ANALYSIS OF CURVISS OF MTNIMAL ORDER

AN ANALYSIS OF CURVES OF MINTMEI ORDER.
AS REGARDS THE
TYPE AND NUYBER OF SINGULAR POINTS

By
GARY ROY SPOAR, B.Sc., M.Sc.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements
for the Degree
Doctor of Philosopy

McMaster University

TITEE: An Analysis of Curves of Minimal Order: as regards the Type and Number of Singular Points

AUTHOR: Gary Roy Spoar, B. Sc. (McMaster University) ' H.Sc. (McMaster University)

SUPERVISCR: Professor N. D. Lane

NUMBTR OF PAGBS: (vi), 230

SCOPE AND COMTENTS: The object of this dissertation is to give a classification of curves of minimal order in the real conformal and projective planes with respect to the type and number of singular points. While strongly differentiable curves of minimal order have been studied in detail, little or no research has been done on general differentiable curves of minimal order. The major emphasis lies in the analysis of these curves and the general attack utilizes the notion of the characteristic of a differentiable point. Thus in both the conformal and conical cases, the author obtains valuable information as to the structure of differentiable curves of minimal order in both the conformal and projective planes. It is only left to inquire as to the structure of such curves, if all diferentiability restrictions are dropped.

My deepest appreciation is extended to Professor i. D. Lane for his invaluable assistance and overwhelming patience. Without his guidance this manuscript could never have been completed.

My thanks also go out to the Province of Ontario and McMaster University for the generous financial support thet I have received while enrolled as a graduate student.

Finally I am indebted to Mrs. Claudia McCarty who devoted much time and effort in the typine of this thesis.

CONTENTS

PAGEPoints of an Arc in the Inversive Plane
Pencils of circles 19
Convergence 20
Support and Intersection at a point of an are 22
Differentiable and strongly differentiable 24points
A classification of differentiable points 29
Circular order of a point 31
Ordinary and singular points 33
SECTION 3 Arcs and Curves of Order Four in the Inversive Plane
Normal arcs of order four 35
Multiplicities for arcs of order four 51
Differentiable curves of order four 70
Strongly differenti••ble curves of order four 100
SECTON $4 \quad A$ Topolopy on the Set of Conics in the Projective Plane
SECTION 5 The Order, Differentiability and Characteristic of a 114 Point of an Arc in the Projective Plane
Differentiable and strongly differentiable 118points
A classification of conically differentiable 126 points
Linear and conical order of a point 128
Ordinary and singular points 130
SECTION 6 Arcs and Curves of Conical Order Six in the Projective Plane 131
Convex arcs of conical order six 132
Multiplicities for arcs of conical order 145six
Monotony theorems for conically differentiable 172 convex arcs of contical order six
Conically differentiable curves of order six 195
Strongly conically differentiable curves of 226 order six
BIDIIOGRAPHY 229

The material of this manuscript is divided into two main parts. The subject matter of the first lies in Sections 1, 2, 3 and deals with conformal geometry; i.e., the geometry of circles. The second part, found in Sections 4, 5 and 6, involves the geometry of conics in the projective plane.

A general introduction to each part will be given here as well as smaller informative additions at the beginning of each section, for the convenience of the reader.

Part I

As this thesis involves the analysis of certain classes of arcs and curves with respect to the geometry of circles, a topology is introduced in Section 1 on the set $\overrightarrow{\mathcal{Z}}$ of circles in the conformal or inversive plane (which can be regared as the Riemann sphere of complex analysis, cf. 2.5 of [22]). This topology is compact and Hausdorff; cf. 2.2.3. With this topology on $\overline{\mathscr{L}}$, limit circles of sequences of circles can be considered with respect to convergence and hence tangent and osculating circles at a point of an arc can be defined; cf. 2.4.

My thesis in this conformal connection is a partial solution of the characterization of all curves $\mathscr{\zeta}_{4}$ of circular order four in the conformal plane, with regard to type and number of singular points; cf. 2.7.

The conformal proof of a well known theorem about arcs of circular order four is given in 2.1 using methods that correspond to the contraction and expansion theorems of 0 . Haupt and H. Künneth [12], while 3.2 is an analogous result to that of N. D. Lane and P. Scherk ([4], 3.3) for multiplicities of arcs of circular order four with respect to members of $\overline{\mathscr{L}}$.

The classical four-vertex theorem states that a closed convex curve in the euclidean plane which has continuous curvature everywhere has at least four vertices; i.e., extrema of the curvature. This theorem is supplemented by the result that if this curve has order four then it has exactly four vertices. The four-vertex theorem thus seems to belong to classical euclidean differential geometry. Hence usual proofs of this theorem were worked out in this classical setting; cf. A. Kneser [16] and H. Kneser [17]. The result was extended by w'. C. Graustein [18] to any simple closed curve with continuous curvature. Again his proof involved methods of differential calculus.

However, the following considerations of N. D. Lane and P. Scherk show that this approach is not natural. The existence and continuity of the curvature can be interpreted geometrically as the existence and continuity of the osculating circles. At a general point the osculating circle intersects the curve but at an extremum it supports the curve. Also a circular transformation (the basic transformation regarding circles) maps a convex curve onto a curve which may not be convex anymore. However the properties of touching,
intersecting and supnorting are invariant under circular transformations. As such osculating circles of one curve are mapped to osculating circles of the image curves and the vertices of one curve correspond to vertices of the image curve. Thus the four-vertex theorem and other corresponding results belong rather in conformai differential geometry and the condition of convexity can be replaced by a weaker condition of normality introduced by 0 . Haupt and H. Kunneth [12]; cf. 3.1 S. Mukhopadhyaya [19], [20] seems to be one of the first to consider extrema of curvature, from this "geometric order" viewpoint, as a point of order four, cf. 2.6. Haupt and Kilnneth also worked with these singular points in a general setting using order characteristics with a fundamental number k (instead of $\overline{\mathcal{L}}$ where $\mathrm{k}=3$) and a comparison of different kinds of so-called vertices can be found in [12] and [13]. In 2.3 and 3.4 much of Jackson's metric discussion of the four-vertex theorem [8] from an analytic and euclidean framework has been recast into a synthetic and conformal one.

It is well known that a strongly differentiable curve \mathscr{P}_{4} of order four contains only points with the characteristic

$$
(1,1,1),(1,1,2) \text { or }(1,1,2)_{0} \text {; }
$$

cf. 3.3.7, and that such a curve contains exactly four vertices ([12], 4.1.4.3.1). The question can be raised as to the kind of results that can be obtained when the condition of strong different- . iability is relaxed to ordinary differentiability for curves \boldsymbol{b}_{4} of order four. Then we have more types of differentiable singular
points to consider. A number of new results are obtained in 3.3, as regards the number and types of singular points on such a \boldsymbol{b}_{4}; cf. 3.3.9, 3.3.11, 2.2.13 and 3.3.15. As stated earlier, a strongly differentiable curve \mathscr{G}_{4} of order four contains at most four vertices. A generalization of this result is derived in Theorem 5 giving the same upper bolind for the number of vertices on any differentiable curve \boldsymbol{b}_{4} of order four.

It would be nice to be able to drop all differentiability conditions and classify arcs and curves of order four again with respect to type and numbers of singular points.

Part II

In the second half of the thesis arcs and curves of conical order six are analysed with respect to the geometry of conics. With this in mind, a topology is introduced on the set of conics (both degenerate and non-degenerate) in the real projective plane; cf. Section 4. As in the conformal case, this topology is compact and Hausdorff; cf. 4.6. Convergence can be considered with respect to this topology and hence limit conics of sequences of conics are introduced. Using special limit conics; namely, tangent, osculating, superosculating and ultraosculating, conical differentiability of an arc at a point can be defined; cf. 5.3.

An attempt is made to characterize curves of conical order six in the projective plane, wi.th regard to the number and type of conically singular points; cf. 5.6.

In 6.1 conical proofs are given of the general monotony, contraction and expansion theorems of O. Haupt and H. Kllnneth [12] as applied to arcs of conical order six. Using these results a well-known theorem is obtained as to the number of conically singular paints on an arc of conical order six; cf. Theorem 9.

Multiplicities, with respect to the system of conics, for an arc of conical order six are introduced in 6.2 and an analogous result to that of N. D. Lane and K. D. Singh ([10], 4.2) is obtained for such an arc.

Now a curve ℓ_{6} of conical order six is either convex or of linear order three; cf. 6.4.1. It is well known that a strongly conically differentiable convex curve \mathscr{C}_{6} of conical order six contains exactly six conically singular (sextactic) points; cf. Fr. Fabricius-Bjerre [23] and S. Mukhopadhyaya [20]. It is also well known that a strongly conjcally differentiable curve \mathscr{D}_{6} of linear order three contains exactly six conically singular points [23]. As in the conformal analysis, one might ask for respective results, if $\boldsymbol{\mathscr { C }}_{6}$ is only conically differentiable. New results are obtained in 6.4 , showing that \mathscr{b}_{6} contains generally exactly six conically singular points, if \swarrow_{6} is convex; and contains either exactly four or six, if \mathscr{F}_{6} is of linear order three. Again, as in conformal geometry, one would like to classify arcs and curves of conical order six, imposing no differentiability restrictions, with respect to the number and type of conically singular points.

Section 1

A Topology on the Set of Circles in the Inversive Plane

Introduction

Lat $\mathcal{T}=\{C\}$, where C denotes a nondegenerate circle in the real inversive plane π_{i}. Let $\overline{\mathcal{J}}$ be the union of \mathcal{L} and all of the points (considered as point circles) of π_{i}. Our goal is to introduce a topology on $\overline{2}$. We shall do this by introducing a neighbourhood filter at each $c \in \mathscr{J}$.
1.1. For each $C \in \overline{\mathcal{S}}$, let C_{e} and C_{i} be the "exterior" and "interior" respectively of C; the interior of C lying to the left of C. If C is a point circle, then one of these regions is void.
1.1.1. Let D and D^{\prime} be two circles with the property that $D \subset D_{e}^{0} D^{\prime} \subset D_{i}$. Then $D_{i}^{\prime} \subset D_{i}$ and $D_{e} \subset D_{e}^{\prime}$

Proof. DC. $\mathrm{D}_{\mathrm{e}}^{\prime}$ implies that $\mathrm{D}_{\mathrm{i}}^{\prime} \cap \mathrm{D}=\phi_{0}$ But $\mathrm{D}^{\prime} \cap \mathrm{D}=\phi_{0}$ Hence ($\left.D_{i}^{\prime} \cup D^{p}\right) \cap D=\phi_{\text {. But then }} D_{i} \cup D^{\prime}$ is a closed connected set having no points in common with D. Hence $D_{i}^{\prime} \cup D^{\prime}$ lies totally in either D_{i} or $D_{e} 0$ However, $D^{0} \in D_{i}$. Therefore, $D_{i} \in D_{i}$ 。

An analogous argument yields $D_{\theta} C D_{e}^{\prime}$.
1.2. Take any C © orient it and let D and E be members of such that

$$
D \subset C_{i}, E \subset C_{\theta}
$$

Then D and E can be oriented such that

$$
C \subset D_{e}, \quad C \subset E_{i}
$$

Z.2.I Using the above orientations of C, D, and E, let

$$
\begin{array}{r}
E D_{G}=\left\{K \in \mathscr{L}: K \subset D_{e} \cap E_{i} \text { and } K \text { can be oriented }\right\} \text {. } \\
\text { such that } D \subset K_{i}, E \subset K e
\end{array}
$$

Lat

$$
\mathcal{U}_{\mathrm{c}}=\left\{\begin{array}{c}
\mathrm{E} \\
{ }_{\mathrm{D}} \\
\mathrm{U}_{\mathrm{C}}
\end{array}\right\}
$$

where D and E run over all pairs of circles of \mathcal{W} with the above restrictions.

$$
1_{0} 2.2 \mathcal{U}_{\mathrm{C}} \text { is a filter base. }
$$

Proof. Let

$$
{ }_{D^{\prime}}^{E_{C}^{\prime}} \quad \text { and } \quad{ }_{D^{\prime \prime}}^{I^{\prime \prime}}{ }_{C}
$$

by any two nambers of \mathscr{U}_{C}. Let D and E be members of \mathcal{L} such that

$$
\begin{aligned}
& D \subset C_{i} \cap D_{e}^{\prime} \cap D_{e}^{\prime \prime} ; \quad D^{i}, D^{\prime \prime} \subset D_{i}, C \subset D_{e} \\
& E \subset C_{\theta} \cap \mathbb{E}_{i}^{\prime} \cap E_{i}^{\prime \prime} ; \quad E^{\prime}, E^{\prime \prime} \subset E_{e}, C \subset E_{i}^{0}
\end{aligned}
$$

We now show that

$$
{ }_{D}^{E} U_{C} C{ }_{D^{\prime}}^{E_{C}^{\prime}} U_{C}{ }_{D^{\prime \prime}}^{E^{\prime \prime}}{ }^{U_{C o}}
$$

Let $K \in{ }_{D}^{E} U_{C^{*}}$ Then by definition $D \subset K_{i} p K \subset D_{e^{\circ}}$ By 1.I.I. .
 $D_{i}^{\prime} \in D_{i}$ and $D_{e} \subset D_{e}^{!}$. Now

$$
\left.\begin{array}{lll}
D_{i} \subset K_{i} \\
D^{\prime} \subset D_{i}
\end{array}\right\} \Rightarrow D^{\prime} \subset K_{i} \quad \text { and } \quad \begin{aligned}
& \quad \\
& \\
&
\end{aligned}
$$

Also, by definition, $K \subset E_{i}$ and $E \subset K_{e}$. Then by $\mathcal{I}_{2} I_{, ~ I}$
$K_{i} \subset B_{i}$ and $E_{e} \subset K_{e}$ Alsa $E \subset E_{i}$ and $E^{\prime} \subset E_{e} B y .1,1, I$, $\mathrm{E}_{i} \subset \mathrm{E}_{i}^{\prime}$ and $\mathrm{E}_{\mathrm{e}}^{\mathrm{P}} \subset \mathrm{E}_{0^{\circ}}$ Now

Finally $K \subset D_{e}^{\prime} \cap E_{i}^{i}, D^{\prime} \subset K_{i}$ and $E^{\prime} \subset K_{e}$ imply; by definition,

Thus

$$
{ }_{D}^{E}{ }_{C} C_{D^{\prime \prime}}^{E_{C}^{\prime}}{ }_{U_{C}} \cap{ }_{D^{\prime \prime}}^{E^{\prime \prime}}{ }_{C}^{U_{C}}
$$

2.2.3 Iet c be a point circle and auppose that $C_{i}=\phi$, nay. Let G be a member of \mathcal{L} such that

$$
E \subset C_{e^{0}}
$$

Then E can be oriented such that

$$
\mathbf{c} \subset E_{i^{\circ}}
$$

Now let

$$
\left.\begin{array}{r}
{ }^{E} J_{C}=\left\{K \in \mathcal{L}: K \subset E_{i} \text { and } K\right. \text { can be oriented such that } \\
c, \subset K_{i}, E \in K_{e}
\end{array}\right\}
$$

Let

$$
u_{\mathrm{c}}=\left\{{ }^{\mathrm{E}} \mathrm{v}_{\mathrm{c}}\right\},
$$

where E runs over ail the circles of \mathcal{L} with the above restrictions.
1.2. $4 U_{C}$ is a filter base.

Proof e Let

$$
E^{E^{\prime}} \mathrm{J}_{\mathrm{C}} \quad \text { and } \quad{ }^{E^{\prime \prime}}{ }_{U_{C}}
$$

be any two members of \mathscr{U}_{C}. Let E be a member of \mathcal{F} such that

$$
E \subset C_{e} \cap E_{i}^{\prime} \cap E_{i}^{\prime \prime} ; E^{\prime}, \operatorname{m}^{\prime \prime} \subset E_{e}, C \subset E_{i}
$$

Then by our choice of E_{9} as in $\underline{I}_{0} L_{0}$,

$$
{ }_{\mathrm{J}_{\mathrm{C}} C}{ }^{\mathrm{E}^{0}}{ }_{\mathrm{U}_{\mathrm{C}}} \cap^{\mathrm{E}^{\prime \prime}} \mathrm{U}_{\mathrm{C}} \cdot
$$

Ion Let f_{c} be the filter generated by \mathcal{U}_{c}. Consider the family

$$
\theta=\left(\mathcal{F}_{C}\right)_{C \in \overline{\mathcal{L}}}
$$

of filters on む.

1o3oI For each $C \in \mathcal{I}$ and all $V \in f_{C}$, there is a $W \in F_{C}$ such that $W \subset V$ and $V \in F_{K}$ for each $K \in W$.

Proof. It is enough to prove that the claim is true for members of the base. Let

$$
{ }_{D^{\prime}}^{E_{C}}{ }_{C} \in U_{C} .
$$

Take $D, E \in \mathbb{L}$ with

$$
\begin{aligned}
& D \subset C_{i} \cap D_{e}^{\prime}, C \subset D_{e}, D^{\prime} \subset D_{i} \\
& E \subset C_{e} \cap E_{i}^{p}, C \subset E_{i}, E^{\prime} \subset E_{e} .
\end{aligned}
$$

As in $\underline{1}_{0} 2_{0} 2$, with this choice of D and E,

$$
{ }_{D}^{E} C_{C}^{E!}{ }_{D}^{U_{C}^{\prime}}
$$

and

$$
{ }_{D^{\prime}}^{U_{C}^{t}} \in \mathcal{U}_{K}
$$

for each

$$
K \in{ }_{D}^{E}{ }_{D}
$$

1.3.2 For each point circle C and all Ve \mathcal{F}_{C}, there is a $W \in \mathcal{F}_{C}$ such that $W \subset V$ and $V \in F_{K}$ for each $K \in W_{*}$

Proof. As in 1.3.1, it is enough to prove that the claim is true for menbers of the base. Let $C_{i}=\varnothing$ say, and

$$
{ }_{\mathrm{E}_{\mathrm{C}}} \in U_{\mathrm{C}}
$$

Take E G $\mathcal{L}^{\text {with }}$

$$
E \subset C_{e} \cap E_{i}^{\prime}, C \subset E_{i}, E^{\prime} \subset E_{e}
$$

As in 1.2.4. with this choice of E,

$$
{ }_{U_{C}} \subset{ }^{\mathrm{EI}}{ }_{\mathrm{U}}^{\mathrm{C}}
$$

and

$$
E_{C}^{\prime \prime}={ }_{C_{K}^{\prime}}^{U_{K}^{\prime}} \varepsilon U_{K}
$$

for each

$$
K \in{ }^{E} J_{C}
$$

1.3.3 We combine 1.3 .1 and 1.3.2 to obtain:

For each $C \in \mathcal{J}$ and all $V \in \xi^{\prime} C^{\prime}$ there is a $W \in \mathcal{F}_{C}$ such that $W \subset V$ and $W \in \xi K$ for each $K \in W$.

Io 4 The Following theorem is standard（［1］，p．56）：

Let X be a set and

$$
\theta=\left(F_{x}\right)_{x \in x}
$$

a family of filters on X indexed by X such that 1.3 .3 is satisfied． Then there is a topology \mathcal{D} on X such that F_{x} is precisely The neighbourhood sister of x with respect to the topology \mathcal{D} ．

In our case，there is a topology \mathcal{D} on $\overline{\underline{T}}$ such that f_{c} is the neighbourhood system at C and U is an open set of \mathcal{J} （ide．a member of θ ）if $U \in f_{C}$ for all $c \in U$ ．

We now determine some properties of the topological apace （要，我）。

$105(\overline{\mathcal{Z}}, D)$ Batisfies the first and second axioms of

 countability.> Proof. Fon ail ${ }_{\mathrm{D}}^{\mathrm{E}} \mathrm{U}$ Let D and E be determined by three distinct points with rational coordinates.

1.6 ($\overline{\mathcal{L}}, \boldsymbol{D}$) is a Hausdorff space.

Proof. Let C_{1} and C_{2} be two distinct circles of \mathcal{L}.

Case (i). $C_{1} \cap C_{2}=\dot{\phi}$. Then C_{1} and C_{2} belong to a pencil of the third kind, cf. 2.1, from which one can easily construct disjoint neighbourhoods of C_{1} and C_{2} (Figure 1).

Case (ii). $C_{1} \cap C_{2}$ is a single point. Then C_{1} and C_{2} belong to a pencil of the second kind, cf. 2.I, from which one can construct disjoint neighbourhoods of C_{1} and C_{2} (see Figixe 1).

Case (iii). C_{1} and C_{2} have two points in common. Then C_{1} and c_{2} determine a pencil of the first kind, cf. 2.2, from which one can construct disjoint neighbourhoods of C_{1} and C_{2} (See Figure 1).

Suppose that one of or :both C_{1} and C_{2} are point circles.

Case (i). Both C_{1}, C_{2} are points circles. Then disjoint neighbourhoods of C_{1} and C_{2} can easily be constructed (see Figure 2).

Case (ii). One of C_{1}, C_{2}, say C_{1} is a point circle while $C_{2} \in \mathcal{E}$. Then either
(a) $C_{1} \cap C_{2}=\varnothing$. Then disjoint neighbourhoods as in Figure 2 can be constructed.
(b) $C_{1} \cap C_{2}=C_{2}$. In this oase disjoint neighbourhoods as in Figure 2 can be constructed.

Figure 1

case (i)

(a)

(b)
case (ii)

Figure 2

1. 7 If ${ }_{D}^{E}$ is a base element, then the smallest closed set containing ${ }_{\mathrm{D}}^{\mathrm{E}} \mathrm{D}_{\mathrm{D}}$, denoted by ${ }_{\mathrm{D}}^{\mathrm{E}} \mathrm{E}$, consists of the following circles of E; namely, all K such that

$$
\begin{aligned}
& K \subset\left(D \cup D_{e}\right) \cap\left(E \cup E_{i}\right) \\
& D \subset K \cup K_{i}, E \subset K \cup K_{e}
\end{aligned}
$$

We note that in particular $D, E \in{ }_{D}^{E}$

$$
\text { Io7.1 }\left(\bar{E}_{i}, \infty\right) \text { is regular. }
$$

Proof. Let $C \in \mathcal{L}$ and let U be any neighbourhood of C. Then there exists a base element

$$
{ }_{D^{\prime}}^{E^{0}}{ }_{C}^{C}
$$

Take circles $D, E \in \mathcal{Z}$ such that

$$
\begin{aligned}
& D \subset D_{e}^{\prime} \cap C_{i}, C \subset D_{e^{\prime}} D^{\prime} \subset D_{i}, \\
& E \subset E_{i} \cap C_{e}, C \in E_{i}, E^{\prime} \subset E_{e}
\end{aligned}
$$

By this choice of D and E, is in 1.2 .2 ,

$$
{ }_{D}^{E}{ }_{D}{ }_{C}
$$

is a base neighbourhood of C with

Let C be a point circle with $C_{i}=\varnothing$ and let \bar{J} be a neighbourhood of C. Then there exists a base element

$$
{ }^{E^{\prime}} U_{C} \subset U
$$

Take a circie $\mathrm{E} \in \mathcal{J}$ such that

$$
\mathrm{E} \subset C_{e} \cap \mathrm{E}_{\mathrm{i}} ; \subset \subset \mathrm{E}_{i}, \mathrm{E}^{\prime} \subset \mathrm{F}_{\mathrm{e}}
$$

By this choice of E , as in 2.2.4,
is a base neighbourhood of C with

$$
y
$$

Section 2

The Order, Differentiability and Characteristic of Points of an
Arc in the Inversive Plarie

Introduction

This section is purely a collection of background information with the exception of Theorem 1; cf. 2.2.3. This material is based upon the properties of order, differentiability and characteristic of a point of an arc and can be found in [2II and [4], the work of N. D. Jane and P. Scherk.

2.1 Pencils of Circles.

In the following, P, Q, \ldots, will denote points in the real inversive plane. The circle through three mutually distinct points P, Q and R is uniquely determined and will be dencted by $C(P, Q, R)$.

The set or all circles that intersect two given circles at right angles form a linear pencil π of circles. A pencil π of the first kind possesses two fundamental points such that π is identical with the set of all circles through these points. A pencil of the second kind has one fundamental point and is identical with the set of those circles that touch a given non-degenerate circle at that point. If π is of the third kind, then any two circles of π are disjoint. Foreany pencil π and for any point Q which is not a fundamental point of π, there exists a unique circle $C(\pi, Q)$ through Q. We consider the fundamental point of a pencil π of the second kind as a point circle belonging to π.

2.2 Convergence.

In Section 1, we introduced a topology D on \mathcal{F}, the set of all circles in the real inversive plane. We have shown that ($\overline{\mathcal{G}}, \boldsymbol{\infty}$) is a regular Hausdorff space satisfying the second axiom of countability. With respect to this topology, we can now describe convergence.
2.2.1 A sequence of circles $\left(C_{n}\right) \quad$ is defined to be convergent to a circle C if for any neighbourhood $\overline{0}$ of C there exists $n_{0} \in N$ such that $C_{n} \in \mathbb{U}$ for all $n>n_{0}$. We denote this convergence of C_{n} to C by

$$
\operatorname{inm}_{n \in N} C=C
$$

2.2o2 ($\mathcal{I}, \infty)$ is a countably compact space.

Proof. Let $p_{n} \in C_{n}$ for each $n \in N$, where $\left(C_{n}\right)_{n \in N}$ is an infinite sequence of circles. Then (p_{n}) is an infinite sequence of points in a compact space. Hence there exists a point p, and a subsequence ($p_{n i m}$) of $\left(p_{n}\right)$ such that $\lim p_{n m}=p_{0}$ Let ($n_{n m}$) be the corresponding subsequence of circles of the sequence $\left(C_{n}\right)$. Let $q_{n m} \in C_{n m}, q_{n m} \neq p_{n m}$. By the same argument as above, there
exists a point q and a subsequence $\left(q_{n m I}\right)$ of $\left(q_{n m}\right)$ such that $\lim q_{\text {nal }}=q$. We can assume that $p \neq q$; for if lim $p_{n i t}=p$ for every sequence of points on ($C_{n m}$), then the point p, considered as a point circle, will be an accumalation circle of (C_{n}). By the same argument, we obtain a third point r; distinct from p and q and a subsequence ($r_{n m i k}$) of paints on ($C_{n m l}$) such that Iim $r_{n a l k}=r$. Then the circle determined by p, q and r is an accumulation circle of $\left(C_{n}\right)_{n \in N}$
2.2.3 We combine 1.5, 1.6 and 2.2.2 to obtain ([1], p. 138):

Theorem 2. ($\mathcal{F}, \boldsymbol{\infty}$) is a compact Hausdorff space.

2.3 Support and Intersection at a Point of an Arc

Unless otherwise stated, an arc a [curve $b]$ is the topological image of an interval [circle]. Hence our arcs and curves will be simple. Thus if a sequence of points of that parameter interval converges to a point s, then their image points converge to the Image of s. We shall use the same letters s, t, u, \ldots, , do denote both the parameter points and their images on \boldsymbol{Q}. The end [interior] points of a are the images of the end [interior] points of the parameter interval. The notation $P \neq s$ will indicate that the points P and B do not coincide.
!
A neighbourhood of s on a is the image of a neighbourhood of the parameter s on the parameter interval. If s is an interior
 (open) one-sided neighbourhoods.

Suppose a is an interior point of a. Then we call sa point of support [intersection] with respect to the circle C if a sufficiently small neighbourhood of s is decomposed by s into two onemsided neighbourhoods which lie in the same region fin different regions] bounded by C 。 C is then called a supporting [intersecting] circle of a at s. Thus c supports a at if $\mathrm{s} \neq \mathrm{C}$ 。 By definition, the point circle s always supports $a_{\text {at }}$ s.

It can happen that every neighbourhood of s on Q has points $\frac{1}{1} \mathrm{~s}$ in common with C_{0} Then C neither supports nor intersects $a_{\text {at }}$ s.

2. 4 Differentiable and Strongly Differentiable Points.

2.4.1 An arc Q is said to be (conformally) differentiable at a point p of \boldsymbol{Q} if it satisfies two conditions:

Condition C I. There exists a point $R \neq p$ such that if the parameter s is sufficiently close to p, then the circie $\mathcal{C}(p, s, R)$ through the points p, s and R exists. It converges if s tends to p on Q.

The limiting tangent circle of Q at p through R is denoted by $C\left(p^{2}, R\right)$.

Condition $C^{\text {T }}$ I implies [2]:
(i) There is a unique tangent circle $C\left(p^{2}, R\right)$ of Q at p through each point $R \neq p$ and the union of the set of tangent circles with the point circle p is a pencil of the second kind with the fundamental point p.
(ii) If p is an interior point of Q, then the nontangent circles of Q through p all intersect Q at p or all support.

Condition C II. The arc Q satisfies $C I$ at p and there
exists a circle $C\left(p^{3}\right)$ such that

$$
\begin{aligned}
& \lim _{s \in a} c\left(p^{2}, s\right)=c\left(p^{3}\right) . \\
& s+p \\
& s \rightarrow p
\end{aligned}
$$

We call $C\left(p^{3}\right)$ the osculating circle of a at p. $C\left(p^{3}\right)$ may be the point circle po

Differentiability of a at an interior point p implies [2]:
(迆) The nonosculating tangent circles of: a at ip. all intersect a at \dot{p} or all support. If $C\left(p^{3}\right) \neq p$, then all of them support.

An arc or curve is said to be differentiable if every point is differentiable.

2.4.2 Strongly Differentiable Points

Let $R \neq p, Q \longrightarrow R$ and let s and t converge on Q to p. Then any accumulation circle of the circles $C(s, t, Q)$ is called a general tangent circle of Q at p through $R_{\text {. }}$

Condition CI: There exists a point $R \neq p$ such that if $Q \longrightarrow \mathbb{R}$ and distinct points s and t converge on Q to p, then

$$
\lim C(s, t, Q)
$$

existis。

Thus this limit circle ia the unique general tangent circle of Q at p. Condition C I' implies that the limit circle depends on p and R but not. on the choice of the particular sequences s and t. Specializing $Q=R$ and $t=p$ we see that Condition C I' implies Condition C I and that therefore

$$
\operatorname{IIm} C(B, t, Q)=C\left(p^{2}, R\right)
$$

Thus the general tangent circles of a point which satisfies Condition C I' are identical with the ordinary ones.

If three mutuaily distinct points s, t, u converge on Q to p, then any accumulation circle of the circles $C(s, t, u)$ is called a general osculating circle of $Q_{\text {at }} p$.

Condition C II'. If three mutualiy distinct points s, t, u converge on Q to p; then

$$
\lim C(s, t, \mathfrak{u})
$$

exists.

Thus this limit circle is the unique general osoulating circle of a at p. Condition C II does not in general imply $C I$ or C I' ([3], 4).

If Conditione C I' and C II' are both satisfied then \boldsymbol{Q} is said to be strongly differentiable at the point p. An are or curve is strongly differentiable if every point is strongly differentiable.

Strong differentiability implies ordinary differentiability and the following are also valid ([4], 3):
(2) Let p aatisfy Condition $C I^{\prime} 。$ Let $R \neq P, Q \longrightarrow R$ and s converge on a to p. If C_{1} is a general tangent circle at s through Q, then

$$
\lim C_{1}=C\left(p^{2}, R\right)
$$

(ii) Suppose Q is strongly differentiable at p. Let the two distinct points s and t converge on Q to p and let c_{2} be a general tangent circle at s through to Then

$$
\ln C_{2}=c\left(p^{3}\right)
$$

(iia) Suppose $a_{\text {is }}$ strongly differentiable at p. Let s converge on Q to p and let c_{3} be a general osculating circle at s. Then

$$
\lim C_{3}=c\left(p^{3}\right)
$$

(iv) If at the point p of an arc a the general tangent circles form a unique pencil τ of the second kind, then Q induces a unique orientation on the circles of $\tau_{\text {. }}$ In particular Q induces a unique orientation on a general osculating circle at p. If the given condition holds at all points p of Q, then the oriented pencil τ varies continuously with $p[7]$ 。

2. 5 Classification of Differentiable Points.

He associate with each differentiable interior point p of an arc a a characteristic $\left(a_{0}, a_{1}, a_{2}\right)$ if $c\left(p^{3}\right) \neq p$ or (a_{0}, a_{1}, a_{2}) if $C\left(p_{0}^{3}\right)=p$. The numbers a_{0} and a_{1} are equal to 1 or 2, while a_{2} is equal to 1,2 or ©. They have the following properties:
(i) a_{0} is even or odd according as the nontangent circles of p support or intersect an at p.
(ii) $a_{0}+a_{1}$ is even or odd according as the nonosculating tangent circles. support or intersect. \mathbb{Q} at $p_{\text {: }}$
(iii) $a_{0}+a_{1}+a_{2}$ is even if $c\left(p^{3}\right)$ supports; odd if $c\left(p^{3}\right)$ intersects, while $a_{2}=\infty$ if $C\left(p^{3}\right)$ neither supports nor intersects.

Thus $a_{0}+a_{1}+a_{2}$ is even if $c\left(p^{3}\right)=p$. From 2:401 (iii), $a_{0}=a_{1}$ if $C\left(p^{3}\right) \neq p$.

We list the types of differentiable points p of an arc \mathbb{Q}
(Figure 3). The first eight examples refer to the curves $x=s^{n}, y=s^{n+m} ;$ the last two refer to $x=s^{n}, y=b^{n+m}$ ain $\frac{I}{s}$. In all cases we consider the point $s=0$. Congruences are modulo 2 .

CHARACTERISTIC	NON- TANGinNT CIRCIRS THROUGH p	$\begin{aligned} & \text { TANGENT } \\ & \text { CIRCIRS } \\ & \frac{1}{7} \\ & C\left(p^{3}\right) \end{aligned}$	$c\left(p^{3}\right)$		EXAMPIPS			
$(1,1,1)$	Entersect	Bupport	$c\left(p^{3}\right)+p$	intersects	$n<m$	$\begin{aligned} & n \equiv 1 \\ & m \equiv 0 \end{aligned}$	regular point	
$(1,1,2)$	intersect			supports		$\begin{aligned} n & \equiv m \\ & \equiv 1\end{aligned}$	vertex	
$(2,2,1)$	support			$\left\{\begin{array}{l} \text { inter- } \\ \text { sects } \end{array}\right.$		$\begin{aligned} & \mathrm{n} \equiv 0 \\ & \mathrm{~m} \equiv 1 \end{aligned}$	cusp of first kind	
$(2,2,2)$	support			supports		$\begin{aligned} \mathbf{n} & \equiv \mathrm{m} \\ & \equiv 0 \end{aligned}$	cusp of second kind	
(1,2.2)	Intersect	support	point aircle		$n n>m$	$\begin{aligned} \mathrm{n} & \equiv \mathrm{III} \\ & \equiv 1 \end{aligned}$		
$(1,2,1)$	intersect	intersect			$\begin{aligned} & n \equiv 1 \\ & m \equiv 0 \end{aligned}$			
$(2,1,1){ }_{c}$	support	intersect			$\begin{aligned} & n \equiv 0 \\ & m \equiv 1 \end{aligned}$			
$(2,2,2)_{0}$	Eupport	support			$\begin{array}{r} n \equiv m \\ =0 \end{array}$			
$(1, I, \infty)$	intersect		neither a	supports			$\underline{n} \pm 1$	
$(2,2, \infty)$	support						$\mathrm{n} \equiv 0$	

206 Circular Order of a Point

An arc Q is said to be of finite circular order if it has only a finite number of points in common with any circle. If the least upper bound of these numbers is finite, then this number is called the (circular) order of a. The order of a point p of a Is then the minimal of the orders of ail neighbourhoods of p on a. Note that the order of a point is ≥ 3.

We list the following results:
(i) Let a be an arc of finite order. If a circle C intersects Q_{1} at s, then every circle sufficiently close to c intersects a at some point ($[4], 2)$ 。
(ii) Let p be an end point of an arc a of finite order. Then a is differentiable at $p([4], 3)$ 。
(iii) Let p be a differentiable interior point of an are a. Suppose that p has the characteristic (a_{0}, a_{1}, a_{2}) or (s_{0}, a_{1}, a_{2}). When the order of p is not less than $a_{0}+a_{1}+a_{2}$, ($[4], 2$).
(© (n) elementary point p.. of an arc \mathcal{A} is one such that there exists a neighbourhood of p on which is decomposed by
p into two one-sided neighbourhoods of order three.

Let p be an elementary point of a differentiable arc Q. If p has the characteristic $\left(a_{0}, a_{1}, a_{2}\right)$ or $\left(a_{0}, a_{1}, a_{2}\right)$, then the order of p is $a_{0}+a_{1}+a_{2}([4], 5)$.

207 Ordinary and Singular Points

A point p of an arc $Q_{\text {is }}$ called ordinary if the order of p is three (the minimal order).

If the order of p is strictly greater than three, p is said to be a singular point.

A point" p of ${ }^{*}$ differentiable arc Q is called a vertex if p is a point of support Q with respect. to $C\left(p^{3}\right)$.

Section 3

Arcs and Curves of Circular Order Four in the Inversive Plane.

Introduction.

In this section we shall discuss properties of arcs and curves of circular order four. This larger section is divided into four subsections, 3.1 - 3.4.

In 3.I and 3.2 we shall consider normal arcs of order four. We restrict our attention to differentiable curves of circular order four in 3.3, for the most part. Finally in 3.4, the discussion centers upon strongly differentiable curves of circular order four.

3.1 Normal Ares if Mider Four.

Introduction

An arc Q is called normal if for each $C \varepsilon \mathscr{F}, C$ can be oriented so that the points of $C \cap Q$ lie in the samecorder on c as they do on \boldsymbol{Q}. We note that a curve \mathscr{E}_{4} of circular order four is always normal ($[13], 5)$.

It is well known that a normal arc Q_{4} of circular order four is the union of a finite number of arcs of order three; cf. 0 . Hapt [44] and 4.1 .3 of [12]. To derive this result Haupt basically used the so-called ."Contraction. Theorem"; cf. ([12], 2.4.4), first attributed to Mukhopadhyaya [19], [20] and the MExpansion Theorem"; of. ([12], 2.4.5). These results generally deal with specific movement of intersection points of arcs with members of classes of so-called "order characteristics"; cf. ([12], 1.1), with a fundamental number k, this number being such that k distinct points uniquely determine one member of the class. The proofs of his results are generally by induction on the fundamental number k.

In conformal geometry the class of order characteristics is the set of all circles and $k=3$. It would be of interest to find conformal proofs of corresponding results for normal arcs of order four. With this in mind, $3.1 .2,3.1 .4$ and Theorem 2 are included for the reader's convenience. Then it is a simple matter to conclude that an end-point of such an arc is ordinary and hence strongly differentiable; cf. 3.1.9 and 3.1.10.

3.1.1 Let C_{0} be a circle which meets Q_{4} at four distinct

 points a, b, p_{1}, p_{2}. Then as t moves monotonically and continuously from a on Q_{4}, there is a point$$
u \varepsilon c\left(t, p_{1} p_{2}\right) \cap Q_{4}
$$

which moves monotonically and continuously in the opposite direction.

Proof. Without loss of generality we can assume that $p_{I}<p_{2^{*}}$ Since Q_{4} is of order four, $c_{0}=C\left(a, p_{1}, p_{2}\right)$ intersects Q_{4} at a, b, p_{1}, p_{2} and meets. Q_{4} nowhere else; cf. 3.2.2. If t is Sufficiently close to a, then $C\left(t, p_{1}, p_{2}\right)$ will be close to c_{0} and will intersect Q_{4} at t, p_{1}, p_{2} and at a point u close to b. Also $C\left(t, p_{1}, p_{2}\right)$ meets Q_{4} nowhere else. Thus u depends continuously on t.

It is sufficient to show that t and u move in opposite directions on \boldsymbol{a}_{4} whenever t is close to a. Thus we shall restrict t to a suitably small neighbourhood of a in the following.

If an even [odd] number of points of $\left\{\mathrm{p}_{1}, p_{2}\right\}$ lie between a and b on C_{0}, then the same number of these points will lie between t and u on $C\left(t, p_{1}, p_{2}\right)$. Since the distinct circles C_{0} and $C\left(t, p_{1}, p_{2}\right)$ meet exactly at p_{1} and p_{2}, t and u will lie on the same [on opposite sides] of C_{0}. On the other hand, since $a_{4} \cap c_{0}=\left\{a, p_{1}, p_{2}, b\right\}, \quad a_{4}$ will meet c_{0} at an even [odd]
number of points between a and b. Also C_{0} intersects Q_{4} at a and b. Hence if t and u move in the same direction on Q_{4}, then t and u will lie on opposite sides [on the same side] of C_{0}; contradiction. .

Remarks (i) The movement of t and u in 2.1 .1 can continue as long as none of t, u, p_{1}, p_{2} coincide.
(ii) 3.1 .1 remains valid if the arc Q_{4} is replaced by a curve \mathscr{b}_{4} of order four.
3.1.2 Let C_{0} be a circle which meets Q_{4} at points $p_{0}<q_{0}<r_{0}<s_{0}$. If B is the closed subarc of Q_{4} between p_{0} and s_{0}, then there exists at least one sinpular point in the interior of 8 .
… Proof. Consider the parameter interval $I_{0}=\left[p_{0}, s_{0}\right]$. We recall that the same Zetters are used for the points on the arc as are used for their respective parameter values on the parameter interval. We define a sequence of intervals and a corresponding sequence of circles by induction. Having defined

$$
I_{n}=\left[p_{n}, s_{n}\right]
$$

with $I_{n} \subset I_{0}$ and

$$
c_{n}=c_{n}\left(p_{n}, q_{n}, r_{n}, s_{n}\right)
$$

through $p_{n}<q_{n}<r_{n}<s_{n}$, we define $I_{n+1} \subset I_{n}$ and C_{n+1} as follows.

Let the length of I_{n}, denoted $R\left(I_{n}\right)$, be ε and let E_{i} be the point of I_{n} which is $\frac{i}{8} \varepsilon$ from $p_{n} ; i=0,1, \ldots, 8$. One of the following holds:
(i) q_{n}, r_{n} lie on the same side of E_{4} (ii) q_{n}, r_{n} lie on opposite sides of E_{4} (iii) $q_{n}=\mathbb{B}_{4}$ or $r_{n}=E_{4}\left(\right.$ not both since $\left.q_{n}<r_{n}\right)$.

If case (i) occurs, suppose that q_{n}, r_{n} lie on the same side of E_{4} as p_{n}. Hold p_{n}, q_{n} fixed and let t move from r_{n} toward E_{3}. If r_{n} is already between E_{3} and E_{4}, no movement is carried out. Otherwise, by 2.1.1, there is a point a which moves from s_{n} toward $E_{7^{\prime}}$. If u reaches E_{7} first, then define

$$
I_{n+1}=\left[p_{n}, u\right]=\left[p_{n}, E_{7}\right]=\left[E_{0}, E_{7}\right]
$$

and

$$
c_{n+I}=C\left(r_{n}, q_{n}, t, u\right)
$$

If t reaches B_{3} first, then hold p_{n}, $t=E_{3}$ fixed and let t' move from q_{n} toward E_{2}. If q_{n} is already between E_{2} and E_{4}, no movement is carried out. Otherwise, by 3.1.1, there is a point $u^{\prime \prime}$ which moves from u toward E_{7}. If u^{\prime} reaches E_{7} first, then define

$$
I_{n+1}=\left[p_{n} ; u^{9}\right]=\left[p_{n}, E_{7}\right]=\left[E_{0}, E_{7}\right]
$$

and

$$
c_{n+1}=c\left(p_{n}, t^{\prime}, t, u^{\prime}\right)
$$

If t^{\prime} reaches E_{2} first, hold $t^{\prime}=E_{2}, t=E_{3}$ fixed and let $t^{\prime \prime}$ move from $p_{n}=E_{0}$ toward E_{1}. Then there is a point $u^{\prime \prime}$ which moves from $u^{\prime \prime}$ toward $E_{7^{\prime}}$ If $u^{\prime \prime}$ reaches F_{7} first, then define

$$
I_{n+1}=\left[t^{\prime \prime}, u^{\prime \prime}\right]=\left[t^{\prime \prime}, E_{7}\right] \in\left[E_{0}, E_{7}\right]
$$

and

$$
c_{n+1}=c\left(t^{\prime \prime}, t^{\prime}, t, u^{\prime \prime}\right)
$$

If $t^{\prime \prime}$ reaches E_{1} first, define

$$
I_{n+j}=\left[t^{\prime \prime}, u^{\prime \prime}\right]=\left[E_{1}, u^{\prime \prime}\right] \subset\left[E_{1}, \mathbb{E}_{8}\right]
$$

and

$$
C_{n+1}^{\prime}=C\left(t^{\prime \prime}, t^{\prime}, t, u^{\prime \prime}\right)
$$

If q_{n}, r_{n} lie on the same side of E_{4} as s_{n}, then by a symmetric construction we define I_{n+1} and C_{n+1}. We note that

$$
f\left(I_{n+1}\right) \leq \frac{7}{8} f\left(I_{n}\right) .
$$

If case (ii) occurs, let F_{i} be the point on I_{n} which is $\frac{i}{6} \varepsilon$ from $p_{n} i=0,1, \ldots, 6$. One defines I_{n+1} and C_{n+1} as follows: Hold p_{n}, s_{n} fixed and let t move from q_{n} toward F_{2}. If q_{n} is already between F_{2} and F_{3}, no movement is carried out. Otherwise, by $3.1,1$, there is a point u which moves from r_{n} toward $F_{4^{\prime}}$. If r_{n} is already between F_{3} and F_{4}, again no movement is carried out. Without loss of generality, assume that in reaches F_{4} first. Now hold p_{n}, u fixed and let t^{\prime} move from t toward $F_{2^{\prime}}$ Then there is a point u^{\prime} which moves from s_{n} toward the point
F_{5}. If u^{\prime} reaches F_{5} first, then define

$$
I_{n+1}=\left[p_{n}, u^{\prime}\right]=\left[p_{n}, F_{5}\right]=\left[F_{0}, F_{5}\right]
$$

and

$$
c_{n+1}=C\left(p_{n}, t^{\prime}, u, u^{\prime}\right)
$$

If t^{\prime} reaches F_{2} first, hold $t^{\prime}=F_{2}$, u fixed and let $t^{\prime \prime}$ move from p_{n} toward F_{1}. Then there is a point $u^{\prime \prime}$ which moves from u^{\prime} toward F_{5}. If u^{\prime} reaches F_{5} first, then define

$$
I_{n+1}=\left[t^{\prime \prime}, u^{\prime \prime}\right]=\left[t^{\prime \prime}, F_{5}\right] \subset\left[F_{0}, F_{5}\right]
$$

and

$$
c_{n+1}=c\left(t^{\prime \prime}, t^{\prime}, u, u^{\prime \prime}\right)
$$

If $t^{\prime \prime}$ reaches F_{1} first, then define

$$
I_{n+1}=\left[t^{\prime \prime \prime}, u^{\prime \prime}\right]=\left[F_{1}, u^{\prime \prime}\right] \subset\left[F_{1}, F_{6}\right]
$$

and

$$
c_{n+1}=C\left(t^{\prime \prime}, t^{\prime}, u, u^{\prime \prime}\right)
$$

Then

$$
\ell\left(I_{n+1}\right) \leq \frac{5}{6} \ell\left(I_{n}\right) .
$$

If case (iii). occurs, without loss of generality, let $r_{n}=F_{3}$. We define I_{n+1} and C_{n+1} as follows. Hold $P_{n}, r_{n}=F_{3}$ fixed and let t move from q_{n} toward $F_{2^{\prime}}$. If q_{n} is already between F_{2} and F_{3}, no movement is carried out. Otherwise, by 2,工.I, there is a point u which moves from s_{n} toward F_{5}. If u reaches F_{5} first, then define

$$
I_{n+1}=\left[p_{n}, u\right]=\left[p_{n}, F_{5}\right]=\left[F_{0}, F_{5}\right]
$$

and

$$
C_{n+1}=C\left(p_{n}, t, r_{n}, u\right)
$$

If t reaches F_{2} first, hold $t=F_{2}, r_{n}=F_{3}$ fixed and let t' move from p_{n} toward F_{1}. Then there is a point u " which moves from u toward F_{5}. If u^{\prime} reaches F_{5} first, then define

$$
I_{n+1}=\left[t^{\prime}, u^{\prime}\right]=\left[t^{\prime}, F_{5}\right] \in\left[F_{0}, F_{5}\right]
$$

and

$$
c_{n+1}=c\left(t^{\prime}, t, r_{n}, u^{\prime}\right)
$$

$$
\begin{aligned}
& \text { If t' reaches } F_{1} \text { first, then define } \\
& I_{n+1}=\left[t, u^{\prime}\right]=\left[F_{1}, u^{\prime}\right] \subset\left[F_{1}, F_{6}\right]
\end{aligned}
$$

and

$$
c_{n+1}=C\left(t, t, r_{n}, u^{\prime}\right) .
$$

Then

$$
l\left(I_{n+1}\right) \leq \frac{5}{6} \quad l\left(I_{n}\right) .
$$

By construction, in each case

$$
\ell\left(I_{n+1}\right) \leq \frac{7}{8} \ell\left(I_{n}\right)
$$

and $\left(I_{n}\right)$ is a nested sequence of closed intervals such that $\ell\left(I_{n}\right) \longrightarrow 0$. Hence

$$
\cap_{n} I_{n}=\{y\}
$$

([22], p. 10). This point y \& B is the required singular point.

If y is not an interior point of B, then hold q_{0} and r_{0} fixed and let t move a small distance from p_{0} toward q_{0} before defining the sequence $\left(I_{n}\right)$. By 2.1 .1 , there is a point u which
moves a small distance from s_{0} toward r_{0}. Now use the interval $[t, u]$ as I_{0} and $C\left(t, q_{0}, r_{0}, u\right)$ as C_{0} and construct I_{n} and C_{n} as above. : This will ensure that we obtain a singular point in $[t, u]$ and hence in the interior of B, as required.
3.1 .3 Let $p_{0}<q_{0}<r_{0}$ be three points on a_{4} and B the closed subarc of a_{4} bounded by p_{0} and r_{0} Let a $\varepsilon a_{4} \backslash B$. Suppose that there exists a circle through the points a, p_{0}, q_{0}, r_{0}. If \boldsymbol{b}_{a} is the system of circles passing through the point a, then there exists at least one \mathscr{E}_{a} - singular point y on \mathbb{B}; ie., for any neighbourhood N of y on \mathbb{B} there exists a circle of \mathscr{C}_{a} that meets N at least three times.

Proof. Let ${ }^{\prime} I_{0}$ be the parameter interval $\left[p_{0}, r_{0}\right]$ and $c_{0}=C\left(a, p_{0}, q_{0}, r_{0}\right)$. We define a sequence of intervals and a corresponding sequence of circles by induction. Having defined $I_{n}=\left[p_{n}, r_{n}\right]$ with $I_{n} \in I_{0}$ and C_{n} through a and the points $p_{n}<q_{n}<r_{n}$, we define $I_{n+1} \subset I_{n}$ and C_{n+1} as follows.

Let $\ell\left(I_{n}\right)=\varepsilon$ and D_{i} be the point of I_{n} which is $\frac{i}{4} \varepsilon$ from $p_{n} ; i=0, \ldots$. 4. Either

$$
\text { (i) } \quad q_{n} D_{2}
$$

or

$$
\text { (ii) } q_{n}=D_{2}
$$

If case (i) occurs, we can assure, without loss of generality, that q_{n} lies between D_{0} and D_{2}. Hold a, p_{n} fixed and let t move from q_{n} toward D_{2}. Then by 2.1 .1 , there is a point u which moves from $r_{n i}$ toward D_{3}. If u reaches D_{3} first, then define

$$
I_{n+1}=\left[p_{n} ; u\right]=\left[D_{0}, D_{3}\right]
$$

and

$$
C_{n+1}=C\left(a, p_{n}, t, u\right)
$$

If t reaches D_{2} first, then hold $a, t=D_{2}$ fixed and let t' move from p_{n}^{\prime} toward D_{1}. By 2.1.1, there is a point u^{\prime} which moves from u toward D_{3}. If u^{\prime} reaches D_{3} first, then define

$$
I_{n+1}=\left[t^{\prime}, u^{\prime}\right]=\left[t^{\prime}, D_{3}\right] \in\left[D_{0}, D_{3}\right]
$$

and

$$
c_{n+1}=C\left(a, t^{\prime}, t, u^{\prime}\right)
$$

If t^{\prime} reaches D_{1} first, then define

$$
I_{n+1}=\left[t^{\prime}, u^{\prime}\right]=\left[D_{1}, u^{\prime}\right] \in\left[D_{1}, D_{4}\right]
$$

and

$$
c_{n+1}=c\left(a, t^{\prime}, t, u^{\prime}\right) .
$$

If case (iii) occurs, then we define I_{n+1} and C_{n+1} as in the second paragraph of case (i).

By construction $\ell\left(I_{n+1}\right) \leq \frac{3}{4} \quad l\left(I_{n}\right)$ and $\left(I_{n}\right)$ is a nested sequence of closed intervals such that $f\left(I_{n}\right) \longrightarrow 0$. Hence

$$
\bigcap_{n} I_{n}=\{y\}
$$

([22], p. 10). This point y on B is a \boldsymbol{b}_{a}-singular point.
3.1.4 Let N_{1}, N_{2} be arbitrary neighbourhoods of two singular points z_{1}, z_{2} on a_{4}. Let B be the closed subarc of a_{4} between z_{1} and z_{2}. If $a \varepsilon a_{4} \backslash N_{1} \cup B \cup N_{2}$, then there exists a circle of \mathfrak{F}_{a} which meets $N_{1} \cup B \cup N_{2}$ at three_distinct points.

Proof. By the definition of a singular point, for each neighbourhood N_{i} of z_{i} on Q_{4} there exists a circle meeting N_{i} in exactly four intersection points, $i=1,2$. Let ($x_{1}, x_{2}, x_{3}, x_{4}$) ($x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, x_{3}{ }^{\prime}, x_{4}{ }^{\prime}$) be respective quadruplets for z_{1} and $z_{2^{\prime}}$ Without loss of generality, we may take x_{j} and $x_{j}^{\prime}, j=1, \ldots, 4$, such that

$$
\cdots
$$

and $a<x_{1}$ on $Q_{4^{*}}$. Since Q_{4} is normal, the four-tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, x_{4}^{\prime}\right)$ lie in the same order on their corresponding circles as they do on Q_{4}. Now hold x_{2}, x_{3}. fixed and let. t move on a_{4} from x_{4} toward x_{3} '. Then by 3.1.1, there is a point u which moves from x_{1} toward a. Continuing this movement one obtains either
(i) ${ }_{1} t$ coincides with x_{3}, while $a<u$
or
(ii) ${ }_{1} u$ coincides with a, while $t \leq x_{3}$ '.

If case (ii) occurs, then we are finished. If case (i) ${ }_{I}$ occurs, then hold x_{2} and $t=x_{3}$ fixed and let t move on Q_{4} from x_{3} toward x_{2}^{i}. By 2.1 .2 , there is a point u^{\prime} which. moves from u toward a with the final result that either
(i) $2_{2} t^{\prime}$ coincides with x_{2}^{\prime}, while $a<u$
(ii) ${ }_{2} u^{\prime}$. coincides with a, while $t^{\prime} \leq x_{2}^{\prime}$.

If case (ii) ${ }_{2}$ occurs, then we are finished. If case (i) ${ }_{2}$ occurs, then hold $t=x_{3}{ }^{\prime}, t^{\prime}=x_{2}^{\prime}$ fixed and let $t^{\prime \prime}$ move from x_{2} toward $x_{1}{ }^{\prime}$. Then there is a point $u^{\prime \prime}$ which moves from u^{\prime} toward a. Finally either
(i) 3_{3} t" coincides with $x_{1}{ }^{\prime}$, while a< $u^{\prime \prime}$
(ii) ${ }_{3}$ u" coincides with a, while $t^{\prime \prime} \leq x_{1}{ }^{\prime}$.

If case (ii) 3 occurs, then we are finished. If case (i) ${ }_{3}$ occurs, then we have a circle which meets Q_{4} at $u^{\prime \prime}, x_{1}{ }^{\prime}, x_{2}^{\prime}, x_{3}$ '. However, the points $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, x_{3}{ }^{\prime}$ determine a unique circle and this circle also meets \boldsymbol{Q}_{4} at $x_{4}{ }^{\prime}$. Thus this circle meets \boldsymbol{Q}_{4} at least five times; contradiction. Hence case (ii) k must occur.; for some $k, 1 \leq k \leq 3$, and the result follows.
3.1.5 Let z_{1}, z_{2} be two singular points of A_{4} and let a $\varepsilon Q_{4} \backslash B$, where B is the closed subarid of Q_{4} between z_{1} and z_{2}. Then there exists at least one $\mathscr{C}_{a}-$ singular point y on \boldsymbol{B}.

Proof. Let $\mathbb{N}_{i}{ }^{(1)}$ be a neighbourhood of z_{i} on Q_{4} with a $\mathrm{N}_{\mathrm{i}}{ }^{(1)}, i=1,2$. By 3.1 .4 , there exists a circle C_{0} meeting Q_{4} at a and meeting $N_{1}{ }^{(1)} \cup B \cup N_{2}{ }^{(1)}$ at three points $\mathrm{p}_{\mathrm{O}}<\mathrm{q}_{0}<\mathrm{r}_{0}$. By $\mathcal{Z}_{2} \mathcal{I}_{2} \boldsymbol{Z}$, there is a \mathscr{E}_{a}-singular point.

$$
y^{(1)} \varepsilon N_{1}^{(1)} \cup 囚 \cup N_{2}^{(1)}
$$

If $\bar{y}^{(1)} \varepsilon \beta$, then we are finished. If $y^{(1)} \& \beta$, then $y^{(1)} \varepsilon \mathbb{N}_{1}{ }^{(1)} \backslash \mathbb{B}$, say. Now take suitable smaller neighbourhoods $N_{i}^{(2)}<N_{i}^{(1)}$ of $z_{i}, i=1,2$, with $y^{(1)} \not N_{i}^{(2)}$ and apply $3,1,4$ and 2,1.3 again using the new neighbourhoods $N_{i}(2)$ of z_{i}. we obtain a $\mathfrak{b}_{\mathrm{a}}$ - singular point

$$
y^{(2)} \varepsilon N_{1}^{(2)} \cup \beta \cup N_{2}^{(2)} \text {. }
$$

If $\mathrm{y}^{(2)} \varepsilon \mathrm{Q}_{\mathrm{y}}$ then we again take new neighbourhoods $\mathrm{N}_{\mathrm{i}}{ }^{(3)}$ of z_{i} with $y^{(2)} \not N_{i}{ }^{(3)}$ and apply 2.1 .4 and 3.1 .3 to obtain a \mathscr{b}_{a}-singular point

$$
y^{(3)} \varepsilon \mathrm{N}_{1}^{(3)} \cup \mathrm{BuN} \mathrm{~N}_{3}^{(3)}
$$

Repeating this process, if necessary, and taking $N_{i}{ }^{(n)}$ such that $\dot{N}_{i}{ }^{(n)}$ converges to z_{i}, either we obtain a \mathscr{b}_{a}-singular point y $\varepsilon \mathbb{B}$ at some stage or we obtain a sequence $y^{(n)}$ of \mathscr{L}_{a}-singular points lying outside \mathcal{B} with an accumulation point which coincides with at least one of the z_{i}, say z_{1}. But then z_{1} is a \boldsymbol{b}_{a}-singular point and we have the desired result.

Arguments which are analogous to those used in $3.1 .3,3.1 .4$ and 3.1 .5 yield the following.
2.1.6 Let y_{1}, y_{2} be two points of a_{4} and let B be the closed subarc of Q_{4} between them. Let a_{1}, a_{2} be distinct points of $a_{4} \backslash B$. If y_{1} and y_{2} are $\boldsymbol{F}_{\mathrm{a}_{1}}$ - singular points, then there exists at least one $\mathscr{C}_{a_{1}}{ }_{2}$-singular point y on B ide., for any neighbourhood N of y there exists a circle passing through a_{1}, a_{2} and meeting N at least twice.
3.1.7 Let y_{1}, y_{2} be two points of Q_{4} and let Q be the
closed subare of a_{4} between theme Let a_{1}, a_{2}, a_{3} be mutually distinct points of $a_{4} \backslash B$. If y_{1} and y_{2} are $\mathscr{b}_{a_{1} a_{2}}$ singular points, then there exists at least one $\mathscr{C}_{a_{2}} a_{2} a_{3}-$ singular point y on B; i.e., for any neighbourhood N of y there exists a circle passing through a_{1}, a_{2}, a_{3} and meeting N at least once.
2.1.8 We are now ready to give the main result of this section.

Theorem 2: A normal arc Q_{4} of order four contains at most finitely many singular points.

Proof. Suppose that there are infinitely many singular points on Q_{4}. Take any point a_{1} on $Q_{4^{*}}$ Then by 3.1 .5 , there exist infinitely many $\mathscr{C}_{a_{1}}$ - singular points on $Q_{4^{*}}$. Take another point a_{2} on $a_{4}, a_{1} \neq a_{2}$. By 3.1 .6 , there exist infinitely many O $a_{1} a_{2}$ - singular points on $a_{4^{\prime}}$. Finally, take another point a_{3} on a_{4}, distinct from a_{1} and a_{2}, By 3.1 .2 , there exist infinitely mary $\mathscr{C}_{a_{1} a_{2} a_{3}}$ - singular points on Q_{4}. But now we have constructed a circle through a_{1}, a_{2}, a_{3} which meets Q_{4} at infinitely many points; contradiction.
3.1.9 If p is an end-point of Q_{4}, then p is ordinary.

Proof. Assume p is a singular point. Then for each neighbourhood $N^{(1)}$ of p there exists a circle which meets $N^{(1)}$ four
times, say ait $p_{1}<q_{1}<r_{1}<s_{1}$. By $\mathcal{Z . 1 . 2}^{2}$, there exists a singular point $y^{(1)}$ in $\left(p_{1}, s_{1}\right)$. Now take a new smaller neighbourhood $N^{(2)}$ of P with $y^{(1)} N^{(2)}$. By 3.1.2, there exists another singular point $y^{(2)}$ different from $y^{(1)}$. Repeating this process and using $3.2,2$, we obtain an infinite number of singular points. This is impossible, by Theorem 2.
3.1.10 In 3.1.9 it was shown that an end-point p of Q_{4} is ordinary. Thus there exists a neighbourhood N_{3} of p on Q_{4} which is of order three. But it is known that $N_{3} \cup\{p\}$ is strongly differentiable at $p([4], 3.5)$. Thus, an end-point p of Q_{4} is strongly differentiable.

3.2 Multiplicities For Arcs of Order Four

Introduction

In [4] N.D. Lane and P. Scherk introduced multiplicities for open ares Q_{3} with one end-point p, counting p [a point q of $\left.Q_{3}\right]^{\text {three times on }} C\left(p^{3}\right)$ [on a general osculating circle of Q_{3} at q] and twice on any other [general] tangent circle of Q_{3} at p [at q]. Then they showed that no circle meets $Q_{3} \cup p$ more than three times, i.e., the inclusion of p and the introduction of multiplicities do not alter the order of Q_{3}.

In 1.3 of [12] 0. Haupt and H. Kunneth introduced intersection and support components of continua and derived some interesting results concerning intersection and support properties of arcs and curves with general order characteristics having a certain base number k.

However, since we shall be only interested in the special case where the class of order characteristics is the set of circles in the conformal plane, our attention to arcs of order four will be concerned with the former approach of Lane and Scherk. Correspondingly, in this section we shall prove the following result.

Theorem 3: The order of the open arc \boldsymbol{Q}_{4}, with the possible exception noted in the remark following 3,2,14, is not changed by
(i) the addition of one of the end-points p;
(ii) the introduction of multiplicities of p, such that p
is counted once, twice and three times, respectively, on a nontangent circle through p, a nonosculatine tangent circle through p, the osculating circle $C\left(p^{3}\right)$ of $Q_{4} \cup\{p\}$ at p;
(iii) the introduction of multiplicities at interior points
q of Q_{4} such that q is counted once on any circle through q which is not a general tangent circle at q, twice on any general tangent circle at q which is not a general osculating circle, three times on any general osculating circle at q which intersect Q_{4} at q and four times on any general osculating circle at q which supports Q_{4} at q. In the last case q would be a singular point of a_{4}.

We shall assume in the rest of section 3.2 that $p<s$ for all $s=a_{4^{*}}$
3.2.0 No circle C through four mutually distinct points of Q_{4} supports Q_{4} at one of these points and intersects Q_{4} at another one.

Proof. Suppose C supports Q_{4} at q_{1}, intersects Q_{4} at q_{2} and meets Q_{4} at q_{3} and q_{4}. Then a suitable circle sufficiently close to C through q_{2} and q_{3} will intersect Q_{4} at two points near q_{1} and at one point near q_{2}. This contradicts the order of Q_{4}.
3.2.1 No circle C supports a_{4} at more than two points.

Proof: Suppose C supports Q_{4} at q_{1}, q_{2} and q_{3}. By 2.2.0, c does not intersect Q_{4}. Hence

$$
a_{4} \subset c \cup c_{e},
$$

say.

Let L, M, N be three disjoint neighbourhoods on \boldsymbol{Q}_{4} of q_{1}, q_{2}, q_{3}, respectively. The end-points of L, M, N lie in C_{e}. Choose a suitable circle D in C_{e} which is so close to C that the end-points of $\mathrm{L}, \mathrm{M}, \mathrm{N}$ also lie in D_{e}. We can orient D such that $C \in D_{i}$. On the other hand,

$$
c \in D_{i} \Rightarrow q_{1}, q_{2}, q_{3} \in D_{i} .
$$

Thus D separates q_{1}, q_{2}, q_{3} from the end-points of L, M, N, respectively, and hence D will intersect $\mathrm{L}, \mathrm{M}, \mathrm{N}$ in not less than two points each. Thus D meets a_{4} more than four times; contradiction.

From 3.2.0 and 3.2.1 we obtain
3.2.2 If a circle C supports Q_{4} at t, then C cannot meet a_{4} at more than two further points.

If a circle c meets Q_{4} at four distinct point a, then all of them are points of intersection.

$$
\begin{aligned}
\text { If a circle } C & \text { through three mutually distinct points of } \\
a_{4} & \text { supports } O_{4} \\
\text { at one of them, then } & \text { intersects } O_{4} \text { at }
\end{aligned}
$$ the other points.

3.2.3 If a circle c supports Q_{4} at s and t, then c does not meet $Q_{4} \cup\{\mathrm{p}\}$ again.

- Proof. Suppose that C meets $\mathbb{Q}_{4} \cup\{\mathrm{p}\}$ at a further point u. Then by 3.2,1, u is a point of intersection of Q_{4} with c or $u=p$. The first possibility is ruled out by 3.2.2. Thus $u=p$.

Without loss of generality, let $s<t$ on $\boldsymbol{Q}_{4^{*}}$. Let $I_{\text {; }} M$ be disjoint neighbourhoods of Q_{4} of s, t, respectively. Also let N be a neighbourhood of p on $Q_{4} \cup\{p\}$, disjoint with I_{1} and M. The end-points of L, M will lie in C_{e}, say. Then for a suitable circle D in C_{e} which is sufficiently close to C, D will meet Q_{4} at a point near p and the end-points of L, M will also lie in D_{e}. We may orient D such that $C \subset D_{i}$. Thus $s, t \in D_{i}$. Therefore D separates s and t from the end-points of I and M, respectively, Hence D will intersect L, M in not less than two points each. D then meets Q_{4} at least five times; contradiction.
3.2 .4
(i) If a circle through p meets a_{4} at four points, then at most one of them is a point of intersection.

Proof. Suppose that a circle C through p intersects Q_{4}
at q_{1}, q_{2} and meets Q_{4} at two further points r and s. Choose disjoint neighbourhoods I, M, N on $Q_{4} \cup\{p\}$ of p, q_{1}, q_{2}, respectively, which do not contain r or s. Then if t converges on L to $p, C(r, s, t)$ converges to C. However, $C(r, s, t)$ will intersect M and N if t is sufficiently close to p. Hence this circle meets a_{4} at least five times; contradiction.
(ii) If a tangent circle of Q_{4} at p meets Q_{4} at three points, then at most one of them is a point of intersection.

Proof. Let c be a tangent circle of Q_{4} at p intersecting a_{4} at the points q_{1}, q_{2} and meeting a_{4} at a further point r. If t is sufficiently close to p, then $C(p, t, r)$ will be close to c and it will intersect α_{4} at points near q_{1} and q_{2}. This is impossible, by (i).

In the same way (ii) implies
(iii) $C\left(p^{3}\right)$ intersects a_{4} at most once.

3,2.5 No circle meets $a_{4} \cup\{p\}$ in more than four points.

Proof. Let c be a circle which meets $a_{4} \cup\{p\}$ in five mutually distinct points. Because \boldsymbol{a}_{4} is of order four, one of these points must be p while the other four lie on a_{4}. If one of these four is a point of support, then a contradiction is obtained in 3.2.2. Hence all four of these points of a_{4} are points of intersection. But this is impossible, by (i) of $3,2,4$.
2.2.6 No tangent circle of $a_{4} \cup\{p\}$ at p meets a_{4} in more than two points.

Proof. If a tangent circle of $Q_{4} \cup\{p\}$ at p meets Q_{4} at three distinct points, then at least two of these are points of support, by (ii) of 3.2.4. However, this is impossible, by 2.2.3.
3.2.7 No tangent circle of $Q_{4} \cup\{p\}$ at p supports a_{4} at one point and intersects a_{4} at another point.

Proof. Let c be a tangent circle of $a_{4} \cup\{p\}$ at p which intersects a_{4} at q_{1} and supports a_{4} at q_{2}. Then c does not meet Q_{4} elsewhere by 2.2.6. Then if t is sufficiently close to $p, C\left(p, t, q_{1}\right)$ will be close to c and meet Q_{4} twice near $\mathrm{q}_{2^{*}}$. This is impossible, by 2.2.5.
3.2.8 $\mathrm{C}\left(\mathrm{p}^{3}\right)$ cannot support a_{4} at a point .

Proof. Suppose that $c\left(p^{3}\right)$ supports a_{4} at q. Then, by 3.2.3 and 3.2.7, $C\left(p^{3}\right)$ does not meet \dot{a}_{4} elsewhere. If t is Sufficiently close to p, then $C\left(p^{2}, t\right)$ will be close to $C\left(p^{3}\right)$ and meet a_{4} twice near q. This is impossible, by 2.2 .6 .
3.2.9 No general osculating circle of a_{4} at q intersects $a_{4} \backslash\{q\}$ more than once.

Proof. Let C be a general osculating circle of Q_{4} at q which intersect $Q_{4} \backslash\{q\}$ at two distinct points r and s. Then, by definition of a general osculating circle, there is a circle D sufficiently close to C which meets Q_{4} three times near q. But D will also intersect Q_{4} once near r and once near s since D is close to C. This is impossible because Q_{4} is of order four.
3.2.10 No general osculating circle of a_{4} at q supnorts Q_{4} at a point $r \neq q$.

Proof. Let C be a general osculating circle of \boldsymbol{Q}_{4} at q which supports Q_{4} at $r \neq q$. Either
(i) c intersects a_{4} at q
or
(ii) C supports a_{4} at q.

Let

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime}
$$

and L be two small two-sided neighbourhoods of q and r on Q_{4} respectively, where N^{\prime} [$N^{\prime \prime}$] precedes [follows] q. Without loss of generality; let $q<r$ and
$\mathrm{I} \backslash\{r\}<C_{\mathrm{e}}$.

In case (ii), 3.2.3 implies that c does not meet Q_{4} outside q and r. Hence

$$
N^{\prime \prime} \in C_{e}
$$

Suppose that case (i) occurs. Since C is a general osculating circle of Q_{4} at q,

$$
c=\lim C\left(q_{n}, q_{n}^{\prime}, q_{n}^{\prime \prime}\right)
$$

where the three mutually distinct points $q_{n}, q_{n}{ }^{\prime}, q_{n}{ }^{\prime \prime}$ converge on N to q. By taking subsequences $q_{n m}, q_{n m}^{\prime}, q_{n m}^{\prime \prime}$, if necessary,

$$
\underset{f}{c}=\lim C\left(q_{n m}, q_{n m}^{\prime}, q_{n m}^{\prime \prime}\right)
$$

where at least two of the three mutually distinct points $q_{n m}, q_{n m}{ }^{\prime}, q_{n m}{ }^{\prime \prime}$ converge on N^{\prime} to q or at least two converge on $N^{\prime \prime}$ to q. Now, both $N^{\prime} \cup\{q\}$ and $N^{\prime \prime} \cup\{q\}$ satisfy condition CI' at q; cf. 2.4.2 and 2.1.10. Let D be a circle close to C in

$$
c_{e} \cup\{q\}
$$

Which supports C at q. Then D will intersect L at least twice. But the end-points of N lie on opposite sides of C. Fience the end-points of N will lie on opposite sides of D. But D is a tangent circle of $N^{\prime \prime} \cup\{q\}$ or of $N^{\prime \prime} \cup\{q\}$ at q, by 2.4.1 (i). Thus either
(a) D supports N at q, intersects $N \backslash\{q\}$ at least once and intersects I at least twice, or
(b) D is a tangent circle of $N^{\prime} U\{q\}$ or of $N^{\prime \prime} U\{q\}$ at q which intersects Q_{4} at $q ;$ i.e.za general osculating circle of Q_{4} at q.

Both of these are impossible, by 3.2 .2 and 2.2 .2 , respectively.

Suppose that case (ii) occurs. Then

$$
N^{\prime} \in C_{e}
$$

We will first show that C is necessarily the osculating circle of $N^{\prime} \cup\{q\}$ or of $N^{\prime \prime} \cup\{q\}$ at q. Suppose that C is neither of the one-sided osculating circles of Q_{4} at q. Now

$$
C=\lim C\left(q_{n}, q_{n}^{\prime}, q_{n}^{\prime \prime}, q_{n}^{\prime \prime \prime}\right)
$$

where the four mutually distinct points $q_{n}, q_{n}{ }^{\prime}, q_{n}{ }^{\prime \prime}, q_{n}{ }^{\prime \prime}$ ' converge on N to q. Since C is neither of the one-sided osculating circles of Q_{4} at q, we can assume, by taking subsequences, if necessary, that at least two of the points $q_{n}, q_{n}{ }^{\prime}, q_{n}{ }^{\prime \prime}, q_{n}{ }^{\prime \prime \prime}$ converge on N^{\prime} to q while the other two converge on $N^{\prime \prime}$ to q. Thus C is a general tangent circle of both $N^{\prime} \cup\{q\}$ and $\mathbb{N}^{\prime \prime} \cup\{q\}$ at q. But since both $N^{\prime} \cup\{q\}$ and $N^{\prime \prime} \cup\{q\}$ satisfy condition $C I '$ at
q, then Q_{4} satisfies condition $C I '$ at q and hence the family of tangent circles of a_{4} at q is a pencil of the second kind with fundamental point q. Hence one of the one-sided osculating circles of N at q lies in C_{i} (see Figure 4). Cali this circle K. Without loss of generality, suppose that K is the osculating circle of $\mathbb{N}^{\prime} \cup\{q\}$ at q. Now let $s \varepsilon N^{\prime}$. Then the tangent circle

$$
c^{\prime}\left(q^{2}, s\right)
$$

of N'U\{q\} at q through s lies in $C_{e} U\{q\}$, since $s \varepsilon C_{e}$. If s converges to q on N^{1}, then

$$
K=\lim _{s \rightarrow q} C^{\prime}\left(q^{2}, s\right) \subset c \cup c_{e^{\prime}}
$$

since $N^{\prime} \cup\{q\}$ is differentiable at q; $c f$. 3.1,10. This is a contradiction, Hence C is one of the one-sided osculating circle of a_{4} at q.

Figure 4
${ }^{5}$. Next C cannot be the osculating circle of $N^{\prime \prime} U\{q\}$ at q, by $3,2,8$. Hence C is the osculating circle of $N^{\prime} \cup\{q\}$ at q. If t is close to q on N^{i}, then the tangent circle $C^{\prime}\left(q^{2}, t\right)$ of $N^{\prime} \cup\{q\}$ at q through t will be close to C, by 2,1,10. But $t \in N^{\prime} \in C_{e}$. Hence by 2.4 .1 (i),

$$
c^{\prime}\left(q^{2}, t\right) \backslash\{q\} \subset c_{e}
$$

and thus if t is sufficiently close to q on $N^{\prime}, C^{\prime}\left(q^{2}, t\right)$ will intersect I at least twice. This is impossible, by 3.2 .2 and 3.2.9, since $C^{\prime}\left(q^{2} ; t\right)$ either supports Q_{4} at q or is a general osculating circle of a_{4} at q.
3.2.11 No'general osculating circle of Q_{4} at q which supports a_{4} at q can intersect Q_{4} again.

Proof. Let C be a general osculating circle of Q_{4} at q which supports Q_{4} at q and intersects Q_{4} at a point $r \neq q$. Since C supports Q_{4} at q,

$$
C=C_{n}=\lim C\left(q_{n}, q_{n}^{\prime}, q_{n}^{\prime \prime}, q_{n}^{\prime \prime \prime}\right)
$$

when the Bour mutually distinct points $q_{n}, q_{n}{ }^{\prime}, q_{n} ", q_{n}{ }^{\prime \prime}$ converge on Q_{4} to q. Since r is a point of intersection of Q_{4} with C, for sufficiently large $n \quad C_{n}$ will be close to C and hence intersect Q_{4} at a point close to r. But then c_{n} meets Q_{4} at least five times; contradiction.
3.2.12 No general osculating circle of Q_{4} at q which supports Q_{4} at q meets $a_{4} \cup\{p\}$ again.

Proof. Let c be a general osculating circle of Q_{4} at q which supports a_{4} at q and meets $Q_{4} \cup\{p\}$ at a further point u. By 2.2.10 and 2.2.11, $u=p$ and c does not meet $Q_{4} \backslash\{q\}$. As in the proof of 2.1 .10 , one can show that C is necessarily one of the one-sided osculating circles of Q_{4} at q. Let

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime}[I]
$$

be a small two-sided [one-sided] neighbourhood of $q[p]$ on $Q_{4} \cup\{p\}$. Without loss of generality, let

$$
a_{4} \backslash\{a\}<c_{e} .
$$

Then N^{*}, $\mathrm{N}^{\prime \prime} \subset C^{*}$

Suppose that C is the osculating circle of $N^{\prime} \cup\{q\}$ at. q : If: $t 1^{i \cdot 1}$ is sufficiently close to \dot{q}, on N^{\prime}, the tangent circle

$$
c^{\prime}\left(q^{2}, t\right)
$$

of $N^{\prime} \cup\{q\}$ at q through t will be close to C. By 2.4.1 (i),

$$
c^{\prime}\left(q^{2}, t\right) \backslash\{q\}<c_{e}
$$

and thus if t is sufficiently close to q on $N^{\prime}, C^{\prime}\left(q^{2}, t\right)$ will meet L at least once. But $C^{\prime}\left(q^{2}, t\right)$ must meet N with an even multiplicity. But then we have one of
(a) $\quad C^{\prime}\left(q^{2}, t\right)$ supports Q_{4} at q, t and meets L at least once,
(b) $C^{\prime}\left(q^{2}, t\right)$ supports Q_{4} at q, intersects $N \backslash\{q\}$ at two points t, r and meets I at least once,
(c) $c^{\prime}\left(c_{i}^{2}, t\right)$ intersects Q_{4} at q, t and meets L at least once.

But these situations are impossible, by $3.2 .3,3.2 .2,3.2 .2$ and 3.2 .10.

Similarly C cannot be the osculating circle of $N^{\prime \prime} \cup\{q\}$ at q.
3.2.13 No general osculating circle of Q_{4} at q meets $a_{4} \cup\{p\} \backslash\{q\}$ more than once.

Proof. Suppose that C is a general osculating circle of Q_{4} at q which meets $Q_{4} \cup\{p\}$ at two further points $x<s$. Then by 3.2 .9 and $3.2 .10, ~ r=p$ and s is a point of intersection of Q_{4} with C. By $3,2,11,0$ intersects Q_{4} at q. But then we construct a circle D, as in $3,2,10$ case (i), which either supports Q_{4} at q and meets \mathcal{Q}_{4} at three further points or is a general osculating circle of Q_{4} at q which meets a_{4} at two further points. Both of these situations are impossible, by 2.2.2, 3.2.9 and 3.2.10.
3.2,14 Let c be a general osculating circle of a_{4} at q which meets $a_{4} \cup\{p\}$ at p. By $3,2.12$ and $2,2,13, C$ intersects. a_{4} at q and does not meet a_{4} elsewhere. Now

$$
c=\lim C\left(q_{n}, q_{n}^{\prime}, q_{n}^{\prime \prime}\right)
$$

where each of the circles $C\left(q_{n}, q_{n}^{\prime}, q_{n}{ }^{\prime \prime}\right)$ has a natural orientation with the points $\Rightarrow q_{n}, q_{n}{ }^{\prime}, q_{n}{ }^{\prime \prime}$ in the order in which they occur on a_{4}. Hence the orientations of $c\left(q_{n}, q_{n}{ }^{\prime}, q_{n}{ }^{\prime \prime}\right)$, (we take subsequence if necessary) induce an orientation on the limit circle C. Then we have the following result (see Figure 5(a)).

The oriented circle c cannot be a tangent circle of $A_{4} u\{p\}$ at p in the same direction.

Proof. Let

$$
\begin{equation*}
N=N^{\prime} \cup\{q\} \cup N{ }^{\prime \prime} \tag{L}
\end{equation*}
$$

be a small two-sided [one-sided] neighbourhood of $q[p]$ on $a_{4} \cup\{p\}$. Without loss of generality let $N^{\prime} \in C_{e}$. Then the entire subarc B of Q_{4} bounded by p and q lies in c_{e}.

Since C is a general osculating circle of Q_{4} at q, C is either the tangent circle $C^{\prime}\left(q^{2}, p\right)$ of $N^{\prime} \cup\{q\}$ at q through p or the tangent circle $C^{\prime \prime}\left(q^{2}, p\right)$ of $N^{\prime \prime} \cup\{q\}$ at q through p. Let $C=C^{\prime}\left(q^{2}, p\right)$, say. Then

$$
\begin{aligned}
& \lim _{s^{\prime} \in N^{\prime}} \mathrm{c}\left(\mathrm{q}, \mathrm{~s}^{\prime}, \mathrm{p}\right)=\mathrm{c} . \\
& s^{\prime} \rightarrow \mathrm{q}
\end{aligned}
$$

Next suppose that $C\left(q, s^{\prime}, p\right)$ meets B again at a point t. Then

$$
c(p, t, q)=C\left(q, s^{\prime}, p\right)
$$

and as $s^{\prime} \longrightarrow q, t \rightarrow p$. However, the end-points of N lie on opposite sides of C. Thus the end-points of N will lie on opposite sides of $C(p, t, q)$ for t close to p on L. Therefore $C(p, t, q)$ meets N with an odd multiplicity. But $C(p, t, q)$ meets N at q and s^{\prime}. Thus $C(p, t, q)$ meets N at least three times and we have a circle $C(p, t, q)$ meeting $a_{4} \cup\{p\}$ at least five times. This is impossible, by 2.2.5. Hence $C\left(q, s^{\prime}, p\right)$ does not meet again.

But $B \subset C_{e}$. Thus

$$
B \backslash N^{\prime} \subset C\left(q, s^{\prime}, p\right)_{e}(\text { see Figure } 5(b))
$$

Let $t \varepsilon L$. The end-point f of L lies in C_{e}. Hence f lies in $C(p, t, q){ }_{e} \cdot$ Also $C(p, t, q)$ meets $C\left(q, s^{\prime}, p\right)$ only at p and q. But $\pm \varepsilon \mathbb{B} \backslash N^{\prime}$. Hence

$$
t \varepsilon C\left(q, s^{\prime}, \rho\right)_{e}
$$

and thus the arc of $C(p, t, q)$ containing t between p and q lies in $C\left(q, s^{\prime}, p\right) e^{\text {. Thus }}$

$$
s^{\prime} \varepsilon C(p, t, q)_{i}
$$

But

$$
f \varepsilon C(p, t, q)_{e}
$$

and

$$
s^{\prime} \varepsilon C(p, t, q)_{i}
$$

imply that the arc of Q_{4} between f and s, meets $C(p, t, q)$ with an odd multiplicity and hence at least once, say at s. Thus

$$
C(p, t, q)=C(q, s, p)
$$

as $t \longrightarrow p ; s \longrightarrow q$. We now proceed as in the preceding paragraph to obtain a circle that meets $Q_{4} \cup\{p\}$ at least five times; contradiction.

Remark: The possible exception to Theorem 3 occurs as follows.

Let q and p be end-points of an are Q_{4} of order four. Then the osculating circle of $Q_{4} \cup\{q\}$ at q, which has a unique orientation induced by Q_{4}, can also be a tangent circle of $Q_{4} \cup\{p\}$ at p.

The possibility seems still to exist if q is an interior point and p an end-point of $Q_{4^{*}}$. The problem arises when an oriented general osculating circle C is a tangent circle of $Q_{4} \cup\{p\}$ at p in the opposite direction (see Figure 5, (d)).

This problem seems to be analogous to the involving the addition of end-points to open arcerof order three.

Let Q_{3} be an open arc of order 3 with end-points p, q. Also Let c be a tangent circle of $Q_{4} \cup\{p\}$ at p and a tangent circle of $Q_{4} \cup\{q\}$ at q. Then
(a). the order of $Q_{3} \cup\{p\} \cup\{q\} \quad$ is increased to order four if c is tangent to $a_{3} \cup\{p\} \cup\{q\}$ at p and q in the same direction (see Figure $5(\mathrm{~d})$).

However,
(b) the order of Q_{3} is unchanged by the addition of both end-points if c is tangent to $Q_{3} \cup\{p\} \cup\{q\}$ at p and q in the opposite direction (see Figure 5(e)).

Figure 5

3.3 Differentiable Curves of Order Four

Introduction.

In this section let \mathscr{F}_{4} be a curve of order four. We shall assume here for the most part that \mathscr{C}_{4} is conformally differentiable; cf. 2.4.1. By 2.6 (iii), the characteristic of a point of \mathscr{E}_{4} is one of

$$
(1,1,1),(1,1,2),(1,1,2)_{0},(1,2,1)_{0},(2,1,1)_{0}
$$

By Theorem 2, \boldsymbol{b}_{4} contains at most finitely many singular points. Hence each singular point is elementary; of. 2.6 (iv). But then each singular point is a vertex; cf. 2.7. Moreover by 2.6.(iv), the 1 only possible singular points are those whose characteristic is one of the . Iast four of the five listed aboverex

In 3.3 .1 we derive a result, namely Theorem 4, which is very helpful in studying the classification of differentiable curves \boldsymbol{E}_{4} of order four in regard to types and numbers of singular points. An euclidean proof was originally given by P. Frdös and can be found in [8].

In 3.3 .5 and 3.3 .6 , singular points p of \mathscr{E}_{4} with the characteristic $(2,1,1)_{0}$ and $(1,2,1)_{0}$, respectively, are discussed as regards the induced orientation on the osculating circle $c\left(p^{3}\right)=p$ of a_{4} at $p:$

In_3.3.2 it is shown that \boldsymbol{b}_{4} contains at most one point with the characteristic ($2,1,1)_{0}$ and we use Theorem 4 to show that \mathscr{E}_{4} contains at most two points with the characteristic (1,2,1) $0^{\text {. }}$ If \mathscr{C}_{4} contains a point with the characteristic $(2,1,1){ }_{0}$, then \mathscr{F}_{4} contains at most one point with the characteristic $(1,2,1)$; cf. 3.3.11. \boldsymbol{F}_{4} contains an even or odd number of singular points according to the existence of no points or exactly one point on \mathcal{E}_{4}, respectively, with the characteristic $(1,2,1)_{0}$; cf. 3.3.13 and 2.3.15.

It is well known that a strongly differentiable curve \boldsymbol{D}_{4} of order four contains at most four vertices ([12], 4.1.4.3). Here we shall show that the weaker condition of ordinary differentiability on \boldsymbol{R}_{4} yield, the same result; cif. Theorem 5.
Y. 3.3.I First we shall give a conformal proof of a theorem which is very useful as well as being of some interest in its own right ([5]).

Theorem 4: Let R be a closed simply connected region of the real inversive plane bounded by a Jordan curve J, and let \mathcal{J} be divided into three closed arc $Q_{1}, Q_{2} O_{3}$. Then there exists a circle contained in R and having points in common with all three arcs.

Proof. Let S_{i} be the set of circles lying in Q which have a point in common with $a_{i}, i=1,2,3$. We include in S_{i} the point circles of Q_{i}. The set S_{i} are closed and connected. Since $S_{i} \cap S_{j} \neq \varnothing_{1} S_{2} \cup S_{2}$ is a closed connected set and so is . $s=S_{1} \cup S_{2} \cup S_{3}$.

Let P be any fixed point, $P \& R$. Let Q be the mapping: $S \rightarrow Q$ which takes a non-degenerate circle C of S into that point of Q which is the image of P under inversion in the circle C. If C is a point circle of S, take $\varphi(C)=C$. The mapping is a homeomorphism and both φ and Q^{-1} take closed connected sets into closed connected sets. Also $\quad Q[S]=R$.

It is well known that the set of points of Q is unicoherent (ike., if Q is written as a union of two closed connected sets R_{1} and R_{2}, then $R_{1} \cap R_{2}$ is also closed and connected). Hence S is also unicoherent.

Suppose that $S_{1} \cap S_{2} \cap S_{3}=\varnothing$. Then $S_{3} \cap S_{1}$ and $S_{3} \cap s_{2}$ are disjoint. They are also non-empty. Hence

$$
s_{3} \cap\left(s_{1} \cup s_{2}\right)=\left(s_{3} \cap s_{1}\right) \cup\left(s_{3} \cap s_{2}\right)
$$

consists of two nonempty disjoint closed sets and is therefore not connected. This contradicts the unicoherence of S. Hence there is some circle C in Q that has points in common with each of the arcs Q_{1}, Q_{2}, a_{3}.

Remark: J divides the inversive plane into two closed simply connected regions bounded by J. By this theorem, there exist two circles, one in $J_{i} \cup J$ and one in $J_{e} \cup J$ which have points inc:common with the three arcs a_{1}, a_{2}, a_{3}.

The following results are special cases of 3.2 .1 and 2.2.12, respectively.
3.3.2 Let \mathbb{R} be a closed region bounded by a curve \mathscr{C}_{4} of order four. Then any circle lying in Q has at most two points in common with \boldsymbol{B}_{4}.
3.3.3 Let \mathscr{C}_{4} be a differentiable curve of order four. Then the osculating circle of \int_{4} at any vertex has no further points in common with \mathscr{b}_{4}.

Next we give a result for an interior point of an arc that does not involve order but is needed to obtain 3.3.21.
2.3.4 Let p be a once differentiable cusp point of an arc Q. Then all circles $\neq p$ which support Q at p lie locally on the same side of Q outside p.

Proof. Since p is a cusp point, there is at least one circle K which supports \dot{Q} at p. Let K^{\prime} be any circle, $K^{\prime} \neq K$, which supports a at .

Suppose that K and K^{\prime} lie locally on opposite sides of Q in a small neighbourhood N of p. Then

$$
1
$$

$$
(K \backslash\{p\}) \cap N \text { and }\left(K^{\prime} \backslash\{p\}\right) \cap N
$$

are separated by Q. Hence K^{\prime} supports K at p. Therefore K^{\prime} belongs to a pencil of circles τ of the second kind, the members of which touch the circle K at p. Then there are nontangent cirles of Q at p which intersect K and K^{\prime} at p and hence intersect Q at p also. This is impossible, since all the nontangent circles support Q at a cusp point.
3.3.5 Let p be a point of a differentiable curve \boldsymbol{b}_{4} of order four with the characteristic $(2,1,1)_{0}$. Then by 3.3 .4 , we may assume that each circle that supports \mathscr{C}_{4} at p lies locally on the same side of \boldsymbol{b}_{4} outside p, say in $\boldsymbol{b}_{4 i}$. Let

$$
\mathrm{N}=\mathrm{N}^{\prime} \cup\{p\} \cup \mathrm{N}^{\prime \prime}
$$

be a small two-sided neighbourhood of p on \boldsymbol{C}_{4} where N' [N"] is a preceding [proceeding] neighbourhood of p.

We know that the osculating circles of $N^{\prime} \cup\{p\}, N^{\prime \prime} \cup\{p\}$ and \boldsymbol{C}_{4} at p are all equal to the point circle p since N is differentiable at p and p has characteristic $(2,1, I)_{0}$.

We would like to know in what manner $N^{\prime} \cup\{p\}$ and $N^{\prime \prime} \cup\{p\}$ induce orientations on their common osculating circle

$$
c^{\prime}\left(p^{3}\right)=c^{\prime \prime}\left(p^{3}\right)=p
$$

Let s^{\prime}, t^{\prime} be two points on N^{\prime} with $s^{\prime}>t^{\prime}$ (see Figure 6). Then a natural orientation is induced on $C\left(t^{\prime}, s^{\prime}, \bar{p}\right)$ with the points $t^{\prime}, s^{\prime}, p$ in the order in which they occur on \mathfrak{b}_{4}. Now $C\left(t^{\prime}, s^{\prime}, p\right)$ supports \mathscr{C}_{4} at p. Otherwise, $C\left(t^{\prime}, s^{\prime}, p\right)$ would be a tangent circle of $\boldsymbol{\mathscr { C }}_{4}$ at p which intersects $\boldsymbol{\mathscr { C }}_{4}$ at p and hence would be a general osculating circle of \mathscr{b}_{4} at p. This is impossible, by 2.2.9. We have assumed that $C\left(t^{\prime}, s^{\prime}, p\right)$ lies locally in $\mathscr{C}_{4 i}$ outside p. Also $C\left(t^{\prime}, s^{\prime}, p\right)$ cannot meet E $_{4}$ again, by 3.2.2. Hence the arc of $C\left(t^{\prime}, s^{\prime}, p\right)$ between s^{\prime} and p which does not contain t^{\prime} lies in $\boldsymbol{b}_{4 i}$. Because of the natural orientation induced on $C\left(t^{\prime}, s^{\prime}, p\right)$, the arc of N^{\prime} between
 Then

$$
\begin{aligned}
& \lim _{s^{\prime} \rightarrow p} C\left(t^{\prime}, s^{\prime}, p\right)=C^{\prime \prime}\left(p^{2}, t^{\prime}\right), \\
& s^{\prime} c \mathbb{B}^{\prime}
\end{aligned}
$$

the tangent circle of $N^{\prime} U \dot{p}$ at p through t and a natural orientation is induced on $C^{\prime}\left(p^{2}, t^{\prime}\right)$ such that the arc of N^{\prime} between t^{\prime} and \dot{p} lies in $C^{\prime}\left(\dot{p}^{2}, t^{\prime}\right)_{i}$

Now let $t^{\prime \prime} \rightarrow p$ on N^{\prime}. Then

$$
\lim _{\substack{t^{\prime} \rightarrow p \\ t^{\prime} \varepsilon N^{\prime}}} C^{\prime}\left(p^{2}, t^{\prime}\right)=C^{\prime}\left(p^{3}\right)=p
$$

and

$$
\lim _{t^{\prime} \rightarrow p} \sigma\left(p^{2}, t^{\prime}\right)_{i}=\varnothing .
$$

Thus a natural orientation is induced on the osculating circle $C^{\prime}\left(p^{3}\right)=p$ of $N^{\prime} \cup\{p\}$ at p such that $C^{\prime}\left(p^{3}\right)_{i}=\varnothing$.

Similarly it can be seen that a natural orientation is induced on the osculating circle $C^{\prime \prime}\left(p^{3}\right)=p$ of $N^{\prime \prime} \cup\{p\}$ at p such that $\mathrm{C}^{\prime \prime}\left(\mathrm{p}^{3}\right)_{i}=\varnothing$ (see Figure 7).

Figure 6

Figure 7
3.3.6 Let p be a point of \boldsymbol{C}_{4} with the characteristic $(1,2,1)_{0}$ Let.

$$
N^{\prime}=N^{\prime} \cup\{p\} \cup N^{\prime \prime}
$$

be a small neighbourhood of p on \mathscr{C}_{4} where N' [NH] is a preceding [proceeding] neighbourhood of mp of order three; cf. 3.I.9.

We know, as in 2. 2.5 , that the osculating circles of $N^{\prime} \cup\{r\}$, $N^{\prime \prime} \cup\{p\}$ and \boldsymbol{Z}_{4} at F are all equal to the point circle p. But in what manner does $N^{\prime} \cup\{p\}\left[N^{\prime \prime} \cup\{p\}\right]$ induce an orientation on its osculating circle $C^{\prime}\left(p^{3}\right)\left[C^{\prime \prime}\left(p^{3}\right)\right] ?$.

Take points $s^{\prime}>t^{\prime}$ on $N^{\prime \prime}$ (see Figure 8). Consider $C\left(t^{\prime}, s^{\prime}, p\right.$). $C\left(t^{\prime}, s^{\prime}, p\right)$ does not meet N^{\prime} again since $N^{\prime} U\{p\}$ is of order three. Also $C\left(t^{\prime}, s^{\prime}, p\right)$ is not a tangent circle of $N^{\prime} \cup\{p\}$ at p. Suppose, for example, that the arc of $C\left(t^{\prime}, s^{\prime}, p\right)$ between s^{\prime} and p which does not contain t^{\prime} lies in $\mathscr{C}_{4 e^{\prime}}$. We can choose t^{\prime} and s^{\prime} so close to p, and hence $C\left(t^{\prime}, s^{\prime}, p\right)$ so close to the point circle p, that $C\left(t^{\prime}, s^{\prime}, p\right)$ meets $N^{\prime \prime}$ at exactly one point $r^{\prime \prime}$. Then a natural orientation is induced on $C\left(t^{\prime}, s^{\prime}, p\right)$ by taking the points $t^{\prime}, s^{\prime}, p$ in the order in which they occur on \mathscr{C}_{4}. Because of this induced orientation, the arc of N^{2} between s^{\prime} and p lies in $C\left(t^{\prime}, s^{\prime}, p\right)_{i}$. Now let $s^{\prime} \longrightarrow p$ on N^{\prime}. Then

$$
\begin{aligned}
& \lim _{s^{\prime} \rightarrow p} c\left(t^{\prime}, s^{\prime}, p\right)=c^{\prime}\left(p^{2}, t^{\prime}\right), \\
& s^{\prime} c N^{\prime}
\end{aligned}
$$

the tangent circle of $N^{\prime} U\{p\}$ at p through t^{\prime} and a natural orientation is induced on $C^{\prime}\left(p^{2}, t^{\prime}\right)$ such that the arc of N^{\prime} between t^{\prime} and p lies in $C^{\prime}\left(p^{2}, t^{\prime}\right) e^{\circ}$

Now let $t^{\prime} \rightarrow p$ on N^{\prime}. Then

$$
\lim _{t^{\prime} \rightarrow p} C^{\prime}\left(p^{2}, t^{\prime}\right)=C^{\prime}\left(p^{3}\right)=p
$$

and

$$
\lim _{t^{\prime} \rightarrow p} c^{\prime}\left(p^{2}, t^{\prime}\right) e=\varnothing
$$

Thus a natural orientation is induced on the osculating circle $C^{\prime}\left(p^{3}\right)=p$ of $N^{\prime} \cup\{p\}$ at p such that $C^{\prime}\left(p^{3}\right)_{e}=\varnothing$.

Now take $t^{\prime \prime}>s^{\prime \prime}$ on N" (see Figure 9). Consider Cop, s", t"). A natural orientation is induced on $C\left(p, s^{\prime \prime}, t^{\prime \prime}\right)$ such that the arc of $N^{\prime \prime}$ between p and $s^{\prime \prime}$ lies in $C\left(p, s^{\prime \prime}, t^{\prime \prime}\right) e^{\circ}$

Let $s^{\prime \prime} \rightarrow p$ on $N^{\prime \prime}$. Then

$$
\begin{aligned}
& \lim _{s^{\prime \prime} \rightarrow p} \quad C\left(p, s^{\prime \prime}, t^{\prime \prime}\right)=C \prime\left(p^{2}, t^{\prime \prime}\right), \\
& s^{\prime \prime} \varepsilon N^{\prime \prime}
\end{aligned}
$$

the tangent circle of $\mathbb{N}^{\prime \prime} \cup\{p\}$ at p through $t^{\prime \prime}$ and a natural orientation is induced on $C^{\prime \prime}\left(p^{2}, t^{\prime \prime}\right)$ such that the arc of $N^{\prime \prime}$ between p and $t^{\prime \prime}$ lies in $C^{\prime \prime}\left(p^{2}, t^{\prime \prime}\right)_{i}{ }^{*}$

Now let $t^{\prime \prime} \rightarrow p$ on $N^{\prime \prime}$. Then

$$
\lim _{t^{\prime \prime} \rightarrow p} \quad C^{\prime \prime}\left(p^{2}, t^{\prime \prime}\right) \rightleftharpoons C^{\prime \prime}\left(p^{3}\right)=p
$$

and

$$
\begin{aligned}
& \lim _{\substack{\prime \prime}}^{t^{\prime \prime} \rightarrow p} \\
& t^{\prime \prime} \varepsilon N^{\prime \prime}
\end{aligned}
$$

$$
1
$$

Thus a natural orientation is induced on the osculating circle $C^{\prime \prime \prime}\left(p^{3}\right)=p$ of $N^{\prime \prime} u\{p\}$ at p such that $C^{\prime \prime}\left(p^{3}\right)_{i}=\varnothing$.

We note that in 3.3 .5 when p was of type $(2,1,1)_{0}$, the natural orientation of $\sigma^{*}\left(p^{3}\right)=p$ was the same as the induced orientation of $c!\left(p^{3}\right)=p$. However, if p has characteristic $(1,2,1)_{0}$ as above, we see that the induced orientation of $C^{\prime}\left(p^{3}\right)=p$ is opposite to the natural one induced on C " $\left(p^{3}\right)=p$.

Thus the natural orientation induced by \boldsymbol{b}_{4} on circles through the points of N^{\prime} and $N^{\prime \prime}$ is discontinuous at p in the case where the characteristic of p is $(1,2, I)_{0}$.

Figure 8

;

Figure 9
3.3.7 We next state a well known result ($[4]$, Theorem 5).

Let p be a conformally elementary point of an arc Q with the characteristic $\left(a_{0}, a_{1}, a_{2}\right)$ or $\left(a_{0}, a_{1}, a_{2}\right)_{0}$. Then
 $\quad \frac{(i i)}{} \quad a$ is strongly differentiable at \mid
at p and $a_{0}=a_{1}=1$.

By 3.1.2, each point of a normal arc \boldsymbol{a}_{4} [curve $\left.\boldsymbol{b}_{4}\right]$ of order four is elementary.

If p is a differentiable point of an arc $\boldsymbol{a}_{4}\left[\boldsymbol{E}_{4}\right]$ with the characteristic ($1, I, 2$) or ($I, I, 2$) , then by the above result, $\boldsymbol{Q}_{4}\left[\mathscr{C}_{4}\right]$ is strongly differentiable at $p!$
3.3.8 We combine 2.4.2 (iv) and 3.3.7 to obtain:

Let p be a differentiable point of \boldsymbol{C}_{4} with the characteristic $(1,1,2)$ or $(1,1,2)_{0}$. Then the natural orientations induced on the one-sided osculating circles of $\boldsymbol{\mathscr { C }}_{4}$ at p are identical.
3.3.9 Let \boldsymbol{b}_{4} be a differentiable curve of order four. Then C_{4} contains at most one point with the characteristic $(2,1,1)_{0}$.

Proof. Suppose that \mathscr{C}_{4} contains at least two points q_{1}, q_{2} with characteristic $(2,1, I)_{0}$ Let $r \in \boldsymbol{\mathscr { C }}_{4}, r \neq q_{1}, q_{2}$ and $K=K\left(q_{1}, q_{2}, r\right)$ be the circle determined by q_{1}, q_{2} and r. By 3.2.2, at most one of q_{1}, q_{2} and r is a point of support of K with \mathscr{C}_{4}.

If K supports \mathscr{C}_{4} at r, then K intersects \mathscr{C}_{4} at q_{I}, q_{2}. Since q_{1} has characteristic ($\left.2, I, I\right)_{O}$, then ${ }_{1} K$ is a tangent circle of \mathscr{C}_{4} at ${ }^{q_{1}}$ which intersects \mathscr{C}_{4} there. |Hence K is a general osculating circle of \boldsymbol{b}_{4} at q_{1} which meets \boldsymbol{b}_{4} at r and q_{2}. This is impossible, by $3,2.9$ and 3.2.10.

If K supports \mathscr{C}_{4} at q_{I}, say, then K will intersect \mathscr{C}_{4} at q_{2} and hence K will be a general osculating circle of \mathscr{C}_{4} at q_{2}. Again this is impossible, by 3.2.10.

Thus q_{1}, q_{2} and r are all points of intersection of K with \boldsymbol{Z}_{4}. But again K will then be a' general osculating circle of \mathscr{C}_{4} at q_{1} which meets \mathscr{C}_{4} at q_{2} and r. This is a contradiction, by 3.2.2. Hence we have the required result.
3.3.10 $\quad \mathscr{E}_{4}$ contains at most two points with the characteristic $(1,2,1) 0^{\circ}$

Proof. Suppose $\mathscr{\complement}_{4}$ contains three points p_{1}, p_{2}, p_{3} with characteristic $(1,2,1)$. Then these points divide \mathscr{C}_{4} into
three closed arcs. Hence by Theorem 4, there exists a circle K lying in $\mathscr{C}_{4} \cup \mathscr{C}_{4}$, having points in common with all three arcs. By 2.3.2, one of the p_{i}, say p, is a point of contact of K with \mathscr{E}_{4}. Hence K supports \mathscr{C}_{4} at p. But this possibility is excluded by the characteristic of p, since both the nonosculating tangent circles and the nontangent circles of \mathscr{E}_{4} at p intersect E_{4} at
3.3.11 If \boldsymbol{C}_{4} contains a point with the characteristic $(2,1,1)_{0}$, then at most one point of \mathscr{b}_{4} has the characteristic $(1,2,1){ }_{0}$.

Proof. Let p be a point of \mathscr{C}_{4} with characteristic ($\left.2,1,1\right)_{0}$ and q_{1}, q_{2} points of \boldsymbol{b}_{4} with characteristic $(1,2,1) 0$. Then p, q_{1}, q_{2} divide \mathscr{C}_{4} into three closed arcs. By Theorem 4, there exists a circle K lying in $\mathscr{C}_{4} \cup \mathscr{b}_{4}$, having points in common with all three arcs. By 3.3.2, one of the points p, q_{1}, q_{2} is a point of contact of K with \mathscr{C}_{4}. This point of K cannot be either q_{I} or q_{2}. Otherwise, K would support \mathscr{C}_{4} at this point. But this situation is excluded by the characteristic, since both the nonosculating tangent circles and the nontangent circles of \boldsymbol{O}_{4} intersect \mathscr{C}_{4} at a point of type $(1,2,1) 0_{0}$. Hence p must be the point of contact of K with \mathscr{C}_{4}.

However, by the remark following Theorem 4, there exists a circle K' lying in $\boldsymbol{b}_{4} \cup \boldsymbol{\mathscr { b }}_{4}$, having points in common with all three arcs.

As before, neither q_{1} or q_{2} is a point of contact of K^{\prime} with $\boldsymbol{b}_{4^{*}}$ Hence p is again the point of contact of K^{\prime} with $\boldsymbol{\mathscr { C }}_{4^{\prime}}$. But this is impossible, by 3.3.4.
3.3.12 Here we introduce a concept of monotony of an arc Q. We shall denote a general osculating circle of Q at a point p by $C(p)$.
Q is said to be monotone. if α induces a unique orientation on the general osculating circles at each point of Q such that if $p<q$ on Q,

$$
C(p) \subset C(q)_{i} \text { and } C(q) \subset C(p)_{e}
$$

or
;

$$
c(p)=c(q)_{e} \text { and } c(q) \subset C(p)_{i}
$$

We note the following results:
(i) Arcs of order three are monotone ([6], 4).
(ii) Let each interior point of an arc Q_{4} of order four be ordinary. Then the closed arc \bar{Q}_{4} is monotone.

Proof. Each interior point of Q_{4} is ordinary. Also the end-points of Q_{4} are ordinary, by 3.1.2. Hence each [interior] point of the arc possesses a [two-sided] neighbourhood of order three. But each of these neighbourhoods is monotone, by (i). By taking the union of these neighbourhoods one obtains the monotony of $\overline{Q_{4}}$.
2.3.13 Let a differentiable curve \boldsymbol{b}_{4} of order four contain
exactiy one point with the characteristic $(1,2,1)$. Then \mathscr{C}_{4} contains altogether an odd number of singular points.

Proof. Let p be the point of $\boldsymbol{\mathscr { C }}_{4}$ with the characteristic
 points altogether. We know that the number of singular points is finite, by Theorem 2.

Let the other singular points of \boldsymbol{C}_{4} be $q_{1}<q_{2}<\ldots<q_{2 n+1}$ where $n \geq 0$. Without loss of generality, let'p lie between $q_{2 n+1}$ and q_{1} on \mathscr{C}_{4}, if $n \geq 1$. Let

$$
N_{p_{j}}=N_{p}^{\prime} \cup\{p\} \cup N_{p}^{\prime \prime}\left[N_{q_{j}}=N_{q_{j}}^{\prime} \cup\left\{q_{j}\right\} \cup{\underset{q}{j}}_{\prime \prime}^{N_{j}^{\prime}}\right]
$$

be a small two-sided neighbourhood of $p\left[q_{j}\right]$ on $\boldsymbol{\mathscr { C }}_{4}$, where $N_{p}^{\prime}\left[N_{q_{j}}^{\prime}\right]$ is a preceding neighbourhood of $p\left[q_{j}\right)$ and $\underset{p}{N_{p}^{\prime \prime}}\left[N_{q_{j}}^{\prime \prime}\right]$ is a proceeding neighbourhood of $p\left[q_{j}\right]$ on $\mathscr{C}_{4}, j=1,2, \ldots, 2 n+1$.

Without loss of generality, let the natural orientation induced on the osculating circle $\mathrm{C}^{\prime \prime}\left(\mathrm{p}^{3}\right)=p$ of $\mathrm{N}^{\prime \prime} \cup\{p\}$ at p be such that $c^{\prime \prime}\left(p^{3}\right)_{i}=\varnothing$. By 3.3 .12 (ii), the closed arc of \boldsymbol{C}_{4} between p and q_{1} is monotone. Hence the osculating circle $C^{1}\left(p_{1}{ }^{3}\right)$ of $N_{q_{1}}^{\prime} \cup\left\{q_{1}\right\}$ at q_{1} is such that

$$
c^{\prime}\left(q_{1}^{3}\right) \subset c^{\prime \prime}\left(p^{3}\right)_{e} \text { and } c^{\prime \prime}\left(p^{3}\right) \subset c^{\prime}\left(q_{1}^{3}\right)_{i}
$$

Thus by $2.3 .3, \mathscr{b}_{4} \backslash\left\{q_{1}\right\} \subset C^{\prime}\left(q_{1}{ }^{3}\right)_{i}$. Now q_{1} has characteristic $(1,1,2),(1,1,2)_{0}$ or $(2,1,1)_{0}$. But then by 2.3 .5 and 2.3 .8 , the osculating circle $C^{\prime \prime}\left(q_{1}{ }^{3}\right)\left(=C^{\prime}\left(q_{1}^{3}\right)\right)$ of $N_{q_{1}}^{\prime \prime} \cup\left\{q_{1}\right\}$ at q_{1} has the same induced orientation as $C^{\prime}\left(q_{1}{ }^{3}\right)$. Hence
$\mathscr{C}_{4} \backslash\left\{q_{1}\right\} \subset C^{\prime \prime}\left(q_{1}{ }^{3}\right)_{i} \cdot$

Next, the arc of \mathscr{C}_{4} between q_{1} and q_{2} is monotone, by.
3.3.12 (ii). Thus

$$
c^{\prime}\left(q_{2}^{3}\right)=c^{\prime \prime}\left(q_{1}^{3}\right)_{i} \text { and } c^{\prime \prime}\left(q_{1}^{3}\right)<c^{\prime}\left(q_{2}^{3}\right)^{\prime}
$$

where $c^{\prime}\left(q_{2}{ }^{3}\right)$ is the osculating circle of $N_{\dot{q}_{2}^{\prime}}^{\prime} \cup\left\{q_{2}\right\}$ at q_{2}. Thus by 3.3 .3 ,

$$
\mathscr{E}_{4} \backslash\left\{q_{2}\right\} \subset c^{\prime}\left(q_{2}^{3}\right)_{e}
$$

and again by 2.3 .5 and 3.3 .8 , the osculating circle $C^{\prime \prime}\left(q_{2}{ }^{3}\right)\left(\because c^{\prime}\left(q_{2}{ }^{3}\right)\right)$ of $\mathrm{N}_{\mathrm{q}_{2}}^{\mathrm{H}} \cup\left\{\mathrm{q}_{2}\right\}$ at q_{2} has the same induced orientation as $\mathrm{c}^{\prime}\left(q_{2}{ }^{3}\right)$. Hence

$$
\boldsymbol{b}_{4} \backslash\left\{q_{2}\right\} \subset c^{\prime \prime}\left(q_{2}^{3}\right)^{3} .
$$

Continuing in this manner we obtain for each j with j odd

$$
\mathscr{C}_{4} \backslash\left\{q_{j}\right\} \subset \operatorname{con}^{\prime \prime}\left(q_{j}^{3}\right)_{i}
$$

and for each j with j even

$$
\mathscr{b}_{4} \backslash\left\{q_{j}\right\} \subset C^{\prime \prime}\left(q_{j}^{3}\right)_{e}
$$

In particular,

$$
p \varepsilon \mathscr{C}_{4} \backslash\left\{q_{2 n+1}\right\} \in \operatorname{con}^{\prime \prime}\left(q_{2 n+1}^{3}\right)_{i}
$$

But again by 2.3 .12 (ii), the arc of \boldsymbol{C}_{4} between $q_{2 n+1}$ and p is monotone. Therefore

$$
c^{\prime}\left(p^{3}\right) \subset c^{\prime \prime}\left(q_{2 n+1}^{3}\right)_{i} \text { and } c^{\prime \prime}\left(q_{2 n+1}^{3}\right)<c^{\prime}\left(p^{3}\right)
$$

$\%$
However we assumed that $C^{\prime \prime}\left(p^{3}\right)_{i}=\varnothing$. By $3.3 .6, C^{\prime}\left(p^{3}\right)_{e}=\varnothing$. Thus $q_{2 n+1} \in C\left\{\left(p^{3}\right)_{i}\right.$ and finally

$$
c^{\prime \prime}\left(q_{2 n+1}^{3}\right) \operatorname{ccc}\left(p^{3}\right)_{i}
$$

This is a contradiction and we have the required result.

Corollary: Let a differentiable curve \mathscr{C}_{4} of order four contain exactly one point with characteristic $(1,2,1)_{0}$ Then \mathscr{C}_{4} contains an odd number of singular points ≥ 3.

Proof. Let $Q_{4}=\mathscr{C}_{4} \backslash\{p\}$, where p is the point with characteristic $(1,2,1) 0$. Suppose that Q_{4} contains no singular
points. Then by 3.3 .12 (ii) , $\overline{Q_{4}}=\mathscr{P}_{4}$ is monotone. Now let

$$
N_{p}=N^{\prime} \cup\{p\} \cup N^{\prime \prime}
$$

be a small twomsided neighbourhood of p on \boldsymbol{C}_{4}. since $\boldsymbol{\mathscr { C }}_{4}$ is monotone

$$
c^{\prime}\left(p^{3}\right) \subset c^{\prime \prime}\left(p^{3}\right) \text { and } \cos ^{\prime \prime}\left(p^{3}\right) \subset \operatorname{co}^{\prime}\left(p^{3}\right) i
$$

or

$$
c^{\prime}\left(p^{3}\right) \subset c^{\prime \prime}\left(p^{3}\right)_{i} \text { and } c^{\prime \prime}\left(p^{3}\right) \subset c^{\prime}\left(p^{3}\right)^{\prime}
$$

where $C^{\prime}\left(p^{3}\right)\left[C^{\prime \prime}\left(p^{3}\right)\right]$ is the osculating circle of $N^{\prime} \cup\{p\} \quad\left[N^{\prime \prime} \cup\{p\}\right]$ at p. But p is a differentiable point of \boldsymbol{C}_{4}. Hence

$$
c!\left(p^{3}\right)=c^{\prime \prime}\left(p^{3}\right)
$$

and thus neither of the two conditions stated above is satisfied. Thus our assumption that Q_{4} contained no singular points is incorrect. Hence \mathbb{Q}_{4} contains at least one singular point and therefore \mathscr{C}_{4} contains at least two singular points. By $2.3 .13, \mathscr{C}_{4}$ " contains an odd number of singular points ≥ 3.

Remark: We notice in the proof of the above corollary that no use of the characteristic of p was made in obtaining at least two singular points on \mathscr{C}_{4}. We state this result here.
3.3.14 Let \boldsymbol{C}_{4} be a differentiable curve of order four. Then \mathscr{C}_{4} contains at least two singular points.

Proof. If. $\boldsymbol{\mathscr { C }}_{4}$ contains no singular points, then $\boldsymbol{\mathscr { C }}_{4}$ is monotone by 3.3 .12 (ii), and we obtain a contradiction as in the proof of 3.3 .13 Corollary, by taking any point q on. $\boldsymbol{C}_{4_{4}}$. Thus \boldsymbol{b}_{4} contains at least one singular point, say p.

But then as in the proof of 3.3 .13 Corallary, $\boldsymbol{a}_{4}=\mathscr{C}_{4} \backslash\{\mathrm{p}\}$ contains at least one singular point and we obtain the result.
3.3.15 . By using methods which are similar to those employed in 3.3.13, we obtain:

Let: \mathscr{C}_{4} be a differentiable curve of order four containing no points with the characteristic $(1,2,1) 0$ Then \boldsymbol{b}_{4} contains altogether an even number of singular points ≥ 2.
2.3.16 We are now ready to prove

Theorem 5: A differentiable curve \boldsymbol{b}_{4} of order four contains at most four vertices.

Proof. Lett us assume that $\boldsymbol{\ell}_{4}$ contains five vertices $p_{\curlyvee}, \quad \gamma=1,2, \ldots, 5$.

Case (i). We allow here that the points p_{γ} have only the characteristics $(1,1,2)$ or $(1,1,2){ }_{0}$. By $3.3 .5, \mathscr{\mathscr { C }}_{4}$ induces a unique orientation on $C\left(p_{\gamma}^{3}\right)$ for each γ. We also note that by $3.3 .15, b_{4}$ must contain at least six vertices in this case. However, we shall not need this latter result here.

Without loss of generality, there are at least three vertices, say $q_{j}, j=1,2,3$, such that locally outside q_{j}

$$
c\left(q_{j}^{3}\right) \subset b_{4_{i}}
$$

and

$$
\mathfrak{b}_{4} \subset o\left(q_{j}\right)_{e}
$$

By 3.3.3,

$$
\mathcal{E}\left(q_{j}^{3}\right) \subset \mathscr{b}_{4_{i}} \cup\left\{q_{j}\right\}
$$

and

$$
\boldsymbol{b}_{4} \subset c\left(q_{j}^{3}\right)_{e} \cup\left\{q_{j}\right\}
$$

Now the points q_{j} divide \mathscr{C}_{4} into three closed arcs. By Theorem 4, there exists a circle K lying in $\mathscr{C}_{4} \cup \mathscr{b}_{4_{i}}$, having points in common with all three ares. By 2.3 .2 , one of the q_{j}, say r, is a point of contact of K with \mathscr{E}_{4}. Since nontangent circles intersect \mathscr{L}_{4} at p, K is a tangent circle of \mathscr{C}_{4} at p. (see Figure 10).

Next, K and $C\left(p^{3}\right)$ belong to the pencil of tangent circles τ of \mathscr{C}_{4} at p where τ is a pencil of the second kind with fundmental point p. Now

$$
b_{4} \subset c\left(p^{3}\right)_{e} \cup\{p\}
$$

and K has another point of contact on \boldsymbol{C}_{4} outside p. Thus

$$
K \subset G\left(p^{3}\right)_{e} \cup\{p\}
$$

Also \mathscr{b}_{4} induces a continuous orientation on τ. Hence

$$
c\left(p^{3}\right) \subset K_{i} \cup\{p\}
$$

As in 1.1.1,

$$
K \subset c\left(p^{3}\right)_{e} \cup\{p\}
$$

and

$$
c\left(p^{3}\right) \subset K_{i} \cup\{p\}
$$

imply

$$
c\left(p^{3}\right)_{i} \subset K_{i}
$$

On the other hand, let s be close to p on \boldsymbol{b}_{4}. Then

$$
C\left(p^{2}, s\right) \subset K_{e} \cup\{p\}
$$

Thus by the continuous orientation on $\boldsymbol{\tau}$,

$$
\mathrm{k} \subset \mathrm{C}\left(\mathrm{p}^{2}, \mathrm{~s}\right)_{i} \cup\{\mathrm{p}\}
$$

and

$$
C\left(p^{2} ; s\right) \in K_{e} \cup\{p\}
$$

imply

$$
K_{i} \subset C\left(p^{2}, s\right)_{i}
$$

Now let $s \rightarrow p$ on \boldsymbol{b}_{4}. Thus

$$
k_{i} c \lim _{s \rightarrow p} c\left(p^{2}, s\right)_{i}=c\left(p^{3}\right)_{i}
$$

This is a contradiction.

Figure 10

Case (ii) We allow as vertices only points with the characteristics $(1,1,2),(1,1,2)_{0}$ or $(1,2,1)_{0}$. We assume that at least one of the vertices has the characteristic $(1,2,1)_{0}$; otherwise we are back to Case (i). We label these points type α, β and δ, respectively.

We first notice that by 3.3 .10 , at most two of the p_{γ} can be of type 6 . Hence at least three of the five vertices p_{γ} are of type α or . 3 . But then without loss of generality, there are two of these three, say $q_{j}, j=1,2$, such that

$$
c\left(q_{j}^{3}\right) \subset b_{4} \cup\left\{q_{j}\right\}
$$

and

$$
\boldsymbol{b}_{4} \subset C\left(q_{j}^{3}\right)_{e} \cup\left\{q_{j}\right\}
$$

Take a point q of type 6 . By Theorem 4, there exists a circle $\overline{\mathrm{K}}$ lying entirely in $\mathscr{b}_{4} \cup \mathscr{C}_{4}$, having points in common with the three arcs determined by q, q_{1}, q_{2}. But one of these points is a point of contact of \bar{K} with \boldsymbol{C}_{4}, by 3.3.2. Also the point q cannot be a point of contact as was shown in the proof of 3.3.10. Hence one of the q_{j} is a point of contact of \bar{K} with \mathscr{C}_{4} and we proceed as in Case (i) to obtain a contradiction.

Case (iii) We allow finally p_{γ} to have any of the following characteristics

$$
(1,1,2),(1,1,2)_{0},(1,2,1)_{0} \text { or }(2,1,1)_{0}
$$

By 3.3.2, at most one of the vertices is of type $(2,1,1)_{0}$ and if \boldsymbol{C}_{4} contains a vertex of this type, then at most one of the vertices has the characteristic $(1,2,1)$, by 3.3 .11 .

Let us assume, for the moment, that $\widehat{\emptyset}_{4}$ contains no points with the characteristic $(1,2,1)_{0}$. Then all of the p_{y} are of type $(1,1,2),(1,1,2)_{0}$ or $(2,1,1)_{0}$. Let us also assume that \mathscr{C}_{4} contains at least one and then exactly one point of type $(2,1,1)_{0}$; otherwise we have Case (i). By 3.3.15, \boldsymbol{C}_{4} contains an even number of vertices. Hence \boldsymbol{b}_{4} contains at least six vertices. But exactly one has the characteristic ($2,1,1)_{0}$. Hence the other five have the characteristic ($1,1,2$) or ($1,1,2)_{0^{\circ}}$ But then we proceed as in Case (i) to reach a contradiction.

Finally we assume that \boldsymbol{b}_{4} contains exactly one point p with the characteristic $(2, I, I)_{0}$ and exactly one point q with the characteristic $(1,2,1)_{0}$. Hence there are at least three vertices of type ($1,1,2$) or ($1,1,2)_{0}$. But then, without loss of generality, at least two of the vertices of these types, say $q_{j}, j=1,2$, are such that

$$
c\left(q_{j}^{3}\right) \subset \mathscr{E}_{u_{i}} \cup\left\{q_{j}\right\}
$$

and

$$
\boldsymbol{b}_{4} \subset C\left(q_{j}{ }^{3}\right)_{e} \cup\left\{q_{j}\right\}
$$

But again the points q_{1}, q_{2} and q determine three closed arcs of \mathscr{C}_{4} and we proceed as in Case (ii) to reach a contradiction.

Since the onl.y possible vertices of \mathscr{C}_{4} have the characteristics

$$
(1,1,2),(1,1,2)_{0},(1,2,1)_{0} \text { or }(2,1,1)_{0}
$$

the theorem is proved.

1

3.4 Strongly Differentiable Curves of Order Four

Introduction.

In 3.3 we showed that a differentiable curve \boldsymbol{C}_{4} of order four contains at most four vertices. Under the restriction that \mathscr{C}_{4} is strongly differentiable, here we use Theorem 4 of 2.3 to show that C $_{4}$ contains at least four vertices. This is the well known fourvertex theorem for curves of order four; cf. Theorem 6 .

Then these two theorems combine to give a conformal proof of the main result that a strongly differentiable curve \boldsymbol{b}_{4} of order four contains exactly four vertices; cf. Theorem 7.

First we need the following result.
3.4.1 Let $Q_{4}=\bar{a}_{4}$ be a strongly differentiable closed arc of order four with end-points p, q and K an oriented circle satisfying
(a) K belongs to the oriented pencils of tangent circles of Q_{4} at p and q,
(b) $\quad Q_{4} \cap K=\{p, q\}$.

Then there exists at least one singular point in the interior of Q_{4}.

Proof. Without loss of generality, assume that $Q_{4} \subset K \cup K_{e}$. Suppose that each interior point of Q_{4} is ordinary. Then by. 3.3.12 (ii), Q_{4} is monotone.

But K is the tangent circle $c\left(p^{2}, q\right)$ of Q_{4} at p through q.

$$
C\left(p^{2}, s\right) \subset K_{e} \cup\{p\} \quad \text { and } K \in C\left(p^{2}, s\right)_{i} \cup\{p\}
$$

This statement is true for all $s \in Q_{4}, \in \neq p, q$. Let $s \rightarrow p$ on $Q_{4^{*}}$ By $3.2 .8, c\left(p^{3}\right) \neq K$. Hence

$$
c\left(p^{3}\right) \subset K_{e} \cup\{p\} \quad \text { and } K \in C\left(p^{3}\right)_{i} \cup\{p\}
$$

However $q \in K$. Thus $q \in C\left(p^{3}\right)_{i}$ and the monotony of Q_{4} yields

$$
c\left(q^{3}\right) \subset c\left(p^{3}\right)_{i} \text { and } c\left(p^{3}\right)<c\left(q^{3}\right) e^{-}
$$

Similarly K is the tangent circle $C\left(q^{2}, p\right)$ of Q_{4} at q through p. Let $s^{\prime} \varepsilon Q_{4}$, $s^{\prime} \neq p$, q. Thus $s^{\prime} \in K_{e}$. By 2.4.2 (iv),

$$
c\left(q^{2}, s^{\prime}\right) \subset K_{e} \cup\{q\} \text { and } K \subset C\left(q^{2}, s^{\prime}\right)_{i} \cup\{q\} .
$$

But this statement is true for all st $Q_{4}, s^{\prime} \neq p_{1} q$. Let $s^{\prime} \rightarrow q$ on $Q_{4^{*}}$ By $3.2 .8, \quad C\left(q^{3}\right) \neq K$. Hence

$$
C\left(q^{3}\right) \subset K_{e} \cup\{q\} \text { and } K \subset C\left(q^{3}\right)_{i} \cup\{q\}
$$

But $p \varepsilon K$. Thus $p \varepsilon C\left(q^{3}\right)_{i}$ and the monotony of Q_{4} yields

$$
c\left(p^{3}\right) \subset c\left(q^{3}\right)_{i} \text { and } c\left(q^{3}\right) \subset c\left(p^{3} e_{e}\right.
$$

This is a contradiction.

Hence the assumption that each interior point of Q_{4} is ordinary was incorrect. Thus there exists at least one singular point in the interior of $Q_{4^{*}}$
3.4 .2

Theorem 6: A strongly differentiable curve \mathfrak{C}_{4} of order four contains at least four vertices.

Proof: Let \mathscr{C}_{4} be separated into any three closed arcs. By Theorem 4, there exists a circle K lying in \boldsymbol{b}_{4} ソ $\boldsymbol{b}_{4 i}$, having points in common with all three arcs. By 3.3.2, K meets \mathscr{b}_{4} at exactly two points $\mathscr{l}_{1}, \boldsymbol{l}_{2}$, say. Now \mathscr{b}_{4} is strongly differentiable. Thus \underline{K} is a tangent circle of \boldsymbol{f}_{4} at $\boldsymbol{\rho}_{1}$ and l_{2}

By 3.4.1, there exists at least one singular point in the open arc $f_{1} f_{2}$ of \mathscr{C}_{4} and at least one singular point in the open arc $\rho_{2} l_{1}$ of ℓ_{4}. In 3.3 we remarked that each singular point is actually a vertex when we consider differentiable curves \boldsymbol{b}_{4} of order four. Thus q_{1} and q_{2} are vertices of \mathscr{b}_{4}.

Now suppose that the open arcs $q_{1} q_{2}$ and $q_{2} q_{1}$ of \mathscr{C}_{4} contain no singular points. By 3.3 .12 (ii), the closed arcs $\overline{q_{1}} \overline{q_{2}}$ and $\overline{q_{2} q_{1}}$ are monotone. Since q_{1} and q_{2} are vertices, the osculating circles $c\left(q_{1}{ }^{3}\right), c\left(q_{2}{ }^{3}\right)$ of \boldsymbol{b}_{4} at q_{1}, q_{2}, respectively, support $\boldsymbol{\mathscr { b }}_{4}$ and do not meet $\boldsymbol{\mathscr { b }}_{4}$ again, by 3.3.3. If

$$
\mathscr{b}_{4}<c\left(q_{1}^{3}\right)_{\dot{i}} \cup\left\{q_{1}\right\} \text { and } \mathscr{b}_{4} \subset c\left(q_{2}^{3}\right)_{i} \cup\left\{q_{2}\right\}
$$

or

$$
b_{4} \subset c\left(q_{1}^{3}\right)_{e} \cup\left\{q_{1}\right\} \text { and } f_{4} \subset c\left(q_{2}^{3}\right)_{e} \cup\left\{q_{2}\right\},
$$

then neither of the conditions of 3.3 .12 for the monotony of the arcs $\overline{q_{1} q_{2}}$ and $\overline{q_{2} q_{1}}$ can be satisfied. Hence either
$\boldsymbol{b}_{4} \subset C\left(q_{1}{ }^{3}\right)_{i} \cup\left\{q_{1}\right\} \quad$ and $\boldsymbol{b}_{4} \subset \mathrm{C}\left(q_{2}^{3}\right)_{e} \cup\left\{q_{2}\right\}$
or

$$
\mathscr{b}_{4} \in C\left(q_{1}^{3}\right)_{e} \cup\left\{q_{1}\right\} \quad \text { and } \quad \mathscr{b}_{4} \in C\left(q_{2}^{3}\right)_{i} \cup\left\{q_{2}\right\} .
$$

Without loss of generality, we shall assume that the first situation occurs.

Now f_{2}, f_{2}, f_{1} divide \mathscr{C}_{4} into three closed arcs. By the remark following Theorem 4, there exists a circle \bar{K} lying in $\mathscr{C}_{4} \cup \mathscr{C}_{4 e}$, having points in common with all three arcs. Again by 3.3 .2 , one of the points f_{2}, q_{2}, f_{1} is a point of contact of \bar{K} with \mathscr{C}_{4}.

$$
1
$$

If q_{2} is a point of contact of \bar{K} with \boldsymbol{E}_{4}, then the other point of contact m lies in $\overline{\mathscr{l}}_{2} \overline{\mathscr{l}}_{2}$ on \mathscr{C}_{4}. But then by 3.4.1, there exist singular points r_{1}, r_{2} in the open arcs $q_{2} m$ and $m q_{2}$ of \boldsymbol{C}_{4}, respectively. At least one of r_{1}, r_{2} is distinct from q_{1}. This contradicts our assumption that the open arcs $q_{1} q_{2}$ and $q_{2} q_{1}$ contain no singular points. Hence f_{1} or f_{2} is a point of contact of K with \mathscr{C}_{4}.

Next we note that not both f_{1} and f_{2} are points of contact of \bar{K} with \boldsymbol{f}_{4}. Otherwise, \underline{K} and \bar{K} support each other at \mathcal{P}_{1} and h_{2} and thus are identical. This is impossible by our choice of K and \bar{K}.

If \boldsymbol{l}_{1}, say, is a point of contact of \bar{K} with \boldsymbol{b}_{4}, then the other point of contact m lies strictiy between f_{2} and q_{2} on \mathscr{C}_{4} (see Figure 11). But we assumed that

$$
\boldsymbol{b}_{4} \in c\left(q_{2}^{3}\right)_{e} \cup\left\{q_{2}\right\}
$$

. Now the open arc $q_{2} \ell_{1}$ is a subarc of the monotone arc $q_{2} q_{1}$ and hence is itself monotone. Thus $q_{2} f_{1} \subset c\left(f_{1}^{3}\right)_{i} . c\left(\ell_{2}^{3}\right) \neq K, \bar{K}$, by 3.2.8. Also $C\left(l_{1}^{3}\right) * f_{1}$. otherwise, f_{1} would be a singuiar point lying between q_{2} and q_{1}; contradiction. But as in the proof of 2,4.1,

$$
c\left(l_{1}^{3}\right) c\left(\underline{K}_{e} \quad \bar{K}_{i}\right) \cup\left\{l_{1}\right\}
$$

Figure 11

Hence $c\left(\mathcal{l}_{1}^{3}\right)$, intersects the open arc ℓ_{2} m at least once and intersects the open arc mq_{2} at least once. This is impossible by 3.2.4 (iii).

If \boldsymbol{f}_{2} is a point of contact of \vec{K} with \boldsymbol{b}_{4}, then m lies strictly between q_{2} and ℓ_{1} on $\mathscr{C}_{4^{*}}$. A similar argument shows that $c\left(l_{2}^{3}\right)$ will intersect the open subbarcs $q_{2} m$ and $m l_{1}$ of \measuredangle_{4} at least once. Again this is impossible by $3,2,4$ (iii).

Thus our assumption that the open arcs $q_{1} q_{2}$ and $q_{2} q_{1}$ of \mathscr{C}_{4} contain no singular points is incorrect. Thus there exists at least one singular point in the interior of $q_{1} q_{2}$ or $q_{2} q_{1}$ on \boldsymbol{b}_{4}. Hence \mathscr{E}_{4} contains at least three singular points. By 3.3.7 and 3.3.15, \int_{4} contains at least four singular points. But again by 3.3, each of these singular points is actually a vertex and we have the desired result.
3.4.3 We combine Theorem 5 and Theorem 6 to obtain

Theorem 7: A strongly differentiable curve \mathscr{C}_{4} of order four contains exactly four vertices.

Section 4

A Topology on the Set of Conics in the Projective Plane

4.1. Let $\Gamma=\{\boldsymbol{\text { 4. }} \boldsymbol{\{}\}$, where $\boldsymbol{\gamma}$ denotes a non-degenerate conic in the real projective plane π_{p}. Let $\bar{\Gamma}$ be the union of Γ and the following so called degenerate conics: a pair of lines, a double line (a line counted twice), a double line segment (a line segment counted twice) or a point.
4.2. A non-degenerate conic has a well defined interior γ_{i} and an exterior γ_{e}. Two distinct lines define a conic γ, which decomposes the projective plane into two homeomorphic disjoint regions which we may denote by $\boldsymbol{\gamma}_{i}$ and $\boldsymbol{\gamma}_{\mathrm{e}}$. Two points are said to be separated by a non-degenerate conic or a pair of distinct lines γ if and only if one of the points lies in γ_{i} and the other in γ_{e}. For a line or a line segment γ only one of γ_{i}, γ_{e} is non-void.
4.3. Five distinct points, no three of which are collinear, determine a unique non-degenerate conic. If three of the five points Iie on a line \mathbb{E}, which does not pass through the remaining two, then is a unique pair of lines through them, viz., the line \mathscr{L} and the line joining the other two points. If exactly four of the five points lie on a line \mathcal{L}, which does not contain the fifth point, there are infinitely many conics through these five points, viz., \mathcal{L} and any other line through the fifth point. If all the five points lie on a line \mathcal{N}, there are infinitely many conics through them, viz. \mathcal{L} together with any other line, the double line coincident with $\mathscr{\alpha}$, and any double line segment on \mathcal{L} containing the five points.
4.4. It is possible to introduce a topology $\boldsymbol{\mathcal { D }}$ on $\bar{\Gamma}$ as was done in Section I on the set of circles in the inversive plane.

A neighbourhood of a non-degenerate conic γ is the set of conics which lie in the region outside a non-degenerate conic

$$
\varepsilon \in \gamma_{i}
$$

and inside a non-degenerate conic.

$$
n \subset \gamma_{e} .
$$

A neighbourhood of a pair of distinct lines γ is the set of conics which separate (and thus lie in the common exterior of) two non-degenerate conics which are separated by γ.

A neighbourhood of a double line γ is the set of conics which separate γ from a non-degenerate conic which does not meet γ.

A neighbourhood of a double segment [a point conic] γ is the set of conics which lie in the interior of a non-degenerate conic which contains γ in its interior.
4.5. A sequence of conics $\left(\gamma_{n}\right)_{n \in N}$ converges to a conic γ if for any neighbourhood \mathcal{U} of γ there exists $n_{0} \in N$ such that $\gamma_{n} \in U$ for all $n>n_{0}$. We denote this convergence of γ_{n} to γ by

$$
\lim _{n \in \mathbb{N}} \gamma_{n}=\gamma .
$$

It is well-known that ($\bar{\Gamma}, \boldsymbol{\theta}^{\prime}$) is countably compact ($[9], 2.1$). In addition the following results are analogous to those in 1.5 , 1.6 and 3.7 .
4.5.1 ($\vec{\Gamma}, \boldsymbol{D}^{\prime}$) satisfies the first and second axioms of countability.
4.5.2 ($\bar{\Gamma}, \boldsymbol{D}$) is a Hausdorff space.
$4.5 .3(\bar{\Gamma}, \boldsymbol{D})$ is a regular space.
4.6 Ccmbining the results of 4.5, we obtain ([1], p. 138):

Theorem 8: ($\bar{\Gamma}, \rho^{\prime}$) is a compact Hausdorff space.

Section 5

The Order, Differentiability and Characteristic of
 a Point of an Arc in the Projective Plane

Introduction

This section is comprised of basic background material which is fundamental in the analysis of ares and curves of conical order six. The results are generally due to the research of N. D. Iane, K.D. Singh and P. Scherk and can be found in [3], [9], [10] and [11].

In 5.3.1 the concept of a conically differentiable point is introduced; while in 5.3.3, strongly conically differentiable points of an arc are studied. A characteristic is associated with each conically differentiable interior point of an arc in 5.4. One of the first men to study the concept of characteristic was P. Scherk [I5] and his basic ideas were used by N.D. Lane and K.D. Singh in [4]. to introduce the conical characteristic of a conically differentiable point. Using the characteristic one can list the different kinds of conically differentiable interior points of an arc; cf. 5.4.1.

In 5.5 the conical order of a point on an arc is defined. The geometric notion of order seems to have been first studied extensively
by S. Mukhopadhyaya in [19] and [20]. A more general notion of order was introduced by 0. Haupt and H. Kunneth in [12], who used many of the ideas of Mukhopadhyaya. With the concept of the order of a point on an arc, one can define ordinary and sjingular points; cf. 5,6. Some of the earlier work involving singular points was done by Mukhopadhyaya and W. Blaschke [21] in the consideration of sextactic points.
5.1 The three-parameter family of non-degenerate conics which touch a line \mathcal{J} at a point p is denoted by τ. If no three of the points P, Q, R, S are collinear and Q, R, S do not lie on J, the conic of t through Q, R, and S is denoted by $\gamma(\tau ; Q, R, S)$.
5.1.I If $\gamma \varepsilon \tau, \quad \varphi=\varphi(\gamma)$ denotes the two-parameter subfamily of τ which consists of those conics of τ which have at least threepoint contact with γ at $p ; \varphi_{R}$ is the subfamily of φ through $R \notin J$. Let $\varphi_{p}(\gamma)$ denote the subfamily of $\varphi(\gamma)$, each of whose members have at least four-point contact with γ at p.
5.2 The concepts of arc, curve and neighbourhood of a point can be defined in the projective plane as they were defined in 2.3 for the inversive plane.
2.2.1 Suppose s is an interior point of an arc Q : Then we call s a point of supnort [intersection] with respect to a conic $\quad \gamma \in \bar{\Gamma}$ if a sufficientiy small neighbourhood of s on Q is decomposed by s into two one-sided neighbourhoods which lie in the same region [in different regions] bounded by $\gamma . \gamma$ is then called a supporting [intersecting] conic of Q at s .

5.3 Differentiable and Strongly Differentiable Foints.

2.3.1 A point p on Q is said to be conically differentiable if it satisfies four conditions:

Condition PI. If the parameter s is sufficiently close to p, $s \neq p$, the line $p s$ is uniquely determined. It converges as s tends to p ($[9], 4.2$).

The limit. straight line σ is the ordinary tangent of Q at p. Condition PI implies:
(i) If Q satisfies Condition PI at an interior point p, then the nor-degenerate, non-tangent conics through p all intersect Q at p or all of them support ($[9], 4.11$).

Condition PII. Let Q satisfy PI at p and let Q and R be any fixed points, $Q \& T, R \& G ; p, Q, R$ not collinear. If s is close to $p, s \neq p$, the unique tangent conic $\gamma\left(p^{2}, s, Q, R\right)$ of Q at p through Q, R and s converges as s tends to p ([9], 5.1).

The limiting gsculating conic of Q at p through Q and R is denoted by $X\left(p^{3}, Q, R\right)$. The family of all the osculating conics of Q at p is denoted by σ.
(ii) If Condition PII holds for two points $Q_{9} \cdot R$ such that p, Q, R are not collinear and $Q \& J, R \& J$, then it holds for every such pair of points ([9], 5.4).
(iii) Let PII hold at p. If the arc Q intersects \mathcal{J} at p, then the conics of σ are degenerate ($[9], 5.5$).
(iv) If PII holds at p, then σ is one of the following families ([9], 5.6).

Type 1. σ is a subfamily Q of τ which consists of all the conics of τ which have at least three-point cuntact at p with any particular member or σ; cf. 5.1.1.

Bype 2. σ consists of the pairs of distinct lines through p, both of them-different from J.

Type 3. σ consists of the pairs of lines one of which is .7 while the other does not pass through p.
(v) If Q satisfies PII at an interior point p, then the conics of $\tau-\sigma$ all support Q at p, except when p is of Type 2 and Q intersect σ at p, in which case they all intersect Q at $p([9], 5.10)$.

Condition PIII. Q satisfies PII at p and if $Q \& J$, then $\gamma\left(p^{3}, s, \dot{Q}\right)$ converges as s tends to p on Q.

The limiting superosculating conic of Q at p through Q is denoted by $\gamma\left(p^{4}, Q\right)$. The family of all the superosculating conics of Q at p is denoted by A.
(vi) If Condition PIII hoIds for a single point $Q \& \sigma$, then it holds for all such points ([9], 6.3).
(vii) If PIII hoIds at p, then p is one of the following ([9], 6.4).

Type 1(a). ρ is a subfamily φ_{p} of σ which consists of those conics of σ which have four-point contact at p with \dot{a} particular conic of σ.

Type $1(b)$. p consists of all pairs of lines through p, one of which is J.

In Types 2 and 3, PIII is satisfied automatically.
(viii) If Q satisfies PIII at an interior point p, then the conics of $\sigma-\rho$ all support Q at p or all of them intersect.

Condition PIV. Q satisfies PIII at p and the superosculating conic $\gamma\left(p^{4}, s\right)$ converges as s tends to p on Q.

The limiting ultraosculating conic of Q at p is denoted by $\gamma\left(p^{5}\right)$.
(ix) If Q satisfies PIV at p, then $\gamma\left(p^{5}\right)$ is nondegenerate (Hype lati)), or the point conic p(Type lati)), or the double line on J (Type $\operatorname{la}($ iii)).

In the remaining cases, Types $1 \mathrm{~b}, 2$ and 3 , PIV is satisfied automatically and $\gamma\left(p^{5}\right)$ is the double line on $\boldsymbol{J}([9], 1)$.
(x) If Q satisfies PIV at an interior point p, then the superosculating conics $\neq \gamma\left(p^{5}\right)$ all support Q or all intersect ($[9], 7.2)$.

Remarks (1) We shall adopt the convention that the double line on g supports a at p, even if a crosses J at p
\because (2) If the conic γ consists of a pair of distinct lines through p, the arc Q will be said to support [intersect] $\boldsymbol{\gamma}$ at p, if there exist one-sided neighbourhoods of p on Q which lie in the same region [in different regions] with respect to γ.
5.3.2 Suppose that no three of P, Q, R, S are collinear. We call γ a general tangent conic of Q at p if there exists a sequence of quintuples of mutually distinct points $S_{n}, t_{n}, Q_{n} R_{n}, S_{n}$ such that s_{n} and T_{n} converge on Q to $p, Q_{n} \longrightarrow R_{n} \rightarrow R$, $S_{n} \rightarrow S$ and the conic $\gamma\left(s_{n}, t_{n}, Q_{n}, R_{n}, S_{n}\right)$ through these points converges to γ.

Remark: If Q satisfies PI at p, every tangent conic of Q is a general tangent onnic. The converse need not be true. For example, a cusp point satisfying PI hes general tangent conics other than the ordinary tangent conics ([10], 2.1).

Suppose that p, Q, R are not collinear. We call γ a general osculating conic of Q at p if there exists a sequence of quintuples of mutually distinct points $s_{n}, t_{n}, u_{n}, Q_{n}, R_{n}$ such that s_{n}, t_{n}, u_{n} converge on Q to $p, Q_{n} \longrightarrow Q, R_{n} \longrightarrow R$ and the conic $\gamma\left(s_{n}, t_{n}, u_{n}, Q_{n}, R_{n}\right)$ converges to γ.

As in the remark above if Q satisfies PII every osculating conic of \mathbb{Q} is a general osculating conic, but the converse is not necessarily true.

We call γ a general superosculating conic of Q at p if there exists a sequence of sets of mutually distinct points s_{n}, t_{n}, u_{n}, u_{n}, Q_{n} such that $s_{n}, t_{n}, u_{n}, u_{n}$ converge to p on Q, $Q_{n} \longrightarrow Q, Q \neq p$, and a conic $\gamma\left(s_{n}, t_{n}, u_{n}, u_{n}, Q_{n}\right)$, through these points converges to γ.

Finally we call γ a general ultraosculating conic of Q at p if there exists a sequence of sets of mutually distince points $s_{n}, t_{n}, u_{n}, u_{n}, w_{n}$ such that $s_{n}, t_{n}, u_{n}, v_{n}, w_{n}$ converge to p on \boldsymbol{Q} and a conic $\gamma\left(s_{n}, t_{n}, u_{n}, w_{n}, w_{n}\right)$ through these points converges to γ.

We shall need the following results later ([10], 2).
(i) If γ is a non-degenerate general osculating conic of Q at p, then every member of the family $\varphi_{p}(\gamma)$ is also a general osculatine conic of Q at $p ; c$. 5.1.I.
(ii) If γ is a non-degenerate general superosculating conic of Q at p, then every member of the family $\varphi_{p}(\gamma)$ is also a general superosculating conic of Q at $p ; c f$. 2.1.1.

5.3.3 Stroncly Differentiable Points.

A yoint p on Q is said to be strongly conically differentiable if it satisfies four conditions:

Condition PI!. If the parameters s and t are sufficiently close to the parameter $p, s \neq t$, the straight line determined by s and t converges as s and t tend to p.

In particular, if we take $t=p$, we see thet PI' implies PI.

Condition PIT'. A satisfies Condition PI ${ }_{1}$ at, p and there exist two distinct points Q and R, not collonear with p, which do not lie on a general tangent of Q at p with the following properties. If s, t, u are mutually distinctif and lie sufficiently close to p on a, the conic $\gamma(s, t, u, Q, R)$ is uniquely defined. It Eonverges as s, t, u converge to p.

We note that if Condition PII' holds for two points Q and R (thus, p, Q, R are not collinear; $Q \& \mathcal{J}, R \not J$), then it holds for every such pair of points ([10], 3.3).

Condition PIII'. Q satisfies PJI' at p, and there exists a point $R \& J$, with the following properties. If s, t, u, v are mutually distinct and lie sufficiently close to ${ }^{\prime} p_{4}$ the conic $\gamma(s, t, u, v, R)$ is uniquely defined. It converges as s, t, u, v converge to p .

If Condition PIII is satisfied at a point p of Type 1 or 3 for one point R (thus $R \notin J$), then it is satisfied for every point not on \int. We note that if Q satisfies PII at an interior point p of type 2 , then Q does not satisfy Condition PIII' at $\mathrm{p}([10], 3.4)$.

Condition PIV'. Q satisfies PIII' at $p \quad \gamma(s, t, u, v, w)$ is uniquely defins and converges if the mutually distinct points s, t, u, v, w converge on Q to p.

5.4. A Classification of Conically Differentiable Points.

We asseciate with each conically differentiable interior point p of an arc Q. a characteristic (similar to that introduced for conformally differentiable points) ($\left.a_{0}, a_{1}, a_{2}, a_{3}, a_{4} ; k\right)$, $\mathrm{k}=\mathrm{la}(\mathrm{i}), \mathrm{la}(\mathrm{ii}), \mathrm{la}(\mathrm{iii}), \mathrm{lb}, 2$ or 3 . The numbers a_{i} are equal to 1 or $2 ; i=0,1,2,3,4$. They are determined as follows:
(i) a_{0} is even or odd according as the nontangent conics through p all support Q at p all or intersect; cf. 5.3.1(i).
(ii) $\cdot a_{0}+a_{1}$ is even or odd according, as the nonosculating tangent conics of Q at p all support \mathbb{Q} at p or all intersect cf. 2.3.1 (v).
(iii) $a_{0}+a_{1}+a_{2}$ is even or odd according as the nonsuperosculating osculating conics of Q at p support or intersect; cf. 5.3.1 (viii).
(iv) $a_{0}+a_{1}+a_{2}+a_{3}$ is even or odd according as the nonultraosculating superosculating conics of Q at p all support Q at p or all intersect; c.f. 5.3.1 (x).
(v) $a_{0}+a_{1}+a_{2}+a_{3}+a_{14}$ is even or ofd according as the ultraosculating conic $\gamma\left(p^{5}\right)$ of Q at p supports or intersects Q at p.

Remark. It may turn out, for example, that the nonsuperosculating osculating conics of Q at p say, do not support or intersect. We will exclude these types of conically differentiable points.
5.4.1. We list the types of conically differentiable points p of an arc Q here. Examples of these types of points can be found in [1]].

Points having no cusp

2.5. Linear and Conical Order of a Point.

Analogously to 2.6 , we introduce the concepts of linear and conical order of an arc \boldsymbol{Q}. An arc \boldsymbol{Q} is said to be of finite conical order [finite linear order] if it has only a finite number of points in common with any conic [line]. If the least upper bound of these numbers is finite, then it is called the conical order [linear order] of Q. The conical order [linear order] of a point p of Q is then the minimum of the conical [linear] orders of all neighbourhoods of p on Q. In the case of conical order, the order of a point is 3 . In the case of Inear order, the order of a point is ≥ 2.

We note the following results:
(i) An end-point p of an arc Q of finite conical order satisfies PII. If p is of Type 1 , then Q satisfies PIII, and if p is of Type $I(a)$, then Q satisfies PIV ([IO], 4, 1).
(i:) Let p be a conically differentiable interior point of an arc (Q. Suppose that p has the characteristic ($a_{0}, a_{1}, a_{2}, a_{3}, a_{4} ; R$. Then the conical order of p is not less than $a_{0}+a_{1}+a_{2}+a_{3}+a_{4}$ ([11], Theorem 1).
(iii) A conically elementary point of an arc Q is a point which decomposes a neighbourhood of p on Q into two one-sided neichbourhoods of conical order five.

Let p be a conically elementary point of a differentiable arc. Q. If p has the characteristic $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4} ; k\right)$, then the conical order of p is $a_{0}+a_{1}+a_{2}+a_{3}+a_{4}$ ([il], Theorem 2).
2.6. Ordinary and Singular Points.

A point p of an arc Q is called conically ordinary [Iinearly ordinary] if the conical order [linear order] of p is five [two].

If the conical order [linear order] of a point p on Q is strictly greater than five [two], p is said to be a conically singular [linearly singular] point.

A point p of a conically differentiable arc is said to be a Vertex if p is a point of support with respect to $\gamma\left(p^{5}\right)$, the ultraosculating conic of Q at p.

Section 6

Arcs and Curves of Conical Order Six

in the Projective Plane

Introduction

This section parallels the analysis of arcs and curves of circular order four done in Section 3. Here we shall investigate some of the properties of arcs and curves of conical order six in the projective plane.

We first consider general arcs of conical order six in 6.1 and 6.2. In 6.3 we obtain important monotony results for conically differentiable convex arcs of conical order six. Conically differentiable curves of order six are analysed in 6.4; while our attention is restricted to strongly conically differentiable curves of order six in 6.5.

6.I Gonvex Arcs of Conical Order Six

Introduction

It is well known that an arc Q_{6} of conical order six is the union of a finite number of arcs of conical order five; cf. 0 Haupt and H. Kunneth ([12], 4.1.3) and Fr. Fabricius-Bjerre [23]. The latter's methods involved the consideration of arcs in higher dimensional spaces and the use of properties involving projections of such arcs to the plane. We have already mentioned, in the introduction to 3.1, how the contraction and expansion theorems of Haupt and Küneth simplified the analysis of normal arcs of order $k+1$ with respect to the system of "order characteristics! with the fundamental number k, proofs using induction on k. Again we should acknowledge the work of S. Mukhopadhyaya [19], [20] who first studied the process of contraction.

In our considerations the system of order characteristics is the set of all conics (both non-degenerate and degenerate) with $k=5$. It might be of some interest to develop proofs for such results as those given above strictly from a conical point of view. Thus sections 6.1.2, 6.1.4 and Theorem 2 have been included for completeness. Hence it can be concluded that an end-point of an arc of conical order six is ordinary and with one possible exception strongly conically differentiable; cff. 6.1.11 and 6.1.13.
6.1.0 Let a_{6} be an open convex arc of conical order six. We first note that if \mathcal{L} is a line intersecting Q_{6} at points s, u and f another line intersecting Q_{6} at points t, v with $s<t<u<v$ on Q_{6}, then these two lines comprise a conic γ_{0} which cannot be oriented with $\mathrm{s}<t<\mathrm{u}<\mathrm{v}$ on $\boldsymbol{\gamma}_{0}$. However, we do have a corresponding type of normality condition (cf. 3.1) for convex arcs Q_{6} of conical order six.

Let γ_{0} intersect a_{6} in six points. Then γ_{0} can be oriented so that these points lie on the same order on γ_{0} as they do on Q_{6}.

Proof. 'By taking another line I_{∞}, if necessary, we can assume that the convex arc Q_{6} does not meet L_{∞}.

Let the points of intersection of γ_{0} with \dot{Q}_{6} be r, s, t, u, v, w with $r<s<t<u<v<w$ on Q_{6}. Let α be the family of conics which pass through s, t, u, v. Then α is decomposed into three subfamilies $\alpha_{1}, \alpha_{2}, \alpha_{3}$ by

$$
\begin{aligned}
& \gamma_{1}=\mathscr{L}(s, t) \cup \mathcal{L}(u, v) \\
& \gamma_{2}=\mathscr{L}(s, v) \cup \mathcal{L}(t, u) \\
& \gamma_{3}=\mathscr{L}(s, v) \cup \mathscr{L}(t, v)
\end{aligned}
$$

where α_{1}, say, is bounded by γ_{1} and γ_{2}, α_{2} by γ_{1} and γ_{3}, and α_{3} and γ_{2} (see Figure 12).

In ([11]; 4.6) it is shown that s, t, u, v lie on each conic of α_{1} in the indicated order. Thus s, t, u, v lie on γ_{0} in the same order as on Q_{6}. One should notice that each conic that meets Q_{6} again is a member of α_{1}.

Now repeat the above argument using the family β of conics which pass through r, s, t, u. Then r, s, t, u will lie in the same order on γ_{0} as they do on Q_{6}. Hence r, s, t, u, v lie in the same order on γ_{0} as they do on Q_{6}.

Finally, repeat the argument using the family δ of conics which pass through t, u, v, w. Then t, u, v, w lie in the same order on γ_{0} as they do on a_{6}. Thus r, s, t, u, v, w lie in the indicated order on γ_{0} and we have the desired result.

Figure 12
6.1.1. Let γ be a conic which meets. Q_{6} at six distinct points $a, b, p_{1}, p_{2}, p_{3}, p_{4}$. Then as t moves monotonically and continuously from a on Q_{6}, there is a point

$$
u \varepsilon \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right) \cap Q_{6}
$$

which moves monotonically and continuously from b in the opposite direction.

Proof. Without loss of generality, we assume that $p_{1}<p_{2}<p_{3}<p_{4}$. Since Q_{6} is of order six,

$$
\gamma_{0}=\gamma\left(a, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

intersects " Q_{6} at $a, b, p_{1}, p_{2}, p_{3}, p_{4}$ and meets Q_{6} nowhere else, by 6.2.2. If t is sufficiently close to a, then

$$
\dot{\gamma}\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

will be close to γ_{0} and will intersect Q_{6} at $t, p_{1}, p_{2}, p_{3}, p_{4}$ and at a point \dot{u} close to b. Also

$$
\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

meets Q_{6} nowhere else. Thus u depends continuously on t.

It is sufficient to show that t and u move in opposite directions on Q_{6} whenever t is close to a. Thus we shall restrict t to a suitably small neighbourhood of a in the following.

If an even [odd] number of points of $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ lie between a and b on γ_{0}, then the same number of these points will lie between t and u on

$$
\gamma\left(\dot{t}, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

Since the distinct conics γ_{0} and $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meet exactly at p_{1}, p_{2}, p_{3} and p_{4}, t and u will lie on the same side [on opposite sides]c of γ_{0}.

On the other hand, since

$$
a_{6} \cap \gamma_{0}=\left\{a, p_{1}, p_{2}, p_{3}, p_{4}, b\right\}
$$

Q_{6} will mèet γ_{0} at an even [oud] number of points between a and b. Hence if t and u move in the same direction on a_{6}, then t and u will lie on opposite sides [on the same side] of γ_{0}; contradiction.

Remarks. (i) The movement of t and u in 6.1.1 can continue as long as
(1) neither t nor u coincide with one of $p_{1}, p_{2}, 1_{3}, p_{4}$.
(2) t and u do not coincide with each other,
(3) neither t nor u coincides with an endpoint of a_{6}.
(ii) $\quad \operatorname{b}_{\text {. }} .1$ remains valid if the arc a_{6}. is replaced by a convex circle \boldsymbol{C}_{6} of conical order six.

We note that the proof of 6.1.1 is completely analogous to that of 2.1.1. By using the method of the proofs' of 2.1.2, 2.1.3, 2.1.4 and 3.1 .5 we obtain the following results.
6.2.2 Let γ_{0} be a conic which meets Q_{6} at points $p_{0}<q_{0}<r_{0}<s_{0}<t_{0}<u_{0}$. If B is the closed subarc of Q_{6} between P_{0} and u_{0}, then there exists at least one singular point in the interior of B.

Proof. A short systematic proof of this result using, 12 equal subintervals of

$$
\dot{I}=\left[p_{0}, u_{0}\right]
$$

can be given.

Divide the parameter interval

$$
I=\left[p_{0}, u_{0}\right]
$$

into 12 equal subintervals with the endpoints $A_{i} ; i=-6,-5$, $\ldots, 0,1, \ldots, 6$. The goal is to construct a coniciwhich passes.
through six points of either the interval $\left[A_{-6}, A_{5}\right]$ or the interval $\left.{ }^{\left[A_{-5}\right.}, A_{6}\right]$ of a_{6}.

In the following, put $i=1,2,3,4,5$ in turn. Suppose that at the $i^{\text {th }}$ step, only $i-1$ of the points of $\gamma \cap I$ lie in the closed subinterval $\left[A_{j}, A_{i}\right]$ of A_{6} and that there are points of $\gamma \cap I$ on both sides of $\left[A_{-i}, A_{i}\right]$. Then we move the two points which lie outside, adjacent to, and on opposite sides of [$\left.A_{-i}, A_{i}\right]$ toward this interval, using 6.1.1. while keeping the other four points of $\gamma \cap \mathrm{I}$ fixed. Eventually, at least one of these moving points reaches $\left[\Lambda_{-i}, A_{i}\right]$. If necessary, we proceed with the next step.
6.1.3 Let $p_{0}<q_{0}<r_{0}<s_{0}<t_{0}$ be five points on Q_{6} and B the closed subarc of Q_{6} bounded by p_{0} and t_{0} Let the point a $\varepsilon Q_{6} \backslash B$. Suppose that there exists a conic through the points a, $p_{0}, q_{0}, r_{0},{ }_{0}, t_{0}$. If γ_{a} is the system of conics passing through the point a, then there exists at least one γ_{a}-singular point y on $B ;$ ie., for any neighbourhood N of y on \mathbb{B} there exists a conic of X_{a} that meets N at least five times.

Proof. A systematic proof, similar to that of 6.2.2, may be Given.
6.1.4 Let N_{1}, N_{2} be arbitrary neighbourhoods of two singular points z_{1}, z_{2} on Q_{6} Let B be the closed subarc of Q_{6} between z_{1} and z_{2} If

$$
a \varepsilon \quad a_{6} \backslash N_{1} \cup B \cup N_{2},
$$

then there exists a conic which meets Q_{6} at a and at five distinct points of $N_{2} \cup B \cup N_{2}$.
6.1.5 Let z_{1}, z_{2} be two singular points of Q_{6} and let a $\varepsilon \quad Q_{6} \backslash B$, where B is the closed subarc of Q_{6} between z_{1} and z_{2}, Then there exists at least one X_{a}-singular point y on B.
6.1.6 Let y_{1}, y_{2} be two points of Q_{6} and let B be the closed subarc of Q_{6} between them. Let a_{1}, a_{2} be distinct points of $Q_{6} \backslash B \cdot$ If y_{1} and y_{2} and $\gamma_{a_{1}}$-singular points, then there exists at least one $\gamma_{a_{1}} a_{2}$-singular pojnt y on B; i.e., for any neighbourhood N of y on B there exists a conic passing through a_{1}, a_{2} and meeting N at least four times.
6.1.7. Let y_{1}, y_{2} be two points of Q_{6} and Iet B be the closed subarc of a_{6} between them. Let a_{1}, a_{2}, a_{3} be mutually distinct points of $Q_{6} \backslash B \cdot I f_{f_{1}}$ and y_{2} are $\gamma_{a_{1} a_{2}}$-singujur points, thon there exisits at least one $\gamma_{a_{1} a_{2} a_{3}}-$ singular noint y on $\Theta^{\prime} ; i . e_{0}$, for any neichbourhood ${ }^{N}$ of y
on 8 there exists a conic passing through a_{1}, a_{2}, a_{3} and meeting N at least three times.
6.1.8 Let y_{1}, y_{2} be two points of a_{6} and let \mathbb{B} the closed subarc of a_{6} between them, Let $a_{1}, a_{2}, a_{3}, a_{4}$ be mutually distinct points of $a_{6} \backslash B$. If y_{1} and y_{2} are $\gamma_{a_{1}} a_{2}$-singular points, then there exists at least one $\gamma_{1} a_{2} a_{3} a_{4}$-singular point y on B; ie., for any neighbourhood N of y on \dot{B} there exists a conic passing through $a_{1}, a_{2}, a_{3}, a_{4}$ and meeting N at least twice.
6.1.9. Let y_{1}, y_{2} be two points of A_{6} and let B be the closed subarc of a_{6} between them. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ be mutually distinct points of $Q_{6} \backslash B \cdot I_{f} y_{1}$ and y_{2} are $\gamma_{a_{1} a_{2} a_{3} a_{4} \text {-singular points, then there exists at least one }}$
 N of y on B there exists a conic passing through $a_{2}, a_{2}, a_{3}, a_{4}, a_{5}$ and meeting N at least once.
6.1.10 Now we prove the main result of this section.

Theorem 2: A convex arc Q_{6} of conical order six contains at most finitely many singular points.

Proof. Assume that there are infinitely many singular points on Q_{6}. Let a_{1} be any point on Q_{6}. Then by 6,1.5, there are infinitely many $\gamma_{a_{1}}$-singular points on Q_{6}. Take another point a_{2} on $Q_{6}, a_{1} \neq a_{2}$. By 6.1.6, there exist infinitely many $X_{a_{1} a_{2}}$-singular points on a_{6}. Take another point a_{3} on a_{6} with a_{1}, a_{2}, a_{3} mutually distinct. By $\underline{6.1 .7}, Q_{6}$ contains infinitely many $\gamma_{a_{1} a_{2} a_{3}}$-singular points. By taking another point \dot{a}_{4} on a_{6} distinct form a_{1}, a_{2}, a_{3} and applying 6.1.8, we obtain infinitely many $\quad \gamma_{a_{1} a_{2} a_{3} a_{4}}$-singular points on $\quad Q_{6}$. Finally let a_{5} be a point of a_{6} distinct from $a_{1}, a_{2}, a_{3}, a_{4}$, By 6.1.2. Q_{6} contains infinitely many $\quad \gamma_{a_{1} a_{2} a_{3} a_{4} a_{5}}$-singular points. But then we have constructed a conic passing through $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ which meets Q_{6} at infinitely many points; contradiction.

Corollary. An arc Q_{6} of conical order six contains at most finitely many singular points.

Proof. In 6.4.1 it is shown that Q_{6} is either convex or of linear order three. By 2.2 .3 of [12], such an arc is the union of finitely many convex arcs. Using Theorem 2 we obtain the desired result.
6.1.11 If p is an end-point of Q_{6}, then p is ordinary.

Proof. If p is a singular point, then for each neighbourhood $N^{(1)}$ of p there exists a conic which meets $N^{(1)}$ six times, say at $p_{1}<q_{1}<r_{1}<s_{1}<t_{1}<u_{1}$. By 6.I.2, there exists a singular point $y^{(1)}$ in. $\left(p_{1}, u_{1}\right)$. Now take a new smaller neighbourhood $N^{(2)}$ of p with $y^{(1)} \not N^{(2)}$. By 6.1.2, there exists another singular point $y^{(2)} \varepsilon N^{(2)}$ with $y^{(2)} \neq y^{(1)}$. Repeating this process and using 6.1.2, we obtain an infinite numberof singular points on Q_{6}. This is impossible, by Theorem 9 .
6.1.12 In 6.1.11 it was shown that an end-point p of Q_{6} is ordinary. Hence there eixsts a neighbourhood N_{5} of p on a_{6} which is of order five. But it is known that $N_{5} \cup\{p\}$ is strongly conically differentiable at p unless p is of Type 2 ([10], 5.5).

Thus an end-point p of a_{6} is strongly conically differentiable with the exception noted above.
6.1.13 In 6.1.11 and 6.1.12 we assumed that a_{6} was convex. However, as in 6.4.I, arcs of conical order six are either
(i) convex arcs
or
(ii) arcs of linear order three.

But is is well known that such arcs contain at most finitely many linearly singular points ([12], 2.2.3). Thus if p is an end point of Q_{6}, then p has a one-sided convex neighbourhood on a_{6}.

Hence we obtain the following result.

Let Q_{6} be an arc of conical order six with an end point
p. Then
(a) p is ordinary
(b) $Q_{6} \cup\{p\}$ is strongly conically differentiable at p if p is not of Type 2.

6.2 Mnltiplicitics for Arcs of Conical Order Six

Introduction

Multiplicities for open arcs Q_{5} of conical order five with one end-point. p were introduced by N.D. Lane and K. D. Singh in [10], counting p once, twice, three times, four times and five times, respectively, on a non-tangent conic through p a nonosculating tangent conic at p, a non-superosculating osculating conic at p, a non-ultraosculating superosculating conic at p and the ultraosculating conic $\gamma\left(p^{5}\right)$ at p and counting an interior point q of Q_{5} once on any conic through q which is not a general tangent conic at q, twice [three times; four times] on any general tangent [osculating; superosculating] conic at q which is not a general osculating [superosculating; ultraosculating] conic at q and five times on any general ultraosculating conic at q. Then it was shown that no conic meets $Q_{5} \cup\{p\}$ more than five times; i.e., the inclusion of p and the introduction of multiplicities bi do not alter the conical order of a_{5}.

In this section the above result will be generalized with the exceptions noted below, to an arc Q_{6} of conical order six.

Theorem 10: The conical order of the open arc Q_{6} is not changed, with the exceptions observed in the remark following 6,2.27, by

6.2 Multiplicities for Arcs of Cortical Order Six

Introduction

Multiplicities for open arcs Q_{5} of conical order five with one end-point. p were introduced by N. D. Lane and K. D. Singh in [10], counting p once, twice, three times, four times and five times, respectively, on a non-tangent conic through p a nonosculating tangent conic at p, a non-superosculating osculating conic at p, a non-ultraosculating superosculating conic at p and the ultraosculating conic $\gamma\left(p^{5}\right)$ at p and countingsan interior point q of Q_{5} once on any conic through q which is not a general tangent conic at q, twice [three times; four times] on any general tangent [osculating; superosculating] conic at q which is not a general osculating [superosculating; ultraosculating] conic at q and five times on any general ultraosculating conic at q. Then it was shown that no conic meets $Q_{5} \cup\{p\}$ more than five times; i.e., the inclusion of p and the introduction of multiplicities do not alter the conical order of \boldsymbol{Q}_{5}.

In this section the above result will be generalized with the exceptions noted below, to an arc Q_{6} of conical order six.

Theorem 10: The conical onder of the open arc Q_{6} is not changed, with the exceptions observed in the remark folloring 6.2.27, by
(i) the addition of one of the end-points p;
(ii) the introduction of multiplicities at p, as above; or
(iii) the introduction of multiplicities at interior points q of A_{6}, as above. The point q is counted five times on any general ultraosculating conic at q that intersects Q_{6} at q and q is counted six times on any general ultraosculating conic at q that supports Q_{6} at q. In this last case q is a conically singular point.

Remark. It is assumed that $p<s$ for all $s \varepsilon Q_{6}$.

6.2.1 No conic γ supports Q_{6} at more than three

 points.Proof. Suppose γ supports Q_{6} at q_{1}, q_{2}, q_{3} and q_{4}.
If there is another point s which is a point of intersection of γ with a_{6}, we may assume that s does not ie between q_{1} and q_{2}, say, on Q_{6}. Then a suitable conic γ_{0} sufficiently close to γ through q_{3} and q_{4} will intersect Q_{6} at two points near q_{1}, at two points near q_{2} and at one point near s. This is impossible.

Hence $Q_{6} \subset \gamma \cup \gamma_{e}$, say. Let L_{1}, I_{2}, I_{3} and L_{4} be four disjoint neighbourhoods on Q_{6} of q_{1}, q_{2}, q_{3} and q_{4}, respectively. Choose a conic γ^{\prime} in γ_{e} which is close to γ. Since the endpoints of I_{1}, I_{2}, I_{3} and I_{4} lie in γ_{e}, they will also lie in γ_{e}^{\prime}. We can orient γ^{\prime} such that $\gamma \in \gamma_{i}^{\prime}$. Then $q_{1}, q_{2}, q_{3}, q_{4} \varepsilon \gamma_{i}$. Thus γ^{\prime} separates $q_{1}, q_{2}, q_{3}, q_{4}$ from the end-points of L_{1}, L_{2}, I_{3}, I_{4} respectively. γ^{\prime} will intersect each of $I_{1}, I_{2}, I_{3}, I_{4}$ in not less than two points. Thus $\gamma^{\prime} \cap a_{6}$ contains more than six points; contradiction.
6.2.2 If a conic γ supports O_{6} at a point t, then γ cannot meet Q_{6} at more than four further points.

Proof. Suppose that γ meets Q_{6} at $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}$ and supports Q_{6} at t. Then at least one of the $q_{i} ; i=1,2, \ldots, 5$, say q_{I}, is a point of intersection, by 6.2.1. But then a conic $\gamma 1$ sufficiently close to γ through $q_{2}, q_{3}, q_{4}, q_{5}$ will intersect Q_{6} at two points near t and at one point near. q_{1}. Hence γ^{\prime} meets Q_{6}. at least sever times; contradiction.
6.2.3. If a conic γ supports Q_{6} at s and t, then γ does not meet $Q_{6} \cup\{p\}$ at more than two further points.

Proof. Suppose that γ meets $a_{6} \cup\{n\}$ at three further points q_{1}, q_{2}, q_{3}. Then either one of the q_{i}, say q_{1}, is p or none of the q_{i} is p. In the second case by 6.2.1, one of the q_{i}, say q_{I}, is a point of intersection. Then in either case, as in previous arguments, a suitable conic γ^{\prime} sufficiently close to
γ through q_{2} and q_{3} will meet Q_{6} twice near s, twice near t and once near q_{1}. Thus γ^{\prime} meets A_{6} at least seven times; contradiction.
6.2 .4
(i) If a conic through p meets Q_{6} at six points then at most one of them is a point of intersection.

Proof. Suppose that a conic γ through p intersects Q_{6} at q_{1}, q_{2} and meets Q_{6} at four further points r, s, u, v. Choose disjoint neighbourhoods L, I_{1}, L_{2} of p, q_{1}, q_{2}, respectively,
which do not contain r, s, u or v. Then if t converges in L to $p, \quad \gamma(r, s, u, v, t)$ converges to γ. However $\gamma(r, s, u, v, t)$ intersects L_{1} and I_{2} if t is sufficiently close to p. Hence this conic meets Q_{6} in not less than seven points; contradiction.
(ii) If a tangent conic of Q_{6} at p meets Q_{6} at five points, then at most one of them is a point of intersection.

Proof. Let γ be a tangent conic of Q_{6} at p intersecting Q_{6} at the points q_{1}, q_{2} and meeting Q_{6} at further points r, s, u. If t is sufficiently close to p, then $X(p, r, s, u, t)$ will be close to γ and it will intersect Q_{6} at points near q_{1} and q_{2}. This is impossible, by (i).

In the same way we obtain the followinir.
(iii) If an osculating conic of Q_{6} at p meets Q_{6} at four points, then at most one of them is a point of intersection.
(iv) If a superosculating conic of Q_{6} at p mects Q_{6} at three points, then at most one of them is a point of intersection.
(v) $\quad X\left(p^{5}\right)$ intersects $Q 6$ at most once.
6.2.5 No conic meets $Q_{6} \cup\{p\}$ in more than six points.

Proof. Let γ be a conic which meets $Q_{6} \cup\{p\}$ in seven mutually distinct points. Since Q_{6} is of conical order six, one of these points must be p while the other six lie on $Q 6^{\circ}$ These six points are all points of intersection of γ with Q_{6}, by 6.2,2. But this is impossible, by (i) of 6.2.4.

Corollary. No conic through p which supports Q_{6} at a point s can meet Q_{6} at four further points.
6.2.6 If a conic γ supports Q_{6} at s, t and u, then γ does not meet $Q_{6} \cup\{p\}$ again.

Proof. Suppose that γ meets $Q_{6} \cup\{\mathrm{p}\}$. at a further point v. Then by 6.2.1, v is a point of intersection of Q_{6} with γ or $v=p$.

In either case a suitable conic $\quad \gamma^{\prime}$ through v and sufficiently close to γ will intersect Q_{6} twice near s, twice near t and twice near u. This is impossible, by 6.2.5.

Corollary. No tangent conic of $Q_{6} \cup\{p\}$ at p supports Q 6 at more than two points.
6.2.7 No tangent conic of $Q_{6} \cup\{p\}$ at p meets Q_{6} in more than four points.

Proof. If a tangent conic of $Q_{4} \cup\{p\}$ at p meets Q_{6} at five distinct points, then at least four of these are points of support, by (ii) of 6.2.4. However, this is impossible, by 6.2.I.

Corollary 1. No tangent conic of $Q_{6} \cup\{\mathrm{p}\}$ att p supports Q_{6} at two points and intersects Q_{6} at a further point.

Corollary 2. No tangent conic of $Q_{6} \cup\{\mathrm{p}\}$ at p supports Q_{6} at one point and intersects Q_{6} at three further points.
6.2.8 No osculating conic of $Q_{6} \cup\{\mathrm{p}\}$ at p meets Q_{6} in more than three points.

Proof. If an osculating conic of $Q_{6} \cup\{p\}$ at p meets Q_{6} at four distinct points, then at least three of these are points of support, by (iii) $^{\text {) of 6.2.4. However, this is impossible, }}$ by 6.2.6.

Corollary 1. No osculating conic of $Q_{6} \cup\{\{ \}$ at p supports Q_{6} at more than one point.

Corollary 2:: No osculating conic of $Q_{6} \cup\{\mathrm{p}\}$ at p supports Q_{6} at one point and intersects Q_{6} at more than one point.

6.2.9 No, superosculating conic of $Q_{6} \cup\{p\}$ at p

 meets a_{6} more than twice.Proof. If a superosculating conic of $Q_{6} \mathrm{U}^{\prime}\{\mathrm{p}\}$ at p meets Q_{6} at three points, then at least two of these are points of support, by (iv) of 6,2.4. However, this is impossible, by Corollary 1 of 6.2.8,

Corollary 1. No superosculating conic of $Q_{6} \cup\{p\}$ at p supports Q_{6} more than once.

Corollary :2. No superosculating conic of $Q_{6} \cup\{p\}$ which supports Q_{6} at one point can meet a_{6} again.

6,2.10 $\gamma\left(\mathrm{p}^{5}\right)$ cannot meet a_{6} more than once.

Proof. If $\gamma\left(p^{5}\right)$ meets Q_{6} at two points, then at least one of these is a point of support, by (v) of 6.2.4. However, this is impossible, by Corollary 2 of 6.2.9.

Corollary. $\quad \gamma\left(p^{5}\right)$ cannot support $\quad a_{6}$ at any point.
6.2.11 No general osculating conic of a_{6} at. q intersects $a_{6} \backslash\{q\}$ more than three times.

Proof. Let γ be a general osculating conic of Q_{6} at q which intersects $Q_{6} \backslash\{q\}$ at four points $r_{1}, r_{2}, r_{3}, r_{4}$. By the definition of a general osculating conic, there is a conic γ^{\prime} sufficiently close to γ and that γ^{\prime} meets Q_{6} three times near q and once each near $r_{1}, r_{2}, r_{3}, r_{4}$. Altogether γ, meets Q_{6} at least seven times; contradiction.
6.2.12 No general osculating conic of Q_{6} at q supports Q_{6} more than once.

Proof. Let γ be a general osculating conic of Q_{6} at q which supports Q_{6} at r and s. Then by 5.3 .2 (i), a conic of $\varphi(\gamma)$ sufficiently close to γ will be a general osculating conic of Q_{6} at q which intersects Q_{6} twice near r and twice near s. This is impossible, by 6.2.11.

Similarly one obtains the following.

6.2 .13

(a) No general osculating conic of Q_{6} at a which supports Q_{6} at a point $r \notin q$ can meet $Q_{6} \cup\{p\}$ at more than one further point.
(b) No general osculating conic of Q_{6} at q, can meet Qt $\cup\{p\}$ at more than three further points.
6.2.14 No general superosculatine conic of a_{6} at q intersects a_{6} more than twice.

Proof. The proof is analogous to 6.2.11.
6.2.15 No general superosculating conic of Q_{6} at q supports $Q_{6} \backslash\{9\}$ more than once.

Proof. This is a sqecial case of 6.2.12, since every superosculating conic of Q_{6} at q is a general osculating conic of Q_{6} at .

Corollary. No general superosculating conic of Q_{6} at 9 which supports Q_{6} at a point $r * q$ can meet $Q_{6} u\{p\}$ again.

Proof. The proof is analogous to 6.2 .13 (a) using 5.3.2 (ii) and 6.2.15.
6.2.16 No general superosculatine conic of \dot{Q}_{6} at 9 can meet $Q_{6} \cup\{p\}$ at more than two other noints.

Proof. The proof is analogous to 6.2.13 (b) using 5.3.2 (ii).
6.2.17 No general uFtraosculating conic of Q_{6} at 9 intersect $Q_{6} \backslash\{q\}$ more than twice.

Proof. The proof is analogous to 6.2.17.

6.2 .18

(a) No general ultraosculating conic of Q_{6} at q which intersects Q_{6} at q can support Q_{6} at a point $r \neq q$.

Proof. Let γ be a general ultraosculating conic of Q_{6} at q intersecting Q_{6} at q which supports Q_{6} at r. Since γ intersects Q_{6} at q, the end-points of a small neighbourhood N of q on Q_{6} will lie on opposite sides of γ.. Let γ. have four-point contact with X at q (cf. 2.1.1) and be sufficiently close to γ so that the end-points of N will still lie on opposite sides of γ^{\prime}, and γ^{\prime} will intersect Q_{6} twice near r. Thus
γ^{\prime} meets N^{\prime} with an odd multiplicity. Hence γ^{\prime} is either a general superosculating conic of Q_{6} at q (cf. 5.3.2 ii) which meets N at another point or a general superosculating conic of Q_{6} at q. which intersects Q_{6} at q;i.e., a general ultraosculating conic of Q_{6} at q. But these situations are impossible, by 6.2.16 and 6,2.17.
(b) No general ultraosculating conic of Q_{6} at q which intersects Q_{6} at q can meat $Q_{6} \cup\{p\}$ at more than one other point.

Proof. Let γ be a general ultraosculating conic of Q_{6} at q intersecting Q_{6} at q which meets $Q_{6} \cup\{p\}$ at two
further points r, s. By 6.2 .17 and 6.2.18 (a), one of these points, say r, is a point of intersection of Q_{6} with γ and the other point $s=p$.

As in (a), a suitable conic γ, having four-point contact with γ at q which lies sufficiently close to γ will intersect Q 6 at a point near r and a point near p. Again as in (a), γ^{\prime} meets a small neighbourhood N of q with an odd multiplicity. Hence γ^{\prime} is either a general superosculating conic of. Q_{6} at q which meets N at another point or a general ultriosculating conic of Q_{6} at q. This is impossible, by $6,2,16$ and $6,2,17$.
6.2.19 No general ultraosculating conic of Q_{6} at q which supports Q_{6} at q can meet $Q_{6} \cup\{\mathrm{p}\}$, again.

Proof. Let γ be a general ultraosculating conic of Q_{6} at q which supports Q_{6} at q and meets $Q_{6} \cup\{p\}$ at a further point u. Then there are three possibilities:
(a) X intersects Q_{6} at $u ;$
(b) X_{6} supports u_{i} or
(c) $\quad \gamma$ meets $Q_{6} \cup\{p\}$ at $u=p$.

If case (a) occurs, then as in 6.2.17, a conic γ ' can be constructed close to γ meeting Q_{6} six times near q and once near $u ;$ contradiction.

Suppose then case (b) occurs. Then γ cannot meet Q_{6} except at q and u, by the Corollary to 6.2.15. Without loss of generality, let

$$
Q_{6} \backslash\{a, u\} \subset X_{e}
$$

Also let

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime}[I]
$$

be a small two sided neighbourhood of $q[u]$ on Q_{6}. We claim that γ is one of the one-sided ultraosculating conics of Q_{6} at q. Otherwise, γ is a general tangent conic of both $N^{\prime} \cup\{q\}$ and N" $\cup\{q\}$ at q and hence Q_{6} satisfies Condition PI at q (cf. 5.3.3), by 6.1.12. Thus γ is a tangent conic. of Q_{6} at q and the family of tangent conics of Q_{6} at q all touch the tangent line at q. Let η be the one-sided ultraosculating conic of Q_{6} at q whichilies in γ_{i} with the exception of q. Now if $s \varepsilon N$, then $s \varepsilon \gamma_{e}$. Thus the superosculatine conic of N at q through s is blocked by γ as s converges to q and hence cannot converge to η; contradiction. Thus γ is one of the one-sided ultraosculating conics of Q_{6} at q, say of $N^{\prime} \cup\{q\}$.

Let s^{\prime} be close to q on N^{\prime}. Then the superosculating conic γ^{\prime} of $N^{\prime} \cup\{q\}$ at q through 5^{\prime} : will be close to γ and lie in γ_{e} with. the exception of q. Hence γ, intersects $I_{\text {. }}$ at two points near u. This is impossible, by 6.2.14.

Finally suppose that case (c) occurs. Let

$$
N=N^{*} \cup\{q\} \cup N^{\prime \prime}[I]
$$

be a small twowsided [one-sided] neighbourhood of $q[p]$ on $Q_{6} \cup\{\mathrm{p}\}$. By the method of (b). we can construct a conic γ, which is a general superosculatinf conic of Q_{6} at a intersecting N at s^{\prime} and L at one point s. But then γ must meet N with an even multiplicity. Thus γ, either intersects Q_{6} at q or meets N at another point. Both are impossible, by 6.2.18 (b) and 6.2.16.
6.2:20 No general osculating conic of Q_{6} at a can be a general superosculating conic of Q_{6} at r which supports Q_{6} at r.

Proof. Let γ be a general osculating conic of Q_{6} at q which is a general superosculating conic of Q_{6} at r and supports Q_{6} at r. Let

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime}\left[I=I, \cdot \cup\{r\} \cup L^{\prime \prime}\right]
$$

be a small two-sicled nicghbourhood of $q[r]$ on Q_{6}. Either X intersects Q_{6} at q or γ supports Q_{6} at q.

Finally suppose that case (c) occurs. Let

$$
N=N^{i} \cup\{q\} \cup N^{\prime \prime}[L]
$$

be a small two-sided [one-sided] neighbourhood of $q[p]$ on $Q_{6} \cup\{p\}$. By the method of (b), we can construct a conic γ^{\prime} which is a general superosculatine conic of Q_{6} at q intersecting N at s^{\prime} and L at one point s. But then γ, must meet N with an even multiplicity. Thus γ^{\prime} either intersects Q_{6} at q. or meets N at another point. Both are impossible, by 6.2.18 (b) and 6.2.16.
6.2.20 No general osculating conic of Q_{6} at q can be a general superosculating conic of Q_{6} at r which supports Q_{6} at r.

Proof. Let γ be a general osculating conic of Q_{6} at q which is a general superosculating conic of Q_{6} at r and supports Q_{6} at r. Let

$$
N=N \cdot \cup\{q\} \cup N י[I=I, \cup \cup\{r\} \cup L "]
$$

be a small two-sided nieghbourhood of $q[r]$ on Q_{6}. Wither X intersects Q_{6} at q or γ supports Q_{6} at q.

Suppose that γ intersects Q_{6} at q. Since γ is a general osculating conic of Q_{6} at q_{1} then γ is a general tangent conic of $N^{\prime} \cup\left\{\{q\}\right.$ or of $N^{\prime \prime} u\{q\}$ at q, say the former. But $N^{\prime} \cup\{q\}$ satisfies Condition PI' at q (cf. 2.3 .3), by 6.1.12. Thus γ is a tangent conic of $N^{\prime} \cup\{q\}$ at q. Let $t^{\prime} \varepsilon N^{\prime}$, close to q. Then the conic γ ' through q, t^{\prime} and having three-point contact with γ will be close to γ. But the end-points of $\mathrm{N}[\mathrm{L}]$ lie on opposite sides [on the same side] of $\boldsymbol{\chi}$. Thus the end-points of N[I]] lie on opposite sides [on the same side] of γ^{\prime}. But γ^{\prime} meets $N[I]$ at q and $t^{\prime}[a t r]$. Thus γ^{\prime} will meet $N[I]$ at a further point. Also γ^{\prime} is a general osculating conic of Q_{6} at r, by 2.3 .2 (i). This is impossible, by 6.2.12 and 6.2.13.

Suppose that γ supports Q_{6} at q (see Figure •13(i)). Then γ is a general superosculating conic of Q_{6} at both r and a supporting Q_{6} at these points. By the corollary to 6.2.15, γ does not meet Q_{6} again. Without loss of generality, let

$$
Q_{6} \backslash\{r, q\} \subset X_{e}
$$

We now claim that γ is one of the one-sided osculating conics of Q_{6} at r in the family of conics which support each other at q. If not, then γ, being a general superosculating conic of Q_{6} at r, must be a general tangent conic of $L \cdot U\{r\}$ and $L^{\prime \prime} \cup\{r\}$ at $r:$ Hence Q_{6} satisfies Condition PI' at r and
the family of tangent conics of Q_{6} at r all touch the tangent line at r. Let \mathcal{T} be the one-sided osculating conic of L at r, in the family of conics which support each other at q, that lies in γ_{i} with the exception of the points q and r. Let $s \varepsilon$. . Then si $\varepsilon \gamma_{e}$. Thus the tangent conic of L at r through s and supporting γ at q is blocked by γ as s converges to r and hence cannot converge to η; contradiction. Thus γ is one of the one-sided osculating conics of Q_{6} at r, say of $I^{\prime} \cup\{r\}$, in the family of conics which support each other at q.

Let s^{\prime} be close to r on L'. Then the conic γ ' which supports γ at r and q through s^{\prime} is close to γ. Now the end-points of I lie on the same side of X. Thus the end-points of L lie on the same side of γ^{\prime}. Thus γ^{\prime} meets L at a further point $s^{\prime \prime}$. By $6.2 .3, \gamma^{\prime}$ cannot meet Q_{6} outside the points q, r, s^{\prime}, $5^{\prime \prime}$ (see Figure 13 (ii)). Now the endpoints of N lie in γ_{e}. Thus ${ }^{N} \backslash\{q\}$ lies in γ_{e}^{\prime} and γ^{\prime} supports Q_{6} at q. But by the methods of the preceding paragraph, γ will be one of the one-sided osculating conics of Q_{6} at q in the family of conics which :aport each other at r. As u tends to q on N, the tangent conic of N at q through u and supporting γ is blocked by γ, and hence cannot converge to γ; contradiction.

(i)

(ii)
6.2.2I No general osculating conic of Q_{6} at q can be a general osculating conic of Q_{6} at r meeting $Q_{6} \cup\{p\}$ again.

Proof: Let γ be a general osculating conic of A_{6} at q which is a general osculating conic of θ_{6} at r and meets $Q_{6} \cup\{p\}$ at a further point u. By 6.2.20 \quad \& intersects Q6 at q and r. Let

$$
\begin{equation*}
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime} \tag{L}
\end{equation*}
$$

be a small two-sided neighbourhood of $q[r]$ on Q_{6}. Now γ is either a general tangent conic of $N^{\prime} U\{q\}$ or of $N^{\prime \prime} U\{q\}$ at q, since it is a general osculating conic of Q_{6} at q. Without loss of generality, let γ be a general tangent conic of $N^{\prime} \cup\{q\}$ at q. But, $N^{\prime}, \cup\{q\}$. satisfies Condition PI', by 6.1..12. Hence γ is a tangent conic of $N^{\prime} U\{q\}$ at q. Let s^{\prime} be close to q on N^{\prime}. Then the conic γ ' which supports γ at r and passes through q, s^{\prime}, u is close to γ. But γ^{\prime} must meet both N and " I with an odd multiplicity. Hence X ! meets N at another point while γ ' either supports Q_{6} at r meeting I at another point or is a general osculating conic of Q_{6} at r. But these situations are impossible, by 6.2.2, 6.2.11 and the corollary following 6.2.5.
6.2.22 No general osculating conic of Q_{6} at q which is a tangent conic of $a_{6} \cup\{p\}$ at p can intersect $a_{6} \backslash\{q\}$

more than once.

Proof. Let γ be a general osculating conic of \boldsymbol{a}_{6} at q which is a tangent conic of $a_{6} \cup\{p\}$ at p and intersects Q_{6} at s and t. Now let r be close to p on Q_{6}. Then the conic γ, having three-point contact with γ at q and passing through p, r will be close to γ. By 5.3.2 (i), γ ' is a general osculating conic of O_{6} at q and will intersect Q_{6} at points close to s and t, since it is close to γ. This is impossible, by 6.2 .13 (b).

6.2.23 No general superosculating conic of a_{6} at 9

 which is a tangent conic of $a_{6} \cup\{p\}$ at p can meet a_{6} elsewhere.Proof. Let γ be a general superosculating conic of Q_{6} at q which is a tangent conic of $a_{6} \cup\{p\}$ and meets a_{6} at a further point u. Then u is a point of intersection of γ with O_{6}, by 6.2.16. Also γ supports a_{6} at q, by the Corollary following 6.2.18. Let s be close to p on Q_{6}. Then the conic γ, having three-point contact with γ at q and passing through the points q, s will be clos: to γ. Hence γ, intersects a_{6} at a point on. a_{6} close to u. But γ, is a general osculating conic of a_{6} at q. (cf. 2.3.2 (i)) which mast meet Q_{6} with an even multiplicity near q. Hence γ ' also meets A_{6} at a point near q. This is impossible, by 6.2.13 (b).
6.2.24 No general osculating conic of Q_{6} at q which is a tangent conic of $Q_{6} \cup\{p\}$ at p can supnort. Q_{6} at r.

Proof. Let. γ be a general osculating conic of Q_{6} at q which is a tangent conic of $Q_{6} \cup\{p\}$ at p and supports Q_{6} at r. Then a suitable conic γ ' close to γ supporting at q and p will intersect Q_{6} twice near r. But γ intersects Q_{6} at q, by 6.2.23. Thus γ^{\prime} must meet Q_{6} with an odd multiplicity near q. Hence γ ' is a general osculating conic of Q_{6} at q or γ^{\prime} supports Q_{6} at q and meets Q_{6} at another point close to q. This is impossible, by 6.2 .22 and by Corollary 2 following 6.2.7.
6.2.22 and 6.2.24 imply the following.
6.2.25 No general osculating conic of Q_{6} at q which is a tangent conic of $Q_{6} \cup\{p\}$ at p can meet $O_{6} \backslash\{q\}$ more than once.

6,2,26 No general superosculating conic of Q_{6} at q which supports Q_{6} at q can be an osculating conic of $a_{6} \cup\{\mathrm{p}\}$ at p .

Proof. Let γ be a general superosculating conic of Q_{6} at " q, supporting Q_{6} at q, which is an osculating conic of Q6. $\cup\{p\}$ at p. Let

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime}[I]
$$

be a small two-sided [one-sided] neighbourhood of $q[p]$ on $a_{6} \cup\{p\}$. Now γ cannot meet a_{6} elsewhere, by 6.2.23. Without loss of generality, let

$$
a_{6} \backslash\{q\} \subset \gamma_{e}
$$

Now as in the proof of the second part of $6.2 .20, \gamma$ is one of the one-sided osculating conics of Q_{6} at q in the family of conics that support each other at. q.

Let s be close to p on L. Then the conic γ ' which supports γ at p, q and passes through s is a tangent conic of $Q_{6} \cup\{\dot{p}\}$ at p and is close to γ (see Figure 14). Since $s \varepsilon a_{6} \backslash\{q\}, \operatorname{s\varepsilon } \gamma_{e}$. Thus

$$
X^{\prime} \backslash\{p, q\} \subset X_{e}
$$

Now the end-poonts of N lie in X_{e}. Hence the end-points of N lie in γ_{e}^{\prime}..

Next suppose that γ^{\prime} does not support Q_{6} at q. Then X^{\prime} is a general osculating conic of Q_{6} at q in the family of conics which support each other at q. But X_{1} must meet N with an even multiplicity and hence meets N at another point.

This is impossible, by 6,2.25. Thus γ^{\prime} supports Q_{6} at q.

Also γ, does not intersect $N \backslash\{q\}$. Otherwise γ, must meet N. with an even multiplicity and would intersect N again. This is impossible, by Corollary 2 of 6.2.7. Finally X_{1} does not support $N \backslash\{q\}$ at any point, by Corollary 1 following 6.2 .7.

Now we proceed as in the last few lines of the last paragraph of the proof of 6.2.20 to obtain a contradiction.

Figure 14
6.2.27. No general osculating conic of Q_{6} at q can be a superosculating conic of $Q_{6} \cup\{p\}$ at p if this conic is tangent to $Q_{6} \cup\{p\}$ in the same direction at bath q and p.

Proof. Let γ be a general osculating conic of Q_{6} at q which is a superosculating conic of $Q_{6} \cup\{p\}$ at p. Also assume that γ is tangent to $Q_{6} \cup\{p\}$ in the same direction at both q and $p(s e e$ Figure $15(i))$.

Let s be closes to p on Q_{6}. Let γ^{\prime} be the osculating conic of $Q_{6} \cup\{p\}$ at p.through s and q. Then γ. intersects γ at p, q and is close to γ. Now the end-points of a small two-sided neighbourhood N of q on Q_{6} lie on opposite sides of γ, since γ intersects Q_{6} at: $q ;$ cf. 6.2.26. Thus the end-points of N lie on opposite sides of γ^{\prime}, since γ, is close to γ.

Now γ^{\prime} cannot support a_{6} at q. Otherwise it would meet N again, since it must meet N with an odd multiplicity. This is impossible, by Corollary 2 following 6.2.8. Thus γ, intersects Q_{6} at q. Also γ^{\prime} cannot support $N \backslash\{q\}$ at any point, by Corollary 2 following 2 following G.2.8. Finally γ, does not intersect $N \backslash\{q\}$ at any point. Otherwise, γ, must intersect $N \backslash\{q\}$ at still another point. This is also impossible, by 6.2.8. Thus γ^{\prime} intersects N at q and meets N nowhere else.

Next, since γ is tangent to $Q_{6} \cup\{p\}$ in the same direction at p and $q, \quad \gamma^{\prime}$ lies (in some sense) between the general osculating conic γ of Q_{6} at q and the arc N of Q_{6} itself.

Finally γ, being a general osculating conic of Q_{6} at q is a general tangent conic of $N^{\prime} \cup\{q\}$ or or $N^{\prime \prime} U\{q\}$ at q, if

$$
N=N^{\prime} \cup\{q\} \cup N^{\prime \prime} .
$$

Without loss of generality, let γ be a general tangent conic of $N^{\prime} \cup\{q\}$ at q. But N' $\cup\{q\}$ satisfies Condition PI', by 6.1.12. Thus γ is a tangent conic of $N^{\prime} \cup\{q\}$ at q. Let $s \varepsilon N^{\prime} ;$ hence $s \varepsilon \gamma_{e}^{\prime}$. Thus the conic passing through s, q and having three-point contact with γ at p is blocked by γ^{\prime} as s converges on N^{\prime} to q and hence cannot converge to X; contradiction.

Remark. A similar problem seems to arise here in the conical analysis for multiplicities of arcs Q_{6} of order six as the one which occured for the circular case concerning multiplicities of arcs Q_{4} of order four; cf. 2.2.14.

It seems to be possible to have
(a) a general osculating conic γ of O_{6} at q which is a superosculatine conic of $A_{6} \cup\{\mathrm{p}\}$ at p ;
(b) a general ultraosculating conic γ of Q_{6} at q which is a tangent conic of $Q_{6} \cup\{n\}$ at p (of course γ would have to intersect Q_{6} at q, by 6,2.19); or .
(c) a general ultraoscul ting conic γ of Q_{6} at q which is a general osculating conic of Q_{6} at $r \gamma$ must intersect Q_{6} at both q and r, by 6.2.19 and 6.2.20);
if γ is not tangent to $a_{6} \cup\{n\}$ in the same direction at n, q for (a) and (b) or if γ is not tangent to $a_{6}, \cup\{p\}$ in the same direction at q and r for (c) (see Figure 15(ii)). These exceptions are not possible, if b_{6} is convex.

The author would appreciate any research which would either rule out these possibilities or give examples of the existence of such arcs of conical. order six.

(i)

Figure 15

6.3 Monotony Theorems for Conically Differentiable Covex Arcs of Conical Order Six

Introduction

A "Monotiony Theoren" is derived by O. Haupt and H. Kunneth ([12], 2.3) for arcs of finite order with respect to a system of order characterintics with fundamental number k. A stalement and proof of a corresponding monotony result for the circilar case was given in 3.1.I for ascs of order four. A "simizar result for the conical case and arcs of conical order six was obtainod in 6.1.1.

In this section we shall derive a generalization of 6.7.1 under the assumption that a_{6} is a strongly conically differentiable convex arc of conical order six. In 6.3.7 the monotony results 6.3.26.3.6 are extended to conically differentiable convex arcs Q_{6}, as long as Q_{6} contains no points of Type 2 ; of. 5.3.1.

These results will be very useful in the analysis of conically differentiable convex curves of conical order six; cf: 6.4.6 and 6.4.7.
6.3.1 In the following it is assumed, unless otherwise stated, that Q_{6} is an open strongly differentiable convex arc of conical order six. It will become evident that A_{6} could be replaced by a strongly conically differentiable convex curve \boldsymbol{b}_{6} without affecting the validity of the results.
6.3.2 Let $p_{1} \leq p_{2} \leq p_{3} \leq p_{4}$ be four points on Q_{6}. Let γ_{0} be a conic. which passes through these points and meets Q_{6} six times altogether counting multiplicities. Call the other two points a and b. Then as t moves monotonically and continuously from a in one direction on A_{6}, there is a point

$$
\text { wi } \varepsilon \quad \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right) \cap Q_{6}
$$

which moves monotonically and continuously from b in the opposite direction.

Proof. Since Q_{6} is of conical order six, γ_{0} meets Q_{6} at $a, b, p_{1}, p_{2}, p_{3}, p_{4}$, and nowhere else. There are a number of cases, depending upon the coincidence of one or more of these points. An all cases, if t is distinct from and close to a, then $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ is close to $\gamma\left(a, p_{1}, p_{2}, p_{3}, p_{4}\right)=\gamma_{0}$ since Q_{6} is strongly conically differentiable. Hence $X\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets Q_{6} at a point u close to b. Also $u \neq b$; otherwise, $\gamma\left(t, p_{1}, p_{2}, r_{3}, r_{4}\right)$ meets Q_{6} more than six time, combing multiplicities and this is a contradiction.

Similarly, $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ can meet Q_{6} nowhere else. Thus u depends continuously on t.

Because of the continuity of the movement of u, it is sufficient to show that t and u move in opposite directions on a_{6} whenever t is close to a. He will give proofs for the cased in which the points $p_{1}, p_{2}, p_{3}, p_{4}$ are mutually distinct. Similar arguments can be used for the cases in which one or more of $p_{1}, p_{2}, p_{3}, p_{4}$ coincide. We shall assume, without loss of generality, that $a \leq b$ on a_{6}.
(i) All of $a, b, p_{1}, p_{2}, p_{3}, p_{4}$ are distinct. This is 6.1.1.
(ii) Let $b=p_{i}$ for some $i, 1 \leq i \leq 4$, $a \neq b$, $a \neq p_{j}$, $1 \leq 3 \leq 4$.

Then γ_{0} intersects a_{6} at a and $j_{j}, j \neq i,{ }^{1} \leq j \leq 4$ and supports a_{6} at $b=p_{i}$. The subarc a_{6}^{\prime} of a_{6} between a and b contains either an even or oat number of points of

$$
\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \backslash\left\{p_{i}\right\}
$$

Suppose that Q_{6} contains an odd number of points of the above set (the following argument can be slightly modified to take care of the even number case). Let this number be θ. Then $a_{6}^{\prime \prime}=a_{6} \backslash a_{6}^{\prime}$ will contain an even number e of the points

$$
\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \backslash\left\{p_{i}\right\},
$$

where $\theta+e=3$. Since t is close to a and u is close to b, then the same number of these points will lie on the respective $\operatorname{arcs} \gamma^{\prime}, \quad \gamma^{\prime \prime}$ of $\gamma^{\prime}\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ between t and $u_{\text {. }}$

If u moves away from b on $Q_{6}^{\prime \prime}$ as t moves away from a on Q_{6}^{\prime}, then t and u will lie on opposite sides of γ_{0}. Hence $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} with an odd multiplicity on both arcs $\gamma, \gamma^{\prime \prime}$ of $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ between t and u. On the arc $\gamma^{\prime \prime}, \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} with an odd multiplicity $\geq e ; i . e ., \geq e+1$. On the other arc $\gamma^{\prime \prime}$, $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} at least θ times and at the additional point p_{i} i i.e., $\geq \theta+1$.

If. u moves away from b on Q_{6} as t moves away from a on $A_{6}^{\prime \prime}$, then t and u will lie on the same side of γ_{0}, since γ_{0} intersects a_{6} at a and supports a_{6} at $b=p_{i}$. Hence $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} with an even multiplicity on both arcs $\gamma^{\prime}, \gamma \prime$ of $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ between t and u. On the arc $\gamma^{\prime}, \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} with and even multiplicity $\geq \theta ;$ i.e., $\geq \theta+1$. On the other arc $\gamma \%$, $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} at least e times and at the additional point $p_{i} ;$ ie., $\geq e+1$.

In both cases $\gamma\left(t, p_{1} p, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} altogether at least

$$
(e+1)+(\theta+I)=5
$$

times. Hence

$$
\gamma_{0}=\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

and this conic meets Q_{6} more than six times; contradiction.

Thus $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets Q_{6} at appoint u which moves monotonically and continuously on a_{6} in the opposite direction to that of t.
(iii) Let $a=b \neq p_{j}, 1 \leq j \leq 4$.

Then γ_{0} intersects Q_{6} at $p_{j}, j=1, \ldots, 4$ and supports Q_{6} at $a=b$. Let N be a suitably small two-sided neighbourhood of a on Q_{6}. The end-points of N lie on the same side of γ_{0}, say in $\gamma_{O_{e}}$, since γ_{0} supports a_{6} at a. We can assign a continuous orientation to the conics through $p_{1}, p_{2}, p_{3}, p_{4}$ near γ_{0}. Hence if t is sufficiently close to a, the end-points of N will also lie in $\gamma\left(t, \dot{r}_{1}, p_{2}, p_{3}, p_{4}\right)$.

Without loss of generality, let $p_{1}<a=b<p_{2}$. Now $t \varepsilon \gamma_{O_{e}}$ and hence the arc of $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ between p_{1} and p_{2} which contains t lies in $\quad \gamma_{O_{e}}$. By the continuous orientation of the conics through $p_{1}, p_{2}, p_{3}, p_{4}$ near γ_{0}, the arc of γ_{0} between p_{i} and p_{2} which contains a lies in $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)_{i}$. In particular, $a=\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)_{i}$. Hence each of the onesided neighbourhoods of a then make up N wind intersect
$\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$, once at t and once at u. Also $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ does not meet Q_{6} again.

Thus $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets a_{6} at a point u which moves monotonically and continuously on Q_{6} in the opposite direction to that of t.
(iv.) Let $a=p_{i}$ for some $i, 1 \leq i \leq 4, \quad a \neq b$ and $b \neq p_{j}$, $1 \leq j \leq{ }^{4}$.

Then X_{0} intersects O_{6} at b and $p_{j}, j \neq i, i \leq j \leq 4$ and supports Q_{6} at $a=p_{i}$. This case is identical to case (ii) with b replaced by a and can be dealt with in a similar manner.
(v) Let $a=p_{i}$ for some $i, 1 \leq i \leq 4, b=p_{j}$ for some $j, j=i, i \leq j \leq 4$.

Then γ_{0} intersects a_{6} at $p_{k}, k \neq i, j, 1 \leq k \leq 4$ and supports Q_{6} at $a=p_{i}$ and at $b=p_{j}$. The subarc Q_{6} of Q_{6} between a and b contains either an even or odd number of points of

$$
\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \backslash\left\{p_{i}, p_{j}\right\}
$$

Suppose that $Q \cdot \frac{6}{}$ contains an odd number and hence one of the points of the above set. Then $a_{6}^{\prime \prime}=a_{6} \backslash a_{6}^{\prime}$ will contain the other point of this set. Since t is close to a and u is close to b,
the same number of these points (namely one) will lie on the respective $\operatorname{arcs} \gamma^{\prime}, \gamma \prime \prime$ of $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ between t and u.

If u moves away from b on $Q_{6}^{\prime \prime}\left[Q_{6}^{1}\right]$ as t moves away from a on $Q_{6}\left[Q_{6}^{11}\right.$, then t and u will lie on opposite sides of γ_{0}. Hence $X\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} with an odd multiplicity on both arcs $\gamma^{\prime}, \gamma^{\prime \prime}$ of $\gamma^{\prime \prime}\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$. On the arc $\gamma^{\prime}[\gamma \overline{\prime \prime}], \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} at least once and at the additional point p_{i} and hence ≥ 3 times. On the are $\gamma^{\prime \prime}\left[\gamma^{\prime}\right], \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} at least once and at the additional point $p_{j} ; i . e ., \geq 2$ times. Hence $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets γ_{0} altogether at least five times. Thus

$$
\gamma_{0}=\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

and this conic meets a_{6} at least seven. times; contradiction. The assumption that the subarc a_{6} of a_{6} contains an even number of points of

$$
\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \backslash\left\{p_{i}, p_{j}\right\}
$$

similarly leads to a contradiction.

Thus $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets Q_{6} at a point u which moves monotonically and continuously on Q_{6} in the opposite direction to that of t.
(vi) Jet $a=b=\Gamma_{i}$ for some $i, 1 \leq i \leq 4$.

Then γ_{0} intersects Q_{6} at $a=b=p_{i}$ and at the points $r_{j}, I \leq j \leq 4$. Let N^{\prime} be a suitably small two-sided neighbourhood of $b=a$ on Q_{6}. Then by the continuity of u, there exists a small two-sided neighbourhood N of $a=b$ on Q_{6} such that if $t \varepsilon N$, then $u \varepsilon N^{\prime}$. Let $t \varepsilon N$, $t \neq a$. Then $u \neq b=a$, as was shown in the proof of the continuity of u.

Suppose u and t lie on the same side of a on $N^{\prime}[u=t]$ Without loss of generality if $u=t$, let t lie between a and u on ' N '. By case (i) [(iii)], as t ' moves monotonically and continuously from t towards a on N, there is a point

$$
u^{\prime} \varepsilon \gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right) \cap Q_{6}
$$

which moves from u in the opposite direction on N^{\prime}. Thus u^{\prime} cannot converge to a as t ' tends to $a ;$ contradiction.

Hence $\gamma\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets Q_{6} at a point ix which moves monotonically and continuously on Q_{6} in the opposite direction to that of t.
6.3.3 Let $p_{1} \leq p_{2} \leq p_{3}$ be three points on Q_{6}. Let γ_{0} be a tangent conic of O_{6} at a point a which passes through these points and meets Q_{6} six times altogether counting multiplicites. Call the other point b. Then as t moves monotonically and
continuously from a in one direction on a_{6}, there is a point

$$
u \in \gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right) \cap a_{6}
$$

Which moves monotonically and continuously from b in the opposite direction.

Proof. Since Q_{6} is of order six, γ_{0} meets Q_{6} at the points $a, b_{1} p_{1}, p_{2}, p_{3}$ and nowhere else. Again we have a number of cases depending upon the coincidence of one or more of these points. In all cases, it t is distinct from and close to a, then $\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)$ is close to γ_{0} since Q_{6} is strongly conically differentiable. Thus $\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)$ meets Q_{6} at a point u close to b. Also $\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)$ can meet Q_{6} nowhere else. Thus u depends continuously on t.

Because of the continuity of u, it is sufficient to show that t and u move in opposite directions on Q_{6} whenever t is close to a. Again we will give proofs for the cases in which the points p_{1}, p_{2}, p_{3} are mutually distinct. Similar arguments can be used to prove the monotony property for the cases in which one or more of the points p_{1}, p_{2}, p_{3} coincide.
(i) Ali of $a, b, p_{1}, p_{2}, p_{3}$ are distinct.

Then X_{0} intersects a_{6} at b, p_{1}, p_{2}, p_{3} and supports Q_{6} at a. By 6.3.2 (iii), if t is distinct from and close to a, then $\gamma\left(t, p_{1}, p_{2}, p_{3}, b\right)$ intersects Q_{6} at a point q
on the opposite side of and close to a. Let r converge from q through a to. t on $Q_{6}{ }^{\circ}$ Then

$$
\lim _{r \rightarrow t} \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right)=\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)
$$

By 6.3.2 (i), as r moves monotonically and continuously from q through a to t on Q_{6}, there is a point

$$
u_{r} \varepsilon \gamma\left(x, t, p_{1}, p_{2}, p_{3}\right) \cap a_{6}
$$

which moves monotonically and continuously from b in the opposite direction. Thus

$$
\dot{u}=r \lim _{T} \mathrm{u}_{r}
$$

moves in the opposite direction from b on Q_{6} as t does from a.

$$
\text { (ii) Lee } b=p_{i} \text { for some } i, 1 \leq i \leq 3, a=b, a=p_{j}
$$ $1 \leq 5 \leq 3$.

Then γ_{0} is a nonosculating tangent comic of θ_{6} at a and $\mathrm{b}=\mathrm{p}_{\mathrm{i}}$. Hence γ_{0} intersects Q_{6} at the points $p_{j}, j=i$, and supports Q_{6} at a and b. By $6.3 .2(v)$, as t moves monotonically and continuously from a on $Q_{6}, \gamma\left(t, a, p_{1}, p_{2}, p_{3}\right)$ intersects \boldsymbol{Q}_{6} at a point q which moves monotonically and continuously from b in the opposite direction. It t is close to a, then q is close to b. Now let r converge from a to t on 0_{6}. Then

$$
\lim _{\mathrm{lim}} \quad \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right)=\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)
$$

By 6.3.2 (i), as r moves monotonically and continuously from a to t, then there is a point

$$
{ }_{u_{r}} \varepsilon \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right) \cap a_{6}
$$

which moves monotonically and continuously from q in the opposite direction. Thus

$$
u=\lim _{r \rightarrow t} u_{r}
$$

moves in the opposite direction on Q_{6} to that of t.
(iii) Let $a=b \neq p_{j}, I \leq j \leq 3$.

Then γ_{0} is a nonsuperosculating osculating conic of Q_{6} nt $a=b$. Hence γ_{0} intersects Q_{6} at. $a=b$ and at the points $p_{j}, I \leq j \leq 3$. By 6.3.2 ($\dot{v} i$), if t is close to and distinct from a, $\gamma\left(t, p_{1}, p_{2}, p_{3}, a\right)$ intersects Q_{6} at a point q on the opposite side of and close to a. Let r converge from a to t on a_{6}. Then

$$
\lim _{\rightarrow \rightarrow} \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right)=\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)
$$

By 6.3.2 (i), as r moves monotonically and continuously from a to t, there is a point,

$$
u_{r} \varepsilon \quad \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right) \cap a_{6}
$$

which moves monotonically and continuously from q in the opposite direction. Thus

$$
u=\lim _{r \rightarrow t} u_{r}
$$

moves in the opposite direction on a_{6} to that of t.
(iv) Let $a=p_{i}$ for some $i, 1 \leq i \leq 3$, $a \neq b$ and $b \neq p_{j}, I \leq j \leq 3$.

Then γ_{0} is a nonsuperosculating osculating conic of Q_{6} at $a=p_{i}$. Hence $\quad \gamma_{0}$ intersects Q_{6} at $a=p_{i}, b$ and $p_{j}, 1 \leq j \leq 3$. By 6.3.2, if t moves monotonically and continuously from a on Q_{6}, then $\gamma\left(t, a, p_{1}, p_{2}, p_{3}\right)$ intersects Q_{6} at a point q which moves monotonically and continuously from b in the opposite direction. If t is clone to a, then q is close to b. Let r converge from a to t on Q_{6}. Then

$$
\lim _{t \rightarrow} \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right)=\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)
$$

By 6.3.2 (iv), as r moves monotonically and continuously from a to t, there is a point

$$
u_{r} \varepsilon \quad \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right) \cap Q_{6}
$$

which moves monotonically and continuously from q in the opposite direction. Thus

$$
u=\lim _{r \rightarrow t} u_{r}
$$

moves in the opposite direction on Q_{6} to that of. t.
(v) Let $a=p_{i}$ for some $i, 1 \leq i \leq 3, b=p_{j}$ for some $j, j \neq i, I \leq j \leq 3$.

Then γ_{0} is simultaneously a nonsupnrosculating osculating conic of Q_{6} at a and a nonosculating tangent conic of a_{6} at b. Hence γ_{0} intersects Q_{6} at $a, p_{k}, k \neq j, 1 \leq k \leq 3$ and supports Q_{6} at b. By 6.3.2, if t moves monotonically and continuously from a on $Q_{6}, \gamma\left(t, a, p_{1}, p_{2}, p_{3}\right)$ intersects Q_{6} at a point q which moves monotonically and coritinuously from b in the opposite direction. If t is close to a, then q is close to b. Let r converge from a to t on Q_{6}. Then

$$
\lim _{x \rightarrow t} \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right)=\gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)
$$

By 6.3.2 (iv), as r moves monotonically and continuously from a to t on Q_{6}, there is a point,

$$
u_{r} \varepsilon \quad \gamma\left(r, t, p_{1}, p_{2}, p_{3}\right) \cap Q_{6}
$$

which moves monotonically and continuously from q in the opposite direction. Thus

$$
u=r \underset{r}{\lim } t u_{r}
$$

moves in the opposite direction on Q_{6} to that of t.
(vi) LEet $a=b=p_{i}$ for some $i, I \leq i \leq 3$.

Then γ_{0} is a nonultraosculating superosculating conic of Q_{6} at a which intersects Q_{6} at $p_{j}, j \neq i, 1 \leq j \leq 3$ and supports A_{6} at a. Let N^{\prime} be a small two-sided neighbourhood of a on Q_{6}. Then by the continuity of u, there exists a small neighbourhood N of a such that if $t \varepsilon N, \gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right)$ meets Q_{6} at $u \varepsilon \mathbb{N}^{\prime}$. Let $t \in N, t \neq$ a.

Firstly $\& \neq a$. Otherwise let t^{\prime} move from t toward a on N. Then by 6.3 .3 (ii), there is a point

$$
u^{\prime} \varepsilon \gamma\left(t^{\prime 2}, p_{1}, p_{2}, p_{3}\right) \cap Q_{6}
$$

which moves monotonically and continuously from $b=: a$ toward t on N. Hence the points t^{\prime} and $u^{\prime \prime}$ must coincide at some position $\bar{t} \varepsilon$ N. By 6.3 .3 (iii), as we continue the monotone and continuous movement of t ' from \bar{t} toward a on N, u ' moves in the opposite direction from \bar{t} on N^{\prime}. Thus u^{\prime} cannot converge to a as t' tends to a.

Suppose u. and t lie on the same side of a on N^{1} (without loss of generality if $u \neq t$, let t lie between a and u) $[u=t]$. Then by 6.3 .3 (i) [(iii)], as t' moves monotonically and continuously from t toward a on \hat{N}, there is a point

$$
u^{\prime} \varepsilon \quad \gamma\left(t^{r^{2}}, p_{1}, p_{2}, p_{3}\right) \cap a_{6}
$$

which moves from u in the opposite direction on N^{\prime}. Thus u^{2} cannot converge to "a as t' tends to a; contradiction.

Hence $\dot{\gamma}\left(t^{2}, p_{1}, p_{2}, p_{3}\right)$ meets Q_{6} at a point u which moves monotonically and continuously on Q_{6} in the opposite direction to that of t.
6.3.4 Let $p_{1} \leq p_{2}$ be. two points on a_{6}. Let. γ_{0} be an osculating conic of A_{6} at a point a which passes through these points and meets O_{6} six times altogether counting multiplicities. Call the other point b. Then as .. t moves monotonically and continuously from a in one direction on Q_{6}, there is a point

$$
u \varepsilon \quad \gamma\left(t^{3}, p_{1}, p_{3}\right) \cap a_{6}
$$

which moves monotonically and continuously from b in the opposite direction.

Proof. Since Q_{6} is of order six, γ_{0} meets Q_{6} at the points a, b, p_{1}, p_{2} and nowhere else. as in 6.3 .2 and
6.3 .3 we have a number of cases depending upon the coincidence of one or more of these points.

In each case if t is close to and distinct from a, $\gamma\left(t^{3}, p_{1}, p_{2}\right)$ is close to γ_{0} since a_{6} is strongly conically differentiable. Thus $\gamma\left(t^{3}, p_{1}, p_{2}\right)$ meets a_{6} at a point is close to b. Also $\gamma\left(t^{3}, p_{1}, p_{2}\right)$ meets a_{6} nowhere else. Hence u depends continuously on t.

Again it is sufficient to show that t and u move in opposite directions on Q_{6} whenever t is close to a. Again we give proofs for the cases in which p_{1} is distinct from p_{2}. Similar arguments can be used to obtain the monotony of u for the cases in which ${ }^{\circ} p_{2}$. coincides with p_{2}.
(i) Ail of $a, b_{1} p_{1}, p_{2}$ are distinct.

Then γ_{0} intersects a_{6} at all of these points. By 6.3.3 (iii), if t is distinct form and close to $a, \gamma\left(t^{2}, p_{1}, p_{2}, b\right)$ intersects Q_{6} at a point q on the opposite side of and close to a. Let r converge from q through a to t on \boldsymbol{Q}_{6}. Then

$$
\lim _{t \rightarrow} \gamma\left(r_{,} t^{2}, r_{1}, r_{2}\right)=\gamma\left(t^{3}, r_{1}, p_{2}\right) .
$$

By 6.3.3. (i)", as r moves monotonically and continuously from q. through a to t on Q_{6}, there is a point

$$
u_{r} \varepsilon \gamma\left(r, t^{2}, p_{1}, p_{2}\right) \cap a_{6}
$$

which moves monotonically and continuously from b in the opposite direction. Thus

$$
u=\lim _{r \rightarrow} u_{r}
$$

moves in the opposite direction from b on Q_{6} as t does from a.

Remark. We notice that the proof of 6.3.4 (i) is completely analogous to that of 6.3.3 (i). Similar arguments as in 6.3 .3 (ii), (iii), (iv), (v), (vi), respectively, allow us to obtain 6.3.4 for the cases
(ii) Let $b=p_{i}$ for some $i, i=1$ or $2, a \neq b$, a distinct from $p_{j}, j=1,2$.
(iii) Let $a=b \neq p_{j}, j=1,2$.
(iv.) Let $a=p_{i}$ for some $i, i=1$ or $2, a \neq b, b \neq p_{j}$, $j=3.2$.
(v) Jet $a=p_{i}$ for some $i, i=1$ or $2, b=r_{j}, j \neq i$, $j=1$ or 2.
(vi) Let $a=b=p_{i}$ for some $i, i=1$ or 2 .
6.3.5 Let n be point on Q_{6} Let γ_{0} be a superosculeting conic of a_{6} at a point a which passes through p and meets a_{6} six times altogether counting multiplicities. Call the other point b.

Then as t moves monotonically and continuously from a in one direction on A_{6}, there is a point
$u \in \quad \gamma\left(t^{4}, p\right) \cap a_{6}$
which moves monotonically and continuously from b in the opposite direction.

Proof. : Since a_{6} is of order six, γ_{0} meets. a_{6} at the points a, b, p and nowhere else. We have again a number of cased depending upon the coincidence of one or more of these joints. If t is close to and distinct from a, then $\gamma\left(t^{4}, p\right)$ is close to γ_{0}, since Q_{6} is strongly conically differentiable. Thus $\gamma\left(t^{4}, p\right)$ meets Q_{6} at a point u close to b. Also $\gamma\left(t^{4}, \hat{p}\right)$ can meet Q_{6} nowhere else. Thus u depends continuously on t.

It suffices to show that t and u move in opposite directions on Q_{6} whenever t is close to a.
(i) All of a, b, p are distinct.

Then γ_{0} intersects Q_{6} at each of the points b, p and supports Q_{6} at a. By 6.3.4 (iii), if t is close to and distinct from $a, \gamma\left(t^{3} ; p, b\right)$ intersects Q_{6} at a point q on the opposite side of and close to a. Let r converge from q through a to t. Then

$$
\lim _{r \rightarrow t} \gamma\left(r, t^{3}, p\right)=\gamma\left(t^{4}, p\right)
$$

By 6.3.4 (i), as r moves monotonically and continuously from q through a to t on Q_{6}, there is a point

$$
u_{r} \varepsilon \gamma\left(r, t^{3}, p\right) \cap Q_{6}
$$

which moves monotonically and continuously from b in the opposite direction. Thus

$$
u=\lim _{r \rightarrow t} u_{r}
$$

moves in the opposite direction from b on Q_{6} as does it from a.

Remark. Again we notice that the proof of 6.3.5 (i) is analogous to 6.3.4 (i). By using methods similar to those used in 6.3.4 (ii), (iii), (iv), (v), (vi), we obtain 6.3.5 for the cases
(ii) Let $b=p \neq a$.
(iii) Let $a=b \neq p$.
(iv) Let $a=p \neq b$.
(v) Let $a=p=b$.
6.3.6 Let γ_{0} be an ultraosculating conic of Q_{6} at a point a which meets a_{6} six times altogether counting multiplicities. Gall the other point b. Then as t moves monotonically and continuously
from a in one direction on Q_{6}, there is a point.

$$
\therefore u=\gamma\left(t^{5}\right) \cap a_{6}
$$

which moves monotonically and continuously from b in the opposite direction.

Proof. Since Q_{6} is of order six, X_{0} meets Q_{6} at the points a, b and nowhere else. Since Q_{6} is strongly conically differentiable, if t is close to a, then $\gamma\left(t^{5}\right)$ is close to X_{0}. Thus $X\left(t^{5}\right)$ meets Q_{6} at a point a close to b. Also $X\left(t^{5}\right)$ meets a_{6} nowhere else. Hence u depends continuously on t.

Again it now suffices to show that t and u move in opposite directions on Q_{6}, whenever t is close to a.
(i) Let $a \neq b$.

Then X_{0} intersects A_{6} at a and b. By. 6.3.5 (iii), if t is distinct from and close to $a, \gamma\left(t^{4}, b\right)$ intersects
Q_{6} at a point q on the opposite side of and close to a. Leet r converge from q through a to t on Q_{6} Then

$$
\lim _{r \rightarrow} X\left(r, t^{4}\right)=X\left(t^{5}\right)
$$

By 6.3.5 (i), as r moves monotonically and continuously from q through a to t on Q_{6}, there is a point

$$
u_{r} \varepsilon \gamma\left(r, t^{4}\right) \cap Q_{6}
$$

which moves monotonically and continuously from b in the opposite direction. Thus

$$
u=\lim _{T \rightarrow} u_{r}
$$

moves in the opposite direction from b on Q_{6} as t does from a.
(ii) Let $a=b$.

Then X_{0} is the ultraosculating conic of A_{6} at a and supports Q_{6} at this point. By $6.3 .5(v)$, as t moves monotonically and continuously from a on Q_{6}, then $\gamma\left(t^{4}\right.$, a) intersects Q_{6} at a point q which moves monotonically and continuously from b in the opposite direction. If t is close to a, then q is close to b. Let r converge from a to t on Q. Then

$$
\lim _{r \rightarrow t} \gamma\left(r, t^{4}\right)=\gamma\left(t^{5}\right)
$$

By 6.3 .5 (i), as r moves monotonically and continuously from a to t on Q_{6}, there is a point

$$
u_{r} \varepsilon \quad \gamma\left(r, t^{4}\right) \cap a_{6}
$$

which moves monotonically and continuously from q in the opposite direction. Thus

$$
u=r \lim _{t} u_{r}
$$

moves in the opposite direction on Q_{6} to that of t.
6.3 .7 . We note here that the results $6.3 .2-6.3 .6$ can be obtained even if Q_{6} is only a conically differentiable convex arc of order six, as long as we add the restriction that Q_{6} contains no points of Type $2 ;$ cf. 2.3 .2 . Por by Theorem $2, ~ Q 6$ contains only a finite number s_{i} of singujar points, $i=1,2, \ldots, n$. Each point $p \neq s_{i}$ is a strongly conically differentiable point since it is differentiable and ordinary ([10], 6). Also Q_{6} is strongly differentiable at s_{i} from either side, since s_{i} is not of Type 2; cf. 6.1.12

Thus if t is close to a on Q_{6}, then

$$
\begin{aligned}
& \dot{\gamma}\left(t, p_{1}, p_{2}, p_{3}, p_{4}\right), \gamma\left(t^{2}, p_{1}, p_{2}, p_{3}\right), \gamma\left(t^{3}, p_{1}, p_{2}\right) \\
& \gamma\left(t^{4}, p\right), \gamma\left(t^{5}\right)
\end{aligned}
$$

are "closeto

$$
\begin{aligned}
& \gamma\left(a, p_{1}, p_{2}, p_{3}, p_{4}\right), \gamma\left(a^{2}, p_{1}, p_{2}, p_{3}\right), \gamma\left(a^{3}, p_{1}, p_{2}\right) \\
& \gamma(a, p), \gamma\left(a^{5}\right)
\end{aligned}
$$

respectively. Hence we obtain the continuity of u. The monotony of u follows exactly as was shown in the proofs of 6.3.2-6.3.6.

6.4 Conically Differentiabie Curves of Order Six.

Introduction

A curve \mathscr{b}_{6} of conical order six is either convex or of linear order three; ef. 6.4.I.

If
b_{6} is convex and strongly conically differentiable, then b 6 contains exactly six conically singular points; cf. S. Mukhopadhyaya [20] and Fr. Fabricius-Bjerre [23]. In the literature the term "sextactic point" is used in this context. Adapting some of the methods of Mukhopadhyaya and using the results of 6.3 , this theorem can be extended to a conicaliy differentiable convex curve \mathscr{b}_{6}, if points of Type 2 are not allowed; cif. 6.4.6 and 6.4.7.

Let \mathscr{C}_{6} be of linear order three. There are four nossible types of such a curve as regards number and kind of linearly singular points; cf. O. Haupt and H. Kunneth ([12], 3). These cases are listed in 6.4.2. Now if \boldsymbol{b}_{6} is also conically differentiable, two of these cases cannot occur; cf. 6.4.2. In 6.4.5 it is shown that the linearly singular points with the characteristic (1, 2) and (2;1) are conically singular points, having the conical characteristic (1, 1, $1,1,2 ; 3$) and (2, 1, $1,1,1 ; 2)$, respectively.

It is well known that a strongly conically differentiable curve ©6 of linear order three contains exactly six singular points; cf. Fr. Fabricius-Bjerre [23]. In 6.4.9 and 6.4.10 this result is
extended to a conically differentiable curve \mathscr{b}_{6} of linear order three that contains three inflection points.

If the curve \mathscr{b}_{6} of linear order three is only conically differentiable then it is possible for \mathscr{D}_{6} to have only two linearly singular points; cf. 6.4.2 (b). In this case \boldsymbol{b}_{6} contains exactly four conically singular points; cf. 6.4.11 and 6.4.12.
6.4.1 One kind of degenerate conic is the double line; cf. 4.1. Let \boldsymbol{b}_{6} be a curve of conical order six. Then

\boldsymbol{b}_{6} has linear order at most three.

otherwise, a line meeting \boldsymbol{b}_{6} n times ($n>3$), considered as a conic will meet \mathfrak{b}_{6} an times counting multiplicities. Hence either
(i) \mathfrak{b}_{6} is convex
or
(ii) \boldsymbol{C}_{6} is of innear order three.
6.4.2 However, we already know the structure of curves of linear order three in the projective plane ($[12] ; 3$). There are four possibilities.
(a) \mathscr{b} is decomposed into three convex arcs by three linearly singular points; namely, three points of inflection. Thus all of the other points of \mathfrak{b} are linearly ordinary (see Figure 16). If \mathfrak{b} is linearly differentiable, these points have the linear characteristic (1, 2) and (1, 1), respectively, [15].
(b) \boldsymbol{b} is decomposed into two convex arcs by two linearly singular points; namely, a corner shaped like a thorn or a cusp of the first kind and an inflection point. Then all of the other points
of \mathscr{b} are linearly ordinary (see Figure 17). If \mathscr{b} is linearly differentiable, these points have the linear characteristic (2,1), (1, 2) and (1, 1), respectively.
(c) \mathscr{C} is decomposed into two convex arcs by two linearly singular points; namely, a corner shaped like a thorn or a cusp of the first kind and a corner shaped like a beak. Thus all of the other points of \mathscr{b} are linearly ordinary (see Figure 18). If \mathscr{b} is linearly differentiable, then a beak shaped corner will be a cusp of the second kind with the linear characteristic $(2,2)$. But then such a point is of linear order at least four ([15], 4.1). This is impossible, since ℓ is of iinear order three. Thus case (c) cannot occur if \oint is linearly differentiable.
(d) \mathcal{P} is decomposed into three convex arcs by three beaklike corners. Then all other points of \oint are linearly ordinary (see Figure 19): If \mathscr{f} is Iinearly differentiable, these singular points would be cusps of the second kind and they would have the characteristic (2, 2). Hence as before, case (d) cannot occur.

Figure 16

Figure 17

Figure 18

6.4.3 Let \mathscr{C}_{6} be a curve of conical order six. Then \boldsymbol{F}_{6} contains at most finitely many singular points.

Proof. If \mathscr{b}_{6} is convex, then by theorem 2, \mathscr{b}_{6} contains only finitely many singular points.

If \mathscr{F}_{6} is of linear order three, then \mathscr{D}_{6} is the union of either two or three convex arcs, by 6.4.2. But then each of these convex arcs contains only finitely many singular points. Thus \mathscr{b}_{6} contains at most finitely many singular points.
6.4.4 Next we introduce a concept of monotony of an arc Q in the conical case analogous to that which was used. in 2.3 .12 for the circular case. We shall denote a general ultraosculatine conic of Q at a point p by $\gamma(p)$.
Q is said to be monotone if Q induces a unique orientation on the general ultraosculating circles at each point of Q such that if $p<q$ on a,

$$
\gamma(p) \subset \gamma(q)_{i} \text { and } \gamma(q) \subset \gamma(p)_{e}
$$

or

$$
\gamma(p) \subset \gamma(q)_{e} \text { and } \gamma(q) \subset \gamma(p)_{i}
$$

Again we have results which are analogous to those in 3.3.12, (i) and (ii).
(i) Arcs of conical order five are monotone ([10], 1).
(ii) Suppose that each interior point of an arc Q_{6} of conical order six is ordinary. Then the closed arc \bar{Q}_{6} is monotone

Proof. Each interior point of Q_{6} is ordinary. Also the end-points of Q_{6} are ordinary, by 6.1.13 (a). Hence each [interior] point of $\overline{Q_{6}}$ possesses a Etwo-sided] neighbourhood of conical order five. But each of these neighbourhoods is monotone; by (i). By taking the union of these neighbourhoods one obtains the monotony of \bar{a}_{6}
6.4.5 Let us restrict our attention in the rest of Section 6.4 to a conically differentiable curve \mathscr{F}_{6} of conical order six.

By 6.4.3, \mathscr{D}_{6} contains only finitely many singular points. Thus each singular point is elementary; cf. 5.5.

Thus by 5.5 (iii), each singular point of \mathscr{L}_{6} has exactly one "2" in its characteristic; then each of the other digits is "I".

Also, if a curve intersects its tangent at a conically differentiable point p, then the osculating conics of the curve at p are degenerate ([9], Theorem 4). Thus the ultraosculating conic of the curve at p is the double line on the tangent of the curve at p.

Hence, for a conically differentiable curve \mathscr{F}_{6} of conical order six, we have the following:
(i) An inflection point with linear characteristic (1, 2) has the conical characteristic ($1,1,1,1,2 ; 3$).
(ii) A cusp of the first kind with linear characteristic (2, 1) has the conical characteristic ($2,1,1,1,1 ; 2$).
6.4.6 Let b_{6} be a convex curve which has no points of Type 2. Then ℓ_{6} contains at least six conically singular points.

Proof. Since \mathscr{C}_{6} is of order six, there exists a conic γ_{0} which intersects \mathscr{b}_{6} six times. γ_{0} is non-degenerate owing to the convexity of \mathscr{b}_{6}. Let this six consectutive points be $p_{i}, i=0,1, \ldots, 5$.
(i). Let $\gamma p_{2} p_{3} p_{4} p_{5}$ be the family of conics through the points $p_{2}, p_{3}, p_{4}, p_{5}$. Then

$$
\gamma_{0}=\quad \gamma_{p_{2}{ }^{p_{3}}{ }^{p_{4}{ }^{p_{5}}} .}
$$

Keeping $p_{2}, p_{3}, p_{4}, p_{5}$ fixed, by 6.3.2 and 6.3.7, as t moves monotonically and continuously from p_{0} toward p_{1} on \mathscr{b}_{6}, there is a point

$$
u \in \quad \gamma\left(t, p_{2}, p_{3}, p_{4}, p_{5}\right) \cap b_{6}
$$

which moves monotonically and continuously from p_{1} toward p_{0} in the opposite direction on \boldsymbol{b}_{6}. Hence they must coincide at some point $p_{0, I}$ between p_{0} and p_{1} on \boldsymbol{b}_{6}. This point $p_{0, I}$ is a $\quad \gamma_{p_{2} p_{3} p_{4} p_{5}}$-singular point; cf. 6.1.8, and

$$
\gamma\left(p_{0,1}^{2}, p_{3}, p_{4}, \cdots p_{5}\right)
$$

is the tangent conic of \mathfrak{b}_{6} at $p_{0,1}$ passing through the points $p_{2}, p_{3}, p_{4}, P_{5}$

In this manner, by considering $\gamma_{p_{i} p_{i+1} p_{i+2} p_{i+3}}$ we obtain a point $p_{i+4}, i+5$ between p_{i+4} and p_{i+5} which is $\gamma_{p_{i} p_{i+1} p_{i+2} p_{i+3}}-$ singular and

$$
\gamma\left(p_{i+4},{ }_{i+5}^{2}, p_{i+1}, p_{i+2}, p_{i+3}\right)
$$

is the tangent conic of \mathscr{b}_{6} at p_{i+4}, i+5 passing through the points $p_{i}, p_{i+1}, p_{i+2}, p_{i+3} ; i=0, \ldots, 5$. Hare the subscripts are to be interpreted modulo 6.
(2) Let $\gamma p_{3} p_{4} p_{5}$ be the subfamily of conics of $\gamma_{p_{2} p_{3} p_{4} p_{5}}$ passing through the points p_{3}, p_{4}, p_{5}. Now

$$
\left.\gamma_{\left(p_{0,1}\right.}{ }^{2}, p_{3}, p_{4}, p_{5}\right) \in \gamma_{\dot{p}_{3} p_{4} p_{5}}
$$

and intersects \mathscr{b}_{6} at p_{2}. Also

$$
\gamma\left(p_{1,2}^{2}, p_{4}, p_{5}, p_{0}\right) \varepsilon \quad \gamma_{p_{3} p_{4} p_{5}}
$$

Let t move monotonically and continuously from $p_{0,1}$ on 6 toward $p_{1,2} 2^{\prime \prime}$ Then by 6.3.3 and 6.3.7, there is a point

$$
u \varepsilon \quad \gamma\left(t^{2}, p_{3}, p_{4}, p_{5}\right) \cap f_{6}
$$

which moves monotonically and continuously from p_{2} toward $p_{O_{2} 1}$ in the opposite direction on \mathscr{b}_{6}.

Suppose 't reaches $p_{1,2}$ before u does. Then we obtain a tangent conic at $p_{1,2}$ passing through the points $u, p_{3}, p_{4_{4}}, p_{5}$. However, $\gamma\left(p_{1}, 2^{2}, p_{4} ; p_{5}, p_{0}\right)$ also meets \mathscr{p}_{6} at p_{3}. Thus

$$
\gamma\left(p_{1,2}{ }^{2}, p_{3}, p_{4}, p_{5}\right)=\gamma\left(p_{1,2}^{2}, p_{4}, p_{5}, p_{0}\right)
$$

and this conic would then meet $\boldsymbol{\beta}_{6}$ at Inst seven times, counting multiplicities; contradiction. Thus u and t coincide at a point $p_{0,1,2}$ between $p_{0,1}$ and $p_{1,2}$ on \mathscr{O}_{6}. This point $p_{0,1,2}$ is a $\gamma_{p_{3} p_{4} p_{5}}$-singular point; cf. 6.1.7 and

$$
\gamma\left(p_{0,1,2^{3}}, p_{4}, p_{5}\right)
$$

is the osculating conic of \mathscr{b}_{6} at $p_{0,1,2}$ passing through the points p_{3}, p_{4} and p_{5}.

In this manner, by considering $\gamma_{p_{i} p_{i+1} p_{i+2}}$ we obtain a point $p_{i+3, i+4, i+5}$ between $p_{i+5, i+4}$ and $p_{i+4, i+5}$ which is
$\gamma_{p_{i} p_{i+1} p_{i+2}}$-singular and

$$
\gamma\left(p_{i+3, j+4,4}, \frac{3}{i+5,} p_{i+1}, p_{i+2}\right)
$$

is the osculating conic of f_{6} at $p_{i+3, i+4, i+5}$ passing through the points p_{i}, p_{i+1} and $p_{i+2} ; i=0, \ldots, 5$.
(3) Let $\gamma_{p_{4} p_{5}}$ be the subfamily of conics of $\gamma_{p_{3} p_{4} p_{5}}$ passing through the points p_{4} and p_{5}. Now

$$
\gamma\left(p_{0,1,2^{3}}, p_{4}, p_{5}\right) \varepsilon \gamma_{P_{4} p_{5}}
$$

and intersects
f_{6} at p_{3}. Also

$$
\gamma\left(p_{1,2,3}{ }^{3}, p_{5}, p_{0}\right) \varepsilon \quad \gamma_{p_{4} p_{5}}
$$

Let t move monotonically and continuously from $p_{0,1,2}$ on \mathscr{L}_{6} toward $P_{3,2,3}$. Then by 6.3 .4 and 6.3 .2 , there is a point

u $\varepsilon \quad \gamma\left(t^{3}, p_{4}, p_{5}\right) \cap$

which moves monotonically and continuously from P_{3} toward $p_{0,1,2}$ in the opposite direction on
p_{6}.

As in (2), t cannot reach $p_{1, j}, 3$ before u does. Thus u and t coincide at a point $p_{0,1,2,3}$ between $P_{0,1,2}$ and $P_{7,2,3}$ on \boldsymbol{b}_{6}. This point $\mathrm{r}_{0,1,2,3}$ is a $\gamma_{\mathrm{P}_{4} \mathrm{P}_{5}}$-singular point; cf. 6, J. 6 and

$$
\gamma\left(p_{0,1,2,3}{ }^{4}, p_{5}\right)
$$

is the superosculating conic of
\mathscr{D}_{6} at $\mathrm{p}_{0,1,2,3}$ passing through the points p_{4} and p_{5}.

In this manner, by considering $\gamma_{p_{i} p_{i+1}}$ we obtain a point $p_{i+2, i+3, i+4, i+5}$ between $p_{i+2, i+3, i+4}$ and $p_{i+3, i+4, i+5}$ which is $\quad \gamma_{p_{i} p_{i+1}}$-singular and

$$
\gamma\left(p_{i+2, i+3, i+4, i+5}, p_{i+1}\right)
$$

is the superosculating conic of \mathscr{B}_{6} at $p_{i+2, i+3, i+4, i+5}$ passing through the points p_{i} and $p_{i+1} ; i=0, \ldots, 5$.
(4) Let $\gamma_{p_{5}}$ he the subfamily of conics of $\gamma_{p_{4} p_{5}}$ passing through the point Γ_{5}. Now

$$
\gamma\left(p_{0 ; 1,2,3}{ }^{4}, p_{5}\right) \varepsilon \gamma_{p_{5}}
$$

and intersects \mathscr{b}_{6} at p_{4}. Also

$$
\gamma\left(p_{2,2,3,4}^{4}, p_{0}\right) \varepsilon \gamma_{p_{5}}
$$

Let t move monotonically and continuously from $P_{0,1,2,3}$ on toward $p_{1,2,3,4:}$ Then by 6.3 .5 and 6.3 .7 , there is a point,

$$
\text { ur } \varepsilon \quad \gamma\left(t^{4}, p_{5}\right) \cap \mathscr{P}_{6}
$$

which moves monotonically and continuously from p_{4} toward $p_{0,1,2,3}$ in the opposite direction on \mathscr{F}_{6}.

Again as in (2), t cannot reach $p_{1,2,3,4}$ before u does. Thus u and t coincide at a point $p_{0,1,2,3,4}$ between $p_{0,1,2,3}$ and $P_{1,2,3,4}$ on \mathscr{b}_{6}. This point $P_{0,1,2,3,4}$ is a. $\gamma_{p_{5}}$-singular point; cf. 6.1.5 and

$$
\gamma\left(p_{0,1,2,3,4}: 5\right.
$$

is the ultraosculating conic of \mathscr{b}_{6} at $p_{0,1,2,3,4}$ passing through the point p_{5} :

In this manner, by considering $\gamma_{p_{i}}$ we obtain a point: $p_{i+1 ; i+2, i+3, i+4, i+5}$ between $p_{i+1, i+2, i+3, i+4}$ and $p_{i+2, i+3, i+4, i+5}$
on f_{6} which is $\gamma_{p_{i}}$-singular and

$$
\gamma\left(p_{i+1, i+2, i+3, i+4, i+5}\right)
$$

is the ultraosculating conic of \mathscr{b}_{6} at $p_{i+1, i+2, i+3, i+4, i+5}$ passing through $p_{i} ; i=0, \ldots, 5$.
(5) Now $\gamma\left(\mathrm{P}_{0,1,2,5,4}\right)$ intersects \mathscr{b}_{6} at p_{5} and $\gamma\left(p_{1}, 2,3,5,5\right)$ intersects $\not \mathscr{L}_{6}$ at p_{0}. Let t move monotonically and continuously from $P_{0,1,2,3,4}$ on \boldsymbol{b}_{6} toward $p_{1,2,3,4,5^{\circ}}$ Then by 6.3.6 and 6.3.7, there is a point.
u $\varepsilon \quad \gamma\left(t^{\dot{5}}\right) \cap \rho_{6}$
which moves monotonically and continuously from p_{5} toward $p_{0,1,2,3,4}$ in the opposite direction on \boldsymbol{B}_{6}.

Again t cannot reach $p_{1,2,3,4,5}$ before u does. Thus u and t coincide at a point $P_{0,1,2,3,4,5}$ between $p_{0,1,2,3,4}$ and $p_{1,2,3,4,5}$ on \mathscr{D}_{6}. This point is a singular point and

$$
\gamma\left(p_{0,1,2,3,4,5}^{5}\right)
$$

is the ultraosculating conic of \mathscr{D}_{6} at $P_{0,1,2,3,4,5}$

In this way we obtain a singular point $p_{i, i+1, i+2, i+3, i+4, i+5}$
between $p_{i, i+1, i+2, i+3, i+4}$ and $p_{i+1, i+2, i+3, i+4, i+5}$ on f_{6}; $i=0, \ldots, 5$. Thus \mathscr{D}_{6} contains at least six singular points.
6.4.7 Let \mathscr{F}_{6} be a conically differentiable convex curve with no points of Type 2. Then $\mathscr{C} 6$ contains at most six conically singular points.

Proof. Suppose that b_{6} contains at least seven conically singular points, say $s_{1}<s_{2} \leqslant \ldots<s_{7}$ on \mathscr{b}_{6}.
(1) Let p_{1} be any point on the open arc of \mathscr{b}_{6} between s_{7} and s_{1}. Now s_{1} is a conically singular point. Thus $\gamma\left(s_{1}^{5}\right)$ meets \mathscr{Z}_{6} nowhere else. By $\underline{6.3 .6}$ and 6.3 .7 , as t moves monotonically and continuously from s_{1} toward s_{2} on $\mathscr{D}_{6}, \gamma\left(t^{5}\right)$ meets \mathscr{F}_{6} at a point u which moves monotonically and continuously from s_{l} in the opposite direction. But s_{2} is also a singular point. Thus as t converges to s_{2}, u converges to s_{2}. Hence there exists a point s_{12} between s_{1} and s_{2} on b_{6} such that $\gamma\left(s_{12}^{5}\right)$ meets \mathscr{F}_{6} at P_{1}. This point s_{12} is a $\gamma_{p_{1}}$-singular point.

Similarly we obtain points s_{23} between 5_{2} and s_{3}, s_{34} between s_{3} and s_{4}, s_{45} between s_{4} and s_{5}, s_{56} between s_{5} and s_{6} and s_{67} between s_{6} and s_{7} which are $\gamma_{p_{1}}$-singular points.
(2) Let p_{2} be any point on the open arc of \mathscr{b}_{6} between s_{67} and $s_{12}, p_{2} \neq p_{1}$. Now

$$
\gamma\left(s_{12}^{5}\right)=\gamma\left(s_{12}^{4}, p_{1}\right)
$$

meets \mathscr{F}_{6} at s_{12}, p_{1} and nowhere else. By 6.3.5 and 6.3.7, as t moves monotonically and continuously from s_{12} toward s_{23} on $\mathscr{b}_{6}, \gamma\left(t^{4}, p_{1}\right)$ meets \mathscr{b}_{6} at a point u which moves monotonically and continuously from ${ }^{s_{12}}$ in the opposite direction. But s_{23} is also a $\gamma_{p_{1}}$-singular point. Thus as t converges to $s_{2 j}$, u converges to s_{2}. Hence there exists a point s_{123} between s_{12} and s_{23} on \mathscr{C}_{6} such that $\gamma\left(s_{123}^{4}, p_{1}\right)$ meets \mathscr{F}_{6} at p_{2}. This point s_{123}. is a $\gamma_{p_{1} p_{2}}$-singular point.

Similarly, we obtain points s_{234} between s_{23} and s_{34}, s_{345} between s_{34} and s_{45}, s_{456} between s_{45} and s_{56} and s_{567} between s_{56} and 5_{67} which are $\gamma_{p_{1} p_{2}}$-singular points.
(3) Let p_{3} be any point on the open arc of \mathcal{F}_{6} between s_{567} and s_{123}, distinct from p_{1} and p_{2}. Now

$$
\gamma\left(s_{i+23}^{4}, p_{1}\right)=\gamma\left(s_{123}^{3}, p_{1}, p_{2}\right)
$$

meets \mathscr{b}_{6} at ${ }_{123}, p_{1}, p_{2}$ and nowhere else. By $\frac{6.3 .4}{\vdots}$ and 6.3.7, as t moves monotonically and continuously from s_{123} toward s_{234}
on $\mathscr{D}_{6}, \gamma\left(t^{3}, p_{1}, p_{2}\right)$ meets \mathscr{D}_{6} at a point u which moves monotonically and continuously from s_{123} in the opposite direction. But ${ }^{s} 234$ is also a $\gamma_{p_{1} p_{2}}$-singular point. Thus as $i t$ converges to s_{234}, u converges to s_{234}. Hence there exists a point s_{1234} between s_{123} and s_{234} on \mathscr{b}_{6} such that $\gamma\left(s_{1234}^{3}, p_{1}, p_{2}\right)$ meets \mathscr{Z}_{6} at p_{3}. This point s_{1234} is a $\gamma_{p_{1} p_{2} p_{3}}$-singular point.

Similarly we obtain points s_{2345} between s_{234} and s_{345}, s_{3456} between s_{345} and s_{456} and s_{4567} between s_{456} and s_{567} which are $\gamma_{p_{1} p_{2} p_{3}}$-singular points.
(4) Let p_{4} be any point on the open arc of \mathscr{D}_{6} between s_{4567} and s_{1234}, distinct from p_{1}, p_{2} and p_{3}. Now

$$
\gamma\left(s_{1234}^{3}, p_{1}, p_{2}\right)=\gamma\left(s_{1234}^{2}, p_{1}, p_{2}, p_{3}\right)
$$

meets \mathscr{F}_{6} at $s_{1234}, p_{1}, p_{2}, p_{3}$ and nowhere else. By 6.3 .3 and 6.3.7, as t moves monotonically and continuously from s_{1234} toward s_{2345} on $\mathscr{b}_{6}, \gamma\left(t^{2}, \cdots p_{1}, p_{2}, p_{3}\right)$ meets \mathscr{b}_{6} at a point u which moves monotonically and continuously from $s_{123} 4$ in the opposite direction. But s_{2345} is also a $\chi_{p_{1} p_{2} p_{3}}$-singular point. Thus as t converges to s_{2345}, u converges to s_{2345}. Hence there exists a point s_{12345} between s_{1234} and s_{2345} on \mathscr{D}_{6} such that $\gamma\left(s_{12345}, p_{1}, p_{2}, p_{3}\right)$ meets \mathscr{b}_{6} at p_{4}. This point ${ }^{s_{12345}}$ is a $\quad X_{\mathrm{p}_{1} p_{2} p_{3} p_{4}}$-singular point.

Similarly, we obtain points $s_{234} 56$ between s_{2345} and s_{3456} and s_{34567} between s_{3456} and s_{4567} which are $\gamma_{p_{1}} p_{2} p_{3} \dot{p}_{4}{ }^{\text {singular points. }}$
(5) Let p_{5} be any point on the open arc between s_{34567} and s_{12345}, distinct from p_{1}, p_{2}, p_{3} and $p_{4^{\prime}}$. Now

$$
\gamma\left(s_{12345}^{2}, p_{1}, p_{2}, p_{3}\right)=\gamma\left(s_{12345}, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

meets ω_{6} at $s_{12345}, p_{1}, p_{2}, p_{3}, p_{4}$ and nowhere else. By 6.3.2 and 6.3.7, as t moves monotonically and continuously from 5_{12345} toward s_{23456} on $\mathscr{F}_{6}, \gamma\left(t, p_{2}, p_{2}, p_{3}, p_{4}\right)$ meets \mathscr{b}_{6} at a point u which moves monotonically and continuously from s_{12345} in the opposite direction. By s_{23456} is also a $\gamma_{p_{1} p_{2} p_{3} p_{4}}$-singular point. Thus as t converges to ${ }^{s}$ 23456' u converges to ${ }^{2} 3456^{\circ}$ Hence there exists a point s_{123456} between s_{12345} and s_{23456} on \mathscr{C}_{6} such that $\gamma\left(s_{123456}, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets \mathscr{C}_{6} at p_{5}. Similarly we obtain a point s_{234567} between " s_{23456} and s_{34567} on \mathscr{C}_{6} such that $\gamma\left(s_{234567}, p_{1}, p_{2}, p_{3}, p_{4}\right)$ meets Co $_{6}$ at P_{5}. But then

$$
\gamma\left(s_{123456}, p_{1}, p_{2}, p_{3}, p_{4}\right)=\gamma\left(s_{231}, 567, p_{1}, p_{2}, p_{3}, p_{4}\right)
$$

and this conic meets \mathscr{Z}_{6} at least seven times; contradiction.

Thus \mathscr{b}_{6} contains at most six conically singular points.
6.4.8 Let b_{6} be of linear order three. Now \mathscr{b}_{6} satisfies Condition PI at each point since it is conically differentiable; cf. 5.3.1. But as was pointed out in 6.4.2, a cusp of the second kind has the linear characteristic ${ }^{\prime}(2,2)$ and then such a point is of linear order at least four, which is impossible. Thus cases (c) and (d) of 6.4.2 cannot occur.
6.4.9 Let case (a) of 6.4 .2 occur. Then Den contains $_{6}$ at least six conically singular points,

Proof. Let p_{1}, p_{2}, p_{3}, be the three inflection points of \mathscr{E}_{6}. By 6.4.5 (i), each of these points is a conically singular point with the conical characteristic (1, $1,1,1,2 ; 3$) and the ultraosculating conic $\gamma\left(p_{i}^{5}\right)$ of \mathscr{D}_{6} at p_{i} is the double line on the tangent $\mathcal{J}_{p_{i}}$ of \mathscr{L}_{6} at $p_{i} ; i=1,2,3$. We note that

$$
\gamma\left(p_{1}^{5}\right) \cap \gamma\left(n_{2}^{5}\right) \neq \varnothing
$$

since two distinct lines in the projective plane intersect.

Now suppose that there are no conically singular points on the convex open arc $p_{1} p_{2}$ between p_{1} and p_{2} on \boldsymbol{D}_{6}. Then the closed arc $p_{1} p_{2}$ is monotone, by 6.4.4(ii). In particular

$$
\gamma\left(p_{1}^{5}\right) \cap \gamma\left(p_{2}^{5}\right)=\varnothing .
$$

- This is a contradiction. Hence we obtain the existence of a conically singular point q_{1} on $p_{1} p_{2}$.

Similarly, there exist conically singular points q_{2}, q_{3} on the open arcs $\mathrm{p}_{2} \mathrm{p}_{3}, \mathrm{p}_{3} \mathrm{p}_{1}$ of \mathscr{L}_{6}, respectively. We conclude that \mathscr{C}_{6} contains at least, six conically singular points, if case (a) of 6.4.2 occurs.
6.4.10 Let case (a) of 6.4.2 occur. Then \mathscr{C}_{6} contains at most six conically singular points:

Proof. Suppose that \mathscr{b}_{6} contains at least sever i conically singular points', Then as in 6.4.9, the three inflection points p_{1}, y_{2}, p_{3} are singular. Withoug loss of generality, there are at least two conically singular points $q_{1}<q_{2}$ on the convex open arc $p_{1} p_{2}$ between p_{1} and p_{2} on \mathscr{C}_{6}. we may assume, by taking another line as L_{∞} if necessary, that the arc $\overline{\mathrm{p}_{1} p_{2}}$ does not meet ${ }^{I}{ }_{\infty}$. The tangent line supports \boldsymbol{b}_{6} at each point p of $r_{1} p_{2}$ and hence lies locally to the right of \mathfrak{b}_{6} (with the exception of p) at p, say.

Next, we note that at no interior point of the arc $p_{1} p_{2}$ is the ultraosculating conic the double line on the tangent at that particular point. Otherwise, \mathscr{F}_{6} being of odd linear order, the tangent line
st such a point must meet b_{6} with an odd multiplicity. But the tangent supports P_{6} at this point and hence must intersect D. $_{6}$ at exactly one other point. But then the ultraosculating conic, being the double line on the tangent, meets \mathscr{F}_{6} more than six times counting multiplicities; contradiction. Thus the characteristic of the points q_{1}, q_{2} is either $\left(1,1,1,1,2 ; l_{a}(i)\right.$) or $(1,1,1, I, 2 ; \operatorname{la}(i i)) ;$ of. 5.4 .

We now show that the assumption of at least two singular points q_{1}, q_{2} on the open arc $p_{1} p_{2}$ would imply the existence of a singular point q on $p_{1} p_{2}$ such that $\gamma\left(q^{5}\right)$ lies locally to the right of $\boldsymbol{P}_{6}\left(\right.$ with the exception of q) at q. If either $\gamma\left(q_{1}^{5}\right)$ or $\gamma\left(q_{2}^{5}\right)$ lie locally to the right of f_{4} at q_{1} or q_{2}, respectively, then we have such a q. Hence we can assume that neither q_{1} nor q_{2} have the desired property. Then we have the following three possibilities:
(a) $\quad \gamma\left(q_{1}^{5}\right)$ and $\gamma\left(q_{2}^{5}\right)$ are both non-degenerate and lie locally to the left of \mathscr{F}_{6} at q_{1} and q_{2}, respectively (see Figure 20 (a));
(b) one of $X\left(q_{1}^{5}\right), \quad X\left(q_{2}^{5}\right)$ say $X\left(q_{2}^{5}\right)$ is non-degenernte and lies locally to the left of D_{6} at q_{2}, wile $. \gamma\left(q_{1}^{5}\right)=q_{1}$ (see Figure $20(b)$); or

$$
\text { (c) } \quad \gamma\left(q_{1}^{5}\right)=q_{1} \text { and } \quad \gamma\left(q_{2}^{5}\right)=q_{2}(\text { see Figure } 20(c)) \text {. }
$$

But now we claim the existence of a new singular point \bar{q} on the open arc $q_{1} q_{2}$. Otherwise, $q_{1} q_{2}$ is monotone by 6.4.4 (ii); i.e.,

$$
\gamma\left(q_{1}^{5}\right) \subset \gamma\left(q_{2}^{5}\right)_{i} \text { and } \gamma\left(q_{2}^{5}\right) \subset \gamma\left(q_{1}^{5}\right) e
$$

or

$$
\gamma\left(\dot{q}_{1}^{5}\right) \subset \gamma\left(q_{2}^{5}\right)_{e} \text { and } \gamma\left(q_{2}^{5}\right) \subset \gamma\left(q_{1}^{5}\right)_{i}
$$

In particular,

$$
\left.\begin{array}{llll}
q_{1} \varepsilon \quad \gamma\left(q_{2}^{5}\right)_{i} & \text { and } \quad q_{2}= & \gamma\left(q_{1}^{5}\right)^{5} \\
q_{1} & \varepsilon \quad \gamma\left(q_{2}^{5}\right) & \text { and } q_{2} \varepsilon & \gamma\left(q_{1}^{5}\right)_{i}
\end{array}\right\}
$$

Now if $t_{1}, u_{1}, v_{1}\left[t_{2}, u_{2}, v_{2}\right]$ are close to $q_{1}\left[q_{2}\right]$ on p_{1}, p_{2}, then

$$
\gamma\left(q_{1}^{2}, t_{1}, u_{1}, v_{1}\right)\left[\gamma\left(q_{2}^{2}, t_{2}, u_{2}, v_{2}\right)\right]
$$

and the arc $p_{1} \dot{p}_{2}$ touches the tangent $\int_{q_{I}}\left[{\underset{q}{q_{2}}}^{J_{2}}\right.$ at $q_{1}\left[q_{2}\right]$ from the same side ([11], 4.3) and hence lies to the left of $J_{q_{1}}\left[J_{q_{2}}\right]$. By letting $\left.t_{1}, u_{1}, v_{1}{ }^{r} . t_{2}, u_{2}, v_{2}\right]$ converge to $q_{1}\left[q_{2}\right]$ the limit conic $\gamma\left(q_{1}^{5}\right)\left[\gamma\left(q_{2}^{5}\right)\right]$ and the arc $p_{1} p_{2}$ touches the tangent $\mathcal{J}_{\mathrm{q}}\left[\bar{J}_{\mathrm{q}_{2}}\right]$. from the same side; ie., to the left of $\int_{q_{1}}\left[J_{q_{2}}\right]$., But the convex arc $p_{1} p_{2}$ induces a natural
orientation of $\gamma\left(q_{1}^{5}\right)\left[\gamma\left(q_{2}^{5}\right)\right]$ with the result that \mathscr{b}_{6} lies locally to the right of $\gamma\left(q_{1}^{5}\right)\left[\gamma\left(q_{2}^{5}\right)\right]$ as $\gamma\left(q_{1}^{5}\right)\left[\gamma\left(q_{2}^{5}\right)\right]$ was assumed to lie locally to the left of $\boldsymbol{\mathscr { b }}_{6}$. But $\gamma\left(\mathrm{q}_{1}^{5}\right)$ $\left[\gamma\left(q_{2}^{5}\right)\right]$ does not meet \mathscr{E}_{4} again. Thus

$$
\mathscr{A}_{6} \backslash\left\{q_{1}\right\} \subset \gamma\left(q_{1}^{5}\right)_{e} \quad\left[\mathscr{b}_{6} \backslash\left\{q_{2}\right\} \subset \gamma\left(q_{2}^{5}\right)_{e}\right.
$$

If $\quad \gamma\left(q_{1}^{5}\right)=q_{1}\left[\gamma\left(q_{2}^{5}\right)=q_{2}\right]$, then

$$
\gamma\left(q_{i}^{5}\right)_{i}=\phi\left[\gamma\left(q_{2}^{5}\right)_{i}=\phi\right] .
$$

In particular, regardless of cases (a), (b) or (c) we have

$$
q_{2} \varepsilon \gamma\left(q_{1}^{5}\right) e \text { and } q_{1} \varepsilon \gamma\left(q_{2}^{5}\right) e^{\text {. }}
$$

This contradicts (*). Hence we obtain the existence of a singular point \bar{q} on the open arc $q_{1} q_{2}$. If \bar{q} is such that $\gamma\left(\bar{q}^{5}\right)$ lies locally to the right of \mathfrak{Z}_{6} (with the exception of \bar{q}) at \bar{q}, then we have the required singular point of the third paragraph. If \bar{q} is not such a point, then the above method will yield a singular point between q_{I} and \bar{q} on $p_{1} p_{2}$. By repeating this argument, if necessary, we obtain a singular point q of the desired type or we obtain an infinite sequence of singular points. This last possibility cannot occur, by Theorem 9. Thus we obtain a conically singular point q on the open arc $p_{1} p_{2}$ with the property that $\gamma\left(q^{5}\right)$ is non-degenerate and lies locally to the right of \mathscr{E}_{6} (with the exception of q) at q (see Figure 20.(d)).

Now in the same manner as was shown for each of the points $q_{1}, q_{2}, \quad \gamma\left(q^{5}\right)$ lies locally to the left of the tangent \mathcal{J}_{q} of. \mathscr{b}_{6} at q. But $\gamma\left(q^{5}\right)$ lies locally to the right of \mathscr{b}_{6} and $\boldsymbol{J}_{\mathrm{q}}$ supports \mathscr{b}_{6} at q, hence intersects. \mathscr{b}_{6}. at exactly one point m. This point m is not on $p_{1} p_{2}$ since , $q \in p_{1} p_{2}$ and $p_{1} p_{2}$ is convex. Thus one arc of $\gamma\left(q^{5}\right)$ from q is trapped in the region bounded by the arc $q p_{2} m$ of \mathscr{L}_{6} and one of the arcs $q m$ of J_{q}. $\gamma\left(q^{5}\right)$, being a closed curve must meet the arc q $p_{2} m$ of \mathscr{F}_{6} or meet the arc $q \mathrm{~m}$ of \mathscr{F}_{q}. The first possibility cannot exist since \mathscr{Z}_{6} is of conical order six. The latter possibility implies that $\gamma\left(q^{5}\right)$ is the double line on σ_{q} which was ruled out in paragraph two of the proof.

Thus our assumption that \mathscr{b}_{6} contains at least seven conically singular points is invalid and we have the required result.

(a)

(b)

(c)

(d)
6.4.11 Let case (b) of 6.4.2 occur. Then \mathscr{D}_{6} contains at least four conically singular points.

Proof. Let p_{1} be the cusp of the first kind and p_{2} the point of inflection of \mathscr{b}_{6}. By $6.4 .5(i i), n_{7}$ is a conically singular point with the characteristic (2, I, $\left.1,1,1 ;)_{i}\right)$. By 6.4.5
(i) p_{2} is a singular point with the characteristic (1, $1,1,1,2 ; 3$). The uitraosculating conic $\gamma\left(p_{1}^{5}\right)\left[\gamma\left(p_{2}^{5}\right)\right]$ of \mathscr{D}_{6} at $p_{1}\left[p_{2}\right]$ is the double line on the tangent $\mathscr{F}_{p_{I}}\left[\mathscr{J}_{p_{2}}\right]$ of \mathscr{b}_{6} at $p_{1}\left[p_{2}\right]$. Hence :

$$
\gamma\left(p_{1}^{5}\right) \cap \gamma\left(p_{2}^{5}\right) \notin \varnothing
$$

as in 6.4.9.

We obtain singular points q_{1}, q_{2} on the open ares $p_{1} p_{2}, p_{2} p_{1}$ of \mathscr{b}_{6}, respectively, in exactly the same manner as in 6.4.2. Hence \mathscr{b}_{6} contains at least four conically singular points, as required.
6.4.12 "If case (b) of 6.4.2 occurs, then b_{6} contains at most four singular points.

Proof. Suppose that \mathscr{b}_{6} contains at least five conically singular points. Then, as in 6.4.11, the cusp of the first kind
P_{1} is a conically singular point along with the inflection point P_{2}. Without loss of generality, there are at least two conically singular points q_{1}, q_{2} on the convex arc $p_{1} p_{2}$ between p_{1} and p_{2} on \mathscr{b}_{6}. We may assume, by taking another line as, I_{∞}, if necessary, that the arc $p_{1} p_{2}$ does not meet L_{∞}.

We now process exactly as in 6. 4.10 to obtain a contradiction. Thus \mathscr{F}_{6} contains at most four singular points, if case (b) of 6.4.2 occurs.
6.4.13 We summarize the results of this section in the following theorem,

Theorem 1I: Let \mathcal{F}_{6} be a curve of conical order six. Then we have the following results.
(1)

> D6 contains at most finitely many conically singular points.
(2) If \mathscr{D}_{6} is a convex conically differentiable curve with no points of Type 2 , then \mathscr{F}_{6} contains exactly six conically singular points:
(3) If case (a) of 6.4.2 occurs, a conically differentiable curve (4) If case (b) of 6.4 .2 occurs, then a conically differentiable curve \hbar_{6} contains exactly four conically singular points.

Corollary. We have the following results for a curve \boldsymbol{b}_{6} of conical order six.
(1) \mathscr{C}_{6} is decomposed by the finitely many singular points into finitely many arcs of conical order five.
(2) If b_{6} is a convex conically differentiable curve With no points of type 2, then $\not \mathscr{b}_{6}$ is decomposed by the singular points into six arcs of ooniceil order five.
(3) If case (a) of 6.4 .2 occurs, then a conically differentiable curve D. $_{6}$ is decomposed by the singular points into six arcs of conical order five.
(4) Ff case (b) of 6.4.2 occurs, then a conically differentiable curve is decomposed by the singular points into four arcs of conical order five.

6.5 Stroncly Conically Differentiable Curves of Order Six

Introduction

In this short section our attention is restrjeted to a strangy conically differentiable curve \boldsymbol{b}_{6} of conical order six. In 6.5.2 it is shown that \mathscr{b}_{6} contains exactiy six singular points, if \mathscr{b}_{6} is convex; while in 6.5 .3 it is shown that \mathscr{C}_{6} ematins eyactly six singular points, if \boldsymbol{C}_{6} is of linear order three. These two result.ts are both well known; of. [20] and [23]. Ilowever, proofs are included for completeness and the convenience of the weader.
6.5.1 In 6.5 we shall assume that \mathscr{C}_{6} is a strongly conically differentiable curve of conical order six. As in 6.4.1, we have two cases:
(i) \boldsymbol{b}_{6} is convex
(ii) \boldsymbol{b}_{6} is of linear order three.

Using the proofs of 6.4 .6 and 6.4 .7 we have the following result.
6.5.2 Let \mathscr{C}_{6} be a convex curve. Then \mathscr{C}_{6} contains exactly six conically singular points.

Remark. In G.5.2, \mathscr{C}_{6} is strongly conically differentiable. Hence the points of Type ? are automatically excluded since these points are not strongly differentiable.
6.5.3 Let \mathscr{C}_{6} be of linear order three. Now \mathscr{C}_{6} satisfies Condition PI', since \boldsymbol{Z}_{6} is strongly conically differentiable. But a cusp of the first kind has linear characteristic $(2,1)$ and does not satisfy Condition PI' ([11], 1.3). Thus case (h) of 6.4.2 cannot occur and (a) is the only possibility. We combine 6.4.9 and 6.4.10 to obtain
\mathscr{E}_{6} contains exactly six conically singular points.
6.5.4 We summarize the results of this section in the following theorem.

Theorem 12: Let \mathscr{C}_{6} be a strongly conically differentiable curve of conical order six. Then \mathscr{C}_{6} contains exactly six conically singular points and \mathscr{b}_{6} is decomposed by these singular points into six arcs of conical order five.

BIBJIOGRAPIIY

I. J. I. Kelley, General Tonology, Van Nostrand (1955).
2. N. D. Lane and P. Scherle, Differentiable points in the Confornal Plane, Can. J. Math. 5(1953), 512-518.
3. N. D. Lane and K. D. Singh, Strong Cyclic, Parabolic and Conical Differentiability, Paciffic J. Math. 28 No. 3 (1969).
4. N. D. Lane and P. Scherk, Characteristic ans Order of Diffrrentiable Points in the Conformal. Plane, Trans. Amer. Meth. Soc. 81 (1956), 358-378.
5. N. D. Lane and G. Spoar, A conformal Proof of a Jorian Curve Problem, Can. Math. Bull. 12 No. 5 (1969).
6. N. D. Tane, K. D. Singh and P. Scherk, Monotony of the Osculating Circles of Mres of Cyclice Order Three, Can. Math. Bull.? No. 2 (1964).
7. 3. B. Jnckson, A Refinement of the Four-Vertex Theorm, rrivate commanication.
2. S. B. Jackson, Vertices For Plane Curves, Bull. Aner. Math. Soc. 50 (i944), 564-578.
9. M. D. Lane and K. D. Singh, Conical Differentiatirn, Can. I. Meth. 16 (1964), 169-190.
10. N. D. Lane and K. D. Singh, Arcs of Conical Order Five, J. Reine Angew. Math. 217 (1965), 109-127.
11. N. D. Lane and K. D. Singh, Characteristic and Order of Conically Differentiable Points, U. Reine Angew. Math. 224 (1966), 7. 64 4-184.
12. O. Haupt and II. Künneth, Geomotrische Ordmungen, springer-Vorlas, Borlin (1967).
13. O. Ilaupt, Bemerkungen zum Knoserschen Vierscheilelsatz, Abh. Math. Sem. Iniv. Ituburg 31, 281-238 (1967).
14. O. Haupt, Fin fiatz "̈ber die reellen Ranmikurven vierter Ortmung und beine Verallgemeinerung, Math. Ann. 108, 126-142 (1933).
15. P. Scherk, Uber Differenzierbare Kurven und Bogen I. Zum Begriff der Charakteristik, Casopis Pest mat. 66 (1937), 165-171.
16. A. Kneser, Bemerkungen über die Anzahl der Extreme der Krümmung auf Eeschlossenen Kurven and uber verwandte Fragen in einer. nicht-eukliaischen Geometrie, Festschrift z. 70. Geburstag von H. Weher, Liepzig-Perlin (1912), 170-180.
17. H. Kneser, Neuer Beweis des Vierscheitelsatzes, Christian Huygens 2 (1922), 315-318.
18. W. C. Graustein, Extensions of the Four-Vertex Theorem, Trans. Amer. Math. Soc. Volume 41 (1937), 9-23.
19. S. Mukhopadhyaya, New Methods in the Geometry of a Plane Arc, I. Cyclic and Sextactic Points, Bull. Calcutta Math. Soc. I (1909).
20. S. Mukhopadhyaya, Extended Minimum-Number Theorems of Cyclic and Sextactic Points on a Plane Convex Oval, Math. Z. 33 (1931), 648-662.
21. W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie. Bearb. v. Reidemeister. Berlin 1923.
22. E. Hille, Analytic Function Theory, Volume I, Blaisdell (1959).
23. Fr. Fabricius-Bjerre, Über geschlossene Kurven ($n+1$)-ter Ordnung im R_{n} mit einer Anwendung auf ehene Kurven der konischen Ordmang 5 und 6, Kgi. Danske Vidensk. Selsk. Skr., mat.-fys. Medd. 20 Nr . I (1942), J.-25.

24 Fr. Pabricius-Bjerre, Note on a Theorem of G. Bol. Arch. Math. 3 (1952), 31-33.
25. C. Juel, Om Simple Cykliske Kurver, Kgl. Danske Vidensk, Selsk. Skr. (7) 8, (1911), 365-385.

