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Abstract

Convex relaxations of nonconvex functions provide useful bounding infor-
mation in applications such as deterministic global optimization and
reachability analysis. In some situations, the original nonconvex func-
tions may not be known explicitly, but are instead described implicitly
by nonlinear equation systems. In these cases, established convex relax-
ation methods for closed-form functions are not directly applicable.
This article presents a new general strategy to construct convex relax-
ations for such implicit functions. These relaxations are described as
convex parametric programs whose constraints are convex relaxations
of the original residual function. This relaxation strategy is straightfor-
ward to implement, produces tight relaxations in practice, is particularly
efficient to carry out when monotonicity properties can be exploited,
and does not assume the existence or uniqueness of an implicit func-
tion on the entire intended domain. Unlike all previous approaches to
the authors’ knowledge, this new approach permits any relaxations of
the residual function; it does not require the residual relaxations to be
factorable or to be obtained from a McCormick-like traversal of a com-
putational graph. This new convex relaxation strategy is extended to
inverse functions, compositions involving implicit functions, feasible-set
mappings in constraint satisfaction problems, and solutions of para-
metric ODEs. Based on a proof-of-concept implementation in Julia,
numerical examples are presented to illustrate the convex relaxations
produced for various implicit functions and optimal-value functions.

Keywords: Implicit functions, Nonconvex optimization, Convex
underestimators, McCormick relaxations, Constraint satisfaction problems
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2 General Convex Relaxations of Implicit Functions

1 Introduction

Branch-and-bound algorithms for deterministic global optimization require
guaranteed lower bounds on the solution of a nonconvex nonlinear program
(NLP) on particular subsets of the search space. This bounding information
is typically obtained by generating and minimizing a convex relaxation of the
original NLP to its global optimum with a local NLP solver [1]; construct-
ing this relaxation requires furnishing appropriate relaxations of the objective
function and constraint functions. For a function described explicitly by a
closed-form expression, several established relaxation techniques can effec-
tively generate corresponding convex relaxations. In particular, if a nonconvex
function is twice-continuously differentiable, we may construct its convex relax-
ations using αBB relaxations [2], which involve adding a sufficiently large
convex quadratic term to the original function. If the nonconvex function is
a finite composition of known intrinsic functions from a library, such as the
functions that can be represented on a typical scientific calculator, then the
function is said to be factorable, and we can construct its convex relaxations
using McCormick’s relaxation method [1, 3]. This relaxation method gener-
ates accurate and computationally cheap convex underestimators [4]. Several
open-source implementations of this approach are available, such as the C++
library MC++ [5] and the Julia package McCormick.jl [6]. However, if no closed-
form expression for the original nonconvex function is known, then the convex
relaxation methods mentioned previously are not directly applicable.

Thus, as will be formalized in Section 3 below, this article considers a
function x : Rnp → Rnx that is defined implicitly so as to satisfy the equation:

f(x(p),p) ≡ 0,

where f : Rnx × Rnp → Rnp is a known residual function. Such implicit func-
tions x appear in many research areas and applications [7], such as the ellipse
equation in physics and astronomy, the van der Waals equation of state in ther-
modynamics, and the equality constraints in mathematical programming [8].
A closed-form expression is typically not available for the implicit function x,
so its convex relaxations cannot be constructed using the αBB or McCormick
relaxations. This article seeks improved dedicated convex relaxation techniques
for implicit functions.

Several existing approaches have been developed to address this problem.
One major category of these approaches is based on applying a fixed-point
iteration solver to the original nonlinear equation system, and then relaxing
these closed-form iterations. Scott et al. [9] developed generalized McCormick
(GM) relaxations based on McCormick’s relaxation method, permitting con-
vex and concave relaxations of a function’s inputs to be used as arguments [10].
Using this property, Scott et al. [9] introduced an approach to construct convex
relaxations for implicit functions by applying GM to finitely many fixed-point
iterations of an equation-solving method [11]. Stuber et al. [10] later showed



093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

Springer Nature 2021 LATEX template

General Convex Relaxations of Implicit Functions 3

that this approach may not provide any refinement over known a priori inter-
val bounds, which may limit the applicability of this approach. To address this
issue, they proposed an improved successive fixed-point iteration approach to
construct convex relaxations for implicit functions by relaxing iterations based
on the Mean Value Theorem [10]. This approach was employed to relax the
equality constraints in NLPs as inequality constraints in order to reduce the
NLP dimensionality; they argue that this is particularly useful in global opti-
mization. Notably, this approach only applies to factorable residual functions
with GM relaxations, and assumes unique solutions of the corresponding non-
linear equation system. It also requires additional a priori knowledge of the
Jacobian of the residual function, in the form of interval bounds and convex
relaxations. Khan et al. [4] applied Stuber et al.’s approach to construct dif-
ferentiable relaxations for implicit functions, using differentiable McCormick
(DM) relaxations [4, 12] in place of GM. Wilhelm et al. [13] adapted Stuber
et al.’s approach to generate convex relaxations for the numerical solutions of
parametric ordinary differential equations (ODEs) after discretizing them with
implicit ODE solution methods.

A second category of implicit function relaxation approaches is based on
reverse McCormick (RM) propagation proposed by Wechsung et al. [8]. RM is
similar to the standard McCormick relaxations for factorable functions, except
that it carefully propagates the computed convex and concave relaxations
backward through the function’s computational graph, like the reverse mode
of automatic differentiation [14]. Each backward step through the computa-
tional graph involves applying new set intersection rules. Moreover, RM is also
applicable to constraint satisfaction problems (CSPs) containing both equal-
ity and inequality constraints, and allows convex relaxations to be constructed
for a point-to-set mapping of system parameters to the corresponding feasible
regions. Unlike Stuber et al.’s approach, Wechsung et al.’s approach does not
assume the existence nor the uniqueness of a solution. Nevertheless, imple-
menting this relaxation method is a nontrivial coding task; to our knowledge,
no off-the-shelf implementation is currently available. Such an implementa-
tion would require generating each function’s computational graph and then
stepping through it forward and backward while applying RM rules to each
operation.

In this work, we propose a strategy to generate convex and concave relax-
ations for implicit functions using parametric programming. These relaxations
are described by convex optimization problems whose constraints are convex
relaxations of the original residual function. This approach appears to be com-
pletely novel, and does not appear to be a special case of either the general
Tsoukalas-Mitsos relaxations [15] or the auxiliary variable method (AVM) [16],
though we note that both of these approaches also employ embedded convex
optimization problems. Our new approach is extended to construct convex
relaxations for inverse functions, compositions involving implicit functions,
and point-to-set mappings describing parametric CSPs. This new approach is
also applied in the setting of optimization-based bounds tightening (OBBT) to
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4 General Convex Relaxations of Implicit Functions

tighten a priori interval bounds on the range of an implicit function, which
can in turn further tighten the resulting convex relaxations.

Our new approach does not require the underlying implicit function to
be uniquely defined, or to exist everywhere on the intended domain. It also
appears to be simpler to implement and automate than previous methods, and
is efficient to carry out when certain monotonicity or linearity properties can
be exploited. Moreover, unlike all previous approaches to our knowledge, our
new approach does not require the supplied residual function relaxations to
be factorable or to be obtained by traversing the original residual function’s
computational graph. In our new approach, any convex relaxation techniques
may be employed to relax the residual function, such as standard McCormick
relaxations [1, 3], αBB relaxations [2], convex envelopes, the Scott-Barton
relaxations for parametric ordinary differential equations [17], and convex
relaxation approaches based on black-box sampling [18]. In principle, they are
also compatible with convex relaxation approaches without much precedent
in global optimization applications, such as Fenchel conjugates and Moreau-
Yosida regularizations [19]. By contrast, established methods are limited to
one particular relaxation method, such as GM in [9, 10] and RM in [8]. Lastly,
the convex and concave relaxations generated with our new approach are com-
parable to these established methods in tightness, and are shown to produce
tighter relaxations in various numerical examples. In general, tight enclosures
are beneficial in deterministic global optimization and reachability analysis.

This article is structured as follows. Section 2 introduces the mathematical
background underlying this work. In Section 3, we formulate our new strategy,
demonstrate its correctness, and discuss its computational complexity and con-
vergence properties as the underlying domain shrinks. We extend this approach
to relax inverse functions, and to relax compositions involving implicit func-
tions by combining our approach with the multivariate McCormick relaxations
of Tsoukalas and Mitsos [15]. Section 4 extends this new strategy to parametric
CSPs and discusses how parametric sensitivity information might be obtained.
In Section 5, we adapt the new convex relaxation strategy to improve the tight-
ness of interval bounds for implicit functions and CSPs via OBBT. Finally, a
proof-of-concept Julia implementation of our results is described in Section 6,
and numerical examples are presented to illustrate our new approach.

2 Background

This section summarizes the mathematical background underlying this work,
and echoes the background presented in [20]. The following notation conven-
tions are used in this article. Vectors are denoted with boldface lower-case
letters (e.g. x ∈ Rn). Given vectors x,y ∈ Rn, inequalities such as x < y or
x ≤ y are to be interpreted componentwise. Throughout this article, convexity
of a vector-valued function f : Rn → Rm refers to convexity of all components
fi, and concavity is analogous. An interval in Rn is a nonempty subset of Rn of
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General Convex Relaxations of Implicit Functions 5

the form {x ∈ Rn : a ≤ x ≤ b}, which is also denoted as [a, b]. IRn denotes the
set of all intervals in Rn. Let N denote the set {1, 2, 3, . . .} of natural numbers.

Next, we introduce convex and concave relaxations of functions.

Definition 1. Consider a convex set P ⊂ Rnp and a subset Q ⊂ P . Consider
the extended real numbers R̄ := R∪ {−∞,+∞}, and a function φ : Q→ R̄m.
Then:

1. φcv : P → Rm is a convex relaxation of φ on P if
• φcv(p) ≤ φ(p) for all p ∈ Q, and
• φcv is convex on P .

2. φcc : P → Rm is a concave relaxation of φ on P if
• φcc(p) ≥ φ(p) for all p ∈ Q, and
• φcc is concave on P .

We permit Q 6= P here, in order to cover relaxations of implicit functions
that are not defined everywhere within the residual function’s domain.

As summarized in Section 1, several methods have been established to
generate convex relaxations for closed-form factorable functions automat-
ically. The αBB relaxation method [2] constructs convex relaxations for
twice-continuously differentiable functions, and involves adding a sufficiently
large convex quadratic term to the original function. Another approach is
McCormick’s relaxation method and its variants [1, 3, 4, 9, 12, 15].

Next, we summarize a sufficient condition for an optimal-value function to
be convex. The following definition and proposition are adapted from [21].

Definition 2. Let P ⊂ Rnp be a convex set. A point-to-set map SR : Rnp ⇒
Rnx assigns a subset of Rnx to each element of Rnp . SR is convex on P if, for
all p1,p2 ∈ P and λ ∈ (0, 1), the Minkowski sum λSR(p1) + (1− λ)SR(p2) is
a subset of SR(λp1 + (1 − λ)p2). Moreover, SR is a convex relaxation of an
arbitrary point-to-set map S : Rnp ⇒ Rnx on P if, for all p ∈ P , S(p) ⊆ SR(p)
and SR is convex on P .

Proposition 2.1 (Corollary 2.1 in [21]). Consider two convex sets P ⊂ Rnp
and X ⊂ Rnx , two convex functions f : Rnx ×Rnp → R and g : Rnx ×Rnp →
Rng , and an affine function h : Rnx × Rnp → Rnh . Let C : Rnp ⇒ Rnx be a
point-to-set map such that, for each p ∈ P ,

C(p) = {x ∈ X | g(x,p) ≤ 0, h(x,p) = 0}.

For each p ∈ P , consider a general parametric optimization problem

min
x

f(x,p), subject to x ∈ C(p).
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6 General Convex Relaxations of Implicit Functions

Define an optimal-value function f∗ : Rnp → R such that for each p ∈ P ,

f∗(p) =

{
inf
x
{f(x,p) | x ∈ C(p)}, if C(p) 6= ∅,

+∞, if C(p) = ∅.

Then, the function f∗ is convex on P .

Finally, we summarize the directional derivative, which provides local radial
sensitivity information for a function. The following definition is adapted from
[22, Section 3.1].

Definition 3. Let P ⊂ Rnp be a convex set. Let φ : P → Rn be a function.
If for every d ∈ P the limit

φ′(z0; d) = lim
λ↓0

1

λ
(φ(z0 + λd)− φ(z0))

exists, then φ is said to be directionally differentiable at z0 and the function
φ′(z0; ·) is the directional derivative mapping of φ at z0.

3 Convex Relaxations of Implicit Functions

In this section, we present a new formulation for generating convex and con-
cave relaxations for an implicit function using parametric programming. These
implicit function relaxations are then generalized to cover compositions of
implicit functions with known inner functions, and to cover inverse functions.
Convergence properties and computational complexity are discussed.

In the remainder of this section, consider a residual function f :
Rnx × Rnp → Rnx , and the following system of equations:

f(z,p) = 0. (1)

Consider a convex compact set P ⊂ Rnp , and let Q ⊂ P be the set of p ∈ P for
which the equation (1) has at least one solution z. The following assumption
formalizes an implicit function that will later be relaxed.

Assumption 1. Suppose that the the following conditions hold:
1. The set Q is nonempty, so there is a meaningful implicit function x : Q→

Rnx that satisfies:
f(x(p),p) = 0. (2)

2. There is a known interval X ∈ IRnx for which (2) holds and x(p) ∈ X
for every p ∈ Q.

Assumption 1 does not require the implicit function x to be uniquely
defined by (2); there may be many valid choices of x. Condition 2 in Assump-
tion 1 supposes that we know how to bound the range of the particular implicit
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function x that we are considering. Multiple numerical methods are available
to construct the range estimate X, including the interval Newton method [23]
and the interval Krawczyk method [24]; these methods both require f to be
Lipschitz continuous [24, Theorem 5.1.8].

Incidentally, the semi-local implicit function theorem [24] provides a suffi-
cient condition for the uniqueness of the implicit function x, though we do not
require uniqueness in this work. Roughly, that theorem requires existence of a
nonsingular partial derivative ∂f

∂z on X ×P [7]. This result was later extended
to Lipschitz continuous functions in [25, Theorem 7.1.1], using generalized
derivative constructions.

3.1 Main Result

Under Assumption 1, the following theorem constructs new convex and concave
relaxations for the implicit function x.

Theorem 3.1. Suppose that Assumption 1 holds. Let f cv,f cc : X × P →
Rnx be convex and concave relaxations of f on X × P , respectively. Define
xcv,xcc : P → R̄nx such that, for each i ∈ {1, . . . , nx} and p ∈ P ,

xcv
i (p) = inf

ξ∈X
ξi subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p), (3a)

xcc
i (p) = sup

ξ∈X
ξi subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p). (3b)

If these optimization problems are infeasible, then set xcv
i (p) := +∞ and

xcc
i (p) := −∞ for each i by convention.

Then, xcv is a convex relaxation of x on P , and xcc is a concave relaxation
of x on P .

Proof Following Definition 1, we will show that xcv(p) ≤ x(p) for all p ∈ Q, and
that xcv is convex on P . The claims regarding xcc follow from analogous arguments,
which are omitted here.

Under Assumption 1, for each p ∈ Q, x(p) is feasible in the right-hand side
optimization problem in (4), so the feasible region of (4) is nonempty. Thus, for any
i ∈ {1, . . . , nx} and p ∈ Q,

xcv
i (p) = inf

ξ∈X
{ξi | fcv(ξ,p) ≤ 0 ≤ fcc(ξ,p)}

≤ inf
ξ∈X

{ξi | f(ξ,p) = 0}

≤ xi(p).

Collecting these inequalities for all i, we obtain xcv(p) ≤ x(p) for all p ∈ Q.
Next, we verify the convexity of xcv. Define φ : X × P → Rnx × Rnx such that

φ(ξ,p) = (fcv(ξ,p),−fcc(ξ,p)) for each ξ ∈ X and p ∈ P . Since fcv and fcc are
respectively convex and concave, it follows that φ is convex. For each i ∈ {1, . . . , nx}
and p ∈ P , (3a) is equivalent to

xcv
i (p) = inf

ξ∈X
ξi subject to φ(ξ,p) ≤ 0. (4)
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8 General Convex Relaxations of Implicit Functions

Since the objective function of (4) is linear, X and P are convex, and φ is convex
on X × P , the convexity of xcv

i on P follows from Proposition 2.1. �

The implicit function relaxations provided by Theorem 3.1 place no restric-
tions on the choice of residual relaxations f cv/f cc, beyond requiring them to
be valid relaxations. In particular, these residual relaxations need not be con-
tinuous at the boundaries of their domains, they need not be obtained by a
McCormick-like procedure that traverses the computational graph of f , and
they need not be factorable themselves. To our knowledge, this generality is
unprecedented among approaches for relaxing implicit functions, and permits
the use of non-factorable relaxations such as known convex envelopes, the
Scott-Barton ODE relaxations [17], Fenchel conjugates, and Moreau-Yosida
regularizations [19], and convex relaxation approaches based on black-box
sampling [18].

As with the Tsoukalas-Mitsos relaxations of products of nontrivial func-
tions [15], if an implicit function is deemed to be common in global opti-
mization algorithms and based on a simple residual function, then developing
closed-form solutions for the parametric convex optimization problems (3) may
be viable and useful. The subsequent corollaries will illustrate this idea when
monotonicity or linearity may be exploited.

Observe that the optimization problems in (3a) and (3b) are convex opti-
mization problems. Thus, the relaxations xcv and xcc may be evaluated using
local NLP solvers such as IPOPT [26] and CONOPT [27]. Since evaluating
x(p) involves solving a nonlinear equation system of similar size to the NLPs
(3a) and (3b), we expect that the computational cost of evaluating xcv(p) and
xcc(p) with NLP solvers is on the order of nx times the cost of evaluating
x(p). Computational complexity will be discussed in more detail in Section 3.6
below.

3.2 Exploiting Monotonocity and Low Range Dimension

The following corollaries of Theorem 3.1 show that the implicit function relax-
ations (3) are particularly simple to evaluate in certain cases, when we can
exploit either monotonicity or linearity of the residual function relaxations, or
low range dimension of the implicit function.

Corollary 3.2. Consider the setup of Theorem 3.1, suppose that nx =
1, denote X as [xL, xU], and consider some p ∈ P . Suppose that f cv

and f cc are continuous, and choose ξA ∈ arg minx∈X f
cv(x,p) and ξB ∈

arg maxx∈X f
cc(x,p).

If either 0 < f cv(ξA,p) or f cc(ξB,p) < 0, then the optimization problem
(3a) is infeasible and xcv(p) = +∞. Otherwise, define a quantity xA ∈ [xL, ξA]
as follows.

• If f cv(xL,p) ≤ 0, then set xA := xL.
• Otherwise, if f cv(ξA,p) = 0, then set xA := min{x ∈ X : f cv(x,p) ≤ 0}.
• Otherwise, set xA to be the unique root of f cv(·,p) on [xL, ξA].
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Define a quantity xB ∈ [xL, ξB] as follows.
• If f cc(xL,p) ≥ 0, then set xB := xL.
• Otherwise, if f cc(ξB,p) = 0, then set xB := min{x ∈ X : f cc(x,p) ≥ 0}.
• Otherwise, set xB to be the unique root of f cc(·,p) on [xL, ξB].

Then xcv(p) = max(xA, xB).

Proof This follows immediately from Theorem 3.1 and [1, Lemma 3.1]. �

In the typical setting of an implicit function theorem, one is expected to
know certain monotonicity properties of the residual function. In this vein,
observe that the above corollary simplifies significantly if the problem (3a)
is known to be feasible, and f cv and f cc are each known to be strictly
monotonically increasing or strictly monotonically decreasing. In this case:

• if f cv is strictly monotonically increasing, then ξA = xL, and so xA = xL.
• If f cv is strictly monotonically decreasing, then ξA = xU, so:

– if f cv(xL,p) ≤ 0, then xA = xL;
– otherwise xA is the unique root of f cv(·,p) on X.

• If f cc is strictly monotonically increasing, then ξB = xU, so:
– if f cc(xL,p) ≥ 0, then xB = xL;
– otherwise xB is the unique root of f cc(·,p) on X.

• If f cc is strictly monotonically decreasing, then ξB = xL, and so xB = xL.
According to Nesterov [28], Newton’s method for equation-solving is partic-
ularly efficient for finding roots of monotonic univariate functions that are
either convex or concave, as is the case here. We also remark that it may be
possible to exploit monotonicity in Theorem 3.1 when nx > 1 by an analogous
approach.

Moving on, observe that if f cv,f cc are affine with respect to p for each
fixed z, then Theorem 3.1 describes xcv and xcc as the solutions of linear
programs (LPs) that may be efficiently solved by standard methods. Such
affine relaxations could be constructed by evaluating subgradients of nonlinear
relaxations of f using either automatic differentiation [1, 29, 30] or black-
box sampling [18]. Since every such LP would have nx decision variables, 4nx
inequality constraints, and no equality constraints, this LP has an accessible
closed-form solution when nx is small. The following corollaries illustrate this
notion when nx is either 1 or 2, and Example 2 in Section 6 will demonstrate
their application.

Corollary 3.3. Consider the setup of Theorem 3.1, suppose that nx = 1,
denote X as [xL, xU], and choose p ∈ P . Suppose that the functions f cv(·,p)
and f cc(·,p) are both affine. Then, xcv(p) in (3a) can be evaluated by the
following procedure; a similar procedure evaluates xcc(p) instead.

1. Define a set S1 := {xL, xU}.
2. If the affine function f cv(·,p) is not constant, then compute a root of
f cv(·,p) on X and append that root to S1.
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3. If the affine function f cc(·,p) is not constant, then compute a root of
f cc(·,p) on X and append that root to S1.

4. Compute xcv(p) as the least element ξ ∈ S1 for which f cv(ξ,p) ≤ 0 ≤
f cc(ξ,p). If no such element exists, then set xcv(p) := +∞.

Proof This follows immediately from Theorem 3.1. �

In Step 4 of the above corollary’s evaluation procedure, observe that S1

will have no more than four elements, and so an optimization solver is not
required to carry out this step.

Corollary 3.4. Consider the setup of Theorem 3.1, suppose that nx = 2,
denote X as [xL,xU], and choose p ∈ P . Suppose that the functions f cv(·,p)
and f cc(·,p) are both affine. Then, for any p ∈ P , xcv(p) in (3a) and xcc(p)
are be evaluated by the following steps.

1. Remove any redundant equations among the following eight linear
equations in ξ ∈ R2.

f cv
1 (ξ,p) = 0,

f cv
2 (ξ,p) = 0,

f cc
1 (ξ,p) = 0,

f cc
2 (ξ,p) = 0,

ξ1 − xL
1 = 0,

ξ2 − xL
2 = 0,

ξ1 − xU
1 = 0,

ξ2 − xU
2 = 0.

Let E denote the collection of remaining equations.
2. Define S2 to be the empty set.
3. For each pair of linear equations in E (there are

(
8
2

)
= 28 such pairs),

solve this pair for ξ ∈ R2 (if possible). If this solution ξ satisfies

f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p),

then append ξ to S2.
4. If S2 is empty, then set xcv

i (p) := +∞ and xcc
i (p) := −∞ for each i ∈

{1, 2}. Otherwise, for each i ∈ {1, 2}, evaluate:

xcv
i (p) := min{ξi : ξ ∈ S2},
xcc
i (p) := max{ξi : ξ ∈ S2}.

Proof This result follows from Theorem 3.1, noting that if an LP has a bounded
feasible set, then its solution is attained at an extreme point of its feasible set. �

In this corollary, S2 can never include more than 28 points. Thus, by
inspection, each step of this evaluation approach is tractable.
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3.3 Convergence as Domain Shrinks

To be useful in branch-and-bound methods for global optimization, a scheme
of convex relaxations should converge to the original function as the domain
P is shrunk to a singleton set. This section demonstrates this convergence
when the new implicit-function relaxations of Theorem 3.1 are coupled with a
convergent interval method for generating the range estimate X. As noted after
Assumption 2 below, such interval methods do indeed exist. In the following
assumption, limits of sets are defined in terms of the Hausdorff metric.

The following assumption roughly requires that, as we choose smaller and
smaller subsets of P , converging on some element of Q, then our supplied
interval bounds on the implicit function x must also converge.

Assumption 2. Consider the setup of Theorem 3.1. For each q ∈ N, consider
sets Π(q) ⊂ P and Ξ(q) ⊂ X, a convex relaxation f cv

(q) : Ξ(q) × Π(q) → Rnx
of f on Ξ(q) × Π(q), and a concave relaxation f cc

(q) : Ξ(q) × Π(q) → Rnx of f

on Ξ(q)×Π(q). For some p̄ ∈ Q, assume that both of the following conditions
hold:

1. For each sufficiently large q ∈ N, the set Π(q) ∩Q is nonempty.
2. For each q ∈ N and p ∈ Π(q) ∩ Q, there exists ξ ∈ Ξ(q) for which
f(ξ,p) = 0.

3. limq→∞ Ξ(q) = [x(p̄),x(p̄)].

Observe that Conditions 1 and 2 of Assumption 2 are trivially satisfied
if p̄ ∈ Π(q) and x(p̄) ∈ Ξ(q) for each q ∈ N. Moreover, Condition 3 of
Assumption 2 implies that the supplied interval bounds Ξ(q) of the implicit
function’s range converge as q →∞. If the implicit function x is unique, and
if limq→∞Π(q) = [p̄, p̄], then such bounds might be constructed automatically
by several established interval methods, including the interval Newton method
[31] and the interval Krawczyk method [24]. These particular methods require
f to be Lipschitz continuous. However, if there are multiple solutions z ∈ X
of (1) when p := p̄, then, by construction, the implicit function relaxations
of Theorem 3.1 will enclose all of them, and Condition 3 of Assumption 2 is
unlikely to be satisfied if established interval methods are used to generate
the sets Ξ(q). This “nonuniqueness gap” can be averted by ensuring that the
implicit function is indeed unique, perhaps by shrinking X and/or by append-
ing additional equations to the system (1) to specify which single solution is
intended.

Theorem 3.5. Under Assumption 2, for each q ∈ N, let xcv
(q) and xcc

(q) denote

the implicit function relaxations described in Theorem 3.1 with Π(q) in place
of P , with Ξ(q) in place of X, and with f cv

(q)/f
cc
(q) in place of f cv/f cc. Then,

for each i ∈ {1, . . . , nx},

lim inf
q→∞

inf
p∈Π(q)

xcv
(q),i(p) = xi(p̄), and lim sup

q→∞
sup
p∈Π(q)

xcc
(q),i(p) = xi(p̄).
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Proof The limit involving xcv
(q) will be demonstrated; the limit involving xcc

(q) follows

from an analogous argument. Pick some i ∈ {1, . . . , nx}. For each q ∈ N, denote Ξ(q)
as [ξL(q), ξU(q)], and define:

x̂∗i (q) := inf
p∈Π(q)

xcv
(q),i(p).

So, for each q ∈ N,

x̂∗i (q) = inf
p∈Π(q),ξ∈Ξ(q)

{ξi | fcv
(q)(ξ,p) ≤ 0 ≤ fcc

(q)(ξ,p)}.

By Assumption 2, for each sufficiently large q ∈ N, the set {ξ ∈ Ξ(q) |
p ∈ Π(q),f(ξ,p) = 0} will be nonempty. Thus:

lim inf
q→∞

x̂∗i (q) = lim inf
q→∞

inf
p∈Π(q),ξ∈Ξ(q)

{ξi | fcv
(q)(ξ,p) ≤ 0 ≤ fcc

(q)(ξ,p)}

≤ lim inf
q→∞

inf
p∈Π(q),ξ∈Ξ(q)

{ξi | f(ξ,p) = 0}

≤ lim inf
q→∞

sup
ξ∈Ξ(q)

ξi

= lim inf
q→∞

ξU
i (q)

= xi(p̄),

and:

lim inf
q→∞

x̂∗i (q) = lim inf
q→∞

inf
p∈Π(q),ξ∈Ξ(q)

{ξi | fcv
(q)(ξ,p) ≤ 0 ≤ fcc

(q)(ξ,p)}

≥ lim inf
q→∞

inf
ξ∈Ξ(q)

ξi

= lim inf
q→∞

ξL
i (q)

= xi(p̄),

as required. �

Though not required by Assumption 2, we suspect that analogous conver-
gence of the supplied relaxations of f may improve the rate of convergence.
Several established relaxation methods produce relaxations that converge
rapidly to the original function as q → ∞; these methods include the
McCormick relaxations [32], the αBB relaxations [33], various piecewise-
affine variants of these [34], and recent relaxations of parametric ODE
solutions [17, 35], and certain sampling-based affine relaxations of any of
these [18].

3.4 Relaxing Composite Implicit Functions

In this section, we extend Theorem 3.1 to generate convex and concave relax-
ations for a composition of an implicit outer function with a known inner
function, supposing that the convex and concave relaxations of the inner
function are available. This construction proceeds by combining (3) with the
Tsoukalas-Mitsos relaxations of composite functions [15]. Coupling a relax-
ation method with a convergent interval method is an established step in global
optimization applications [32].
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Theorem 3.6. Consider the setup of Theorem 3.1, and assume additionally
that f is continuous and that Q = P (i.e. an implicit function x is defined
on P ). Suppose there is a compact convex set W ⊂ Rnw , a continuous function
r : W → P , and convex/concave relaxations rcv, rcc : W → P of r on W .
Then there is an implicit function y : W → X for which

f(y(w), r(w)) = 0, ∀w ∈W. (5)

Define functions ycv,ycc : W → X so that, for each i ∈ {1, . . . , nw} and
w ∈W ,

ycv
i (w) = min

ξ∈X,p∈P
ξi

subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p),

rcv(w) ≤ p ≤ rcc(w),

and ycc
i (w) = max

ξ∈X,p∈P
ξi

subject to f cv(ξ,p) ≤ 0 ≤ f cc(ξ,p),

rcv(w) ≤ p ≤ rcc(w).

Then ycv is a convex relaxation of y on W , and ycc is a concave relaxation of
y on W .

Proof Since x is assumed to exist on P , the composition y := x ◦r satisfies (5). The
remaining claims follow immediately from applying [15, Theorem 2] to the composi-
tion x ◦ r, with x relaxed according to Theorem 3.1. �

As before, observe that the optimization problems defining ycv,ycc become
LPs if we employ affine relaxations of the residual function f and the inner
function r.

3.5 Relaxations of Inverse Functions

Since implicit functions are closely related to inverse functions, Theorem 3.1
may be adapted to relax inverse functions instead. Given convex compact sets
P,X ⊂ Rnx , suppose that v : X → P is an invertible function. So, there exists
an inverse function v−1 : P → X of v for which, for each p ∈ P ,

v(v−1(p)) = p.

The inverse function v−1 may also be written as an implicit function satisfying
the following equation system in the form (2):

v(v−1(p))− p = 0, ∀p ∈ P.
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Hence, convex and concave relaxations of v−1 on P may be constructed by
adapting (3) as follows.

Corollary 3.7. Let vcv,vcc : X → P be convex and concave relaxations of
v on X, respectively. Consider functions v−cv,v−cc : P → X such that, for
each i ∈ {1, . . . , nx} and p ∈ P ,

v−cv
i (p) = min

ξ∈X
ξi subject to vcv(ξ) ≤ p ≤ vcc(ξ), (6a)

and v−cc
i (p) = max

ξ∈X
ξi subject to vcv(ξ) ≤ p ≤ vcc(ξ). (6b)

Then, v−cv is a convex relaxation of the inverse function v−1 on P , and v−cc

is a concave relaxation of v−1 on P .

Proof It suffices to show that the hypotheses in Theorem 3.1 hold with v−1 in place
of x, with v−cv,v−cc respectively in place of xcv,xcc, with f(z,p) ≡ v(z) − p,
and with relaxations of f to be furnished below. Since v is invertible and v−1 is its
inverse, Assumption 1 is satisfied with Q := P .

Now, define functions f̄cv, f̄cc : X × P → P such that, for each p ∈ P ,

f̄cv(z,p) = vcv(z)− p,
f̄cc(z,p) = vcc(z)− p.

Observe that the constraints vcv(ξ) ≤ p ≤ vcc(ξ) in (6) are equivalent to f̄cv(ξ,p) ≤
0 ≤ f̄cc(ξ,p). Since vcv and vcc are convex and concave relaxations of v on X,
respectively, it follows that f̄cv and f̄cc are respective convex and concave relaxations
of f . Thus, all hypotheses of Theorem 3.1 are satisfied, and this theorem yields the
claimed result. �

As was the case in Theorem 3.1, observe that the optimization problems in
(6a) and (6b) are convex NLPs, which may be solved with local NLP solvers.
Moreover, if vcv,vcc are chosen to be affine or piecewise-affine relaxations,
then (6a) and (6b) may be formulated as linear programs (LPs) and solved
efficiently.

3.6 Computational Complexity

The computational expense of evaluating our implicit function relaxations
depends heavily on how the convex optimization problems (3) in Theorem 3.1
are solved. An evaluation of the (xcv(p),xcc(p)) pair will involve solving 2nx
optimization problems, each with nx decision variables, bound constraints on
each decision variable, and 2nx additional convex inequality constraints. In
this section we discuss this computational expense qualitatively and some-
what roughly; corresponding CPU times for certain numerical experiments are
reported in Section 6.

In general, we expect the cost of evaluating our relaxations to be inde-
pendent of the domain dimension np of the implicit function, since p is held
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constant in our relaxation formulation. By inspection, this is also the case for
the established implicit function relaxation approaches by Stuber et al. [10]
and Wechsung et al. [8].

If a local nonlinear programming (NLP) solver is employed directly to solve
(3), then we would expect the computational expense of evaluating the new
relaxations to be dominated by the evaluations of f cv and f cc required by
the NLP solver, along with any subgradients, gradients, and/or Hessians. In
general, if an implicit function is well-defined, we would expect each NLP solve
to incur comparable computational expense to evaluating the implicit function
x by a nonlinear equation-solve.

Like our implicit function relaxations, the Tsoukalas-Mitsos relaxations of
composite functions [15] are described as optimal-value functions for certain
parametric convex optimization problems based on supplied relaxations. In
Tsoukalas and Mitsos’s development, however, these relaxations are intended
to be obtained as a general closed-form solution that covers all choices of p and
X, so that the end user can employ this closed-form solution without requiring
a numerical optimization solver. As we showed in Section 3.1, monotonicity
properties of f cv and f cc can be exploited to obtain such closed-form solutions
in (3) when nx = 1. For simple implicit functions that occur often in applica-
tions, it may be worth proceeding analogously to [15], to obtain closed-form
solutions for the optimization problems appearing in (3) in advance.

As was discussed in Section 3.1, useful affine relaxations f cv and f cc in (3)
may be constructed from subgradients or black-box samples of supplied non-
linear relaxations. Roughly, let C denote the computational cost of evaluating
such a nonlinear relaxation once. Following a complexity analysis of automatic
differentiation (AD) by Griewank and Walther [14], we expect that evaluating a
subgradient by the reverse AD mode [29] would cost approximately 10C, while
the simpler forward AD mode [1] would cost approximately 3nxC. The black-
box sampling approach of Song et al. [18] constructs an affine relaxation from
(2nx + 1) nonlinear relaxation evaluations, and therefore costs approximately
2nxC. Once affine relaxations are employed throughout (3), the optimization
problems in this formulation become linear programs (LPs) that are efficiently
solved in practice. As we have already shown, solving this LP is trivial when
nx = 1, and when nx = 2 the LP has a closed-form solution based on solving
28 linear equation systems in two variables, and could presumably be solved
even faster using the simplex method.

We also note that if the residual function f is quadratic in z for each fixed
p, and if αBB relaxations [2] f cv/f cc are employed, then the optimization
problems in (3) become convex quadratically-constrained quadratic programs
(QCQPs), which are also efficiently solved.

By comparison, previous implicit function relaxation approaches [8, 10]
proceed by performing successive tightening iterations, each of which involves
traversing the residual function’s computational graph once. In the case of [10],
these iterations are directly analogous to the iterations of a nonlinear equation
solver used to evaluate x. Hence, we expect that the computational expense of
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these approaches does not scale directly with nx, but instead with the length
of the residual function’s computational graph, and the number of tightening
iterations desired.

4 Convex Relaxations of Constraint
Satisfaction Problems

In this section, we generalize the convex relaxation methodology described in
Theorem 3.1 to constraint satisfaction problems (CSPs). Relaxations will be
presented for point-to-set mappings describing parametric CSPs, and the direc-
tional derivatives of these relaxations will be considered as well. Throughout
this section, consider continuously differentiable mappings g : Rnx × Rnp →
Rng and h : Rnx × Rnp → Rnh . Unlike the function f considered in Section 3,
the dimensions of the codomains of g and h are arbitrary and may be dis-
tinct from nx. Given known intervals X ∈ IRnx and P ∈ IRnp , consider the
following CSP:

min
z∈X, p∈P

0

subject to g(z,p) ≤ 0,

h(z,p) = 0.

(7)

Let the set of z-values in X be expressed as a point-to-set map Ξ from Rnp
to Rnx such that, for each p ∈ P ,

Ξ(p) := {ξ ∈ X | g(ξ,p) ≤ 0, h(ξ,p) = 0}. (8)

Observe that Ξ generalizes the implicit functions x considered in Section 3.1.
Let gcv : X × P → Rng be a convex relaxation of g on X × P , and let

hcv,hcc : X × P → Rnh be respective convex and concave relaxations of h
on X × P , respectively. Define ξcv, ξcc : P → Rnx such that, for each i ∈
{1, . . . , nx} and p ∈ P ,

ξcv
i (p) = min

ξ∈X
ξi

subject to gcv(ξ,p) ≤ 0, (9a)

hcv(ξ,p) ≤ 0 ≤ hcc(ξ,p),

ξcc
i (p) = max

ξ∈X
ξi

subject to gcv(ξ,p) ≤ 0, (9b)

hcv(ξ,p) ≤ 0 ≤ hcc(ξ,p).

The optimization problems in (9a) and (9b) are convex NLPs, which are
typically easier to solve to global optimality than the original nonconvex
CSP (7).
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Define an interval-valued point-to-set map ΞR : P ⇒ Rnx such that, for
each p ∈ P ,

ΞR(p) ≡ [ξcv(p), ξcc(p)].

We will show that ΞR is a convex relaxation of Ξ on P in the sense of
Definition 2.

Theorem 4.1. Let Q be a subset of P such that for each p ∈ Q, Ξ(p) is
nonempty. Suppose that Q is nonempty. Then, ΞR is a convex relaxation of Ξ
on P .

Proof According to Definition 2, we will proceed by showing that Ξ(p) ⊆ ΞR(p) for
each p ∈ P , and that ΞR is convex on P .

First, choose any p ∈ P . If p /∈ Q, then Ξ(p) = ∅ and therefore Ξ(p) ⊂ ΞR(p).
Otherwise, Ξ(p) is nonempty, and we may consider some arbitrary z ∈ Ξ(p). For
any i ∈ {1, . . . , nx},

ξcv
i (p) = min

ξ∈X
{ξi | gcv(ξ,p) ≤ 0, hcv(ξ,p) ≤ 0 ≤ hcc(ξ,p)}

≤ min
ξ∈X
{ξi | g(ξ,p) ≤ 0, h(ξ,p) = 0}

≤ zi.

It is analogous to show that ξcc
i (p) ≥ zi for each i ∈ {1, . . . , nx}. Hence, ξcv(p) ≤

z ≤ ξcc(p), and so z ∈ ΞR(p). Thus, Ξ(p) is a subset of ΞR(p) for each p ∈ P .
Next, we demonstrate the convexity of ΞR on P . Define φ : X × P →

Rng × Rnh × Rnh such that, for each ξ ∈ X and p ∈ P , φ(ξ,p) =
(gcv(ξ,p),hcv(ξ,p),−hcc(ξ,p)), which is convex on X×P . For each i ∈ {1, . . . , nx},
(9a) is equivalent to

ξcv
i (p) = min

ξ∈X
ξi subject to φ(ξ,p) ≤ 0. (10)

Observe that any point ξ ∈ Ξ(p) is feasible in the optimization problem (10). Since
the objective function of (10) is linear, φ is convex on X × P , and X,P are convex,
the convexity of ξcv

i on P follows from Proposition 2.1. It is analogous to show that
ξcc
i is concave on P .

Consider any pA,pB ∈ P and λ ∈ (0, 1). The convexity of ξcv and the concavity
of ξcc ensure that

λξcv(pA) + (1− λ)ξcv(pB) ≥ ξcv(λpA + (1− λ)pB),

λξcc(pA) + (1− λ)ξcc(pB) ≤ ξcc(λpA + (1− λ)pB).

Consider any zpA ∈ Ξ(pA) and zpB ∈ Ξ(pB). Ξ(p) being a subset of ΞR(p) for each
p ∈ P ensures that zpA ∈ ΞR(pA) and zpB ∈ ΞR(pB). Then,

λzpA + (1− λ)zpB ≥ λξ
cv(pA) + (1− λ)ξcv(pB) ≥ ξcv(λpA + (1− λ)pB),

λzpA + (1− λ)zpB ≤ λξ
cc(pA) + (1− λ)ξcc(pB) ≤ ξcc(λpA + (1− λ)pB),

which shows that

λzpA + (1− λ)zpB ∈ ΞR(λpA + (1− λ)pB).
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Since λ,zpA ,zpB were arbitrarily chosen, and since λzpA+(1−λ)zpB is an arbitrary
point in the Minkowski sum λΞR(pA) + (1− λ)ΞR(pB), it follows that

λΞR(pA) + (1− λ)ΞR(pB) ⊂ ΞR(λpA + (1− λ)pB).

Thus, according to Definition 2, ΞR is convex on P . �

4.1 Directional Derivatives

In Theorem 4.1, we constructed convex and concave functions to enclose the
point-to-set mapping defined by a CSP, generalizing the earlier implicit func-
tion relaxations of Theorem 3.1. In global optimization methods based on a
branch-and-bound framework, determining useful lower bounds requires mini-
mizing convex relaxations, and methods for computing these minima typically
require sensitivity information that describes how those relaxations vary with
p. We conjecture that it may be possible to describe subgradients of the map-
pings ξcv, ξcc in general, since these relaxations are particularly well-behaved
due to the linear objective functions and convex inequality constraints of (9).
However, such a subgradient description does not appear to follow immediately
from existing parametric sensitivity theory.

In lieu of a resolution to this this subgradient conjecture, we observe that
directional derivatives of the mappings ξcv, ξcc are described by [36] under
additional second-order optimality assumptions; these assumptions are some-
what onerous but are standard in parametric programming. Similar to the
proof of Theorem 4.1, consider a function φ : X×P → Rng × Rnh × Rnh such
that, for each ξ ∈ X and p ∈ P , φ(ξ,p) = (gcv(ξ,p),hcv(ξ,p),−hcc(ξ,p)).
Then, (9) becomes

ξcv
i (p) = min

ξ∈X
ξi subject to φ(ξ,p) ≤ 0, (11a)

ξcc
i (p) = max

ξ∈X
ξi subject to φ(ξ,p) ≤ 0. (11b)

At this point, [36, Theorem 2] describes directional derivatives of ξcv, ξcc as the
solutions of convex quadratic programs, provided that the assumptions of this
theorem are satisfied. Crucially, these assumptions do not include convexity,
and so we have not exploited the convexity of the relaxed CSP here at all. This
supports our subgradient conjecture above; we expect that making full use
of the relaxed CSP’s convexity would provide useful subgradient information,
but this would be a nontrivial theoretical development.

Directional derivatives themselves are nevertheless useful in a lower-
bounding setting, though not as useful as subgradients. If np is 1 or 2, then
convex analysis theory [37] shows that valid subgradients may be constructed
from 1 or 4 directional derivative evaluations, respectively. If np ≥ 3, then
directional derivatives and subgradients are related somewhat more tenuously
through standard results [38].
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5 Tightening Interval Bounds

In the previous sections, convex and concave relaxations of implicit functions
and CSPs were constructed within known interval boundsX. In this section, we
adapt the formulation (9) in the setting of optimization-based bounds tighten-
ing (OBBT), to generate new interval bounds for implicit functions and CSPs
that are at least as tight as the original bounds. These tighter intervals can
in turn be used to construct relaxations of implicit functions and CSPs that
are tighter than those constructed with the original intervals, based on the
fact that αBB or McCormick relaxations of the original residual function will
converge quickly to the residual function as its interval subdomain shrinks [32].

For context, given a convex relaxation of the feasible region of an NLP,
classical OBBT methods generate tighter bounds for each variable by mini-
mizing and maximizing each variable [39]. OBBT is commonly employed in
various global optimization algorithms to tighten bounds in the nodes of a spa-
tial branch-and-bound tree [2, 40, 41]. Examples 1 and 4 in Section 6 below
will illustrate the approach of this section for tightening the interval bounds
of implicit functions.

Throughout this section, we adopt the setup of (7) and (8), except we now
allow the domain interval X to be varied. Thus, we denote dependence on X
with a superscript where appropriate.

Define ΞB,X ≡ [ξL,X , ξU,X ] ∈ IRnx such that for each i ∈ {1, . . . , nx},

ξL,Xi = min
ξ∈X,p∈P

ξi

subject to gcv,X(ξ,p) ≤ 0, (12a)

hcv,X(ξ,p) ≤ 0 ≤ hcc,X(ξ,p),

ξU,Xi = max
ξ∈X,p∈P

ξi

subject to gcv,X(ξ,p) ≤ 0, (12b)

hcv,X(ξ,p) ≤ 0 ≤ hcc,X(ξ,p).

We will show that, given an initial interval X that contains Ξ(p) for all p ∈ P ,
(12) describes refined interval bounds that are as least as tight as X.

Theorem 5.1. Let ΞR,X(p) ≡ [ξcv,X , ξcc,X ] be a solution of (9). Then,
ΞB,X ≡ [ξL,X , ξU,X ] in (12) satisfies the following inclusions. For all p ∈ P ,

Ξ(p) ⊆ ΞR,X(p) ⊆ ΞB,X ⊆ X.

Proof Theorem 4.1 yields the first inclusion. Next, from (9) and (12), observe that,
for any i ∈ {1, . . . , nx},

ξL,Xi = min
p∈P

ξcv,X
i (p), and ξU,Xi = max

p∈P
ξcc,X
i (p).
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Hence, ΞR,X(p) ⊆ ΞB,X for all p ∈ P . Lastly, since (12) guarantees that
ξL,X , ξU,X ∈ X, it follows that ΞB,R ⊆ X. �

Theorem 5.1 may be invoked repeatedly to iteratively tighten intervals that
enclose the ranges of implicit functions and the point-to-set mappings in CSPs.
Let an interval ΞB,0 be an initial interval bound on Ξ from (8), in place of X.
Next, for each k ∈ {1, 2, . . . }, define ΞB,k ≡ [ξL,k, ξU,k] inductively in terms
of ΞB,k−1 as follows. For each i ∈ {1, . . . , nx}, let

ξL,ki = min
ξ∈ΞB,k−1,p∈P

ξi

subject to gcv,ΞB,k−1

(ξ,p) ≤ 0, (13a)

hcv,ΞB,k−1

(ξ,p) ≤ 0 ≤ hcc,ΞB,k−1

(ξ,p),

ξU,ki = max
ξ∈ΞB,k−1,p∈P

ξi

subject to gcv,ΞB,k−1

(ξ,p) ≤ 0, (13b)

hcv,ΞB,k−1

(ξ,p) ≤ 0 ≤ hcc,ΞB,k−1

(ξ,p).

Theorem 5.1 illustrates that ΞB,k ⊆ ΞB,k−1 ⊆ · · · ⊆ ΞB,0. Thus, (13) rep-
resents a method to iteratively compute interval bounds on the feasible-set
mappings of CSPs that are at least as tight as an initial bound. Since implicit
functions may be represented as CSPs with equality constraints, this approach
may also be used to tighten known interval bounds on the range of the implicit
functions considered in Section 3.

6 Numerical Examples

In this section, we illustrate the new results of the previous sections by con-
structing convex and concave relaxations, as well as improved interval bounds,
for various implicit functions and parametric ODEs. These approaches were
implemented in the programming language Julia [42]. The McCormick.jl pack-
age [6] was used to construct convex relaxations of nonconvex factorable
functions following either the standard McCormick relaxations [1, 9] or the
differentiable McCormick relaxations [4, 12], and was also used to construct
the established implicit function relaxations of [10] for comparison. All convex
nonlinear programs were solved with IPOPT v3.13.2 [26] via JuMP v0.21.4 [43].
Nonlinear equations were solved with the NLsolve.jl package. The CPU times
reported in this section were recorded using the BenchmarkTools.jl package.
The numerical results reported below were obtained by running this imple-
mentation on a Windows 10 machine with a 3.6 GHz AMD Ryzen 5 2600X
CPU and 8 GB memory.

6.1 Relaxing Implicit Functions

The following example is adapted from [10, Example 3.26] and [8, Example 1].
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Example 1. Let P := [6, 9], and consider a function f(z, p) = z2 + pz + 4
where the parameter p is an element of P . According to the quadratic formula,
for each p ∈ P , there are two real roots z∗ of the equation f(z, p) = 0. It
was reported in [10] that X†,0 = [−0.78,−0.4] and X‡,0 = [−10.0,−5.0] are
respective interval bounds of these two real roots. In both X†,0 or X‡,0, there
is a single real root z∗ of f(z, p) = 0 for each p ∈ P , so we have two injective
implicit functions x† : P → X†,0 and x‡ : P → X‡,0 such that f(x†(p), p) = 0
and f(x‡(p), p) = 0.

We generated convex and concave relaxations of x† and x‡ on P using
Theorem 3.1, and compared them with relaxations constructed using the
method established in [10]. The convex and concave relaxations of f were con-
structed with standard McCormick relaxations [1, 9]. The minimization and
maximization problems in (3) were solved at each p ∈ P by two approaches:
applying IPOPT to the NLP formulations (3), and alternatively applying the
equation-solver NLsolve.jl according to the discussion below Corollary 3.2, after
confirming the strict monotonicity of f cv and f cc. The resulting relaxations
are depicted in Figure 1, and are evidently valid relaxations of the implicit
functions x† and x‡ on P . Figure 2 depicts our relaxations together with cor-
responding relaxations proposed by Stuber et al. [10] and implemented in the
McCormick.jl package [6]. As shown in this figure, our relaxations appear to
be significantly tighter in this case. Our average CPU time for each evaluation
of xcv(p) or xcc(p) was 19.01µs using NLsolve.jl, and 0.015 s using IPOPT; it
seems that IPOPT has some overhead when applied to small problems. The
average CPU time to evaluate Stuber et al’s relaxations was 3.87µs.

This example was also considered by Wechsung et al. [8]; comparing our
Figure 1(a) with [8, Figure 3(b)], we conclude that our new relaxations are
tighter in this case than relaxations constructed by one iteration of RM
propagation.

(a) (b)

Fig. 1: The implicit functions x† and x‡ in Example 1 (solid), along with
their interval bounds (dashed) reported in [10] and new convex and concave
relaxations (dotted) described by Theorem 3.1.
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(a) (b)

Fig. 2: The implicit functions x† and x‡ in Example 1 (solid), our new implicit
function relaxations from Figure 1 (dotted), and analogous relaxations by
Stuber et al. [10] (dashed).

Next, we constructed improved interval bounds of x† and x‡ on P sepa-
rately. Since an implicit function may be considered as a CSP with equality
constraints only, we applied the formulation in (13) with k = 1 to generate
interval bounds that are tighter than the original interval bounds X†,0 and
X‡,0. As shown in Figure 3, these improved interval bounds are significantly
tighter than the original bounds.

(a) (b)

Fig. 3: The implicit functions x† and x‡ in Example 1 (solid), along with their
original interval bounds X†,0 and X‡,0 (dashed) and improved interval bounds
X†,1 and X‡,1 (dotted) on P , plotted as functions of p.

Furthermore, we used the improved interval bounds X†,1 and X‡,1 to
generate improved relaxations for x† and x‡, respectively, on P . These relax-
ations are plotted in Figure 4, along with the original relaxations constructed
with X†,0 and X‡,0. This illustrates that tighter interval bounds do translate
tighter convex and concave relaxations. We note that RM propagation may also
employ an iterative approach to generate tighter relaxations. As shown in [8,
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Figure 3(b)], ten iterations of RM propagation can generate tighter relaxations
than our relaxations depicted in Figure 4(a).

(a) (b)

Fig. 4: The implicit functions x† and x‡ in Example 1 (solid), along with their
relaxations constructed on X†,0 and X‡,0 (dashed) and improved relaxations
constructed on X†,1 and X‡,1 (dotted) on P , plotted as functions of p.

In addition to McCormick relaxations, we also used αBB relaxations [2]
to construct convex and concave relaxations of f . The resulting convex and
concave relaxations of x on X†,0 and X‡,0 are illustrated in Figure 5. This
illustrates the versatility of our relaxation approach; any valid convex and
concave relaxations of f can be used in (3), while the established method
in [10] is limited to GM relaxations. For these αBB-based implicit function
relaxations, the average CPU time for each evaluation of xcv(p) or xcc(p) was
0.018 s.

(a) (b)

Fig. 5: The implicit functions x† and x‡ in Example 1 (solid), along with
their interval bounds (dot-dashed), and new convex and concave relaxations
(dashed) based on αBB relaxations of the residual function f .
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The following example considers a thermodynamic equation of state that
may exhibit multiple roots.

Example 2. The van der Waals equation of state is a physical property model
for describing the behavior of non-ideal gases in chemical engineering. This
equation suggests the following relationship between pressure P (atm), volume
V (L), temperature T (K), and amount of gas n (mol):

f(P, V ) :=

(
P + a

n2

V 2

)
(V − nb)− nRT = 0, (14)

where R = 0.082 057 4 L atm
K mol is the gas constant, and a, b are van der Waals

constants. We study the behavior of 1 mole of carbon dioxide gas (with van

der Waals constants: a = 3.610 L2 atm
mol2

, and b = 0.0429 L
mol [44]), undergoing

reversible isothermal compression at T = 297.77 K. Suppose that we would like
to compute guaranteed bounds on the volumes obtained during this conversion,
which may be used to verify that a process operates safely. Since (14) defines P
as a cubic function of V , it is not practical to obtain a closed-form expression
for the implicit function defining V in terms of P .

Thus, we use Theorem 3.1 to construct convex and concave relaxations of V
in terms of P , with P (measured in atm) chosen from the domains [0.95, 1.05]
and [59, 107]. In the first of these pressure regimes, the van der Waals equation
defines V uniquely in terms of P . In the second of these regimes, for certain
values of P , the van der Waals equation suggests three different choices of V
instead. (The well-known Maxwell construction can resolve this nonunique-
ness, but we ignore this construction in our development here.) The interval
bounds X that enclose V on [0.95, 1.05] and [59, 107] are set to [23.5, 26.5]
and [0.07722, 0.2574] (measured in L), respectively. Convex and concave relax-
ations of f were constructed as McCormick relaxations. Our resulting convex
and concave relaxations of volume V are illustrated in Figures 6a and 6b, com-
pared against the prior relaxations of Stuber et al. [10]. In the pressure regime
[0.95, 1.05], both methods produce similar relaxations. In the pressure regime
[59, 107], our approach produces tighter relaxations that are still somewhat far
from the actual van der Waals volumes. We suppose this slackness results from
weakeness of the McCormick relaxations of f in this regime, due to extreme
slope changes in the graphs of the various individual terms in (14). In this case,
the average CPU time for each evaluation of our implicit function relaxations
was 0.018 s using IPOPT (and the formulation in Theorem 3.1) and 19.5µs
using NLsolve.jl (and the monotonicity-based formulation after Corollary 3.2);
evaluating Stuber et al.’s relaxations took 12.17µs on average, and solving the
original van der Waals equation to compute V took 9.15µs using NLsolve.jl.

Furthermore, affine relaxations of f were also used to construct f cv and
f cc, using the subgradients of standard McCormick relaxations of f at the
midpoint of [23.5, 26.5] × [0.95, 1.05]. In this case, xcv and xcc described in
Theorem 3.1 can be evaluated using Corollary 3.3 easily. Neither NLP solvers
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(a) (b)

Fig. 6: Volume defined as an implicit function of pressure for a van der Waals
gas in Example 2 (solid), along with new convex and concave relaxations
(dashed) and relaxations by the prior method of Stuber et al. [10] (dotted),
constructed on (a) P := [0.95, 1.05] and (b) P := [59, 107].

nor LP solvers are required here. The constructed relaxations of P are illus-
trated in Figure 7, along with Stuber et al.’s corresponding relaxations for
comparison. The average CPU time of evaluating either our convex relaxation
or the concave relaxation at each pressure value was 5.99µs; these affine-based
relaxations are thus faster to evaluate than Stuber et al.’s approach, yet weaker
due to outer approximation.

Fig. 7: The implicit function V from Example 2 (solid), along with new convex
and concave relaxations (dashed) based on affine relaxations f cv and f cc, along
with Stuber et al.’s relaxations [10] for comparison (dotted).

The following example is adapted from [8, Example 5]. This example illus-
trates that when an implicit function does not exist everywhere on the intended
domain, our new relaxation approach still constructs valid convex relaxations.
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Example 3. Let P := [−3, 3] and X := [−10, 10], and consider a function

f(z, p) = z2 − (
√
p2 − p − 2)4 with (z, p) ∈ X × P . Let Q := [−3, 0] ∩ [1, 3],

which is a subset of P . For each p ∈ Q, there are two real roots z∗ of the
equation f(z, p) = 0, and so the equation f(x(p), p) ≡ 0 defines a nonunique
implicit function x : Q → X. For any p ∈ P\Q = (0, 1), there is no value z
that satisfies f(z, p) = 0, and so no implicit function can exist here. Figure 8
illustrates the corresponding convex and concave relaxations of x described by
Theorem 3.1. To construct these, the required relaxations of f were obtained
using standard McCormick relaxations, and each evaluation of xcv(p) and xcc

took 0.022 s of CPU time on average. Comparing Figure 8 with [8, Figure 7],
it seems that our new approach produces tighter relaxations than [8]; we were
unable to test this directly since the method of [8] is nontrivial to implement.
In particular, our relaxations in Figure 8 coincide with an implicit function at
p = −3, while this is not the case in [8].

Fig. 8: The nonunique implicit functions x from Example 3 (solid), along
with their convex and concave relaxations (dashed) constructed according to
Theorem 3.1.

6.2 Relaxing Numerical ODE Solutions

In this section, we construct convex and concave relaxations for implicit
functions that are numerical solutions of parametric ordinary differential
equations (ODEs), computed using implicit integration methods. Compared
with explicit integration methods, implicit integration methods are typically
more stable when dealing with stiff ODEs [45]. While methods have been
established in [10, 13] to construct convex relaxations for implicit numerical
solutions of ODEs, this section introduces an alternative approach that may
yield tighter relaxations, and provides a situation in which we must relax
multiple related implicit functions in succession. Having tighter convex relax-
ations would aid deterministic methods for dynamic global optimization. Like
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the approaches presented in [10, 13], the approach presented this section only
relaxes approximate numerical solutions of ODEs; other established methods
[17, 46] instead provide relaxations that are guaranteed to enclose the true
ODE solution.

For the remainder of this section, define t0, tf ∈ R such that t0 < tf , and let
I = (t0, tf ]. Given z0 ∈ Rnz and a continuous function u : I×P ×Rnz → Rnz ,
consider an ODE system:

dz

dt
(t,p) = u(t,p, z(t,p)), t ∈ I,

z(t0,p) = z0.
(15)

According to Peano’s Theorem summarized in [47, Theorem 2.1, Chapter II],
the ODE (15) has at least one solution. We will use the implicit Euler method
to obtain a numerical solution for (15) and generate its convex relaxations
using the approach of Section 3. An analogous approach can be applied to
other implicit integration methods, such as the Adams–Moulton method and
the BDF method. To solve (15) with the implicit Euler method at an arbitrary
p ∈ P , we first discretize I into n evenly spaced intervals with length ∆t :=
(tf − t0)/n. For each m ∈ {0, . . . , n}, denote the numerical ODE solution value
at the mesh point tm := (t0 +m(∆t)) as zm. Then, (15) can be approximated
by the following nonlinear equations for all m ∈ {1, . . . , n} and p ∈ P :

zm(p)− zm−1(p)−∆tu(tm,p, z
m(p)) = 0. (16)

where z0(p) = z0 is the known initial condition. Observe that (16) defines an
implicit function:

x(p) ≡

z
1(p)
...

zn(p)


in the form of (2) if we define:

f((ζ1, . . . , ζn),p) ≡


ζ1 − z0 −∆tu(t1,p, ζ

1)
ζ2 − ζ1 −∆tu(t2,p, ζ

2)
...

ζn − ζn−1 −∆tu(tn,p, ζ
n)

 (17)

Thus, we can use Theorem 3.1 to construct convex and concave relaxations for
zn on P , with zn(p) denoting the ODE solver’s attempt to evaluate the true
ODE solution z(tf ,p).

Let Z ≡ [zL, zU ] ∈ Rnz be a known interval bound for which z(t,p) ∈ Z
for all (t,p) ∈ I × P . Define Zm,0 ≡ [zm,0,L, zm,0,U ] ⊆ IRnz to be a priori
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known interval bounds of zm for each m ∈ {1, . . . , n}, where the index m
represents the mesh point and “0” represents that this is an a priori bound
(similar to the notation in Section 5). Since a conservative interval bound Z
is known, we may set Zm,0 := Z for each m ∈ {1, . . . , n}, and it follows that
zm(p) ∈ Zm,0 for each m ∈ {1, . . . , n} and p ∈ P . Then, convex and concave
relaxations of the terminal numerical ODE solution zn on P can be computed
using Theorem 3.1 as follows. Let f cv,Zm,0 and f cc,Zm,0 : Rnz×n+np → Rnz×n
be convex and concave relaxations of f in (17), respectively, constructed on
the domain Zm,0 × P . Then, for each j ∈ {1, . . . , nz}, Theorem 3.1 yields the
following relaxations of zn on P :

zn,cv
j (p) = min

ζm∈Zm,0,
∀m∈{1,...,n}

ζnj ,

subject to f cv,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn),p)

≤ 0 ≤ f cc,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn),p),

∀i ∈ {1, . . . , nz}, ∀m ∈ {1, . . . , n},
zn,cc
j (p) = max

ζm∈Zm,0,
∀m∈{1,...,n}

ζnj ,

subject to f cv,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn),p)

≤ 0 ≤ f cc,Zm,0

i+nz(m−1)((ζ
1, . . . , ζn),p),

∀i ∈ {1, . . . , nz}, ∀m ∈ {1, . . . , n}.

(18)

Furthermore, we may use the formulation in (13) to construct improved
interval bounds Zm,1 ≡ [zm,L,1, zm,U,1] of zm for each m ∈ {1, . . . , n}, where
m denotes the mesh point index and 1 denotes one iteration of refinement. As
discussed in Section 5, these improved intervals are guaranteed to be at least
as tight as the original interval Zm,0. In this case, we can use these tighter
intervals to generate tighter relaxations for the numerical solutions of ODEs
by replacing Zm,0 in (18) with Zm,1.
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This approach yields the following. For each m ∈ {1, . . . , n}, consider
Zm,1 ≡ [zm,L,1, zm,U,1] ∈ Rnz such that, for each j ∈ {1, . . . , nz},

zm,L,1j = min
p∈P,ζκ∈Zκ,0,
∀κ∈{1,...,n}

ζmj ,

subject to f cv,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn),p)

≤ 0 ≤ f cc,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn),p),

∀i ∈ {1, . . . , nz}, ∀κ ∈ {1, . . . , n},

zm,U,1j = max
p∈P,ζκ∈Zκ,0,
∀κ∈{1,...,n}

ζmj ,

subject to f cv,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn),p)

≤ 0 ≤ f cc,Zκ,0

i+nz(κ−1)((ζ
1, . . . , ζn),p),

∀i ∈ {1, . . . , nz}, ∀κ ∈ {1, . . . , n}.

(19)

Then, Theorem 5.1 implies that zm(p) ∈ Zm,1 ⊆ Zm,0 for each m ∈ {1, . . . , n}
and p ∈ P . We now illustrate this approach in a numerical example.
Example 4. Consider the following parametric ODE:

dz

dt
(t, p) = −z2 + p, t ∈ (0, 1],

z(0, p) = 9,
(20)

where p ∈ P := [−1, 1].
This system was previously studied in [48, Section 4.1] and [13, Example 1].

Convex and concave relaxations of numerical solutions of this ODE system
were generated according to our new approach in Section 6.2 as follows. We
first discretize the integration duration [0, 1] into 20 intervals, so that n = 20
and ∆t = (tf−t0)/n = 0.05. Using the implicit Euler method and the notation
of Section 6.2, the ODE solution z(·, p) can be numerically approximated by
mesh point values z1(p), . . . , z20(p) for all p ∈ P . In particular, z20(p) is the
numerical approximation of the ODE solution z(tf , p) at the terminal time
for all p ∈ P . A known conservative interval bound for the ODE (20) is Z =
[0.1, 9] according to [13], so the interval bounds of zm on P , Zm,0, are set
to Z for each m ∈ {1, . . . , 20}. We generated convex and concave relaxations
z20,cv,0(p), z20,cc,0(p) on P using (18), where f cv,f cc were constructed with
GM relaxations. These relaxations are plotted in Figure 9b where k = 0, and
appear to be valid convex and concave relaxations of z20(p) on P . The average
CPU time of computing either z20,cv,0(p) or z20,cc,0(p) at each p ∈ P is 0.0505
seconds, which is comparable with but slower than the relaxation evaluations
reported in [48, Section 4.1].
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Next, the formulation in (19) was employed to construct improved interval
bounds Zm,1 ≡ [zm,L,1, zm,U,1] of zm for each m ∈ {1, . . . , 20}, where the final
superscript 1 denotes one iteration of refinement. The generated lower bounds
z1,L,1, . . . ,z20,L,1 and upper bounds z1,U,1, . . . ,z20,U,1 are plotted as the lower-
bounding and upper-bounding trajectories in Figure 9a. Furthermore, these
tighter interval bounds were used to generate tighter convex and concave
relaxations z20,cv,1(p), z20,cc,1(p) by replacing Zm,0 in (18) with Zm,1 for each
m ∈ {1, . . . , 20}. The improved relaxations are illustrated in Figure 9(b).

(a) (b)

Fig. 9: (a) Interval bounds Zm,0 (dashed) and tighter interval bounds Zm,1

(dotted), m ∈ {1, . . . , 20}, in Example 4. Solid lines are trajectories of z(·, p)
in (20) with different p. (b) The parametric solution of (15) (solid), along with
its convex and concave relaxations constructed on conservative interval bounds
(dashed) and improved interval bounds (dotted), plotted as a function of p at
t = 1

Lastly, we compare the convex and concave relaxations illustrated in
Figure 9(b) with those constructed with established methods [13, 48]. When
k = 0, we used very conservative interval bounds Z1,0, . . . , Z20,0 that are
much looser than the bounds used in [48]. In this case, the convex relaxation
z20,cv,0 in Figure 9(b) is looser than the convex relaxation in [48, Figure 5],
but the concave relaxation z20,cc,0 overlaps with the numerical solution z20,
and is significantly tighter than the concave relaxation in [48, Figure 5]. When
k = 1, we used tighter interval bounds Z1,1, . . . , Z20,1. In this case, the con-
vex and concave relaxations, z20,cv,1 and z20,cc,1, are both significantly tighter
than the relaxations in [48, Figure 5]. Compared with the lower and upper
bounds shown in [13, Figure 4, lower left and lower right], the bounds in
Figure 9(a) are looser. This is probably due to the difference in numerical
integration methods. Instead of the naive implicit Euler method used in this
work, more advanced Adams–Moulton (AM) and backward difference formula
(BDF) methods were used in the implementation of [13]. Though we expect
that the approach in Section 6.2 may be extended to the AM and BDF meth-
ods, we do not attempt that here for simplicity. Again, we note that this new
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approach and the approach from [13] construct relaxations for approximate
numerical solutions of ODEs, while the relaxations from [48] are guaranteed
relaxations of the true ODE solution.

7 Conclusion

This article has presented a novel approach for generating convex and concave
relaxations of implicit functions. These relaxations are described by the convex
parametric programs shown in Theorem 3.1, whose constraints are arbitrary
convex and concave relaxations of the original residual function. These relax-
ations can be evaluated particularly efficiently when linearity or monotonicity
of the supplied residual relaxations can be exploited. Using the Tsoukalas-
Mitsos relaxations of compositions [15], our result was extended to generate
relaxations for compositions of outer implicit functions with inner known func-
tions. Our new approach was also extended to construct convex relaxations for
inverse functions (Section 3.5) and feasible set mappings in CSPs (Section 4).
Section 5 illustrated that tighter interval bounds of implicit functions and
feasible regions in CSPs can be obtained by further optimizing their convex
relaxations with respect to parameters, in an OBBT setting. These improved
interval bounds can then be used to generate tighter relaxations.

Unlike some established methods that construct relaxations for implicit
functions and CSPs, our new approach does not assume uniqueness of a solu-
tion and does not require the original residual function to be factorable. While
the method in [10] requires GM relaxation and the method in [8] requires
RM relaxation, our new approach admits any valid convex relaxations of the
original residual function, including McCormick relaxations [1, 4, 9], αBB
relaxations [2], convex envelopes, and the pointwise best among multiple relax-
ations. Furthermore, while the established method in [10] depends on one
particular nonlinear equation solution approach, namely fixed-point iteration,
our new approach may employ various methods to solve the embedded opti-
mization problems, such as LP algorithms and NLP algorithms, or even may
even solve these analytically. This optimization-based approach is straight-
forward to implement, and a proof-of-concept Julia implementation of this
approach was developed. As illustrated by the numerical examples in Section 6,
our new approach may construct tighter relaxations of implicit functions and
parametric ODEs than established methods, thus aiding overarching methods
for global optimization or reachability analysis.

Future work may include describing subgradients for the new convex relax-
ations of implicit functions, to help minimize these relaxations during global
optimization, or to construct useful outer approximations. We conjecture that
a general, useful subgradient result for our relaxations is possible, yet this
development seems nontrivial based on current parametric optimization sen-
sitivity theory. Another potential direction of future research is to consider
relax solutions of parametric index-1 differential-algebraic equations, by some-
how combining these implicit function relaxations with recent relaxations of
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parametric ODE solutions. Building a useful library of closed-form relaxations
of common implicit functions may be a worthy goal, and is aided by our new
results here.
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