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Lay Abstract

Bioprocesses require models that can be developed quickly for rapid production of de-

sired pharmaceuticals. Parameter estimation is necessary for these models, especially

first principles models. Generating parameter estimates with confidence intervals is

important for model based control. Challenges with parameter estimation that must

be addressed are the presence of non-uniform sampling and measurement noise in

experimental data. This thesis demonstrates a method of parameter estimation that

generates parameter estimates with credible intervals by incorporating measurement

noise in experimental data, while also employing a dynamic neural network surro-

gate model that can process non-uniformly sampled data. The proposed technique

implements Bayesian inference using nested sampling and was tested against both

simulated and real experimental fed-batch data.
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Abstract

This thesis demonstrates a parameter estimation technique for bioprocesses that uti-

lizes measurement noise in experimental data to determine credible intervals on pa-

rameter estimates, with this information of potential use in prediction, robust control,

and optimization. To determine these estimates, the work implements Bayesian infer-

ence using nested sampling, presenting an approach to develop neural network (NN)

based surrogate models. To address challenges associated with non-uniform sampling

of experimental measurements, an NN structure is proposed. The resultant surrogate

model is utilized within a Nested Sampling Algorithm that samples possible param-

eter values from the parameter space and uses the NN to calculate model output

for use in the likelihood function based on the joint probability distribution of the

noise of output variables. This method is illustrated against simulated data, then

with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate

the feasibility of the proposed technique to enable rapid parameter estimation for

bioprocesses.
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Chapter 1

Introduction

1.1 Motivation

The mathematical understanding of bioprocesses remains a topic of interest in the

biopharmaceutical industry. As global sales in the industry increase, the demand

for monoclonal antibodies is dominant [11], driving the need for rapid and optimal

production for these particular processes. The underlying complexity of bioprocesses

as well as high experimental costs encourages the use of models that can be developed

quickly and reliably [21], to in turn be used for process design, operation and control.

Several approaches have been used to model bioprocesses. First principles models are

often used to describe many processes, however there is limited development in these

these models for the complex biological systems in cell cultures, where the mechanisms

are not yet well understood [11][21]. Employing the use of data-driven modelling

presents its own challenges, mainly the requirement of sufficient experimental data,

which is often limited due to production costs and resource availability [19][2], and the

heterogeneity from the resulting data, consisting of online and offline measurements
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and varying sampling times [11]. To improve model accuracy, hybrid models have

been introduced by combining first principles with experimental data [11][31].

When building these models, especially first principles models, estimating model

parameters is required. Several studies have demonstrated different techniques to esti-

mate parameters for bioprocesses. In one result [22], genetic algorithm was applied to

estimate parameters for a plant cell culture system using experimental data. A study

of a Chinese Hamster Ovary (CHO) cell bioprocess determined maximum growth rate

and maximum death rate experimentally with differential analysis methods, yield ra-

tios with linear regression, and minor parameters with differential evolution, applying

the values to a first principles model based on Monod kinetics [5]. Particle swarm

optimization was used in another study to estimate parameters for experimental data

of a similar bioprocess described by a set of differential equations, solving the issue

of ODE stiffness [28]. Another result [26] proposed starting with a simplified model

with a small subset of parameters. These parameters would be estimated by solving

an optimization problem, and then substituted into a more complex model, gradu-

ally building up towards the original model, and this was tested on simulated data.

In addition, a fairly recent contribution applied nonlinear regression to a bioreactor

kinetic model and generated confidence intervals for the parameters using triplicates

of experimental data [25]. Finally, a study compares techniques for dynamic param-

eter estimation, showing that moving horizon estimation outperforms weighted least

squares estimation for experimental data [10].

While many recent contributions used a deterministic approach for parameter es-

timation, a few studies have taken a probabilistic approach, which is meaningful in

2
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that it allows the use of prior information and stochastic exploration of the param-

eter space [37]. Bayesian inference has been utilized for parameter estimation for a

kinetic cell culture model based on Monod kinetics [9]. The model consisted of six

algebraic equations and seven differential equations that were numerically solved in

MATLAB. The Markov chain Monte Carlo (MCMC) method was used to compute

the posterior parameter distributions. Bayesian updating is then performed by us-

ing the obtained posterior distributions as the new prior distributions and using the

MCMC method again with new experimental data. The resulting prediction bands

are plotted against the state variables from test data, observing how many points

fall within the bands . Metropolis-Hastings MCMC algorithm has also been deployed

for parameter estimation using the genetic regulatory network and JAK–STAT signal

transduction pathway as biological process examples, showcasing its effectiveness on

small datasets [13]. Another study applied the MCMC method for parameter estima-

tion with a kinetic model with six differential equations, using the resultant proposed

parameters to predict the variables of interest at subsequent sampling times [39].

In addition, Bayesian techniques have been used in a multitude of process control

applications. One result used Bayesian model identification to determine a model

for the outer tube wall temperature of a steam methane reforming furnace [34].

Kinetic Monte Carlo simulation model of a batch crystallization process has been

developed and utilized in a model predictive controller [18]. To address issues in

multimode processing monitoring, finite Gaussian mixture model for data clustering

has been utlized with Bayesian inference to calculate the posterior probabilities of

samples for the Gaussian components [40]. Another contribution remarks on the use

3
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of Bayesian Lasso when developing a more stable lasso algorithm to apply to an in-

ferential model of a chemical plant [24]. The Bayesian approach has also been used

in an algorithm for on-line parameter estimation as well as state estimation with a

sequential-importance-resampling filter and introducing kernel smoothing [35]. An-

other contribution [17]paired an artificial neural network and Bayesian analysis to

predict the risk of pipeline corrosion. The neural network received significant at-

tributes of the incident as input and produced the cause and resulting consequences

as output, while Bayesian analysis, when provided the cumulative time to an incident

used the MCMC algorithm to determined the probability of the incident. Variational

Bayesian inference has been utilized to estimate the parameters of a latent variable

model that captures abrupt and regular variations in datasets [3]. Another application

of variational Bayesian inference has been to estimate parameters of dynamic models

involved in a transfer slow feature analysis for the purpose of soft sensor modelling

[38].

Methods used for Bayesian inference such as MCMC [39] and nested sampling

[30] require calculations from the model using the proposed parameters, and this

can increase computational costs if the model is complex. Neural networks are a

potential solution to this issue, as feedforward networks are considered ”universal

approximators” [12] and have been combined with first principles models, reducing

computation time [23].

Surrogate models using neural networks have been developed from simulations

such as a fluidized bed reactor [4] and units in a biodiesel production plant [7]. How-

ever, most of these results discuss preventing overfitting due to a sparse dataset [16]

or simulating a sufficient amount of scenarios being computationally expensive [14].

4
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There has not been much discussion on the topic of using neural networks for surro-

gate modelling where data can be generated as needed to avoid overfitting altogether,

while also accurately replicating model predictions, and thus enabling use within pa-

rameter estimation algorithms. Another key tool missing from existing literature is

the ability to build dynamic NN models for instances such as bioreactor data with

measurements where the measurement frequency is non-uniform, thus different from

variable to variable, and also potentially different from one sampling instance to an-

other. Some relevant approaches include designing a convolutional neural networks to

concatenate variables along the time interval for crowd flow predictions [41] and inter-

polate between non-uniform input samples in signal processing [29]. When processing

biomedical data for body sensors, the non-uniform sampling schedule was addressed

by including the time delay between coordinates as input to the neural network [20].

A neural network structure for dynamic modeling of process data with non-uniform

sampling remains unavailable.

Motivated by the above, this thesis proposes a method of parameter estimation

using the nested sampling algorithm for Bayesian inference, with a neural network as

a surrogate model. The Neural Network is designed in a way that enable training and

prediction of variable at non-uniform measurement frequency. The method is applied

to a model for a CHO cell culture in a fed batch bioreactor using real experimental

data to estimate the maximum growth rate and primary death rate parameters in a

first principles model.

5
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1.2 Outline of the Thesis

Chapter 2 outlines the background of the bioprocess as well as the concepts and

theories of Bayesian inference. Chapter 3 describes the development and application

of the method against real experimental data. Results are described in Chapter 4

and conclusions are presented in Chapter 5.

6
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Chapter 2

Preliminaries

The bioprocess under consideration and the nature of the data collected is described,

along with the hybrid state-space model (HSSM), for which the parameters need to be

estimated. The concepts of Bayesian Inference are discussed and the Nested Sampling

Algorithm is introduced.

2.1 Fed-batch Bioreactor process

The experimental data of 12 batches for a design of experiments from the Sartorius

AMBR 250 ® bioreactor system was provided by Sartorius for this work. Each batch

was run in a 250 mL vessel (see Figure 2.1 below for a schematic) for approximately 12

days in fed-batch mode, with periodic bolus additions to maintain adequate glucose

levels for cell growth. 8 of these batches experienced a change in setpoint temper-

ature and/or pH implemented on the 7th day of the experiment, which was around

the beginning of the stationary phase of the cell culture. The remaining 4 batches

served as control. The objective is to estimate parameters for a first principles model

7
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developed to describe this process.

Figure 2.1: Diagram of 250 mL vessel from the Sartorius AMBR 250 ® bioreactor
system.

2.2 Experimental Data Description

The recorded dataset for each batch contained process, feed, and metabolite data,

which was measured with varying sampling times either by the AMBR system itself,

or by the Nova Biomedical BioProfile® FLEX2. For the metabolite data (eg. glucose,

viable cell density), the age of each batch was recorded in days, with 35 samples per

batch. The process data (eg. temperature, pH) was recorded at the same time as

the metabolite data. The time intervals between each sample are non-uniform. The

feed data (eg. glucose additions) for each batch was also recorded in days, however

there were 53 samples per batch. While this data was recorded at the same time as

8
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the rest of the set, the 18 extra points accounted for the time points when feed was

added. Data used for this work was selected based on its relevance to the growth

of the cell culture. The sequence of variables included the time stamp, temperature,

pH, glucose bolus additions, glucose concentration, VCD, dead cell density, lysed cell

density and biomaterial.

2.3 Hybrid State Space Model

The hybrid state-space model (HSSM) provided by Sartorius is an example of a first

principles based model, containing 10 ODEs and 4 parameters (provided by the user)

describing cell metabolism.

Three of these equations are shown below as examples [27]:

dXv

dt
= (µmax − ud)Xv (2.3.1)

dXd

dt
= udXv − klXd (2.3.2)

dXl

dt
= klXd (2.3.3)

where Xv, Xd, and Xl represent the viable cell density, dead cell density, and lysed

cell density, respectively. µmax is the maximum growth rate, ud is the primary death

rate, and kl is the lysing rate. The HSSM includes balances on the metabolites, with

appropriately defined functions capturing the interdependence of variables.

9
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The model is coded in Python, and works by initializing a reactor object and pa-

rameters such as maximum growth rate, primary death rate, lysing rate, and toxicity

rate of the cell culture are provided by the user. Optional conditions such as the

reactor temperature and pH can also be provided to the model, as well as glucose

feed bolus additions. The reactor’s initial state is set up using this information, and

can be run for a specified time by solving the first principles equations that describe

cellular metabolism.

The main objective for this work is to estimate the maximum growth rate and

primary death rate of the cell culture using the proposed method and analyze the

output of the glucose concentration and the viable cell density (VCD) after using

the estimates in the HSSM, as well as to illustrate the ability to account for the

measurement noise distribution in the parameter estimation.

2.4 Bayesian Inference

Bayesian statistics are based on the concept of Bayes Theorem, as shown below [15,

36]:

P (θ | D) =
P (D | θ) · P (θ)

P (D)
(2.4.1)

where the prior (P (θ)) is the probability distribution of the parameters θ independent

of observed data D (ie. prior knowledge of the parameter values before data is

measured). Likelihood (P (D | θ)) is the probability distribution of the data D given

the parameters θ [36]. In other words, it determines the likelihood of the parameter

values given the data. Posterior (P (θ | D)) is the probability distribution of the

10
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parameters θ given the data D. Evidence (P (D)) is the probability distribution of

the observed data D, and is used as a normalization constant.

In general, the prior refers to what is known about the parameters before mea-

suring the data, and the likelihood function refers to obtained knowledge of these

parameters given the observed data. The product of the likelihood and the prior

is proportional to the posterior, which refers to the updated knowledge about the

parameters once the data is provided [36].

The theorem can be further simplified as follows [1]:

P (θ) =
L(θ) · π(θ)

Z
(2.4.2)

Z =

∫
L(θ)π(θ) dθ (2.4.3)

The evidence integral is difficult to estimate since θ could potentially have several

dimensions depending on the number of parameters [30][1]. The nested sampling

algorithm addresses this issue in the next subsection.

2.5 Nested Sampling

In nested sampling, the integral is converted from the multidimensional parameter

space to a one dimensional likelihood space [30][1][32]:

dX = π(θ)dθ (2.5.1)

11
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X(λ) =

∫
L(θ)>λ

π(θ) dθ (2.5.2)

where X is the prior mass over the parameter space where the likelihood is equal, and

X(λ) is the cumulative prior mass where the likelihood function is greater than some

value λ. Taking the inverse [30][1]:

Z =

∫ 1

0

L(X) dX (2.5.3)

This equation depicts the likelihood function as a positive and decreasing integrand

with an area of Z, which is estimated as a weighted sum as follows [30]:

Z =
m∑
i=1

wiLi (2.5.4)

where wi is the Trapezoidal rule applied to the integral over L(X). The likelihood

function can be approximated as the joint probability of each data point given some

parameter value, as described below [36][8]:

L(θ) ≈
n∏
i=1

p(yi | θ) (2.5.5)

where p(yi | θ) refers to the probability of data point yi given parameter(s) θ. This

allows for measurement noise distributions present in data to be accounted for when

the algorithm is applied.

In the nested sampling algorithm, some predefined number (N) of live points are

sampled from the prior. For each iteration, the likelihood of each point is calculated

12
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and the point with the lowest likelihood is replaced with one of higher likelihood until

convergence. This is described in detail as follows [30]:

1. Sample the prior N times to get points (p1, ..., pN) and calculate their likelihood

(Initially: Z = 0, X0 = 1)

2. For i = 1, 2, 3, ...j

Li := min(current likelihood values)

Xi := e
−i
N

wi := Xi−1 −Xi or 1
2
(Xi−1 −Xi+1)

Z := Z + wiLi

Replace the point with the lowest likelihood with a new point with a like-

lihood greater than Li in proportion with prior π(p)

3. Return Z

The algorithm involves several calls to the likelihood function, which in turn in-

volves computing the output, this may become computationally expensive if one were

to use a complex first principles model in this computation. The intent of using a

surrogate model is to reduce the computation time of the overall algorithm. Note

that the intent of the surrogate model is not to model the process directly, but simply

to replicate the first principles model, and more importantly, capture the effect of the

parameters on the predictions generated by the first principles model.

13
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Chapter 3

Proposed NN-surrogate Model

This chapter describes the proposed method. The design of the neural network surro-

gate model is outlined, presenting an algorithm tailored for surrogate dynamic models,

allowing for non-uniform sampling. The internal structure of the neural network is

explained, as well as the process of training and testing. Finally, the setup of the

nested sampling algorithm is discussed.

3.1 Neural Network Design

In this thesis, a neural network is used as a surrogate model in place of the HSSM

to address the computational challenges associated with use of first principles models

in Dynamic Nested Sampling. The model is meant to be used in place of the HSSM

to reduce computational load when implementing nested sampling, therefore it was

trained and tested with simulated data generated from the HSSM. The simulated

data was generated to be similar to the experimental data, with the difference being

that the lysed cell density and biomaterial content are calculated outputs in the first

14
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principles model, and were therefore used in the surrogate model. Note that these are

not part of the measured variables in the experimental data set- thus, when eventually

being used as part of the nested sampling algorithm, these variables do not constitute

a part of the likelihood function. The other key distinction is that the surrogate

model is being designed so that it is able to predict the variables predicted by the

HSSM for different values of the the growth rate and the death rate. Therefore, when

generating training data for the surrogate modeling, the data sets included variations

in the growth rate and death rate, and included these as input variables to the model.

The neural network structure was designed so the input data contained the sam-

pling time interval from time t0 to time t1, the temperature at t0, the change in

temperature during the interval (t1 − t0), the pH at t0, the change in pH during the

interval (t1 − t0), the glucose feed addition, the glucose level in the reactor, the vi-

able cell density (VCD), the dead cell density, the lysed cell density, the biomaterial

content, the maximum growth rate and the primary death rate all at t0. The output

data contained the glucose level in the reactor, the VCD, the dead cell density, the

lysed cell density, and the biomaterial all at t1. The main variables of interest were

the VCD and the glucose levels, which are affected by the growth rate and death rate.

The data was arranged such that the input data went from t0 to the second last time

point tf−1 and the output data went from t1 to tf . This is shown in Figure 3.1 below.

15
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Figure 3.1: Surrogate model structure.

Remark 1 One of the issues that has not been explicitly addressed in the use of

NN for dynamic modeling is to allow for non-uniform sampling intervals. When

the sampling intervals are uniform, and consistent across all data, the resultant NN

dynamic model has the sampling time/discretization time step in-built. In the present

case (as is the case with several processes), the variables are not measured at uniform

intervals. One could of course assume the uniformity of the time interval, and that

would introduce a further mismatch between the model and the data. In contrast, the

present manuscript demonstrates how to enable the NN model to be built to predict

the outputs for non-uniform sampling by including the sampling interval as part of

the training block. In essence, the resulting NN model ‘surrogates’ the first principles

model ODEs for various discretization steps, eventually accomodating for data that is

collected at non-uniform sampling intervals.

16
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Remark 2 Several other options were considered before utilizing the time interval,

and are discussed next to better illustrate the reasoning behind the eventual data ar-

rangement. One was to use the time stamps them selves- with the current time step

as part of the X block and the next time step as part of the Y block. Such a data

arrangement incorrectly suggests time interval being accounted for in the training. As

a matter of fact, such a choice would be completely incorrect. In essence, it would

require the NN model to be trained to ‘predict’ the sampling interval, which is sim-

ply unnecessary, and would degrade the NN performance. On the other hand, if the

current time stamp was used as part of the X block, but not used as the Y block, it

would essentially ‘ask’ the NN to model a time varying nonlinear system, but with a

uniform sampling interval, which is not the intent either.

Remark 3 Another key choice that was made in the design of the NN was to include

not just the current values of the pH and temperature, but also any step changes

in temperature and pH being implemented. This is important as, in the absence of

this information, the NN model would not ‘know’ that a pH change or temperature

changes has happened, and to attribute the change in other variables to changes in

pH and temperature. Removing this information essentially prevents the design of an

appropriate surrogate model. It is also important to recognize that the use of these

variables as part of the input is consistent with the notion that the model is not meant

to predict the pH and temperature evolution, but instead, given a pH and temperature

profile, predict the evolution of the other variables of interest.
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3.2 Neural Network Training and Testing

The other key contribution of the present manuscript is the recognition that a surro-

gate model is being developed, and hence the training approach should be different

from what is traditionally used when training an NN against experimental data. In

order to develop an optimal neural network surrogate model, the following algorithm

is proposed and implemented:

1. Identify relevant input/output variables

2. Generate sufficient dataset for training and testing the network

3. Scale the data and add input perturbations if possible

4. Perform hyperparameter search (Use results as a baseline, more layers and nodes

can be added if needed)

5. Implement the techniques below when training to improve the model’s perfor-

mance:

(a) Learning rate decay

i. Apply a learning rate scheduler and implement a small learning rate

decay

ii. Schedule the decay for when the training loss does not improve after

a certain number of epochs

iii. Assess model predictive performance and adjust the decay and/or the

epoch threshold

(b) Validation set
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i. Create a validation set by taking data from the training set

ii. For each epoch, calculate the validation loss and use it to determine

whether the model should be saved

iii. Assess model predictive performance and adjust the amount of pro-

vided validation data

(c) Early stopping

i. Terminate training if the validation loss does not improve after a cer-

tain number of epochs

ii. Assess model prediction performance and adjust the epoch threshold

6. Assess the overall predictive performance

The algorithm allows for the development of a neural network that encourages

increasing the number of nodes and layers while also employing techniques that im-

prove the network’s predictive ability to replicate the first principles model. The key

is to use the first principles model to generate as much data as necessary to avoid

overfitting. In some cases, models have a large computational cost[14], but the time

requirement can be ameliorated by using tools like parallel processing. One of the

key contributions of the algorithm is not so much as what to do, but more of what

not to do, i.e., when building surrogate models to not use dropout [14] and/or weight

decay [33].

Remark 4 The provided algorithm is meant to develop a surrogate model that repli-

cates the first principles model as closely as possible. While strategies such as dropout

and weight are effective when avoiding overfitting, the main objective of this work’s

surrogate model is to be an ‘exact’ replicate of the first principles model. Dropout
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and weight decay are used to generalize the neural network for better prediction of

unseen, noisy data. However, the approach here is to provide the neural network with

a sufficient amount of data from simulation such that it covers the intended range of

the first principles model.

For training and testing the surrogate model, the HSSM was used in Python to

generate 5000 batches of simulated data, in which each batch simulates a fed batch

scenario run for 12 days as presented in the actual experimental data. Each batch used

a set of sampling times and feed bolus addition schedule from a randomly selected

batch from the experimental data. A randomized combination of the two parameters

of interest (ie. maximum growth rate and primary death rate), temperature, and pH

were also provided and scheduled to change at 20 random time points throughout the

run to introduce input perturbations. Both the cell lysing rate and the toxicity rate

were kept constant.

The neural network was developed in the Pytorch package with its structure and

hyperparameters determined following the proposed algorithm. The network had 10

hidden layers and 500 nodes, using the ReLU function for the hidden layers and

the sigmoid function for the final output layer. The 5000 batches were divided into

4497 training, 500 validation, and 3 testing sets, then scaled such that inputs were

between -1 and 1, and outputs were between 0.2 and 0.8. During training, the input

and output sets were provided in their entirety. Training was performed via the back

propagation algorithm using the Adam optimizer with a mini-batch size of 52 and

an initial learning rate of 1e-4 with exponential learning rate decay of 0.99. The

calculated validation loss was also taken into account during training.

During testing, the first row of input was provided to the neural network with
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the predicted output being provided to the next row of input to reflect a scenario in

which only the first data point is known. The results of the recursive prediction are

plotted against the true values in Chapter 4 to determine the predictive ability of the

neural network.

Remark 5 The neural network must use previous outputs as subsequent inputs dur-

ing testing. This way, only the initial conditions of the process need to be known.

For example, if the data at time t0 is known, the neural network will use it to predict

the output data at time t1. Subsequently, this data at t1 is used to predict the output

data at time t2. If instead the neural network was provided previous output from the

HSSM to test for only one time step ahead prediction, this surrogate model would not

be useful as part of the nested sampling algorithm because not only does the surrogate

model become dependent on the HSSM, the HSSM would also have function calls from

the method to provide the neural network with data, negating the whole purpose of

using the NN surrogate model.

3.3 Setting up Nested Sampling

To preprocess the data for use in this work, the relevant metabolite, process, and

feed data were lined up such that the sample times matched, and interpolated at

sample times where feed was added. The lysed cell density and biomaterial were not

recorded, thus these variables were not used as part of the likelihood function. The

objective of the nested sampling was to determine the maximum growth rate and

primary death rate.

The input data to the nested sampling had 13 columns of variables containing
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the time intervals various variables measured before the interval, while the output

data had 5 columns of variables containing the measured variables after the interval.

The sampling intervals are obtained from the experimental data by subtracting the

recorded age at the time of one sample from the recorded age of the next sample,

creating 52 data points for one batch of data.

The nested sampling algorithm for the use of the proposed method was devel-

oped in Python using the dynesty package [32]. The neural network surrogate model

was incorporated in the algorithm at the likelihood calculation step. As explained

previously, the likelihood can be expressed as the joint probability of the observed

data.

A simple and commonly utilized and often practical situation is where the mea-

surement noise can be assumed to have a normal distribution, which can be expressed

in the likelihood function as follows:

L(θ) =
N∏
i=1

1

σ
√

2π
e

−1
2
(
yi−ŷi
σ

)2 (3.3.1)

Taking the logarithm to make results easier to work with:

L(θ) =
−n
2

ln (2π) +
−n
2

ln (σ2)− 1

2σ2

n∑
i=1

(yi − ŷi)2 (3.3.2)

where yi is the observed data and ŷi is the model calculated data for a particular θ.

Considering the complexities of measuring data in some instances, it may be that

the measurement noise is not normally distributed. This requires a function that can

accommodate various noise distributions so the likelihood calculations of parameter

estimates for real data are as accurate as possible. For example in this work, VCD
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is measured via the Trypan Blue/Digital Imaging method, where the error is larger

for larger measurements. This behavior can be handled by adjusting the likelihood

function such that the standard deviation changes for each output point of the VCD.

This change was implemented as shown below:

σV CD = σ
yi,V CD

MAX(yi,V CD)
(3.3.3)

where σ is a predefined standard deviation, yi,V CD is the current VCD at time interval

i, and MAX(yi,V CD) is the maximum VCD (0.8 due to scaling).

Remark 6 It could be argued that ordinary least squares could be used in place of a

likelihood function. However, maximum likelihood estimation is more general and can

be used for distributions such as normal, binomial, and Poisson for statistical models.

This allows for more complex distributions to be utilized. Ordinary least squares is a

special case of maximum likelihood; if the log-likelihood function is taken of a linear

regression model with errors normally distributed and a constant variance σ2, this

results in an ordinary least squares estimate [6].

The nested sampling algorithm makes several calls to the likelihood function de-

pending on the size of the problem, therefore there are several calls to the model

generating ŷi for different guesses of θ. Note that this is the reason that replacing the

HSSM with the neural network allows better handling of the computational load.

Remark 7 The processing time of the nested sampling algorithm was compared when

it was paired with the neural network surrogate model to when it was paired with the

HSSM. When paired with the surrogate model, processing time was approximately 13

minutes. When paired with the HSSM, the code ran for approximately 13 minutes then
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crashed. The nested sampling algorithm provides the model with the candidate growth

rate and death rate parameters, however since the HSSM contains complex ODEs, poor

parameter values can cause numerical solvers to take infinitesimally small step sizes,

resulting in error. The surrogate model does not contain ODEs, and thus processes

the data points faster than the HSSM, had the HSSM been able to continue.

The algorithm runs as described in Chapter 2 and calculates the likelihood of each

parameter prediction using the neural network results. The dynesty package can then

produce a visual representation of the resultant marginalized posterior probabilities

of the parameters.
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Chapter 4

Surrogate Modeling and Parameter

Estimation Results

This chapter first illustrates the surrogate modeling results, i.e., the ability of the

NN to replicate the HSSM. The parameter estimation results are next demonstrated

using simulated data first, and finally using data from experiments.

4.1 Neural Network Surrogate Modeling Results

The neural network surrogate model was trained and tested as described previously

with 60000 epochs with early stopping incorporated if no improvement of validation

loss occurred within 1000 epochs. The results of one of the testing sets is shown in

Figures 4.1 and 4.2 below.
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Figure 4.1: Neural network prediction for
glucose level trajectory.

Figure 4.2: Neural network prediction for
VCD trajectory.

The mean-squared-error (MSE) for the glucose and VCD output profiles were

3.977× 10−6 and 1.882× 10−5 respectively, and the surrogate model was considered

satisfactory for use in the proposed method. The final structure and hyperparameters

are shown in Table 4.1 below.

Table 4.1: Final structure of the neural network surrogate model.

Batches 5000
Hidden Layers 10

Nodes 500
Learning Rate Decay 0.99

Max Epochs 60000
Mini-batch size 52

Early Stop Threshold 1000
Training sets 4497

Validation sets 500
Testing sets 3

Final training loss 6.04e-07
Final validation loss 7.03e-07
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4.2 Nested Sampling Results

The proposed method was tested against 3 scenarios. The first was using HSSM

simulated data to showcase the method in the best case scenario where the model

structure is identical to the ‘process’. The second scenario applies the method on

the actual experimental data to provide more realistic results. Normal distribution

of the error is assumed as a base case for these two scenarios, with the standard

deviation σ staying constant at 0.3. In the final scenario, the method is applied

to the experimental data, and in addition, the likelihood function is adjusted to

accommodate the realistic measurement noise of the viable cell density by reflecting

the value’s increase as cell density increases as described in Section 3.3.

For the first scenario, the algorithm was provided 8 batches of HSSM simulated

data with a predefined maximum growth rate and primary death rate of 1.14 and

0.017, respectively to determine the technique’s performance when the parameters are

known. Nested sampling was able to produce the marginalized posterior probability

of both parameters, as shown in Figure 4.3 below.
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Figure 4.3: Corner plot showing the 1D and 2D marginalized posterior probability
distribution of the parameters of interest. The dashed black lines are the 2.5%, 50%
and 97.5% percentiles depicting the credible region. The red lines depict the ”true”

parameter values.

These plots show that the algorithm was able to estimate the parameters’ ”true”

values within the credible region. To further validate the performance of the technique

on simulated data, the median of the distribution of each parameter (ie. 1.1266, 0.016)

was used in the neural network with 4 batches of unseen data and plotted against the

same 4 batches with the ”true” values. Results varied for different batches, but yet

enabled broadly the capturing of the process dynamics as shown in Figure 4.4 below.
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Figure 4.4: VCD and glucose level profile results of median estimated parameters
applied to neural network for 2 batches of unseen data. Blue dotted line indicates
the median values (1.1266, 0.016) were used. Black solid line indicates the ”true”

values (1.14, 0.017) were used.

The technique was then applied to the real experimental data. The algorithm was

provided 8 of the 12 batches to estimate the parameters, leaving 4 batches for testing.

The resulting corner plot is shown in Figure 4.5 below.
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Figure 4.5: Corner plot showing the 1D and 2D marginalized posterior probability
distribution of the parameters of interest for the experimental data. The dashed

black lines are the 2.5%, 50% and 97.5% percentiles depicting the credible region.

The median parameter estimates (0.8978, 0.0127) were tested on the remaining

batches 5, 7, 8 and 12. The resulting plots of batch 8 are shown in Figures 4.6 and

4.7 below. The HSSM results with these parameters are also shown to confirm the

neural network is accurately replicating the HSSM. These results varied depending

on the batch, in part due to the fact that the batch data showed significant variation,

yet the estimated model parameters were able to replicate the behavior of the test

data reasonably well.
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Figure 4.6: Glucose level trajectory
for experimental data batch 8. Blue

dotted line is the neural network
prediction using median parameter
estimates. Red dotted line is the
HSSM prediction using median

parameter estimates. Black solid line
is the actual data.

Figure 4.7: VCD trajectory for
experimental data batch 8. Blue
dotted line is the neural network

prediction using median parameter
estimates. Red dotted line is the
HSSM prediction using median

parameter estimates. Black solid line
is the actual data.

The previous scenario was run again with a change in the standard deviation of

the VCD. The results of this change are shown in Figures 4.8, 4.9, and 4.10 below.

There was a slight increase in the MSE of the glucose output profile and a slight

decrease in the MSE of the VCD output profile for batch 8.
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Figure 4.8: Corner plot showing the 1D and 2D marginalized posterior probability
distribution of the parameters of interest for the experimental data when the

standard deviation of the VCD was changed. The dashed black lines are the 2.5%,
50% and 97.5% percentiles depicting the credible region.
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Figure 4.9: Glucose level trajectory
for experimental data batch 8 with
adjusted standard deviation. Blue
dotted line is the neural network

prediction using median parameter
estimates. Red dotted line is the
HSSM prediction using median

parameter estimates. Black solid line
is the actual data.

Figure 4.10: VCD trajectory for
experimental data batch 8 with

adjusted standard deviation. Blue
dotted line is the neural network

prediction using median parameter
estimates. Red dotted line is the
HSSM prediction using median

parameter estimates. Black solid line
is the actual data.

Finally, the nested sampling results were resampled such that their weights are

equal in order to validate the algorithm results. This is shown using batch 8 in Figure

4.11 below. The lower blue line indicates the output predictions of the neural network

when provided the parameter estimates that were calculated to be the 5th percentile

of the nested sampling results. The upper blue line indicates the output predictions

when provided the 95th percentile of the results. The results demonstrate the ability

of the nested sampling algorithm to determine model parameters reasonably well

using experimental data.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/chemeng


M.A.Sc. Thesis – L. Weir; McMaster University – Chemical Engineering

Figure 4.11: Plot of batch 8 VCD output profile with the neural network predictions
when provided the 5% (bottom dotted blue line) and the 95% (top dotted blue line)

percentiles of parameter estimates.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis shows the development of a parameter estimation technique using a prob-

abilistic approach that was demonstrated on experimental fed-batch bioreactor data.

The method implemented Bayesian inference using Nested Sampling and determined

optimal estimates via a likelihood function, which used model output from a neural

network surrogate model to reduce computational load. The method was applied to

model simulated data, real experimental data, and experimental data with varying

measurement noise to demonstrate its feasibility, with favourable results.

5.2 Future Work

By using the method to calculate the parameter estimates along with a credible in-

terval, this information can be used to guide future experiments. With the knowledge

of what experimental factors generate the range of probable parameter values, future
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experiments can be fine tuned based on previous parameter estimates and what is

desired for the results. It is recommended that the measurement noise of the ex-

perimental data should be investigated further in order to achieve a more accurate

distribution to provide to the likelihood function. This can be done, for example,

by analyzing triplicates of measured data for each measurement device used in a

conducted experiment.
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terministic and stochastic parameter estimation for polymer reaction kinetics i:

theory and simple examples. Macromolecular Theory and Simulations, 30(6):

2100017, 2021.

[38] J. Xie, B. Huang, and S. Dubljevic. Transfer learning for dynamic feature ex-

traction using variational bayesian inference. IEEE Transactions on Knowledge

and Data Engineering, 34(11):5524–5535, 2021.

[39] Z. Xing, N. Bishop, K. Leister, and Z. J. Li. Modeling kinetics of a large-scale

fed-batch cho cell culture by markov chain monte carlo method. Biotechnology

progress, 26(1):208–219, 2010.

[40] J. Yu and S. J. Qin. Multimode process monitoring with bayesian inference-based

finite gaussian mixture models. AIChE Journal, 54(7):1811–1829, 2008.

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/chemeng


M.A.Sc. Thesis – L. Weir; McMaster University – Chemical Engineering

[41] J. Zhang, Y. Zheng, and D. Qi. Deep spatio-temporal residual networks for city-

wide crowd flows prediction. In Proceedings of the AAAI conference on artificial

intelligence, volume 31, 2017.

43

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/chemeng

	Lay Abstract
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Outline of the Thesis

	Preliminaries
	Fed-batch Bioreactor process
	Experimental Data Description
	Hybrid State Space Model
	Bayesian Inference
	Nested Sampling

	Proposed NN-surrogate Model
	Neural Network Design
	Neural Network Training and Testing
	Setting up Nested Sampling

	Surrogate Modeling and Parameter Estimation Results
	Neural Network Surrogate Modeling Results
	Nested Sampling Results

	Conclusions and Future Work
	Conclusions
	Future Work


