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Lay Abstract

Having continuous Blood Pressure (BP) monitoring is a must to prevent cardiovascu-

lar diseases (CVDs). This thesis presents a new solution using small, efficient devices

and advanced machine learning algorithms to realize real-time BP estimation. Similar

to how traditional BP measurements are taken by the pulse rate, the small devices

use the changes in blood volume as input, instantly inferring the BP. The thesis aims

at addressing the challenges when incorporating large network capacities into tiny

devices.

The contributions are as follows: First, this thesis explores a variety of optimiza-

tion strategies to shrink the machine learning networks while achieving comparable

accuracy. Those techniques are not tied to any specific framework, making them flexi-

ble and portable. Second, this thesis investigates several acceleration techniques from

both software and hardware perspective. With the novel optimization strategies, the

work demonstrates accurate and efficient BP monitoring.
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Abstract

Controlling high blood pressure can eliminate more than half of the deaths caused

by cardiovascular diseases (CVDs). Towards this target, continuous BP monitoring

is a must. The existing Convolutional Neural Network (CNN) -based solutions rely

on server-like infrastructure with huge computation and memory capabilities. This

entails these solutions impractical with several security, privacy, reliability, and la-

tency concerns. To address the challenges, an alternative solution has merged to

conduct the machine learning algorithms into tiny devices. The unprecedented boom

in tinyML development also drives the high relevance of optimizing network inference

strategies on resource-constrained microcontrollers (MCUs)

The contributions of the thesis are: First, the thesis contributes to the general

field of tinyML by proposing novel techniques that enable the fitting of five popu-

lar CNNs - AlexNet, LeNet, SqueezeNet, ResNet, and MobileNet - into extremely-

constrained edge devices with limited computation, memory, and power budget. The

proposed techniques use a combination of novel architecture modifications, pruning,

and quantization methods. Second, utilizing this stepping stone, the thesis proposes

a tinyML-based solution to enable accurate and continuous BP estimation using only

photoplethysmogram (PPG) signals. Third, the thesis proposes several techniques

to accelerate the CNNs inference process. From a hardware perspective, we discuss
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architecture-aware accelerations with cache and multi-core specifications; from the

software perspective, we develop application-aware optimizations with an existing

real-time compatible C library to maximize the computation and intermediate buffer

reuse. Those solutions only require the general MCU features thus demonstrating

board generalization across various networks and devices.

We conduct an extensive evaluation using thousands of real Intensive Care Unit

(ICU) patient data and several tiny edge devices and all the five aforementioned

CNNs. Results show comparable accuracy to server-based solutions. The proposed

acceleration strategies achieve up to 71% reduction in inference latency.
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Chapter 1

Introduction

Over the past decade, ML has revolutionized a variety of industries and is evolving

rapidly. To accommodate the increasing demand for data and computation, the

training and execution of networks rely on powerful cloud computing and data centers.

Motivated by the need to reduce energy and computational consumption and to

prevent data privacy leakage issues [75], the miniaturization of tiny edge devices and

the optimization of ML algorithms is developed as a new prospect of the Internet

of Things (IoT) [19]. Healthcare is one of the fields that can benefit most from the

tinyML field as it protects patients’ sensitive information and reduces communication

latency by processing data locally [79]. Previous works in healthcare monitoring

predominantly utilize two main approaches. The first approach utilizes classic ML

algorithms like Support Vector Machines (SVM) and Random Forest (RF), which

fall short during complex tasks [36, 58, 3]. The second approach relies on a specific

network and hardware device, which may not generalize well to other systems [24, 87,

42].

This thesis addresses two main challenges in the tinyML field. First, the CNN

1
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model size far outpaces the capacity of the edge device. The thesis investigates CNNs

model compression solutions including the novel architecture modifications and a

combination of model pruning, and quantization techniques. Multiple CNNs are

evaluated including LeNet, AlexNet, SqueezeNet, ResNet, and MobileNet are evalu-

ated for BP estimation and achieve impressive performance using three edge devices.

This topic is elaborated in the Chapter 2. The second challenge is the CNN inference

latency reduction, focusing on methods that are compatible to the vast majority of

the MCUs, including both architecture- and application-aware optimizations. They

efficiently speed up the inference of LeNet, AlexNet, ResNet, and SqueezeNet on

ESP32. This topic is described in the Chapter 3.

2
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Chapter 2

The Case for tinyML in

Healthcare: CNNs for Real-Time

On-Edge Blood Pressure

Estimation

2.1 Introduction

The rise of big data has propelled researchers in all domains to realize the tremen-

dous potential of Machine Learning (ML). The healthcare sector is no exception.

Researchers have proposed several ML-based solutions to improve different aspects of

the sector including diagnosis, treatment recommendations, medical imaging, Ambi-

ent Assisted Living (AAL), administrative tasks, and personalized health monitoring

3
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[68]. However, these solutions are based on conventional ML infrastructures that

are resource-intensive, require powerful processors and large memory units with the-

oretically unlimited power budgets. This gave rise to cloud-based solutions which

made great advancements in several applications, such as medical imaging [5] and

drug discovery [27]. Unfortunately, cloud-based methods fall short when it comes to

healthcare applications with safety critical and real-time requirements, such as health

monitoring and AAL. The reliance on network connectivity raises latency, security

and privacy issues. These concerns deem cloud-based solutions unreliable for such

applications. An alternative to cloud computing is edge computing, where processing

is carried out at close proximity to the sensors that collect data [25]. This mitigates

the need for continuous availability of network connectivity. The computing elements

in this architecture are called edge devices. However, the considered edge devices

were mostly relatively powerful computing systems with high-performance multi-core

CPUs alongside GPUs such as in Raspberry PI, Nvidia Jetson Nano, and Qual-

comm Snapdragon Systems-on-Chip (SoCs). Recently, the field of tinyML [44] gained

tremendous interest both from academia and industry. Unlike general edge comput-

ing, tinyML explores the deployment of ML models onto extremely-constrained low-

power devices. Healthcare is identified as one of the highest growing industries with

the advancement of tinyML [66].

This thesis focuses on investigating techniques that enable the deployment of

tinyML-based solutions on personalized healthcare monitoring. In particular, We

identify BP monitoring as one usecase which we believe will immensely benefit from

4
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tinyML. BP disorders are one of the leading causes of deaths [29]. Therefore, con-

tinuous monitoring of BP is essential for early detection of such abnormalities. Un-

fortunately, traditional cuff-based devices prohibit continuous monitoring. To ad-

dress this problem, several ML solutions have been recently proposed for BP esti-

mation [88, 74, 70, 7, 47]. All these solutions depend on the availability of resource-

intensive machines with powerful computation capabilities and large memory capaci-

ties and bandwidth. This makes them targeting server- or cloud-based infrastructure,

while clearly being ill-suited for tinyML usecases. With requiring continuous, reliable

operation, while mandating privacy, we argue that personalized healthcare monitor-

ing (including BP estimation) cannot practically depend on these solutions for mass

adoption. A tinyML-based solution avoids the inconvenience of cuff-based methods,

while also avoiding the drawbacks of the server-based solutions.

This thesis contributes to both the healthcare as well as tinyML domains as fol-

lows. 1) The thesis contributes to the field of tinyML by proposing novel techniques

that enable the fitting of popular CNNs into extremely-constrained edge devices

with limited computation, memory, and power budget. Namely, the thesis success-

fully manages to fit the following five popular CNNs into tiny edge devices: LeNet,

AlexNet, SqueezeNet, ResNet and MobileNet. This enables us to run inference com-

pletely on the edge without dependency on connectivity or cloud infrastructure. The

proposed techniques use a combination of novel architecture modifications, pruning

and quantization methods.

2) Moreover, the thesis presents a detailed comparative study of the five networks

from the perspective of tinyML. This study covers several aspects of the edge devices,

such as inference time, model size, operational memory size, and model accuracy. In

5
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doing so, we explore the deployment of these CNNs into different tinyML devices in-

cluding Raspberry Pi Pico, ESP32, and Arduino Nano BLE in addition to comparing

against more powerful systems (Raspberry Pi and an Intel i7 multi-core machine)

as a baseline. 3) Utilizing this stepping stone, the thesis proposes a tinyML-based

solution to enable accurate and continuous BP estimation using only photoplethys-

mogram (PPG) signals. We conduct extensive evaluation using thousands of real

ICU patient data and several tiny edge devices and all the five aforementioned CNNs.

Results show that the proposed solutions offer comparable accuracy to server-based

solutions and also meet the Association for the Advancement of Medical Instrumen-

tation (AAMI) British Hypertension Society (BHS) standards.

2.2 Motivation

As aforementioned, one of the key goals of this work is to bring the powerful CNN-

based inference to the extreme edge devices without compromising model accuracy.

In this section, we discuss why this is a challenging problem that even using existing

tinyML frameworks does not completely solve. In doing so, we run an extensive set

of experiments over the five popular CNNs we focus on and we tabulate our findings

in Table 2.1.

To investigate the potential of source-constrained devices, we run the five original

CNNs with 96 × 96 × 1 input size as a baseline on the ESP32. As a result, none

of the networks can fit it. This is indicated by the all × in the Baseline column.

With the optimization techniques provided by TFLite, we managed to fit three of the

five networks: SqueezNet, 20-layer ResNet (ResNet20), and MobileNet with hyperpa-

rameter of 0.55 (MobileNet-0.55). However, only ResNet20 and SqueezeNet present

6
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reasonable accuracy. This is the reason for having XX for them, while MobileNet

gets only one X for the TFLite column in Table2.1. After adopting the architec-

ture adjustments we propose in this work, the five compressed models achieve results

comparable to powerful edge devices.

In the next section, we discuss in detail how we managed to fit these networks in

the tinyML devices while keeping comparable accuracy.

Table 2.1: Deployment results with different solutions

Baseline TFLite compression Proposed
LeNet × ×× XX
AlexNet × ×× XX
SqueezeNet × XX XX
ResNet20 × XX XX
MobileNet-0.55 × X× XX

2.3 Background and State-of-the-Art

We cover the necessary background as well as state-of-the-art from both angles of

the thesis: tinyML paradigm, and the BP estimation use-case.

2.3.1 Blood Pressure Basics

BP disorders cause the largest number of disabilities and deaths around the world

[29]. Arterial Blood pressure (ABP) disorders can happen in either directions: hy-

pertension, or hypotension. The two commonly reported ABP are the Systolic BP

(SBP), and the Diastolic BP (DBP). SBP is the pressure in the artery when heart’s

ventricle contracts, while DBP represents the pressure in the artery when ventricle

relaxes. This is illustrated in Figure 2.1a. Unfortunately, the traditional cuff-based

7
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ABP Signal

SBP

DBP

(a) SBP and DBP

1/HR
ECG

PPG

PTT

(b) PTT, HR relation to ECG and PPG
signals

Figure 2.1: Blood pressure basics figures

mercury sphygmomanometer is not handy and requires a specific setup, which entails

it to be difficult for continuous monitoring and for regular patient use. On the other

hand, there are several non-invasive cuffless sensors that measure other cardiovascu-

lar signals such as Electrocardiography (ECG) and photoplethysmography (PPG). In

this work, we use PPG signals only to estimate the patient’s SBP and DBP using

CNNs. ECG is only used in data preprocessing along side PPG to determine Pulse

Transit Time (PTT) and Heart Rate (HR). The relationship between PTT, ECG,

and PPG is illustrated in Figure 2.1b.

Several classical ML-based [40, 53] as well as neural-network-based [18, 74, 70, 7]

solutions are proposed to estimate BP; nonetheless, all these works conduct training

8
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and inference in powerful devices that are not deployable in the tinyML paradigm. To

our knowledge, tinyCare [3] is the only existing solution addressing the BP estimation

problem with the tinyML constraints. Two main differences are worth highlighting

between our proposal and tinyCare. 1) The solution in tinyCare was limited to clas-

sical machine learning techniques, while we investigate the deployment of CNNs. Our

results show that using CNNs achieves better accuracy for estimating BP as we de-

tail in Section 2.5. 2) tinyCare requires synchronously capturing both ECG and PPG

since both signals are used in the inference process. This synchronization adds addi-

tional circuitry constraints on the used sensors and is a source of measurement errors.

In contrast, our proposal relies solely on PPG signal to estimate BP eliminating the

need not only for synchronization but also for real-time capturing of ECG.

2.3.2 tinyML paradigm

tinyML is one of the fastest growing subfields of machine learning technologies [78, 84]

with the goal of enabling ML techniques to run on extremely resource-limited MCUs

at the network edge [64]. Several key industry players introduced frameworks to en-

able tinyML such as the TensorFlow Lite from Google [77], ELL from Microsoft [20],

STM 32Cube.AI from STMicroelectronics [1], and CMSIS-NN from Arm [12]. These

frameworks and potential applications of tinyML is covered by the survey in [66].

An example of academic frameworks is CMixNN [8], which offers an open-source li-

brary to enable low-precision neural networks facilitating the deployment on tinyML

devices. These frameworks are orthogonal to the solution this thesis proposes since

most of them focus mainly on quantization techniques to reduce model sizes. This

thesis instead introduce a variety of tools to enable CNNs in tinyML constrained

9
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images
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conversion  

Pruning
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on MCUs   

Figure 2.2: Block diagram of proposed methodology.

systems including network architecture modifications, tuning input sizes, and inter-

mediate parameter reduction among others as we detail in Section 2.4. Indeed, we

deploy the proposed usecase of BP estimation on top of one of these frameworks:

TensorFlow Lite as an example, while the proposal itself is not restricted to a certain

framework. For the application usecases, tinyML has been mainly explored for audio

and vision domains [22, 81, 83, 10, 4], with some recent efforts exploring tinyML for

other domains including autonomous vehicles [17], gaming [51], and smart agricul-

ture [82]. Yet, healthcare domain seems to be lacking behind in terms of studies

investigating the applicability of tinyML. An example of such study is tinyCare [3]

that we have already discussed earlier.

2.4 Proposed Methodology

In this section, we discuss several novel techniques that enable us to deploy five com-

monly used CNNs on extreme-edge devices using real-time blood pressure prediction

10
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as a usecase. Fig 2.2 illustrates the entire pipeline of training and inference on the

tinyML devices. The approach can be summarized into the following main steps.

1) We use the PPG and BP data from the MIMIC database for training purpose.

2) We perform data preprocessing, including data cleansing and input resizing. 3) We

deploy several techniques to enable the fitting of the CNNs on the resource-limited

edge devices. This includes architecture modification, pruning, and quantization, as

we will detail later in this section. 4) We train and test the models on the PC for

exploration purposes. 5) Afterwards, we use the TFlite flow to convert the model and

further optimize it to deploy on edge devices for inference.

2.4.1 Data Preprocessing

We use the MIMIC-IV database. MIMIC is a freely available database with various

data sets for clinical trials [39]. It contains multiple physical indicators such as patient

population distribution, clinical trial data, and medical records. Those advantages

make it widely used in academia. To estimating BP, we only use the PPG signals

as our training and testing dataset. The data is collected from 12,000 patients and

recorded as 125 Hz. To increase the reliability and stability of the data, we preprocess

the data as follows.

1. Considering that each signal in MIMIC covers a different length of time, we

divide all the signals into 4-second windows, each segment consisting of 500

sampling points.

2. In addition to PPG, ECG and ABP signals are also used in the data processing

stage. We use ECG alongside PPG to calculate the PTT, and the HR. PTT,

HR, SBP, and DBP from the training dataset are utilized in outliers removal.

11
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In particular, we consider anything outside the range of 80mmHg ≤ SBP ≤

180mmHg and 60mmHg ≤ DBP ≤ 130mmHg to be an outlier. Then, HR

computed from both ECG, and PPG is averaged and any data outside the range

54.4 ≤ HR ≤ 155.8 is considered an outlier. Furthermore, we consider only

data of PTT less than 400msec from the MIMIC dataset for training purposes.

Readings beyond this limit can be caused by abnormal conditions, like moving

the sensor abruptly, or after abnormally strenuous physical activity, or due to

rare medical conditions. So we discard them. Abnormal values may happen

due to measures. After removing those abnormal windows, 101404 fragments

are preserved.

3. Considering the limited resources of edge devices, we scale the PPG signal

image to the 96 × 96 × 1 format instead of the 224 × 224 × 3 format to limit

the number of input channels in the CNNs. After the shuffle, we split them

into 80%:10%:10% segments for training, validation, and testing, respectively.

The final experimental results prove that this size can not only meet the needs

of predicting blood pressure but also reduce the memory cost of the model.

Finally, the distributions of SBP and DBP after cleansing are illustrated in

Figure 2.3.

2.4.2 BP Estimation With CNNs

CNN is an excellent choice for regression tasks with enormous amounts of images.

However, most CNNs exhibit high computational complexity, while having millions

of parameters mandating a large memory footprint. This poses a significant challenge

12
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Value(mmHg)

Frequency

SBP Histogram

Value(mmHg)
Frequency

DBP Histogram

Figure 2.3: Distribution histograms after data cleansing.
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Figure 2.4: CNNs before and after architectural optimizations for BP measuring
task.

on tinyML enablement, where the inference needs to be done exclusively on resource-

limited edge devices. We target in this thesis five popular CNN architectures: LeNet,

AlexNet, SuqeezeNet, ResNet and MobileNet. Figure 2.4 shows the CNN architec-

tures before and after the proposed architecture modifications. The origin features

and modifications are marked in blue and red, respectively. This section presents

the architectural modifications conducted to the network structures to shrink down

the model size. In the next section, we further reduce the models with compression

techniques so that they eventually fit on MCUs.

The general model tuning involves four parts:

1. We scale down the input shape dimension to 96×96×1 so that the width of all

channels could be reduced while preserving the salient features of input images.
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2. We replace any non-linear tanh activation function with the linear Rectified

Linear Unit (ReLU) activation. This is because it is easier to implement in tiny

devices and still provides a good accuracy with fast computation time.

3. The last fully connected layer has no activation equation and a single neuron

to provide a one-dimensional output without restrictions on the range.

4. In the training phase, the networks are trained with the Adam optimizer. Ini-

tially, we set the learning rate to 0.005 for warming up and switch it to 0.0001

after the Mean Absolute Error (MAE) drops below 8 and 16 for DBP or SBP.

A batch size of 32 is adapted.

LeNet

LeNet is a simple architecture improved by Yann LeCun in 1998 [45] (Figure 2.4b).

It has been widely used in detecting handwritten and is regarded as a base for other

CNNs. LeNet comprises seven layers, among which are three convolutional (Conv)

layers, the first two Conv are followed by a pooling layer. The output flows into a

series of two connected layers.

We propose several modifications to the original LeNet-5 model towards making

it lightweight, while providing suitable accuracy for a critical task such as the BP

estimation. Compared with handwritten characters, there are more features to be

extracted from PPG signal images. 1) The first Conv layer is performed using 3× 3

filters instead of the original 5 × 5 filters. 2) The third Conv layer amounts to a

full connection because the original feature map size is 1 × 1. As we have a bigger

dimension input, we replace it with a flatten layer. Moreover, theoretically, two fully

connected (FC) layers are sufficient to solve most problems, given that there are
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enough neurons [50][26]. 3) The filter count in the first FC is decreased to 32 as a

compromise between model size, computation complexity and accuracy.

AlexNet

Another network we employ is modified from AlexNet architecture primarily designed

by Alex Krizhevsky in 2012 [43] (Figure 2.4a). Except for the Pooling layers, there

are eight layers in the architecture, including five Conv layers and three FC layers.

The outputs of the Conv layers are connected with the FC layers through a flattening

operation.

AlexNet has been widely used in the vision field, but its 240MB model size makes

it ill-suited for tinyML targeting extremely resource-limited edge devices. Besides,

too many neurons in the hidden layer can lead to overfitting, especially for noisy

setups (such as our considered healthcare domain). For a Conv layer cl with N ch
cl

input channels, a filter size of ncl × ncl and mcl filters, the number of parameters in

such Conv layer will be (N ch
cl ×ncl×ncl + 1)×mcl. Similarly, for the FC layer fl, the

number of parameters will be (N ch
fl + 1)×mfl. Please note that while the expression

for the FC layer seems smaller than that of the Conv layer, in fact, the number of

the parameters of the FC dominates the AlexNet’s model size. For example, in our

case, the max N ch
cl = 384 and mcl = 384, while N ch

fl = 6400 and mfl = 4096. Besides,

the first Conv layer in the network is sensitive to pruning and adjusting because it

directly connects with the image [28][80]. If the first layer fails to capture high level

features, the lost information cannot be covered no matter how strong the rest of the

network is [23].

As a solution, we aim to reduce the number of nodes in the other layers for model
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reduction. The number of neurons in the second, third, and fourth Conv layers has

been reduced from 256, 384, and 384 to 100, 128, and 128, respectively. Additionally,

we add a Batch Normalization (BN) layer after each of the first four Conv layers

for regularization [69]. Furthermore, AlexNet requires more data due to the large

amount of weights in the FC layers. To address this limitation, we change the number

of neurons in the first two FC layers to 256 and the number of neurons in the last

layer to 1. All these architectural modifications enables us to achieve a 95×

smaller model size compared to the baseline AlexNet baseline model.

SqueezeNet

SqueezeNet is a smaller network released in 2016, which achieves AlexNet-level ac-

curacy on ImageNet with 50× fewer parameters [35] (Figure 2.4c). The architecture

employs two main strategies to achieve it: 1) removing the dense layers, and 2) in-

troducing the fire module consisting of a 1× 1 Conv layer followed by a mix of 1× 1

and 3 × 3 Conv layers. This fire module limits the number of 3 × 3 filters and the

input channels to a 3× 3 layer so that the Conv parameters are reduced.

We implement SqueezeNet v1.1 for BP estimation. The model starts with a stan-

dalone Conv layer, feeding into eight Fire modules and ends with a FC layer. As

aforementioned, SqueezeNet was successfully deployed using only available compres-

sion techniques and without requiring architectural modifications (except reducing

input size as highlighted in Figure 2.4c).
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ResNet

A residual neural network (ResNet) was introduced in 2015 by Kaiming He [30] (Fig-

ure 2.4d). Over the years, researchers tend to add more layers to the neural network

to tackle complex tasks. As a result, the networks become hard to train, and per-

formance gets saturated. ResNet solves the problem by introducing residual blocks

and adding the direct connections to skip some extra connections during the train-

ing. ResNets have variable sizes with a certain number of neural network layers. We

deploy the ResNet20 on CIFAR10, which has twenty stacked weight layers and nine

shortcuts. It starts with a Conv layer followed by a BN layer and then feeds into a se-

ries of three residual blocks, ending up in a FC layer. Although ResNet20 is a deeper

architecture with only 0.27 million parameters, it can only be executed on tinyML

resource-constrained devices after deploying compression techniques as highlighted in

Table 2.1.

MobileNet

MobileNet is a small model introduced by Google in 2017, aiming to fit on mobile

and embedded vision applications [32]. We use the MobileNetv2 [67], whose core

idea is the bottleneck residual block. There are three Conv layers in the block. The

data start with a 1 × 1 expansion layer to expand the input channels and then go

through a 3× 3 depthwise Conv layer, finally flowing into a 1× 1 projection layer for

shrinking down the output channels. Similar to Resnet, MobileNetv2 adds residual

blocks, using a direct connection to connect the expansion and projection layers.

MobileNet v2 offers a width multiplier as tunable hyperparameter to dynamically
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adjust the size of a network. While some tradeoffs exist between accuracy and com-

putational cost, small model performs better with fewer parameters. After empirical

experiments, we set the parameter to 0.55 to reduce the number of model parame-

ters while maintaining the model’s performance. Another architecture modification

we apply is that we add a dropout layer with a ratio of 50% before the FC layer

to combat overfitting[76]. Along with the above changes in the network structure,

we apply the MAE as a loss function since the regression focuses on the difference

between predictions and ground truths.

As a result of all the proposed architectural modifications, we reach the number

of model parameters for each CNN as depicted in Table 2.2.

2.4.3 Compression Techniques

By adjusting the structure of the model, we shrink down the number of parameters

while maintaining its accuracy. Moreover, some compression techniques need to be

applied to the model to integrate the ML algorithms in the MCUs. In this section,

we carry out pruning, and quantization using the TFLite model optimization APIs.

Pruning. Model pruning is proposed to eliminate the less important connections.

We implement the weight-pruning on the entire model. After quantization, the pruned

models can be compressed within a small size using file compression algorithms (zip

compression. e.g.). Zipped files are not supported by devices, but pruning yields

Table 2.2: Number of Parameters in CNNs.

LeNet AlexNet SqueezeNet ResNet20
0.55

MobileNet
Million

Parameters
0.30 0.94 0.80 0.27 0.82
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power-saving and speed up in inference phase.

Quantization. Model quantization can be divided roughly into two forms from

high level: post-training quantization and quantization-aware training. In this study,

we implement the post-training quantization strategy because it requires less train-

ing time and computational power with little degradation in model performance [37].

While some studies have proposed the methodology for 4-bit or lower quantization[9][55],

they usually result in significant accuracy degradation and are not supported by most

edge devices. We take the full integer quantization for all ops except the input and

output tensor and compress the model size by approximately 4x. Table 2.3 presents

the gzipped model size compassion between the base model and the pruned and

quantized models.

Table 2.3: Gzipped Model Size (bytes).

LeNet AlexNet SqueezeNet
ResNet

20
0.55

MobileNet
Quantized
and pruned

293054 952158 834514 281221 902296

Baseline 1904923 10230582 7394506 3066412 8958208

2.4.4 Model Conversion And Assessment

Model conversion is needed for inference and assessment on edge devices. Tflite

provides a converter tool to transfer the saved file to a serialized Tflite model in

FlatBuffer format for implementing machine learning Ops at the edge scenario like

the mobile and IoT devices [37]. In addition, we use the interpreter to run the

Tflite simultaneously in Python on the PC side. The generated Tflite needs to be

transferred to a C array because ESP32, Arduino Nano BLE and Raspberry Pi Pico

are programmed in C language. Finally, we compare the results collected from the
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Table 2.4: Technical Specifications of Edge Devices.

Device Processor Cores Width Flash Memory RAM

Raspberry Pi 3 Model B ARM Cortex A-53 4 64 bit 16 GB 1 GB
ESP32 Wrover IE Xtensa LX6 2 32 bit 4MB 4 MB
Raspberry Pi Pico ARM Cortex M0+ 2 32-bit 2 MB 264 KB

Arduino Nano 33 BLE ARM Cortex M4 1 32 bit 1 MB 256 KB

edge devices with the ground truths to get the MAEs for model assessment. We

discuss the evaluation results in the following section.

2.5 Evaluation

We deployed the full tinyML pipeline described in Section 2.4 to evaluate the effec-

tiveness of the proposed techniques from different edge-based perspectives.

2.5.1 Experimental Setup

We implement the five CNNs we consider in this thesis including both the vanilla

baseline version, as well as the version adopting our proposed techniques to suit

tinyML requirements. This is prototyped in python using the Keras library, which

runs on top of TensorFlow.

As described in Section 2.4, we use the MIMIC-IV dataset [39] for the training and

testing phases. After preprocessing, our proposed BP estimation model only requires

the PPG signals as the input. We apply an 80%:10%:10% split of the datatset for

training, cross-validation, and testing, respectively. The training phase is conducted

on a PC machine running an octa-core Intel i7 processors with 32 GB of RAM.

After the training phase, we convert the models to the TFLite format which are
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Table 2.5: Results Summary. ’X’ indicates that the architecture did not fit in the
device

Inference Time
Architecture Model Size Reduction Loss in Performance Number of FLOPs (Millions) Raspberry Pi ESP32 Pico Nano

AlexNet 99% 8% 78 27 ms 7.67 s 5.02 s X
MobileNet 92% 30% 38 12 ms 4.75 s X X
SqueezeNet 83% 15% 85 25 ms 7.30 s X X
ResNet20 72% 3% 732 186 ms 60.82 s X X

LeNet -21% -22% 13 8 ms 1.53 s 0.18 s 0.16 s

compatible with MCUs. We deploy these models on four edge devices with a wide

range of processing and memory capabilities. The devices are Raspberry Pi, ESP32,

Raspberry Pi Pico and Arduino Nano, and their technical specifications are described

in Table 2.4. Each of these devices introduce a different set of constraints that affect

the performance and inference times of the models. Raspberry Pi is not considered

a tinyML device since compared to the other used extremely-constrained MCUs, it

entertains a much more capable processing unit and memory capacity. That said,

we include it in our evaluation for comparative purposes as a baseline of a higher-

end edge device. As we will show later in the section, using our techniques, we

manage to achieve comparable results to those of server-based solutions and to the

solution running on Raspberry Pi using only the extremely-constrained lower-end

MCUs. Since the ESP32, Pico, and Nano are programmed in C, the Tflite models

must be further converted to a C array before deployment. This is done using the

unix command, xxd [85].

After running inference on all the edge-devices, we compare the performance of

the CNN architectures in terms of memory requirements, inference times, and model

accuracy.
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2.5.2 Tuning Model Size

Our proposed methodology to reduce model size includes reduction of input dimen-

sion, modifying the network architecture, and applying Tflite compression techniques.

For all the networks, Table 2.5 shows accuracy suffered for the percentage of model

size reduction. By just applying the compression techniques, we reduce the model

sizes of SqueezeNet and ResNet by 83% and 72% respectively. Table 2.5 also shows

these models fit in Raspberry Pi and ESP32.

MobileNet can be deployed by solely applying the compression techniques and the

hyperParameter tuning at the expense of unreasonable loss of accuracy. We manage

to decrease the loss and achieve a 92% reduction in model size by applying the changes

discussed in section 2.4.2. As a result of our modifications to LeNet, it retains almost

the same size as the original LeNet, and it can be deployed in all the devices in our

study.

Due to the large size of the vanilla AlexNet, it cannot be deployed in any of

the devices, including the powerful Raspberry Pi. However, by selectively removing

neurons from the intermediate convolution layers and the fully connected layers, as

explained in Section 2.4.2, we reduce the size of model by 99% for only 8% loss in ac-

curacy. After combining our modifications with the existing compression techniques,

this model can be deployed in Raspberry Pi, ESP32, and Raspberry Pi Pico.

2.5.3 Memory Requirements

The memory requirement of a CNN comprises of the model size and the tensor arena

size. The model size depends on the number of parameters in the network. It de-

termines if the model can fit in the flash storage or not. On the other hand, the
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Table 2.6: Memory Requirements of the Architectures

Architecture Model Size Tensor Arena Size
Alexnet 0.95 MB 105 KB

MobileNet 1.04 MB 315 KB
SqueezeNet 0.86 MB 215 KB
ResNet20 0.30 MB 600 KB

LeNet 0.30 MB 70 KB

tensor arena is the memory required by the TensorFlow interpreter to store the input

tensors, output tensors, and the intermediate tensors during inference. This repre-

sents the RAM required to conduct inference on the device. Table 2.6 describes the

memory requirements for the five CNNs.

The tensor arena is the maximum storage needed during any instant at the runtime

to store the all the tensors for either input/output feature maps, which depends on

the operation types, amount of activation data and the network topology. ResNet20,

despite being only 0.3 MB, has the highest tensor arena requirement of 600 KB. This is

attributed to the increased simultaneous activation data due to multiple feed-forward

connections from a single layer in the ResNet architecture. In contrast, LeNet is a

simpler network with regular feed-forward networks that only stores the input and

the output data of the current layer. As such, LeNet requires only 70 KB of tensor

arena despite having the same model size as ResNet20.

Thus, the device must meet both the memory requirements to fit the model.

Based on the requirements in Table 2.6, only the Raspberry Pi and ESP32 could

run an inference with all the networks. The other devices fail to fit a model due to

shortage in flash storage, RAM, or both. For example, the Pico has 2MB of flash

storage to store a MobileNet model of 1.04MB, but its 264 KB RAM is not sufficient
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(a) DBP (b) SBP

Figure 2.5: MAE Comparison of Different Networks in Different Devices.

to cover MobileNet’s tensor arena requirement of 315 KB. The Nano neither has

sufficient flash storage nor RAM to fit MobileNet.

2.5.4 Inference Times

In this section, we investigate the timing inference of the CNNs in different devices

recorded in Table 2.5. The inference time depends on the complexity of the network

architecture and the device specifications. The complexity of the architecture is

manifested by the number of Floating Point Operations (FLOPs) the model will have

to perform. We compute the number of FLOPs in each of the network and record

them in Table 2.5. We can observe a direct co-relation between the inference time

and the number of FLOPs.

With its powerful quad-core processor and large memory capacity, the Raspberry

Pi runs at least 1000 times faster inference than the other devices. Among ESP32,

Pico, and Nano, the processor is the differentiating factor for the inference time. As

the Pico runs on a processor from the lower end of the Cortex M-series, it is slightly

slower than the Nano, but it still runs faster than ESP32 which runs an Xtensa

processor. For devices running multi-core processors, such as ESP32 and Pico, the
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inference time can be improved by multi-core programming techniques.

2.5.5 Model Accuracy

We compare the predictions from the inference with the true values and compute the

Mean Absolute Error (MAE), Mean Error (ME), and Standard Deviation (SD). These

metrics are determined to evaluate our results with the two most common standards

for blood pressure monitoring devices: The BHS [57] and the AAMI[21] standards.

Meeting Medical Grades for BHS Standard. Table 2.7 describes the grad-

ing criteria used by BHS. The grades show the cumulative percentage of measurements

that are within 5 mm Hg, 10 mm Hg, and 15 mmHg. To achieve a certain grade, the

three percentages must be higher than or equal to the numbers in the table. We com-

pute the Cumulative Distribution Function (CDF) of the absolute DBP prediction

errors from Raspberry Pi and record the percentages under the standard’s thresholds

in Table 2.8. All the architectures are well within the limits of grade B, with AlexNet

and ResNet20 closely approaching grade A. Since the results from the other edge

devices are close to those of Raspberry Pi, as observed in Figure 2.5, we can say that

these grades apply to the other devices as well.

Meeting Requirements for AAMI Standard. Furthermore, we compare our

results with the AAMI Standards, which states that the ME must be less than or

Table 2.7: BHS Grades and Associated Error Percentages.

Cumulative Error[mmHg]
≤ 5 ≤ 10 ≤ 15

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%
Grade D worse than C
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equal to five and its SD must be less than or equal to 8. The comparison is described

in Table 2.9. In terms of DBP, AlexNet satisfies both the conditions. As for the other

networks, the MEs are well under five, but the SDs are slightly higher than eight,

with the worse one being higher by only 1.74 mmHg. In terms of SBP, all the MEs

are below five, but the SDs are much greater than the standard limit. It is also worth

noting that we have far more subjects than the required number, thus making our

results statistically more reliable.

Comparison With Other Solutions. We compare our best SBP and DBP

results with server-based solutions (Table 2.10) and tinyML solutions (Table 2.11).

For the most apt comparison with server-based works, we pick Neural Network (NN)

based solutions that only use PPG signals as input without any calibration meth-

ods. Although our models do not perform better than these works, the results are

comparable. Due to tinyML considerations, we made trade-offs at every step of our

methodology affecting our accuracy. These trade-offs are non-existent in the server-

based solutions leading to better performance.

In Table 2.11, we compare our results with the only reported tinyML-based so-

lution. Our CNN models significantly outperform the classical ML algorithms in [3]

with 13% and 20% improvement in the MAEs of DBP and SBP respectively.

Table 2.8: Comparison of DBP Results With BHS Standards

Cumulative Error
Architecture ≤ 5mmHg ≤ 10mmHg ≤ 15mmHg Grade

AlexNet 51% 82% 94% B
MobileNet 50% 81% 90% B
SqueezeNet 58% 82% 91% B
ResNet20 61% 84% 93% B

LeNet96*96 50% 81% 91% B
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Table 2.9: Comparison of Raspberry Pi Results with AAMI Standards

DBP SBP
Architecture ME SD ME SD # of subjects

AlexNet -2.70 7.78 -2.75 14.45 10410
MobileNet 2.24 9.74 -2.24 17.62
SqueezeNet 2.73 9.04 2.48 17.22
ResNet20 2.27 8.69 0.64 16.47

LeNet 96*96 1.91 9.61 2.50 16.89
AAMI Standard ≤ 5 ≤ 8 ≤ 5 ≤ 8 ≥ 85

Table 2.10: Comparison with server-based NN solutions

DBP SBP
Work MAE SD MAE SD # of subjects

[7] 5.95 5.6 10.86 9.54 379
[69] 3.91 4.48 7.34 8.65 21215

Our Work 5.95 6.71 11.27 9.45 10410

2.5.6 Discussion: A tinyML Perspective

Results show that our models satisfy the medical standards. Fig. 5 shows a more

fine-grain comparison of accuracy among the different CNN architectures. At a first

glance, ResNet20 and AlexNet are the top two accurate models. In a regular machine

learning context, we may conclude our discussion by recommending these two net-

works for our application. However, in a tinyML context, we are severely restricted

by memory, power, and processing constraints. As such, we extend our discussion to

cover these aspects of tinyML.

The first thing is to determine the if the model can fit in the tinyML device. After

applying the architecture modifications, the 0.3 MB ResNet20 model can easily be

stored in any of the devices. The AlexNet model could not be stored only in Arduino

Nano, even though it has 1 MB of flash storage while AlexNet model is 0.95 MB. This
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Table 2.11: Comparison with tinyML-based solutions

DBP SBP
Work MAE SD MAE SD # of subjects

[3] 6.85 9.16 14.08 17.82 52714
Our Work 5.95 6.71 11.27 9.45 10410

is because the device must store the application code alongside the model. Therefore,

we recommend prospective tinyML designers to adopt efficient coding practice to

minimize the size of the application code and allow more space for the model.

The next step is to ensure that the model can run an inference with the tinyML

device. If the device has enough RAM to provide the required tensor arena, the model

can successfully run an inference. Here, we highlight the limitation of ResNet20.

Despite being the smallest model, it requires the highest tensor arena, which can only

be provided by the Raspberry Pi and ESP32. In contrast, AlexNet can be deployed

and run on Raspberry Pi, ESP32, and Raspberry Pico. Although ResNet20 model is

smaller and provides higher accuracy than AlexNet, we would recommend AlexNet

over ResNet20, because from a tinyML perspective, ResNet20’s tensor arena of 600

KB maybe a very high requirement for most tinyML devices. Moreover, AlexNet’s

accuracy is better than that of ResNet for SBP estimations, and slightly worse for

DBP estimation.

We also extend our discussion to inference time because most IoT based tinyML

applications require fast response rate. The inference time is governed by the com-

plexity of the algorithm and the processing capability of the device. In this thesis,

our architecture modifications were mainly targeted to reduce the model size. For

applications with hard timing constraints, the tinyML engineer may apply further
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architecture modifications targeted to reduce the number of FLOPs, without com-

promising for accuracy.

For our application of blood pressure estimation, if there is some leeway in the

accuracy requirement, we would recommend the LeNet architecture. Apart from

meeting the medical standards, its model size is as small as ResNet20, while also

requiring the smallest tensor arena, so it was able to fit in all of our devices. It is also

a relatively simple model, so it shows the fastest inference time, making it suitable

for real-time applications.

2.6 Conclusion

In this study, we introduce a tinyML-based solution methodology to deploy the

most common CNNs - ResNet, SqueezeNet, and the models inspired by AlexNet,

MobileNet, and LeNet - in a wide range of edge devices with different constraints

for real-time estimation of BP with PPG signals. By adjusting the architectures

of the networks and adopting compression techniques, we are able to reduce the

model size effectively and satisfy the real-time inference requirements on the edge.

Finally, we analyze the throughput experimental results from the perspectives of

memory cost, inference time and model accuracy on ESP32, Raspberry Pi Pico, and

Arduino Nano BLE. While running in an extreme resource-constrained environment,

all networks overcome the limitations of computation, memory and power budget,

and meet medical standards.
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Chapter 3

HW&SW Co-Optimizations For

TinyML Inference Time

Acceleration

3.1 Introduction

TinyML is an emerging field at the intersection of machine learning (ML) and embed-

ded systems [62]. It makes use of extremely resource-constrained devices with limited

power, frequency, and memory capacity to execute complex ML algorithms. TinyML

presents a reduced energy consumption and increases the system’s reliability as well

as data security and privacy by performing local processing [66]. Additionally, it

achieves real-time execution by on-device computation [66]. However, the challenges

arise from the hardware constraints that impede the tinyML implementation in terms
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of the dropping accuracy, increasing inference latency, and the model size limitation.

Although developing more powerful hardware devices could solve this problem, the

power and form factor constraints of tinyML applications make them impractical to

use. Several works have proposed optimizations for the peak memory and computa-

tion reduction by simplifying the network inference process [49, 38, 86, 72]. However,

improving total inference time achieved less attention.

Since many of the tinyML applications are real-time (eg, healthcare, smart farm,

smart city), improving inference time is crucial for enabling tinyML adoption. This

thesis addresses this challenge by proposing collaborative HW&SW optimizations

towards accelerating tinyML inference on commercial off-the-shelf (COTS) H/Ws.

These optimizations are both architecture- and application-aware. Moreover, they do

not trade accuracy for inference time; therefore, they do not lead to any accuracy loss.

Similar to inference time, accuracy is paramount for many tinyML applications with

several of them must adhere to certain standards/policies with regard to accuracy

(eg, healthcare domain).

3.2 Related Work

3.2.1 TinyML

Many recent surveys have been focusing on tinyML applications, technologies, and

pipelines in [2, 19, 52].
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Frameworks

Frameworks like TensorFlow Lite facilitate tinyML development on embedded plat-

forms [15]. It is made up of two primary parts: the interpreter-based approach across

hardware architectures for efficient on-device inference and a set of optimization APIs

to compress the models. CMSIS-NN is another framework designed specifically for

Arm Cortex-M processor cores that provides a collection of highly optimized neu-

ral network kernels [45]. [34] provides the tunning solution for the models based

on specific hardware characteristics. Works like [63][48][65] introduce the design to

automate the searching process for the model architecture and hyperparameters.

Optimized Hardware

The hardware architectures are developed as a necessary foundation for tinyML. To

optimize the large machine learning execution and training, Google designed the Ten-

sor Processing Units (TPUs). These units feature a matrix multiply unit (MXU) and

a unique interconnect topology, accelerating artificial intelligence (AI) tasks. Edge

TPU is an ASIC (Application-Specific Integrated Circuit) form of TPU developed

specifically for tinyML that can be integrated into a variety of existing systems [11].

NVIDIA also introduces the custom hardware Jetson [56] to enhance AI applications

on the edge. Those works are covered in the survey of [2, 52]. PULP is another aca-

demic accelerator built on a parallel ultra-low-power cluster of RISC-V processors,

designed for efficient and quantized neural network inference [14].
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3.2.2 Applications

TinyML has been widely investigated in environmental problem-solving [6, 60, 59],

with some explorations for fields like smart farming [41] and the smart city [54].

Those works are covered in [2]. For the healthcare domain, TinyCare is proposed for

continuous BP prediction leveraging classical lightweight machine learning algorithms

on the tiny edge devices [3]. In [61], IoT-based hardware equipped with sensors,

along with a software deployment flow, is investigated for heart illness classification

tasks. One limitation of those research is that they are designed only for lightweight

networks, which are inherently small. Deep learning models of a larger scale are not

discussed.

[73] investigates the use of PPG signals for BP estimation on various limited-

resource devices utilizing five popular CNNs. [42] introduces TinyCES for ECG mon-

itoring, enabling the real-time ECG classification task without relying on cloud-based

analysis. The thesis presents a novel lightweight CNN closely modelled on the LeNet

architecture, tailored to meet the stringent resource constraints of embedded devices.

However, since the system is designed for specific use cases, this approach may face

challenges for broader generalization. In this thesis, while using healthcare as a real-

world use-case for tinyML, we follow a different approach by focusing on architecture-

and application-aware optimizations to best use the MCU resources to address tinyML

trade-offs.

3.2.3 CNN Inference Optimization On MCUs

Deploying CNNs on MCUs poses unique challenges due to the hardware’s constraints,

including the memory and computational capabilities. Currently, most research has
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focused on exploring the strategies for inference acceleration or memory footprint

reduction.

MCUNetV2 leverages the patch-based approach to have a memory-efficient in-

ference, where the inputs are divided into smaller patches and being processed in-

dividually on STM32H7 [49]. The patch-based technique significantly reduces peak

memory usage during the inference. It also involves a novel scheduling algorithm that

determines the optimal patch size and sequence for each layer. The Demand Layering

strategy [38] is proposed to reduce parameter memory usage on GPU-based inference

systems when executing Deep Neural Networks (DNNs), specifically on embedded

devices. This strategy utilizes a layer-by-layer loading approach to avoid loading

the whole model into GPU at once [38]. A pipeline is designed to increase paral-

lelism among the preload, copy, and execution stages during inference. StreamNet

is designed to optimize the existing patch-based inference, minimizing the redundant

memory and latency overhead [86]. This thesis [72] introduces a new Fused Depthwise

Tiling (FDT) strategy and an automated flow for scheduling the tilling operations

in DNN. Although these approaches optimize memory usage, they often introduce

computational and delay overhead. Our work targets inference latency reduction by

maximizing the efficiency of algorithms and device resources, achieving this with no

accuracy loss.
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3.3 Background

3.3.1 Keras2C Basics

Keras2C (K2C) is an open-source library designed to convert Keras models built

on TensorFlow into pure C code [13]. It’s developed for real-time applications and

supports the majority of Keras model operations. The C code generated by the K2C

script relies solely on the standard C library, making it both portable and flexible

across various embedded devices [13].

The K2C library comprises three primary components. The first component is a

Python script designed to convert the generated .h5 file into C code. In this phase,

K2C extracts all relevant parameters, including weights, biases, strides, and other

properties of the tensors involved in the inference process. In Keras models, each

input, output, and filter in a layer is a tensor. While in K2C, a tensor is an N-

dimensional matrix represented as a data type called K2C tensor, which includes

the tensor shape, the elements it contains, and related properties, as depicted in

Algorithm 1 [13]. The elements are represented as a one-dimensional array, where all

elements are unravelled in a row-major manner. Figure 3.2 provides an example of a

[2, 3, 2] tensor, with the numbers on the elements indicating their indices. The second

component is the C backend to implement the core functionality for the forward pass

through each layer. This part is designed to be clear and easily customizable for

optimization during execution. The third component is the generated C code for

specific network inference, including several test suites that include sample inputs

and outputs for evaluation.
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Figure 3.1: An example architecture of an MCU-based edge device

3.3.2 Embedded Device

TinyML targets a portable machine learning model deployment on tiny, low-cost

embedded systems. The industry has seen a surge in diverse hardware designs, driven

by advances in tinyML. We use ESP32 as an example to show some of the potential

general insights for MCUs in Figure 3.1. In general, the characteristics of MCUs can

be elaborated on below:

Constrained Resource

Traditional mobile devices, which rely on cloud-based infrastructure, ensure efficient

data transfer and are equipped with megabytes of memory and gigahertz frequency

processors. In contrast, the MCUs offer limited bandwidth, computation, and mem-

ory capacities, all the parameters are stored within the devices. That emphasizes the

necessity of exploring appropriate approaches to improve inference efficiency.

Multi-core Architecture

Many MCUs support multi-tasking features by assigning tasks on different cores.

Each processor shares the memory resources, allowing two or more cores to run tasks

concurrently. For real-time applications, properly scheduling the parallelism of tasks

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – B. Sun; McMaster University – Electrical and Computer Engineering

Device Processor Cores Flash/MRAM RAM Cache
ESP32-S3 Xtensa LX7 2 <8MB <8MB 16KB ICache, 32KB DCache
STM32H7 Cortex-M7 & Cortex-M4 2 <2MB <1MB 16KB ICache, 16KB DCache

Raspberry Pi Pico Arm Cortex-M0+ 2 <2MB <256KB 16KB Cache
Alif Ensemble E7 Arm Cortex-A32 & Cortex-M55 4 <5.5MB <13.5MB 32KB ICache, 32KB DCache

Table 3.1: Technical Specifications of Edge Devices

can significantly speed up the implementation.

Cache

MCUs often include small but fast cache memories to improve efficient data access.

These caches store the most recently used memory segments, minimizing the time

needed for higher memory hierarchies. The processor’s various cache operations fa-

cilitate faster data processing and support cache-friendly solutions in real-time appli-

cations.

Table 3.1 lists several commonly used embedded devices in academic research,

comparing their specifications in terms of processor, core number, cache size, and

memory capacity.

Figure 3.2: [2, 3, 2] Tensor
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Algorithm 1 k2c tensor Structure [13]

1: struct k2c tensor {

2: float* array {Pointer to array of tensor values flattened in row-major order.}

3: size t ndim {Rank of the tensor (number of dimensions).}

4: size t numel {Number of elements in the tensor.}

5: size t shape[K2C MAX NDIM] {Size of the tensor in each dimension.}

6: }

3.4 Proposed Methodology

In this section, we introduce our architecture- and application-aware optimizations

to accelerate tinyML inference time at no accuracy loss. The discussion is following:

(1) We present techniques to accelerate inference from both software and hardware

perspectives, detailing the applicability for specific layer in CNN. (2) We explain the

compatibility of operations across each CNN model.

3.4.1 Overview of Methodologies

Architecture-aware Optimizations

Cache-friendly Memory Layout. Increasing the cache hit rate is an essential

factor for memory hierarchy efficiency. The cache hit rate is defined as the propor-

tion of memory accesses that are directly addressed by the cache. During the CNN

inference phase, the CPU conducts numerous read and write operations on input,

and output elements, as well as model parameters. The CPU loads data via cache,

and it has to find the data from external memory if a miss occurs. MCU processors
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are usually in-order [16] and thus, are not able to hide memory latency with com-

putation. Therefore, improving memory access time is crucial for reducing overall

inference time, which is clearly more crucial for tinyML than traditional ML algo-

rithms. The latter usually run on powerful machines with massive parallelism and

out-of-order processors.

To demonstrate how cache-friendly memory layout impact cache hit rates, we de-

sign a simulated scenario without preloading in Figure 3.3. Each green box represents

CPU access to a specific data element, while black shows the contents of the cache.

The simulation simplifies the scenario with the following constraints: (1) Each el-

ement is accessed once. (2) The element size is 4 bytes, and the cache line size is

16 bytes, which allows the CPU to load four elements simultaneously upon a cache

miss. Furthermore, the cache is hypothetical to accommodate only two cache lines.

(3) The total data size required through the execution is larger than the cache size.

(4) Hit is 4 cycles, and miss is 100 cycles. One thing to note is that this simulation

closely mirrors the data access process during CNN inference on embedded devices.

For instance, the default CNN inference uses the float data type, and the size required

for each operation, typically hundreds of kilobytes, far exceeds the cache capacity of

MCUs, which is usually within tens of kilobytes as explained in Section 3.3.2.

In Figure 3.3, it’s assumed that the initial access is a miss, causing a contiguous

data segment to be automatically loaded to the cache by the CPU. With a sequential

access pattern as shown in Figure 3.3a, the following requests are hits until element 4.

The accesses from element 4 to element 7 would repeat the previous process. Access

to element 8 leads to the eviction of an earlier cache line due to cache size limitations,

and the following accesses from elements 9 to 11 are hits. In this setup, the cache hit

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – B. Sun; McMaster University – Electrical and Computer Engineering

(a) Data Access in Sequential Pattern

(b) Data Access with Stride

Figure 3.3: Data Access Strategy

rate is 75%. The delay for loading the whole sixteen elements is 448 cycles.

In contrast, Figure 3.3b illustrates a case where elements are fetched with a stride

of four. The first and fourth elements are misses. Subsequent requests for elements

8 and 12 lead to the eviction of previously loaded cache lines. This pattern causes

repeated cache misses for the next requests, ultimately reducing the cache hit rate to

0%. The delay for loading the whole sixteen elements is 1600 cycles.

These observations highlight the impact of data access patterns and cache config-

urations on performance. Specifically, they emphasize the importance of optimizing

element placement to maximize cache utilization and efficiency. Strategies that en-

sure better data access patterns during computation can significantly increase the hit

rate, demonstrating a critical area for improvement in cache management.

For the Dense layer, the algorithm performs the procedure of matrix-vector multi-

plication followed by a bias offset. An example of multiplying an [1×32] input matrix
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with a [32 × 9216] kernel matrix is illustrated in Figure 3.4a. The number marked

on the elements represents its index within the C array. In the Dense layer of CNNs,

inputs and outputs consist of a single channel, thus operating on all elements along

this dimension sequentially. However, the kernels are multidimensional, resulting in

a non-sequential memory access pattern. To have a cache-friendly access solution,

the element locations in the kernel array are rescheduled offline to eliminate the large

strides between successively accessed elements as shown in Figure 3.4b. To accom-

modate the new element arrangement, We also update the algorithm to align with

it accordingly, the comparison of Dense inference algorithms is illustrated in Figure

3.5. Furthermore, in CNNs like LeNet, the Dense layer takes up the majority of the

network’s parameters, making them benefit from such optimizations.

The BN layer and the Add layer are naturally sequential, therefore don’t request

the cache-friendly access optimization. In the Conv layer, the output is generated

in order by iterating the multiplications of neurons and the matched input elements.

Thus, both the kernels and outputs are processed sequentially, typically ensuring a

high cache hit rate. However, the receptive field is within a small rectangular region,

and tensors are represented in the memory of MCUs as a one-dimensional array,

mapped in [height, width, channel] order as mentioned in Section 3.3.1, resulting in

non-contiguous storage locations. And it would be impractical to reschedule inputs

without modifying the previous layer’s algorithms, bacause they also represent the

output of that layer. Therefore, we employ alternative strategies for the Conv layer,

as explained in the following Sections.

Multi-core Parallelism-aware Partitioning. Fused layer partitioning was ini-

tially proposed in [71] as a solution utilized in DNN layers for segmenting the static
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(a) Dense Inference Baseline

(b) Dense Inference with Cache-friendly Memory Layout

Figure 3.4: Dense Inference

parameters. This technique enables parallel processing of independent computations

across different partitions. In the CNN layers, the outputs are computed indepen-

dently, allowing the division of the computational tasks. Besides, as discussed in

Section 3.3.1, most of the MCUs are featured with the multi-core. In our application,

we use the ESP32-S3 MCU, which features dual-core processors to support infer-

ence with double efficiency. This solution only separates the computation process

and the corresponding elements, without impacting the accuracy or the integrity of

the model’s outputs. The entire process is managed by FreeRTOS, ensuring that

operations are synchronized.

Partitioning can be used as a general acceleration strategy on CNNs. Take con-

volution operation as an example, two partitioning strategies are typically employed:
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Algorithm 2 Before

1: for i = 0 to outrows− 1 do
2: for j = 0 to outcols− 1 do
3: for k = 0 to innerdim−1 do
4: output[i][j] += input[i][k]∗

weight[k][j]
5: end for
6: output[i][j] += bias[j]
7: end for
8: end for

Algorithm 3 After

1: for i = 0 to outrows− 1 do
2: for j = 0 to outcols− 1 do
3: for k = 0 to innerdim−1 do
4: output[i][j] += input[i][k]∗

weight[j][k]
5: end for
6: output[i][j] += bias[j]
7: end for
8: end for

Figure 3.5: Comparison of Dense Layer Inference Algorithms

The first is to divide the inputs in the dimension-wise manner as shown in Figure

3.6a. The upper half of the feature maps are the input tensor, and the lower half

maps are the output from the convolution operation. In this approach, not all inputs

are required to be operated in each task; instead, only a portion of them is utilized.

However, the output arrays are computed only partially. The final output is obtained

by summing the outputs from each part. The second method instead divides the out-

puts in a dimension-wise manner as shown in Figure 3.6b. The three sets of tensors

are the input, the output of the Con1 layer (intermediate tensor) and the output of

the Conv2 layer. In this scenario, only half of the kernel and output are involved in

each task, yet all input is required to be engaged.

In our use case, instances exist where certain inputs only have a single channel.

To maximize resource utilization and prevent the coherence issue that arises when

multi-core operates on the same output element simultaneously, we chose the second

approach. Figure 3.7 illustrates the before-and-after execution processes comparison.

The operation is split into two tasks and assigned to separate cores, theoretically

reducing the inference time by up to half.
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(a) Input Dimension-wise Partitioning

(b) Output Dimension-wise Partitioning

Figure 3.6: Layer Partitioning Strategy

Application-aware Optimizations

Instruction Reordering. From a software perspective, directly reducing the re-

dundant computation is the most straightforward approach to simplify the operations.

During each computation, the input elements are found by calculating the index based

on multiple parameters, including the kernel size and the corresponding output loca-

tion across each dimension. However, there is a certain degree of correlation in the

successive elements involved in the operation in terms of location. The index can be

inferred by the previous element and the stride. Therefore, in these operations, we

preserve the replicated portion of the previous index to maximize computation reuse.

Additionally, optimizing the order of operations within nested loops can significantly

enhance code execution performance as well.

Convolution operations in CNNs involve sliding a kernel block over the input to
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(a) Original Execution

(b) Multi-core Parallelism-aware Partitioning Execution

Figure 3.7: Comparision between Original Execution and Multi-core
Parallelism-aware Partitioning Execution

perform element-wise multiplications and accumulate the results, sequentially pro-

ducing output elements. So, the position of the feature map, output, and kernel are

inferable from each other. Additionally, the element’s index is defined by its width,

height, and depth, with overlapping portions of indices from adjacent accesses. Pre-

serving these overlapping segments can reduce replicated index calculations.

Algorithm 4 illustrates that original convolution operations are implemented through

nested loops, with all multiplications and index computations occurring in the inner-

most. This implementation leads to computations and latency overhead. As de-

scribed in Section 3.3.1, the position of each output element can be located only with

its height, width, and channel. During the iteration over all elements of the feature

map, the indices for the input and kernel can be calculated based on the output

location being generated. Furthermore, by moving the computations of overlapping
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index segments computation to outer loops, the process can be further optimized as

shown in Algorithm 5.

In the case of Dense layers, the BN layer and the Add layer, as previously stated in

Section 3.4.1, process the elements sequentially which eliminates the index calculation.

Linear Computations Fusion. Linear transformations are carried out by iter-

ating over every element and performing linear computations. A set of sequential

linear operations in CNN inference can be fused into a single linear combination.

This approach avoids multiple iterations for elements and best utilizes the embedded

resources.

For the Batch Normalization (BN) layer, Add layer and bias add operation, the

code goes through each element within a single loop in turn and performs the linear

transformation. Therefore, in the forward pass of the CNN, when there are con-

secutive linear transformation operations, they can be fused together as shown in

Figure 3.9. This fusion strategy effectively reduces loop overhead and best utilizes

the embedded resources.

Figure 3.9: Linear Operation Fusing
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Algorithm 4 Before Transformation

1: for x0 = 0 to out rows− 1 do
2: for x1 = 0 to out cols− 1 do
3: for z0 = 0 to kernel rows− 1 do
4: for z1 = 0 to kernel cols− 1 do
5: for q = 0 to in channels− 1 do
6: for k = 0 to out channels− 1 do
7: Convert x0, x1, z0, z1, q, k, stride, dilation to index
8: Multiplication
9: end for
10: end for
11: end for
12: end for
13: end for
14: end for

Algorithm 5 After Transformation

1: for x0 = 0 to out rows− 1 do
2: for x1 = 0 to out cols− 1 do
3: Convert output’s width and height position to index
4: for t = 0 to feature map element num do
5: Convert filter’s width and height position to index
6: Infer input’s index with x0, x1, t, and stride/dilation
7: for k = 0 to out channels− 1 do
8: Perform multiplication for the k’th output channel
9: end for
10: end for
11: end for
12: end for

Figure 3.8: Comparative View of the Original and Updated Algorithms.
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Cache-friendly
Memory Layout

Multi-core Parallelism-aware
Partitioning

Instruction
Reordering

Linear Computations
Fusion

Intermediate
Buffer Reuse

Conv layer X X X
Dense Layer X X X
Add Layer X X X
BN Layer X X X

Table 3.2: Metrics Compatibility for Each Layer

Intermediate Buffer Reuse. The intermediate tensors are keep generated during

the CNN inference. Usually, each result takes up its own buffer. In the context of

the feedforward network, those tensors would not be used after it’s lifetime, therefore

leading to the memory overhead. For tinyML, efficient storage management is a crit-

ical factor in determining whether a model can be successfully deployed on resource-

constrained devices. A key part of this intermediate buffer reuse is the over-write

mechanism, we allocate a fixed place in heap that can fit the peak memory usage,

and over-write the old data with the new forward pass if it’s no longer needed for

future computations during the conduction. This schedule between the CNN layers

can contribute to all the application with intensive storage resources.

Table 3.2 summarizes the compatibility for each operation.

3.4.2 Compatibility Across Each CNN

LeNet

LeNet is one of the revolutionary CNN models developed by Yann LeCun in 1998 [46].

From the high level, the LeNet architecture can be divided into two building blocks,

the first part consists of two sets of Conv layers and a set of Max-pooling layers. The

Conv layers are used to extract the required features from the input relevant features

such as edges, textures, and shapes with a set of filters [33], and the pooling layers
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are used to downsample the feature maps, reducing computational complexity, and

focus on the most relevant information; the second part contains stacked of Fully

Connected layer (Dense layer) that map the flattened output from the first part to

the final layer.

The majority of the LeNet inference process occurs within the Conv and Dense

layers, which can be accelerated for the overall model performance. Based on the

previous Section 3.4.1, the cache-friendly memory layout can be deployed on the

Dense layer; instruction reordering and multi-core parallelism-aware partitioning can

be deployed on the Conv layer.

AlexNet

AlexNet is built on the ideas of LeNet but significantly expanded the depth and

complexity of the architecture. Furthermore, the architecture also employed ReLU

for nonlinear activation [43]. AlexNet is composed of eight weighted layers: five Conv

layers, followed by three Dense layers. Additionally, we add a BN layer after each of

the first four Conv layers for regularization.

In the AlexNet architecture, in addition to employing the cache-friendly mem-

ory layout and multi-core parallelism-aware partitioning for optimizing the Conv and

Dense layers, the BN layer is integrated with the bias addition operation in the Conv

operation. This linear computation fusion is effective because both processes include

consecutive linear transformations, allowing for streamlined and efficient computa-

tion.
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ResNet20

In 2015, Kaiming He introduced the Residual Network [30]. A key feature of ResNet

is the use of residual learning to bypass certain layers with skip connections, allowing

networks to be significantly deeper without the vanishing problem [31]. However,

shortcut connections require additional memory to buffer intermediate feature maps.

The element-wise additions after the skip operation increase computational complex-

ity, which impacts the real-time performance on limited resources [32].

We deploy the ResNet20 which has twenty stacked weight layers and nine short-

cuts. It has the fewest parameters of the four CNNs, yet it contains many skip

connections, requiring the additional intermediate connection data to be preserved in

memory as globals throughout the entire inference phase. The requirement leads to

memory corruption on the heap during the inference, especially on embedded devices

like ESP32, which are typically resource-limited. Therefore, intermediate buffer reuse

becomes crucial for efficient implementation. Instead of pre-allocating all interme-

diate tensors in the heap, we preserve only a portion of the heap memory to store

them. It allows the previously used intermediate data to be overwritten by the ongo-

ing intermediate data, thereby minimizing the memory footprint. One of the residual

blocks in the ResNet20 network is illustrated in Figure 3.10. During execution, six in-

termediate tensors are utilized, while only three tensor sizes are maintained. Sharing

buffer space between independent layers reduces resource consumption. The Conv

layers can be accelerated by instruction reordering and multi-core parallelism-aware

partitioning. Additionally, the linear computations fusion in the application-aware

strategy further reduces the number of layers and the intermediate tensors generated

during these phases.
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Figure 3.10: A Residual Block in ReNet20

SqueezeNet

Forrest N. Iandola developed SqueezeNet, achieving AlexNet-level accuracy with 50

times fewer parameters [35]. The novel part of SqueezeNet is to include a combination

of 1x1 and 3x3 convolutions within the ’fire module’. 1x1 filters facilitate a reduction

in the overall network parameters in situations where the filter numbers are less than

the input channel numbers. The expend layer performs convolution with the 1x1 and

3x3 filters, subsequently concatenating the output in a dimension-wise manner, and

then feeds it into the next block.

SqueezeNet replaces fully connected layers with a global average pooling layer to

further reduce the model size. The eight Fire modules mainly consist of the Conv

layer and the Concatenate layer. Therefore, we focus on optimizing the Conv layers,

with instruction reordering and multi-core parallelism-aware partitioning.

Table 3.3 summarizes techniques applicable in each considered CNN.
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Cache-friendly
Memory Layout

Multi-core Parallelism-aware
Partitioning

Instruction
Reordering

Linear Computations
Fusion

Intermediate
Buffer Reuse

LeNet X X X X
AlexNet X X X X X

ResNet20 X X X X X
SqueezeNet X X X

Table 3.3: Metrics Compatibility across Each CNN

3.5 Evaluation

3.5.1 Experimental Setup

In this thesis, we employ the proposed optimizations on four CNNs – LeNet, AlexNet,

ResNet20, and SqueezeNet on the tiny device. In doing so, we use a real use-case

from the healthcare domain. In this use-case, the goal is to predict the SBP from the

PPG signals. We use the MIMIC-IV dataset [39], applying an 80%:10%:10% split of

the datatset for training, cross-validation, and testing, respectively [73]. The training

phase is conducted on a PC machine running an octa-core Intel i7 processor with

32 GB of RAM, and saved in HDF5 format with the TensorFlow framework. After

that, we convert it into a pure C program through the K2C to be deployed on the

embedded device. The generated C code is mainly organized into two principal parts:

the first encompasses a library for each operation’s implementation, and the second is

the main program that executes these operations. All parameters and data are of the

float type. This organization enhances performance optimization by allowing direct

modifications to function operations. The measurements derived from the original

K2C code may be employed as a baseline. In the context of hardware deployment,

the code is implemented on the ESP32-S3 MCU with the ESP-IDF extension. This

extension is specifically designed for the development of IoT applications. Though

the majority of MCUs nowadays are compatible with our changes, we only evaluate
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the strategies on ESP32-S3 to simplify the experiment. The ESP32-S3 is equipped

with 8MB of Flash memory, 8MB of PSRAM, and the Xtensa 32-bit LX7 dual-core

processor. The performance metrics, including the accuracy and latency, are discussed

in the subsequent sections.

3.5.2 Model Accuracy

In the aforementioned section, we adopt both software and hardware strategies to

minimize inference latency. From a software perspective, we apply algorithmic op-

timizations to reduce redundant computations and inefficient memory accesses. On

the hardware side, our approach focuses on enhancing cache-friendly memory access

patterns to improve hit rates and maximize the utilization of the ESP32-S3 architec-

ture. It is important to note that the model’s structure and parameters are preserved,

ensuring that the prediction remains unaffected. We compute the MAE between the

predictions and the ground truth for both the updated K2C code and the original im-

plementation. The comparison is presented in Table 3.4. One thing to note is that we

measure the accuracy using a PC-based ESP32 simulator with a QEMU, whose fork is

officially maintained by Espressif. This approach is firstly motivated by the fact that

running large datasets on the ESP32 to gather results is a very time-consuming pro-

cedure. As detailed in Section 3.4.2, the original ResNet20 program is not able to be

deployed on the device. The results indicate that there are no significant differences

in accuracy between the two versions, which supports our expectations.

LeNet AlexNet ResNet20 SqueezeNet
Original K2C code 13.36 12.12 NONE 11.81

Optimized code 13.36 12.12 13.80 11.96

Table 3.4: MAE Comparison Before and After Optimizations
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3.5.3 Inference Latency

Figure 3.11 shows the inference latency of each solution and their respective groups

across the entire model. The latency is recorded as the number of clock cycles in

the Xtensa register. Although the intermediate buffer reuse strategy is technically

applicable to all networks, it is utilized exclusively for ResNet20 to simplify the eval-

uation process. The results demonstrate that our strategy can significantly reduce

the model’s latency, with ResNet20 achieving a remarkable 71% reduction. Among

those solutions, instruction reordering and the multi-core parallelism-aware partition-

ing strategy have the most obvious impact on speedup. This is primarily because the

weighted layer in the LeNet model consists entirely of Dense and Conv layers, which

are computationally intensive and complex to implement. Therefore, LeNet can be

accelerated by 59% with co-optimizations for the Conv and Dense operations.

AlexNet exhibits a more complex structure compared to LeNet, as it features both

weighted layers and a variety of layers that incorporate linear operations. Therefore,

integrating diverse optimization strategies can greatly accelerate the model’s overall

speed by 61%.

Though failing to deploy the original ResNet20 code on the ESP32 due to the

memory corruption issue, we approximate the baseline latency by summing up the

delay of the segmented ResNet20 structure. As shown in the diagram, these strategies

have achieved a 71% latency reduction.

For SqueezeNet, which lacks Dense layers in its architecture, our optimization

efforts are concentrated mainly on the Conv layers. We achieve a 62% improvement

in network latency over the baseline.

Table 3.5 shows the percentage reduction in latency compared to the baseline
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(a) LeNet (b) AlexNet

(c) ResNet20 (d) SqueezeNet

Figure 3.11: Comparison of CNN Inference Latency

Cache-friendly Memory Layout Multicore Parallelsim Design Application-aware Optimization
LeNet 87% 65% 49%

AlexNet 99% 56% 45%
ResNet20 X 57% 77%

SqueezeNet X 58% 43%

Table 3.5: Latency Reduction with Optimizations Across CNNs Compared to
Baseline
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across CNNs under different strategies. These data indicate that different design

strategies have significantly varying impacts on different neural network architec-

tures. Overall, the Application-aware Optimization strategy demonstrates the best

effect because the software optimizations can bring substantial benefits. Furthermore,

combining these designs can further accelerate inference.

Figure 3.12 illustrates the maximum acceleration achieved by each layer under

our techniques. For each type of layer, the strategy group that yields the best result

is selected. Therefore, there may be more than one optimization for each layer,

which can be referenced in Table 3.2. It is worth noting that, although the multi-

core parallelism-aware partitioning strategy is employed solely for the Conv layers in

latency measurement to simplify the experiment, it can technically be applied to all

layers.

Figure 3.12: Comparison of Layer Inference Delay Before and After Optimizations
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3.5.4 Layer Inference Delay

Conv Layer Delay.

Figure 3.13 illustrates a Conv layer delay comparison before and after the multi-core

parallelism-aware partitioning and instruction reordering. It displays a series of bars

in pairs, where each pair represents a Conv layer inside the four CNNs. The orange

bars show performance before the change and the green bars indicate performance

after. The Conv layer delay goes up with the FLOPs, a metric indicating the number

of computations performed within the layer. Besides, there is a notable time reduction

in the majority of cases post-optimization, suggesting significant improvements in

computational efficiency across different networks.

Figure 3.13: Comparison of Conv Layer Delay Before and After Optimizations

Dense Layer Delay.

Figure 3.14 illustrates that the relative change increases with the number of neurons

in the Dense layer. Theoretically, several stages can be identified, demonstrating how

our cache-friendly memory layout accelerates the Dense layer inference by increasing

cache hit rates:

(1) Kernel matrices with a single row produce output sizes of 1 × 1, which is

typical for a network’s output layer with minimal parameters. In these cases,

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – B. Sun; McMaster University – Electrical and Computer Engineering

both the input and kernel arrays are one-dimensional arrays. Our strategy does

not improve the cache hit rate, given that all elements within the sole column of

the kernel are already accessed in a sequential manner. Therefore, as indicated

by the chart, the first three groups of bars show a ratio change of approximately

0%.

Figure 3.14: Comparison of Dense Layer Delay Before and After Optimizations

(2) When the kernel matrix is multi-dimensional, as shown in Figure 3.4a, ele-

ments are accessed with a stride equal to the output size. All parameters in our

model are in float format, occupying 4 bytes each, while the cache line size is

32 bytes. Therefore, after each cache miss, the CPU would bring eight adjacent

floats from the flash memory. Under a cache-friendly memory layout, where the

stride is 1, 87.5% (7/8) of cache hit rate is obtained. As the stride increases,

however, the cache hit rate decreases, reaching 0% when the stride reaches 8 or
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higher. A miss occurs for the next access, resulting in the continuous loading

of new segments from flash memory until all kernel neurons have been stored

in the cache, thereby enabling the following cache hit. As a result, the overall

cache hit rate would range from 0% to 87.5%, where our strategy starts showing

benefits. This scenario was not represented in the chart due to the absence of

applicable conditions within the CNNs used in this study.

(3) As the size of the kernel neurons increases beyond the cache capacity, the

newly loaded cache lines begin to evict the initially loaded ones. CPU has to

fetch the previously preserved data segment in the flash instead of the cache.

It represents the worst-case scenario for data access, where the cache hit rate

approaches 0%, posing a significant challenge for inference on the embedded

devices. Therefore, the cache-friendly memory layout demonstrates the best

optimization performance. This scenario is illustrated by the last three groups

of bars.

Linear Operation Delay.

We fuse a series of consecutive linear operations into a single layer. The Chart 3.15

illustrates the comparison of linear operation delay before and after the fusion tech-

nique with respect to the count of output elements. The original data set, shown with

blue dots and a blue-dotted trend line, indicates a steeper positive linear relationship

compared to the updated data set, represented by orange dots and an orange-dotted

trend line. This suggests that our approach effectively reduces the linear operation

delay.
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Figure 3.15: Fused Linear Operation Delay

3.6 Conclusion

In this thesis, we address the challenges of accelerating the network inference on

the extreme resource-constrained device by proposing several techniques to optimize

the inference process of CNNs. We discuss both software and hardware character-

istics during the operations and propose approaches to reduce the latency based

on that. These solutions demonstrate broad applicability across various networks

and devices. We further evaluated four CNNs – LeNet, AlexNet, ResNet20, and

SqueezeNet – specifically for SBP estimation tasks on ESP32. This evaluation pro-

vides a comprehensive analysis, from overall model performance to the impact of

specific metrics on individual layers. The findings of this work highlight the potential

of joint architecture- and application-aware optimization in improving the efficiency

of tinyML applications across diverse use-cases and MCUs.
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Chapter 4

Conclusion

This thesis investigates the implementation of CNNs on extremely limited-resource

devices, using real-time blood pressure measurement as a use case. While the em-

bedded device in the tinyML field is broadly referred, the memory capacity of the

device used in this study is restricted to only a few megabytes. The on-device infer-

ence poses challenges due to its extensive computational demands and high-memory

footprint. Therefore, reasonable compression of the model size and careful consider-

ation of the available edge resources are key for successful deployment. Although the

growing demand for tinyML drives the development of specialized processor designs

that are equipped with the single instruction multiple data (SIMD) support and the

neural network accelerator, those solutions rely on the specific platforms, thereby

hindering generalization. The strategies developed in this thesis enable the fitting of

CNNs on tiny devices with comparable accuracy and improved speed, while ensuring

broad applicability across various devices and network architectures. From a high

level, the thesis contributes to the tinyML field primarily in two directions: First, by

61



M.A.Sc. Thesis – B. Sun; McMaster University – Electrical and Computer Engineering

employing a series of optimization techniques, including the novel architecture mod-

ifications and a compression technique, this work shrinks the model’s size to support

the on-device machine learning without the cloud-cased dependency and the remote

data transforming cost. The updated CNNs are evaluated on ESP32, Raspberry Pi

Pico, and Arduino Nano BL, using only PPG signal as input, achieving satisfactory

accuracy. Second, build on the models evaluated in the first section, the thesis fur-

ther analyzes the CNNs inference process that is implemented with C backend that

allows for hacking. TinyML implementation mainly relies on software and hardware.

The thesis optimizes the code to eliminate redundant computation and buffer usage.

Additionally, it investigates cache-friendly layout to improve the cache hit rate and

multicore-aware methodology to achieve parallelism. As a result, those technologies

demonstrate significant acceleration with no drop in accuracy.

Future research directions include latency reduction by carefully designing the

preloading during the inference to maximize cache hit rates. Ensuring efficient cache

usage remains a valuable topic to be explored for optimizing CNN inference on em-

bedded devices.
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