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Introduction

The material of this manuscript is divided into two main 

parts. The subject matter of the first lies in Sections 1, 2, 3 

and deals with conformal geometry; i.e., the geometry of circles. 

The second part, found in Sections 4, 5 and 6, involves the geometry 

of conics in the projective plane.

A general introduction to each part will be given here as 

well as smaller informative additions at the beginning of each section 

for the convenience of the reader.

Part I

As this thesis involves the analysis of certain classes of 

arcs and curves with respect to the geometry of circles, a topology 

is introduced in Section 1 on the set of circles in the conformal 

or inversive plane (which can be regared as the Riemann sphere of 

complex analysis, cf. 2.5 of [22]). This topology is compact and 

Hausdorff; of. 2.2.3. With this topology on L , limit circles of 

sequences of circles can be considered with respect to convergence 

and hence tangent and osculating circles at a point of an arc can 

be defined; cf. 2.4.

My thesis in this conformal connection is a partial solution 

of circular order four

in the conformal plane, with regard to type and number of singular

the characterization of all curvesof

points; cf. 2.7.



The conformal proof of a well known theorem about arcs of 

circular order four is given in 3.1 using methods that correspond 

to the contraction and expansion theorems of 0. Haupt and H. Kunneth 

[12], while 3.2 is an analogous result to that of N. D. Lane and 

P. Scherk ([4], 3.3) for multiplicities of arcs of circular order 

four with respect to members of L.

The classical four-vertex theorem states that a closed convex 

curve in the euclidean plane which has continuous curvature every

where has at least four vertices; i.e., extrema of the curvature. 

This theorem is supplemented by the result that if this curve has 

order four then it has exactly four vertices. The four-vertex 

theorem thus seems to belong to classical euclidean differential 

geometry. Hence usual proofs of this theorem were worked out in 

this classical setting; cf. A. Kneser [16] and H. Kneser [17]. The 

result was extended by W. C. Graustein [18] to any simple closed 

curve with continuous curvature. Again his proof involved methods 

of differential calculus.

However, the following considerations of N. D. Lane and 

P. Scherk show that this approach is not natural. The existence and 

continuity of the curvature can be interpreted geometrically as the 

existence and continuity of the osculating circles. At a general 

point the osculating circle intersects the curve but at an extremum 

it supports the curve. Also a circular transformation (the basic 

transformation regarding circles) maps a convex curve onto a curve 

which may not be convex anymore. However the properties of touching, 

(viii)



intersecting and supporting are invariant under circular trans

formations. As such osculating circles of one curve are mapped to 

osculating circles of the image curves and the vertices of one curve 

correspond to vertices of the image curve. Thus the four-vertex 

theorem and other corresponding results belong rather in conformal 

differential geometry and the condition of convexity can be replaced 

by a weaker condition of normality introduced by 0. Haupt and

H. Kunneth [12]; cf. 3.1 S. Mukhopadhyaya [19], [20] seems to be one 

of the first to consider extrema of curvature, from this "geometric 

order” viewpoint, as a point of order four, cf. 2,6. Haupt and 

Kunneth also worked with these singular points in a general setting 

using order characteristics with a fundamental number k (instead of

L where k = 3) and a comparison of different kinds of so-called 

vertices can be found in [l2] and [13]. In 3.3 and 3.4 much of 

Jackson’s metric discussion of the four-vertex theorem [8] from 

an analytic and euclidean framework has been recast into a synthetic 

and conformal one.
It is well known that a strongly differentiable curve L4

of order four contains only points with the characteristic

(1, 1, 1), (1, 1, 2) or (1, 1, 2)0;

cf. 3.3.7, and that such a curve contains exactly four vertices 

([12], 4.1.4.3.1), The question can be raised as to the kind of 

results that can be obtained when the condition of strong different
iability is relaxed to ordinary differentiability for curves L4

of order four. Then we have more types of differentiable singular 

(ix)



points to consider. A number of new results are obtained in 3.3, 

as regards the number and types of singular points on such a 

cf. 3.3.9, 3.3.11, 3.3.13 and 3.3.15. As stated earlier, a strongly 

differentiable curve L4 of order four contains at most four

vertices. A generalization of this result is derived in Theorem 5 

giving the same upper bound for the number of vertices on any 

differentiable curve L4 of order four.

It would be nice to be able to drop all differentiability 

conditions and classify arcs and curves of order four again with 

respect to type and numbers of singular points.

Part II

In the second half of the thesis arcs and curves of conical 

order six are analysed with respect to the geometry of conics. With 

this in mind, a topology is introduced on the set of conics (both 

degenerate and non-degenerate) in the real projective plane; cf’. 

Section 4. As in the conformal case, this topology is compact and 

Hausdorff; cf. 4.6. Convergence can be considered with respect to 

this topology and hence limit conics of sequences of conics are 

introduced. Using special limit conics; namely, tangent, osculating, 

superosculating and ultraosculating, conical differentiability of 

an arc at a point can be defined; cf. 5.3.

An attempt is made to characterize curves of conical order 

six in the projective plane, with regard to the number and type 

of conically singular points; cf. 5.6.

(x)



In 6.1 conical proofs are. given of the general monotony, 

contraction and expansion theorems of 0. Haupt and H. KUnneth [12] 

as applied to arcs of conical order six. Using these results a 

well-known theorem is obtained as to the number of conically singular 

points on an arc of conical order six; cf. Theorem 9.

Multiplicities, with respect to the system of conics, for 

an arc of conical order six are introduced in 6.2 and an analogous 

result to that of N. D. Lane and K. D. Singh ([10], 4.2) is 

obtained for such an arc.

Now a curve L6 of conical order six is either convex or 

of linear order three; cf. 6.4.1. It is well known that a strongly 

conically differentiable convex curve L6 of conical order six

contains exactly six conically singular (sextactic) points; cf. 

Fr. Fabricius-Bjerre [23] and S. Mukhopadhyaya [20]. It is also 
well known that a strongly conically differentiable curve L6 of 

linear order three contains exactly six conically singular points 

[23]. As in the conformal analysis, one might ask for respective 
results, if L6 is only conically differentiable. New results 

are obtained in 6.4. showing that L6 contains generally exactly 

six conically singular points, if L6 is convex; and contains either

exactly four or six, if L6 is of linear order three.

Again, as in conformal geometry, one would like to classify 

arcs and curves of conical order six, imposing no differentiability 

restrictions, with respect to the number and type of conically singular 

points.
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Section 1

A Topology on the Set of Circles in the Inversive Plane

Introduction

Let X = {c}, where C denotes a nondegenerate circle 

in the real inversive plane Let L be the union of and 

all of the points (considered as point circles) of Our goal 

is to introduce a topology on • We shall do this by introducing 

a neighbourhood filter at each C & L.

l.l. For each C E L, let Ce and Ci be the "exterior"

and "interior" respectively of C; the interior of C lying to the 

left of C. If C is a point circle, then one of these regions is 

void.

1.1.1.  Let D and D’ be two circles with the property that

D C D', D' C Di. Then Di' C Di and De C De'. ------  

Proof. D C. De' implies that Di' n D = 0. But D' n D = 0. 

Hence (Di' U D') n D = 0. But then Di' U D' is a closed connected 

set having no points in common with D. Hence Di' U D' lies totally 

in either Di or De. However,  D' C Di Therefore, Di' C Di.

An analogous argument yields De C De'.

1
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1.2 Take any C E L, orient it and let D and E be 

members of L such that

D C Ci, E C Ce. 

Then D and E can be oriented such that

C C De, C c Ei.

1.2.1 Using the above orientations of C, D, and E, let

E
U^ = <K €. i : K C D HE. and K can be oriented

D 0 L el
such that D C Ki, E C Ke

Let

E
U = f u I. 

c Ld c J

where D and E run over all pairs of circles of Jr with the above

restrictions.

1.2.2 Uc is a filter base.



Proof. Let

E1

D’ C
and

E»»

3

by any two members of Let D and E be members of L such

that

d c c, n d’ n d"; Dr, d»» c d, , c c dolee z e

see n e' n sr; ' e',e” c e , c c e .6 X X ex

We now show that

E
UC C D C

E>
ur n

D’ c

Eti
D” G

E
Let K £ UpP

D C
C and

Then by definition D c Ki, K c De. By 1.1.1.

Ke C De. Also D C De' and D' C Di. By 1.1.1   
Di' C Di and De C De’. Now 
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Also, by definition, K G E. and E C K . Then by 1.1.1 1 e
Ki c E± and Ee C Kq. Also E c E| and E' c. Eq. By. 1.1.1.

Ei C Ei and E' C E . Now i i e e

E c K e a ]
■ => E' c K<7

Eic Eil
and ( => K C Ei' .

K C Ei[

Finally K C D' n Ei', D’ C Ki and E’ C Ke imply, by definition, 
E' E"

that KE Un. Similarly KE U_.
D» C D"

Thus

E
Ki c D c

E*
KiD' C

E"
U„ 

D" Cn

1 .2.3 Let C be a point circle and suppose that Ci = 0, say.

Let E be a member of L such that

E c Ce. 

Then E can be oriented such that

C C Ei .
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Now let

E
’c- K C Ei and K can be oriented such that

C c Ki, E C K e

Let 

E
ur

V

where E runs over all the circles of with the above restrictions

1.2.4 Uc is a filter base. 
C

Proof. Let

E’ E"
Uc and Uc

be any two members of .Uc Let E be a member of such that 

E C Ce n Ei n Ei"; E’, E" c Ee , C C E

Then by our choice of E, as in 1.2.2,

E E’ E" 
Ei c Ei O Ei •
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1.3 Let be the filter generated by Uc. Consider the 

family 

of filters on L.

1.3.1 For each C E L and all V E fc, there is a

W E Yc such that W C V and V E fK for each K E W.

Proof. It is enough to prove that the claim is true for members 

of the base. Let

Take D, E L with

D C Ci n De' C C De, D' C Di 

Ec Ce N Ei', C C Ei, E' C Ee.

As in 1.2.2t with this choice of D and E
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and

for each

E
ucD °

E<
nc D* C

E*
UCD« C

E Uk

E
K 6. U,

1.3.2 For each point circle C and all V E fc, there is a

W E Fc such that W C V and V E fk for each K E W.

Proof. As in 1.3.1 it is enough to prove that the claim is 

true for members of the base. Let ci = o say, and

E»
Uc £ Uc .

Take E E L with

E C Ce n Ei'm C C Eim E' C Ee.
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As in with this choice of E,

E E»
nc c ”c

and 

for each

5 E 
Ke v0.

1.3.3 We combine 1.3.1 and 1.3.2 to obtain:

For each C E L and all V E Fc, there is a W E  fc

such that W C V and W E fk for each K E W.
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1.4 The following theorem is standard ([1], p. 56):

Let X be a set and

a family of filters on X indexed by X such that 1.3.3 is satisfied

Then there is a topology D on X such that is precisely

The neighbourhood system of x with respect to the topology D •

In our case, there is a topology D on L such that is

the neighbourhood system at C and U is an open set of 

(i.e. a member of O ) if U E fc for all C E U.

We now determine some properties of the topological space
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1.5 (L, D) satisfies the first and second axioms of

countability.

Proof. For all U Let D and E be determined by three 
D

distinct points with rational coordinates.
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1.6 (L, D) is a Hausdorff space.

Proof. Let C1 and C2 be two distinct circles of L.

Case (i) C1 n C2 = 0. Then C1 and C2 belong to a pencil 

of the third kind, cf. 2.1 from which one can easily construct 

disjoint neighbourhoods of C1 and C2 (Figure 1).

Case (ii). C1 n C2 is a single point. Then C1 and C2 

belong to a pencil of the second kind, cf. 2.l. from which one can 

construct disjoint neighbourhoods of C1 and C2 (see Figure 1).

i

Case (iii). C1 and C2 have two points in common. Then 

and determine a pencil of the first kind, cf. 2.1. from 

which one can construct disjoint neighbourhoods of and 

(see Figure 1).

Suppose that one of or both C1 and C2 are point circles.

Case (i). Both C1, C2 are points circles. Then disjoint 

neighbourhoods of and can easily be constructed (see Figure 2).
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Case (ii). One of C1, C2 say C1 is a point circle while

C2 E L. Then either

(a) C1 n C2 = 0. Then disjoint neighbourhoods as in Figure 2

can be constructed.

(b) C1 n C2 = C1. In this case disjoint neighbourhoods as in

Figure 2 can be constructed.
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Figure 1



Figure 2
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E
1.7 If U is a base element, then the smallest closed set 

D 
E E

containing U, denoted by U, consists of the following circles
 D D

of L; namely, all K such that

K C (D U De ) n (E U Ei) 

D C K U Ki, E C K U Ke.

E
We note that in particular D, E E U. 

D

1.7.1 (L, D) is regular.

Proof. Let C E L and let U be any neighbourhood of C.

Then there exists a base element

E°
U c u. 

pt 0

Take circles D, E E L such that

D C De' n Ci, C C De, D' C Di,  

E C ei' n Ce, C C Ei, E' C Ee.
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By this choice of D and E, as in 1.2.2 

UCD

is a base neighbourhood of C with

E E»
UC C D C

U- C U •D’ U

Let C be a point circle with C1 = 0 and let U be a

neighbourhood of C. Then there exists a base element 

E» 
Uc C U. 

Sake a circle E E L such that

E C Ce n Ei', C C Ei, E' C Ee.

By this choice of E, as in l.2.4.
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is a base neighbourhood of C with

E E’
uc C Uc C H.



Section 2

The Order. Differentiability and Characteristic of Points of an 

Arc in the Inversive Plane

— -- Introduction

This section is purely a collection of background information 

with the exception of Theorem 1; cf. 2.2.3. This material is based 

upon the properties of order, differentiability and characteristic 

of a point of an arc and can be found in [2] and [4], the work of 

N.D. Lane and P. Scherk.

18
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2,1 Pencils of Circles.

In the following, P, Q, ..., will denote points in the real 

inversive plane. The circle through three mutually distinct points 

P, Q and R is uniquely determined and will be denoted by 

C(P, Q, R).

The set of all circles that intersect two given circles at 

right angles form a linear pencil π of circles. A pencil π of 

the first kind possesses two fundamental points such that π is 

identical with the set of all circles through these points. A 

pencil of the second kind has one fundamental point and is identical 

with the set of those circles that touch a given non-degenerate circle 

at that point. If π is of the third kind, then any two circles 

of it are disjoint. Forrany pencil π and for any point Q which is 

not a fundamental point of π, there exists a unique circle C(π, Q) 

through Q. We consider the fundamental point of a pencil π of 

the second- kind as a point circle belonging to π.
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2.2 Convergence.

In Section 1, we Introduced a topology D on L,  the set 

of all circles in the real inversive plane. We have shown that 

(L, D) is a regular Hausdorff space satisfying the second axiom 

of countability. With respect to this topology, we can now describe 

convergence.

2.2.1 A sequence of circles (C ) is defined to be 

convergent to a circle C if for any neighbourhood U of C there

exists no E N such that Cn E U for all n > no. We denote

this convergence Cn of to C by

C s 
e N

co

202.2 (L, D ) is a countably compact space.

Proof. Let pn E Cn for each n E N, where (C ) is 
 

an infinite sequence of circles. Then (pn) is an infinite sequence 

of points in a compact space. Hence there exists a point p, and 

a subsequence (pnm) of (pn) such that lim pnm = p. Let (Cnm) 

be the corresponding subsequence of circles of the sequence

Let qnm E Cnm , qnm = pnm. By the same argument as above, there 
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exists a point q and a subsequence (qnml) of (qnm ) such that 

lim qnml = q. We can assume that p q, for if lim onm = p

for every sequence of points on (Cnm), then the point p, considered

as a point circle, will be an accumulation circle of (Cn). By the 

same argument, we obtain a third point r, distinct from p and q 

and a subsequence (rnmlk) of points on (Cnml) Buch that

lim rnmlk = r. Then the circle determined by p, q and r is an  
accumulation circle of (G ) 

n n & N

2.2.3 We combine 1.5,  1.6 and 2.2.2 to obtain

([1], p. 138):

Theorem1. (L, D) is a compact Hausdorff space.



22

2.3 Support and Intersection at a Point of an Arc

Unless otherwise stated, an arc a [curve L] is the topological 

image of an interval [circle]. Hence our arcs and curves will be 

simple. Thus if a sequence of points of that parameter interval 

converges to a point s, then their image points converge to the 

image of s. We shall use the same letters s, t, u, ..., to denote

both the parameter points and their images on a. The end 

[interior] points of a are the images of the end [interior] points 

of the parameter interval. The notation P = s will indicate that 

the points P and s do not coincide.

A neighbourhood of s on a is the image of a neighbourhood 

of the parameter s on the parameter interval. If s is an interior 

point of a, this neighbourhood is decomposed by s into two 

(open) one-sided neighbourhoods.

Suppose a is an interior point of a. Then we call s a 

point of support [intersection] with respect to the circle C if a 

sufficiently small neighbourhood of s is decomposed by s into 

two one-sided neighbourhoods which lie in the same region [in

different regione] bounded by C. C is then called a supporting 

[intersecting] circle of a at s. Thus C supports a at s if 

s E C. By definition, the point circle s always supports a at s.
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It can happen that every neighbourhood of S on a has points

= s in common with Co Then C neither supports nor intersects 

a at s.
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2.4 Differentiable and Strongly Differentiable Points^

2.4.1 An arc a is said to be (conformally) differentiable at 

a point p of a if it satisfies two conditions:

Condition C I. There exists a point R = p such that if the 

parameter s is sufficiently close to p, then the circle C(p,s,R) 

through the points p,s and R exists. It converges if s tends to 

P on a.

The limiting tangent circle of a at p through R is denoted 

by C(p2, R).

Condition C I implies [2]:

(i) There is a unique tangent circle C(p , R) of a at p 

through each point R = p and the union of the set of tangent circles 

with the point circle p is a pencil of the second kind with the 

fundamental point p.

(ii) If p is an interior point of a, then the nontangent 

circles of a through p all intersect a at p or all support.

Condition C II. The arc a satisfies C I at p and there
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exists a circle C(p3) such that

lim C(p2, s) = C(p3).

s e a S 
= P
S —> p

We call C(p3) the osculating circle of A at p. C(p3) 

may be the point circle p.

Differentiability of a at an interior point p implies [2]:

(iii) The nonosculating tangent circles of a at; p  all 

intersect a at p or all support. If C(p3 ) p, then all of 

them support.

An arc or curve is said to be differentiable if every point 

is differentiable.

2.4.2 Strongly Differentiable Points

Let R = p, Q—>R and let s and t converge on a to p.

Then any accumulation circle of the circles C(s, t, Q) is called a 

general tangent circle of a at p through R.
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Condition C I'. There exists a point R = p such that if

Q ----->R and distinct points s and t converge on a to p.

then

lim C(s, t, Q)

exists.

Thus this limit circle is the unique general tangent circle of

a at p. Condition C I' implies that the limit circle depends on p 

and R but not on the choice of the particular sequences s and t. 

Specializing Q = R and t = p we see that Condition C I' implies 

Condition C I and that therefore

lim C(s, t, Q) = C(p2, R).

Thus the general tangent circles of a point which satisfies Condition 

C I' are identical with the ordinary ones.

If three mutually distinct points s, t, u converge on a to P, 

then any accumulation circle of the circles C(s, t, u) is called a 

general osculating circle of CL at p.
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Condition C II'. If three mutually distinct points s, t, u 

converge on CL to p, then

lim C(s, t, u)

exists

Thus this limit circle is the unique general osculating circle 

of CL at p. Condition C II’ does not in general imply C I or 

C I’ ([3], 4).

If Conditions C I' and C II' are both satisfied then a is said 

to be strongly differentiable at the point p. An arc or curve is 

strongly differentiable if every point is strongly differentiable.

Strong differentiability implies ordinary differentiability and 

the following are also valid ([4], 3):

(i) Let p satisfy Condition C I' Let R = p Q-—»R and s 

converge on a to p. If is a general tangent circle at s 

through Q, then

lim C1 = C(p2, R).
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(ii) Suppose a is strongly differentiable at p. Let the two 

distinct points 6 and t converge on Cb to p and let be a 

general tangent circle at s through t. Then

lim C = C(p3)
2

(iii) Suppose a is strongly differentiable at p. Let b

converge on a to p and let C3 be a general osculating circle 

at s. Then

lim C3 = C(p3).

(iv) If at the point p of an arc a the general tangent circles 

form a unique pencil t of the second kind, then Ob induces a 

unique orientation on the circles of In particular Ob induces 

a unique orientation on a general osculating circle at p. If the 

given condition holds at all points p of a , then the oriented 

pencil t varies continuously with p [7].
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2.5 Classification of Differentiable Points .

We associate with each differentiable interior point p of an

arc a a characteristic

to 1 or 2, while is

(ao, a1, a2) if c(p3) = p or

= p. The numbers ao and are 

equal to 1, 2 or oo They have the

equal

following properties:

a0 is even or odd according as the nontangent circles of

support, or intersect a at p.

(ii) ao + a1 is even or odd according as the nonosculating

tangent circles support or intersect a at p.

(iii) ao + a1 + a2 is even if C(p3) supports, odd if C(p3)

intersects, while a2 = oo if C(p3) neither supports nor intersects

Thus 3$ + + a2 is even if C(p3) =  p. From 2.4.1 (iii),

P

Ao = a1 if C(p3) = p.

We list the types of differentiable points p of an arc a.
(Figure 3). The first eight examples refer to the curves 
x = sn, y = sn+m; the last two refer to x = snt y = sn+m sin 1/s.

In all cases we consider the point s = 0. Congruences are modulo 2.
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FIGURE 3
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2.6 Circular Order of a Point

An arc a is said to be of finite circular order if it has 

only a finite number of points in common with any circle. If the 

least upper bound of these numbers is finite, then this number is 

called the (circular) order of a. The order of a point p of a 

is then the minimum of the orders of all neighbourhoods of p on 

a . Note that the order of a point is >= 3.

We list the following results:

(i) Let be an arc of finite order® If a circle C intersects 

at s, then every circle sufficiently close to C intersects a

at some point ([4], 2).

(ii) Let p be an end point of an arc a of finite order. 

Then a, is differentiable at p([4], 3).

(ill) Let p be a differentiable interior point of an arc a. 
Suppose that p has the characteristic (a0, a1, a2) or

 • Then the order of p is not less than a0 + a1 + a2,

(iv) An elementary point p of an arc a is one such that 

there exists a neighborhood of p on A which is decomposed by
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p into two one-sided neighbourhoods of order three.

Let p be an elementary point of a differentiable arc a. 

If p has the characteristic (a0, a1, a2) or (aQ, a1, a2)0, then

the order of p is a0 + a1 + a2 ([4], 5).
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2.7 Ordinary and Singular Points

A point p of an arc is called ordinary if the order of 

p is three (the minimal order).

If the order of p is strictly greater than three, p is said 

to be a singular point.

A point p of differentiable arc a is called a vertex if 
p is a point of support of with respect to C(p3).



Section 3

Arcs and Curves of Circular Order Four in the Inversive Plane.

Introduction.

In this section we shall discuss properties of arcs and curves 

of circular order four. This larger section is divided into four 

subsections, 3.1 - 3.4

In 3.1 and 3.2 we shall consider normal arcs of order four.

We restrict our attention to differentiable curves of circular order 

four in 3.3. for the most part. Finally in 3.4. the discussion centers 

upon strongly differentiable curves of circular order four.
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3.1 Normal Arcs of Order Four

Introduction

An arc a is called normal if for each C E L, C can be 

oriented so that the points of C n a lie in the same order on 

C as they do on CL.  We note that a curve L4 of circular order 

four is always normal ([13], 5).

It is well known that a normal arc a4 circular order four 

is the union of a finite number of arcs of order three; cf. 0. Haupt 

[14] and 4.1.3 of [12]. To derive this result Haupt basically used 

the so-called "Contraction Theorem"; cf. ([12], 2.4.4), first attributed 

to Mukhopadhyaya [19], [2O] and the "Expansion Theorem"; cf. ([12], 2.4.5). 

These results generally deal with specific movement of intersection 

points of arcs with members of classes of so-called "order characteristics"; 

cf. ([12], 1.1), with a fundamental number k, this number being such 

that k distinct points uniquely determiner one member of the class. 

The proofs of his results are generally by induction on the fundamental 

number k.

In conformal geometry the class of order characteristics is the 

set of all circles and k = 3. It would be of interest to find conformal 

proofs of corresponding results for normal arcs of order four. With 

this in mind, 3.1.2. 3.1.4 and Theorem 2 are included for the reader’s 

convenience. Then it is a simple matter to conclude that an end-point 

of such an arc is ordinary and hence strongly differentiable; cf. 3.1.9 

and 3.1.10.
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3.1.1 Let Co be a circle which meets at four distinct 

points a, b, p1, p2 Then as t moves monotonically and continuously 

from a on a4 there is a point

u E C(t, p1, p2) n a4

which moves monotonically and continuously in the opposite direction.

Proof. Without loss of generality we can assume that p1 < p2. 

Since a4 is of order four, Co = C(a, p1, p2) intersects a4

at a, b, p1, p2 and meets. nowhere else; cf. 3.2.2. If t 

is Sufficiently close to a, then C(t, p1, p2) will be .close to, 

C$ and will intersect at t, p^, p£ and at a point u close 

to b. Also C(t, p1, p2) meets nowhere else. Thus u depends 

continuously on t.

It is sufficient to show that t and u move in opposite 

directions on whenever t is close to a. Thus we shall 

restrict t to a suitably small neighbourhood of a in the following.

If an even [odd] number of points of {p1, p2} lie. between a 

and b on Co, then the same number of these points will lie between 

t and u on C(t, p1 p2). Since the distinct circles C^ and 

C(t, p1 p2) meet exactly at and p2, t and u will lie on 

the same [on opposite sides] of Co. On the other hand, since 

a4 m Co = {a, p1, p2, b}, a4 meet C^ at an even [odd] 
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number of points between a and b. Also Co intersects a4 

at a and b. Hence if t and u move in the same direction on 
a4 then t and u will lie on opposite sides Lon the same side] 

of Co; contradiction.

Remarks (i) The movement of t and u in 3.1.1 can continue 

as long as none of t, u, p1, p2 coincide.

(ii) 3.l.l remains valid if the arc a4 is replaced by a 

curve of order four.

3.1.2 Let Co be a circle which meets at points 

Po < qo< ro < SO. If B the closed subarc of a4 between pQ 

and So, then there exists at least one singular point in the interior 
of B. 

Proof. Consider the parameter interval IQ - [po, so]. We 

recall that the same letters are used for the points on the arc as 

are used for their respective parameter values on the parameter 

interval. We define a sequence of intervals and a corresponding 

sequence of circles by induction. Having defined

In = [pn, sn]

with In C Io and

Cn = Cn (pn, qn, rn, sn)
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through pn < qn < rn < sn, we define In+1 C In and Cn+1  as 
follows,

Let the length of In, denoted l(In), be c and let E^ 

be the point of I which is i/8 E from pn; i = 0, 1, ..., 8. 

One of the following holds:

(i) qn, rn lie on the same side of E4---  
(ii) qn , rn lie on opposite sides of En

(iii) q = E4 or rn = E4 (not both since qn < rn ) 

If case (i) occurs, suppose that qn, rn lie on the same side

E4of as pn . Hold pn , qn fixed and let t move from r toward n
If  is already between E3 and E4  no movement is carried

out. Otherwise, by 3.1.1 there is a point u which moves from sn 
5

toward E7. If u reaches E7 first, then define

Tn+l ^n’ ^n’ = ^EO’

and

C = C(p , q t, u). n-rl -n’ n’ ’

If t reaches E3 first, then hold p, t = E3 fixed and let 

t’ move from qn toward E2, If q2 is already between E2 and

E4, no movement is carried out. Otherwise, by 3.1.1 there is a

point u' which moves from u toward E7. If u' reaches E first 

then define
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Xn+l “ ^n’ " ^n’ V " ^0* V

and

En-l = fc'’ u,)*

If t' reaches E2 first, hold t' = E2, t = E3 fixed and let 

t” move from pn = Eo_ toward E1. Then there is a point u" which  
moves from U' toward E7. If u" reaches E7 first, then define

=ct"’ u',] = “L V c CEo> V

and

Cn+1 = C(t", t', t, u").

If t” reaches E1 first, define

L+l = Ct"’ u"] = [E1’ u"] C CE1’ E8] 

and

Cn+1 = G(t", t', t, u").

If qn, rn lie on the same side of E4. as sn, then by a 

symmetric construction we define In+1 and Cn+1 We note that 

If case (ii) occurs, let Fi. be the point on I which is n
from pn; i =0, 1, 6. One defines In+1 and Cn+1 as 

follows. Hold p , s fixed and let t move from q rn’ n n toward F^.

6 c

If is already between F^ and F3, no movement is carried out.

Otherwise, by 3.1.1. there is a point u which moves from rn toward 

F4. If rn is already between F and3 F4, again no movement is

carried out. Without loss of generality, assume that u reaches

F^ first. Now hold pn, u fixed and let t’ move from t toward

F2. Then there is a point u' which moves from s^ toward the point
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and

If u' reaches F5 first, then define

L+l " tpn’ u'] = [pn’ V “ ^O’

F5

Cn+1 = u’ u<)-

If t’ reaches F2 first, hold t’ = F2, u fixed and let t" 

move from pn toward F1. Then there is a point u” which moves

from u’ toward F5. If u’ reaches F5 first, then define  

L+l = [t"' u"] = [t"’ V C[F0' E]
1 
9

and

C . = C(t", t', U, u"). n+l ’ ’

If t” reaches F^ first, then define

L+i= ct"’ u"3 = CFi’ u"3 c CFi>

and

cn+1 = C(t", t', u, u").
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Then

Ai .,) < | .hi), 
n+l — o n

If case (iii). occurs, without loss of generality, let rn = F3

We define In+1 and Cn+1 as follows. Hold pn , rn = F3 fixed and  
let t move from qn toward F2. If qn is already between F2

and F3, no movement is carried out. Otherwise, by 3.1.1. there is

a point u which moves from sn toward F5. If u reaches F5 

first, then define

h+l = ^n’ u-' “ ^n’ V = [F0’

and

C - cCp « r , u) n+l rn* ’ n’

If t reaches F^ first hold t = F2, rn = F3 fixed and let

t’ move from p toward F1 Then there is a point u' which

moves from u toward F5. If u' reaches F5 first, then define

h+i = [t'' u'3 “ Et’’ V c^o’ f5]

and

C .= C(t’, t, r , u'). n+l ’ ’ n’
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If t' reaches F^ first, then define

= [f, V] = [Fr u'] C[FV Fg] 

and

C  = C(t', t, r , u'). n+l  

Then

f(I+1) <1 .Al), 
n+l ~ o n

By construction, in each case

n+l — o n

and (In) is a nested sequence of closed intervals such that

l(In )--> 0. Hence

n In = (y] ■ 
n

([22], p. 10),. This point y E B is the required singular point.

If y is not an interior point of B, then hold q0 and r0 

fixed and let t move a small distance from p0 toward q0 before 

defining the sequence (In). By 3.1.1 there is a point u which
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moves a small distance from s0 toward r0. Now use the interval 

[t, u] as Io and C(t, qo, ro, u) as Co and construct I and 

Cn as above. This will ensure that we obtain a singular point in 

[t, u] and hence in the interior of as required.

the

3.1.3 let pQ < q0 < ro be three points on and B 

closed subarc of a4 bounded by po and ro, Let a c

Suppose that there exists a circle through the points a, po, qo, ro.

If ba is the system of circles passing through the point a, then

there exists at least one ba - singular point y on i.e., 

for any neighbourhood N of y on B there exists a circle of ba

that meets N at least three times.

Proof. Let Io be the parameter interval [po. ro] and 

Co = C(a, po, qo, ro). We define a sequence of intervals and a 

corresponding sequence of circles by induction. Having defined 

In = [pn , rn ] with In C Io and Cn through a and the points

pn < qn < rn, we define In+1 C In and Cn+1 as follows,

Let l(In) = c and Di be the point of which is i/4 c 

from pn; i = 0, ..., 4, Either

Ill Qn $ d2
or

(ii) q„ = D .... 111 n 2
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If case (i) occurs, we can assume, without loss of generality, 

that lies between D0 and D2. Hold a, fixed and let t

move from qn toward D2. Then by 3.1.1. there is a point u 

which moves from rn. toward D3. If u reaches D3, first, then 

define

h+i = ‘x-u] = cdo- y

and

Cn+1 = C(a, pn, t, u).

If t reaches D2 first, then hold a, t = D2 fixed and let

t' move from pn toward D1. By 3.1.1. there is a point u

which moves from u toward D3. If u’ reaches D3 first, then 

define

“ Ct8, u’] = Ct*, Dj] C[Dq, D^J 

and

Cn+1 = C(a, t', t', u')

If t’ reaches D^ first, then define

In+1 = [t', u'] = [D1, u'] C [D1, D4]

and
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Cn+1 = C(a, t', t, u').

If case (ii) occurs, then we define In+1 and Cn+l as in

the second paragraph of case (i).

By construction l(In+1) <= 3/4 l(1) and (In) is a nested

sequence of closed intervals such that l(In) -> 0. Hence

0 L = M 
n

exists a circle of Ba B u N2 at three distinct

([22], p. 10). This point y on B is a ba - singular point,

3.1.4 Let N1 , N2 be arbitrary neighbourhoods of two singular 

points z1. z2 on a4 Let be the closed subarc of a4 

between z1 and z2. If a E a4/N1 u B u N2 then there 

which meets N^ 

points.

Proof. By the definition of a singular point, for each 

neighbourhood N^ of z^ on there exists a circle meeting 

N^ in exactly four intersection points, i = 1, 2. Let (x1, x2, x3, x4) 

(x1', x2', x3'm x4') be respective quadruplets for and z2

Without loss of generality, we may take xj and xj' , j = 1, ..., 4, 

such that



and a < x1 on a4. Since a4 is normal, the four-tuples

(x1, x2

on their

x3, x4) and (x1', x2’, x3', x4’) lie in the 

corresponding circles as they do on Now

same

hold

order

x2, x3
fixed and let t move on a4 from x4 toward x3 Then by

3.1.1. there is a point u which moves from x1 toward a. Continuing

this movement one obtains either

coincides with x3', while a < u1
or

(ii)1 u coincides with a, t <= x3'. while

If case (ii)1 occurs, then we are finished. If case (i)1 occurs, 

then hold x2 and t = x3' fixed and let t' move on a4, from

x3 toward x2'. By 3.1.1. there is a point u' which moves from 

u toward a with the final result that either

(i)2 t' coincides With x2’, while a < u

(ii)2 u' coincides with a, while t1 < x2’.

If case (ii)2 occurs, then we are finished. If case (i)2

occurs, then hold t = x3’, t' = x2’ fixed and let t" move from 

x2 toward x1'. Then there is a point u” which moves from u' 

toward a. Finally either

(i)3 t” coincides with while a < u"
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u" coincides with a, while t" <= x1'.

If case (ii)3 occurs, then we are finished. If case (i)3

occurs, then we have a circle which meets at u", x1', x2', x3

However, the points x2', x3' determine a unique circle and

this circle also meets a4 at x4 Thus this circle meets

at least five times; contradiction. Hence case (ii)k must occur

for some k 1 <= k <= 3 and the result follows

3.1.5 Let z1, z2 be two singular points of  a4 and let 

a c a4/ B, where B is the closed subarc of a4 between

z1 and z2. Then there exists at least one - singular point 
y on B.

Proof. Let N1 (1) be a neighbourhood of z1 on a4 with
(1)a \ Ni , i = 1, 2. By 3.14. there exists a circle meeting 
at a and meeting N1(1) u B u N2(1) at three points

po < qo < ro. By 3.1.3. there is a ba-singular point. y(1) c N1(1) u B u N2(1).

If y(1) c B , then we are finished. If y(1) c B. then

y(1) c N1(1) \ B, say. Now take suitable smaller neighbourhoods
Ni(2) c Ni(1). of zi, i = 1, 2, with y(1) c Ni(2) and apply 3.1.4

and 3.1.3 again using the new neighbourhoods Ni(2) of zi. we 

obtain a ba - singular point
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e N.^ U fl V N^^.

If y(2) c B, then we again take new neighbourhoods Ni(3) of zi

with y(2) c Ni(3) and apply 3.1.4 and 3.1.3 to obtain a ba - singular

point

y(3) c u U N (3)k
3

Repeating this process

Ni(n) converges to zi

if necessary, and taking 
either we obtain a ba

N. such that 1

y c B at some stage or we obtain a sequence y

singular point

of ba - singular 

points lying outside B with an accumulation point which coincides

with at least one of the z. say z1. But then z1 is a ba - singular

point and we have the desired result

Arguments which are analogous to those used in 3.l.3. 3.1.4 and 

3.1.5 yield the following.

3.1.6 Let y1, y2 be two points of a4 and let B be the

closed subarc of between them. Let a1, a2 be distinct points

of a4 \ B. If y1 and y2 are ba1 - singular points, then

there exists at least one ba1a2 - singular point y on B; i.e., 

for any neighbourhood. N of y there exists a circle passing through 

a1, a2 and meeting N at least twice.

3.1.7 Let y1, y2 be two points of a4 and let B be the
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closed subarc of a4 between them. Let a1, a2, a3, be mutually

distinct pcints of a4 \ B. If y1 and y2 are

singular points, then there exists at least one

point y on B; i.e., for any neighbourhood N

a1a2a3 

of y 

12
- singular

there exists

a circle passing through a1, a2, a3 and meeting at least once

3.1.8 We are now ready to give the main result of this section,

N

a4Theorem 2: A normal arc of order four contains at most

finitely many singular points.

Proof. Suppose that there are

on a4. Take any point a1 on

infinitely many singular points

a4. Then by 3.l.5. there exist

infinitely many ba1 - singular points on a4. Take another point

a2 on a4, a1 = a2. By 3.1.6

ba1a2 -singular points on a4 

on a4 distinct from a1 

infinitely many ba1a2a3

and

there exist infinitely many 

Finally, take another point 

a2. By 3.1.7. there exist

singular points on But now we

have constructed a circle through a1, a2, a3 

at infinitely many points; contradiction.

which meets a4

3.1.9 If p is an end-point of a4, then p is ordinary.

Proof. Assume p is a singular point. Then for each neigh
bourhood N(1) of p there exists a circle which meets N(1) four
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times, say at p1 < q1 <r1 < s1. By 3.1.2. there exists a singular

point y(1) in (p1, s1). Now take a new smaller neighbourhood
N(2) of P with y(1) c N(2). By 3.1.2. there exists another

singular point y(2) different from y(1). Repeating this process 

and using 3.1.2, we obtain an infinite number of singular points. 

This is impossible, by Theorem 2.

3.1.10  In 3.1.9 it was shown that an end-point p of

is ordinary. Thus there exists a neighbourhood of p on 
which is of order three. But it is known that N3 u {p} is strongly 

differentiable at p([4], 3.5). Thus, an end-point p of a4 is 

strongly differentiable.



2 Multiplicities For Arcs of Order Four

Introduction

In [4] N.D. Lane and P. Scherk introduced multiplicities for

open arcs with one end-point p, counting p [a point q of 
a3] three times on C(p3) [on a general osculating circle of

a3 at q] and twice on any other [general] tangent circle of

a3 at p [at q]. Then they showed that no circle meets a3 u p 

more than three times, i.e., the inclusion of p and the introduction 

of Multiplicities do not alter the order of a3.

In 1.3 of [12] 0. Haupt and H. Kunneth introduced intersection 

and support components of continua and derived some interesting results 

concerning intersection and support properties of arcs and curves 

with general order characteristics having a certain base number k.

However, since we shall be only interested in the special case 

where the class of order characteristics is the set of circles in 

the conformal plane, our attention to arcs of order four will be 

concerned with the former approach of Lane and Scherk. Correspondingly 

in this section we shall prove the following result.

Theorem 3: The order of the open arc a4 with the possible 

exception noted in the remark following 3.2.l4. is not changed by

(i) the addition of one of the end-points p;

(ii) the introduction of multiplicities of p, such that p 

51
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is counted once, twice and three times, respectively, on a nontangent 

circle through p, a nonosculating tangent circle through p, the 

osculating circle C(p3) of a4 u {p} at p ;

(iii) the introduction of multiplicities at interior points 

q of a4 such that q is counted once on any circle through q 

which is not a general tangent circle at q, twice on any general 

tangent circle at q which is not a general osculating circle, three 

times on any general osculating circle at q which intersect a4 

at q and four times on any general osculating circle at q which 

supports a4 at q. In the last case q would be a singular point 

of a4.

We shall assume in the rest of section 3.2 that p < s for all

s c a4

3.2.0  No circle C through four mutually distinct points of

a4 supports a4 at one of these points and intersects at 

another one.

Proof. Suppose C supports a4 at q1, intersects 

q^ and meets a4 at q3 and q4. Then a suitable circle 

a4 at

sufficiently

close to C through q2 and q3 will intersect at two points 

near q1 and at one point near q2. This contradicts the order of a4

3.2.1 No circle C supports a4 at more than two points.
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Proof. Suppose C supports a4 at q1, q2 and q3. By 3.2.0.

C does not intersect a4. Hence

a4 c c u Ce,

say.

Let L, M, N be three disjoint neighbourhoods on a4 of

q1, q2, q3, respectively. The end-points of M, N lie in C

Choose a suitable circle D in Ce which is so close to C that

the end-points of L, M, N also lie in D e We can orient D such

that C c D. On the other hand

D. ql’ q2’ q3 C DiC Q

L

Thus D separates q1, q2, q3 from the end-points of L, M, N, 

respectively, and hence D will intersect L, M, N in not less 

than two points each. Thus D meets a4 more than four times;

contradiction

From 3.2.0 and 3.2.1 we obtain

3.2.2 If a circle C supports a4 at t, then C cannot 

meet at more than two further points

If a circle C meets a4 at four distinct points, then all 

of them are points of intersection.



If a circle C through three mutually distinct points of 

supports at one of them then C intersects at 

the other points.

3.2.3x If a circle C supports

C a4 u {p}does not meet again.

at s and t, then

 Proof. Suppose that C meets a4 u {p} at a further point u.

Then by 3.2,1. u is a point of intersection of with C or

u = p. The first possibility is ruled out by 3.2.2. Thus u = p.

Without loss of generality, let s < t on a4 Let Let L,M be 

disjoint neighbourhoods of a4 of s, t, respectively. Also let 
N be a neighbourhood of p on a4 u {p},  disjoint with L and

M. The end-points of L, M will lie in Ce, say. Then for a suitable 

circle D in Ce which is sufficiently close to C, D will meet 
a4 at a point near p and the end-points of L, M will also 

lie in De, We may orient D such that CCD., Thus s, t c Di. 

Therefore D separates s and t from the end-points of L and M, 

respectively. Hence D will intersect L, M in not less than two 

points each. D then meets a4 at least five times; contradiction.

(i) If a circle through p meets a4 at four points, then 

at most one of them is a point of intersection.

Proof. Suppose that a circle C through p intersects a4



55

at q1, q2 and meets a4 at two further points r and s. Choose 

disjoint neighbourhoods L, M, N on a4 u {p} of p, q1, q2, 

respectively, which do not contain r or s. Then if t converges 

on L to p, C(r, s, t) converges to C. However, C(r, s, t) 

will intersect M and N if t is sufficiently close to p. Hence 

this circle meets a4 at least five times; contradiction.

(ii) If a tangent circle of at p meets a4 three 

points, then at most one of them is a point of intersection.

Proof. Let C be a tangent circle of at p intersecting 

at the points q1, q2 and meeting at a further point r. 

If t is sufficiently close to p, then C(p, t, r) will be close 

to C and it will intersect at points near q1 and q2. This 

is impossible, by (i).

In the same way (ii) implies 
 (iii) C(p3) intersects a4 at most once.

3.2.5 No circle meets a4 u {p} in more than four points.

Proof. Let C be a circle which meets a4 u {p} in five

mutually distinct points. Because is of order four, one of 

these points must be p while the other four lie on a4. If one 

of these four is a point of support, then a contradiction is obtained 

in 3.2.2. Hence all four of these points of are points of 

intersection. But this is impossible, by (i) of 3.2.4,
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in more than two points.

Proof. If a tangent circle of a4 U {p] at p meets a4 
r

at three distinct points, then at least two of these are points of 

support, by (ii) of 3.2.4. However, this is impossible, by 3.2.3.

3.2.7 No tangent circle of a4 u {p} at p supports a4

at one point and intersects at another point.

Proof. Let C be a tangent circle of a4 u {p} at p 

which intersects a4 at q1 and supports a4 at q2. Then

C does not meet elsewhere by 3.2.6. Then if t is sufficiently 

close to p, C(p, t, q1) will be close to C and meet a4 twice 

near q2. This is impossible, by 3.2.5.

3.2.8 C(p3) cannot support at a4 point q.

Proof. Suppose that C(p3) supports a4 at q. Then, by 
3.2.3 and 3.2.7. C(p3) does not meet a4 elsewhere. If t

 is Sufficiently close to p, then C(p2, t) will be close to C(p3) 

and meet a4 twice near q. This is impossible, by 3.2.6.

3.2.9 No general osculating circle of a4 at q intersects

a4 \ {q} more than once.



Proof. Let C be a general osculating circle of a4 at 

q which intersect a4 \ {q} at two distinct points r and s.

Then, by definition of a general osculating circle, there is a circle

D sufficiently close to C which meets a4 three times near q.

But D will also intersect a4 once near r and once near s 

since D is close to C. This is impossible because a4 is

of order four.

3.2.10 No general osculating circle of at q supports 

a4 at a point r = q.

Proof. Let C be a general osculating circle of a4 at

q which supports a4 at r = q. Either 

(i) C intersects a4 at q 

or

(ii) C supports a4 at q.

Let

N = N' U {q} U N"

and L be two small two-sided neighbourhoods of q and r on a4 

respectively, where N’ [N"] precedes [follows] q. Without loss 

of generality, let q < r and
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In case (ii). 3.2.3 implies that C does not meet a4 outside

q and r.  Hence

N" c C

Suppose that case (i) occurs. Since is a general osculating

circle of

C

a4 at q,

C = lim C(qn , qn',  qn") 

where the three nutually distinct points qn" converge on

N to By taking subsequences qnm, qnm', qnm" if necessary
qn' qn

q

C = lim C(qnm , qnm', qnm" ) 

where at least two of the three mutually distinct points qnm ,qnm’, qnm” 

converge on N’ to q or at least two converge on N" to q. Now, 
both N' U {q} and N" u {q} satisfy condition CI' at q;

cf. 2.4.2 and 3.1.10. Let D be a circle close to C in

ce u {q}

which supports C at q. Then D will intersect L at least twice. 

But the end-points of N lie on opposite sides of C. Hence the 

end-points of N' will lie on opposite sides of D. But D is a 
tangent circle of N’ U {q} or of N” U {q} at q, by 2.4.1

(i). Thus either
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(a) D supports N at q, intersects N \ {q} at 

least once and intersects L at least twice, or

(b) D is a tangent circle of N' U {q} or of N" U {q}

at q which intersects a4 at q; i.e., a general osculating circle

of a4 at q.

Both of these are impossible, by 3.2.2 and 3.2.9. respectively.

Suppose that case (ii) occurs. Then

N' c Ce. 

We will first show that C is necessarily the osculating circle 
of N' U {q} or of N" U {q} at q. Suppose that C is neither 

of the one-sided osculating circles of a4 at q. Now

C = lim C(qn, qn', qn" qn''') 

where the four mutually distinct points qn, qn', qn”, qn'''  converge 

on N to q. Since C is neither of the one-sided osculating circles 

of a4 at q, we can assume, by taking subsequences, if necessary,

that at least two of the points qn, qn', qn'', qn''' converge on N' 

to q while the other two converge on N'' to q. Thus C is a 

general tangent circle of both N' U {q} and N" U {q} at q. But

since both N’ U {q} and N” U {q} satisfy condition CI' at
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q, then a4 satisfies condition CI' at q and hence the family

of tangent circles of a4 at q is a pencil of the second kind

with fundamental point q. Hence one of the one-sided osculating 

circles of N at q lies in Ci(see Figure 4). Cali this circle 

K. Without loss of generality, suppose that K is the osculating 
circle of N’ U {q} at q. Now let s e N’. Then the tangent 

circle

C'(q2, s)

of N' U {q} at q through s lies in Ce U {q} , since s e Ce 

If s converges to q on N', then

K » lim C»(q2, s) C C U C , 
6 s-^q

since N' U {q} is differentiable at q; cf. 3.1.10. This is a 

contradiction. Hence C is one of the one-sided osculating circle 

of a4 at q.
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Figure 4
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 Next C cannot be the osculating circle of N'' U {q} at q, 

by 3.2.8. Hence C is the osculating circle of N' U {q} at q. 

If t is close to q on N', then the tangent circle C’(q2 , t) 

of N' U {q} at q through t will be close to C, by 3.1.10. 

But t e N’ c Ce. Hence by 2.4.l (i), 

C'C(q2, t) \ {q} c Ce

and thus if t is sufficiently close to q on N', C’(q2, t) will 

intersect L at least twice. This is impossible, by 3.2.2 and 3.2.9. 

since C'(q2, t) either supports at q or is a general osculating 

circle of a4 at q.

a4 at q

No general osculating circle of 

can intersect a4 again.

a4 at q which supports

Proof. Let C be a general osculating circle of a4 at q 

which supports a4 at q and intersects a4 at a point r = q. 

Since C supports a4 at q,

C = Cn = lim C(qn, qn' , qn", qn''') 

when the four mutually distinct points qn, qn’, qn”, qn''' converge 

on a4 to q. Since r is a point of intersection of with

C, for sufficiently large n Cn will be close to C and hence 

intersect a4 at a point close to r. But then Cn meets a4

at least five times; contradiction.
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3,2,12 No general osculating circle of a4 at q which

supports a4 at q meets a4 U {p} again.

Proof. Let C be a general osculating circle of at
q which supports a4 at q and meets a4 U {p} at a further 

point u. By 3.2.10 and 3.2.11. u = p and C does not meet a4 \ {q} 

As in the proof of 3.l.l0. one can show that C is necessarily one 

of the one-sided osculating circles of at q. Let

N » N» U (q] UN” [L]

be a, small two-sided [one-sided] neighbourhood of q [p] on a4 U {p} 

Without loss of generality, let

a4 \ {q} c Ce.

Then N’ N" £ C . 

Suppose that C is the osculating circle of N' U {q} at q. 

If t is sufficiently close to q' on N', the tangent circle

C’(q2^ t)

of N' U {q} at q through t will be close to C. By 2.4.1 (i).

C'(q2, t) \ fq) C Ce
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and thus if t is sufficiently close to q on N', C'(q2 , t)

will meet L at least once. But C’(q2, t) must meet N with an

even multiplicity. But then we have one of

(a) C’(q2, t) supports a4 at q, t and meets L at

least once,
(b) c'(q2, t) supports a4 at q, intersects N \ {q}

at two points t, r and meets L at least once,

(c) C'(q2, t) intersects at q, t and meets L at 

least once.

But these situations are impossible, by 3.2.3. 3.2,2. 3.2.9 and 

3.2.10.
Similarly C cannot be the osculating circle of N” U {q} at 

q.

3.2.13 No general osculating circle of a4 at q meets

a4 U {p} \ {q} more than once.

Proof. Suppose that C is a general osculating circle of 

at q which meets a4 U {p} at two further points r < s. Then 

by 3.2.9 and 3.2.10. r = p and s is a point of intersection of 

with C. By 3.2.11. C intersects at q. But then we construct 

a circle D, as in 3.2.10 case (i), which either supports a4 at

q and meets a4 at three further points or is a general osculating 

circle of at q which meets at two further points. Both 

of these situations are impossible, by 3.2.2. 3.2.9 and 3.2.10.
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3.2.14 Let C be a general osculating circle of a4 at q 

which meets a4 U {p} at p. By 3.2.12 and 3.2.13. C intersects- 

a4 at q and does not meet elsewhere. Now

C = lim C(qn , qn’, qn’’) 

where each of the circles C(qn, qn', qn") has a natural orientation 

with the points qn, qn', qn'' in the order in which they occur 

on a4 Hence the orientations of C(qn, qn’, qn''), (we take 

subsequence if necessary) induce an orientation on the limit circle C

Then we have the following result (see Figure 5(a)).

The oriented circle C cannot be a tangent circle of a4 U {p}

at p in the same direction

Proof. Let

N » N*- U [q] U N” CL]

be a small two-sided [one-sided] neighbourhood of q [p] on a4 u {p}

Without loss of generality let N' c Ce. Then the entire subarc B 

of a4 bounded by p and q lies in Ce.

Since C is a general osculating circle of at q, C is

either the tangent circle C’(q2 , p) of N' U {q} at q through

p or the tangent circle C''(q2 , p) of N" U {q} at q through p .

Let C = C’(q2 , p), say. Then
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 lim C(q, s’, p) = C.
s*cN»
s’-^q

Next suppose that C(q, s’, p) meets B again at a point t.

Then

C(p, t, q) = C(q, s’, p)

and as s’ —) q, t —) p. However, the end-points of N lie on 

opposite sides of C. Thus the end-points of N will lie on opposite 

sides of C(p, t, q) for t close to p on L. Therefore C(p, t, q) 

meets N with an odd multiplicity. But C(p, t, q) meets N at 

q and s’. Thus C(p, t, q) meets N at least three times and 

we have a circle C(p, t, q) meeting a4 u {p} at least five times. 

This is impossible, by 3.2.5. Hence C(q, s', p) does not meet 

again.

But B c Ce. Thus 

B \ N' c C(q, s’, p)e (see Figure 5(b)).

Let t c L. The end-point f of L lies in Ce, Hence f lies 

in C(p, t, q)e. Also C(p, t, q) meets C(q, s', p) only at p 

and q. But t c B\ N'. Hence

t c C(q, s’, p)e 
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and thus the arc of C(p, t, q) containing t between p and q 

lies in C(q, s', p)e. Thus 

s’ c C(p, t, q)i

But

f e C(p, t, q)e

and s' c C(p, t,

imply that the arc of a4 between f and s' meets C(p, t, q) 

with an odd multiplicity and hence at least once, say at s. Thus 

C(p, t, q) = C(q, s, p)

as t -> p, s ->q. We now proceed as in the preceding paragraph 
to obtain a circle that meets a4 u {p} at least five times;

contradiction.

Remark: The possible exception to Theorem 3. occurs as follows.

Let q and p be end-points of an arc a4 of order four. 
Then the osculating circle of a4 U {q} at q, which has a unique

orientation induced by a4, can also be a tangent circle of a4 U [p} 

at p.
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The possibility seems still to exist if q is an interior 

point and p an end-point of a4 The problem arises when an 

oriented general osculating circle C is a tangent circle of

a4 U {p} at P in opposite direction (see Figure 5, (d)).

This problem seems to be analogous to the involving the addition

of end-points to open arcs of order three.

Let a3 be an open arc of order 3 with end-points p, q. Also

let C be a tangent circle of a4 u {p} 

circle of a4 U {q} at q. Then
at p and a tangent

(a)  the order of

four if C is tangent to

a3 U {p} U {q} a3 
U {p} U {q}

is increased to order 

at p and q in the

same direction (see Figure 5(d)).

However,

(b) the order of a3 is unchanged by the addition of both

end-points if C is tangent to a3 U {p} U {q}  at P and q 

in the opposite direction (see Figure 5(e)).



Figure 5



3.3 Differentiable Curves of Order Four

Introduction.

In this section let be a curve of order four. We shall

assume here for the most part that b4 conformally differentiable; 

cf. 2.4.1. By 2.6 (iii), the characteristic of a point of is 

one of

(1, 1, 1), (1, 1, 2), (1, 1, 2)o, (1, 2, l)o, (2, 1, l)0.

By Theorem 2. contains at most finitely many singular points.

Hence each singular point is elementary; cf. 2.6 (iv). But then each

singular point is a vertex; cf. 2.7. Moreover by 2.6.(iv), the 

only possible singular points are those whose characteristic is one 

of the last four of the five listed above.

In 3.3.1 we derive a result, namely Theorem 4, which is very 

helpful in studying the classification of differentiable curves 

of order four in regard to types and numbers of singular points. An 

euclidean proof was originally given by P. Erdos and can be found 

in [8].

In 3.3.5 and 3.3.6. singular points p of  b4 with the 

characteristic (2, 1, l)Q and (1, 2, l)Q, respectively, are discussed 
 as regards the induced orientation on the osculating circle C(p3) = p 

of a4 at p.
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In 3.3.9 it is shown that b4 contains at most one point 

with the characteristic (2, 1, l)Q and we use Theorem 4 to show 

that contains at most two points with the characteristic

(1, 2, l)o- If b4 contains a point with the characteristic 

(2, 1, l)Q, then b4 contains at most one point with the characteristic 

(1, 2, 1)Q; cf. 3.3.11. b4 contains an even or odd number of 

singular points according to the existence of no points or exactly one 

point on b4. respectively, with the characteristic (1, 2, l)o; 

cf. 3.3.13 and 3.3.15.

It is well known that a strongly differentiable curve b4 of 

order four contains at most four vertices ([12], 4.1.4.3). Here we 

shall show that the. weaker condition of ordinary differentiability on 

b4 Yield the same result; cf. Theorem 5.
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3.3.1 First we shall give a conformal proof of a theorem which 

is very useful as well as being of some interest in its own right ([5])

Theorem 4: Let be a closed simply connected region of 

the real inversive plane bounded by a Jordan curve J, and let J 

be divided into three closed arc a1, a2, a3. Then there exists

a circle contained in and having points in common with all three 

arcs.

Proof. Let be the set of circles lying in R which have 

a point in common with ai,i = 1, 2, 3. We include in the 

point circles of ai. The set Si are closed and connected. Since 

si n sj = 0, s1 U s2 is a closed connected set and so is " r 

s = s1 U s2 U s3.

Let P be any fixed point, P e R . Let Q be the mapping: 

S —> 6^ which takes a non-degenerate circle C of S into that 

point of R which is the image of P under inversion in the circle 

C. If C is a point circle of S, take p(C) = C. The mapping 

is a homeomorphism and both Q and Q-1 take closed connected sets 
into closed connected sets. Also Q[s] = R .

It is well known that the set of points of is unicoherent 

(i.e., if R is written as a union of two closed connected sets

R1 and R2, then R1 n R2 is also closed and connected

Hence S is also unicoherent.
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Suppose that S A S^ H S_ = 0, Then S, 0 S_ 

are disjoint. They are also non-empty. Hence

and S H S 3

s, n (s_ u s_) = (s_ a sJ u (s n so) 

consists of two non-empty disjoint closed sets and is therefore not 

connected. This contradicts the unicoherence of S. Hence there 
is some circle C in R that has points in common, with each of 

the arcs a1, a2, a3.

Remark; J divides the inversive plane into two closed 

simply connected regions bounded by . By this theorem, there 

exist two circles, one in Ji U J and one in Je U J which 

have points inecommon with the three arcs a1, a2, a3.

The following results are special cases of 3.2.1 and 3.2.13, 

respectively.

3.3.2 Let R be a closed region bounded by a curve b4

of order four. Then any circle lying in R has at most two points 

in common with b4.

3.3.3 Let b4 be a differentiable curve of order four.

Then the osculating circle of b4 at any vertex has no further 

points in common with b4



Next we give a result for an interior point of an arc that does 

not involve order but is needed to obtain 3.3.11.’

3.3.4 Let p be a once differentiable cusp point of an arc 
Q. Then all circles p which support Q at p lie locally on 

the same side of Q outside p.

Proof. Since p is a cusp point, there is at least one circle 
K which supports Q at p. Let K' be any circle, K' = K, 

which supports at p.

Suppose that K and K’ lie locally on opposite sides of a 

in, a small neighbourhood N of p. Then 

(K \ [p}) AN and (K* \ [p] ) A N

are separated by a . Hence K' supports K at p. Therefore

K’ belongs to c pencil of circles. T of the second, kind, the members 

of which touch the circle K at p. Then there are nontangent cirles 
of a at p which intersect K and K’ at p and hence intersect 

a at p also. This is impossible, since all the nontangent circles 

support a at a cusp point.

3.3.5 Let p be a point of a differentiable curve of b4 

order four with the characteristic (2, 1, 1)o. Then by 3.3.4. we 

may assume that each circle that supports b4 at p lies locally 

on the same side of b4 outside p, say in b4i Let
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N = N» U (p) U N"

be a small two-sided neighbourhood of p on b4 where N’ [EN"] 

is a preceding [proceeding] neighbourhood of p.

We know that the osculating circles of N' U {p} , N" U {p} 

and b4 at P are all equal to the point circle p since N is 

differentiable at p and p- has characteristic (2, 1, 1)o.

We would like to know in what manner N’ U {p} and N" U {p} 

induce orientations on their common osculating circle

C'(p3) = C"(p3) = p.

Let s', t’ be two points on N' with s' > t' (see Figure 6).

Then a natural orientation is induced on C(t’, s’, p) with

the points t1, s’, p in the order in which they occur on 

Now C(t’, s1, p) supports b4 at p. Otherwise, C(tl, s’, p) 

would be a tangent circle of b4 at p which intersects b4 at 

p and hence would be a general osculating circle of b4 at p. 

This is impossible, by 3.2.9. We have assumed that C(t', s', ,p)

and p which does not contain t' lies in b4i

lies locally in b4 outside p. Also C(t’, s1, p) cannot meet

b4 again, by 3.3.2. Hence the arc of C(t*, s’, p) between s’

. Because of the

natural orientation induced on C(t', s', p), the arc of N’ between 

s' and p lies in C(t’, s’, p)e, Now let s -> p on N'.

Then
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lim C(t’, s’, p) = C-tp , t’),

s’-»P
. s*eN’

the tangent circle of N' U p at p through t' and a natural 

orientation is induced on C’(p2 , t') such that the arc of N’ 

between t1 and p lies in C^(p2 , t’)i.

Now let t’ —> p on N' Then

lim C'(p2, t*) = C’(p3) = p 

t’-^p
t’cN'

and

p
lim C*(p, t»)± = 0.
t’-»p 
t’cN’

Thus a natural orientation is induced on the osculating circle
C‘(p3) = p of N’ u {p} at p such that C’(p3)i = 0.

Similarly it can be seen that a natural orientation is induced 
on the osculating circle C”(p3) = p of N’' u {p} at p such 

that C"(p3)i = 0 (see Figure 7).
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Figure 6
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Figure 7
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Let p be a point of b4 with the characteristic

(1, 2, l)o. Let

N = N’ U [p] U N”

be a small neighbourhood of p on b4 where N1 [N"] is a

preceding [proceeding] neighbourhood of -p of order three; cf. 3.1.9.

We know, as in 3.3.5 that the osculating circles of N’ u {p}, 

N’' u {p} and at p are all equal to the point circle p. 

But in what manner does N’ u {p} [N" u {p}] induce an orientation 

on its osculating circle C*(p^) £Cn.(p?)]?'

Take points s’ > t' on N' (see Figure 8). Consider C(t’, s’, p) 

C(t', s’, p) does not meet N' again since N' U {p} is order 

three. Also C(t', s’, p) is not a tangent circle of N’ U {p} 

at p. Suppose, for example, that the arc of C(t’, s’, p) between 

s' and p which does not contain t' lies in b4e. We can choose

t' and s' so close to p, and hence C(t', s', p) so close to 

the point circle p, that C(t', s’, p) meets N” at exactly one 

point r”. Then a natural orientation is induced on C(t*, s1, p) 

by taking the points t', s', p in the order in which they occur 
on b4. Because of this induced orientation, the arc of N' between 

s’ and p lies in C(t', s', p)i. Now let s' —> p on N’. Then 

lim C(t', s’, p) = C^p^, t!), 

s'^p 
s’cN’
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the tangent circle of N’ u {p} at p through t' and a natural

orientation is induced on Cf(p , t') such that the arc of N’

between t' and p lies in C'(p2, t')e.

Now let t' —p on N'. Then

lim C’(p2, t1) = C’(p^) = p

t’-4p 
t’cN*

and

lim C*(p2, t’)e = 0.

t’-»p
t»cN*

Thus a natural orientation is induced on the osculating circle
C'(p3) = p of N’ u {p} at p such that C'(p3)e = 0.

Now take t" > s" on N" (see Figure 9). Consider C(p, s”, t") 

A natural orientation is induced on C(p, s”, t”) such that the arc 

of N" between p and s” lies in C(p, sn, t”)e.

Let s” —> p on N". Then

lim C(p, b", t") = C"(p , t"),

s!U>p

6nEN"
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the tangent circle of N’ u {p} at p through t” and a natural 

orientation is induced on C"(p , t”) such that the arc of N”

between p and t” lies in C"(p2 , t")i.

Now let t” -> p on N”. Then

lim C"(p2, t") = C"(p3) = p

tTL-^p

tncN"

and
lim C"(p2, t")i = 0.

t"-*p 
t"cN"

Thus a natural orientation is induced on the osculating circle 
C"(p3) = p of N" u {p} at p such that C"(p3)i = 0.

We note that in 3.3.5 when p was of type (2, 1. l)o, the 
 natural orientation of C.(p3) = p was the same as the induced 

orientation of C"(p3) = p. However, if p has characteristic

(1, 2, l) as above, we see that the induced orientation of C’(p3) = p 
is opposite to the natural one induced on C”(p3) - p.

Thus the natural orientation induced by b4 on circles through 

the points of N' and N' is discontinuous at p in the case where

the characteristic of p is (1,2,l)o, 
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Figure. 8
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Figure 9
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3.3.7 We next state a well known result ([4], Theorem 5). 

Let p be a conformally elementary point of an arc a with 

the characteristic (a0, a1, a2) or (a0, a1, a2)o. Then 

(i) p satisfies condition CI'; cf 2.4.2, iff it satisfies 

condition CI; cf, 2.4,1. and ao = 1. 

(ii) a is strongly differentiable at p iff it is differentiable
at p and a0 - a1 = 1. 

 

By 3.1.9. each point of a normal arc a4 [curve b4] of
 

order four is elementary.

If p is a differentiable point of an arc a4 [b4] with the

characteristic (1, 1, 2) or (1, 1, 2)0, then by the above result, 
a4 [b4] strongly differentiable at p.

3.3.8 We combine 2.4,2 (iv) and 3.3.7 to obtain:

Let p be a differentiable point of with the characteristic 

(1, 1, 2) or (1, 1, 2)0. Then the natural orientations induced on 

the one-sided osculating circles of b4 at p are identical.

3.3.9 Let b4 be a differentiable curve of order four.

Then contains at most one point with the characteristic (2, 1, 1)0.
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Proof. Suppose that contains at least two points q1, q2

with characteristic (2, 1, 1)0. Let r c b4, r = q1, q2 and

of b4 at q1 which intersects b4 there. Hence K is a general

K = K(q1, q2, r) be the circle determined by q1, q2 and r. By

K3.2,2. at most one of

with
q1, q2 and r is a point of support of

 

If K supports b4 at r, then K intersects b4 at q1, q2
Since q1 has characteristic (2, 1, l)0, then K is a tangent circle

osculating circle of b1 at q1 which meets b4 at r and q2.

This is impossible, by 3.2.9 and 3.2.10.

If K supports b4 at q1, say, then K will intersect b4
at q2 

at q2.

and hence K will be a general osculating circle 

Again this is impossible, by 3.2.10. 
of b4

Thus q1, q2 and r are points of intersection of K with 

b4. But again K will then be a general osculating circle of 

at q1 which meets b4 at q2 and r. This is a contradiction, 

by 3.2.9. Hence we have the required result, 

3.3.10 b4 contains at most two points with the characteristic

(1, 2, l)0.

Proof. Suppose b4 

characteristic (1, 2, l)0.

contains three points p1, p2, p3 with

Then these points divide b4 into
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three closed arcs. Hence by Theorem 4. there exists a circle K 

lying in b4 U b4i having points in common with all three arcs. 

By 3.3.2. one of the pi, say p, is a point of contact of K with 
Hence K supports b4 at p. But this possibility is 

excluded by the characteristic of p, since both the nonosculating 
 

tangent circles and the nontangent circles of b4 at p intersect

b4 at p.

3.3.11 If b4 contains a point with the characteristic 

(2,1,1)0, then at most one point of b4 has the characteristic

(1, 2, l)0.

Proof. Let p be a point of b4 with characteristic (2, 1, 1)0

and q1, q2 points of b4 with characteristic (1, 2, l)Q. Then

p, q1, q2, divide into three closed arcs., By Theorem 4. there

exists a circle K lying in b4 U b4i,  having points in common
 

with all three arcs. By 3.3.2. one of the points p, q1, q2 is a 

point of contact of K with b4 This point of K cannot be either

or q2. Otherwise, K would support b4 at this point. But 

this situation is excluded by the characteristic, since both the 

nonosculating tangent circles and the nontangent circles of b4 

intersect b4 at a point of type (1, 2, 1)0. Hence p must be

the point of contact of K with b4. 

However, by the remark following Theorem 4. there exists a circle

K’ lying in b4 U b4 , having points in common with all three arcs 
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As before, neither q1 or q2 is a point of contact of K' with 

Hence p is again the point of contact of K1 with

But this is impossible, by 3.3.4

3.3.12 Here we introduce a concept of monotony of an arc a. 
We shall denote a general osculating circle of a at a point p 

by C(p).

a is said to be monotone, if a induces a unique orientation 

on the general osculating circles at each point of a such that if 

p < q on a,

or

C(p) e C(q). and C(q) C C(p) i e

*

C(p) C G^)e and C(q) C(p)^.

We note the following results:

(i) Arcs of order three are monotone ([6], 4),

(ii) Let each interior point of an arc a4 of order four

be ordinary. Then the closed arc a4 is monotone.

Proof.  Each interior point of a4 is ordinary. Also the

end-points of a4 are ordinary, by 3.1.9. Hence each [interior] 

point of the arc possesses a [two-sided] neighbourhood of order three. 

But each of these neighbourhoods is monotone, by (i). By taking the 

union of these neighbourhoods one obtains the monotony of a4
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3.3.13 Let a differentiable curve order four contain

exactly one point with the characteristic (1, 2, 1)0. Then b4 

contains altogether ah odd number of singular points.

Proof. Let p be the point of with the characteristic 

(1, 2, l)0 Suppose that contains an even number of singular 

points altogether. We know that the number of singular points i£

finite, by Theorem 2. 

Let the other singular points of b4 be q1 < q2 < ...  < q2n+1

where n > 0. Without loss of generality, let  p lie between 
q2n+l and ql on b4, if n>=1 let

N = N* U fpl U N” [Nn
. P, P 1 4 P %•

/ J
= N’

qj

be a small two-sided neighbourhood of P [qj] on b4, where

N’ [N1] is a preceding neighbourhood of p

is a proceeding neighbourhood of p [qj] on

[q.) and N” [N” ] 

b4, j = 1, 2, ..., 2n+l.

Without loss of generality, let the natural orientation induced 
on the osculating circle C"(p3) = p of N" U {p} at p be such 

that C”(p3)i = 0. By 3.3.12 (ii), the closed arc of between 

p and is monotone. Hence the osculating circle C'p3) of 

N' u {p} at q1 is such that

C'(q 5) C C"(p5) and C"(p5) G C’(q 3).. 
^6 J. 1
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Thus by 3,3.3. b4 \ {q1} c C'(q13)i. Now q1 has characteristic
  

(1, 1, 2), (1, 1, 2)0 or (2, 1, l)0. But then by 3.3.5 and 3.3.8.
the osculating circle C"(q13) (= C'(q13)) of N" u {p} at q1

has the same induced orientation as C’(q1 3). Hence

^4 \ C C"(ql^i"

Next, the arc of between and q1 and q2 is monotone, by 

3.3.12 (ii). Thus

C*(q 3) e C"(q 3) and C"(q 3) C C'(q 3) ,

 where C’(q23) is the osculating circle of N" u {q2} at q2. Thus 

by 3.3.3,

^4X^2} C C*(q2 ^e’

and again by 3.3.5 and 3.3.8. the osculating circle C"(q,^) (= C'(q2^)) 

of N" u {q2} at q2 has same induced orientation as

Hence

A \^2}cC"(c123)e-

Continuing in this, manner we obtain for each j with j odd 
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and for each j with j even

In particular,

p ^4\{q2n+l} C ^'^Rn+Pi’

But again by 3.3.12 (ii), the arc of b4 between q2n+1 P 

is monotone. Therefore

C^p?) CO"^ and C'^) C C'(p3)e.

However we assumed that C”(p^) = 0. By 3.3.6. C’(p3)e = 0,
 

Thus q2n+l e C((p3)i and finally

C%3J CC’(?)..t 
n2n+l - i

This is a contradiction and we have the required result.

Corollary: Let a differentiable curve of order four 

contain exactly one point with characteristic (1, 2, 1)0. Then 

contains an odd number of singular points >= 3.

Proof. Let a4 = b4 \ {p}. where p is the point with

characteristic (1, 2, 1)0. Suppose that a4 contains no singular



91

points. Then by 3.3.12 (ii), a4 = b4 is monotone. Now let

= N» v {pj U N*’

be a small two.-sided neighbourhood of p on b4. Since b4 is 

monotone

C'(p3)c C»(p3) and C”(p3)cC'(p3). 
6 I*

or

C’(p3) <= C"(p3). and C"(p3) c C'(p3) „ 
1 e

where C'(p3) [C"(p3)] is the osculating circle of N' u {p} [N" u {p}]

at p. But p is a differentiable point of b4. Hence

C-(p^) = Cn(p^)

and thus neither of the two conditions stated above is satisfied.

Thus our assumption that a4 contained no singular points is incorrect.

Hence a4 contains at least one singular point and therefore b4 

contains at least two singular points. By 3.3.13. b4 contains an

odd number of singular points >= 3.

Remark: We notice in the proof of the above corollary that

no use of the characteristic of p was made in obtaining at least 

two singular points on b4. We state this result here.
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3.3.14 Let b4 be a differentiable curve of order four.

Then contains at least two singular points.

Proof. If b4 contains no singular points, then b4 is 

monotone by 3.3.12 (ii), and we obtain a contradiction as in the 

proof of 3.3.13 Corollary, by taking any point q on b4. Thus

contains at least one singular point, say p.

But then as in the proof of 3.3.13 Corollary. a4 = b4 \ {p}

contains at least one singular point and we obtain the result.

3.3.15 . By using methods which are similar to those employed 

in 3.3.13. we obtain:

Let b4 be a differentiable curve of order four containing

no points with the characteristic (1, 2, 1)0. Then b4 contains 

altogether an even number of singular points >= 2.

3.3.16 We are now ready to prove

Theorem 5: A differentiable curve b4 of order four contains

at most four vertices.

Proof. Let us assume that b4 contains five vertices

p, d = 1, 2, ..., 5.
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Case (i). We allow here that the points have only thepy
characteristics (1, 1, 2) or (1, 1, 2)0. By 3.3.5. b4 induces

a unique orientation on C(p3 ) for each b. We also note that

fay must contain at least six vertices in this case.

However, we shall not need this latter result here.

Without loss of generality, there are at least three vertices,

say qj, J = 1, 2, 3, such that locally outside q.

CCq?) C

and

£4 C

By 3.3.3,

e(q?) C u LA 
J i J

and

A e u[qj} •

Now the points qj. divide b4 into three closed arcs. By

Theorem 4. there exists a circle K lying in b4 U b4i having 

points in common with all three arcs. By 3.3.2, one of the qj say 

p, is a point of contact of K with b4. Since nontangent circles

intersect b4 at p, K is a tangent circle of b4 at p. (see 

Figure 10).
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Next, K and C(p3) belong to the pencil of tangent circles T 

of b4 at p where T is a pencil of the second kind with funda

mental point p. Now

c c(P\ U (p)

and K has another point of contact on b4 outside p. Thus

K C C(p3)e ufp} .

Also b4 induces a continuous orientation on. T . Hence

C(p^) C K± U £pj .

As in 1.1.1.

K C C(p5)e U ^pj

and

C(p5)c ki C b[p]

imply

C(p5) c Kr
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On the other hand, let s be close to p on b4. Then

C(p2, s) c Ke u (pj .

Thus by the continuous orientation on T ,

KCC(p2, s). U (p] |

I

and

C(p2, s) C Ke U M

imply

K. c C(p2, B)r

Now let s —> p on b4. Thus

K. C lim C(p2, s), = C(p5).. 
1 i is—*p

This is a contradiction.
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Figure 10
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Case (ii) We allow as vertices only points with the characteristics 

(1, 1, 2), (1, 1, 2)0 or (1, 2, l)0. We assume that at least one 

of the vertices has the characteristic (1, 2, 1)0; otherwise we are 

back to case (i). We label these points type a, B arid 6, respectively.

We first notice that by 3.3.10, at most two of the can bePd

of type 6. Hence at least three of the five vertices py are of 

type a or B. But then without loss of generality, there are two 

of these three-, say qj, j = 1, 2, such that

(q.)
and

Take a point q of type 6. By Theorem 4. there exists a circle K

lying entirely in b4 U b4i, having points in common with the 

three arcs determined by q, q1, q2. But one of these points is a

point of contact of K with b4 by 3.3.2. Also the point q

cannot be a point of contact as was shown in the proof of 3.3.10.

Hence one of the qj is a point of contact of K with b4 and

we proceed as in Case (i) to obtain a contradiction.

Case (iii) We allow finally py to have any of the following

characteristics

(1, 1, 2), (1, 1, 2)0, (1, 2, l)0 or (2, 1, l)0'
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By 3.3.9. at most one of the vertices is of type (2, 1, 1)0 and 

if b4 contains a vertex of this type, then at most one of the 

vertices has the characteristic (1, 2, 1)0, by 3.3.11.

Let us assume, for the moment, that b4 contains no points

with the characteristic (1, 2, 1)0. Then all of the p^ are of 

type (1, 1, 2), (1, 1, 2)0 or (2, 1, l)0. Let us also assume 

that b4 contains at least one and then exactly one point of type

(2, 1, l)0; otherwise we have Case (i). By 3.3.15. b4 contains 

an even number of vertices. Hence b4 contains at least six vertices.

But exactly one has the characteristic (2, 1, 1)0. Hence the other 

five have the characteristic (1, 1, 2) or (1, 1, 2)0. But then we 

proceed as in Case (i) to reach a contradiction.

Finally we assume that b4 contains exactly one point p with

the characteristic (2, 1, 1)0 and exactly one point q with the 

characteristic (1, 2, 1)0. Hence there are at least three vertices 

of type (1, 1, 2) or (1, 1, 2)0. But then, without loss of generality, 

at least two of the vertices of these types, say are

such that

and

C(qC U [qj ]

th & V hl •
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But again the points q1, q2 and q determine three, closed arcs 
of b4 and we proceed as in Case (ii) to reach a contradiction.

Since the only possible vertices of b4 have the characteristics

(1, 1, 2), (1, 1, 2)0, (1, 2, l)0 or (2, 1, l)0,

the theorem is proved.
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3.4 Strongly Differentiable Curves of Order Four

Introduction.

In 3.3 we showed that a differentiable curve of order 

four contains at most four vertices. Under the restriction that 

is strongly differentiable, here we use Theorem 4 of 3.3 to show that 

b4 contains at least four vertices. This is the well known four- 

vertex theorem for curves of order four; cf. Theorem 6.

Then these two theorems combine to give a conformal proof of 

the main result that a strongly differentiable curve b4 of order 

four contains exactly four vertices; cf. Theorem 7.

UNIVERSITY LIBRARY
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First we need the following result.

3.4.1 Let a4 = a4 be a strongly differentiable closed

arc of order four with end-points p, q and K an oriented circle 

satisfying

(a) K belongs to the oriented pencils of tangent circles 

of a4 at p and q,

(b) Qi^ = [p» q} •

Then there exists at least one singular point in the interior of a4.

Proof. Without loss of generality, assume that a4 c K U Ke. 

Suppose that each interior point of a4 is ordinary. Then by

3.3.18 (ii), a4 is monotone.

But K is the tangent circle C(p , q) of a4 at p through q 

Let s c a4, s = p, q. Thus s e Ke. By 2.4.2 (iv),

C(p2, s) C Kg u £pj and K c C(p2, V £pj .

This statement is true for all s c a4, b Uj q. -Let s —) p 
on a4. 3.2.8. C(p33) K. Hence

C( Ke U and K c CCp?^ U {p} .

However q c K. Thus q c C(p3)i and the monotony of a4 yields
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C(q3) C C(p3)i and C(p3) C C(q3). 

Similarly K is the tangent circle C(q2 , p) of a4 at

q through p. Let s' c a4, s = Pm 1. Thus s' c Ke. By

2.4.2 (iv),

C(q2, s') C Ke U 0} and K C C(q2, b’^ U fq] .

But this statement is true for all s’ c a4, s = p. q. Let 
s' —) q on. By 3.2.8. C(q3) = K. Hence 

C(q^) C K& U^qJ and K C C(q^)i U .

But p c K. Thus p e C(q3)i and the monotony of a4 yields

C(p3) C C(q5)i and C(q3) c CCp5)..

This is a contradiction.

Hence the assumption that each interior point of a4 is ordinary 

was incorrect. Thus there exists at least one singular point in the 

interior of a4.

Theorem 6: A strongly differentiable curve b4 of order four 

contains at least four vertices.
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Proof. Let b4 be separated into any three closed arcs. 

By Theorem 4. there exists a circle K lying in b4 U b4i,

having points in common with all three arcs. By 3.3.2. K meets

b4 at exactly two points l1, l2 say. Now b4 is strongly

differentiable. Thus K is a tangent circle of b4 at l1 and

By 3.4.1. there exists at least one singular point in the open
arc l1 l2 of b4 and at least one singular point in the open

arc l2 l1 of b4. In 3.3 remarked that each singular point

is actually a vertex when we consider differentiable curves 

of order four. Thus q1 and q2 are vertices of b4

contain no singular points. By 3.3.12 (ii), the closed arcs q1q2

and q2q1 are monotone. Since q1 
osculating circles C(q13), C(q23) 

support and do not meet

and q2 are vertices, the 

of b4 at q1 , q2, respectively.

again, by 3.3.3. If

^4 e u Gal ^4 c c<qAuM 

or
C U and G C(q2?)e u(q2] ,

then neither of the conditions of 3.3.12 for the monotony of the

arcs q1q2 and q2q1 can be satisfied. Hence either 
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^4 c and ^4 c c^)ev ^2!

or

A C C(q1^)e u (q^ and U^j .

Without loss of generality, we shall assume that the first situation 

occurs.

Now l2, q1, l1 divide b4 into three closed arcs. By

the remark following Theorem 4. there exists a circle K lying in

b4 U b4e, having points in common with all three arcs. Again 

by 3.3.2. one of the points l2, q2, l1 is a point of contact of

K with b4

If q2 is a point of contact of K with b4 then the other

point of contact m lies in l1 l2 on b4. But then by 3.4.1,

there exist singular points r1, r2 in the open arcs q^m and mq^ 

of b4, respectively. At least one of r1, r2 is distinct from

q1. This contradicts our assumption that the 

q2q1 contain no singular points. Hence l1 

of contact of K with b4.

open arcs q1q2 and

or l2 is a point

Next we note that not both l1 and l2 are points of contact 

of K with b4 Otherwise, K and K support each other at l1

and l2 thus are identical. This is impossible by our choice 

of K and K,
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If say, is a point of contact of K with b4, then 
the other point of contact m lies strictly between l2 and 

q2 on b4(see Figure 11), But we assumed that

^4 C M (q2} .

Now the open arc q2l1 is a subarc of the monotone arc 

and hence is itself monotone. Thus g C(c(K, K,
by 3>2.8» Also C( A3) H JL. Otherwise, l1 would be a   

singular point lying between and q1; contradiction. But as 

in the proof of 3.4,1.

0(±hc(K KjufiJ. 
x e (, 1J
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Figure 11
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Hence C(l13) intersects the open arc l2m at least once and

intersects the open arc mq2 at least once. This is impossible by 

3.2.4 (iii).

If l2 is a point of contact of K .with b4 then m lies

strictly between q2 and l1 on b4. A similar argument shows

that C(l23) will intersect the open subarcs q2m and ml1 of 
  

at least once. Again this is impossible by 3.2.4 (iii).

Thus our assumption that the open arcs q1q2 and q2q1 of b4

contain no singular points is incorrect. Thus there exists at least 

one singular point in the interior of q1q2 or q2q1 on b4.

Hence b4 contains at least three singular points. By 3.3.7

and 3.3.15, b4  contains at least four singular points. But again 

by 3.3, each of these singular points is actually a vertex and we 

have the desired result.

3.4.3 We combine Theorem 5 and Theorem 6 to obtain

Theorem 7; A strongly differentiable curve b4 of order 

four contains exactly four vertices.



Section 4

A Topology on the Set of Conics in the Projective Plane

4.1. Let r = {y} where y denotes a non-degenerate

conic in the real projective plane tp, Let r be the union of 

r and the following so called degenerate conics: a. pair of lines 

a double line (a line counted twice), a double line segment (a line 

segment counted twice) or a point.

108
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4.2. A non-degenerate conic has a well defined interior 

y1. and an exterior Ye . Two distinct lines define a conic y, 

which decomposes the projective plane into two homeomorphic, disjoint 

regions which we may denote by yi and ye . Two points are 

said to be separated by a non-degenerate conic or a pair of distinct 

lines y if and only if one of the points lies in yi and the 

other in yeFor a line or a line segment y only one of yi

ye is non-void.
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4.3. Five distinct points, no three of which are collinear, 

determine a unique non-degenerate conic. If three of the five points 

lie on a line L, which does not pass through the remaining two, 

then is a. unique pair of lines through them, viz., the line L and

the Iine joining the other two points. If exactly four of the five 

points lie on a line L, which does not contain the fifth point, 
there are infinitely many conics through these five points, viz.,L 

and any other line through the fifth point. If all the five points 
lie on a line L, there are infinitely many conics through them, 

viz. L together with any other line, the double line coincident 
 with L, and any double line segment on L containing the five 

points.
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4.4. It is possible to introduce a topology D’ on r

as was done in Section 1 on the set of circles in the inversive 

plane.

A neighbourhood of a non-degenerate conic y is the set of 

conics which lie in the region outside a non-degenerate conic

E e ¥1

and inside a non-degenerate conic

n c y.

A neighbourhood of a pair of distinct lines y is the set of 

conics which separate (and thus lie in the common exterior of) two 

non-degenerate conics which are separated by y.

A neighbourhood of a double line y is the set of conics which 
separate y from a non-degenerate conic which does not meet y.

A neighbourhood of a double segment [a point conic] y is the 

set of conics which lie in the interior of a non-degenerate conic 

which contains y in its interior.
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4.5 . A sequence of conics (yn)neN converges to a conic y

if for any neighbourhood U of Y there exists no c N such that 

yn c U for all n > no. We denote this convergence of Yn to Y

by

lim Yn = Y 
ncN

It is well-known that ( r ,D') is countably compact ([91, 2.1).

In addition the following results are analogous to those in 1.5, 1.6 

and 1.7.

4.5.1  (r, D') satisfies the first and second axioms of

countability.

4.5.2 (r,D') is a Hausdorff space.

4.5.3 ( r, D) is a regular space.
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4.6 Combining the results of 4.5. we obtain ([l], p. 138): 

Theorem 8: ( r, D') is a compact Hausdorff space.



Section 5

The Order, Differentiability and Characteristic of

a Point of an Arc in the Projective Plane

Introduction

This section is comprised of basic background material which 

is fundamental in the analysis of arcs and curves of conical order 

six. The results are generally due to the research of N.D. Lane, 

K.D. Singh and P. Scherk and can be found in [3], [9], [10] and [11].

In 5,3.1 the concept of a conically differentiable point is 

introduced; while in 5.3.3. strongly conically differentiable points 

of an arc are studied, A characteristic is associated with each 

conically differentiable interior point of an arc in 5.4. One of 

the first men to study the concept of characteristic was P. Scherk 

[15] and his. basic ideas were used by N.D. Lane and K.D. Singh in 

[4]. to introduce the conical characteristic of a conically differentiable 

point. Using the characteristic one can list the different kinds of 

conically differentiable interior points of an arc; cf. 5.4.1.

In 5.5 the conical order of a point on an arc is defined. The 

geometric notion of order seems to have been first studied extensively 
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by S. Mukhopadhyaya in [19] and [20]. A more general notion of 

order was introduced by 0. Haupt and H. Kunneth in [12] who used 

many of the ideas of Mukhopadhyaya, With the concept of the order 

of a point on an arc, one can define ordinary and singular points;

cf. 5.6. Some of the earlier work involving singular points was 

done by Mukhopadhyaya and W. Blaschke [21] in the consideration of 

sextactic points.
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5.1 The three-parameter family of non-degenerate conics which 
touch a line U at a point p is denoted by x . If no three 

of the points P, Q, R, S are collinear and Q, R, S do not lie 

on , the conic of t through R, and S is denoted by 

Y(t; Q, r, S).

5.1.1 If Y e T, O = P (Y) denotes the two-parameter subfamily

of X which consists of those conics of T which have at least three-

point contact with Y at P; pr is the subfamily of through
R e J . Let pp (y) denote the subfamily of p(Y), each of

whose members have at least four-point contact with Y at P.
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5.2 The concepts of arc, curve and neighbourhood of a point 

dan be defined in the projective plane as they were defined in 2,3 

for the inversive plane.

3.2.1 Suppose s is an interior point of an arc a Then

we call s a point of support [intersection] with respect to a 
conic Y e r if a sufficiently small neighbourhood of s on Q 

is decomposed by s into two one-sided neighbourhoods which" lie 

in the same region [in different regions] bounded by Y. Y is 

then called a supporting [intersecting] conic of a at s.
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Differentiable and Strongly Differentiable Points.

5.3.1 A point p on a is said to be conically differentiable 

if it satisfies four conditions:

Condition PI. If the parameter s is sufficiently close to 

p, s = p, the line ps is uniquely determined. It converges as 

s tends to p ([9], 4.2).

The limit straight line J is the ordinary tangent of a at 

p. Condition PI implies:
(i) If a satisfies Condition PI at an interior point p, 

then the non-degenerate, non-tangent conics through p all intersect 
a at p or all of them support ([9], 4.11).

Condition PIT, Let a .satisfy PI at p and let Q and

R be any fixed points, Q 3 , u 5 j p, Q, R not collinear,

If s is close to p, s \ p, the unique tangent conic Y(p2, s, Q, R)
of a at p through Q, R and s converges as s tends to p 

([9], 5.1).

The limiting osculating conic of a at p through Q and R 

is denoted by Y(p3, Q, R). The family of all the osculating conics 

of a at p is denoted by r .

(ii) If Condition PII holds for two points Q, R such that 

p, Q, R are not collinear and Q e J, r e 7, then it holds 

for every such pair of points ([9], 5.4).
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(iii) Let PII hold at p. If the arc a intersects J

at p, then the conics of r are degenerate ([9], 5.5).

(iv) If PII holds at p, then r is one of the following

families ([9], 5,6).

Type 1. r is a subfamily Q of T which consists of all

the conics of T which have at least three-point contact at p with 

any particular member of r ; cf, 5.1.1.

Type 2. c* consists of the pairs of distinct lines through 

p, both of them different from J .

Type 3. r consists of the pairs of lines one of which is J 

while the other does not pass through p.

(v) • If Q satisfies PII at an interior point p, then

the conics of t-r all support Q at p, except when p is of 

Type 2 and Q intersect J at p, in which case they all intersect
Q at p ([9], 3.10).

Condition PHI. Q satisfies PII at p and if Q e J ,

then Y(p3 , s, Q) converges as s tends to p on Q ,

The limiting superosculating conic of Q at p through Q is 

denoted by Y(p4, Q). family of all the superosculating conics

of Q at p is denoted by p .

(vi) If Condition PIII holds for a single point Q c J, 

then it holds for all such points ([9] 6.3).

(vii) If PIII holds at p, then is one of the following 

([9], 6.4).
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Type 1(a). p is a subfamily pp of r which consists of 

those conics of r which have four-point contact at p with a 

particular conic of r.

Type 1(b). p consists of all pairs of lines through p, 

one of which is J.

In Types 2 and 3, PIII is satisfied automatically.

(viii) If satisfies PIII at an interior point p, then 

the conics of r - p all support (Q at p or all of them intersect.

Condition PIV. Q satisfies PIII at p and the superosculating 

conic Y(p4, s) converges as s tends to p on Q .

The limiting ultraosculating conic of at p is denoted by
Y(p5).

(ix) If Q satisfies PIV at p, then Y(p5) is non-

degenerate (Type la(i)), or the point conic p(Type la(ii)), or 

the double line on J (Type la(iii)).

In the remaining cases, Types lb, 2 and 3, PIV is satisfied 
automatically and Y(p5) is the double line on J([9]. 7), .

(x) If Q satisfies PIV at an interior point p, then
the superosculating conics Y(p5) all support Q or all intersect

([9]. 7.2).

Remarks (1) We shall adopt the convention that the double line 
on J supports Q at p, even if Q crosses J at p.
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(2)  If the conic Y consists of a pair of distinct lines

through p, the arc Q will be said to support [intersect] Y at p, 

if there exist one-sided neighbourhoods of p on Q which lie in 

the same region [in different regions] with respect to Y.

5.3.2  Suppose that no three of P, Q, R, S are collinear.

We call Y a general tangent conic of Q at p if there exists 

a sequence of quintuples of mutually distinct points sn, tn , Rn , Sn 

such that sn and Tn converge on to p, r—4 Q, R^ —4 R,

Sn —S and the conic tn’ %’ R^, $) through these points

converges to Y .

Remark: If Q satisfies PI at p, every tangent conic of 

Q is a general tangent conic. The converse need not be true. For 

example, a cusp point satisfying PI has general tangent conics other 

than the ordinary tangent conics ([10], 2.1)..

Suppose that p, Q, R are not collinear. We call Y a general

osculating conic of Q at p if there exists a sequence of quintuples

of mutually distinct points sn, t^, u^, R such that s^, t^, 
un converge on Q to p, —-4 Q, Rn---R and the conic

tn’ Un’ Rn^ converges to Y.

As in the, remark above if Q satisfies PII every osculating 

conic of Q is a general osculating conic, but the converse is not 

necessarily true.
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We call a general superosculating conic of Ct at p if 

there exists a sequence of sets of mutually distinct points s^, t^, 

Un’ Vn* % SUch that sn’ tn’ Un’ Vn conver®e to p on Q , 

Qn —5 Qj Q p, and a conic Y(sn’ V V wn> ’ through these 

points converges to Y.
i

Finally we call Y a general ultraosculating conic of Q at 

p if there exists a sequence of sets of mutually distance points 

sn> tn’ un> Vn’ wn such that sn’ tn’ nn’ vn* wn converge to P 
J

on Q and a conic Y(s , t , u , U , w) through these points n n n n n 
converges to Y. f

We shall need the following results later ([lO], 2) .

I

(i) If Y is a non-degenerate general osculating conic of 

Q at p, then every member of the family Pp(Y) is also a

general osculating conic of Q at p; cf, 5.1,1.

(ii) If Y is a non-degenerate general superosculating conic 

of Q at P, then every member of the family Pp(Y) is also

a general superosculating conic of Q at p; cf. 5.1.1.

3 .3.3 Strongly Differentiable Points.

A point p on a is said to be strongly conically differentiable

if it satisfies four conditions:
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Condition PI'.. If the parameters s and t are sufficiently 

close to the parameter p, s t, the straight line determined by 

s and t converges as s and t tend to p.

In particular, if we take t - p, we see that PI’ implies 

PI. 

1

Condition PII'. A satisfies Condition PI' at p and there 

exist two distinct points Q and R, not collinear with p, which 
do not lie on a general tangent of Q at p with the following 

properties. If s, t, u are mutually distinct, and lie sufficiently 
close to p on Q , the conic Y(s, t, u, Q, ,R) is uniquely 

defined. It Converges as s, t, u converge to p.

We note that if Condition PII’ holds for two points Q and R 

(thus, p, Q, R are not collinear; Q c J, R \ J ), then it holds 

for every such pair of points ([lO], 3.3).

Condition PIII'. Q satisfies PII' at p, and there exists 

a point R , with the following properties. If s, t, u, v 

are mutually distinct and lie sufficiently close to p, the conic 
Y(s, t, u, v, R) is uniquely defined. It converges as s, t, u, v 

converge to p.

If Condition PIII' is satisfied at a point p of Type 1 or 3 

for one point R (thus R e J), then it is satisfied for every

point not on J. We note that if Q satisfies PII at an interior 

point p of type 2, then Q does not satisfy Condition PIII1 
I 

at p ([10], 3.4).
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Condition PIV'. Q satisfies PIII’ at p Y(s, t, u, v, w) 

is uniquely defined and converges if the mutually distinct points 

s, t, u, v, w converge on Q to p.
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5 A. A Classification of Conically Differentiable Points.

We associate with each conically differentiable interior point 

p of an arc Q, a characteristic (similar to that introduced for 

conformally differentiable points) (a, a1, a2, a3, a4 k), 

k = la(i), la(ii), la(iii), lb, 2 or 3. The numbers are equal 

to 1 or 2; i = 0, 1, 2, 3, They are determined as follows:

(i) is even or odd according as the nontangent conics

through p all support at p all or intersect; cf. 5.3.l(i).

(ii) a0 +a1 is even or odd according, as the nonosculating 
tangent conics of Q at p all support Q at p or all intersect 

cf. 5.3.1 (v)^

(iii) a0 + a1 + a2 is even or odd according as the non-

superosculating osculating conics of Q 

cf. 3.3.1 (viii).

(iv) aQ  + a£ * e

osculating superosculating- conics of 

p or all intersect; cf. 5.3.l(x),

(v) a$ + a^ + a^ + + a^
ultraosculating conic Y(p5) of Q

Q at p.

Remark. It may turn out, for

osculating osculating conics of at p say, do riot support or 

intersect. We will exclude these types of conically differentiable 

points.

at p support or

or odd according as

at p all support

is even

at p

the- nonultra-

or odd according as the

supports or intersects

example, that the nonsuper-
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5.4.1. We list the types of conically differentiable points 

P of an arc Q here. Examples of these types of points can be

found in [11].

Points having no-cusp

(1,1,1,1,1; y(p5) intersects Q at p (2,2,2,2,1;

(1,1,1,1,2;, la(i)) a small neighbourhood of p
G\[p) lies bln X(p^) .

or )e

(2,2,2,2,2;

(1,1,1,1,2; la(ii)) (2,2,2,2,2;

(1,1,1,1*2, la(iii)) Y(p) - double line on (2,2,2,2,2;

(1,1,1,2,1; lb) conics of cr intersect d 

at p
(2,2,1,1,2;

la(iii))

lb)

la(i))

cusps
of the
second
kind

(1,1,2,1,1; lb) a small neighbourhood of (2,2,2,2,2; lb)
P onUXtPf 
interior or 
conic of er

lies in the 
exterior of <a

(1,1,2,1,1; 2)
does not cross 7 at

(1,1,2,1,1; 3) (2,2,2,2,2; 3)

2)(2,2,2,2,2j

(1,2,1,2,2; 2)
crosses

(1,1,1,1,2; 3) 3)

cusps of 
the 
first 
kind

P

(2,1,1,1,1J
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Linear and Conical Order of a Point.

Analogously to 2,6. we introduce the concepts of ‘linear and 
conical order of an arc Q. . An arc Q is said to be of finite 

conical order £finite linear order] if it has only a finite number 

of points in -common with any conic Cline]. If the least upper bound 

of these numbers is finite, then it is called the conical order 

[linear order] of Q. The conical order [linear order! of a point 

P of Q is then the minimum of the conical [linear] orders of all 

neighbourhoods of p on Q, In the case of conical order, the 

order of a point is >. 5. in- the case of linear order, the' order of 

a point is > 2,

We note the following results:

(i) An end-point p of an arc Q of finite conical order 

satisfies PII. If p is of Type 1, then Q satisfies PIII, and 

if p is of Type 1(a), then Q satisfies PIV ([10], 4.1).

(ii) Let p be a conicalIy differentiable interior point of

Pan arc Q. Suppose that has the characteristic (a$ j i B)

PThen the conical order of is not less than a„,+ a, + a^ + a„ + af0 ’ jL 2 3 4
([11], Theorem 1).

(iii) A conically elementary point of an arc Q is a point which 

decomposes a neighbourhood of 

of conical order .five.

p on Q into two one-sided neighbourhoods
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Let p be a conically elementary point of a differentiable
arc Q If p has the characteristic ^aO’ al’ a2* ^3* k)>

then the conical order of p is aQ + a^ + a^ + a^ + a^ ([11],

Theorem 2).
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5.6. Ordinary and Singular Points.

A- point- p of an arc Q is called conically ordinary [linearly 

ordinary! if the conical order [linear order] of p is five [two].

If the conical order [linear order] of a point p on Q is strictly 

greater than five [two], p is said to be a conically singular [linearly 

singular] point.

A point p of a conically differentiable arc is said to be a
 vertex if p is a point of support with respect to Y(p5), the 

ultraosculating conic of Q at p.



Section 6

Arcs and Curves of Conical Order Six 

in the Projective Plane

Introduction

This section parallels the analysis of arcs and curves of circular 

order four done in Section 3. Here we shall investigate some of the 

properties of arcs and curves of conical order six in the projective 

plane.

We first consider general arcs of conical order six in 6.1 and

6.2. In 6,3 we obtain important monotony results for conically 

differentiable convex arcs of conical order six. Conically differentiable 

curves of order six are analysed in 6,4; while our attention is 

restricted to strongly conically differentiable curves of order six 

in 6,5.

131
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6,1 Convex Arcs of Conical Order Six

Introduction

It is well known that an arc Q6 of conical order six is the 

union of a finite number of arcs of conical order five; cf. 0 Haupt 

and H, Kunneth ([12], 4.1.3) and Fr. Fabricius-Bjerre [23]. The 

latter’s methods involved the consideration of arcs in higher dimensional 

spaces and the use of properties involving projections of such arcs 

to the plane. We have already mentioned, in the introduction to 

3.1. how the contraction and expansion theorems of Haupt and Kunneth 

simplified the analysis of normal arcs of order k + 1 with respect 

to the system of "order characteristics" with the fundamental number 

k, proofs using induction on k. Again we should acknowledge the 

work of S, Mukhopadhyaya [19], [20] who first studied the process of 
 

contraction.

In our considerations the system of order characteristics is 

the set of all conics (both non-degenerate and degenerate) with k = 5

It might be of some interest to develop proofs for such results as 

those given above, strictly from a conical point of view.. Thus sections 

6,1.2. 6.1.4 and Theorem 9 have been included for completeness. 

Hence it can be concluded that an end-point of an arc of conical order 
1 

six is ordinary and with one possible exception strongly conically 

differentiable; cf. 6.1.11 and 6.1.13.



6.1.0  Let Q6 be an open convex arc of conical order six.

We first note that if is a line intersecting Q6 at points s,u 

and another line intersecting Q6 at points t, v with
s < t < u < v on Q6, then these two lines comprise a conic Yo 

which cannot be oriented with s<t<u<v on Yo However, we 

do have a corresponding type of normality condition (cf. 3.1) for 

convex arcs Q6 of conical order six.

Let Yo intersect Q6

oriented so that these points

in six points. Then Y0 can be 

lie on the same order on Y0 as they 

do on Q6

Proof. By taking another line L0, if necessary, we can 

assume that the convex arc Q6 does not meet L0.

Let the points of intersection of Y0  with Q6 be

r, s, t, u, v, w with r<s<t<u<v<w on Q6 Bet a

be the family of conics which pass through s, t, u, v. Then a is

decomposed into three subfamilies a1 , a2, a3 by
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where a1 say, is bounded by and a£ By and

and and (see Figure 12).

In ([11]; 4.6) it is shown that s, t, u, v lie on each conic 

of in the indicated order. Thus s, t, u, v lie on yo in 

the same order as on Q6 One should notice that each conic that 

meets Q6 again is a member of a1.

Now repeat the above argument using the family B of conics which 

pass through r, s, t, u. Then r, s, t, u will lie in the same order 

on Yo as they do on Q6. Hence r, s, t, u, v lie in the same 

order on Y0 as they do on Q6

Finally, repeat the argument using the family & of conics which 

pass through t, u, v, w. Then t, u, v, w lie in the same order 

on Y0 as they do on Q6 Thus r, s, t, u, v, w lie in the 

indicated order on and we have the desired result.
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Figure 12



6.1.1. Let Y be a conic which meets . Q6 at six distinct

points a, b, p^, P2>

continuously from

p^, p^. Then as t moves monotonically and 

on Q6 there is a pointa

u £ ^(t, , p£, ,

which moves monotonically and continuously from b in the opposite

direction

Proof, Without loss of generality, we assume that p1 < p2 < p3

Since Q6 is of order six

Pq.’ ^2* $3* P4)

intersects

else, by 6.2,2

at a, b, p1, p2, p3, p4 and meets Q6 nowhere

If t is sufficiently close to a, then

Y pl’ p2’ p3’

*0will be close to and will intersect at t, p^, p^,, p^, p^ 

and at a point u close to b. Also

pv P2, p^i P4)

meets Q6 nowhere else. Thus u depends continuously on t
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It is sufficient to show that t and u move in opposite

directions on Q6 whenever t is close to a. Thus we shall

restrict t to a suitably small neighbourhood of a in the following

If an even

between a and

[odd] number of points of {p1, p2, p3, p4} lie

b on then the same number of these points

will lie between t and u on

^1’ $2’ $3’

Since the distinct conics Y0 and y(t, plt p2, p p^) meet

exactly at p1, p2, p3 and p4, t and 

side Con opposite sides] of Y0

u will lie on the same

On the other hand, since

’1’ p2’0

Q6 will meet at an even [odd] number of points between a

and b. Hence if t and move in the same direction

then t and u will lie on opposite sides [on the same

on Q6.

side] of yQ;

u

contradiction

Remarks The movement of t and u in 6.1.1 can continue

as long as
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(1) neither t nor u coincide with one of p^, p^, p^,.

(2) .. t and u do not coincide with each other,

(3) neither t nor u coincides with an end-point of

(ii) 6.1.1 remains valid if the arc Q6 is replaced by 

a convex circle b6 of conical order six.

We note that the proof of 6,1,1 is completely analogous to that 

of 3.1.1. By using the method of the proofs' of 3.1.2. 3.1.3* 3*1.^ 

■and 3.1.5 we obtain the following results,

6,1.2 Let Yo be a conic which meets Q6 at points

< r^ < < t_ < urt. If B is the closed subarc of Q6

between p0 and u0, then there exists at least one singular point 

in the interior of B•

Proof. A short systematic proof of this result using 12 equal 

subintervals of

i — ^Pq» UqI

can be given.

Divide the parameter interval
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1 " Cp0, u0]

into 12 equal subintervals with the end-points Ai; i = -6, -5, 

..., 0, 1, ..., 6, The goal is to construct a conic which passes.

through six points of either the interval [A

A-5, Ag] of
A5] or the interval

In the following, put i = 1, 2, 3, 4 5 in turn. Suppose that 

at the ith step, only i-l of the points of Y n I lie in the closed 

subinterval [A*, A^] of Q6 and that there are points of
Y n I on both sides of [A Ai]. Then we move the two points 

which lie outside, adjacent to, and on opposite sides of [Ai, Ai], 

toward this interval, using 6.1.1, while keeping the other four points 

of A I fixed. Eventually, at least one of these moving points 

reaches [A , A^]. If necessary, we proceed with the next step.

6,1.3 Let pQ < qQ < rQ < sQ < tQ be five points on Q6 
and B the closed subarc of Q6 bounded by and t^. Let 

the point a c Q6 \ B. Suppose that there exists a conic through 

the points a, pn, qn, rn, s , tn. If Ya is the system of conics 

passing through the point a, then there exists at least one

Ya -singular point y on B; i.e., for any neighbourhood N .of 

y on B there exists a conic of Ya that meets N at least five

times. 

Proof. A systematic proof, similar to that of 6.1.2. may be 

given.
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6.1,4 Let N , N? 

points z^, z2 on Q6

be arbitrary neighbourhoods of two singular

Let B be the closed subarc of Q6 

between z1 and z2. If

a e Q& \ Ufc U N2,

then there exists a conic which meets Q6 at a and at five

distinct points of N U B u N2.

6.1.5

Z1
on

and

Let , z^ be two singular points of Q6 and let

•j where B is the closed subarc of Q6 between

Then there exists at least one ya-singular point y

a c

6,1.6 Let y^, y^ be two points of Q6 and let B be

the closed subarc of Q6 between them. Let a1, a2 be distinct

points of Q6 \ B • If y1 and y2 and Ya1 -singular points„ 

then there exists at least one Ya1a2 -singular point y on B ;
 

i,e., for any neighbourhood N of y on B there exists a conic 

passing through a1, a2 and meeting N at least four times.

O.lVT. Let y^, y^ be two points of Q6 and let B be

the closed subarc of 6 between them. Let al’ a2’ a3 be

mutually distinct points of Q6 \ B If y^ and y^ are

Ya1a2 -singular points, then there exists at least one X -
 Yala2a3

singular point y on B ; i.e., fo,r any neighbourhood N of y



on B there exists a conic passing through ar a2, a3
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and meeting

N at least three times.

6.1.8 Let y^, y2 

the closed .subarc of Q6

be two noints of

between them. Let

Q6 and let B be

• al’ a2’ a3’ —

mutually distinct points of a6 \ B If y^ and yo are

-singular points, then there exists at least one
■singular point y on B; i.e., for any neighbourhoodYala2a3a4 '

N of y on B there exists a conic passing through .a1, a2, a3, a4 

and meeting N at least twice.

6,1^9 . Let y1, y2 be two points of and.let B be

the closed subarc of Q6 between them. Let

be mutually distinct points of Q6 \ B If

a1 ,a2 a3, , a4,  a5

yT y2 £££

Y -singular points,

Y -singular point°ala2a3a4a5

then there exists at least one

y on B i.e^, for any, neighbourhood

N of y on B there exists a conic passing through a1, a2, a3, a4, a5

and meeting N at least once.

6,1.10 Now we prove the main result of this section.

Theorem Q: A convex arc Q6 of conical order six contains 

at most- finitely ’many singular points.
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Proof. Assume that there are infinitely many singular points

on Q6 Let a. be any point on Q6 Then by 6.1.5. there are

infinitely many Yai-singular points on Q6. Take another point

2’ By 6.1.6,- therea2 on Q6’ al exist infinitely many

a a -singular points on Q6 Take another point a3 on Q6

with a1, a2, a3 mutually distinct. By 6.1,7. Q6 contains
infinitely many Ya1a2a3 -singular points. By taking another point

a4 on Q6 distinct

obtain infinitely many

form a1, a2, a3 and applying 6.1,8 we

let a^ be a point of 
6,1.9, Q g contains

n n », points on Q6
1 p II 

distinct from a1, a2, a3, a4,

Finally

By

infinitely many Y  -singular points.a1a2a3a4

But then we have constructed a conic passing through a1, a2, 

which meets at infinitely many points; contradiction.
a3,a4,a5

Corollary. An arc Q6 of conical order six contains at 

most finitely many singular points.

Proof. In 6.4.1 it is shown that Q6 

of linear order three. By 3.2.3 of [12], such

is either convex or

an arc is the union

of finitely many convex arcs. Using Theorem 9 we obtain the

desired result

6.1.11. If- p is an end-point of Q6, then p is ordinary.
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Proof. If p is a singular point, then for each, neighbourhood 
N^^ of p there exists a conic which meets six times, say

at p^ < < r^ < s^ < t^ < u^. By 6,1,2. there exists a singular

point in (p,, u,). Now take a new smaller neighbourhood
 i

N^^ of p with y^^ \ N^\ By 6,1,2. there exists another 

singular point y c N with y y . Repeating this 

process and using 6.1.2. we obtain an infinite number of singular

points on Q6. This is impossible, by Theorem 9.

6.1.12 In 6.1.11 it was shown that an end-point p of

Q6 is ordinary, Hence there eixsts a neighbourhood of p 
on Q6 which is of order five. But it is known that N5 U ^pj 

is strongly conically differentiable at p unless p is of Type 2 

([1O], 5.5).

Thus an end-point p of Q6 is strongly, conically differentiable

with the exception noted above.

6.1.13 in 6.1.11 and 6.1.12 we assumed that Q6 was 

convex. However, as in 6.4.1. arcs of conical order six are either

(i) convex arcs

or
(ii) arcs of linear order three.

But is is well "known that such arcs contain at most finitely many 

linearly singular points ([l2], 3.2.3). Thus if p is an end point 

of Q6, then p has a one-sided convex neighbourhood on Q6
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Hence we obtain the following result.

Let Q6 be an arc of conical order six with an end point

p. Then

(a) p is ordinary

(b) Q6 U {p} is strongly conically differentiable at

p if p is not of Type 2.
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6.2 Multiplicities for Arcs of Cortical Order Six

Introduction

Multiplicities for open arcs Q5 of conical order five with

one end-point, p were .introduced by N.D. Lane and K.. D. Singh in 

[10], counting p once, twice, three times, four times and five 

times, respectively, on a non-tangent conic through p a non

osculating tangent conic at p, a non-superosculatihg osculating 

conic at p, a non-ultraosculating superosculating conic at p and 

the ultraosc.ulat.ihg conic Y(p5) at p and counting'an interior

point q of Q5 once on any conic through q which is not a

general tangent conic at q, twice [three times'; four times] on any 

general tangent [osculating; superosculating] conic at q which is 

not a general osculating [superosculating; ultraosculating] conic 

at q and five times on any general ultraosculating conic ,at q.

Then it was shown that no conic meets Q5 U {p} more than five

times; i.e., the inclusion of p and the introduction, of multiplicities 

do not alter the conical order of

In this section the above result will be generalized with the

exceptions noted .below, to an arc Q6 of conical order six.

Theorem 10: The conical order Of the 

changed, with the exceptions observed in the

open arc Q6 is not 

remark following 6,2,27.

by
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6.2 Multiplicities for Arcs of Cortical Order Six

Introduction

Multiplicities for open arcs Q5 of conical, order five with

one end-point p were introduced by N.D. Lane and K. D, Singh in

E10], counting p once, twice, three times, four times and five 

times, respectively, on a non-tangent conic through p a non

osculating tangent conic at p, a non-superosculatihg osculating 

conic at p, a nbn-ultraosculating superosculating conic at p and 
the ultraosc,ulat.ihg conic Y(p5) at P and countings an interior

point q of Q5 once on any conic through q which is not a

general tangent conic at q, twice [three times ’; four times] on any 

general tangent [osculating; superosculating] conic at q which is

not a general' osculating [superosculating; ultraosculating] conic 

at q and five times on any general ultraosc'ulating conic ,at q. 
Then it was shown that no conic meets Q5 U {p} more than five

times; i,e. the inclusion of

do not alter the conical order

p and the introduction, of multiplicities

of Q5.

■In this section the above result will be generalized with the

exceptions noted .below, to an arc Q6 of conical order six,

Theorem 10 The conical order of the

changed, with the- exceptions observed in the

open arc Q6 is not

remark following 6.2.27.

by
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(i) the addition of one of the end-points p;

(ii) the introduction of multiplicities at p, as above; or

(iii) the introduction of multiplicities at interior points

q of Q6, as above. The point q is counted five times on any 

general ultraosculating conic at q that intersects Q6 q 

and q is counted six times on any general ultraosculating conic 

at q that supports Q6 at q. In this last case q is a

conically singular point.

Remark. It is assumed that p < s for all s e Q6.
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6.2.1 No conic Y supports Q6 at more than three

points.

Proof. Suppose Y supports Q6at q^, q^, and q^.

If there is another point s which is a point of intersection

of Y with Q6 we may assume that s does not lie between
and q^s saY, 011 Q6 Then suitable conic Yo sufficiently 

close to Y through q3 and q4 will intersect Q6 at two

points near q1, at two points near q2 and at one point ncar s., 

This is impossible.

Hence Q6 c Y U Ye say. 

disjoint neighbourhoods on

Let L^, L^, L^ and L^ be four 

of q^, q2, q^ and q^, respectively
Choose a conic Y in Ye which is close to Y. Since the end

points

Xh
Thus

L_ L.3’ 4 
in not

of hi l2> b
We can orient

separates

respectively,

less

and L^ .lie in they will also lie in

Y' such that Then q^, q^, q^,

q^, q£, q^, q^ from the end-points of

will intersect each of L^, L^,

than two points Thus contains more

L1, L2,
L , L4 3
than

y

six points; contradiction.

6.2.2 If a conic y supports Q6 at a point t, then Y

cannot meet Q6 at more than four further points.

c
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Proof,

and supports

say q1 is 

sufficiently

Suppose that Y meets Q6 at qx, q2, q , q^, q^ 

Q6 at t. Then at least one of the i = 1, 2, 

a point of intersection, by 6.2.1. But then a conic

close to Y through q^, q^, q^, will intersect

5

Q6 at two. points near t and at one point near, 

meets Q6 at least seven times; contradiction.

q^. Hence

does not meet

Proof,

points ql’
none of the

q4, say

If a conic Y supports Q6 at s

at more than two further

Suppose that- Y meets Q6

q^, q^» Then either one of the

q. is p In the second case

q^, is a point

and t, then y
points

U {p} at three further 

q., say qx, is p or 

by 6,2.1. one of the

of intersection. Then in either case, as

in previous arguments suitable conic Y’ sufficiently close to

Y through q2 and will meet Q6 twice hear s, twice

a

q3
q1near t and once near Thus Y' meets Q6 at least seven

times: contradiction

6.2.4
If a conic through p meets Q6 at six points, then

at most one of them is a point of intersection

Proof. Suppose that a conic Y through p intersects Q6

at q1,q2 and meets Q6 at four further points r, s, u, v

Choose disjoint neighbourhoods L >2 of p, q^, q^, respectively
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which do not contain r, s, u or v. Then if t converges in L
to P Y(s’ u» v*) converges to Y. However Y(r, s, u.

(iv) If a superosculating conic of Q6 at p meets Q6

at three points, then at most one of them is a point of intersection,

Y(p5) intersects Q6 at most once

intersects

this conic

and L^ if t is sufficiently close to p. Hence 

meets Q6 in not less than seven points; contradiction

(ii) If a tangent conic of Q6 at p meets Q6 at five

points, then at most one of them is a point of intersection.

Proof,

Q g at the'

Let be a tangent conic of Q6 g at p intersecting 

points q1, q2 and meeting Q6 g at further points

s, u. If 't is sufficiently close to p, then Y(p, r, s, u, t)

will be close to and it will intersect Q6 at points near

and q^. This is impossible, by (i).

In the same way we obtain the following,

(iii) If an osculating conic of Q6 at p meets

at four points, then at most one of them is a point of intersection

(v)

No conic meets Q6 u {p} in more than six points
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Proof. Let Y be a conic which meets Q6 U {p} in seven 

mutually distinct points. Since Q6 is of conical order six,

one of these points must be p while the other six lie on Q6. 
These six points are all points of intersection of Y with Q6 

by 6.2.2. But this is impossible, by (i) of 6.2.4.

Corollary. No conic through p which sunnorts Q6 at a

point s can meet Q6 at four further points.

6;2.6 If a conic Y supports Q6 at s, t and u, then
Y does not meet Q6 U {p} again.

Proof. Suppose that Y meets Q6 U {p} . at. a further 

point v. Then by 6.2,1. v is a point of intersection of Q6 

with Y or v = p.

In either case a suitable conic Y' through v and sufficiently

close to Y will intersect Q6 twice near s’, twice near t

and twice near u. This is impossible, by 6,2.5.

Corollary. No tangent conic of u fp} at p supportsQ6

g at more than two points

Q6 U {p} at p6.2,7 No tangent conic of meets Q6
in more than four points.
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Proof. If'a tangent conic of Q4 U {p} at p meets

Q6 at five distinct points, then at least four of these are 

points of support, by (ii) of 6.2,4, However, this is impossible, 

by 6.2.1.

Corollary 1. No tangent conic of Q6 U {p}

supports Q6 at two points and intersects Q6 at a further

point.

Corollary 2. No tangent conic of Q6 U {p} at p

and intersects Q6 at three furthersupports Q6 at . one point

points.

6,2,8 No osculating conic of Q6 U {p} at p meets

Q6 in more than three points.

Proof. If an osculating conic of Q6 U {p} at p meets 

Q6 at four distinct points, then at least three of these are 

points of support, by (iii) of 6.2,4. However, this is impossible, 

by 6.2.6.

CorolIary 1. No osculating conic of Q6 U {p} at p
Q6supports at more than one point.

Corollary 2; No osculating conic of

supports Q6 at one point and intersects 

Q6 U {p} at p

Q6 more than

one point.
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6.2.9 No superosculating conic of Q6 U {p} at p

meets Q6 more than twice.

Proof. If a superosculating conic of Q6 U {p} at p 

meets Q6 at. three points, then at least two of these are points

of support, by (iv) of 6.2.4. However, this is impossible, by 

Corollary 1 of 6.2.8,

Corollary 1. No superosculating conic of

supports more than once.

Q6 U {p} at p

Corollary-2. No superosculating conic of Q6 U {p} which 

supports Q6 at one point can meet again

6.2,10 Y(p^) cannot meet Q6 more than once.

Proof. If Y(p^) meets Q6 at two points, then at least

one of these is a point of support, by (v) of 6.2,4. However, this 

is impossible, by Corollary 2 of 6.2.9.

Corollary. ) cannot support Q6 at any point.

6,2.11 No general osculating- conic of

Q. 6 more than three times.

Q6. at q intersects
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Proof. Let Y be a general osculating conic of Q6 at

q which intersects at four points r^, r£, r^, r^,

By' the definition of a general osculating conic, there is a conic
Y* sufficiently close to Y and that Y' meets Q6 three

times near q and once each near •2, Vy Altogether Y'

meets Q6 at least seven times: contradiction,

6.2.12 No general osculating conic of Q6 at q supports

Q6 more than once.

Proof. Let Y be a general osculating conic of Q6 at q

which supports Q6 at r and s. Then by 5«3»2 (i) a conic

of P(Y) sufficiently close to will be a general osculating

conic of Q6 at q which intersects Q6 twice near r and

twice near s. This is impossible, by 6.2.11.

Similarly one obtains the following.

6,2,13

(a) No general osculating conic of Q6 at q which

.supports Q6 6at a point r q can meet Q6 U {p} at more

than one further point.

(b) No general osculating conic of Q6 at q can meet
Q6 U {p} - at more than three further points.
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6,2,14 No general sunerosculating conic of Q6 at q

intersects Q6 more than twice.

Proof. The proof is analogous to 6.2.11,

6,2.15 No general superosculating conic of Q6 at q 

supports Q6 \ {q} more than once.

Proof. This is a sqecial case of 6.2.12. since every super

osculating conic of Q6  at q is a general osculating conic

of Q6 at q.

Corollary. No general superosculating conic of

which supports Q6 at a point r q can meet Q6 U {p}

again.

Proof. The proof is analogous, to 6.2.13 (a) using 5.3.2 (ii) 

and 6.2.15.

6.2,16 No general superosculatinre conic of Q6 at q can
meet Q6 U {p} at more than two other points.

Proof. The proof is analogous to 6.2.13 (b) using 5.3.2 (ii).

6.2.17 No general ultraosculating conic of Q6 at q

intersect. Q6 \ {q} more than twice.
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Proof. The proof is analogous to 6.2.11.

6.2.18

(a) No general ultraosculating conic of Q6 at q which

intersects q can support Q6 at a point, r q. 

at

Proof, Let Y be a general ultraosculating conic of Q6

q intersecting 

intersects Q6

Q6 at q which supports Q6 at Since

at q> the end-points of a small neighbourhood

of q on Q6 will lie on opposite sides of Y Let Y *

have four-point contact with Y at q (cf. 5.1.1) and be sufficiently

close to Y so that the end-points of N will still lie 

sides of Y' and  Y' will intersect Q6 twice near

on opposite

Thus

meets N' with an odd, multiplicity. Hence is either a

general superosculating conic of Q6 at q (cf. 5,3.2 ii) which 

meets N at another point or a general superosculating conic of
Q6 at q. which intersects Q6 at q; i.e., a general ultra-

osculating conic of Q6 at q. But these situations are impossible,

by 6,2.16 and 6.2.17.

(b) No general ultraosculating conic of Q6 at q which 
intersects Q6 at q can meet. Q6 U {p} at more than one 

other point.

Proof. Let be a general ultraosculating conic of

N

at q intersecting Q6 at q which meets Q6 U {p} at two
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further points r, s. By 6,2,1? and 6.2.18 (a), one of these points, 
say r, is a point of intersection of Q6 with Y and the other 

point s = p.

As in (a), a suitable conic Y' having four-point contact 

with Y at q which lies sufficiently close to Y will intersect

Q6 at a ..point near r and a point near p. Again as in (a). 

Y' meets a small neighbourhood N of q with an odd multiplicity. 

Hence Y' is either a general super osculating conic of Q6 at q

which meets N at another point or a general ultraosculating conic 

of Q5 at q. This is impossible, by 6.2.16 and 6.2.17.

6.2.19 No general ultraosculating conic of Q6 at q 
which supports Q6 at q can meet Q6 U {p} again.

Proof. Let Y be a general ultraosculating conic of 

at q which supports Q6 at q and meets Q6 U {p} at a 
further point u. Then there are three possibilities:

(a) intersects Q6 at u;

(b) supports Q6 at u; or

(c) meets Q6 U {p} at u = p.

If case (a) occurs, then as in 6.2.17, a conic Y' can be

constructed close to Y meeting Q6 six times near q and once

near u; contradiction.
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Suppose that case (b) occurs. Then Y cannot meet 

except at q and u, by the Corollary to 6.2.15. Without loss 

of generality, let

0(> \ fl- u)° Ye '

Also let

N = N* (J £qj U N" [L]

be a small two sided neighbourhood of q [u] on Q6 We claim

that Y is one of the one-sided ultraosculatihg conics of Q6

at q. Otherwise, Y is a general tangent conic of both N' U {q} 

and N” U {q} at q and hence Q6 satisfies Condition PI at 

q (cf. 5.3.3). by 6.1,12. Thus Y is a tangent conic, of Q6 at

q and the family of tangent conics of Q6 at q all touch the

tangent line at q. Let J be the one-sided ultraosculating conic 

of Q6 at q whichllies in Yi with the exception of q.

Now if s e N, then s c Ye Thus the superosculating conic of

N at q through s is blocked by Y as s converges to q and 

hence cannot converge to J; contradiction. Thus is one of the 

one-sided ultraosculating conics of Q6 at q, say of N' U {q}

Let s’ be close to q on N’. Then the superosculating conic 
Y’ of N U {q} at q through s* will be close to Y and 

lie in Ye with, the exception of q. Hence Y' intersects L

at two points near u. This is impossible, by 6,2,14.
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Finally suppose that case (c) occurs. Let

N = N’ U Sqt U N” [L]

be a small two-sided [one-sided] neighbourhood of q [p] on
Q6 U {p}. By the method of (b). we can construct a conic

Y’ which is a general superosculating conic of Q6 at q inter

secting N at s' and L at one point s. But then Y' must 

meet N with an even multiplicity. Thus either intersects

Q6 at q or meets N at another point. Both are impossible, 

by 6.2.18 (b) and 6.2.16,

6.2.2O No general osculating conic of Q6 at q can be 

a general superosculating conic of Q6 at r which supports Q6 

at r.

Proof

which is a

Let Y be a general osculating conic of Q6 

general superosculating conic of Q6 at r and

at q

supports
Q6 at Let

N = N* u(q} U N” [L = L1 U U L"]

be a small two-sided nieghbourhood of q [r] on Q6. Either 

intersects Q6 at q or Y supports Q6 at q.
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Finally suppose that case (c) occurs. Let

'N = N’ U U N" [L]

be a small two-sided [one-sided] neighbourhood of q [p] on

Q6 U {p}. By the method of (b). we can construct, a conic

Y' which is a general superosculating conic of Q6 at q inter

secting N at s’ and L at one point s. But then Y' must 

meet N with an even multiplicity. Thus Y' either intersects

Q6 at q. or meets N at another point. Both are impossible, 

by 6.2.18 (b) and 6.2.16.,

6 .2.20 No general osculating conic of Q6 at q can be 

a general superosculating conic of Q6 at r which supports

at r.

Proof. Let 5 be a general osculating conic of Q6 at q 

which is a general superosculating conic of Q6 at r supports

Q6 at r. Let

N = N' Unqj U N" [L = L1 U 14 U L"]

be a small two-sided nieghbourhood of q [r] on Q6 Either Y

intersects Q6 at q or Y supports Q6 at q.
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Suppose that X intersects Qg at Q* Since 0 is a 

general osculating conic of at qr then is a general
tangent conic of N* U or of Nn U £q^ at q, say the 

former. But N* U satisfies Condition PI’ at q (cf. 5.3.3).
by 6.1.12. Thus Y is a tangent conic of N* U £qj at q. Let 

tf c N1, close to q. Then the conic Y * through q, tf and 

having three-rppint contact with "X will be close to % . But the 

end-points of N[L] lie on opposite sides [on the same side} of X • 
* r

Thus the end-points of NQL] lie on opposite sides Eon the same side] 

of But meets N [L] at q and t* [at r]. Thus

will meet N[L] at a further point. Also is .a general osculating

conic of Qg at r, by 5.3.2 (i). This- is impossible, by 6.2.11 

and 6.2,13.

Suppose that supports at q (see Figure*l3(i)). Then
y is a general superosculating conic of' g at both r and q 

supporting at these points. By the corollary to 6.2.13, Y 

does not meet $ & again. Without loss pf generality, let

Qe \ C Ye’

We now claim that is one of the one-sided osculating conics

of at .r in the family of conics which support each other
at q. If not, then X » being a general superosculating conic of

g at r, must be a general tangent conic of L1 U ^rj and

L" U £r^ at r; Hence satisfies Condition PI* at r and 
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the family of tangent conics of Q r a^~ ^ouc^ tangent 

line at r. Let be the one-sided osculating conic of L at 

r, in the family of conics which support each other at q, that 

lies in with the exception of the points q and r. Let

s c L. Then sc Y . Thus the tangent conic of L at r through 
s and supporting. X at q is blocked by X as s converges to 

r and hence cannot converge to ; contradiction. Thus is one 
of the one-sided osculating conics of at r, say of L* U jfrj ,

in the family of conics which support each other at q.

Let s’ be close to r on I?. Then the conic Y’ which 

supports at r and q through s1 is close to X* Mow the 

end-points of L lie on the same side of , Thus the end-points 

of L lie on the same side of 1.. Thus ’ meets L at a further

point sn. By 6.2,3^ Y* cannot meet outside the points

q, r, s’, sn (see Figure 13 (ii)). Now the end-points, of N lie 
in Thus N \ £q} lies in and supports Q^,

at q.x But by the methods of the preceding paragraph, will be 
one of the one-sided osculating conics of Q, Q in the family 

of conics which -upport each other at r. As u tends to q on N, 

the tangent conic of N at q through u and supporting is 

blocked by and hence cannot converge to contradiction.
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Figure 13
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6,2,21 No general osculating conic of at q can be
a general osculating conic of at r meeting Qe u ( p J 

again

Proof. Let Y be a general osculating conic of ^6 at q 

which is a general osculating conic of at r and meets
Qe " W at a further point u. By 6,2,20, % intersects

6 at q and r. Let

N = N» U {q} UN" ELJ

be a small two-sided neighbourhood of q Er] on Mow X is

either a general tangent conic of N* or of N” U £qj at

q, since it Is a general osculating conic of at q. Without

loss of generality, let be a general tangent conic of N* V 
at q. But, N’ U £q^ ■ satisfies Condition PI’, by 6.3,.12. Hence

Y is a tangent conic of N' u {<1} at q. Let s* be close 

to q on Nf. Then the conic 1 which supports at r and 

passes through q, s1, u is close to , But must meet

both N and L with an odd multiplicity. Hence ? meets N 

at another point while 1 either supports at r meeting
L at another point or is a general osculating conic of Qe at 

r. But these, situations are impossible, by 6,2,2. 6.2.11 and the 

corollary following 6,2.5.

6.2.22 No general osculating conic of g at q

is a tangent conic- of Qe V fp} si. p can intersect

which
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more than once.

Proof. Let be a general osculating conic of Qe at

q which is a tangent

at s and t.

conic of Qe u (p} at p and intersects

Now let r be close to p on Qe- B"n

the conic ’ having three-point contact with "tf at q and 

passing through p, r will be close to . By 5.3,2 (i).

is a general osculating conic of at q and
$6 at points close to s and t, since it is 

This is impossible, by 6,2.13 (b).

will intersect 
close to tf .

6.2.23 No general superdsculating conic of Q at 

which is a tangent conic of Q. U at p can meet Qe

elsewhere.

Proof.

at q which

Let y be a general superosculating conic of Q & 

is a tangent conic of Qe u bl and meets Q[ $

at a further point u. Then u is a point of intersection of q
with Q & by 6,2,16. Also Y supports Q. at Hi By the 

Corollary following 6.2.18. Let s be close to p on Qc- 111611 

the conic Q • having three-point contact with j( at q and passing

through the points q, s will be close to . Hence ’ intersects

at a point on. close to u. But tf1 is a general
osculating conic of at q (cf. 5.3.2 (i)) which'must meet Q g

with an even multiplicity near q. Hence also meets Qe at

a point near q. This is impossible, by 6,2.13 (b).
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6.2.24 No general osculating conic, of $ at q which is
a tangent conic of Q P fp} at P can sunnort. $g at

Proof. Let be a general osculating conic' of Ct 6 at ’ 

which is a tangent conic of #6 u 6} at p and supports 

at r. Then a .suitable conic %1 close to supporting

at q and ,p will intersect twice near r. But intersects
Ct by 6,2.23. Thus * must meet Q with an odd

multiplicity near q. Hence is a general .osculating conic of
Q & at q or supports Ct at 1 and ^eets at

another .point close to q. This is impossible, by 6.2.22 and by

Corollary 2 following 6.2,7.

6.2.22 and 6,2.24 imply the following.

6,2.25 No general osculating conic -of at q

is a tangent conic of can meet £?6
which

CU u (pj al p

more than once.

6.2.26 No general superosculating conic of Q

which supports at q can be an osculating conic of
Q 6 U {p} at p.

Proof. Let be a general superosculating conic* of C?

at q, supporting at q,
Qe u (p) at p* Let

which is an osculating conic of
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N = N’ u LJ u N" [L]

be a small two-sided [one-sided] neighbourhood of q Lp] on 
Q fp} * TJow cannot meet elsewhere, by 6.2.23. 

Without loss of generality, let

Qe \ bl c Ye-

Now as in the proof of the second part of 6,2.20. is one of the

one-sided osculating conics of Qe at q in the family of conics

that support each other at., q.

Let s be close to p on L. Then the conic ’ which 

supports y at p, q and passes through s is a tangent conic 

of Q.e w at p and is close to (see Figure 14). Since

X' \ [p. l} He-

Now the end-poonts of N .lie in Hence the end-points of N

lie in

Next suppose that does not -support at q. Then

f is a general osculating conic of at q in the family

of conics which support each other at q. But Jf’ must meet N 

with an even multiplicity and hence meets N at another point.
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This is impossible, by 6,2.23. Thus supports Q at q.

Also X* does not intersect N \ . Otherwise y*

must meet N with an even multiplicity and would intersect N 
again. This is impossible, by Corollary 2 of 6.2,7. Finally X1 

does not support N \ at any point, by Corollary 1 following 

6.2.7.

Now we proceed as in the last few lines of the last paragraph 

of the proof of 6.2.20 to obtain a contradiction.
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Figure 14
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6.2.27 -• No general osculating conic of at q can be
a superosculatinR conic of Qe » i pj’ at p if this conic

is tangent to Q U ^pj in the same direction at both q and p.

Proof. Let be a general osculating conic of Qe at <1 

which is a superosculating conic of Qe v I p^ at p. Also 

assume that is tangent to V in the same direction at

both q and p (see Figure l5(i)).
r ’

Let

conic of

s be close
Qe u (p?

to p bn Qe,- Let Jp be the osculating

at p , through s and q. Then Jp

intersects K at p, q and is close to X • • ^dw the end-points 

of a small two-sided neighbourhood N of q on d lie on 
opposite sides, of Y , since X intersects at. q; cf. 6,2.26

Thus the end-points of N lie on opposite sides of since 

is close to X .

Nov/ cannot support Qg at q. Otherwise it would

meet N again, since it must meet N with an odd multiplicity. 

This is impossible, by Corollary 2 following 6.2.8. Thus 
intersects Cl & Q- Also cannot support N \ at

any point, by Corollary 2 following g. following 6.2.8. Finally 
does not intersect N \ £q^ at any point. Otherwise,. X 1 must 

intersect N -\ JqJ at still another point. This is also impossible 

By 6*2.8* Thus intersects N at q and meets N nowhere 

else.
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Next, since is tangent to Qe u b) in the same 

direction at p and q, lies (in some sense) "between the

general osculating conic of at q and the arc N of
Ct & itself..

Finally Yj being a general osculating conic of at Q

is a general tangent conic of N1 U or or Nn U at q, if

N = N* U V N".

Without loss of generality, let X be a general tangent conic 
of N* U at q. But N' U £qj satisfies Condition PI’, 

by 6.1.12. Thus is a tangent conic of N* U at q. Let

s c N1; hence sc Xg* Thus the conic passing through s, -q 

and having three-point contact with at ‘ p is blocked by as 
s converges on N* to q and hence cannot converge to X i 

contradiction.

Remark. A similar problem seems to arise here in the conical 

analysis for multiplicities of arcs $ & of order six as the one 

which occured for the circular case concerning multiplicities of 

arcs of order four; cf. 3.2,14.

It seems to be possible to have
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a) a general osculating conic of at q which
;uperosculating conic of y £p} at p;

(b) a general ultraosculating conic q of Qg at q 

which is a tangent conic of #6 U (p} at p (of course 

would have to intersect Q at 9 > By 6.2.19)j or

(c) a general ultraoscul*ting conic °f at q 
which is a general osculating conic of Qg at r ( ^ must intersect 

$g at both q and r, by 6.2,19 and 6,2,20);

if 0 is not tangent to u6 v bi in the same direction at p, q 
for (a) and (b) or if is not tangent to Q $ , U ^*p^ in the

same direction at q and r for (c) (se.e Figure l5(ii)). These 

exceptions are not possible, if $ -is convex.

The author would appreciate any research which would either rule 

out these possibilities or give examples of the existence of such 

arcs of conical .order six.
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Figure 15
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6,3 Monotony Theorems for Conically Differentiable Covex 
Arcs of Conical Order Six

Introduc tion

a
A "Monotony Theorem" is derived by 0. Haupt and H, Kunneth 

CC12], 2.3) for arcs of finite order with respect to a system of 

order characteristics with fundamental number k. A statement and 

proof of a corresponding monotony result for the circular case was 

given in 3.1.1 for arcs of order four. A similar result for the 

conical case and arcs of conical order six was obtained in 6.1.1.

In this section we shall derive a generalization’ of 6.1.1 under 

the assumption that is a strongly conically differentiable

convex arc of conical order six. In 6,3.7 the monotony results 6,3.2- 

6,3.6 are extended to conically differentiable convex arcs $ 

as long as contains no points of Type 2; cf. 5.3.1.

These results will be very useful in the analysis of conically 

differentiable convex curves of conical order six; c'f. 6.4,6 and 

6.4.7.
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6,3.1 In the following it is assumed, unless otherwise 

stated, that an °Pen strongly differentiable convex arc

of conical order six.- It wiIl become evident that could be

replaced by a strongly conically differentiable convex curve 

without affecting the validity of the results.

6.3.3 -Let p^ < < p^ be four points on Bet

be a conic - which passes through these points and meets

six times altogether counting multiplicities. Call the other two 

points a and b. Then as t moves monotonically and continuously 
from a in one direction on Qty there is a point

U E Jf(t, pit p2, p , p^) A

which moves monotonically and continuously from b in. the opposite 

direction.

Proof. Since & is of conical order six, meets

at a, b, p^, p^, p^, and nowhere else. There are a 

number of casesr depending upon the coincidence of one or more of 

these points. In all cases, if t is distinct from and close to 
a, then X Pr P2» is to Pv P2» P4) = #0

since $ ds strongly conically differentiable. Hence

Pp Ppj P^i meets at a point u close ,to b.
Also u b; otherwise, }f(t, p^, p^, p , p^) meets more

than six times, counting multiplicities and this is a contradiction.
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Similarly, Y(t, p^, p£, p^, p^) can meet nowhere else.

Thus u depends continuously on t.

Because of the continuity of the movement of u, it is sufficient

to show that t and u move in opposite directions on Ge whenever

t is close to a. We will give proofs for the cases in which the

points p^, p^,- are mutually distinct. Similar arguments

can be used for the cases in which one or more of Pr p2’ p3’
coincide. We shall assume, without loss of generality, that a < b 

°n 
£

(i) All of a, b, p^, Pp, p^, p^ are distinct. This is 6,1.1.

(ii) Let b = p. for some i, 1 < i _< 4, a ^b, a 4 p., 

1 < j < 4.

Then intersects at a and p^, j i, 1 < j < 4 

and supports at b = p . The subarc of between

a and b contains either an even or odd number of points of

{pr p2’ P'J\ [pil •

Suppose that contains an odd number of points of the above

set (the following argument can be slightly modified to take care 

of the even number case). Let this number be , 

will contain an even number .e of the points
q^=

{pr p2, p3, \ &R ,



where e = 3- Since t is close to a

b, then the same number of these points will

arcs 11 of Pj. P2« Py P^

If u moves away from b on #6 as
a on then t and u will

Hence

on both

$ (tr p2, p , 

arcs "

u. On the arc 'ft

odd multiplicity > e;

$1*
additional

$2* $3’ 
point, p ;

a

If u moves away

since

Hence

U 6’

KCi,

then t

on both arcs
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and u is close to

lie on the respective

between, t and u

t moves away from

lie on opposite sides of $

p^) meets with an odd multiplicity

of y(t, p^, p^, p^) between t and

if <t, p.

i.e

meets

i.e

from b

and u

intersects Q

’1’ B2i P^» P4)

e + 1. On the

0 at least

© + 1

on 6

meets with an

other arc ir

©* times and at the

t moves away from

will lie on the same side of

at a and supnorts & at b - p

Pp P2’ p3> Pi? meets * 0 with an even multiplicity'

and u. On the arc

and even multiplicity

J" of X(t, P1? p2, p^, p^) between 

tf(t, P2, p^) meets Yo

> & ; i.e., > + 1. On the other arc

t

with

K"

S Px. P2. Py P4) meets 

additional point p.; i.e,, :
#0 at least times and at the

In both cases ^(t, p^p, p2, p^, p^) meets $ altogether

at least

(e + 1) + ( ©- + 1) = 5



times. Hence

Xo = ya, Pp p2, p3, p4)

and this conic meets more than six times; contradiction

Thus ^(t, px, p2, p^, p^) meets 

moves monotonically and continuously on

Qe,

Qg

at a-point u which

in the opposite

direction to that of t.

(iii) Let .a = b Pj,

Then intersects at p^., j = 1, 4 and supports

at a = b. Let N be a suitably small two-sided neighbourhood 

of -a on Th® end-points of N lie on the same, side of y$,
say in , .since supports Ot & a» We, can assign

e
a continuous

Hence

•orientation to the conics through pl* p2’ p3’ PA near

if t is sufficiently close to a, the end-points of

X P^’ ^2’ $3*N will also lie in

Without loss of

and hence the arc of

generality, let < a = b < p^. Now t e 
e

p^, p^, p^, p^) between and

which contains, t lies in • By
e

of the conics through p^, p^, p^,

the continuous- orientation

near

between p^ and which contains a 

In particular, as (t, p^, p^, p^, ;

lies

^o’ tHe arc of 

in a, JV., p,, Pi, :

Hence each" of the one-

sided neighbourhoods of a that make up N will intersect
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Pp P2, once at

Pp P2, Py P^ does not

t and once at u. Also

meet a6 again.

Thus y(t, P1, p2, p^, p^) meets

moves monotonically and continuously on

Qe 

Ge

at

in

a point u which

thq opposite direction

to that of t.-

-Let a = p. for some i, a ^ b and b p.
3

Then ^0 intersects

and supports #6 at a = p 

with b replaced by a and can

at b and p , j i, i < j < J *
This case is identical to case (ii)

be dealt with in a similar manner

M Let a - p for some i, 1 < i < 4, b =. p. for some 
1 ""J

j, j « i, i < j < 4.

Then intersects at Pk, k i, j, 1 < k < 4 and

supports Q at a = p* and at b = p^.. The subarc of

Ol 6 between a and b contains either an even or odd number of 

points of

[pj, p2, p3, p^X^. p3}.

Suppose that contains an odd number and hence one‘of the points

of the above set. Then Q g = \ will contain the other 

point of this set. Since t is close to a and u is close to b,
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the same number of these points (namely one) will lie on the respective

arcs y’, X" Of 0 (t, px, p2, p,, p^) between t and u.

If u moves away from b on Cl g [ Q as t moves away 

from a on Q g C C( £2i then t and u will lie on opposite 

sides of Xq- Hence (t, p^, p^, p^, p^) meets ’ with an 

odd multiplicity on both arcs p^, Pg’ Py Pl^

On the arc ’[ ”1, (t, pp p2, p^,. p^) meets y Q at least

once and at the additional point p. and hence > 3 times. On the

arc ’], P1? P2’ p3’ meets at least once

and at the additional point p.; i.e., > 2 times. Hence O' *
V(t, p^, p2»,P-j, p^) meets altogether at least five timees.

Thus

Q Pp, Pj* P/j.}

and this conic meets Q at least seven, times; contradiction. 

The assumption that the subarc Cl g of Cl g contains an even 

number of points of

{pr p2, P3, \[pr pj

similarly leads to a contradiction.

Thus )((t, .p^, p^, p^, p^) meets Q& at a point u which 

moves monotonically and continuously on Q in the opposite direction

to that of t.-
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(vi) Let a = b = p^ for some i, 1 < i < 4.

Then intersects at a = b = p^ and at the points

p., 1 £ J < Bet N* be a suitably small: two-sided neighbourhood 
3 . -

of b = a on Q^en by the continuity of u, there exists 

a small two-sided neighbourhood N of a = b on such that

if t c N, then u c N’. Let t c N, t a. Then u. b = a, 

as was shown in the proof of the continuity of u.

Suppose u- and t lie on the same side of a on N* Lu = t] 

Without loss of generality if u-^ t, let t lie between a and 

u on N1. By case (i) L(iii)j, as t’ moves monotonically and 

continuously from t towards a on N, there is a point

u* X(t, pr p2, p^, p4) n

which moves from in the opposite direction, bn N*. Thus- uT

cannot converge to a tends to contradiction

c

u

as t ’

Hence (t, p , p^, p_, p^) meets Q at a- point u

which moves monotonically and continuously on in the opposite

direction to that of t.

6.3*3 Let < p^ < p^ be three points on Let ^0

be a tangent conic of at a point a which passes through
these points and meets. Qsix times altogether counting multiplicites.

Call the- other point b. Then as t moves monotonically and
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continuously from a in one direction on 6?^’ there is a point

u c J((t2, px, p2, p^) A

.which moves monotonically and continuously from b in the onnosite 

direction.

Proof. Since Q order six, meets 6/ g at

the points a> Pyj p£» and nowhere else. Again we have a

number of cases depending upon the coincidence of one or more of 

these points. In all cases, it t is distinct from and close to
a, then (t^, p^, p^, p^) is close to $ since' is

strongly conically differentiable. Thus ^(t^, p^, p^, p^) meets

at a point tu close to b. Also % (t^, p^, p^, p^) can 

meet /7/- nowhere else. Thus u depends continuously on t.

Because of the continuity of u, it is sufficient to show that
t and u move in opposite directions on $ g whenever t is

close to a,. Again we will give proofs for the cases in which the 

points p^, p^, p7 are mutually distinct. Similar arguments can

be used to prove the monotony property for the cases in which one

or more of the points Pl’ *2’ P3 coincide.

(i) All of a, b, p^, p^, p^ are distinct.

Then intersects at b, p^, p^, p^ and supports
Q 6 at a. By 6.3.2 (iii), if t is distinct from and close 

to a, then (t, p^, p^, p^, b) intersects at a point q
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on the opposite side of and cloge to a. Let r converge from q 

through a tot t on $ & Then

lim ^(r, t, p., p,) = , p,, p?, ?,)
r—> t p

By 6.3.2 (i), as r moves monotonically and continuously

from q through a to t on there is a point

ur c y(t, t, pr p2, n

which moves monotonically and continuously frpm b in the opposite 

direction. Thus

u - lim. u r_4 t r

moves in the opposite direction from b on a. as t does from a.

(ii) Let' b =i p^ for some i, 1 < i < J* a = b, a = p^., 

1 < j < 3.

Then is a nonosculating tangent conic of at a
and b - p^. Hence intersects $g at the points p^, j - i,

and supports Q g at a b. By 6,3.2 (v), as t moves

monotonically and continuously from a on d ^Ct, ,p^, £3’ 

intersects d g at a point q which moves monotonically and 
pP

continuously from b in the opposite direction. It t is close to

a, then q is close to b. Now let r converge from a to t on
d < * Then 

o
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“ ya » Pj> Pg* p^n

By 6.3.2 (i), as r moves monotonically and continuously 

from a to t, then there is a point

Ur c X(r, t, P1, P2, Pp n

which moves monotonically and continuously from q in the opposite 

direction. Thus

■ u= lim. u - r—t r

moves in the opposite direction on to that of t.

at

pr 
a.

Then

Let a = b A p., 1 < j < 3. 
J

is a nonsuperosculating osculating conic of
Hence, intersects d& at a - b and at the points

3. By 6,3.2 (vi), if t is close to and distinct from

Pp Pp» p^, intersects at a point, q on the

a = b

opposite side of and close to a. Let r

°U 7,11611

converge from a to t

lim ^(r, t, pp p2, p^) = , Pq» Pp’

By ^>3.2 (i) as r moves monotonically and continuously from

a to t, there is a point
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ur c ^(r, t, px, p2, pj) n

which, moves monotonically and continuously from q in the opposite 

direction. Wins

u = lim r—4' u

moves in the* opposite direction on to that of t.

(iv) Let a = p^ for some i)l<i<31 a b and 

b A p., 1 < j < 3. 
V 
Then is a nonsuperosculating osculating conic of

at a = p^. Hence intersects at a - p^, b and

PV 1 < j < 3. u By 6*3*2. if t moves monotonically and continuously

from a on , then X(t, a, P1, P2, p ) intersects

at a point q which moves monotonically and continuously from b

in the opposite direction. If t is close to a, then q is

close to b. Let r converge from a to t on g Then

^lim^ Pg’ Bj) IS^t , P^i

By 6.3.2 (iv), as r moves monotonically and continuously from 

a to t, there is a point

ur
c J(r, t, p2, p?) A ^6 
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which moves monotonically and continuously from q in the opposite

direc tion. -Thus 

u = lim. u r—4 t r

moves in the opposite direction on ^6 to that of t..

(v) Let a = p^ for some i, 1 < i < 3j b — p^. for 

some j, j V i, 1 < j < 3.

Then is simultaneously a nonsuperosculating osculating

conic of at a and a honosculating tangent conic of

at b. Hence $ intersects at a, p^, k $ j, 1. < k < 3

and supports Qc b. By 6,3.3, if t moves monotonically

and continuously from a on X(t, a, Pr p2, pj intersects

g at a point q which moves monotonically and continuously

from b in the opposite direction. If t is close to a, then 

q is close to b. Let r converge .from a to t on $ & Then

2
Pl* $2’ p3^ ~ » Pji P£»

By 6.3.2 (iv), as r moves monotonically and continuously 

from a to t on there is a point5

% c t, P1, p2, pp n 
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which moves monotonically and continuously from q in the opposite 

direc tion. Thus

u = lim. u r—t r

moves in the opposite direction on to that of t.

(vi) 'Let a = b - p^ for some i, 1 <i < 3.

Then is a nonultraosculating superosculating conic of

at a which intersects at p , j $ i, 1 < j < 3

and supports /7at a. Let N’ be a small two-sided neighbourhood

of a on Then by the continuity of u, there exists a

small neighbourhood N of a such that if t c N, ^(t , p^, p^, p^)

meets at u c N*. Let t e N, t a.

Firstly u 4 a. Otherwise let tf move from t toward a 

on N. Then by 6.3.3 (ii), there is a point

u* c ?f(t’2, px, p^, p^) a

which moves monotonically and continuously from b -'a toward t 

on N. Hence the points t* and u* must coincide at some position 

€ e N. By 6.3.3 (iii), as we continue the monotone and continuous 

movement of t1 from t toward a on N, u* moves in the opposite 

direction from t on N1. Thus u’ cannot converge to a as t1 

tends to a. .
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Suppose u and t lie on the same side of a bn N1 (without 

loss of generality if u t, let t lie between a and u) [u - t]. 

Then by 6.3*3 (i) E(iii)], as t1 moves monotonically-and continuously 

from t toward a on N, there is a point

u« c p1, p?? n

which moves frAm u in the opposite direction on N’. Thus u* 

cannot converge to ' a as t’ tends to a; contradiction.

2Hence }f(t , p^, p ) meets 

which moves monotonically and continuously on 

at a point u

in the oppositeQ.

direction to that of t.

6.3. ^ Let be- two -points on Q& be an

osculating conic of Ql at a -point oa which -passes through these 

noints and meets six times altogether counting multiplicities.

Call the other' point b. Then as t moves monotonically and 
continuously from a in one direction on Q there is. a point

u c y<t3, P1, p^) n

which moves monotonically and continuously from b in the opposite 

direction.

Proof, Since is of order six, meets $ &

at the points a, b, p^, p^ and nowhere else. As in 6,3.2 and
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6.3.3 we have a number of cases depending upon the coincidence of 

one or more of these points.

In each case if t is close to and distinct from a,
X(t^, p^, p^) is close to since Q& is strongly conically

differentiable. Thus (t^, pp p^) meets at a point u

close to b.. Also ^(t^> p^, p^) meets nowhere else. Hence

u depends continuously on t.

Again it is sufficient to shot/ that t and u move in opposite 

directions on whenever t ,is close to a. Again we give

proofs for the cases in which p^ is distinct from p^. Similar 

arguments can be, used to obtain the monotony of u for the cases 

in which ’ p_ coincides with p_.1. 12

(i) All of a, b, p_, p_ are distinct. ' 1 d
Then $ intersects Qg at all of these points. By 6,3.3 

(iii), if t is distinct form and close to a, Ppi B)

intersects Q & at a point q on the opposite side of and close 

to a. Let r converge from q through a to 1 t on Then

. v / 2 v 3^lim^ fl(r, t , p^, Rp) — g (t , p^,

By ^.3^3-(i), as r moves monotonically and continuously from

q. through a to t on Q &, there is a point
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u c » Pr p2) n Q$

which moves monotonically and continuously from b in the opposite 

direction. Thus

u - lim. u r_^ t r

moves in the opposite direction from b on 6 as t does from a.

Remark. We notice that the proof of 6,3.*+ (i) is completely 

analogous to that of 6.3*3 (i), Similar arguments as in 6.3.3 (ii), 

(iii), (iv), (v), (vi), respectively, allow us to obtain 6.3.4 for

the cases

(ii) Let b = p^ for some i, i = 1 or 2, a \ b, a distinct

ffrom p., jw = 1,2

Let pr j = 1,2
(iv.) Let for some i

Let for some i or 2

j = 3., 2

a

a

a

= P,- i -■ 1 or 2. a
J

P4 i = 1 ,b = n., j. J J
j - 1 or 2

(vi) Let for some i, i = 1 ora - b = P4 2

6.3.5 Let p be a noint on Bet Xq be a superosculating

conic of at a jjoint a which passes through p and meets 

six times altogether counting multiplicities. Call the other point b.
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Then as t moves monotonically and continuously from a in one 

direction on there is a -point

u c X(t\ p) A

which moves monotonically and continuously from b in the opposite 

direction.

Proof. v Since is of order six, meets. at

the points a, b, p and nowhere else. We have again a number of 

cased depending upon the coincidence of one or more of these points., 
v 4If t is close to and distinct from a, then jf(t , p) is close 

to yq, since Q is strongly conically differentiable. Thus 

Y (t\ p) meets at a point u close to b. Also p)

can meet nowhere else. Thus u depends continuously on t.

It suffices to show that t and u move in opposite directions 

on $ whenever t is close to a.

(i) All of a, b, p are distinct.

Then intersects at each of the points b, p and

supports at a. By 6.3.^ (iii), if t is close to. and distinct
from a, w?< p, b) intersects at a point q on the

opposite side of and close to a. Let r converge from q through 

a to t. Then
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rli^t ^(r’’ p) = P>-

*
By 6.3A (i), as r moves monotonically and continuously 

from q through a to t on gi there is a point

ur c )f(r, t5, p) n Q

which moves monotonically and continudusly from b in -the opposite 

direction. Thus

u = lim. u r.-* t r

moves in the opposite direction from b on Qas does 11 from a.

Remark. Again we notice that the proof of 6,3.5 (i) is analogous 

to W/ By using methods similar to those used in 6,3.^ (ii), 

(iii), (iv), (v), (vi), we obtain 6.3.5 for the cases

(ii) Let b = p \ a.

(iii) Let a = b p.

(iv) Let a = p \ b.

(v) Let a = p = b.

6.3*6 "Let q be an ultraosculating conic of Qe -si- 

a point a which meets g six times altogether counting multiplicities. 

Call the other point b. Then as t moves monotonically and continuously 
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from a in one direction on £/ g, there is a point .

u c Y(t5) Qe

which moves monotonically and continuously from b in the opposite 

direction.

Proof. Since is of order six, meets at 

the points a, b and nowhere else. Since is strongly conically

differentiable, if t

Thus
X (t^) meets Q g

is close"to a, then X(t^). is close to 

meets Q e at a point u close to b. Also 

nowhere else. Hence u depends continuously 

on t.

Again it now suffices to show that t and u move in opposite 
directions on Qe* t is dose to a.

(i) Let .a b.
Then intersects Qg at a and b. By.6,3.5 (iii),

if t is distinct from and close to a, }j(t\ b) intersects

Q & at a point q on the opposite side of and close to a. Let 

r converge from q through a to t on Q e* *^Len

lim. =
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By 6.3.5 (i), as r moves monotonically and continuously 

from q through a to t on there is a point

• ur c X (r, t4) n

which moves monotonically and continuously from b yin the opposite 

direc tion. Thus

u - lim. u r—4 t r

• moves in the'opposite direction from b on as t does from a.

(ii) Let a = b.

Then q i® the ‘ultraosculating conic of at a and 
supports 6? g at this point. By 6,3*5 (v), as t moves monotonically 

and continuously from a on then ^(t\ a) intersects

at a point q which moves monotonically and continuously from b in

the opposite direction. If t is close to a, then q is close

to b. Let converge from a to t on ^6- Then

lim. yr, A) =

By 6.3*5 (i)., as r moves monotonically and. continuously from 

a to t on Ct 6 * there is a point

ur c £(r, A) n dg
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which moves monotonically and continuously from q in the opposite

direction. Thus 

u = lim. u r—5 t r

moves in the opposite direction oh Q , to that of t.

6,3 .7 • We note here that the results 6.3.- 6.3*6 can be 

obtained even if is only a conically differentiable convex arc
of order six, as long as we add the restriction that $$ contains 

no points of Type 2; cf, 5.3.1. For by Theorem 9 , $6 contains 

only a finite number s^ of singular points, i = 1, 2, ..., n. 

Each point p \ s^ is a strongly conically differentiable point 

since it is differentiable and ordinary ([10], 6). Also Q is 

strongly differentiable at s^ from either side, since s^ is not 

of Type 2; cf. 6,1,12

Thus if t is close to on Q & then

Pyl P^i i )f(t , p^, pp, p^j), )^(t , , pp) ,

Xct4, p), X(t5>

are 'dose tto

j P4}1 ’ Bq’ j P^’ >

X(a\p),
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respectively. Hence wejobta?n the continuity of u. The monotony 

of u follows exactly as was shown in the proofs of 6,3.2 - 6,3,6
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5.4 Conically Differentiable Curves of Order Six.

Introduction

A curve of conical order six is either convex or of

linear order three; cf, 6,4.1.

If A is convex

contains exactly

and strongly conically differentiable, then

six conically singular points, cf. S. Mukhopadhyaya 

C2Oj and Fr. Fabricius-Bjerre [231. In the literature the term 

"sextactic point” is used in this context. Adapting some of the methods 

of Mukhopadhyaya and using the results of 6.3. this theorem can be 

extended to a conically differentiable convex curve if points 

of Type 2 are not allowed; cf. 6,4,6 and 6.4,7.

Let be of linear order three. There are four possible

types of such a curve as regards number and kind, of linearly singular 
1/

points; cf. 0. Haupt and H. Kunneth ([121, • These .cases are listed

in 6.4,2. Now if is also conically differentiable, two of these

cases cannot occur; cf. 6,4.2. In 6,4,5 it is shown that the linearly 

singular points .with the characteristic (1,2) and (2^1) are conically 

singular points, having the conical characteristic (1, .1, 1, 1, 2; 3) 

and (2, 1, 1, 1, 1; 2), respectively.

It is well known that a strongly conically differentiable curve 

of linear order three contains exactly six singular points; 

cf. Fr. Fabricius-Bjerre L23J. In 6.4.9 and 6.4.10 this result is
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extended to a conically differentiable curve of linear order

three that contains three inflection points.

If the curve $ of linear order three is only conically 

differentiable then it is possible for $ to have only two linearly 

singular points; cf, 6.4.2 (b). In this case $ & contains exactly 

four conically singular points; cf. 6,4,11 and 6.4.12.
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6,4.1 ' One kind of degenerate conic is the

cf. 4,1. Let a C1^rve of conical order

double line;

six. Then

Otherwise, a line

conic will meet

has linear order at most three

meeting £ & n times (n > 3) considered as a
$ 2n times counting multiplicities Hence

either

is convex

or

1^6 is of linear order three

6.4,2 However, we already know the structure of curves

of linear order three in the projective plane ([12]^ ^). There are 

four possibilities

(a) is decomposed into three convex arcs by three linearly

singular points; -namely, three points of inflection. Thus all of the 
other points of $ are linearly ordinary (see Figure 16). If 

is linearly differentiable, these points have the linear characteristic 

(1, 2) and (1, 1), respectively, [15].

(b) & is decomposed into two convex arcs by two linearly

singular points;, namely, a corner shaped like a thorn or a cusp of 

the first kind and an inflection point. Then all of the other points 
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of fa are linearly ordinary (see Figure 17). If jh is linearly 

differentiable, these points have the linear characteristic (2,1), 

(1, 2) and (1, 1), respectively.

(c) is decomposed into two convex arcs by two linearly

singular points; namely, a corner shaped like a thorn dr a cusp of 

the first kind and a corner shaped like a beak. Thus all of the .other 

points of are linearly ordinary (see Figure 18). If is 
t 

linearly differentiable, then a beak shaped corner will be a cusp 

of the second kind with the linear characteristic (2,2). But then 

such a point is 'of linear order at least four ([151, ^.1). This is 

impossible, since is of linear order three. Thus case (c) cannot 

occur if is linearly differentiable.

(d) p is decomposed into three convex arcs by three beak
like corners. Then all other points of $ are linearly ordinary 

(see Figure 19). If is linearly differentiable, these singular 

points would be cusps of the second kind and they would have the 

characteristic (2, 2). Hence as before, case (d) cannot occur.
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Figure 16



Figure 17
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Figure 18
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Figure 19
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6,4.3 Let be a curve of conical order six Then

contains at most finitely -many singular points.

Proof, $ is convex contains

only finitely many singular points.

If g is linear order three, then £ & is the union 

of either two or three convex arcs, by 6.4,2, But then each of these 
convex arcs contains only finitely many singular points. Thus $ & 

contains at most finitely many singular points.

6,4,4 Next we .introduce a concept of monotony of an arc Cf 

in the conical case -analogous to that which was used, in 3.3*12 for 

the circular case. We shall denote a general ultraosculating conic 
of Ql at a point p by ^(p).

Ql is said to be monotone if Q induces a unique orientation 

on the general ultraosculating circles at each point of Q such that 

if p < q on Q ,

ytp) C Y(q) and Y(q) X(p)e 

or
X/p) C )f(q) and }((q) C Jf(p) .. 

e i

Again we have results which are analogous to those in 3*3.12. (i) 

and (ii)
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(1) Arcs of conical order five are monotone (LlOj, £),

(ii) Suppose that each interior point of ah arc of

conical order six is ordinary. Then the closed arc Q is monotone.

Proof. Each interior point of Qis ordinary. Also the 

end-points of ordinary, by 6,1.13 (a). Hence each [interior]

point of possesses a Etwo-sided] neighbourhood of conical order

five. But each of these neighbourhoods is monotone; by (i). By 

taking the union offthese neighbourhoods one obtains the monotony of

6.^ -.5 Let us restrict our attention in the rest of Section 6.A 

to a conically differentiable curve conical order six.

By 6,4,3. contains only finitely many singular points.

Thus each singular point is elementary; cf. 5.5.

Thus by 5.5 (iii), each singular point of has exactly one 

”2H in its characteristic; then each of the other digits is nl”.

Also, if a curve intersects its tangent at a conically differentiable 

point p, then the osculating conics of the curve at p are degenerate 

(C91, Theorem 4). Thus the ultraosculating conic of the curve at p 

is the double line on the tangent of the curve at p.
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Hence, for a conically differentiable curve g of conical

order six, we haye the following:

(i) An inflection point with linear characteristic (1, 2) 

has the conical characteristic (1, 1, 1, 1, 2; 3)-

(ii) A cusp of the first kind with linear characteristic (2, 1)' 

,has the conical characteristic (2, 1, 1, 1, 1; 2).

6 .4.6 Let $ be a convex curve which has no points of 

Type 2. Then contains at least six conically singular points,
f

Proof. Since is of order six, there exists a conic

which intersects six times. is non-degenerate
owing to the convexity of $ Bet this six consectutive points be 

P., i = 0, 1/ 5.

(i). Let be the family of conics through the

points p2, p , p^, p . Then

Keeping p^, p^, p^, p^ fixed, by 6,3.2 and 6.3.7« as t moves 

monotonically and continuously from p$ toward p^ on 

there is a point



which moves monotonicalIy

in the opposite direction

p2,

and

on

some point p'• _ between

is a Y -singular
0 P^P^P^P^

PO

continuously
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from toward p_1 u
Hence they must coincide at

and p_ on 1 6* 11118 point po,i

point'; cf. 6,1,8. and

u C j

2
. ’ p3’'^pO,l

is the tangent conic o 6 at Pq y passing through the points

?2» B/p

In this manner, by considering Y we obtain
BiBi+lBi+2Bi+3

a point p.>, .between p.t/l and p. _ which is Y1+4 • 1+5 ' 1+5 "PiPi+lPi+sPi+j

singular and

•‘^1+^ i+5 ’ Pi+l ’ Pi+2’ pi+3^

is the tangent conic of at

Pi, Pi+1, Pit2. Pi+35 1=0, ... 

interpreted modulo 6.

passing through the points

5. Here the subscripts are to be
Bi+4, i+5

( 2) Let Jfp^p^p^ be the subfamily of' conics of ppp

passing through the points P3, Pip Pr- Now
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Pl-) E X - 5 0 P^'P^

and intersects P2 Also

X^$l 2 ’ B/p P^»

Let t move monotonically and

pn) c *0 0 P3P4P5-

continuously from

toward Then by 6,3.3 and 6,3.7t there is
po,i on

a point

u c ^f(t^, p.

which moves monotonically

in the opposite direction

and -continuously from

°n A-
Pp toward PO,l

Suppose 't reaches

tangent conic at

However, 2
Pl,2 

2

1 Pl,2 
passing

before u does

through the

Then-

points

we obtain a

Pj, Pip P5

P/p P5» PQ) also at p^. Thus

^^pl,2 ’ p3’ p4’ Y(p. 2
’1,2 ’ PA’ p5’ pO>-5

u

and this- conic would then meet at least seven times, counting

multiplicitiesj contradiction Thus

p~ - - between p_ _ and
O J 1 j £ 0^1

on

u and t coincide at a point

This point 2

-singular point; cf. 6,1.7 
P3P4P5

and
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is the osculating conic of at pQ 1 2 Posing through the

^%,l,25’ p5^

points p^,p^ and p

P4

In this manner, by considering

. v - ,, r- between p.,_ ... and.+3, i+A, i+5 ■ 11+5,1+4
-singular and

^i^i+l^i+2

Y we obtain6 PiPi+lI’i+2
p.. > .,_ which is

a point

X^i+3,i+4>i+5f $1+1’ ^i+2

is the osculating conic of at pi+3,i+4,i+3 Passin^ through

i = 0the points and pi+2; 5.

Let y be the subfamily of conics of "X

passing through ,the points p^ and n_. Now5

^^0,1,2^’ p4’ E

and intersects■ ^6 at P3 Also

P5’ P0) c

Let t move monotonically and continuously from pn - - on

toward p_ 7
J- j *- , A

Then by 6,3.^ and 6;3«7« there is a point
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ii c Pip

which moves monotonically and continuously from P, toward PO,l,2

in the opposite direction on

As in (2). t cannot reach p1v, , before u does
1,2,3

Thus u

and t coincide at a point pn _ , between p_ _ - and

on » z. This point pn _ _ , is a Y -singular point; ,

cf, 6.1.6 and

^(^0,1,2,31 P5)

is the superosculating conic of at ^0 1 2 3 PassinS through

the points and

In this manner, by considering we obtain a
$ipi+l

point

pi+2,i+3,i+4,i+5 between and p.,, . .i, ., r- x1+3,1+4,1+5 which

-singular and 
pipi+l

Okpi+2,.i+3,i+4,i+3 ’ pi+l

is the superosculating conic of at p. passing

through the points p. and p.,.: i = 01 i+l’

(4)

through the
P5 

p

be the subfamily of conics of passing

Now
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V/ 4
• 0APO;i,2,3 p^) e ^p5

and intersects pg at P4* Also

0
1

Let t move monotonically and continuously from .] on

toward 2 3 4* Then by 6.3.5 and 6,3.7, there is a- point ,

u c X(t\

which moves monotonically and continuously from p^- toward

PO,1,2,3 in the opposite direction on g.

.Again as in (2), t cannot reach p_ * _ >1,2,3,4 before u does.
Thus u and t coincide

and pl,2,3,^ -on' i 

point; cf. 6.1,5 ’and

at a point

This point
po,l,2,3,4

Po,l,2,M

between P0)1)2)3

is a,, y -singular 
■ p5

is the ultraosculating conic < at pO,l,2,3,4 Passing through
the point p^. *

In this manner, by considering we obtain a-point ■ 
Pi

hn,i+2)i+3, between and p£+2,i+3,i*M+5
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on $g which is -singular and 
^i

Va 5 )
0 pi+l,i+2,i+3,i+^,i+5

is the uItraosculating conic at ^1, i+2, i*3,i+4, i+5 P*331116
through Pp i = 0, 5.

Now 
intersects g 

and continuously from Rq q 23

intersects $

at pQ. Let t 
on $ g toward

at p^ and

move monotonically

pl,2,5,M* Then
by 6.3.6 and 6.3-7« there is a point.

u c ^(t^) A £5

which moves monotonically and continuously from

in the opposite direction on A-
p5 toward po,l,2,3,4

Again t cannot reach p_ * x r _ before u does. Thus u

and t coincide at a 
pl,2,3,4,5 on ^6*

point P0)1)2pi4i5 between P0,1,2,3,

This point is a singular point and

is the ultraosculating conic of at p0,1,2,3,4,5-

In this way we obtain a singular point

and

pi,i+l,i+2,i+3,i+4,i+5
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between and Pi+lji+2)i+3ji+V+5 /6;

i = 0, 5. Thus $g contains at least six singular points.

6.^.7 Let g be

with no points of Type 2. 1

a conically differentiable convex curve

Then $ contains at most six conically

singular points

Proof. Suppose contains at least seven conically

singular points, say Sl ' S2 s? on

(1)

s_ and s i "J-

Let p^

Now s^

be any point on

is a conically

meets nowhere else

and continuously from s^

at a point u which moves

in the opposite direction

as

the open

singular

arc of

point

^6 between

Thus X(s^)

By 6*3.6 and 6,3.7. as t moves monotonically
toward s^ on $ & X meet

monotonically and continuously from s^

But s^ is also a ingular point. Thus

t converges to s^, u converges to 'S^ Hence there exists

a point s^2 between s^ and s^ on 

meets & at p^. This point s^2 is a

such that ^(s:^) 

y -singular point

imilarly we obtain points s9X between

between s, and 
5

s^, between s^ and ’5’
and sg and s^^ between s$ and s? which are

and Sj,

s^g between s^

-singular 
Pl

tha t $

s

points.
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(2) Let be any point on the open arc of g between 

and s12, p2 \ Pr Now

^sl2^ ^Sl2’ Pl^

meets $ at s^, p^ and nowhere else. By 6.3.5 and ,6.3.7

as

on

t moves monotonically and continuously from s,^ toward s^
£)f(t\ p^) meets at a point u which moves monotonically

and continuously from s^p in the opposite direction. But s^

is also a -singular
Pl

point. Thus as t converges to s^t u

converges

and s^

to s^. Hence 

on such

This point s. is aIO ’

there exists a point S^R3
that Y(s^__, p_) meets

Idp * 1

V -singular point. 
w PqPp

between s^ ?

at P2

Similarly, we obtain points between s^ 

between s^ and s^^g between and s^g' 

s^g and which are $ -singular points.

and

and

Let be any point on the open arc of

SJ4’
s%7

5-5
between

between^6

s567 anfi Sl23* distinct from p^ and p^. Now

^S123 ’ “ ^Sl23’ pl’ p2^

meets &t $]_23' 1^2 and nowhere else. By 6«3»^ and 6.3«7«

as t moves monotonically and continuously from Sl23 toward s234



214

on ya3, p., P2) meats
6 at a point u which moves

monotonically and continuously from Sl23 in the opposite direction.

But S2J4 is also a -singular point
P1P2

Thus as t converges

to s. u converges to s^^^. Hence there exists a point’ s,

between s_o, and on g such that ^sl23*P pl’ p2^

meets $ & at ^bis point Sl234 is a yp p $ -singular point

Similarly we obtain points s between an^ s

s3456 between. and and s^^^ between s^g and si

which are Y -singular points, fl Pip2p3

4) Let be any point on the open arc of between

s456? and s123'f distinct from Pp and p^. Now

^sl234’ pl’ p2^ " ^^1234’ pl’ p2’ P3^

meets

£^±2, as t

at Sl234’ Pl’ P2’ P3 and nowhere else; By 6.3.3 and

S234? °n

moves monotonically and continuously from
g> y^r'P^i meets at a point

toward

u

which moves monotonically and continuously from i** the opposite

direction. But is also a -singular point. Thus
plp2^3

as t converges to s^^i u 

exists a point s^2345 between

converges to s, Hence there

s. and s on such

that ^( s^2^j_, p^ p?, p^) meets at This point

is a y -singular point.12345 BlP2p3p4
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Similarly, we obtain points

s3456 and ^4567 between

Y* —singular points,
*1W

S3M>6

S23456 between s^/^ and 

and which are

( 5) Let p^ be any 

and sj2345’ .distinct from

point on the open arc between

Pr P2i and- p^. Npw

^^Sl2345’ Pl’ P2’ P3^ " 12345’ Pl, P2’ P3*

meets at ^2345 ’ P^i P^j p^ an^ nowhere, else. By 6.3*2

and 6.3.7. as t moves monotonically and continuously from s^^A^ 
toward s^^g on $ & P2» P4) meets at

a point u which moves monotonically and continuously from s^^i^ 

in the opposite direction. By s^^g is also a y -singular

point. Thus as t converges to u converges'to s,^^.

Hence there exists a point between and s^^^g
on such that pl’ p2’ p3’ meets £ 6 at p5’

Similarly we obtain a point between and
’ s34567 on ^6 such that ^^234567’ pl’ p2’ p3’ p4) meets 

. T^g at P^» But then

^‘Sl23456’ Fl’ p2’ p3’ = ^^23^567* pl’ p2’ p3’

and this conic meets least seven times; contradiction.
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Thus jTg contains at most six conically singular points.

6 .4.8 Let Be of linear order three. Nov; satisfies

Condition PI at each point since it is conically differentiable;

cf. 5.3*1. But as was pointed out in 6.4,2. a cusp of the second 

kind has the linear characteristic (2, 2) and then such a point is 

of linear order at least four, which is impossible. Thus cases (c) 

and (d) of 6.4.2 cannot occur.

6,^.9 —Let case (a) of 6.4.2 occur. Then contains 

at least six conically singular points.

Proof. Let p^, p^, - be the three inflection points of

jp g. By 6,4.5 (i), each of these points is a conically singular 

point with the conical characteristic (1, 1, 1, 
ultraosculating conic ¥(p?) of at p±

on the tangent of at p.; i = 1,
pi 1

X(^) A \ 0

1, 2; 3) and the

is the double line

2, 3. We note that

since two distinct lines in the projective plane intersect.

Now suppose that there are no conically singular points on the 

c-'-nvex open arc P-^Pp between p^ and p£ on Then the

closed arc P^Pp is monotone, by 6.4,4(ii). In particular
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XCP5) n B (P|) = 0.

This is a contradiction. Hence we obtain the existence of a conically

singular- point -q^ on p^p^

Similarly, there exist conically singular points q^q^ on 

the open arcs p^p^t p^p^ of' conclude
that $g contains at least six conically singular points, if case 

(a) of 6.4.2 occurs.

6.4.10 Let case (a) of 6.4.2 occur. Then Q, contains at

■most six conically singular points;

Proof. Suppose that contains at least seven conically

singular points'; Then as in 6,4.9« the three inflection points

p^, p^, are singular. Withoug los: 

at least two conically singular points

of generality, there are

q_ < q0 on the convex open J. *
arc p^p^ between and p^ on may assume, by taking

another line* as L^ if necessary, that the arc P^Pg does not

meet L OD
The tangent line supports $g

PlP2 
of p)

and hence lies loyally to the right of

at each po^nt p

6 (with the

of

exception
at p, say,

Next, we note that at no interior point of the arc PjPg 

ultraosculating conic the double line on the tangent at that particular 

point. Otherwise, being of odd linear order, the tangent line
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at such a point must meet with an odd multiplicity. But
the tangent supports $& at this point and hence must intersect

$ at exactly one other point. But then the ultraosculating 

conic, being the double line on the tangent, meets more than

six times counting multiplicities; contradiction. Thus the characteristic 

of the points q^, is either (1, 1, 1, 1, 2; la(i)) or 

(1, 1, 1, l,;2; la(ii)); cf. 5.^.

We now show that the assumption of at least two singular points

^1’^2 °n °Pen arc woul^ imply the existence of a singular
cpoint q on suc?^ that (q*7) lies locally to the right of

(with the exception of q) at q. If either or
^((q|) lie locally to the right of at or q^, respectively,

then we have such a q. Hence we can assume that neither nor

q_ have the desired property. Then we have the folIownng three

possibilities:

(a) and X ^2^ are both non-degerterate and lie

locally to the left of at and qo, respectively (see

Figure 20 (a));

(b) one, of ,

and lies locally to the left of

K(q|) say 

^6 at q2’ while
is non-degenerate

= ql
(see Figure 20 (b)); or

(c) " $1 anc^ Figure 20 (c)).
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But now we claim the existence of a new singular point q on 

the open arc q^q^. Otherwise, monotone by 6,4.4 (ii);

i.e.,

C yq5). and }f(q5) c

or

Y(q?) C }f(qp) ^d Y<q|)

In particular,

ql e and q2 C ^q2?e

or > O

ql C and q2 e -/

Now if t^, up v^ [t2, u2, v^j are close to ^2^ on P^. > P2 ’
then

^(q£j ^1’ ^1^ ^$2’ ^2’ u2’ ^2^

and the arc p^pp touches the tangent Uq cUq] at
from the same side ([111, 4.3) and hence Ties to the.left of

By letting tp u^, v^ St^, u^, v^j converge to

^1 ^2^ conic YCqp [ ^(qpi anti the arc p^p., touches

the tangent X t 1 .from the same side; i.e., to the left 

°f fL £ J., But the convex arc P^?2 induces a natural
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orientation of Jf(q^) [ ^f(q|)J the result that $ & lies

locally to the right of as ^^2^

was assumed to lie locally to the left of But Jf(q^)

[ X (q^^ does not meet again. Thus

^6 \ G3 c ^l^e ^^6 \ ^2} C ^q2^e

If - q1 [ Y<q|) = Q21, then

In particular, regardless of cases (a). (b) or (c) we have 

tz czq2 e Y<qpe and c Y<q|)e.

This contradicts (*). Hence we obtain the existence of a singular 
point "q on the open arc suc^ Jf(q^^) -lies

locally to the right of (with the exception of "q) at "q, 

then we have the required singular point of the third paragraph.

If q is not such a point, then the above method will yield a singular 

point between q^. and q* on PyPp« By repeating this argument, if 

necessary, we' obtain a singular point q of the desired type or 

we obtajn an infinite sequence of singular points. This, last possibility 

cannot occur, by Theorem 9. Thus we obtain a conically singular point 
q on the open arc PyPp with the property that X(q^) is non-degenerate 

and lies, locally to the right of $ (with the exception of q) at 

q (see Figure 20'(d)).



221

Now in the same manner as was shown for each of the points
,q_, }f(q^) lies locally to the left of the tangent of

g at q. -But (q^) lies locally to the right of and

CJ supports at q, hence intersects

one point m. This point m is not on since q kc

and P^Pp convex« Thus one arc of J(q ) from q' is trapped 

in the region bounded by the arc q m of $ and one of the 
arcs qm of . y(q^), being a closed curve must meet the arc

q p^ m of & or meet the arc q m of c7g- TH® first possibility 

cannot exist since is of conical order six. The latter 
possibility implies that X(q^) is the double line on which 

was ruled out in paragraph two of the proof.

Thus our assumption that $& contains at least seven conically 

singular points is invalid and we have the required result.
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(d)

Figure.20
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6'. 4.11 Let case (b) of 6.4.2 occur. Then & contains 

at least four conically singular points.

Proof. Let p^ "be the cusp of the first kind’ and p^ the 

point of inflection of By 6.^.3 (ii), p^ is a conically

singular point with the characteristic (2, 1, 1, 1, ljiS)^ By 6.4,5

(i) is a singular point with 
The ultraosculating conic )$(p^) 

is the double, line on the tangent 

[p^j. Hence ;

the characteristic (1, 1, 1, 1, 2; 3)
[ Y(pj)J of g at p1 [p2]

7P1 °f /6 at

% (p|) a A 0.

as in 6.4,9.

We obtain singular points q^, on the open’arcs P]P2’ 

of & respectively, in exactly the same manner as in 6.4.9. 

Hence $ contains at least four conically singular points, as 

required.

6.A.12 If case (b) of 6.4,2 occurs, then £g contains at 

most four singular points.

Proof. Suppose that contains at least five conically 

singular points. Then, as in 6,4,11. the cusp of the first kind
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is a conically singular point along with the inflection point 

p^. Without loss of generality, there are at least two conically 

singular points q^, q^ on the convex arc p^pp between p^ and

on ^y assu®e* by taking another line as L^, if

necessary, that the arc does not meet L .’ 1 2 GD

VZe now proceed exactly as in 6.4.10 to obtain, a contradiction. 

Thus contains at most four singular points, if case (b) of 

6.4,2 occurs.

6.^.13 We summarize the results of this section in_the 

.following theorem.

Theorem 11:' Let be a curve of conical, order six. Then

we have the following results.

(1) $g contains at most finitely many conically singular,

noints.

(2) If g is a convex conically differentiabIe curve 

.with no points, of'Type 2, then $ contains exactly six conically 

singular points;."

(3) Jf_case (a) of 6.4.2 occurs, a conically differentiable 

curve $ contains exactly six conically singular points.

(4) If case (b) of 6,4.2 occurs, then a conically differentiable 

curve #g contains exactly four conically singular points.
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Corollary. We have the following results for a curve 

of conical order six.

(1) p is decomposed by the finitely many singular points

into finitely many arcs of conical order five,

(2) If & is a convex conically differentiable curve
with no points of Type 2, then $$ is decomposed by the singular 

points into six arcs of conical order five.

121 if case (a) of 6.4.2 occurs, then a conically differentiable
curve $ g is decomposed by the singular points into, six arcs of 

conical order five.

(4) ' If case (b) of 6,A,2 occurs, then a conically differentiable

curge $ g is decomposed by the singular points into four arcs of 

conical order five.



226

6,3 Strongly Conically Differentiable Curves of Order Six

Introduction

In this short section our attention is restricted- to a strongly 

conically differentiable curve of conical order six. In 6.5,2

it is shown that contains exactly six singular points, if

is convex; while in 6,5.3 it is shown that; contains exactly

six singular points, if is of linear order three,. These two

results are both well knownj cf. [2Oj and L231. However, proofs are 

included for completeness and the convenience of the reader.
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6.3 *1 Th 6,5 we shall assume that is a strongly conically 

differentiable curve of conical order six. As in 6, ^-,1, we have two 

cases:

(i)- is convex

(ii) is of linear order three.

Using the proofs of 6,4,6 and 6,4,7 we have the following result-

6.5.2 Let be a convex curve. Then contains

exactly six conically singular points.

Remark. In 6.3*2. is strongly conically differentiable.

Hence the points of Type 2 are automatically excluded since these 

points are not strongly differentiable,

6.5*3 Let be of linear order three. Now satisfies

Condition PI*, since is strongly conically differentiable. But

a cusp of the first kind has linear characteristic (2,1) and does 

not satisfy Condition PI* ([11], 1.3). Thus case (b) of 6,4,2 cannot 

occur and (a) is the on^y possibility. Ue combine 6.4.9 and 6.4.10 

to obtain

£ & contains exactly six conically singular points.

6.5.4 We summarize the results of this section in the following

theorem.



Theorem 12: Let be a strongly conically differentiable

nurve of conical order six. Then contains exactly six conically

singular points and is decomposed by these singular points 

into six arcs of conical order'five
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