle passing through 835 859 :a.3 and meeting N at least once.

221.8 We are now ready to give the main result of this section,

Theorem 2: A normal arc a L of order four contains at most

finitely many singular points,

Proof, Suppose that there are infinitely many singular points
on & Le Take any poipt a, on 04' Then by Js1le5, there exist
infinitely many éa ~ singular points on a Lo Take another point
a, on alp‘ ay % az. By 3.1.6, there exist infinitely many
f aj_dg - singfllar points on a Le Finally, take another point a 3
on a#, distinct from ay and a5, By 3,1.7, there exist

infinitely many f - singular points on Q L But now we

ala 23.3

have constructed a circle through a1y 859 8.3 which meets a L

at infinitely many pointsj contradiction,

5.1.9 If p is an end-point of 0 ) then p is ordinary,

Proof. Assume p 1is a singular point. Then for each neigh-

bourhood Ncl) of p there exists a circle which meets 'N(l) four




50

times, say at Py < 493 < ry < By . By 3.1.2, there exists a singular

point y(l) in (pl, sl). Now take a new smaller neighbourhood
NFZ) of P with y(l) K N(E). By 3.1.2, there exists another
singular point y(a) different from ycl). Repeating this process

and using 3.1,2, we obtain an infinite number of singular points,

This is impomsible, by Theorem 2,

3,1,10 In 3.1,9 it was shown that an end-point p of 6?4
is ordinary. Thus there exists a neighbourhood N3 of p on (24
which is of order three. But it is known that NB U’{p} is strongly

differentiable at p([4]1, 3.5), Thus; an end-point p of Q4 is

strongly differentiable,

}




3.2 Multiplicities For Arcs of Order Four

Introduction

In [4] WN.D, Lane and P, Scherk introduced multiplicities for
open arcs 623 with one end-point p, counting p [a éoint qg of
Q 3] three times on C(ps) [on a general osculating circle of
a 3 at qJ] and twice on any other [general] tangent circle of
Qs at p [at q], Then they showed that no circle meets 03 VP
more than three times, i,e., the inclusion of p and the introduction

of WMultiplicities do not alter the order of 6?3.

In 1,53 of [12] Q. Haupt and H, Kunneth introdiced intersection
and support components of continua and derived some interesting results
concerning intergection and support properties of arcs and curves

.with general order characteristics having a certain base number k,

However, since we shall be only interested in the special case
where the class of order characteristics is the set of circles in
the conformal plane, our attention to arca of order four.will be
concerned with the former approach of Lane and Scherk., Cormespondingly,

in this section we shall prove the following result.

Theorem 3: The order of the open arc ‘zh' with the possible

exception noted in the remark following 2.2,14, is not changed by

(i) the addition of one of the end-points p;

(ii) the introduction of multiplicities of p. such that p

B -1 ., 51
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is counted onee, twice and three times, respectively, on a nontangent

circle through p, a nonosculating tangent circle through p, the

osculating circle C(p3) of 574 v {3} at p;

(iii} the introduction of multiplicities at interior points

q of (zh_ such that q 1is counted once on any circle through gq

which is not a general tangent circle at g, twice on any general

tangent circie at q which is not a general osculating circle, three

times on any general osculating circle at g which intersect £?1+

at g and four {imes on any general osculating circle at ¢q which

supports CLF at gq. In the last case q would be a singular point

of al}‘

We shall assume in the rest of section 3,2 that p <s for all

5 € ﬁzh‘

3,2,0 No circle C through four mutually distinct points of

C&h supports C?h at one of these points and intersects ‘21} at

another one,

Proocf, Suppose C supports C?h at dq» intersects 6?4 at
s and meets 524 at q3 and Q- Then a suitable circle sufficiently
close to C through g, and a3 will intersect £2h at two points

near g, and at one point near Q- This contradicts the order of C?k‘

5.2, No circle C Bupports 6?4 at more than two‘noints.
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Proof; Suppose C supports C?h at 93+ 95 and q3. By 3.,2.9,

C does not intersect C)h. Hence

624 cC llcea
say.,

Let L, M, N be three disjoint neighbourhoods on €, of
Qs 950 I3 respectively, The end-points of L, M, N 1lie-in C,.
Choose a suitable circle D in Ce which is mo close to C that
the end-points of L, M, N also lie in De‘ We can orient D such

that C c.Di, On the other hand,
CaD, = D
) qls q2! Q3 € i®

Thus D separates A1y Ups 93 from the end-points of L, M, N,
respectively, and hence D will intersect L, M, N in not less
than two points each, Thus D meets ‘?4 more than four times;

contradiction,
From 3,2,0 and 3,2.1 we obtain

3,2,2 If a circle C supports é?h at t, then C cannot

meet £?4 at more than two further points.

If a circle C peets [?4 at four distinct points, then all

of them are points of intersection,
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If a circle C through three mutually distinct points of

Q, supports (3, at onme of them, then C intersects (2, at

the other points.

3,2,3 If a circle C supports *Qu at s and t, then

C does not meet 04 U {p} again,

* Proof. Suppose that C meéts Qk Vv {p} at a further point u,
Then by 3.2,1, u is a point of intersection of al& with C or

u = p. The first possibility is ruled out by 3.2.2, Thus u = p.

Without loss of generality, let s <t on 04. Let L, M be
disjoint neighbourhoods of 04 of s, t, respectively, Also let
N be a neighbourhood of p on ah v {p} , disjoint with L -and
M, The end-points of L, M will lie in Ce’ say, Then for a suitable
circle D in Ce which is sufficiently close to C, D will meet

Qa L at a point near p and the end-points of L, M will also

lie in D_. We may orient D such that C& D:i.’ Thus &, t ¢ Di'
Therefore D separates & and t from the end-points of L and ¥,
respectively, }'Iende D will intersect L, M in not less than two

points each, D then meets a L at least five times; contradiction.

3e2:h
(1) If a circle through p meets a4 at four points, then

at most onc of them is a point of intersection,

Proof, Suppose that a circle C through p intersects Qh




55

at 475 95 and meets C24. at two further points r and s, Choose
disjoint neighbourhcods L, M, N on 624 v {p} of p, Q79 959
respectively, which do not contain r or s, Then if t converges
on L to p, C(r, s, t) converges to C, However, C(r, s, t)

will intersect M and N if t is sufficiently close to p. Hence

this circle meets Czh at leagt five times; contradiction,

(ii) £ a tangent circle of at p meets at _three
ange y &t p meets ) at three

points, then at most one of them is a point of intersection.

Proof, 1Let C he a tangent circle of é?q at p intersecting
624 at the points Q7 95 and meeting 674 at a further point r.
If t is sufficiently close to p, then C{p, t, r) will be close
toc C and it will intersect 624 at points near a4y and q5e This

is impossible, by (i),

In the same way (ii) implies

(iii) C(p°) intersects Q. at most once,

3.2.5 No cirecle meets 624 v {}J in more than four points.,

Proof. Let C be a circle which meets {f, V {p} in five
mutually distinct points, Because 624 is of order four, one of
these points must be p while the other four lie on Czh‘ If one
of these four is a point of support, then a contradiction is obtained
in 3.2.2, Hence all four of these points of 624 are points of

intersection, But this is impossible, by (i) of 3,2.k,
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3,2,6 No_tangent circle of 04 v {p} at p meéts ﬁu

in more than two points,

Proof, If a tangent circle of al; u {p} at p meets a4
at three distinct points, then at least two of these are points of

support, by (ii) of 3.2.4, However, this is impossible, by 3.2.3.

3.2.7 No tangent circle of Czh l){}& at p supports 624

at one vpoint and intersects 04 at another point,

Proof, Let C be a tangent circle of a4 V) {p} at p
which intersects Q I at q, and supports (7 A at Qne Then
C does not meet 624 elsewhere by 3.2.6, Then if t is sufficiently
close to p, C(Ig, t, ql~) will be close to € and meet 04 twice

near g. This is impossible, by 3.2,5.

2.8 C(_p3) cannot support (, ata point q.

Proof, Suppose that C(p3 ) supports 04 at q. Then, by
3,2,3 and 3,2.7, C(pB) does not meet al} elsewhere, If t
is gufficiently close to p, then C(pa, t) will be close to c(p3)

and meet Ql&k twice near q, This is impossible, by 3.2.6.

5,2.9 No general osculating circle of QL} at q intersects

al; \ {q} more than once,
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Proof, Let C be a general osculating circle of C?h at

q which intersect ‘7h \ {ﬁ} at two distinct points r and s,

Then, by definition of a general osculating circle, there is a circle

D sufficienitly close to C which meets C?#- three times near q.

But D wili also intersect (?4 once near r and once near S

since D is close to €, This is impossible because 6?4 is

of order four,

3.2,10  No general osculating circle of (7, at q Suprorts

624 at a point r X q.

Proof, Iet C be a general osculating circle of (?4 at

q which supports Czh at r % q. Either

(i C intersects 624 at g
or
(I3) ¢ supports (24 at q.

Let

N=n' Y fgf v o

and L be two small two-sided neighbourhoods of g and r on 6?4

respectively, where N' [N"] oprecedes [follows] q.

of generality, let g <r and

L \,{1’*} = Ce.

Without loss
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In case (ii), 3.2,3 implies that C does not meet ‘?4 outside

q and r, Hence

N' e C ,
e

Suppose that case (i) occurs, Since C is a general osculating

circle of 624 at q,

C = lim C(qn, a,'s qn")

where the three nutually distinct points Qe qn', qn" converge on

N to qg. By taking subsequences Qpyp® qné, qn; s 1if necessary,

= 143 1 "
? 1im c(qnm" Um* Unm ) .

] sgts ; t ]
where at least‘two of the three mutually distinct points U Gm® nm
converge on N' to g or at least two converge on N" to q. Now,
both N' u {q} and N u fq} satisfy condition CI' at qj

c¢f, 2,4,2 and 3,1,10, Let D be a circle close to C in

% u {a]

which supports C at q. Then D will intersect L at least twice,
But the end-pcints of N 1lie on opposite sides of C, Hence the
end-points of N will lie on opposite sides of D, But D is a
tangent circle of N' y {q} or of N'" v {q} at q, by 2,4.1

(i). Thus either
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D supports N at q, intersects N \ {q} at

{a)

least once and intersects L at least twice, or

(b) D is a tangent circle of N' {q} or of N" y {q}

at q which intersects t?4 at qj): i.e.y2 general osculating circle

of Qu at q.

Both of these are impossible, by 3,2,2 and 3,2,9, respectively,
Suppose that case (ji) occurs, Then
Nt e C,

We will fir%st show that C is necessarily the osculating circle
of N' VY {q} or of N" U {q} at q. Suppose that C is neither

of the one-sided osculating circles of aq at q. Now

C = lim C(qn, qn . qn > 4 nr)

where the four mutually distinct points Ay qn , qn » 4 "' converge
on N to gq. 8ince C is neither of the one-sided osculating cireles
of 04 at g, we can assume, by taking subsequences, if necessary,
that at least two of the points A qn . qn " q '' converge on N!

to g while the other two converge on N" to q., Thus C is a
general tangent circle of both N' U {q} and N" U {q} at q. But
since both N! u{ q} and N'y{q} satisfy condition CI' at

# " {
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q, then C?h satisfies condition CI' at q and hence the family
of tangent circles of 624 at q is a pencil of the second kind
with fundamental point gq. Hence one of the one-sided osculating
ciréles of N at g lies in Ci(see Figure 4), Call this circle

K. Without ioss of generality, suppose that K is the osculating
circle of N' Y {q} at gq. Now let s ¢ N', Then the tangent

circle
C'(qz, )

of N' V {q} at g through s 1lies in Ce v {q} y Since s ¢ Ce’

If s converges to g on N', then

3 . 2
K= 1lim C'(g", s) « C U C.,
8 «3q

since N' V {q} is differentiable at q§ c¢f. 3,1,10, This is a

contradiction, Hence C is one of the one-sided osculating circle

of CI# at q.




Figure &4
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Next C cannot be the osculating circle of N" y {q} at q,
by 3.2.8. Hence C is the osculating circle of N!' y {q} at q.
If t is close to q on NY, then the tangent circle C'(cia, t)
of N' u [q] at q through t will be close to C, by 3.1,10,

But tc N' € C_. Hence by 2,41 (i),

cr(g®, t) \ {a} ¢ c,

and thus if t is sufficiently close to q on N', C'(q°, t) will
intersect I at least twice., This is impossible, by 3.2.,2 and 3,2.9,
since C!(qa, t) eéither supports (F L at g or is a general osculating
circle of .a,_} at q.
':’
3.2.11 No general osculating circle of (7, at q which supports
{1, a2t q gan intersect Q. 2gaizn.

Proof, Let C be a general osculating circle of aq at q
which supports ah at q and intersects alp at a point r ¥ q.

Since C supports a# at g,
C= Cn = lim C(qns qn'$ qn"' qn"')

when the Pour mutually distinct points Ay qn', qn", qn"' converge
on ), to q. Since r is a point of intersection of {, with
C, for sufficiently large n Cn will be close to C and hence

intersect Ql; at a point close to r. But then C  meets 04

at least five timesy contradiction,
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3,2,12  No general osculating circle of 04 at q which

supports ai;. at q meets @, vy {p} again,

Proof, Let C be a general osculating circle of al; at
q which supports (}} y a8t a and meets al} v {p} at a further

point u, By 3,2,10 and 3,2,11, u =p and C does not meet Ql{- \{q} .

As in the proof of 3.1,10, one can show that C is necessarily one

of the one-sided osculating circles of O,_} at q, Let
N=N vy {q} vt [L]

be a small two-sided [one-sided] neighbourhood of q [p] on 04 v {p} .

Without loss of generality, let

alf \ {q} < Ce‘
Then N', N" < Ce.

Suppose that C is the osculating circle of N' u {q} at. qs

e T . e ;
If: £ ds suf:fi"cien{bly close to q .on N', the tangent circle

of N' v {q} at q through t will be close to C. By 2.4,1 (i),

C'(qz, )\ {q} € C,
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and thus if t is sufficiently close to q on N', C'(qa, t)
will meet L at least once. But C'(qz, t) must meet N with an
even multiplicity, But then we have one of

(a) C'(qz, t) supports 04 at g, t and meets 1L at
least once,

(b) C'(q‘z, t) supports 04 at g, intersects N \{q}

at two points ¢, r and meets L at least once,

(c) C’(qg, t) intersects Q) at a, t and meets L at

leadt once,

But these situations are impossible, by 3,2,3, 3,2.2, 3,2,9 and

5.2,10,

Similarly C cannot be the osculating circle of N vV {q} at

13
E

de

3.2.13 No general osculating circle of 04 at. g meets

Qv '{P}\ [qi

more than once,

Proof. Suppose that C is a general osculating circle of 0#
at g which meets Q4 v {p} at two further points r < s, Then
by 3.2,9 and 3,2,10, r = p and s is a point of intersection of (} L
with C, By 3,2.11, C intersects 04 at ¢, But then we construct
a circle D, as in 3,2,10 case (i), which either-supports Q4 at
q and meets Q 4 “at three further points or is a general osculating
circle of a1+ at q which meets a,‘t at two further points, Both

of these situations are impossible, by 3;2.2, 3.2.9 and 3.2,10,




65

3,2,14  Let C be a general osculating circle of 04 at q

which meets Qu v {p} at p. By 3,2.12 and 3,2,13, C intersects.

a y, a8t a and does not meet al{- elsewhere., Now
- 14 | ] "
C = Lim C(qn, a,' 9, )

where each of the circles C(qn, qn', qn") has a natural orientation
with the points ¢ s qn', qn" in the order in which they occur
on al;.‘ Hence the orientations of C(qn, a,'s qn"), (we take
subsequence if necessary) induce an orientation on the limit circle C.

Then we have the following result (see Figure 5(a)).

The oriented circle C cannot be a tangent circle of a‘+ U {p}

at p in the same direction.
Proof, Let
N =N* v {q} v Nt [1]

be a small two-sided [one-sided] neighbourhood of q [pl on Ql‘ U {p} .
Without loss of generality let N' e Ce' Then the entire subarc 6

of a# bounded by p and g 1lies in Ce'

Since C is a general osculating circle of ah at q, C is
either the tangent circle C'(qa, p) of N' y {q} at q through
p or the tangent ¢ircle C"(qz, p) of N" y {q} at q through p .

Let C = C'(qa, p), say, Then
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lim ¢C(q, s', D) = C,
s'eN?

s'aq

Next suppose that C(q, s', p) meets & agein at a point t,

Then

Clp, t, q) = c(q, s', P)

and as s8' —9 g, t —) p, However, the end-points of N 1lie on
opposife sides of C, Thus the end-points of N will lie on opposite
sides of C(p, t, q) for t close to p on L, Therefore C(p, t, q)
meets N with an odd multiplicity., But C(p, t, q) meets N at

q and s', Thu}s C(p, t, q) meets N at least three times and

we have a circle C(p, t, q) meeting al; v {p} at least five times.
This is impossible, by 3,2,5. Hence C(q, s', p) does not meet

again,
But BC. Ce' Thus
8 \n' e c{q, s', p)e (see Figure 5(b)),
let t € L. The end-point f of L 1lies in Ce' Hence I 1lies
in C(p, t, q)e-. ‘Also .C(p, t, q) meets C{q, &', p) ' only at P

and q, But % ¢ @\ N', Hence

te C(q, s', @)e
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and thus tke arc of C(p, t, q) containing t between p and q

lies in C(q, s', p)e. Thus

s' ¢ C(p, t, q)y.
But

Te C(p, t, q)e
and s ¢ C(p, t, q)i

imply that the arc of (2!+ between f and s' meets C(p, t, q)

with an odd multiplicity and hence at least once, say at s, Thus

A
I

C(p, t, q) = Clq, s, p)

as t-—y p;, 58— q,. Ye now proceed as in the preceding paragravh
to obtain a circle that meets ‘?4 v fp} at least five times;

contradiction,
Remark: The possible exception to Theorem 3 occurs as follows,

Let g and p be end-poinis of an arc 6?4 of order four.
Then the osculating circle of [24_ v {q} at ¢q, which has a unique
orientation induced by 624= can also be a tangent circle of £?4 ¥} {Q}

at .
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The possibility seems still to exist if q is an interior
point and p an end-point of L The problem arises when an
oriented general osculating circle C is a tangent circle of

al} U {p} at p in the opposite direction (see Figure 5, (6)).

This problem seems fo be analogous to the involving the addition

of end~points:to open a;-é‘"é‘*”of order three,

Let 43 be an open arc of order 3 with end-points p, q. Also
let C be a tangent circle of a 4y Y {p} at p and a tangent

circle of (f) U {q} at q. Then

(a) - the order of 03 v {p} V] {q} is increased to order

four if € is tangent to a.j U{P}Uiq} at p and g in the

same direction (see Figure 5(d)).

However,

(b) the order of QB is unchanged by the addition of both
end-points if C is tangent to 03 v -{p}U{q} at p and ¢q

in the opposite direction (see Figure 5(e)),




Y e

Figure 5




3,3 Differentiable Curves of Order Four

Introduction,

In this section let f b be a curve of order four., We shall
assume here for the most part that f A is conformally differentiablej
cf. 2,4,1, By 2,6 (iii), the characteristic of a point of !L; is

one of
a, 1, 1, 1,1, 2), Q, 1, 2, 1, 2, 1),, (2, 1, 1),.

By Theorem 2, g 4 contains at most finitely many sgingular points.
Hence each singular point is elementary; cf. 2,6 (iv), But then emch
singular point is a vertex; €f, 2,7, Moreover by 2,6, (iv), the

only possible singular points are those whose characteristic is one

of the.last four of the five listed abowess

In 3,3,1 we derive a result, namely Theorem 4, which is very
helpful in studying the classification of differentiable curves gh
of order four in regard to types and numbers of singular points, An

euclidean proof was originally given by P, Erdga and can be found

in [83,

In 3,3,5 and 3,3,6, singular points p of f 4 With the
characteristic (2, 1, 1), and (1, 2, 1)0, respectively, are discussed
as regards the induced orientation on the osculating circle C(pB) =p
of alk at p.

70
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In 3,3.9 it is shown that £?4 contains at most one point
with the characteristic (2, 1, 1), and we use Iheorem 4 to show
that 1?1} contains at most two points with the characteristic
(1, 2, ). If g j contains a point with the characteristic
(2, 1, 1)0, then ‘: j contains at most one point with the characteristic
(1, 2, )53 cf. 3,3,11. £, contains an even or odd number of
singular poin?s according to the existence of no points or exactly one

point on ﬁfu, respectively, with the characteristic (1, 2, 1)0;

cf. 3.3.,13 and 3,3,15,

It is well known that a strongly differentiable curve )é?# of
order four contains at most four vertices ([12], 4,1,4,3). Here we

shall show that the weaker condition .of ordinary differentiability on

+

ﬁ?i+ yield the same result; ¢f. Theorem 5.
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-

e 3.,3.,1 First we shall give a conformal proof of a theorem which

is very useful as well as being of some interest in its own right ([51).

Theorem 4%  Let R be a closed simply connected region of

the real inversive plane bounded by a Jordan curve oJ, and let J

be divided into three closed arc (24, (> 03. Then there exists

a circle contained in & and having points in common with all three

arcs,

Proof, Let Si be the set of eircles lying 1n & which have
a point in common with ai, i=1,2, 3. We include in S, the
point circles of ai' The set Si are closed and connected, Since
Sy N Sj X g, }sl V 5, is a ¢losed connected set and so is

v S,.

S= SlU 52 3

Let P be any fixed point, P ka . Let ® be the mapping:
S =% ﬂ which takes a non-degenerate circle C of S into that
point of R which is the image of P under inversion in the circle
C. If C is a point circle of S, take @(C) = C, The mapping
is a homeomorphism and both ® and Q-l take closed connected sets

into closed connected sets, Also  @LS] = R .

It is 'well known that the set of points of (R is unicoherent
(ige., if QR is written as a union of two closed connected sets
&1 and @2, then &1 n 32 is also closed and connected),

Hence S is also unicoherent.
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Suppose that S, n S, n 53

are disjoint, They are also non-empty., Hence

= @, Then 83031 and ij'l‘S;2

; = . N
53 n (slu 52) (S3 N Sl) V) (53 ‘ SZ)
consists of two non-empty disjoint closed sets and is therefore not
connected, This contradicts the unicoherence of S, Hence there

is some circle C in R that has points in common with each of

the arcs Ql’ Q> Qs

Remark; j divides the inversive plane into iwo closed
simply connected regions bounded by J . By this theorem, there
exist two circles, one in 'Ji g andonein J_ w J  which

Y 3 _
have points inccommon with the three arcs Ql, aZ’ 03.

The following results are special cases of 3,2,1 and 3,2,12,

respectively,

50002 et R be a closed region bounded by a. curve fi;

of order four, Then any circle lying in ﬁ has at most two points

in common with gl.,.-

3. 362 Let gh be a differentiable curve of order four,

Then the osculating circle of g L at anvy vertex has no further

points in common with f,_}.

o
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Next we give a result for an interior point of an arc that does

not involve order but is needed to obtain 3,3,11,

3,3, Let p be a once differentiable cusp point of an arc

Q. Then all circles ¥ p which support ¢J at p lie locally on

the same side of (¥ outside p.

Proof. Since p is a cusp point, there is at least one circle
K which supports a at p. Let K' be any circle, X' % K,

which supports a at p.

Suppose that K and K' 1lie locally on opposite sides of a

in a small neighbourhood N of p. Then

kY

i

(k \ {p}) AN and (Ki\{p}) N N

are separated by a . Hence K' supports K at p, Therefore

K' belongs to & pencil of circles. T of the second kind, the.members
of which touch the circle K at p., Then there are nontangent virles
of a at p which intersect K and K' at p and hence intersect
a at p also. This is impossible, since all the nontangent circles

support Q at a cusp point.

3.35.5 Let p be a point of a differentiable curve {4 of
order four with the characteristic (2, 1, 1),. Then by 3. 3.4, we
may assume that each circle that supports { 4 at p lies locally

on the same side of gu ?utside Py, 5say in g,_}i. Leg
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N=N oy fp) v

be a small two-sided neighbourhood of p on 6’ i where N' [EN']

is a preceding [proceedingl neighbourhood of p.

We know that the osculating circles of N' u {p} , NV {p}
and g4 at p ‘are all equal to the point circle p since N is

differentiable at p and p. has characteristic (2, 1, Lo

We would like to know in what manner N' vy {p} and N'y {p}

induce orientations on their common oscuating circle
C'(p3) = C"(p3) = P

ILet s', t' be two points on N' with s' > t' (see Figure 6).

Then a natural orientation is induced on C(t', s', p) with
the points t', s', p in the order in which they or:cvlzr on eh'
Now C(t', s', p) supports gh at p. Otherwise, C(t', s', p)
would be a tangent circle of € y at p which intersects g y &b
p and hence would be a general osculating circle of f L at p.
This is impossible, by 3,2.9. We have assumed that- C(t', s', p)
lies locally in éhi outside p. Also C(%', s', p) cannot meet

'g4 again, by 3,8,2, Hence the arc of C(t', s', p) between s'
and p which does not contain t' lies in ghi. Because of the
natural orientation induced on C(t', s', p), the arc of N' between

s' and p 1lies in C(t', s', p)e. Now let s' -\ p on N,

Then
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1im c(t', s', p) = C“(pa, t'),

§'p
. s'eN?

the tangent circle of N* U p at p through t' and a natural
orientation is induced on C'(pz, t') such that the arc of N!

between t' and p lies in c'(ﬁa, t')i.

Now let t' ~= p on N', Then

lim C’(pa, tY) = c'(p3) =p
t'wp
tleN?
and
3
’ 2
lim  CH(p~, t"); = 4,
t'ep
tieN?

Thus a natural orientatiorn is induced on the osculating circle

C'(p3) =p of N'wv {;& at p such that C'(p3)__i = g,

Similarly it can be seen that a natural orientation is induced
on the osculating circle C"(pB) =p of N" v {p} at p such

that C"(p3)i = @ (see Figure 7),




Figure 6
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3,3,6 Let p be a point of 154 with the characteristic

(1, 2, 1),. Let.
N=N' v {p} v nv

be a small neighbourhood of p on 4 y where N' [N"] is a

preceding [proceeding] reighbourhood ¢f ~p of order threej cf,. 3;1.9.

We know, as in 3,3,5, that the osculating circles of N' V {%'},
N U {p} and ﬁt(. at r are all equal to the point circle p.
But in what manner does N' VU {p} DU Y] {p} 1 induce an orientation

on its osculating circle C'(p3) 'EC".(I'P)]?‘

Take pointg s' > t' on N' (see Figure 8), Consider C(t', s', p).
c(t', s8', p) does not meet N' again since N' U '{p} is of order
three, Also C(t', s', p) is not a tangent circle of N' U {p}
at p. Suppose, for example, that the arc of C(t', s8', p) between
s' and p which does not contain t' 1lies in -g Le* We can choose
t' and s' .so close to p, and hence C(t', s', p) so close to
the point cirecle p, that C(t', s', p} meets N" at exactly one
point r", Then a natural orientation is induced on (;('t', s'y, p)
by taking the points t', s', p in the order in which they occur
on gl*. Because of this induced orientation, the arc of N' between
s' and p lies in OC(t', s', p)i' Now let s' = p on N'. Then

1 C(t', s', p) = C'(p°, '),
8'-p

steNt

J
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the tangent circle of N' VU iﬁ} at p through t' and a natural
orientation is induced on C'(pa, £'Y such that thé arc of NI

between t' and p 1lies in C'(pa, t')e.

Now let t'=—3 p on N', Then

lim  C'(p2, £') = C'(p°) = p

t'—p
£IeN?

and

I
=

Tim  C'(, £

tip
tYeN?

Thus a natural orientation is induced on the osculating circle

cH(p’) =p of N u {p} at p such that c'(p3)e = @,

Now take t" > 8" on N" (see Figure 9), Consider C(p, s", t"),
A natural orientation is induced on C(p, s", t") &uch that the arc

of N" between p and s" 1lies in C(p, s", t“)e.
Let S" ad p on NY, Then

lim  C(p, 8", t") = C"(pa, t"),

sty p

S"CN“
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the tangent circle of N" u {p} at p through t" and a natural
orientation is induced on G"(pz, t") such that the arc of N"

between p and t" lies in C"(pa, t")i.
Now let t" —a4 p on N", Then

Tim C"(pE, tm) & c"(p3) = p
tlagp
t"cNﬂ
and
3 " 2 tr —
1im cH(p™, t )i = g,

t'"ap
Nt

Thus a2 natural orientation is induced on the osculating circle

c"(p”) =p of N' u {p} at p such that c(p’), = .

We note that in 3,3,5 when p was of type (2, 1, 1)y, the
" natural orientation of C'(pB) = p was the same as the induced
orientation of C”(pB) = p. However, if p has characteristic

(1, 2, 1)0 as above, we see that the induced orientation of C'(pB) = p

is opposite to the natural one induced on c"(p”) = p.

Thus the natural orientation induced by t?q on circles through
the points of N' and N" is discontinuous at p ih the case where

the characteristic-of p is (1, 2, l)o.
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3,3.7 We next state a well known result (|:1+], Theorem 5),

f

¥

Let p be a conformally elementary point of an arc a with

&

the characteristic (ao, 2y ) or (ao, a;, & ) Then

2°0°

1
t
|

(1) p wsatisfies condition CI'j &f 2.4.?, iff it satisfies
condition CI; cf, 2,4,1, and 8y = 1 i

(ii) a is strongly differentiable at p 1iff it is differentiable

at p and a0=a1=1. l

By 3.1.9, each point of a normal arc Ql; [curve 'ﬁ4] of

order four is elementary.

} f

If p is.a differentiable point of an arc' aq C g4] with the
i

characteristic (1, 1, 2} or (1, 1, 2)0, then l;)y the above result,

C‘(u L glg is strongly differentiable at p[
[

2,3.8 We combine 2.4.2 (iv) and 3,3.7 to obtain:

Let p be a differentiable point of -g % with the characteristic

(1, 1, 2) or (1, 1, 2)0. Then the natural orientations induced on
¥

the one-sided osculating circles of fz* at p are identical,

3:0.9 Let gl{, be a differentiable curve of order four,

Then gl} contains at most one point with the characteristic (2, 1, 1)0.
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Proof., Suppose that g I contains at least two points Gys 95
with characteristic (2, 1, ]:)0. Let r e gl},l r i d;» 9, and
K = K(qq, 95, ) be the circle determined by q,, 4, and r. By

3,2.,2, 2t mosi one of dy0 95 and r is a poir}zt of support of K

1
t

with g .
* |

If X supports gh at r, then K intersects €4 at Qs doe
[

Since q, has characteristic (2, 1, 1)., then K is a tangent circle

o'
of g L at aq which intersects { i there, lHence K is a general
osculating circle of g y at % which meets {-gh at r and gq,.

This is impossible, by 3,2.,9 and 3,2.10.

I
If X supports at q,, say, then K| will intersect 75
4 1 ’ ! b

at a5 and hende K will be a general asculati!ng cirecle of { L
|

at q,. Again this is impossible, by 3,2,10,

i —r—

Thus dys 95 and r are all points of intersection of K with
-g Lo But again K will then be a’general osculating circle of ‘g4
1
at q, which meets %, at q, and r. This 'is a contradiction,

by 3.2.9. Hence we have the required result,

1
*
L}

5.3.10 gh contains at most two points with the characteristic

(i, 2, 1)0.

Proof,  Suppose g’-& contains three points Pys Pos P3 with

characteristic (1, 2, 1)qe Then these points divide -gu into
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three closed arcs, Hence by Theorem 4, there exists a circle K

lying in g y v -g I having points in common with all three arcs,
i

By 3.3.2, one of the p;» Say p, is a point of contact of K with
-gh. Hence X sBupports flf at p. But this possibility is

excluded by the characteristic of p, since both the nonosculating
!
tangent circles and the nontangent circles of 'gq at p intersect

"54 at 7. }

1

|
|

.3.11 If ﬁ?# contains a point with the characteristic

o |
(2,1,1)0, then at most one point of {4 has the characteristic
l

(1, 2, 1)0.

Proof. L?t p be a point of ‘£4 with characteristic (2, 1, 1)0
and dy1 9y points of -gh with characteristic (1, 2, l)o. Then
Ps Qys 9y divide 'gl!_ into three closed arcs, By Theorem 4, there

exists a circle K 1lying in g Y f L having points in common
i

with all three arcs, By 3.3.2, one of the point!s Py d71 95 is a
point of contact 6f XK with gl*. This point o:_f K cannot be either
q; or q,. (?therwise, K would support 754 vat this point, But
this situation is excluded by the characteristici since both the
nonosculating tangent circles and the nontangent’ circles of {4
intersect {.’4 at a point of type (1, 2, 1)0.1 Hence p must be
the point of contact of K with 7},’4. :
'

However, by the remark following Theorem &, there exists a circle
K' 1ying in #), u?),+ having points in comjon with all three arcs.
e
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As before, neither q or a, is a point of contact of K' with
'64; Hence p 1is again the point of contact of K' with 'gh_.

But this is impossible, by 3.3.k.

,5,12 Here we introduce a concept of monotony of an arc a.
We shall denote a general osculating circle of 0 at a point p

by C(pl.

a is said to be monotope. if a induces a unique orientation

on the general osculating circles at each point of 0 such that if

p<gq Onas

clp) & C(q)i and C(gq) < C(p)e
or 3

Clp) < C(q)e and C(q) « C(p)i.

We note the following results:

(i) Arcs of order three are monotone ([6], 4),
(ii) ‘Let each interior point of an arc (@ y of order four

be ordinary. Then the closed arc 6?4 is monotone..

Proof, - Each interior point of 0 L is ordinary. Also the
end-points of a y are ordinary, by 3.1.9. Hence each [interior]
point of the arc possesses a [two-sided] neighbourhood of order three,

But each of these néighbourhoods is monotone, by (i), By taking the

union of these neighbourhoods one obtains the monotony of a L
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3:3235 Let a differentiable curve { L of order four contain

exactly one point with the characteristic (1, 2, 1),. Then gh

contains altogether an odd number of singular points,

Proof, Let p be the point of gl} with the characteristic
(1, 2, 1)0. Suppose that 'g4 contains an even number of singular
points altogether. We know that the number of singular points id
finite, by Theorem 2, !

Let the other singular points of ‘54 be ;11 < q, <. < Qope1
where n > 0, ‘Without loss of generality, let 'p 1lie. between
Gopi1 and q, on fl;‘,’ if n 2 1. Let

N_ =Nt U N [Ny o= N N
3P (e} v ptdj qu{qj}U _qj]

be a small two-sided neighbourhood of p [qj3 on 'gq_, where

N;) I:'N& ] is a preceding neighbourhcod of p [qj) and N; [N('l' ]

J J
is a proceeding neighbourhood of p [qj] on ‘64, =1, 2, ..., 2n+l,

Without loss of generality, let the natural orientsation induced
on the osculating circle C"(pj) =p of N"U {p} at p be such
that G"(ps):.L = @. By 3,3,12 (ii), the closed arc of -gl*. between

p and qq is monotone, Hence the osculating circle C'(p13) of

' i
quu {ql} at 4, 1is such that

C'(q13) [ C"(p3)e and C"(p3) c C'(q13)i,



39

o " 3 R
Thus by 3.3.3, gl; \ {ql} c C‘(q1 )i' Now q; has characteristic
(1, 1,2, @, 1,2, o (2,1, 1),- But then by 3.3.5 and 3,3.8,
: . 3 3 :
it - "oy
the osculating circle C (ql ) (=¢ (q;7)) of qu v {q]_} at gy
has the same induced orientation as C’(q13). Hence

&y \ {él} € O"(a”);.

Next, the arc of 'g4 between Q3 and 95 is ‘monotone, by
3,3.12 (ii), Thus

C'(q23) c c"(ql3)i and C"(q13} < C'(q23)e,

where C'(q 3) is the osculating circle of N! y {q } at q,. Thus
2 q, 2 2

}
by 2-..220 ’

gu\ {qa} < C'(q;)e'

and again by 3,3.5 and 3,3.8, the osculating circle C"(q23) (= C’(q23))

of N" y Jq } at g, has the same induced orientation as C'(q 3.
q, 29 2 2

Hence
'gl'r \ {qz} c:C"(q;)e.

Continuing in this manner we obtain for each j with j odd

&\ fu} < e



g0

and for each j with J even

2.\ {qj} c og ).

In particular,

P& {4\{q2n+1} < Caz,y);

But again by 3,3.12 (ii), the arc of L between Dopst and p

is monotone., Therefore

c'(r’) < C"(qeiﬂ)i and C"(q2131+1)- < C'<p3)e'

} .
However we assumed that C"(p3)i = @, By 3,3.6, C'(pB)e = &,

Thus g5, .4 € C!(ps)i and finally
c"'(gq >ye C'(pB)j:.

2n+l

This is a contradiction and we have the required result,

Corollary: Let a differentiable curve g 4 of order four

contain exactly one point with characteristic (1, 2, _l)o. Then

-gh contains an odd number of singular points 2> 3.

Proof, Let a'4 = fh\ {p} y where p is the point with

characteristic (1, 3, 1)0. Suppose that ah contains no singular
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points, Then by 3,3.12 (ii), al{_ = gq is monotone, Now let
N =N U N
' v {p}

be a small two.-sided neighbourhood of p on é?h. Since ‘fh is

monotone

c'(p”) e CNp?), and C'(p’) € C'(p7),
or

C'(pB)C‘C"(IP)i and c"(p3)cc'<p3)e,,

where C'(pB) [C"(p3)] is the osculating cirecle of N' U {p} {N"U{p}]

at p. But p ]s a differentiable point of ﬂ?h. Hence
C!(pj) = C"(p3)

and thus neither of the two conditions stated above is satisfied,

This our assumption that C?h contained no singular points is incorrect,
Hence Ql,_ contains at least one singular point and therefore fh
contains at least two singular points, By 3,3.13, 1?4 ;ontains an

odd number of singular points 2> 3,

Remark: We notice in the proof of the above corollary that
no use of the characteristic of p was made in obtaining at least

two singular points on 5?4. We state this result here,
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3.3.1%  Let fl+ be a differentiable curve of order four,

Then 'g L contains at least two singular points.

Proof, If g 4 contains no singular points, then g y is
monotone by 3,3,12 {ii), and we obtain a contradiction as in the
proof of 3.,3.13 Corollary, by taking any point -q on. f,_}. Thus

g,i_ contains at least one singular point, say p.

But then as in the proof of 3.3,13 Corallary, 04 = 54 \ {P}

contains at least ohe singular point and we obtain the result,

543,15 . By using methods which are similar to those employed

in 3,3.13, we o?tain:_

Let - -gq be a differentiable curve of order four containing

no points with the characteristic (1, 2, 1);. Then 4, contains

altogether an even number of singular points > 2,

3.3,16 We are now ready to prove

Theorem 5: A _differentiable curve -g y &of order four contains

at most four vertices,

Proof, Let us assume that 'gu contains five vertices

pg ? X = 1! 2! sasy 5-




95

Case (i). We allow here that the points py have only the
characteristics (1, 1, 2) or (1, 1, 2)0. By 3,3.5, é?h induces
a unique orientation on C(p ; ) for each ¥ . Ve also note that
by 3.3.15, -gl* must contain at least six vertices in this case,

However, we shall not need this latter result here,

Without loss of generality, there are at least three vertices,

say qj-' Jj=12 2, 3, such that locally outside qa;

L

and
ﬁl{- 3 C(qj)e.
}
By Z.ié,
3
Ev'(qj ) e g)_!_iu {qa}
and

ﬁl} < C.(qf)e U {qj} .

Now the points 4 divide ﬁ ), into three closed arcs. By

Theorem Y4, there exists a circle K 1ying in £4 v {4 , having
it

points in common with all three arcs, By 3,3.2, one of the q;j’ say
Py 1is & point of contact of K with gl%' Since nontangent circles
intersect f’-ﬁ at p, K is a tangent circle of {l} at p, (see

Figure 10),
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Next, K and C(p3) belong to the pencil of tangent circles T
of 1?4 at p where T is a pencil of the second kind with funda-

mental point p. Now

3
éf# ¢ c(p) Vv {p}
and K has another point of contact on 5?4 outside p. Thus
Ol
Kcew), uip} .
Also t?q' induces a continuous orientation on. T . Hence

C(pB)c K, v [p} .

)

As in 2.1.1,
3
K eC(p’), U {p}
and
3 ’
Clp’) e K; ufp}
imply

c:(p3)i ¢ K,.




On the other hand, let & be close to p on
i
!

c(x”, e X u {p}.
Thus by the continmuous orientation on T

K¢ C(pz, s)i U {p} |

and

C(p-25 s) & Ke v {p}

imply .} ,
2
c
Ky c(p=, s)i.

Now let s -3} p on gl{-' Thus

Ky € lim C'(pe, 8); = C(pB)i.
S-=3p

This is a contradiction,

44..

Then

95




%6
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Case (ii) We allow as vertices only points with the characteristics
(1, 1, 2), (1, 1, 2)0 or (1, 2, l)o. We assume that at least one
of the vertices has the characteristic (1, 2, 1)0; otherwise we are

back to Oase (i), We label these points type w, B and &, respectively,

We first notice that by 3.3.10, at most two of the py can be
of type 6. Hence at least three of the five vertices py are of
type « or .. But then without loss of generality, there are two

of these three, say qj, j=1, 2, such that

) <@y v {ay}
1
and

g%* c.'C(qu)e 1) {qj}.

L

Take a point q of type 6., By Theorem &, there exists a circle X
lying entirely in 1?q_\lsz\, having points in common with the
three arcs determined by q, ;1, Qe But one of these points is a
point of contact of K with ‘6?4" by 3.3.2. Also the point gq
cannct be a point of contact as was shown in the proof of 3.3.10,
Hence one of the q:j is a point of contact of K with é?h and

we proceed as. in Case (i) to obtain a contradiction,

Case (iii) We allow finally Py to have any of the following

characteristics

(1, 1, 2), (1, 1, 2)g, 1, 2, )y or (2, 1, 1)y
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By 3.3.9, at most one of the vertices is of type (2, 1, 1), and
if i?L contains a vertex of this type, then at most one of the

vertices has the characteristic (1, 2, 1),, by 2.3.11.

Let us assime, for the moment, that {?4 contains no points
with the characteristic (1, 2, 1)0. Then all of the py are of
type (1, 1, 2), (1, 1, 2), or (2,1, 1),. Let us also assume
that '1?4 contains at least one and then exactly one point of type
(2, 1, 1)0; otherwise we have Qégg (i). By 3.3.15, é?h contains
an even number of vertices. Hence 1?4 contains at least six vertices,
But exactly one has the characteristic (2, 1, 1),. Hence the other
five have the characteristic (1, 1, 2) or (1, 1, 2),. But then we

proceed as in Gase (i) to reach a contradiction,

Finally We.éssume that zf# contains exactly one point p with
the characteristic (2, 1, l)o and exactly one point q with the
characteristic (1, 2, 1)0. Hence there are at least three vertices
of type (1, 1, 2) or (1, 1, 2),. But then, without ldss of generality,

at least two of the vertices of these types, say qj, j=1, 2, are

such that
3
C(qj ) e &Fi U {qj}
and
g« v fad -

1 v 7 N L R 0 ad] " -
x - b o q—-{’;" ™ N Tl e
- Sue ~
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But again the points Ay 95 and g determine three closed arcs

of fl; and we proceed as in Case (ii) to reach a contradiction,

Since the only possible vertices of ;,’ 4 have the characteristics

(1, 1, 2), (1, 1, 2)0, (1, 2, 1)0 or (2, 1, 1)0.

the theorem is proved,
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2.4 Strongly Differentiable Curvés of Order Four

Introduction.

In 3,3 we showed that a differentiable curve 1?4 of order
four contains at most four vertices, Under the restriction that é?k
is strongly differentiable, here we use Theorem 4 of 3,5 to show that

é?h contains at least four vertices, This is the well known four-

vertex theorem for curves of order fourj cf, Theorem 6,

Then these two theorems combine to give a conformal proof of
the main result that a strongly differentiable curve éf# of order

four contains exactly four verticesy cf., Theorem 7,

M~MARTER UNIVERSITY LIBRARY
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First we need the following result.

2.13-.1 . Let Q’+ = al& be a strongly dl.gferentiable closed

arc of order four with end-points p, q and K an oriented circle

satisfying

{a K bélongs to the oriented pencils of tangent circles

)
of (2, at p and q,
)

04 NK= _{p,q} .

Then there exists at least one singular point in the interior of a 4

(o)

Proof, Without loss of generality, assume that {f, € KV ..

Suppose that each interior point of Q L is ordinary. Then by

3,3.12 (ii), @4 is monotone,

But K is the tangent circle C(»pa, q) of Q , at p through q.

Let s ¢ al}‘ s¥p g Thus seX. By 2. 4,2 (.iv),
C.(pa, 8) G K, u {p} and Ke C(pa, s)iu {p} .

.-

This statement is true for all s ¢ al}’ 83 py,q. let 58—y p

on le By 2,2.8, c(p) % K. Hence
C(p3)-c K, v {p} and K < C(p3)i v {p} .

However q ¢ K, Thus q ¢ C(p3 ) 4 @and the monotony of a,_'_ yields
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o(a®) € 6(p7); and C(P) < Clad),. -
i ¥
Similarly K 4is the tangent circle C(qa, p} of . a'q_ at
g through p, Let 8' ¢ al{_, s' ¥ p, g Thus s8' ¢ Ke. By
2,4,2 (iv),

C(qa, s') ¢ K, v (q} and K¢ C(qa, s')i u {q} .

But this statement is true for all s' e 04, s' ¥ p, q. Let
8' —3 q on al}' By 3,2.8, C(q3) % K. Hence

3 , 3
c(q”) ¢ Ke U{q} and K ¢ C(q!)i U{q} .
i 3 .
But pe K., Thus p e C(g )i and the monotony of 04 yields
'G(p3) c C(qB)i and C(q3) = C(pB)e.
This is a contradiction,
Hence the. assumption that each interior point of a L is ordinary

was incorrect, Thus there exists at least one singular point in the

interior of al{-'

5. b2
Theorem 6: A strongly differentiable curve fl*. of order four

contains at least four vertices.
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Proof, Let g 4 be separated into any three closed arcs,
By Theorem 4, there exists a circle K 1lying in f 4 U «g 4o
having points in common with all three arcs. By 3,3,2, K meets
f , at exg'c‘.;?[}y two points jl’ }2, say, Now -g 4 is strongly

differentiable, Thus K is a tangent circle of ‘fh at jl and

A,

By 3,4,1, there exists at least one singular point in the open
arc ‘Pl _Pa c;f ‘g 4 and at least one singular point in the open
arc j2~ 'Pl of { e In 3,3 we remarked that each singular point
is actually a vertex when we consider differentiable curves ~£ A

of order four, Thus a; and g, are verticesi of {4'

Now suppoge that the open arcs 4,9, and 1qaql of fl,.
contain no singular points., By 3,3,12 (ii), the closed arcs a10,
and 9,4, &are monotone, Since a4 and 9, are vertices, the
osculating circles (‘:(ql3 )y C(q23 ) of {4 at' dys 91 respectively,

support {L} and do not meet ‘é’# again, by 3,3,3., If

€ ccl)); uia} md £, coayufa]
or |

f“ c C(qls)e V] {ql} and fli- < C(q-as)e U‘{qa-g ’

then neither of the conditions of 3,3,12 for the monotony of the

arcs q,q, and - a9, can be satisfied, Hence either
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£’+ c G(qu)i U {q]?; and fl* c C(q23)eU {qa}

or

Without loss of generality, we shall assume that the first situation

occurs,

Now '82; 0 ,Pl divide t?h into three closed arcs, By
the remark following Theorem 4, there exists a circle X lying in
124 J t?ﬁe‘ having points in common with all three arcs. Again
by 3.3.2, one of the points _,P‘a, Qs _,Pl is a point of contact of
K with ~€,+.
.

If s is a point of contact of X with £ , then the other
point of contact m lies in !Tja on -é’h. But then by 3,4,1,
there exist singglar points Tys Tp in the open arcs qm and m,
of t?#, respectively. At least one of Ty To is distinct from
dqe This contradicts our assumption that the open args 4395 and
q,9; contain no singular points, Hence ,Pl or ‘Jg is a point

of contact of K with 'g,_]_.

Next we note that not both .,? 1 and }2 are points of contact

K support each other at jl

of X with §,. Otherwise, K and

and Xa and thus are identical, This is impossible by our choice

of E and K,
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if )1, say, is a point of contact of K with gh, then
the other point of contact m 1lies strictly between ,PZ

q, on £ L (see Figure 11)., But we assumed that

Ly < C(q2 ) Y {qa}

.Now the open a;.rc a5 ‘Pl is a subarc of the monotone arc A9

and hence is itself monotone, Thus q, _?1 c o( 4913):1. C(,?:LB) X K, -E,
by 3.2,8. Also C( .913) X 4?1. Othervise, "Pl would be a

singular point lying between a5 and 3% contradiqtion. But as

in the proof of 3,4,1,

cd ) e, Tv{d}.
}




Figure 11
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Hence C( /P 13 ) intersects the open arc J oH at least once and

intersects the open arc mqa at least once., This is impossible by

3,2.4 (iii),"~

If .‘?2 is a point of contact of K with fq.s "then m 1lies
strictly between da, and j 1 ©on f Lo 4 similar argument shows
that C( ,?23) will intersect the open subarcs qm and mjl of

g y @&t least once, Again this is impossible by 3,24 (iii).

Thus our assumption that the open arcs 4595 and a9y of { L
contain rno singular points is incorrect, Thus there e;::i.-sts at least
one singular point in the interior of 9,95 Oor gyq; on ‘g ye
Hence g i contains at least three singular points, By 3,3.7
and 3,3,15, 'f ',+j~ contains at least four singular points, But zgain
by 3.2, each 611 these singular points is actually a vertex and we

3

have the desired result,

3. 4.3 We combine Theorem 5 and Theorem 6 to obtain

Theorem 73 A strongly differentiable curve £1+ of order

four containg exactly four vertices,




Section 4

A Topoulogy on the Set of Conics in the Projective Plane

Eal. Let P = {X}, where § denotes a non-degenerate
conic in the real projective plane np, Let r‘ be the union of
T1 and the following so called degenerate conics: =& pair of lines,

a double line (a line counted twice), a double line segment (a line

segment counted twice) or a point,

108
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il-‘g_. A non-degenerate conic has a well defined interior
}’i and an exterior )’e. Two distinct lines define a conic Y,
which decomposes the projective plane into two homeomorphic disjoint
regions which we may denote by Xi and Xe' Two points are
said to be separated by a non-degenerate conic or a pair of distinct
lines X if and only if one of the points lies in Xi and the
other in Xe' For a line or a line segment X only one of Xi,

Ye is non-void,
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4,3, Five distinct points, no three of which are collinear,
determine a unique non-degenerate conic, If three of the five points
lie on a line Ef s Which does not pass through the remaining two,
then is a unigue pair of lines through them, viz., the line ae and
the line joiaing the other two points, If exactly four of the five
points lie on a line ;{, which does not contain the fifth point,
there are infinitely many conics through these five points, viz.,d:
and any other line through the fifth point, If all the five points
lie on a line Ze s there are infinitely many conics through them,
viz, Ef, tog;ther with any other line, the double line coincident
with 5{ s and any double line segment on ;f containing the five

points.
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4.k, It is possible to introduce a topology O om T

as was done in Section 1 on the set of circles in the inversive

plane,

A neighbourhood of a nonmdeggnernte conic }f is the set of

conics which lie in the region outside a non-degenerate conic

Eﬁxi

and inside & non-degenerate coniec.

ncxe.

A neighteourhood of a ypair of distinct lines }f is the set of

conics which. separate (and thus lie in the common exterior of) two

nen-degenerate conics which are separated by }f .

A neipghbourhood of a double line ¥ is the set of conics which

separate ¥ from a non-degenerate conic which does not meet z‘ .

A neirhbcurhood of a double segment [a point conic] ]{ is the

set of conics which lie in the interior of a non-degenerate- conic

which contains }S in its interior.

A
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4,5, A sequence of conics (Xn)m:N converges to a conic b

if for any neighbourhood QU of ¥ there exists ny ¢ N such that

¥, ¢ &1 for all n >n., We denote this convergence of Xn to

O.
by

lim Xn= Y.

neN

Tt is well-known that ( [, £ is countably compact ({91, 2.1).

In addition the following results are analogous to those in 1.5, 1.6

and 1.7,

‘4,5,1 (I, O') satisfies the first and second axioms of

countability,

b.5.2 (P, 9 ') is a Hausdorff space,

am———
L,5.3 (P, B') is a repgular space,
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L,6 Cembining the results of 4,5, we obtain ([1], p. 138):

Theorem 8: ([, ,B') is a compact Hausdorff space,




Section 5

The Order, Differentiability and Characteristic of

a2 Point of an Arc in the Projective Plane

Introduction

This section is comprised of basic backgroynd material which
is fundamental in the analysis of arcs and curves of conical order
six., The results are generally due to the resegrch of N.D. Lane,
K.D, Singh and 'P; Scherk and can be found in [31, [9], T10} and [11].

In 5,3, the'cohcégi of a conically differentiable point is
introduced; while in D.5.3, strongly conically differentiable points
of an arc are studied, A charac?eristic is associated with each
conically differentiable interior point of an arc in 5,4, One of
the first men to study the concept of characteristic was P, Scherk
{15] and his basic ideas were used by N,.D, Lane and K,D, Singh in
[(4],to introduce the conical characteristic of a conically differentiable

point, Using the characteristic one can list the different kinds of

conically differentiable interior points of an arcj cfi. 5,4,1.

In 5.5 the conical order of a point on an arc is defined, The

geometric notion of order seems to have been first studied extensively

11k
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by S. Mukhopadhyaya in [19] and [20]. A more general notion of
ordér was introduced by O, Haupt and H, Kinneth in [12], who used
many of the ideas of Mukhopadhyaya, With the concept of the order
of a point on an are, one can define ordinary and singular points}
cf..ﬁ*é. Some of the earlier work involving singular poinis was
done by Mukhopadhyaya and W, Blaschke [21] in the consideration of

sextactic points,
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5.1 The three-parameter family of non-degenerate conics which
touch a line U at a point p 1is denoted by * . If no three
of the points P, Q, R, S8 are collinear and Q, R, 8 do not lie
on ‘3 , the conic of t through g, R, and S is denoted by
¥(v; q, R, S).
{

1.1 IF WeT, @ = QC¥) denotes the two-parameter subfamily
of T which consists of those conics of T which have at least three-
point contact with ¥ at p; (PR is the subfamily of C? through
R J . Iet (PP(K) denote the subfamily of (f(¥), each of

whose members have at least four-point con'act with b’ at p.

vvvvv
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5.2 The concepts of arc, curve and neighbourhood of a point
t

can be defined in the projective plane as they were defined in 2.3

for the inversive plane,

.2,1l Suppose & is an interior point of an arc 0 . Then

we ¢all s a point of support [intersection] with respect to a

conic Ye -ﬁ if a sufficiently small neighbourhood of s on a
is decomposed by s into two one-sided neighbourhoods which™lie
in the samé region [in different regions] bounded by Y . ¥ is

then called a supporting [intersectingl] conic of Q at s,
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5.2 Differentiable and Strongl@ifferentiable_ Points,

5.3.1 A point p on £ is said to be conically differentiable
if it satisfies four conditionsy

Condition PI, If the parameter s is sufficiently close to

Dy S X p, the 1ine ps is uniquely determined., It converrses as
s tends to p ([9], &.2).
The limit straight line g is the ordinary tangent of a at
p. Condition PI implies:
() If (] satisfies Condition PI at an interior point p,
then the non-degenerate, non-tangent conics through p all intersect

Q at p or all of them support ([9], 4&.,11),

Condition PII, Let a .satisfy PI at p and let @ and

R bé any fixed points, Q § J s B% % 3 3, @, R not collinear,
If s is close tc; Py 5 X p, the unique tangent conic K(pz, 5, Q, R)
of @ at » through Q, R and s converges as s tends to p
({91, 5.1).

The limiting asculating conic of d at p through @ and R

is denoted by X(pB, Q, R). The family of all the osculating conics
of a at p is denoted by O ,

(ii) If Condition PII holds for two points Q," R such that
Py Q, R are not collinear and Q% 9 , RY 7 , then it holds

for every such pair of points ([91, ,2.4).
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(iii) Let PIT hold at p. If the arc ({ intersects T
at p, then the conics of @ are degenerate ([9], 5.5).

(iv) If PII holds at p, then ¢ is one of the following

families ([9], 5,6).

Type 1. o is a subfamily Q of T which consists of all
the conics of T which have at least three-point cuntact at p with
any particular member of @ § cf, 2;_3_._._1.

Type 2, o consists of the pairs of distinct lines through
p, both of them different from ﬂ .

Type 3. o~ consists of the pairs of lines one of which is ﬂ
while the other does not pass through p.

{v) . If (@ satisfies PII at an interior point p, then
the conics of T-¢ all support (@ at p, except when p is of

Type 2 and (@ intersect 9 at p, in which casé¢ they all intersect

Q at p ([91, 5.10).

Condition PIII,  ( satisfies PII at p and if Q& of ,

then K(pB, 5, Q) converges as s tends to p on (2.

The limiting superosculating conic of a at p through @Q is

denoted by ‘J(pl*, Q). The family of all the superosculating conics
of a at p is denoted by -

(vi) If Condition PIIT ‘holds for a single point Q & 37,

then it holds for &ll such points ([91, 6.3).
(vii) If PIIT holds at p, then P is one of the fcllowing
(91, 6.4).



120

Type 1{a). p is a subfamily LPP of © which consists of
those conics of @ which have four-point contact at p with &
particular zonic of & . ’

Type 1(b), o consists of all pairs of lires through p,
one of which is ﬂ.

In Types 2 and 3, PIII is satisfied automatically,

(viii) If @ satisfies PIII at an interior point p, then

the conies of -2 all support (@ at p or all of them intersect,

Condition PIV, (R satisfies PIII at p and the superosculating

conic X(pl}, s) converges as s tends to p on 0 .

The limiting wltraosculating conic of 0 at p is denoted by
X(ps).

(ix) It (@ satisfies PIV at p, then X(p5) is non-

degenerate (Type la(i)), or the point conic p(Type la(ii)), or
the double line on ﬂ (Type la(iii)).
In the remaining cases, Types 1lb, 2 and 3, PIV is satisfied
automatically and X(ps) is the double line on IJY¢ [ol, 20 .
{x) If (] satisfies PIV at an interior point p, then

the superosculating conics ¥ X(p5 ) all support a or all intersect

(fol, 7.2).

Remarks (1) We shall adopt the convention that the double line

on ﬂ supports a at p, even if a crosses ,7 at p;
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L@ If the conic ¥ consists of a pair of distinct lines
through p, the arc[? will be said to support [in?ersect] Y at p,
if there exist one-sided neighbourhoods of p on (¢ which lie in

the ‘same region tin different regions] with respect to & .

+ 2.2 Suppose that no three of P, @, R, § are collinear,

We call ¥ a general tanpgent conic of 62 at p if .'there exists

a sequence of quintuples of mutually distinct p?ints Sos tn’ Qn Rn' Sn
such that 5, and Tn converpge on CZ to »p, Qn——# Q, Rn-—a R,

S, ~—3 § and the conic K(sn, ts @ R

- Sn) through these points

converges to 7{ .
.
Remark:  If 62 satisfies PI at p, every tangent conic of
Cl is a genéral tangent cconic, The converse need not be true, For
example, a cusp point satisfying PI has general tangent conics other

than the ordinary tangent conics ([10], 2,1)..

Suppose that p, Q, R are not collinear, We call ¥ a general

osculating conic ofcz at p if there exists a sequencé of quintuples

of mutually distinct points Sy tn’ U Qn’ Rn such that 5 tn’
u_ ~converge on Q o Py Qn-——a Q, Rn———b R and the conic
]T(sn, By Uy @y Rn) converges to ¥ .

As in the remark above if 62 satisfies DPII every osculating
conic of 62 is a general osculating conic, but the converse is not

necessarily true,
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We call ¥ a general superosculating conic of a at p if

there exists a sequence of sets of mutually distinct points S tn’

u.y ¥, converge to p on a '

Wos Wy Qn such that S tn’ n

Q, —>Q 2% p, and a conic 'K(sn, tar W Yoo Qn) ' through these

points converges to ¥ .

t

Finally we call § a general ultraosculating conic of a at

p 1if there exists a sequence of sets of mutually distince points

s tn' Ups Wy W such that S), t

n?* n?

u W converge to
n n? Vn y W, ) P
1

w o, ¥, wn) through these points

on (I and a conic )’(sn, t,u

converges tc R . g

We shall need the following results later ([10], 2) ,
r

(i) If Y is a non-degenerate general osculating conic of

§

Q at p, then every member of the family (PP( ¥Y) is also a

general osculating conic of a at pj ef, 5.,1.1.

(ii) If ¥ is a non-degenerate general superosculating conic
of Q at p, then every member of the family (prx) is alsg

a general superosculating conic of a at p; cf. 5.1.71,

5:3.,5 Strongly Differentiable Points.

A point p on a is said to be strongly conically differentiable

if it satisfies four conditions:
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Condition PI', If the parameters & and t are sufficiently

close to the parameter p, s ¥ t, the straight line determined by
5 and t converges as s and t tend to p.

In particular, if we take t = p, we see that PI' implies
PI,

|

Condition PII', A satisfies Condition PI' at p and there

exist two distinct points @ and R, not collinear with p, which

i
do not lie on a general tangent of 62 at p with the following

properties. If s, t, u are mutually distinct, and lie sufficiently
close to p on (L s the conic ¥(s, t, u, @, R) is uniquely
defined, It donverges as s, t, u converge to p.

e note that if Condition PII' holds for t;o,points g and R
(thus, p, Q, R are not collinear; Q% o , R * 7 ), then it holds

for every such pair of points ([10], 3,3).

Condition PIII', (& satisfies PII' at p, and there cxists

a point R X :] y with the following properties, If s, t, u, v
are matually distinct and lie sufficiently close to 3p, the conic
BYS, t, u, v, R) is uniquely defined, It converges as 8, ty u, v
converge to ‘p.
If Condition PIII' is satisfied at a point v of Type 1l or 3
for one point R (thus R & {]), then it is satisfied for every
point not on 13 . We note that if C? satisfies PII at an interior

point p of type 2, then ({ does not satisfy Condition PIII'

at p ([10], 3.4).

i
3
%
I




Condition PIV', (A satisfies PIII' at p
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Jls, ty, u, v, w)

is uniquely definrd and converges if the mutually distincet points

s, t, u, v, w converge on Q to 1.
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5,4, A Classification of Conically Differentiable Points.

We assceiate with each conically differentiable interior point

p of an arc Cz"a characteristic (similar to that introduced for

conformally différentiable points) (ay, a;, 25, 8z B3 k),

k = la(i), 1a(ii), 2a(iii), 1b, 2 or 3. The numbers‘ai are equal

tolor2;i=0,1, 2, 3, 4. They are determined as follows:

(1) 24

through p all support (] at p all or intersectj cf, 5,3.1(i).

is even or odd according as the nontangent conics

(ii) - &g + al is even or odd according,as the nonosculating

tangent conics of [2 at p all support t? at p or all intersect

cf. 5.3.1 (v).

(iii) a, * ay + a, is even or odd according as the non-

superosculating osculating conics of (? at p support or intersect;
cf., 5.3.1 (viii),

(iv) B+ ay toa, + 2, is even or odd according as the nonultra-
osculating superosculating conics of [2 at p all support C? at

p or all intersect; cf. 5,3.1(x),

(v)

-+ + a, + + & i ) zordi as the
a5 v aq ta, a3 ay 1s even or odd according as

ultraosculating conic 'X(p5) of (? at p supports or intersects

Cz at p.

Remark, It may turn out, for example, that the nonsuper-
osculating osculating conics of (2 at p say, do riot support or
intersect. We will exclude these types of conically differentiable

points,
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S.t,1. We list the types of conically differentiable points

p of an arc a here, Examples of these types of points can be

found in [111,

Points having no- cusp

(1,1,1,1,1; 1a(i)) X(ps) intersects (I at P (2,2,2,2,1; 1a(i))
(1,1,1,1,25 ta(i)) a small neighbourhood of p (2,2,2,2,2; 1a(i))
on a\{p; lies ln X(pB)i
or Y(p )e
. 5 s afas
(1,1,%,1,2; 1a(ii)) Y&) = p (2,2,2,2,2; 1alii)) o
(1,1,1,1;2; 1a(iii))  ¥(p) = double line on J  (2,2,2,2,2; la(iii)) OF the
. second
(1,1,1,2,1; 1b) conics of e intersect {{ (2,2,1,1,2; 1b) lind
at p
(1,2,2,1,1; 1b) a small neighbourhood of (2,2,2,2,2; 1b)

p on@\{p} lies in the
interior or exterior of a

conic of g

(1,1,2,1,1; 2) (2,2,2,2,2; 2)

a does not cross '7at P
(1,1,2,1,13 3) . (2,2,2,2,2; 3)

(la2711212; 2) ' (2;111,]#1; 2) 1
: 5 cusps of
Q crosses g at p . , . the
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5,5. Linear and Conical Order of a Point,

Analogously to 2.6, we introduce the concepts of linear and
conical order -of an arc ZZ . An arc 62 is said te be of finite

conical order [finite linear order] if it has only a finite number

of points in common with any conic {[linel. If the least upper hound

of these numbers is finite, then it is called the conical order

[linear order] of C? . The conical order [linear order] of a point

p of C? is then the minimum of the conical [linear] orders of all
neighbourhoeds of p (HIC? « In the case of conical order, the
order of a point is X% 5, In the case of linear order, the  order of

a point is > 2,

We note the following results:

L) ‘ An end-point p of an arc Q of finite conical order
satisfies PII, If p is of Type 1, then (3 satisfies PIII, and
if p is of Type 1a), then (] satisfies PIV ([10], L.

i) Let p be a conically differentiable interior point of
an arc Cz . Supfose that p has the characteristic (ao, gy By Az, B R),
Then the conical'order of p is not less than agst aq + a, * a3 toay

([113, Theorem 1),

(14i) A conically elementary point of an arc [2 is a point which

decomposes a neighhourhcod of p on Cz into two one-sided neighbourhoods

of conical order .five, )
[
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Let p be a conically elementary point of a differentiable
arc. Q . If p has the characteristic (ao, 35y 355 8gy By k),
then the conical order of p is ay + 2y + a, + ag + a), (C111,

3
Theorem 2).
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5.6. Ordinary and Singular Points,

A point. p of an arc’zl is called conically ordinary [linearly

ordinaryl if the conical order [linear order] of p is five [twol.

If the conical order [linear order] of a point p on 62 is strictly

greater than five [two], p is said to be a conically singular {linearly

singular] point,

A point p of a conically differentiable arc is said to be a
vertex if p is a point of support with respect to K(pB), the

ultraosculating conic of 62 at p.




Section 6

Ares and Curves of Conical Order Six

in the Projective Plane

Introduction

This section parallels the analysis of arcs and éurves of circular
order four doite, in Section 3, Here we shall investigate some of the
properties of arcs and curves of conical order six in the projective

plane,

We first consider general arcs of conical order 5ix in 6.1 and

6,2, In 6,3 wé obtain important monotony results for conically

differentiable convex arcs of conical order six., Conically differentiable
cirves of order six are analysed in 6,4; while our attention is

restricted to.strongly conically differentiable curves of order six

in 6.5.

131
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6.1 Convex Arcs of Conical Order Six

.

Introduction

It is well known that an arc 426 of conical order six is the
union of a finite number of arcs of conical ordér fivej cf., O Haupt
and H, Kunneth (€121, 4.,1.3) and ¥r, Fabricius-Bjerre [23], The
latter's metho&s involved the consideration of arcs in higher dimensional
spaces and the use of properties involving projections of such arcs
to the plane, We have already mentioned, in the int;oduction to
221, how the contraction and expansion theorems of Haupt and Kinneth
simplified the analysis of normal arcs of order k + 1. with respect
to the system“of Yorder characteristics' with the éundamental number
k, proofs using induction on k. Again we should acknéwledge the
work of S, M&khopadhyaya [19], [20] who first studied the process of

i

contraction,

In our considerations the system of order characteristics is
the set of all conics (both non~degenerate and degenenate) with k = 5,
It might be of some interest to develop proofs for such results as
those given above strictly from a conical point of view, Thus sections

6.1,2, 6,1.4 -and- Theorem 9 have been included for completeness.

Hence it can be concluded that an end-point of an arc of conical order

1

six is ordinary and with one possible exception strongly conically

differentiable; ¢f, 6.1.11 and 6,1.13.
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6_,1_.2 Let 06 be an open convex arc of conical order gix,
We first note that if £ is a line intersecting 06 at points s,u
and ‘h another line intersecti;ng 0 6 at points t, v with
s<t<u<wv on 06’ then these two lines comprise a coenic XO
which cannot be:oriented with s <t <u<v on "XO' However, we
do have a corresponding type of normality condition (cf. 3,1) for

convex arcs Q6 of conical order six,

Let XO intersect a6 in six points, Then ,3'0 can be

oriented so that these points lie on the same order on XO as they

do on QG'

Proof, °~ By taking another line L o+ if necéssary, we can

assume that ‘the convex arc Q6 does not meet Lcn'

Let the points of intersection of YO with 06 be
ry 8, t, U, v, w with r<s<t<u<v<w on {J. Let «

be the family of conics which pass through s, t, u, v, Then a is

decomposed ini‘fo three subfamilies Uyy %o

b
aB ¥

Xl i(ss t) v i(ua v),
Y.= P v u L, w,
Ki g(s, u) \J i(t, v),

jy

li
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vhere @), Say, is bounded by Xl and '2, oy by Zl and
YB’ and o and Xz (see Figure 12),

In ({11]; 4,6) it is shown that s, t, u, v 1lie on each conic
of a, in thfe indicated order, Thus s, t, u, v lie on YO in
the same order as on Q 6° One should notice that each conic that
meets QS again is a member of o

Now repeat the gbove argument using the family @ of conics which
pass through r, s, t, u. Then r, s, t, u will lie in the same order
on ¥, as they do on a.6‘ Hence r, s, t, u, v 1lie in the same

order on XO as they do on Q6‘

Finally, repeat the argument using the family & of conics which
pass through t, u, v, w, Then t, u, v, w 1lie inh the same order
on XO as they do on a6' Thus r, s, t, uy, v, w lie in the

indicated order on XO and we have the desired result,




Xi = x(s,,t) v X('u;v)

YB = £(S,11) UX(t,v)

Ya= /]
,f(s,v &9(1:,
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Figure 12
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6.1.1, Let Y be a conic which meets . 06 at six distinct

points a, b, Pps Pos p3, Ppye Then as  t moves monotonically and

continuously from a on 626’ there is a point

ue ¥(t, Dys Ppr Pgs pL;) n 06

which moves monotonically and continuously from b 3in the opposite

direction,

Proof., Without loss of generality, we assume that Py < P, < p3 < Py e

Since 626 is of order six,

.XO = X(a! pl’ p21 ;031 p]_'_)

1
)

intersects QVG at a, b, Pys Pos p3, Py, and meets a6 nowvhere

else, by 6.2.2, If t is sufficiently close to a, then
8(t, pys Dys Pgs 1Y)

will be close to )(O and will intersect C?é at t, Py Pas Pz Py

and at o point u close to b, Also

X(‘b, pl' Poa p_;}: p’-!-)

meets 626 nowhere else, Thus u depends continuously on t,
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It is sufficient to show that t and u move in opposite
directions .on 06 whenever + is close to a., Thus we shall

restrict t to a suitably small néighbourhood of a in the following,

If an even [odd] number of points of {pl, Pos P, P4} lie

between a and b on XO’ then the same number of these points

will lie between t and u on
K(ts p11 Pz, Pja P}_I_)o

Since the distinct conics XO and ¥(t, Py Poy Py p,) meet
exactly at p,, P, p; and p,, t and u will lie on the same

side [on opposite sidesl: .of YO'

On the other hand, since

'06 N XO = {as Pis Poo Pzy Pp» b} ’ ‘

a g will mset XO at an even [odd] number of points between a
and b, Hence if t and u move in the samie direction .on 06’
then t and u will lie on opposite sides [on the same side] of XO;

contradiction,

Remarks, (i) ‘The movement of t and u in 6.1.1 can continue

as long as
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(1) neither 't nor u coincide with one of ?1, Pss Pz Ple

(2) ".t and u do maot coincide with each'Sther,

(3) neither t nor u coincides with an end-point of
Q-

(ii) ﬁél&l remains valid if the arc d?é .is replaced by

a convex circle 2?6 of conical order six,
We note that the proof of 6,1.1 is completely analogous to that

of 3,1.1. By using the method of the proofs of 3,1,2, 3.1.3, 3.1.4

and 3,1.5 we obtain the following resulis.

6,1,2 Let 36 be a conic which meets 626 at points

Py <dp STy <8y <ty <u, If B is the closed subarc of a

O.

between P and Uy then there exists at least one singular voint

in the interior of @ .

Proof. A short systematic proof of this result using; 12 equal

subintervals of
I= [po, uO]
can be given,

Divide the parameter interval
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I= [po, uy]

into 12 equal subintervals with the end-points ks i= ~6, =5,
eesy Oy 1y oo,y 6, The goal is to construct a conieiwhich passes .

through six points of either the interval [A_6, Asj or the interval

£A_5 N As:t of 06 .

In the following, put i =1, 2, 3, %, 5 in turn. Suppose that
at the i step, only i-1 of the poinis of Y NI lie in the closed
subin{?erval [ﬁg:i, Ai] of a g and that there are points of
Y NI on both sides of [A—i’ Ai]. Then we move the two points
which lie outside, adjacent to, and on opposite sides of [A_i, Ai]
toward this interval; using 6.1.,1, while keeping the other four points
of ¥ N I fixed, Eventually, at least one of these moving points

reaches [A_i, A_i]. If necessary, we proceed with the next step.

6.1.3 Let py<ay<r,<sy<t, be five points on (¢

and B the closed subarc of a6 bounded by p, and t,. Let

the point a ¢ 06 \ 5 . Suppose that there exists a conic through

the points a, Py 95 Tgs Sgo tge AL xa is the system of conics

passing through the point a, then there exists at least one

Ka—singular point ¥ on 8; i.e., for any neighbourhood N of

Yy on B there exists a conic of xa that meets N at least five

times.

Proof, A systematic proof, similar to that of 6,1.2, may be

given,
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6,14  Let Ny, N,

points z,, z, on 06‘ Let @ be the closed subarc of 06
Ir

be arbitrary neighbourhoods of two singuiar

between zl and z

2.

ac 06\ N1UBUN2,

then there exists a conic which meets 0{6 at a and at five

distinct points of Nll) @ v NE'

6.1.5 Let 2., z, be two singular points of 06 and let

1 "2
ac 06\ 8 s where 8 is the closed subarc of 06 between

z. and 2 Then there exists at least one b’a—si'n‘gular point ¥

2.

1

o 8.

—lm e

6,1.6 et 9, ¥, ke two points of 06 and let B be

the closed subarc of 06 between them. Let apy 25 be distinct

points of a‘S \ B . If y, and y, and Xal-gingular points,

2
i.e., for any neighbourhood N of y on 8 there exists a conic

then there exists at least one -singular point y on B;
. a;a

passing through a,, a, and meeting N at least four fimes.

1* 2

6.147. Let ¥y, ¥, be tuo points of (. and let B be

the closed subarc of 06 between them., Let 815 25y 85 be

mutually distinct points of QS \ 8 . Iif MY and y, are

-singular points, then there exists at least one -
¥ae, Yo,

singular voint 'y on ﬁl; i,e., for any neighbourhood N of ¥
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on 43 thore exists a conic passing through a

10 3 83 and meeting

N at least three times,

6.1.8 Let Y30 Yo be two points of 06 and let B be

1'
mutually distinct points of 626 \ d; . If ¥y and y., are

the closed .subarc of ‘76 between theimn, Let a ‘?, a3, ay, be

}f -singular points, then there exists at lenst one
alaza3

2{"5‘123

-singular point ¥y on dg 3y l.e., for any neighbourhood

N of y on 63 there exists a conic passing through Bqy 8y a3, ay

and meeting W at least twice,

6.1;9. Let y,, ¥, be two points of and let be
= J1? Y2 — 6 r—— —

the closed subarc of 676 between them, TLet a) s 8y a3, ayy 2

y

be mutuallv distinct points of c26 \ 63 . If yl and y2 are

-singﬁlar points, then there exists at leasi one

Yo 0050, 2508

'Ké 2 a ~singular point y on dg ; i.e., for any. neighboiurhood
20550 5
N of y on &; there exists a conic passing through 8y, Ay 3, ) a5
and meeting N at least once,
6,1.10 Now we prove the main result of this section,

Theorem 9= A convex arc 626 of conical order six contains

at most finitelv many singular points,
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Proof. Assume that there are infinitely many singular points
on 06’ Let a, be any point on 06‘ Then by 6,1.5, there are
infinitely many Xa -singular points on 0 g Take another point

1
a, on 626’" ay X 8 By 6.1.6, there exist infinitely many

X -singular points on a . ‘Take another point a, on 0
a;a, : 6 3 6

mutually distinct. By 6.1.7, 06 contains

with 89y 85, §3
infinitely many b’ -singular points, By taking another point
a,a.,a
17273
é‘1+ on 06, distinct form a3y @y, 8z and applying 6.1.8, we
obtain infinitely many Xa 28,8, ~sinpgular points on 06' Finally
1727374
let a5 be a point of 06 distinct from aq, az_, 35, 2y By
6.1.9, 06 contains infinitely many Xa a8 a g -Singular points.

1%2%3 1+a5‘

But then we have constructed a conic passing through a1y 25, a}, .y a5

which meets a 6 at infinitely many points; contradiction,

Corollary, An arc a6 of conical order six contains at

most finitely many singular points.

Proof, In 6,4.1 it is shoun that ‘76 is either'Canex or
of linear order three, By 3.2,3 of [12], such an arc is the union
of ‘finitely many convex arcs, Using Theorem 9 we obiain the

desired result,

6.1.11  If p is an end-point of (J;, then p is ordinary,
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Proof, If p is a singular point, then for each neighbourhood

1) (1)

N( of p there exists a conic which meets N six times, say

rd - N Y "
at Py < ?1 < rq < 51 < tl < u,. By 6.1.2, there exists a singular
1)

point ¥ in. (pl,‘ul). Now take a new smal}er‘neighbourhood
N(2) of p with y(l) 4 N(z). By 6.1.2, there exists another
gingular point y(z) £ N(z) with y(a) % y(l), Repeating this

process and using 6.1.2, we obtain an infinite numberof singular

points on 626‘ This is impossible, by Theorem 9.

6.1,12 In 6,1.11 it was shown that an end-point p of
CZ{; is ordinary. Hence there eixsts a neighbourhood N5 of p
on (1 ¢ which is of order five. But it is known that N5 U {p}
is strongly conically differentiable at p unless p is of Type 2

({101, 5.5).

Thus an end-point p of 676 is strongly. conically differentiable

with the exception noted above,

6.1.13 In 6,1.,21 and 6,1,12 we assumed that C?6 was

convex, However, as in 6.4.1, arcs of conical order six are either

(1) convex arcs

or
(ii) arcs of linear order three,

But is is well -known that such arcs contain at most finitely many
linearly singular points ([12], 3,2.3), This if p is an end point

of 6?6’ then p has a one~-sided convex neighbourhood on 626 ¢
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Hence we obtain the following result,

Let 06 be an arc of conical order six with an end point

p. Then
(a) p - is ordinary
(b) 06 U {p} is strongly conically diffferentiable at

p if p is not of Type 2,
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6,2 Multiplicitics for Arcs of Conical Order Six

Introduction

Multiplicities for open arcs CZE of conical order five with
one end-point p were .introduced by N,D, Lane and X.. D. Singh in
101, counting p once, twice, three times, four times and five
times, respectively, on a non-tangent conic througﬂ P a non-
osculating tangent conic at p, a non-superosculating osculating
conic at p, a non-ultraosculating superosculating conic at p and
the ultraosculating conic X(p5) at p and counting an interior
point q of C?B once on any conic through q which is not a
géneral tangent conic at g, twice [three timesj foﬁr"timesj on any
general tangent [osculating; superosculatingl conic at q which is
not a general osculating [superosculating; ultraoscglating] conic
at q and five times on any general ultracsculating éonic,at Qe
Then it was shown that no conic meets 625 U {f} more than five

times; i.e,, the inclusion of p and the introduction of multiplicities

do not alter the conical order of 625.

In this section the above result will be generalized with the

exceptions noted .below, to an arc C?G of conical order six,
Theorem 10: The conical order of the open arc 06 is not

changed, with the exceptions observed 'in the remark folloving 6,2.27,

by

,~
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6,2 Multiplicities for Arcs of Conical Order Six

Introduction

Multipliqitieé for open arcs C25 .of cohical order five with
one end-point. p were introduced by N,D, Lane and K. D, Singh in
(10}, counting p once, twice, three times, four times and five
times, respectively, on a non~tangent conic througﬁ P & non-
osculating tangeht conic at p, a non-suﬁerosculating osculating
conic at p, a ﬁdn—ultraosculating superosculating conic at p and
the ultraosculating conie ‘X(p5) at p and counting.an interior
point q of (?5 cnce on any conic through g which is not a
general tangent conic at é, twice [three times; foﬁfktimes] on any
general tangent [osculating; superosculatingl conic at q which is
not a general:osculating [superosculating; ultracsculating] conic
at g and five times on any general ultraosétlating éonicqat Q.
Then it was shown that no conic meets 625 U {f} moré than five
timesj i,e., the inclusion of p and the introduction of multiplicities

do not alter the conical order of 625.

In this section the above result will be generalized with the

exceptions noted below, to an arc C?G of conical order six,

Theorem 10:  The conical order of the open arc 06 is not
changed, with the'éxceptions observed in the remark following £,2.27,

by
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(i) ‘the addition of one of the end-points p;

(ii) the introduction of multiplicities at p, as above; or

(iii) the introduction of multiplicities at interior points

q of a6’ as ahove, The point gq is counted five times on any

general ultraosculating conic at q that intersects 06 at q

and q is counted six times on any general ultraosculating conic

at q that supports a6' at q. In this last case q is a

conically singular point,

Remark, It is assumed that p <s for all s ¢ 06‘

————vee ma
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6.2.1  No conic ¥ supports (J ¢ 2t more than three

points,

Proof. Suppose X supports 06 at 414 90 'q3 and -

If there is another point s which is a point of intersection
of ¥ with 06’ we may assume that s does not lie between g
and q,, say, on 06’ Then a suitable conic XO sufficiently
close to X through a3 and q will intersect 06 at two
points near qq9 at two points near 25 and at one point near s..

This is impossible.

Hence 06 ¢ Yvu xe’ say, Let IL,, L, L3 and L, be four
disjoint neighbourhoods on a6 of Gy dps U and Q. respectively.
Choose a conic ¥' in Xe which is close to . Since the end-
points of Iy, L, L3 and L, lie in Xe, they will also lie in

' , - t [ =4 ] r
Xe’ We can orient J' such that § Xi’ Then q,, q,, Azs Gy € a,i'
Thus ¥' separates dps Gps dz0 Gy from the end-points of Ll’ LZ’
Ly, L) -respectively. ¥' will intersect each of Iyy Ly, Ly, Dy
in not less than two points. Thus X' n a & conta;tné more than

six points; contradiction,

6.2.2  If aconic Y supports (Y, ata point t, then §

cannot nmeet QG at more than four further points,
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Proof, Suppose that X meets QG at Ay 9o q3, Qs q5
and supports Q6 at t, Then at least one of the g3 1 =1, 2, ...y 5
say  qqs is a point of intersection, by 6.2.1, But then a cenic a"
sufficiently close to X through dps Gz Ay 9 will intersect
Q g @t two points near t and at one point near qy. Hence J!'

meets QG at least sevem times; contradiction,

6.2,34 If a conic Y supports 06 at 8 and t, then ¥

does not meet 06 U { p} at more than two further points,

Proof, Suppose that X meets QG U { p} at threé further
points Ay 9o 9z THen either one of the Q39 SBY G, is p or
none of the q; is p. In the second case by 6.2.1, one of the
Q4 S2Y Gy is a point of intersection, Then in either case, as
in previous arguments, a suitablé conic X' sufficiently close to

Y through q, and a will meet (I g twice near s, twice
t -
near t and once near Q. Thus X meets a’s at least seven

times; contradiction,

6,2,k

(i) If a conic through p meets 06 at six points, then

at most one of them is a point of intersection,

Proof, Suppose that a conic X through p intersects QS
at Gys Gy and meets dG at four further points »r, s, u, v.

Choose disjoint neighbourhoods L, Ll’ L2 >f p, Gy 9no respectively,
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which do not contain r, s, u or v, Then if t converges in L
to p, X(r, s, u, v, t) ccnverges to X . However X(r, B, Uy V, t)
intersects Ll and L2 if t is sufficiently ¢lose to p. Hence

this conic meets a6 in not less than seven poin'tS;f contradiction,

(ii) If a tangent conic of 06 at p meets 06 at five

points, then at niost one of them is a point of intersection.

Proof, Let ¥ bve a tangent conic of 06 at p ‘intersecting
a g at the pc;ints dys 9o and meelting 0 6 at further points
r, s, u, If 't is sufficiently close to p, then g(p, r, s, u, t)
will be close to ‘X and it will intersect 06 at points near 94

and q,. This is impossible, by (i),
In the same way we obitain the following,

(iii) If an osculnting conic of 06 at p meets 06

at four points, then at most one of them is a point of intersection,

(iv) If a superosculating conic of 06 at p meets 06

at three points, then at most one of them is a point of intersection.

(v) X(ps) intersects 06 at most once.

6,2.5 No conic meets 06 V] {p} in more than six points,
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Proof, ILet X be a conic which meets 06 v fp} in seven
matually distinct p(;ints. Since 06 is of conical order six,
one of these points must be p while the other six lie on 46'
These six points are all points of intersection of x with 06’

by 6,2,2. But this is impossible, by (i) of £.2.k4

Corollary. No conic through p which supvorts 06 at a

point 8 can _meet 06 at four further points.

6:2.6 If a conic Y supports 06 at s, t and u, then

X does not meet 06 u {p} again,

Proof. Suppose that § meets 06 v {p} .at a further
point v, Then by 6,2.1, v is a point of intersection of 06

with X or Vv =7,
In either case a suitable conic X' through v and sufficiently
close to ¥ will intersect 06 twice near &, twice near t

and twice near u. This is impossible, by 6,2.5.

Corollary., No tangent conic of 06 V) {p} at p supports

a 6 at more than two points,

6.2.7  No tangent conic of 06 U p} at p meets 06

in more than four points,
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Proof, If'a tangent conic of UV ¢pt at p meets
Lroof L
Q’ 6 at five distinet points, then at least four of these are
points of support, by (ii) of 6.2.4, However, this is impossible,
? ——,

by 6.2. l.

Corollary 1, No tangent conic of 06 v [p} at p

supgorts 626 at two points and intersects ‘?6 at a further

-

poing,

Corollary 2, No tangent conic of 06 v {p} at p

supports C26 at .one point and intersects (:?6 at three further

points,

6.2.8 No osculating conic of 06 U {p} at p meets

06 in more than three points,

Proof. If an osculating conic of a6 V) {p} at p meets
626 at four distinct points, then at least three of these are

points of support, by (iii) of 6,2.L, However, this dis impossible,

by 6.2.6,

Corollary 1. No osculating conic of 06 J -;{p} at »p

supports 06 at more than one point,

Corollary 2. No osculating conic of ‘7% U {}} at p

supports 06 at one point and intersects 06 at more than

one point,
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6.2.9 No superosculating conic of 06 v {p} at p

meets 06 more than twice,

Proof, If a superosculating conic of 06 (V) {p} at p
meels. Q6 at three points, then at least two of these are points

of support, by {(iv) of 6,2.li. However, this is impossible, by

Corollary 1 of 6,2,8,

Coroliary 1, No superosculating conic of 06 v {p} at p

supports a6 more than once,

Corollary-2, No superoséulating conic of a 6 v {p} which

supports 06 at one point can meet 06 again,

6

.2.10 X(ps) cannot meet 06 more than once.

Proof, If X(ps) meets 06 at two points, then at least

one of these is a point of support, by {v) of £.2.4%, However, this

is impossible, by Corollary 2 of 6.2.9.

Corollarx; X(ps ) cannot support a 6 at any point,
6,2,11 No general. osculating conic of 06 at.- q intersects

Q 6 \, {q} more than three times,
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Proof, Let x be a general osculating conic of 06 at
g which intersects ‘?b \ {g} at four points 1y, r,, T3y Ty
By the definition of a general osculating conic, there is a conic
X' sufficiently close to ¥ and that  Y' meets 06 three
times near g and once each near s Tps T3y Ty ‘Altogether aw

meets 06 at least seven times; contradiction,

6,2.,12 No general osculating conic of 06 at q supports

a6 more than once,

Proof, " Let Y be a general osculating conic of 06 at q
which supports 06 at r and s. Then by .2 (i), a conic
of ‘P(X) sufficiently close to § will be a general osculating
conic of 06. at g which intersects 06 twice. nedr r and

twice near s, This is impossible, by 6,2.11,

Similarly one obtains the following,

6.2.13

(a) No general osculating conic of 06 at q uhich

supports a6 at & point r k q can meet 06 u {p} at more

than one further .point.

(b) No general osculating conic of ,as at q can meet

a6 J {p} at more than three further points,
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6.2,1h No general superosculating conic of a6 at q
intersects (3 more than fwige.

Proof, The proof is analogous to 6,2,11,

6,2,15 No general superosculating conic of a 6 2k g

supports 06 \ {q} more than once,

Proof, This is a sqecial case of 6,2,12, since every super-

osculating conic of 06 at q is a general osculating conic

of 06 at q;

Corollary, No general superosculating conic of 0 5 at q

which supports QG at a point r ¥ q .can meet 05 v {p}

again,

Proof, 'The proof is analogous. to 6.,2.13 (a) using 5,3,2 (ii)

and 6.2,15.

6,2,16 No general superosculating conic of 06 at q gan
meet 06 vV {p} at more than two other voints,

Proof, The proof is analogous to 6,2.13 (b) using 5.3.2 (ii).

6.2,17 No general ultraosculating conic of Q6 at q

intersect 06 \ {q} more than twice,
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Proof, The proof is analogous to 6.2.11,

6.2.18
(a) No gmeneral ultraosculating conic of 0‘6 at q which

intersects 06 at g cah suppori 06 at a point =\q.

Proof. Tet ¥ be a general ultraosculating conic of Qa 6

at q intersecting 06 at q which supports 06 at r. Since
X intersects 0 & at g, the end-points of a small neighbourhood
4N of q on 06 will lie on opposite sides of X .o« Let Z'
have four-point contact with Z at g (cf. 5.1,1) and be sufficiently
¢close to X so that the end-points of N will still lie on opposite
sides of X' and X' will intersect Q6 “twice near r, Thus

X‘ meets N with an odd multiplicity. Hence )" is -either a
general superosculating conic of 06 at q {ef. 5,3,2 ii) which
meets N at another point or a general superosculating conic of

06 at q which intersects 06 at qj i.e., a general ultra-
osculating conic of 06 at q. But these situations are impossible,

by 6.2.16 and 6,2.17.

(b) No reneral ultraosculating conic of 06 at g which

intersects 06' at q gan meet 06 U {p} at more than one

gther point,

Proof. Let X be a general ultraosculating conic of a 6

at g intersecting 06 at g which meets 06 U:{p at two
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further points r, s, By'6.2.17 and 6.2,18 (a), one of these points,
say r, is a point of intersection of a 6 with Y and the other

point s = p,

As in Q_)_, a suitable conic K ' having four-point contact
with X at q which lies sufficiently close to X will intersect
Q ¢ &t a.point near r and a point near p. Agg;in' as in (a),
X' meets a small neighbourhood N of q with an odd multiplicity.
Hence X' is either a general superosculating conic of QG at q
which meets N at another point or a general ultraosculating conic

of 06 at q. This is impossible, by 6,2,16 and §,2.17.

6.2,19 No general ultraosculating conic of 06 at q

which supports 06 at q can meet aé u {p} again,

¥

Proof. Let ¥ be a general ultraosculating conic of 0 6

at g which supports 0 6 at q and meets 06 Uy {p} at a

further point u, Then there are three possibilities:

(a) ¥ intersects 06 at uj
) 3 supports 06 at uj or

() ¥ meets a6 U {p} at u = p,

If case (a) occurs, then as in 6,2,17, a conic X" can be
constructed ciogse to \6 meeting a6 six times near q and once

near uj; contradictien,
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Suppose that case (b)’ occurs. Then ¥ cannot meet 06
except at q and u, by the Corollary to 6,2,15. Without loss

of generality, let

QG \ {q, u}c'xe’
Also let
N=N' U {q} U N (L

be a small two sided neighbourhood of q [ul on 06. We claim
that X is one of the one-sided ultraosculatihg conics of Q6

at gq. Otherwise, X is a general tangent conic of bqth. N' U {q}
and N" y {q} at q and hence 06 satisfies Condition PI at
q (cf. 2.3.3), by 6.1,12. Thus ¥ is a tangent conic. of 06 at
q and the family of tangent conics of 06 at q all touch the
tangent line at q, Let 1'] be the one-sided ultraosculating conic
of 06 at q whichllies in Xi with the exception of q.
Now if s ¢ N,_ then s ¢ Xe' Thus the superosculating conic of
N at q through s is blocked hy X as s converges to q and
hence cannot converge to 1‘\ y contradiction, Thus X is one of the

one-sided ultraosculnting conics of 06 at q, say of N' U {q} .

Let s' be close to q on N', Then the superosculating conic
' of N' U Eq} at q through s' will be close to ¥ and

lie in Xe with. the exception of ¢, Hence ¥ intersects L

at two points near u. This is impossible, by 6,2,1h4.
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Finally supposé that case (c) occurs, Let
N=N'U {q} u N [1]

be a small two-sided [one-sided] neighbourhood of q [p] on
a6 U {p} . By the method of (b), we can construct a conic
X' which is a general superosculating conic of 06 at q inter~
secting N at s' and L at one point s, But then a" must
meet N with .an even multiplicity. Thus X' -ei‘tht{r intersects
QG at q. or meets N at another point. Both are impossible,

by 6,2.18 (b) and 6,2.16,

6,2.20 No general osculating conic of 06 at q can be

a_general superosculating conic of 06 at r which sunpporis 06

at .

Proof. Let X be a general osculating conic of 06 at ¢

which is a general superosculating conic of 0 6 at r and supports

Q_6 at r. Tet
o= N U{-q} U N [L = 10 W {1:} v L")

be a small two-sided nieghbourhood of g [r] on 06' Fither X

intersects Q6 at gq or X supports 06 at q.
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Finally supposé that case {c) occurs, Let
=N\ {q} u N [1]

be a small two-sided [one~sided] neighbourhecod of q [p] on
06 U {p} . By the method of (b), we can construct a conic
X' which 1s a general superosculating conic of 0'6 at q intere
secting N at s' and L at one point s, But 'then ¥' rmust
meet N with an even multiplicity, Thus X' erther intersects
06 at q. or meets N at another point, Both are impossible,

by 6.2.18 (b) and 6.,2.16.

6,2,20 No gerneral osculating conic of aé at q gan be

a_general superosculating conic of 06 at r which supports 06

at r.

Proof., Let x be a general osculating conic of 0 6 at q

which is a general superosculating conic of at r and supports
- 6 PPo

Q-S at r, ‘Let
..N = N! U{q} U N [L=1L'VY {z} L L]

be a small two-sided nieghbourhood of ¢ [r] on 06' Tither ¥

intersects 06 at q or ¥ supports 06 at q, -
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Suppose that Y intersects 06 at q. Since X is a
general osculating conic of a g at d. then X is a general
tangent coni¢ of Nt U {q} or of N" W {q} at q, say the
former, But N' U {q} satisfies Condition PI' at g (ef, 5,3.3),
by 6.1,12, Thus ¥ isa tangent conic of W' U {q} at q. Let
t' ¢ N', close to q. Then the conic Y through q, t' and
having three-point contact with X will be close to X . But the
end-points of N[L] lie on opposite sides [on the same side} of S .
Thus the end-points of NEI] 1lie on opposite sir.des [on the same side]
of ¥'. But ¥ ' meets N[L] at q and t' [at r], Thus X'
will meet N[L] at a further point., Also X' is .a gencral osculating

conic of Q6 at r, by 5.3.2 (1), This is impossible, by 6.2,11

and 6,2,13,

Suppose that ¥ supports 06 at q (see Figure-13(i)). Then
X is a general superosculating conic of’ a 6 at both r and q
supporting at these points. By the corollary to 6.2.1 Y
p 6 '

does not meet 06 again, Without loss of generality, let

as \ {1" q} < Y-

We now c¢claim that X is 'one of the one-sided osculating conies
of 06 at r '- in the family of conics which support each other
at q. If not, then x » Dbeing a general superosculating conic of

a6 at r, must be a general tangent conic of L'-Ui{r} and

SALERY) {r} at r. Hence QG satisfies Condition PI' at r and
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the family of t;.ng;ent conics of a 6 at r all mtouch the tangent
line at r., Let 1'\ be the one-sided osculating conic of L at

r, in the Tamily of conics whic}‘{ support each other at ¢, that

lies in X:'L ‘with the exception of the points g and r, Let
seciL, Then § ¢ Xe' Thus the tangent conic of L at r through

s and supporting X at q is blocked by X as s converges to

r and hence cannot converge to 'I‘; contradiction, Thus X is one
of the one-sided osculating conics of 06 at r, say of L' U {r} ’

in the family of conics which support eac¢h other at q,

Let s' be close to r on IL', Then the conic X' which
supports X r?lt r and g through s' is close to X . Now the
end-points of I lie on the same side of X . Thus the end-points
of L 1lie on the samé side of X'.. Thus X' meets L at a further
point s", By 6.,2.3, ¥' cannot meet 06 outs‘.ide the points
q, ry 8', 8" (see Tigure 13 (ii)). Now the end-points of N 1lie
in Xe. Thus N N\ {q} lies in Xé and X" supports (¢ &
at gq. But by the methods of the preceding paragraph, X will be
one of the o;ze—sided osculating conics of 06 at q _in the family
of conics which :upport each other at r. As u ténds to q on N,
the tangent coni‘c of N at q through u and supporting x is

blocked by X‘ and hence cannot converge to X; contradiction,
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Figure 13
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6.2.21 No general osculating conic of 06 at g can be

a general osculating conic of 06 at r meeting 06 U {p}

again, . i

Proof. Let \6 be a general osculating conic of 06 at q
which is a general osculating conic of 06 at r .and meets
06 Y] (p} dt a further point wu. By 6,2.20, X intersects

06 at q and r., Let
N=N'U {q}UN" [L]

be a small two-sided neighbourhood of q [r] on 06’ Now ¥ is
either a general tangent conic of N! U-"{q} or of N" U {q} at
g, Since it ‘;is a general osculating conic of 06 ai; q. Without
loss of generality, let X be a general tangen’t conic of N' Y q}
at g, But, :N‘ v {q} . satisfies Condition PI', .by 6,1.12. Hence
X is a tangenf conic of N' U {q} at q., Let &' be close

to g on N', Then the conic X ' yhich supports x at r and
passes through q, s', u is cﬁlose to X . DBut X' must meet

both N andﬂ NL with an odd multiplicity., IHence B’,F meets N

at another point while X’ either supports 06 ai; r meeting

L at another point or is a general osculating conic of a g at

r. But these situations are impossible, by 6,2.2, 6,2,11 and the

corollary following 6,2.5.

6,2,22 No general osculating conic of 06 _a_t_ q which

is a tangent conic of 06 v {p} at p can intersect QG \ {q}
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Imors. fhag once,

Proof, Let ¥ be a general osculating conic of .06 at
q which is a tangent conic of -’ aS U {p} at p and intersects
06 at s and t. HNow let =r i;e close to p on 06' Then
the conic X ' having three-point contact with X at g and
passing through p, r will be close to ¥ . By 53,2 (), X!
is a general osculating conic of 06 at g and will intersect
06 at poiAnts close to s and t, since it is close to X .

This is impossible, by 6,2.13 (b),

6,2,23 No general superdsculating conic of 06_‘ at g

which is a tangent conic of 06 v {p} at p can meet a6

elsevwhere,

Proof, Let X be a general superosculating conic of 0 &

at q which is a tangent conic of 0 6 v {p} and meets a 6
at a further point u, Then u is a point of interse.c‘tion of X
with 06’ by 6,2,16, Also ¥ supports Q6 at q, by the
Corollary following 6.2,18. Let s be close to p on 06' Then
the conic X' having three-point contact with x at q and passing
through the points g, s will be ¢louse to y . Hence K ' intersects

as at a point on 06 close to u, But X' is a general
osculating conic of 06 at q (ef. 5.3.2 (1)) which'must meet 0 £
with an even multiplicity near g, Hence X' also meets 06 at

a point near q, This is impossible, by 6,2.13 (b),

I
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6.2.,2%  No general osculating conic of 06 at q which is

a tangent conic of 06 U {p} at p _can support. 06 at r,
Proof, Iet ¥ be a general osculating conic of 06 at q
which is a tangent conic of 06 U {p} at p and .supports
06 at r., Theh a .suitable conic ¥ close to X supporting
at q and p will intersect a6 twice near r, But b’ intersects
06 at q, by 6,2.23., Thus J' umust meet 06 with an odd
multiplicity near q. Hence X‘ is a general .oscIllating conic of
06 at q or Z' supports 06 at q and meets 06 at
another point close to gq. This is impossible, by 6:2,22 and by

Corollary 2 following 6,2.7.

6.2.22 and 6.2,24 imply the following,

6,2.25 " No general osculating conic .of 06 at q which

is a tangeiit conic of 06— v {P} at p can meet 06 \ {Q}

more than once.

6,2,26 No general superosculating conic of 06‘ at q

which supports 06 at q can be an osculating conic of

06 u {P}_?.-ipo

Proof. Let X be a general superosculating conic of 0 &

at q, supporting at q, which is an osculzting conic of
9 6

Qe v {p} at p, Let
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N=N VU {q} U N L1

-

be a small two-sided [one-sided] neighbourhood of g [p] on

J pt. Now B’ cannot meet elsewhere, .'by 6,2.23.
Q¢ v o} 6 212222

Without loss of generality, let

06 \ {q} < Xe'

Now as in the proof of the second part of 6,2,20, X is one of the
one-sided osculating conics of 0’6 at q in the family of ccenics

that support each other at. q.

Let s be close to p on L, Then the conic X' which
supports X at p, q and passes through s is a tarpgent conic

of a6 v {p} at p and is close to ¥ (see Figure 14). Since

5 € 06\"{.[1}’ 8 € Ye‘ Thus

¥ \{p, q} < ¥..

Now the end-poonts of N lie in Xe' Hence the end-points of N

lie in Xé.‘

Next suppose that X' does not -support 06 at q, Then
X' is a general osculating conic of 06 at g in the family
of conics which support each other at ¢q, But X’ must meet N

with an even multiplicity and hence meets N at another point,
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This is impossible, by 6,2,25. Thus X' supports 06 at q.

Also ¥' does not intersect N \ {q} . Othérwise Y''
must meet N with an even multiplicity énd'would intersect N
again, This is impossible, by Corollary 2 of 6,2,7, Finally 3%

does not support N \ {q} at any point, by Corollary 1 following
6.2.7. ,

Now we proceed as in the last few lines of the last paragraph

of the proof of 6,2,20 to obtain a contradiction,




Figure 14
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6,2.27- No general osculating conic of 06 at q .cag be

a_superosculating conic of ‘06 v {p} at p if this conic
is tangent to 06 V) {p} in_the ;sameﬁdj.rection at both q and p.

Proof. Tet Y be a general osculating conic of 6)6 at q
which is a sufp;eroscula'ting conic of 06 J {p} at p. Also
assume that ¥ is tangent to 06 v {p} in the same direction at
both q and p (see Figure 15(i)).

) :

Let s be close to p on 6?6' Let Y' be the osculating
conic of 06 v {p} at p .through & and q. Then ‘X'
intersects ¥ at p, g and is close to & . -Now the end-points
of a small two-sided neighbourhood N of g on 06 lie on
opﬁosité sides. of ¥ , since ){ intersects 676 at, q; cf. £,2.26,
Thus the end-points of N 1lie on opposite sides of X', since ¥
is close to X .

Now X' ‘cannot support a 5 at qs Otherwise it would
meet N again, since it mu~t meet N with an odd multiplicity,

This is impossible, by Corollary 2 following 6,2.8, Thus !
intersects 06. at q. Also Y' cannot sipport N \ {q} at

any point, by Corollary 2 following 2. following 6,2,8. Finally X
does not intersect N \ {q} at any point, Othe.rwise;, ¥' must
intersect N 5\-{q} at still another point, Th&s is also impossible,
by 6,2.8. Thus }{' intersects N at q and ﬁoeté— N nowhere

else,
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Next, since X is tangent to 06 Y] { p} in the same
direction at p and g, ¥' 1lies (in some sensé) between the

general osculating conic X of 0 6 at gq and the arxc N of

Qg itselr.

Finally Y, being a general osculating conic of 06 at g

is a general tangent conic of N' U {q} or or N" y {q} at q, if

N=nN' | {q} U N,

Without loss Qf.generality, let ¥ be a general tangent conic
of N' y {q}' at q. But N' U {q} satisfies Condition PI',
by 6,1,12. Thus § is a tangent conic of N*' VU {q} at q. Let
s € N lrience 5 € X;. Thus the conic passing through s, q
and having three-point contact with \6 at " p is blocked by X' as
s converges on N' to q and hence cannot cunverge to X H

contradiction,

Remark, A similar problem seems to arise here in the conical
analysis for multiplicities of arcs {({ g of order siX as the one
which occured for the circular case concerning multiplicities of

arcs 04 of order four; cf, 3,2,1k,

It seems to be possible to have
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{a) _ a general osculating conic & of 06 at g which

is a superosculating conic of 06 J {p} at p;

(b) a genevral ultraosculating conic X of 0 g &t a

——

vhich is a tangent conic of 06 v {p} at p (of course X

would have to intersect 06 at q, by 6,2,19)3 or

(c) A genaral ultraoscul :ting conic § of 06 at q

which is a general osculating conie of a g at » ( X must intersect

QG at both q and r, by 6,2,19 and §,2.20);

if \K is not tangent to 06 v {p} in the same direction at pn, g
for {a) and (b) or if ¥ is not tangent to a6‘ Y {p} in the
same direction at q and r for (¢) (see Figure 15(ii)). These

exceptions are not possible, if é6 is convex,

The author would appreciate any research which would either rule
out these possibilities or give examples of the existence of such

arcs of conical. order six,
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(1)

(ii)

Figure 15
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6.3 Monotony Theorems for Conically Differentiable Covex
Ares of Conical Crder Six

Introduction

A "Monotony Theoven' is derived by 0, Haupt and H, K;nneth
([12], 2.3) for arcs of finite order with respect to a system of
order characteristies with fundamental number ¥. A statement and
proof of a corresponding monofnny result for the circvlar case was
given in 3,1.3 for arcs of order four, -A similar result for the

conical case and arcs of conical order six was obtained in 6,1.1.

In this section we shall derive a4 generalization of 6,1,1 under
the assumption ;hat 626 is a strongly conically differentiable
convex arc of conical order six, In 6.3.7 the monotony results 5.3,2-
6.3.6 are extendad to conically differentiable convex arcs 0 6

as long as ‘?6 contains no peoints of Type 2j cof. 5.3,1.

These results will be very useful in the analysis of ccnically
differentiableé convex curves of conical order six; ¢f, 6.4.6 and

6."".70




6,3.1 In the following it is assumed, unless otherwise
stated, that 06 is an open strongly differentiable convex arc
of” conical order six. It will become evident that '—06 could be
replaced by a s%;f-angly conically :Iifferentinb].sz conve;x curve gs

without affecting the validity of the results,

§,3.2  Let p; $p, < Py < p, be_four points on 06' Let

XO be a conic .which passes throurh these poinls nnd meets 06

six times altogether counting multiplicities. Call the other two

points a and b, Then as t moves monotonically and continuously

Srom a in one direction on 06’ there is a point

‘u € x(ts pli Pss P3a p)_]_) n 06

.

which moves monotonically and continuously from b in. the opposite

direction,
Loo ot el Oh

Proof. Since 06 is of conical order six, _Xo meets
a6 at a, b, Py» Pss P3s By, and nowhere else, "There are a
number of cases, depending upon the coincidence of one or more of
these points, ' In all cases, if t is distinet from and close to
a, then ¥(t, Py Ppy P pq) is close to b’(a, Pys Por Pa p&_) = JO
since QS i5 strongly conically differentiable., Hence
X(t, Pys Pos ps; pl!_) meets 06 at & point u close to b,
Also u k b; otherwise, \6(1‘., Piy Doy Pas '94) neets .06 more

than six times, counting multiplicities and this is a contradiction,
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Similarly,  §(t, Pys Pps Pao p,) can meet 06 nowhere else.

Thus u depends continuously on t,

Because of the continuity of the movement of u, it is suffiecient
to show that t and u move in opposite directions on 06 whenever
t is close to a, We will give proofs for the casés in which the
points Pys ‘p2, pj,. p, are mutually distinct, Similar argumentis
can be used for the cases in which one or more of pJ:, Pyy Pzs Py
coincide, We shall assume, without loss of generality, that a <b

o Q.

H

(i) Al of =, b, Pys Ppy Pge Py are distinct, This is 6,1.1.
(3i) Let b= p, for some i, 1<Xi<h, a¥hn, aerj,
123ish

Then XO intersects 06 at a and 'pj, 3 {= i, 1= L
and supports 0:6 at b= P;. The subarc 0 é of 06 between

a and b cohtains either an even or odd number of noints of

{pl; Py Pz p;,}\ {pi} .

Suppose that aé contains an odd number of points of the above
set (the following argument can be slightly modified to take care
of the even number case), Let this number be @ . Then 0’6' = 06\ dé

will contain an even number e of the points

{p1 P50 5 i} \ {pi} ,




175

where €@+ e =3, Since t is close to a and u is close to
b, then the same number of these points will lie on the respective

arcs @', ' of  Y(t, P1r Pys Py ph) between, t and u.

If u moves away from b on 0'6' as t moves away from
a on aé, then t and u will lie on opposite sides of XO'
Hence - ¥ (t; P1s Par Py p,) meets Y, with an odd multiplicity
on both arcs Y, y" of ¥ (t, Ppy Poy Pz pu) between t and
u. On the are ¥", ¥ (%, P1s Ppr P p,) meets ¥ o with an
odd multiplicity 2> ej i.e., > e + 1. On the other ar;: p.
¥ (¢, P1s Pyy Pz Pb,) meets ¥ . at least © times and at the

additional point. Py i.e., 2 ©+ 1,

If u moves away from b on aé as t moves away from
a on g, then t and u will 1lie on the same side of XO‘
since XO intersecis 06 at a and supworts 0‘6 at b = P; -
Hence J (%, Pys Do Ps) p,) meets Xo with an even multiplicity
on both arcs ,x', y" of X (¢, Py Py Pa 'ph) between t
and u., On the are §', ¥(t, Pys Por Pz pk) meets ¥, with
and even multiplicity > e?; i.e., 2 ®& + 1, On the other arc 8",
¥ (¢, Py» Pps Pas -p’-&) meets ¥, at least e times and at the

additional point ;3 i.e,, 2 e+ 1,

In both cases  §(t, PyPs Py Pz py) meets ZO altogether

at least

(e + 1) + (& +1) =75
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times, Hence

XO = X(ta pia Pes PB’ p’-!-)
and this conic meets 06 more than six times; contradiction,

Thus g (t, Pys Por Pa pl}) meets 06 at a.point u which
moves meonotonically and continuously on 06 in the opposite

direction to that of t,
(iii) Tet a=1bk Pys 1<3<h,

Then XO intersects 06 at pj’ j=121, ».., & and supports
06 at a=Db, Let N be a suitably small two-sided neighbourhood
of a on aS’ The end-points of N 1lie on the same. side of XO’

say in XO , Since XO supports 06 at a, We can assign
e

a continuous -orientation to the conics through Pys Pps Py Py near
XO' Hence if t is sufficiently close to a, the eﬁd-points of

N will also lie in ¥ (&, by, ps, P5s Pyl

Without ’1oss‘ of generality, let p, <a=b<p,. Now t e XO
and hence the srec of Y(t, Pys Poy Pzs ph) between Py and N °
which contains. t 1ies in XO . By the continuous orientation
of the conics through p,, P, p:, p), near XO’ ‘thHe arc of XO
between py and p, which contains a lies in J (¢, Fyv Ppy P p;_})i.
In particular a o 7 (&, Py Pos Prg p‘})i' Hence egch" of the one-

sided neighbourhoods of a that mr-lke'up N will intersect
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¥ (¢, P1s Pps Pz PL;)’ once at t and once at u, Also

¥ (¢, P13 Pps Pss PL}) doeas not meet a6 again,

Thus  ¥(t, Py Pos Pas p,) moets 06 at a.point u which
moves monotonically and continuocusly on 06 in the opposite direction
to that of t.

(iv) Tet a = p; for some i, 1<i<lh, a¥%b and b} Pys
1835k

Then ¥, intersects (J, at b and P ki, 1558k

and supports ‘06 at a = Py. This case is identical to case (ii)

with b replaced by a and can be dealt with in a similar manner.

(v) Let a=7p, for some i, 1<4i < L, b =p, for some
‘——— i 3 - - J
=i, 135k
Then ¥, intersects 06 at p, k $i, 3, 1£k<h and
i i = = !
supports 06‘ at a Py and at b pj. The subarc a 6 of
a 6 between a4 and b contains either an even or odd number of

points of

{1?1, P2 P p;!} \ {pi. P}

Suppose that aé contains an odd number and hence one of the points
of the above set, Then 0'6' = a6 \ aé will contain the other

point of this set. Since t is close to a and u is close to b,
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the same number of these points (namely one) will lie on the respective

ares ¥, Y of X(t, Py Pys P3s Pl;.) between t and u,

If u moves away from b on Q g [a é] as t moves away
from a on aé Ca'e' s then t and u will lie on opposite
sides of XO‘ Hence ) (t, Pys Pys Pa PL;) meets” X‘O with an
odd multiplicity on both arcs 5 ' X" of X(t, Py» Pps Pz pl*).
On the arc Y'L ¥ "I, f (t, Pys Pps Pss. pq) meets Yo at least
once and at the additional point b and hence 2 3 times, On the

1" h) - AL
arc X L Z 1 X(t, Pys Pos p3, p,_}) meets XO at lecast once
and at the additional point Py i.e,, 2 2 times, Hence
X(t, Pys Ppr.Ps pq_) meets KO altogether at least five timees,

Thus
XO = X(ta pl’ Pos P3’ P}_,_)

and this conic meets 06 at least seven times; contradiction,
The assumption that the subarc a 6' of a 6 cuntains an even

number of points of

{p‘l, Par Pyr Py} \ {5, pj}

similarly leads to a contradiction,

Thus  § (t, Pys Pps DPa pL;.) meets 06 at a point u which
moves monotonically and continuously on 0 6 in the opposite direction

to that of ¢t.-
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(vi) Tet a=h-= P3 for some i, 1 <i<4h,

Then }{0» inters~cts 676 at a=b= Py and at the noints
pj, 1<i< y, Let N' be a suitably small two-sided neighbourhocd
of b=a on 626' Then by the continuity of u, there exists
a small two-sided neighbourhood N of a=Db on 626 such that
if teN, then ueN', Let tecN, tha, Then ukbd=a,

as was Shown in the proof of the continuity of nu,

Suppose uw and t lie on the same side of a on N' [u = t]
Without loss of generality if us=f t, let t lie betwesn a and
u on N', By case (i) [(iii)], as t' moves monotonically and

continuously from t towards a on N, there is a point

u' ¢ X(t_, P1» Ppr Pz PLF> N 06

which moves from u in the opposite direction on N', Thus u"

cannot converge to 2 as t' tends to aj contradiction.

Hence K(t, P1s Psy pj, ph) meets 676 at @ point u
which meves monotonically and continuously on C?tS in the opposite

direction to that of ¢,

6.3, Let p, < p, £ p, be three points on :, Let
—_—F] - 2 = 3 A 6 0

be a tangent conic of (?é at a point a which passes through

these points gnd meects 626 six times altogether céunting multiplicites,

Call the other point_ b, Then as t moves monotuenically and
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continuously from a din one direction on 06' there is a point
u e X(t2 P~s Poy Pz) A 0
] l! 21 3 6

which moves monotonically and continuously from b Ain. the opposite

direction,

Proof. éince 06 is of order six, XO meets 06 at
the points a, b, Pys Pps p3 and nowhere else, Again we have a
number of cases depending upon the coincidence of one or more of
these points, In all cases, it t is distinct from and close to
a, then X(fca, Pys Doy pB—) is close to ZO since 06 is
strongly conically differentiable, Thus X(ta, Pys Pos pj) meets
06 at a point um close to b, Also Z(‘ca, Pys Pos P3) can

meet 06 nowhere else, Thus u depends continuously on t.

Because of the continuity of wu, it is sufficient to show that
t and u move in oppesite directions on a 6 whenever t is
close to a. Again we will give proofs for the r:as;as in which the
points Pys Poy pB are mitually distinct., Similar 'argt;ments can
be used to prove the monotony property for the cases in which one

or more of the points Py Poy p3 coincide.

(i) Al of a, b, Pys Pps Py are distinct,
Then ¥ o intersects a g at b, Dy, P, Py and supports
06 at a, By 6,3,2 (iii), if t dis distinct from and close

to a, then X(t, P11 Doy P3s b) intersects ‘aG at a point g
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on the opposite side of and cloge to a, Let r converge from g

through a to. t on 06' Then

. 2
I'-l_-z;.nt ¥lra ty pys a3 = Y (5, ps 0y 23)

By 6.,3,2 (i), as r moves monotonically and continuously

from q through a to t on 06’ there is a point

u, e X(i‘, t, }01, Dss PB) N 06

which moves monotonically and contimiously from b in the opposite

direction, Thus

moves in the opposite direction frem b on 06 as t does from a,

(ii) Let b=p, forsome i, 1<i<3, a=b, a=p,

1Sis35.

l IS

Then xO is a nonoasculating tangent conie of Q‘s at a
and b = P . Hence XO‘ intersects a"6 at the Poin'l?s pj’ i=1i,
and suppoiis Q ¢ at a and b, By §6.3.2 (v), as t moves
mondtonically and continuously from a on Q g x (t, a, Pys Po p3)
intersects a I3 at a point ¢q which moves monotonically and
continuously from b in the opposite direction. It t is close to

a, then q i1s close to b, Wow let r converge from a to t on

a6.']f'hen




182

. } 2
r}ir)nt x(r, t, pl’ Pas p3) = x(t ] Pla Pzi p3)°

By 6.3.2 (i), a&s r moves monotonically and continuously

from a to %, then there is a point

u, € ¥, t, Pyy Poy P_3) h 06

which moves monotonically and continuously from gq in the opposite

direction, Thus

cu'= lim, u '
r—at

moves in the opposite direction on 06 to that of t.

H

Liii) Tet a=b=‘ipj,l§j_<_3.

Then X o isa nonsuperosculating osculating (iOnlC of 06
at a=0>1, Ilence XO intersect:s a(% a a = b and at the points
pj, 1< j<£3., By6,3,2 (¥i1), if t is close to and distinct from
a, ¥, Pys Ppr Py a) intersects 06 at a point. q on the

opposite side of and close to a., Let r converge from a to t

on 06' Thel.'l
. 2 ‘
I‘E’mt X(r, t, pl, p2, p3) = X('t ’ Pls P2! p3).

By §.3.2 (i), as r moves monotonically and conrtinuously from

a to t, thereé is a point,




‘.11. £ X(r’ t! pli pai p3) n 06

wich. moves monotonically and continuobisly from q in the opposite

direction, Thus

u= _lim, u
regt r

moves in the opposite direction on 06 to that of t,

(iv Let a=p; for some i, 1<51%3, 2 ¥ b and
bXp., 1< jL3,

J

Then YO is a nonsuperosculating -osculating conic of a 6

at a = P;. Hence X‘O intersects 06 at a =p., b and

i‘l
pj, 1<3L£3. Byb6.3.2, if t moves monotonically and continuously

from a on -a6’ then  ¥(t, a, Pys Pos p3) intersects 06

at a point q which moves monotonically and continuously from b
in the opposite direction, If t is close to a, then q is

close to b, Let r converge from a to t on a e Then
’ 2
piim, ¥lr, &, pyy o pg) = BT, By, pyy By).

By 6,3.2 (iv), as r moves monotonically and continucusly from

a to t, there is a point

u, e B(I‘, t, Pys Pos Pi) d 06
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which moves monotonically and continuously from gq in the opposite

direction, -Thus
n=_Jlim, u
reyt r
moves in the opposite directién on a 6 to that of t..

) Let a =p; for some i, 151 <3, b:pj for
some 3, jk4, 1<J<3.
Then 'XO is simultaneously a nonsuprrosculating osculating

conic of aG at a and a hohosculating tangent conic of 06
at b. Hence xo intersects 06 at a, p, k¥ j,1Zkg3
and supports a6 at b, By 6.3.2, if t moves monotonically
and continuously from a on 0’6, ¥k, a, Pys Pos p'3,) intersects

0 g at a point q which moves monotonically and cortinuously
from b 1in the opposite direction, If t is close to a, then
q 1is close to b, Let r converge from a to ¢ on 06' Then

2 N

. 2
r]i';nt x(rs t, pl' P;_u P3) = K(t ' pl' Pz'l PB)-

By 6.'2.2 (iv), as r moves monotonically and continuously

from a to t on 06" there is a point,

u, ¢ ¥ (r, %, Pys Doy P3) n 06
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vhich moves monotonically and continuously from q in thé opposite

direction, Thus

w=_lim, u
remat T

moves in the opposite direction on Z?G to that of £,

(vi) et a=b= p; for some i, 1 <1 < 3.

Then Xb- is a nonultraosculating superosculgting conic of
Qg at =a which intersects ds ot Pys 3 i, 1<£3i<3
and supports £?6 at a, Let N' be a small two-sided neighbourhood
of a on 676' Then by the continuity of u, there exists a
small neighbourhood ¥ of a such that if te N, X(ta, Pys Poy p3)

meets 6?6 at ue N', Let teN, t#ka,

Piratly u % a. Otherwise let &' move from t toward a

on N, Then by 6.3.3 (ii), there is a point

2
u' ¢ Yltr s Ppy Pos P3) N 06

which moves monotonically and econtinuously from b ='a toward t

on N, Hence the points t' and u' must coihcide at some position
teN. By §.3,3 (iii), as we continue the monotone and continuous
movement of t' from t toward a on N, u' moves‘in the opposite

direction from t on N', Thus u' cannot converze to a as t!

tends to a.
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Suppose u and t 1je on the same side of a on N' (without
loss of generality if u ¥ t, Jet t 1lie between a and u) [u = t],
Then by 6.3.3 () [(iii)], as t' moves monotonically .and continuously

from t toward a on N, there is a point
wte  Y(r° y 0 Q
1 Ppy Pos p3 6

which moves frim u  in the oprosite direction on W', Thus u!

cannot converge to ‘a as t' tends to aj contradiction,

. /¢ L2 .
Hence s, Pyy Pos p3) meets 6?6 at a point u
which moves ‘monotonically and continuously on 0 6 in the opposite

d_irection to that of t,

6.3,k Let py; < p, be two points on 06‘ Let XO be an

esculating conic of 626 at a point a which passes through these

points and meets 626 six timss altogether counting multiplicities,

Call the other point b, Then as t moves monotonically and

continuously from a in one dircction on 676’ there is a point

v

uc X(tB, Py p3) ﬂa6

which moves monotonically an! centinuously from b in_ the opposite

direction,

Proof. Since aG is of order six, XO' meets 06

at the points a, b, Pyi P, and mowhere else, #s in 6,3.2 and
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6,3.3 we hove a number of cases depending upon the coincidencé of

one or more of these points,

In each case if t is close to and distinct from a,
5 . . . .
X(t + Py pzf) is close to XO gince 06 is strongly conically
differentiable, Thus § (t3, Pys p,) meets 06 at a point u
close to b, Also X(ta, Pq» p,) meets 06 nowhere else, Hence

u depends continuously on &,

Again it is sufficient to show that t and u move in opposite
directions on a & whenever t is close to a, Again we give

proofs for the cases in which is distinct from Pse Similar

Py >
arguments can be.used to obtain the monotony of u for the cases
in .whigh’ 123 coincides with o

(1) Al of a, by Pys Dy are distinct,

Then x g Intersects a6 at all of these points. By 6.3.3
(iii), if t is distinct form and close to a, X(ta, Pys Do b)
intersects 06 at a point q on the opposite side of and close
to a, Let r converge from q through a to 't on 66‘ Then

- ¢ 2 _ .3
I‘]j.'glt Z(r, to, Py PE) = X(t 1+ Py pa)-
By 6,2.2,(3'.); as r noves monotonically and continuously from

q through a to t on 06' there is a point
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ur E y(r$ tai Py P2) n 06

which moves monotonically and continuously from b in the opnosite

direction, Thus

u= lim, u
regt r

moves in the opposite direction from b on ‘76 as t does from a.

Remark, We notice that the proof of 6,3.4 (i) is completely
analogous to thdt of 6.3.3 (i), Similar arguments as in 6,3,3 (ii),
(ii1), (iv), (v), (vi), respectively, allow us to obtain 6,3.% for

the cases

(ii) Let b=p, for some i, i=1 or 2, a3} b, a distinct
i

(iii) Let a =1b ¥ Pss j=1,2.

(iv) Let a = 1 for some i, i =1or 2, a¥ b, b} i
i=1, 2.

(v) Let a=p; for some i, i=1 or2, b= Pys i i,
j=1or 2.

(vi) et a=b= 12 for some i, i =1 or 2,

6.3.5 Let p be a point on C?g, Let x() be a superosculating

conic of 06 at a point a which passes through p and meets as

six times altogether counting multiplicities, Call the other woint b,
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Then as t moves monotonically and continuously from a in one

direction on 06’ there is a point

U € X(tu, p) N 06

which moves monotonically and continuously from b in the opposite

direction,

Proof. | Since ﬂ6 is of order six, XO meets. 0-6 at
the points a, b, p and nowhere else, We have again a number of
cased depending upon the coincidence of one or more of {:hese noints,,
If t is close to and distinct from a, then Xkﬁh, p) 1is close
to XO’ Since 06’ is strongly conically differentiable, Thus
X(tu, p) meets 06 at a point u close to b, Also X(tq, B)
can meet 0 6 nowhere else, 'I'hv;xs u depends continuously on t,

It suffices to show that t and u move in o;)posite directions

on a6 whenever t is close to a,

) All of a, b, p are distinct,

Then XO intersects 06 at each of the pdintg b, p and
supports 06 at a. By 6.3,4 (iii), if t is close to and distinct
from a, X(ﬁ}; Py b) intersects a6 at a point q on the
opposite side of and close to a, Let r converge from q through

a to t, Then
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. Lo
r}_l;nt ¥(r, t3, p) = ¥(t7, pl.

By 6.3.% (i), as r moves monotonically and continuously

from q through a to t on a 6 there is a point

3
LU, E X(r,t,p)nQG

which moves monotonically and continudusly from b in -the opposite

direction, Thus

u= lim, u
reat r

moves in the opposite direction from b on 06 as does .t from a,
Remark. Again we notice that the proof of 6.3.5 (i) is analogous
to 6.3.4 (i)," By using methods similar to those used in 6,3.% (ii),

(iii), (iv), (v), (vi), we obtain £.3.5 for the cases

(31) Let b=pY¥% a,

(1ii) Leta=1b X p.

(iv) Let a=p}) b, :

(v) Let a p=b,

1]

6.3@ -~ Let xo be an ultraosculating cenic of 06 at

a point a which meets 06 six times altogether counting multiplicities,

Call the other point b, Then as t moves monotonically and continuously
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from a__in one direction on 06’ there is a point

ue Y(tB) n 06

which moves monotonically and continuously from b in the opposite

direction,

Proof, Since ‘06 is of order six, XO meets 06 at
the points a, b and nowhere else, Since 06 is strengly conically
differentiable, if t is close‘to a, then ¥ (t7). is close to

XO' Thus X(ts) meets 06 at a point u close to b. Also

X(ts) nmeets a 6 nowhere else, Hence u depends centinuously

on t, .

Again it now suffices to show that t and u move in opposite

directions on 06‘ whenever t is close to a,

(1) Tet a¥b.

Then Y intersects a ¢ at a and b. By 6.3.5 (iii),
if t is distinct from and close to a, 8({:1*, b) intersects
06 at a point g on the opposite side of and close to a., ILet

r converge from ¢q through a to t on a 6" Then

r_Jii')mt Yz, tq) = X(tB).
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By 6.3.5 (i}, as r moves monotonically and continuously

from q through a to t on 06’ there is a point

u, € X(r, t4) n'as

which moves monotonically and continuously from b ' in the opposite

direction, Thus

u = lim u
I'__’t r

-moves in the opposite direction from b on 06 as t does from a.

(i)  Let a =1,

Then XO is the ultraosculating conic of 06 at a and
supports a £ at this point, By 6, 5.5 (v), as t moves monotonically
and continuously from a on 06" then b’(th‘, a) intersects 06
at a point q which moves monotonically and continuously from b in
the opposite direction, If t is close to a, then g is close
to b, Let r ¢onverge from a to t on 06' Then

. 4 5
ALy ¥, t) = ).

By 6.é.§ (‘i')‘, as r moves monotonically and continuously from

a to t on 0'6” there is a point

w, € X(r, tq) N 06
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which moves monotonically and continuously from q in the opposite

direction, Thus

moves in the opposite direction on 06 to that of £,

6.3.7 . We note heré that the results 6.3.2' - 6.3.6 can be
obtained even if 06 is only a conically differentiable convex arc

of order six, as long as we add the restriction that a 6 coentains

no points of Tyiae 2; cf. ZL.%- For by Theorem 9 , 06 contains
only a finite number s of singular points, 1i=1, 2, ..., n.
Each point op % Sy is a strongly conically differentiable point
since it is differentiable and ordinary ([10l, 6), Also ({ ¢ is
strongly differentiable at S5 from either side, since S is not

of Type 2; cf. 6.1.12
Thus if t is close to a on 06’ then

x(t3 Pys Poa P31 Pq)i X(taa Pys Po 93)1 X(‘t}, Py P:_;Js
X(th,' P, X(t’r’)
are ~closeito

¥(a, pyy D Pgs Pyl ) {E0 Pys Pos P3ls L{C Py Po)s

X (aL[-r P) ? \d(as) ?
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respectively, Hence we:obtain the continuity of u, The monotony

of u follows exactly as was shown in the proofs of 6.3.2 - 6,3.6.
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€.4 Conically Differentiable Curves of Order .Six,

Introduction

A curve g6 of conical order six is either convex or of

linear order threej cf. §.4.1.

If ng is convex and strongly conically differentiable, then
1? & contains exactly six conicaily singﬁlar points; cf. S, Mukhopadhyaya
[20] and Fr, Fabricius-Bjérre [23]., In the literature the term
"sextactic point" is used in this context, Adapting some of the methods
of Mukhopadhyaya and using the results of §,3, this theorem can be
extended to a conicaliy differentiable convex curve zfs, if points

of Type 2 are not allowed; c¢f, 6.,%.6 and 6.4,7.

Let é?G be of linear order three. There are four possible
types of such a cudve as regards number and kind of linearly singular
points; cf. O, Haupt and H, Kgnneth ([12]1, 3). These cases are listed
in 6.%,2, Now if é?6 is also conically differentiable, two of these
cases cannot occury cf, 6.4.2. Inxé;ﬂiﬁ it is shown that the linearly
singular points with the characteristic (1,2) and (2;1) ave conically
singular points: having the conical characteristie (1,.1, 2, 1, 2; 3)

and (2, 1, 1, 1, 13 2), respectively.

It is well known that a strongly coniecally differentiable curve

igé of linear order three contains exactly six singular points;

EN

c¢f, Fr, Fabricius-Bjerre [23], In 6.4.9 and 6,4.10 this result is
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extended to a conically differentiable curve é?6 of linear order

three that contains three inflection points,

If the curve 5?6 of linear order three is oply'conically
differentiable then it is possible for t?G to have only two linearly
singular pointsy cf, 6,4,2 (b). In this case é?é contains exactly

four conically singular points; ¢f. 6.4,11 and 64,12,
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6.4.1 -One kind of degenerate conic is the double line;
cf, 4,1, Let é?s be a.curve of conical order six, Then

4

é?6 has linear order at most three.

Otherwise, a line meeting é?6 n times (n > 3), considered as a
conic will meet A?S 2n  times counting multiplicities. Hence

either

i) ‘g 5 is convex

or
(i1) é?G is of linear order three.
6.4,2 However, we already know the structure of curves }é’

of linear order three in the projective plane ([12]; 3). There are

four possibilities,

ﬂ f is decomposed into three convex arcs by three linearly
singular pointsy -namely, three points of inflection, Thus all of the
other points of f? are linearly ordinary (see Figure 16). If j;?
is linearly differentiable, these points have the linear charnacteristic

(1, 2) and (1, 1), respectively, [15].

(b) Z? is decomposcd into two convex arcs by two linearly
singular pointsy namely, & corner shaped like a thorn or a cusp of

the first kind and an inflection point. Then all of the other points
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of g are linéarly ordinary (see Figure 17). If g is linearly
differe‘ntiable, these points have the linear characteristic (2,1),

(1, 2) and (1, 1), respectively,

__(_c_)_ g is decomposed ‘into two convex arcs by two linearly
singular pointsj namely, a corner shaped like a thorn or a cusp of
the first kind and a corner shaped like a beak, This all of the other
points of g are linearly ordinary (see Figure 18), If K is
linearly differentiable, then a beak shaped com{er will be a cusp
of the second kind with the linear characteristic (2,2), But then
such a point is ‘of linear order at least four ([15], 4,1)., This is

impossible, since g is of linear order three, Thus case {(c) cannot

occur if g is linearly differentiable,

(d) f is decompdsed into three convex arcs by three beak-
like corners, Then all other points of bﬂ dre linearly ordinary
(see Figure 19). If; is linearly differentiable, these singular

points would be cusps of the second kind and they would have the

characteristic (2, 2), Hence as before, case (d) cannot occur.
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6. 4.3 let f6 be a curve of conical order six, Then

gé contains at most finitely many singular pointis,

Proof. If 56 is convex, then by Theorem 9, -/6 contains

only finitely many singular points,

If g'S is of linear order three, then £6 is ‘the union
of either two or three convex arcs, by 6.%.2, But then each of these
convex arcs contai.ns only finitely many singular points, Thus i 6

contains at most finitely weny singular points,

6. b4 Next we .introduce a concept of monotony of an arc 0
in the conical case -analogous to that which was used.in 3,3,12 for

the circular case, We shall denote a general uliraosculating conic

of 0 at a point p by ¥(p).

a is said to be morotone if O induces a unique orientation

on the general ultraosculating cdircles at each point of a such that

if p<qg on a,

¥p € X(q)i and X(q) = X(p)e

or

¥ < Yl@), ema Y@ c.X(p)i,

Again we have results which are analogous to those in 3,3,12, (i)

and (ii),
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5) Arcs of conical order five are monotone ([101, 7).

(1) Suppose that each interior point of an arc (2% of

conical order six is ordinary, Then the closed arc 676 is monotone,

Proof, Bach interior point of 6?6 is ordinary, Also the
end-points of 676 are ordinary, by 6,1.13 (a). Hence each [interior]
point of 27; possesses a [two-sided] neighbourhood of conical order
five. But each of these neighbourhoods is monotone; by (i). By

taking the union ofthese neighbourhoods one obtains the monotony of

a..

6.4,5 Let us restrict our attention in the rest of Section 6.4

to a conilcally differentiable curve zf% of conical order six,

By 6.4.3, 126 contains only finitely many singular points.

Thus each singular point is elementary; cf. 5.5.

Thus by 5,5 (iii), each singular point of 142 has exactly one

"2" in its characteristicj then each of the other digits is "1",

Also, if a curve intersects its tangent at a conically differentdiable
point p, then the osculating conics of the curve at p are degenerate
([9], Theorem 4), Thus the ultraosculating conic of the curve at p

is the double line on the tangent of the curve at p.

o
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Hence, for a conically differentiable curve ZG of conical

order six, we have the following:

(i) An inflection point with linear characteristic (1, .2)

has the conical characteristic (1, 1, 1, 1, 2; 3).

(ii) A cusp of the first kind with linear characteristic (2, 1)

has the conical characteristic (2, 1, 1, 1, 13 2),

6. 4,6 et g6 be a convex curve which has no points of

Type 2. Then g ¢ contains at least six conically singular points,

i

Proof, Since g 6 is of order six, there exists a conic
XO which :intersects %6 six times, X o is non-degenerate
owing to the convexity of 56' Let this six consectutive points be
pgy =0, 1, .0, 5.
(1. Let Xpapspl*pB be the family of conics -‘!t.hrough the
points Pos p}, pg, ps. Then

6

. XO € xpap3p[+p5-

Keeping p,, P3s Pys Pg fixed, by 6,3,2 and 6,3,7, as t moves
monotonically and continuously from Py toward p; on f 6

there is a point
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uﬁc X(t, Pos P37 Py P5> n gG

which moves monotonically and continucusly from Py toward Py
in the opposite direction on g e Hence they must coincide at
some point . between and on Ig . This point -

P Po,1 Po 51 6 P Po,1

is a ~singular pointj cf, 6.,1.8, and

'X(pO,lal P3, P}_pps)

is the tangent ccnic of 15?6 at Po.1 passing through the points
. gl X

Pss P33 P]_}a 95'

In this manner, by considering ¥ we obtain
PiPi41P542 143
a point p. . between p. and P, which is X -
1+Ll-, i+5 i+ i+5 pipi+lpi+2pi+3

singular and

‘ 2
-'”Y(l?i+1+,~ 145 1 Pyv) 0 Piipo Pyy)

is the tangent conic of lf% at p

Pk, i+5 passing through the points

P33 Pig1s Pigpo pi+3; 1 =0, eeay 5. Heore the subscripts are to be
interpreted modulo 6.

(2) Let XP3P4P5 be the subfamily of conics of ) RP5P,Ps

passing through the points P3y Dis Pge Now
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L2
2‘(po,l * Ps P p5) € xP;‘PhPB

and intersects }g% at P,. Also

2
X(pl‘z 3 Pj_'_! PE’ po) € XPBPJ-}PB:‘

et t move monotonically and continuously fiom Pg.1 ©n Zg?6
k]

toward p, .2 Then by 6.3,3 and 6,3.7, theré is a point
. 1,2 ,

u £ X(tzs .P31 Pys P5) 7 {6

which moves monotonically and -continuously from Py toward Py 1
- 2
in the opposite direction on £6'

Suppose ‘t reaches before u does, Then we obtain a

Py.2
tangent conic at Py passing through the points u, P31 Dy Pge
]

However X { P 2
T 1,2 , Pis Pes Pn) also meets at p,. Thus
LRl | I_,_s 5 0 6 3

2 2 .
K(pl,E » Pza P Ps) = X(Pl,;_ » Piys Pos Py’

and this. conic would then meet :gG at least seven times, counting

multiplicities; contradiction, Thus u and t coincide at a point

pO,l,B between pO,l and pl’2 on gs. This point pO,l,Z is

b'e ~-singular pointj cf. 6.1,7 and




3
X('po’l,wa s Dl P5)

is the osculating conic of lé% at Po.1.2 passing through the
. 3ty L

pt;ints pE,ka ‘and ps.

In this manner, by considering X’ we obtain a point
P;Pi41Pi42 |
pi+5,i+4,i+5- between Pi+5,i+# and pi+4,i+5 which is
- -singular and
4 PiPi4Pi42

‘ 3
X(pi+3,i+ll-,i+5, Pi41r Pye2)

is the osculating conic of £?6 at p 5 passing through

i+3,i+h, i+

the points Pss Piiq and Pi*Z; 120, seay 5

(32 Tet Y be the subfamily of conics of Y

passing through the points Py and Pse Now

3 .
X(Po,l,a [ pL“ 115) £ qups

and intersects- t?G at p§. Also

- 3 ]
Yoy 53,70 Psr B © & oypy”

Let t move monotonically and continucusly: from Py 1.o OO 2?%
1=y~

toward py 3. Then by 6.3.4 and 6,3,7, there is a point
159 .




209

which moves monotonically and continuously from P, toward Po.1.2
=9

3
in the opposite direction on }56'

As in (2), t cannot reach before u does., Thus u

P132,3
d t incide at int betwee and

an coincide at a point gy , 5 between py o, and p, ;5 5

on ¢?6‘ This point Po,1,2,3 is a zrphps—singular point;!

cf, 6.,1.6 and

—

4

Y(p0113213 ’ pr))

is the superosculating conic of é?G at Py 1.2 3 passing through
1953 )

the points Py ‘and p5.

In this manner, by considering }( ‘ we obtain a point
_ P. b,
iTi+l
pi+2,i+3,i+4,i+5 between pi+2,i+3,i+4 and pi+3,i+4,i+5 which
is }‘ -singulir and
P3Py
¥< ! )
P32, 443, i4h,iv5 * Pit1
is the superosculating conic of igé at pi+2,i+3,i+h,i+5 passing
through the points s and Ps.q i=0, ...4 5o
() Let ¥ be the subfamily of conics of 2{ passing
P5 . pll-pf)

through the point p5, Now
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, b
’ , .X(pozi,a,5 ’ p5) £ Xps

and intersects gs‘" at Pye Also

¥z, 200 ¢ ¥ Ps

"

Let t move monoton:x.ca]ly and continuously from po 1 ,2,3 on {6

toward Pl > 3 4s Th_en by .§.§ and, .é.z- y there is a point

ic ¥t o 0 £

which moves mohotonically and continuously from Py toward

pO,l.,2,3 in the‘ ?ppos_:.te‘ direction on fé‘

Again as _in (2), t cannot rench Py,2,3,k before u does,

Thus u and 1: co:.nc:.de at a point Po, 1,2,3,4 between PO 1,2,3
and. Py1,2,3,4 OO f g This point Pg,1,2,3, 52 b'ps-Slng!‘lﬂr
pointj cf, &, .E ‘and N

. 5
X(PO,1,2,3,1+)

is the ultraoscu],éting conic of g g at 3, 1.2 passing through
. L

12,3,

the point p

5

In this man'ne‘r;'; by considering b’p we obtain a-point -
L i ‘

b

i+1,i+3,143, ithixs5 Detween p,

i+1,i+2,i+3,1i+h and Pl+¢_,1+3‘1+l; i+5




on g 5 which is Xpi-51ngu1ar and

5

x('pi+l,i+2,i+3,i+ll-, 1450

is the ultraosculating conic of /6 at Piny 42, i#3, itk i+5 passing
y k) y ?

through Ps3 i=0, 0.y 5.

Ly .
(5) Now X(pO,I,Z,‘;,li) intersects /6 at Ps and
=
5 N .
X(Pl,_E,},l%;S) intersects .ﬁ6 at Pge Let t move monotonically
and ccntinuously from Po,l 2.3 4 on Z?6 toward P1,2,3,4,5' Then
by 6.3.6 and 6,3.7, there is a point,

n e X(tB)/\ i6

which moves monotonically and continuously from p5 toward Po 1.2 3.4

in the opposite direction on f 6o

Again t c¢annot reach pl 2,3,4,5 before u does, Thus u
and t coincide at a point PO 1,2 3' 4,5 between po 1,2,3,h and
p1,2,3,’+,5 on is. This point is a s1ngu1ar point and

x(po 1,2,3,4,5 2
is the ultraoscula ting conic of £6 at po 1,2,3,4,5°
9~ 1

In this way we obtain a singular point pl §41,i42,3+3, i+h,i+5
]

)
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between P 141,342,143, i+h and Pi+1,i+2,i+3,i+h,445 ©°F {65

i=0, ,uo., 5. Thus gG contains at least six singular points,

64,7 Let g6 be a conically differentiable convex curve

with no points of Type 2. Then f6 contains at most six conically

gingular points,

Proof, Suppose that {6 contains at least seven conically

singula ints, say &8, <s. < ... 8 f.
gular poi , 3 1 > < 9 on 6

(1) Let p, be any point on the open arc of between
ATYS 1 13 6

s, and s,. MNow s, is a conically singular point. Thus X(si)

7 1
meets -ﬁs nowhere else, By 6,3.6 and 6.3.7, as t moves monotonically

i 1 : (42 &
and continuously from s, toward s, on 56’ X('t ) meets géi
at a point u which moves monotonically and continuocusly from 5

in the opposite direction. But s, is also a singular point, Thus

2
as t converges to 85y U converges to S Hence there exists
. - ‘ 5
a point s,, between s, and s, on g ¢ such that X(SIR)
meets ’g 6 at Dq. This point 84, 18 a Xpl-s:mp;qlar point,

Simi i ints z 5 3

»)1m11ar1y‘ we obtain points 523 between 5, and 3 :*34
between 53 and Sp» .345 between 5y, and 55’ Scg between s
and 56 and 567 hetween Sg and 57 whi_ch are xp -singular

1
points,
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(2) Let p, be any point on the open arc of f g between

Sgo and 5159 pa*pl. Now
5y _ b
. g1 = ¥lsy,. py)

meets gs at &5, p; and novhere else, By 6,3.5 and 6,3.7,

as t moves monotonically and continuously from 812 toward 523
on gs, X(th, pl) meets ‘£6 at a point u which moves monotonically

and continuously from Byn in the opposite direction, But o5

is also a B’p -singular point. Thus as t converges to B3z u

1
crnverges to e Hence there exists a point 51?3 between S12
., 1*. =
and s,; on 146 such that X(SIZB’ pl) meets fs at p,.
This point 8y 3. is a Xplpz-singular point,

Similarly, we obtain points 5234 bhetween 523 and 831*, 5345

between s L and 545, 51}56 between 545 and 0556 and 556'7 between

3
856 and 567’ . which are Kplpz-singular points,
) Let Py be any point on the open arc of £6 between
S560 and 5123 _distinct from p, and p,. Now

}_'_ _ 3
X(8123 ) 'Pl) = 3(51233 Pys PZ)

meets £6 at 51231 Py P and novhere else, By 6,3.4 and 6.3.7,

as t moves mpq?tonlcally and continuously from 5123 toward 5234
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on gs., X(:l',},, Pqo pa) meéts 4g6 at a point u which moves
monotonically and continuously from 8123 in the opposite direction,

But =& is also a Xp_ —singular point, Thus as t converges

25 P1P>

to 5231}, u converges to 3'23#. Hence there exists a point 512311
between 8123 and 8,5, on Z g such that 3(82234, Py pa)
meets lg & a'l: p3. This point 8123!_[_ is a XPIPaPB—singular point,

Similarly we obtain points 52545 between 3234 and SBLB,

53456 between ‘531*5 and 81}56 and 5456? between '8456 and 8567
which are Xplp -singular points,

2P3
€] Let p, be any point on the open arc of" '£6 between

5456? and 51231’, distinct from Py Py and p3' Now
¥ 3 _ 02
3(51234) pl’ pz) = Y(“’laalp Pls pzi ps)

neets £6 at 81o31 Pys Pos Pa and nowhere else, By 6,3.3 and

6,3.7, as t moves monotonically and continuously from 8y 23l toward

Spss  OR gs, X(te,--pl, Pos p3) meets fG atsipoint u

which moves monotonically and continuously from SIPBI%' in the opposite

direction, But s ig also a Yp -singular inoint. Thus

2345 1P2P3

as t converges to 5231}5, u converges to So3h5e Hence there
exists a point 51231*5 bhetween 51231L and 52345 on {6 such
that ¥(512545’ Pys Pos p3) meets £6 at Pp. This point

is a -sinpular point,

®12345 ¥ ppy05m,
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ol L) : 3 o
Similarly, we obtain points 823456 between 52345 and

831}56 and 8.34567 between 831}56 and 31&567 which are

Y - =singular points.
Plp2p3p)+

(5) Let Ps be any point on the open arc between Sah560
and 512345, v‘distinct from Pys Poi p3 and. Py Now

2 —
¥CoTomuse Py Ppe ) = Blappuse ya By Dy 1y

meets ’£6 at 512316’ Pys Pos p3, Py and nowhere else, By 6,3,2

and 6,3,7, as t moves monotonically and continuously from S12345
boward 8,550 on gG’ ¥ (£, Py Pys Py p,) meets £6 at
~a point u which moves monotonically and continuously from S123L5

in the opposite direction. By 523456 is also a -singular

XPIPZPBIJ‘}
point., Thus ds t converges to -823456, u converges to %3456‘

Hence there exists a point 8123156 between 51345 and Sosh56

on £6 such that X(81231i56" Pys Pas Pas Pl;) meets £6 at Ps.

Similarly we obtain a point s between 523456 and

234567
'534567 on £6 such that X(5234S67’ Py» Pys Pss pl}) meets

f6 at p5. But then
X(f‘*iaahss’ Pys Pas Pga By) = E(8ppuc600 Dys Pos Paa By

and this conic meets 56 at least seven timesj contradiction,
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Thus 15; containg at most six conically singular points,

6.4,8 Le? 'igSA be of linear order three., Now 15?6 satisfies
¢Cbﬁdition PI at each point since it is conically differentiable;
cf. 5.3,1. But as was pointed out in 6,4,2, a cusp of the second
kind has the”lipear characteristic kE, 2) and then sué¢h a point is

of linear order at least four, which is impossible, Thus cases {¢)

and (d) of 6,4.2 cannot oceur.

6.%.9 _Let cagse (a) of 6.4,2 occur, Then Zg; contains

at least six conically singular points,

Proof, Let D1y Ppy p3- be the three inflection points of
f?s. By 6.4.5 (i), each of these points is a conicaily singular

point with the conical characteristic (1, 1, 1, 1, 25 3) and the

ultraosculatin i h.{ 5) £ 1? is the double 1i
ng conic p;) o 6 at p; is the double line

on the tangen;l: ‘71’1 of fs at pyj i=1, 2, 3. Ve note that
IR (SR
since two distinct lines in the projective ﬁlane intersect,
Now suppose that there are no conically singular points on the

cnvex open arc PP between Py and P, on Zfé. Then the

closed arc p,p, is monotone, by 6.4.4(ii), In particular
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Y& 0¥ = p.

This is a contradiction, Hence we obtain the existence of a conically

singular- point q; Oon Pyb,.

Similarly, -there exist conically singular pointé REPILE on
the open ares pép}’ p3p1 of 1?%, respectively, We conclude
that Z?6 contains at least six conically singular points, if case

(a) of 6,4,.2 occurs,

6,4,10 Let case (a) of 6.4.2 gccur, Then zfg contains at

most six conically singular points.

Proof, i éuppose that Zfz contains at least seven ccnically
singular points; Then as in 6.4.9, the three inflection points
Pys Doy p3 are singular, Withoug loss of generality’ there are
at least two cenically singular points qq < q, on F?e convex open
arc P, beréFn 12 and P, on igs. We may assumé, by taking
another line és ‘ng if necessary, that the arc EI§5 does not
meet I’af The tangent line supports Zf6 at each pont p of
Py V5 and hence lies lorally to the right of Effs {with the exception

of p) at p, say.

Next, we note that at no interior point of the arc P1P5 is the
ultraosculating conic the double line on the tangent at that particular

point, Otherwise, }f% being of odd linear order, the tangent line
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=t such a j)oint must meet XG with an odd multiplicity, DBut
the tangent supports é?S at this point and hence must intersect
f 6 at exactly one other point, But then the u];_traosculating
conic, being the double line on the tangent, meets fé more than
six times counting multiplicities; contradiction, Thus the characteristic
of the points 'ql, q, is either (1, 1, 1, 1, 2§ 1a(i)) or

(1, 1, 1, 1,723 lalii)); cf. 5.4,

Ye now show thnt the assumption of at least two singnlar points
4929, on the open arc PP, would imply the existence of a singular
point g on PP 'suc;h that X(qs) lies locally to the right of

£6 (with the exception of g) at q. If either X(qg) or

X(qgj lie locally to the right of fl; at Q{ OF dy respectively,
then we have such a q. IHence we can assume that neither gy nor
qs have the desired property. Then we have the following three

possibilities:

(a) X(q]s_) and X(qg) are both non-degernerate and lie
locally to the left of £6 at q, and q,, respectively (see
Figure 20 (a));

(b} one, of X('qi), X(qg) say X(qg)' is non~degenerate

and lies locally to the left of £6 at q,, while 'h/(qi) = q

(see Tigure 20 (b)) or

L

(c) ,’X(qi) = q; and X(qg) = q, (see Figure 20 (c)).
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But now we ‘claim the existence of a new singular point q on
the open arc qyq,. Otherwise, qq, is monotone by 6.4.4 (ii);

i.e,.,

X(qg) c X(qg)i and X(qZ) c X(q?)e
or .

VoD c ¥, ama Y@ & Yoy
In particular,

a4y € X(qg)i and q, & ¥la),
or (*)

ag < x('qg)e and q © x<q§>i.

Now if £y ups Vy {tz, u,, v2] are close to g, qu? on  py, Do,

then
- 2 2 )
Yags tys uys vy) [ ¥la5, by uy v

and the arc plpé touches the tangent gq L gq 1l at qq [q2]
B 1 2

from the same side ([11], 4,3) and hence Iies to the.left of

g 4y { ngl' By letting &, uy, vy Ltay Ua, v2] converge to

- ) - - r v .
qy g,] the limit conic X(qi) L X(qg)] and the arc p,p, touches

the tangent “[ 97 1 .from the same sidej i.e., to the left
of gqj_ C ‘Jqé] .. But the convex arc P10 iriduces a natural




220

A

orientation of X(qij L X(qg)] with the result that g lies

locally to the right of X(qi) € X(qg)] as X(qg) L X(q‘g)]

was assumed to lie locally to the left of {6. But X(qi)

[ ¥(q2)] doss not meet 4, again. Thus
AN AN ET
1t Y@ =aq; [ Y(a) = q,], then
Ya); =8 [ ¥, = 7.

In particular, regardless of cases (a), (b) or (c) we have

g, ¢ Y@, and q ¢ ¥(a),.

This contradicts (*), Hence we obtain the existencez of a sinpular

point q@ on the open arc q195- If § is such that EX(E'&) -lies
locally to the right of £6 (with the exception of q) at 7|,

then we have the .required singular point of the thi:?:c} paragraph,

If 4§ is not such a point, then the above method will yield a singular
point between ay and q on P P5e By repeating this argument, if
necessary, we obtain a singular point q of the desi.r;e(d type or

we obtain an infinite scquence of singular points, This last possibility
cannot occur, by Theorem 9. Thus we obtain a conica;l’ly -sinpnlar point

q on the open arc pp, with the property that X(qs) is non-degenerate

and lies locally to the right of g € (with the exception of q) at

q (see Figure 20.(d)).




221

Now in the same manner as was shown for each of the points
Q9959 X(qs) lies locally to the left of the tangent :7q of
KG at q. But ¥ (qs) lies locally to the right of 3,”6 and
gq supports 4{6 at q, hence intersects j 6 at exactly
one point m, This point m is not on PyPs since ¢ & PyP5
and p,p, is convex. Thus one arc of § (q5 ) from q is trapped
in the region bounded by the arc g P, W of }_,ﬂ 6 and one of the
arcs qm of gq' X(qs), being a closed curve must meet the arc

ap,m of 3906 or meet the arc qm of 27q. The first possibility
cannot exist since ZG is of conical order six, The latter
possibility implies that }f(q5 ) is the double line on g Q which

was ruled out in paragraph two of the proof,

Thus our assumption that f 6 contains at least seven conically

singular points is invalid and we have the required result,
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60,11 Let case (b) of 6.4.2 occur. Then fg cohtains

at least four conically singular points.

Proof. Let p; be the (::USp of the first kind and p, the
point of inflection of .£6. By 6.4.5 (ii), Py is a con‘ically
singular point with the characteristic (2, 1, 1, 1, 13:2)s By 6.4.5
(i) p, is a‘ singular point with the characteristic (i, 1, 1, 1, 25 3).
The ultraosc.ulz.xting conic X(pg) L X(pg)] of %6‘ at p; [p,]
is the double,iine on the tangent 275 L :Tpaj ?f"zf% at

1
py [pyl. Hence -

Y62 A ¥ 4 g,

as in 6,4.9,

Vle obtain singular points dys 4y R the open arcs P1Pss PobPq
of f gy Tespectively, in exactly the same manner & in 6.%.9,
Hence f g contains at least four conically singular points, as

required,

6.,4,12  "If case (b) of 6,4.2 occurs, then fs c.ntains at

i
s

most four singular points,

Proof, Suppose that 'g 6 contains at least five conically

singular points. Then, as in 6.4,11, the cusp of the first kind
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12} is a conically singular point along with the inflection point
Pae Without loss of grnerality, there are at least two conically
sinpgular points Gys 9y OB the convex arc PyP5 between Py and
P, on | A?Gf We may assume, by taking another line as Ltn’ if

necessary, that‘fhe arc  pyP, does not meet L(n'

We now proceed exactly as in 6,4,10 to obtain. a contradiction.
Thus Ag% contains at most four singular points, il case (b} of

6, 4,2 oceurs,

6.5,15  Me summarize the results of this section in the

.......

following theorem,

Theorem 113 Let jé% be a curve of conical order six. Then

we have the following results,

(1) " contains at most finitely many conically singular
26 = ) '

noints,

2} AL z?g is a convex conically differentiable curve

. with no poinks of 'Type 2, then .é?6 ‘gontains exactly six conically

singular points,. ”

b

If case (a) of 6.%,2 occurs, a conically differentiable

(3) _
gurve }gti containg exactly six conically singular péints.

SO If case (b) of 6,4,2 occurs, then a conically differentiable

curve 1?6 contains exactly four conically singular points,
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Coreollary, We have the following results for a curve lf%

of conical order six,

(1) lf6 is decomposed by the finitely many singular points

into finitely many arcs of conical order five,

R

(2) ir 1?6 is a convex conically differentiable curve

with no points of Type 2, then /ﬁ96 is decomposed by the singular

noints intoc six arcs of conical order five.

(é) If case (a) of 6,4.2 occurs, then a conically differentiable

curve £?£5 is decomposed by the singular poinis into six arcs of

conical order f{ive,

(4) I£ case (b) of 6.4,2 occurs, then a conically differentiable
curye }? 6 i5 decomposed by the singular points intq four arcs of

conical order five,
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6.5 Strongly Conically Differentiable Curves of Order Six

Introduction

In this short section our attention is restricted to a strengly
conically diffgrentiable curve 556 of c¢onical order six, In 6=§.2
it is shown that 2?6 contains‘éxactly six singular points, if 1?6
is convex; whi;g;in 6.5.3 it is shown that i?G centains evactly
six singular points, if f?g is of linear order three. These two

results are both well known; of, [20] and [23], I!owever, proofs are

included for completeness and the convenience of the reader,
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6.5.1 Th 6.5 we shall assume that £6 is a strongly conically
differentiable curve of conical order six. As in 6.4.1, we have two

cases:

(i)- €6 is convex
(1i) t?6 is of linear order three,

Using the proofs of 6.54t.6 and 6.4.7 we have the following result-

6.5.2 Let £6 be a convex curve, Then g6 centains

exactly six conically singular points,

Remark, In 6,5,.2, g6 is strongly conically differentiable.
llence the points of Type 2 are automatically excluded since these

points are not strongly differentiable,

6.5,3 Let 56 be of linear order three, HNow g6 satisfies
Condition PI', since £6 is strongly conically differentinble, But
a cusp of the first kihd has linear characteristic (2,1) and does

not satisfy Condition PI! ([11], l.é). Thus case (b) of 6,4,2 cannot

occur and (a) is the on"y possibility, We comhine 6,%,9 and 6,4,10

to obtain
56 containg exactly six conically singular points,

6,5, 1 We summarize the results of this section in the following

theoren,




Theorem 12: Let

56 be_a strongly conically differentiable

curve of copical order six, Then ZG centains exactly six conically

sincular points and gﬁ; is decomposed by these singular points

into six arcs of conical order’ five,
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