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THESIS ABSTRACT 

Hand postures and movements play a significant role in our daily activities. They 

are important in the development of upper extremity musculoskeletal disorders, yet they 

are often underrepresented in biomechanical and ergonomic studies. Improved 

understanding of hand and finger kinematics is essential for assessing the risk of 

musculoskeletal disorders. Tracking these movements is challenging due to the limited 

tools available for tracking the hands and fingers. Traditional marker-based motion 

capture, while considered the industry standard, faces issues such as occlusion, being 

time-consuming, and limited to a laboratory setting. Recent advancements in computer 

vision and machine learning offer potential solutions through markerless motion capture. 

Current applications have primarily focused on the lower extremities, with limited effort 

on the hand and fingers. This thesis developed and assessed a markerless motion capture 

system for tracking hand and finger joint kinematics. A markerless system using four 

synchronized webcams was developed with camera pairs organized with different angles: 

Centre/90° (C/90°), Left 45°/Right 45° (L45°/R45°), and Centre/Left 45° (C/L45°). 

Motion capture was performed with both marker-based and markerless systems. Seventy-

seven reflective markers were placed on participants for the marker-based motion capture. 

Twenty healthy participants performed five dynamic hand tasks, each repeated three 

times, with and without markers. Three-dimensional joint positions were defined using a 

musculoskeletal model in OpenSim. The total finger angle was calculated as the sum of 

MCP, PIP, and DIP joint angles for digits 2-5 and MCP and IP for digit 1. The comparison 

between markerless and marker-based motion capture systems showed significant 
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interactions between camera orientation and finger movement in several tasks, 

particularly for the index finger during flexion and typing. No differences were observed 

between the C/90° and C/L45° markerless camera pairs and the marker-based system, 

except for the 99th percentile index finger flexion. The L45°/R45° camera pair differed 

significantly from other markerless pairs in several tasks but agreed with the marker-

based system for index finger during flexion. For most of the fingers, no significant 

differences were found across the different camera pairs, except for some in the index 

finger flexion task. Correlations and error for concurrent finger flexion revealed high 

consistency among all camera pairs, with R² above 0.90 and RMSD below 10°, though 

the thumb showed greater variability. The R² and RMSD varied depending on the camera 

comparison and finger for each task. Markerless motion capture for the hands and fingers 

is possible with little difference to marker-based systems and is dependent on the camera 

orientation used. 
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CHAPTER ONE: INTRODUCTION 

 

Our hands are our primary tools for interacting with the external environment and 

are constantly used in our daily lives. The postures and movements of our hands and 

fingers play significant roles in the development of hand-related musculoskeletal 

disorders. However, the hands are typically inadequately represented in biomechanical 

and ergonomic studies (Amell et al., 2001). Improved methods to capture hand and finger 

movements for use in ergonomic evaluations and studies are needed to better understand 

the development of hand-related musculoskeletal disorders.  

Assessing hand activity is difficult. Tracking upper limb movements, particularly 

in the hands and fingers, is challenging. Simple hand movements such as grasping depend 

on several factors ranging from the size and shape of the object to the postures being 

adopted by the hand and fingers. Furthermore, accurate assessment of hand and finger 

kinematics is limited by technology. Hand and finger kinematics can be tracked using 

various motion capture methods, including optical motion capture (active and passive), 

inertial sensors, and markerless motion capture. In addition to these methods, techniques 

such as video-based motion capture with specialized software for movement tracking and 

manual assessment tools, such as electrogoniometers, may also be employed (Cook et al., 

2007). While many exist, they are not without limitations. For instance, 

electrogoniometers and markers are bulky and can interfere with natural movement, and 

marker-based motion capture is typically limited to a laboratory setting and is not 

applicable to other settings, including the workplace. Marker-based motion capture 
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systems have been conventionally used for tracking joint and segment kinematics in 

biomechanical research and are often referred to as the 'gold standard' (Cappozzo et al., 

1995; Cheung et al., 2005). Although hand and finger kinematics can be accurately 

tracked using marker-based motion capture, there are several issues with using marker-

based systems to track hand and finger kinematics. One main issue is the number of 

markers required. Cocchiarella et al. (2015) used 96 reflective markers, consisting of 42 

calibration markers and 54 tracking markers. The placement of markers is time-

consuming. A significant issue is that these markers can be occluded during multi-planar 

tasks such as opening and closing the hand, resulting in kinematic errors. Recent 

technological advancements in computer vision and machine learning have influenced the 

creation of markerless motion capture systems to track body segments and combat some 

limitations of marker-based motion capture. 

In recent years, there has been an advancement in the evaluation of markerless 

motion capture. There is a growing interest in investigating the feasibility of markerless 

motion capture systems as a viable alternative to marker-based systems and exploring 

their potential for advancing research and practical application in motion analysis. 

Currently, several applications exist for markerless motion capture: (i) Theia3D (Kanko et 

al., 2021), (ii) OpenCap (Uhlrich et al., 2022), (iii) OpenCV (OpenCV., 2015), and (iv) 

DeepLabCut (Mathis et al., 2018; Nath et al., 2019). Theia3D (Theia Markerless, Inc., 

Kingston, Ontario) is currently the leading developer and most used commercial product 

in markerless motion capture of the human body. It has been validated against 

conventional marker-based systems, but only for the lower extremity. Validation of 
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markerless systems for the upper extremity is not available. No markerless motion 

capture system can provide accurate hand and finger kinematics tracking. Consequently, 

more studies need to determine the accuracy of markerless motion capture systems for 

hand and finger kinematics compared to marker-based motion capture systems. This 

thesis aimed to create and assess a markerless motion capture system that can track hand 

and finger joint kinematics.  
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CHAPTER TWO: REVIEW OF LITERATURE 

2.1. Marker-based motion capture of the hands and fingers 

 Rash et al. (1999) compared marker-based motion capture to 2-D fluoroscopy. 

They showed a high correlation between 2-D fluoroscopy and marker-based motion 

capture measuring index finger kinematics. Correlations for MCP, PIP, and DIP joints 

were 0.95, 0.98, and 0.94, respectively. Absolute error between the two methods as the 

range mean (± standard deviation) for the MCP, PIP, and DIP joints was 0.0–7.3° 

(3.1±1.6°), 0.0–12.9° (4.1±3.2°), and 0.0–6.7° (1.9±1.5°), respectively. Several others 

have also demonstrated that hand kinematics can be assessed using marker-based motion 

capture techniques. (Cocchiarella et al., 2016 ; Zhao et al., 2012 ; Metcalf et al., 2020 ; 

Metcalf et al., 2011 ; Sancho-Bru et al., 2014 ; Fowler et al., 2001).   

 There are several limitations associated with marker-based motion capture. First, 

the markers used are often bulky, interfering with natural movement patterns and leading 

to unnatural movements. Additionally, the occlusion of markers during hand and finger 

tasks is a challenge with marker-based motion capture. The complexity and size of the 

hand compared to other body areas also contribute to the challenges of marker-based 

motion capture, leading to the need for reduced marker sets (Metcalf et al., 2020; Hoyet et 

al., 2012). While reduced marker sets may be appropriate for some tasks, they may limit 

the range of movements that can be tracked. Three markers are required to track a 

segment in three dimensions, and reduced marker sets involve placing a single marker 

above the joints. Therefore, it is essential to consider selecting a marker set based on the 
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specific tasks of interest when assessing hand and finger kinematics to minimize the 

limitations and maximize data collection accuracy. 

2.2. Inertial motion capture of the hands and fingers 

 Research has demonstrated the reliability of utilizing inertial and magnetic 

measurement systems (IMMS) for evaluating segment motion and orientation. IMMS 

combines inertial sensors (accelerometers and gyroscopes) and magnetic sensors 

(magnetometers). By integrating the measurements taken from the inertial and magnetic 

sensors through sensor fusion, we can obtain the orientation and position of each body 

segment in space. A PowerGlove designed by Kortier et al. (2014) was validated against 

marker-based motion capture in a study by van den Noort et al. (2016). Three participants 

were recruited for this study, and the results of this study are limited due to the sample 

size. The average root mean square difference (RMSD) between the IMMS and the 

marker-based motion capture system ranged between 3˚ and 8˚. Tasks that required fast 

movements, such as tapping and circular pointing, showed more significant differences 

(Table 2.1). When performing slow flexion tasks, finger kinematics were similar to the 

marker-based motion capture system (van den Noort et al., 2016). The results suggested 

that the PowerGlove is most comparable during slow tasks.  

Table 2.1: Root Mean Square Difference (RMSD) of Joint Angles for MCP, PIP, and 

DIP Joints across different flexion finger tasks (Van Den Noort et al., 2016). 
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 As illustrated in Figure 2.1, the PowerGlove is considerable in size and bulk, with 

an extensive array of wires and sensors. These components pose a risk of becoming 

entangled or detached during data collection, potentially compromising the integrity of the 

collected data. To mount the PowerGlove, tape is needed to wrap around each sensor to 

prevent it from falling off. These factors might interfere with natural movement patterns 

and lead to unnatural movements in participants. 

 

2.3. Markerless motion capture techniques  

2.3.1. Pose estimation  

 The Microsoft Kinect is a markerless motion capture system that can be used for 

pose estimation. The Microsoft Kinect V2 (Microsoft Corporation, Redmond, 

Figure 2.1: Application of the PowerGlove (Kortier et al., 2014). 
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Washington). is a motion-sensing device that leverages a combination of cameras, 

microphones, and infrared sensors to track human movement (Cai et al. (2019). The 

Microsoft Kinect V2 has been previously used in many applications, from biomechanical 

assessments to rehabilitation monitoring (Capecci et al., 2016; Dolatabadi et al., 2014; 

Lee et al., 2015; Schmitz et al., 2014; Metcalf et al., 2013; Steinbach et al., 2020).  

Studies have compared the validity of the Microsoft Kinect to that of marker-based 

motion capture systems (Schmitz et al., 2014; Cai et al., 2019; Guess et al., 2017). In the 

upper extremity, it was found that the validity of the Kinect V2 is contingent on the task 

and plane under consideration (Cai et al., 2019). The Kinect V2 demonstrated high 

correlations in measuring angular waveforms of shoulder and elbow flexion/extension, 

with a coefficient of multiple correlations (CMC) greater than 0.87. By nature, however, 

this value relies heavily on the range of motion data, and a smaller range of motion can 

result in falsely lowered CMC values (Roislien et al., 2012). However, the Microsoft 

Kinect  V2 cannot track hand and finger motion. Multiple Kinect V2 camera setups are 

not possible, indicating there may be a limitation to synchronizing cameras to combat this 

limitation, and 3D segment, and joint angles can not be produced (Zhang et al., 2015).  

2.3.2. Pose estimation using computer vision and neural networks 

 Computer Vision is a field of computer science and artificial intelligence (AI) 

focused on developing algorithms and systems to understand and interpret the visual 

world (Szeliski et al., 2022). The most common use of computer vision is pose 

estimation. Pose estimation determines the position and orientation of an object or person 

in each image. There are multiple approaches when using computer vision for pose 
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estimation, but the most common approach is based on deep learning, a machine learning 

subfield based on artificial neural networks (LeCun et al., 2015). Several existing 

programs and systems are available to be used for markerless motion capture: 

I. Theia3D Markerless Motion Capture: Theia3D (Theia Markerless, Inc., 

Kingston, Ontario) is a commercial deep learning-based program for markerless 

motion capture that uses a deep convolutional neural network to recognize 

humans and body segments in 2D camera footage (Mathis et al., 2020). The neural 

network is trained on over 500,000 images of humans in various settings, clothing, 

and activities, with 51 features, such as joint locations and anatomical features, 

manually labeled by highly trained annotators and quality controlled. This system 

currently has no application for the hands and fingers.  

II. DeepLabCut: DeepLabCut (DLT) is a toolbox for markerless, deep learning-

based video-tracking animal and human movements (Mathis et al., 2018). DLT 

uses a deep neural network to detect the positions of anatomical landmarks on an 

animal or human body, which are then used to track the body's movements over 

time (Mathis et al., 2018). However, this program is time-consuming and takes 

several images to train the model. But it has potential to be used for the hands and 

fingers. 

III. PitchAITM Markerless Motion Capture: PitchAITM  (pitchAITM; 3MotionAI Inc, 

Oakville, ON, Canada) is a markerless motion capture system that uses a single 

camera to estimate the 3D joint angles in the sagittal plane. It trained its machine-

learning model using marker-based data and tracks the positions of anatomical 
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landmarks. The system calculates joint angles and angular velocities of the upper 

and lower extremities to produce a standardized biomechanics report based on the 

pitching motion, breaking down the pitch phases (Dobos et al., 2021). However, 

PitchAITM is only used for pitching mechanics and has no hand and finger 

kinematics application.  

IV. DARI Motion Capture: Dynamic Athletic Research Institute motion capture 

(DARI Motion, Overland Park, KS) is a markerless motion capture system that 

creates a full-body skeleton for motion capture using cloud voxels (Martinez et al., 

2018). Cloud voxels represent 3D objects and space in computer vision using a 

cloud of points or voxels (Zhou et al., 2018). Each voxel represents a small 

volume in 3D space, and through mapping the voxel density, objects can be 

reconstructed, revealing their shapes, sizes, and locations. DARI motion has two 

models created with 400,000 human movement data and 55,000 subject data 

based on age and sex with 55,000 other subject data. Currently, no model exists 

for the hands and fingers in this system.  

V. Pose2Sim: Pose2Sim takes OpenPose, a known software that can provide 2D 

joint coordinate predictions for video data. These points are then used to 

determine 3D joint position data within OpenSim. It achieves this by allowing the 

user to create a comprehensive or existing musculoskeletal model, adjust it to fit 

individual subjects and perform inverse kinematics with adjustable biomechanical 

restrictions. Pose2Sim also offers additional capabilities, such as computing joint 
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moments or determining individual muscle forces (Pagnon et al., 2022). No model 

has been used and is available for the hands and fingers. 

VI. OpenCap: OpenCap (OpenCap, Stanford, CA) is web-based, open-source 

software that analyzes human movement dynamics by estimating 3D kinematics 

and kinetics from captured videos. Using computer vision and musculoskeletal 

simulation advancements, OpenCap can conduct movement analysis and has been 

demonstrated to have sufficient accuracy in estimating kinematic measures. 

(Uhlrich et al., 2022). OpenCap is mainly used for whole-body motion and gait 

analysis; no current model is available for the hands and fingers.  

2.4. Markerless vs marker-based motion capture in the lower extremity  

 Several studies have examined the accuracy of markerless motion capture 

techniques compared to marker-based systems for the lower extremities (Kanko et al., 

2021; Strutzenburger et al., 2021; Pagnon et al., 2022; Sandau et al., 2014; Zhang et al., 

2014; Uhlrich et al., 2022). Examining six recent papers published in 2021 and 2022, 

some inferences can be made regarding the consistency in reporting the relationship 

between markerless motion capture and marker-based motion capture.  

Pagnon et al. (2022) was the only study to report a CMC in their markerless 

motion capture study. It analyzed three tasks, walking, running, and cycling. However, the 

study only involved a single participant. Despite this limitation, the study highlights the 

differences in CMC values among the three tasks. The most striking differences were 

observed between walking, cycling, and running, particularly in the hip flexion/extension 

and hip abduction/adduction movements. The correlation value for hip flexion/extension 
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during running was 0.65 and 0.37 for hip abduction/adduction. The remaining 

correlations across the joints and movements ranged from 0.74 to 1.00, reflecting a high 

correlation between markerless and marker-based motion capture. It is believed that the 

lower CMC values in the running task resulted from the movements' faster and less 

controlled nature. Root mean square errors (RMSE) were also reported in some studies. 

Firstly, three studies reported internal/external rotation of the hip (Uhlrich et al., 2022; 

Sandau et al., 2014; Kanko et al., 2021), and two studies reported internal/external 

rotation of all lower extremity joints. Internal/external rotation had error values 

consistently larger than all the other joint actions. Kanko et al. (2021) stated that when 

analyzing internal/external rotation, there was an increase in variability in marker-based 

motion capture across all participants. Significant errors were reported when comparing 

the difference in hip flexion/extension in the Kanko et al. (2021) and Strutzenberger et al. 

(2021) papers, with the RMSE being 11° and 20.6°, respectively. Having a high RMSE 

for a simple hip flexion/extension movement is not ideal and needs further analysis to 

understand why this was the result of both studies. However, hip flexion/extension also 

had the largest RMSE with 6.75° compared to other non-complex joint actions, such as 

hip abduction/adduction, with an RMSE of 3.17°  in the Uhlrich et al. (2022) study, 

meaning there might be underlying issues when attempting to estimate hip 

flexion/extension. The studies reviewed show that markerless motion capture can be used 

for lower extremity kinematics as it closely compares to marker-based motion capture, 

and a low RMSE is common across most joint actions of the lower extremity. However, 

markerless motion capture is not only applicable to the lower extremity; its capabilities in 
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the upper extremity are limited and need to be evaluated to determine any gaps in the 

current state of the art. 

2.5. Markerless vs marker-based motion capture for the upper extremity 

 Upper extremity motion has been assessed using various deep-learning 

approaches (Lahkar et al., 2022; Geelen et al., 2021; Dobos et al., 2022; Fleisig et al., 

2022; Pagnon et al., 2022; Kanko et al., 2021; Mathis et al., 2018; Nath et al., 2019). 

Limited studies have explored markerless motion capture in the upper extremities and 

assessing joint kinematics (Fleisig et al., 2022). Dobos et al. (2022) and Fleisig et al. 

(2022) examined baseball pitching, assessing the shoulder, elbow, trunk, pelvis, and knee 

kinematics. Lahkar et al. (2022) used Theia3D as their software to assess boxing 

mechanics by assessing three joint locations of the upper extremity: the shoulder, elbow, 

and wrist. Geelen et al. (2021) used DeepLabCut to assess the motion of the distal 

interphalangeal, proximal interphalangeal, and metacarpophalangeal joints of the index 

finger.  Pagnon et al. (2022) assessed shoulder joint kinematics as a secondary measure in 

their study.  The joints captured across all studies were the shoulder and elbow, with 

Lahkar et al. (2022) being the only study to measure the shoulder, elbow, and wrist. 

Beginning with the elbow joint, only flexion/extension was reported (excluding Lahkar et 

al., 2022). Between Pitch AI and Theia3D, R2 ranged between 0.90 and 0.99 and RMSE 

from 7.4° to 10.53°.  These results are expected when analyzing the correlation between 

the systems and marker-based motion capture due to the elbow joint having one degree of 

freedom in flexion and extension. The error, however, is concerning, similar to the hip 
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flexion and extension movements in the lower extremity, where a simple movement has 

an extensive range of error.  

 A significant difference in RMSE was reported across joint motions, which 

included shoulder abduction/adduction, external/internal rotation, and flexion/extension. 

Pose2Sim (Pagnon et al., 2022) did not correlate well with the other three markerless 

systems, with correlations reported as low as 0.17 in shoulder external/internal rotation 

and as high as 0.91 in the shoulder joint.  However, this was a case study. Different tasks 

might dictate the system's effectiveness in tracking joint centers, and this can be attributed 

to how fast the movement is or if any occlusion occurs during the movement.  

 The shoulder had a larger RMSE than other joints of the upper extremity (Dobos 

et al., 2022; Lahkar et al., 2022). Shoulder abduction/adduction between the two studies 

ranged between 6.6° – 7.3°, shoulder external rotation ranged between 12° – 16.7° and 

shoulder flexion/extension was 10°, only being reported by Lahkar et al. (2022). This 

might be attributed to the shoulder's more complex. However, it is essential to note that as 

they progressed down the distal upper extremity, the correlation between systems was 

lower than the shoulder and elbow joints. The R2  at the wrist ranged between 0.31 with 

an RMSE of 11° and 0.41 with an RMSE of 14° for wrist abduction/adduction and 

flexion/extension, respectively. This might be attributed to the motion analysis, the speed 

of the movement, and the difficulty measuring wrist angle with boxing gloves placed on 

the athletes.  

 Lastly, Geelen et al. used DeepLabCut (DLC) as a means of markerless motion 

capture for hand kinematics (Geelen et al., 2021). This study analyzed the index finger and 
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its three joints: the metacarpophalangeal (MCP) joint, the proximal interphalangeal (PIP) 

joint, and the distal interphalangeal joint (DIP) joint. Index finger motion was also captured 

using marker-based motion capture to compare joint angles between the two systems. 

Correlation between the joint angles computed from both systems was not reported. Figure 

2.2 is a time series graph created to qualitatively represent the three joint angles to compare 

their markerless motion capture and Qualisys system. RMSE was reported for all joint 

angles, resulting in an RMSE of 7.5° for the MCP joint, 3.2 For PIP, and 2.3° for DIP. 

However, because they only analyzed one finger in one participant, the results of this study 

need to be reviewed with caution. However, there is potential that markerless motion 

capture of the hands and fingers can be achieved and is comparable to marker-based 

systems. 

Figure 2.2: Markerless motion capture joint angles of the index finger 

compared to a marker-based system (Geelen et al., 2021). 
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2.6. Markerless hand and finger tracking model 

MediaPipe Hands (MPH) is a hand and finger tracking solution developed by 

Google Research (Zhang et al., 2020). MPH can track 21 hand landmarks using a single 

camera, providing X, Y, and Z coordinates (with the Z-value derived from the image 

depth map). MPH utilizes two models: a palm detection model and a hand landmark 

model, working in conjunction. The palm detection model is designed to detect the rigid 

palm structure, which simplifies the process compared to detecting the entire hand and 

fingers. This model achieves an average accuracy of 96%. Once the palm is detected, the 

hand landmark model is introduced, recognizing 21 hand landmarks and outputting joint 

coordinates for both left and right hands (Figure 2.3). The hand landmark model has been 

trained on 30,000 images, including rendered synthetic hand models. 

 

MPH has been evaluated on its capability to track hand movements under various 

conditions. First, a geographical evaluation was conducted using 700 images, with 50 

images from each of the 14 geographical subregions. Next, MPH was evaluated based on 

Figure 2.3: The 21 landmarks that MediaPipe Hands can track (MediaPipe Hands, Google 

Research). 
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skin tone and gender using 420 images, with 35 images from each unique combination of 

perceived sex and skin tone. Lastly, MPH was also evaluated based on its performance by 

sex. For a complete overview of these evaluations, refer to MediaPipe Hands’ model card 

for their documentation. 

Currently, MPH has yet to be tested in biomechanical assessments. Guney et al. 

used MPH to measure tremors in Parkinson’s patients following intervention to determine 

whether it would reduce the associated tremors (Guney et al., 2022). Aside from this 

study, no other work has been conducted using MPH to track hand and finger kinematics. 

However, it has the potential to be used to create a markerless motion capture program 

where 3D coordinates can be outputted.  

2.7. Limitations to pose estimation 

 Markerless motion capture using computer vision and pose estimation effectively 

measures joint kinematics, but that is with limitations. Large volumes of annotated data 

are required for training markerless motion capture systems, such as Theia3D, which was 

trained on over 500,000 frames. Theia3D and DARI Motion are commercial programs 

that have extensively trained their networks and programs.  This is the most significant 

limitation to using computer vision techniques because they inherently work only based 

on what they have been trained on, unlike marker-based motion capture, where any 

motion desired can be tracked.  

2.8. Pilot Study 

 My previous pilot work was conducted with DeepLabCut (DLC) for tracking hand 

and finger kinematics (Majoni et al., 2022; Appendix C). DLC's object recognition 
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paradigm utilizes iterative machine learning, where a training dataset is used to train the 

CNN model to communicate with the training dataset for a specific number of rounds. 

The longer this process occurs, the more confident the CNN model becomes in predicting 

the points of interest labelled within the training dataset (Liu et al., 2017). The model was 

trained on 1400 digital frames from two of the three participants' trials, with one trial 

randomly withheld for testing purposes. K-means clustering, a function within DLC, was 

used to extract 30 frames from each video, the most digitally different frames from the 

video data. These 30 frames were then manually labelled by trained annotators for a total 

of 21 points of interest on the hand for each frame, and two annotators were used to 

control for variability between the labelling of the joints of interest. The training dataset 

included various postures from each task recorded and various skin tones and hand sizes. 

The training images were used to train the model, which required 500,000 iterations to 

reach a plateau in learning (Nath et al., 2019). 

 DLC provided an avenue to understand the information included and taught in the 

hand model, thereby ensuring that biases in training do not influence the hand model's 

performance. However, an issue arose during early trials, where the impact of skin tone 

was not initially considered. The model was only trained on individuals with fairer skin, 

and when darker skin complexions were used to test the hand model, it failed to track 

hand movements or digitize any hand landmarks. Once a diverse group of skin 

complexions was introduced, the problem was resolved. Nevertheless, the main limitation 

of this approach is the need for a sufficiently large sample of frames that could be 

included in the training dataset. The need to manually digitize each frame made the 
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process time-intensive and required significant manpower. In contrast, Theia3D has 

trained its neural networks on over 500,000 images. Only 1400 images were used in this 

study, less than 1% of their total images. Therefore, an alternative approach for creating a 

markerless motion capture system for the hands and fingers had to be pursued. 

2.9. Summary 

 Using markerless motion capture for kinematic analysis has addressed the current 

issues when using marker-based and other motion capture systems (IMMS, Microsoft 

Kinect). Several pose estimation algorithms and programs have been developed with the 

advancements in markerless motion capture. The application of computer vision 

techniques in joint kinematics estimation has demonstrated efficacy in the lower 

extremity and not in the upper extremity. The current markerless motion capture systems 

extend only to the wrist in the upper extremity and not any further. The representation of 

hand and finger kinematics in current markerless motion capture systems is limited. 

Implementing a markerless motion capture system capable of tracking hand and finger 

kinematics can expand its application beyond the laboratory setting, facilitating real-time 

movements in various environments, including the workplace, and enhancing the capacity 

for biomechanical and ergonomic assessments.  
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3.1. ABSTRACT 

Hand and finger movements are underrepresented in biomechanical studies, 

primarily due to the challenge of tracking the hands and fingers. Several limitations are 

associated with marker-based motion capture, including interference with natural 

movement, and require the tedious, time-consuming application of numerous markers. 

Advancements in computer vision have led to the development of markerless motion 

capture systems yet validation of markerless systems for the upper extremities is limited, 

especially the hand and fingers. The purpose of this study was to develop and assess a 

markerless motion capture system capable of tracking hand and finger kinematics. A 

markerless system using four synchronized webcams was developed. Camera pairs were 

organized in different angles Centre90° (C/90°), Left45°/Right45° (L45°/R45°), and 

Centre/Left45° (C/L45°). Motion capture was performed with both marker-based and 

markerless systems. Twenty healthy participants performed five dynamic hand tasks with 

and without markers. Three-dimensional joint positions were defined using a 

musculoskeletal model in OpenSim. No significant differences were observed between 

C/90° and C/L45° markerless camera pairs and the marker-based system. The L45°/R45° 

camera pair differed significantly from other markerless pairs in several tasks but agreed 

with the marker-based system for the index finger during flexion. For most of the fingers, 

no significant differences were found across the different camera pairs. Correlations and 

error for the concurrent finger flexion task revealed high consistency among all the 

camera pairs, with R² above 0.90 and RMSD below 10°, the thumb showed greater 

variability. The R² and RMSD varied depending on the camera comparison and finger for 
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each task. Markerless motion capture for the hands and fingers is possible with little 

difference to marker-based systems and is dependent on the camera orientation used. 
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3.2. INTRODUCTION 

The hands are our primary tools for interacting with the external environment and 

are at the forefront of our daily activities. Hand and finger movements are often 

underrepresented in biomechanical and ergonomic studies (Amell et al., 2001). This 

research aims to provide a methodology to capture the actions of the hands and fingers, 

with the goal of expanding the scope of assessing the risk of developing hand-related 

musculoskeletal disorders in various settings.  

Tracking upper limb movements, particularly the hands and fingers, is 

challenging. Hand and finger kinematics have been tracked using various methods, 

including optical motion capture (both active and passive), inertial sensors, goniometers, 

and markerless motion capture. However, several limitations are associated with these 

methods when tracking the hand and fingers. For instance, while marker-based motion 

capture is considered the industry-standard method, it is prone to marker occlusion, 

interferes with natural movement, is time-consuming, and requires the tedious application 

of numerous markers (Cappozzo et al., 1995; Cheung et al., 2005; Cocchiarella et al., 

2015). Advancements in computer vision and machine learning have led to the 

development of markerless motion capture systems. 

Currently, several applications exist for markerless motion capture, including (i) 

Theia3D, (ii) OpenCap, (iii) OpenCV, (iv) OpenPose and (v) DeepLabCut (Kanko et al., 

2021; Uhlrich et al., 2022; OpenCV., 2015; Cao et al., 2017; Mathis et al., 2018; Nath et 

al., 2019). Theia3D (Theia Markerless, Inc., Kingston, Ontario) has been validated 

against conventional marker-based systems (Kanko et al., 2021; Wren et al., 2023; 
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Steffensen et al., 2023). OpenCap is a two-camera motion capture system that has also 

been validated against conventional marker-based systems and found little difference in 

performance between 3 and 5 cameras (Uhlrich et al., 2022; Lima et al., 2023). However, 

validation of markerless systems for the upper extremity is limited, and no existing 

markerless motion capture system provides accurate hand and finger kinematics tracking. 

Consequently, the development and assessment of markerless motion capture systems for 

hand and finger kinematics is needed. The purpose of this study was to develop a two-

camera markerless motion capture system to track 3D hand and finger kinematics, 

compare its kinematics to a marker-based motion capture system, and evaluate the 

consistency of joint angles produced by different two-camera setups. 
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3.3. METHODS 

3.3.1. Participants 

Twenty healthy participants completed the study (age: 23.6 ± 3.5 years; height: 

173.3 ± 10.5 cm; mass: 69.5 ± 11.8 kg). Ten males (age: 25.4 ± 3.7 years; height: 181.2 ± 

7.4 cm; mass: 77.4 ± 9.5 kg) and ten females (age: 21.7 ± 2.1 years; height: 165.4 ± 6.2 

cm; mass: 61.6 ± 8.0 kg) were recruited from the university and provided written 

informed consent before participating in the study. McMaster Research and Ethics Board 

provided clearance for this study (#6200). Exclusion criteria included upper-extremity 

injury in the last six months before participation.  

3.3.2. Development of markerless motion capture system 

The markerless motion capture system consisted of four synchronized webcams 

(C920e Logitech, Newark, CA, USA) with a resolution of 480x640, sampling at 30 Hz 

(vMix, StudioCoast Pty Ltd.). Our setup was comprised of three pairs of cameras 

configured as follows: two cameras positioned at 45° to the left and right of the collection 

space (L45°/R45°); one camera placed in the center of the collection space and one 

camera at 90° to the collection space (C/90°); and a third pair combining the center 

camera with the left 45° camera (C/L45°) (Figure 3.1). The markerless motion capture 

system used an existing trained hand and finger tracking model in conjunction with 

OpenCV (MediaPipe Hands, Google Research). MediaPipe Hands consists of two 

existing hand models, a palm detection model, and a hand landmark model, working in 

tandem (Zhang et al ., 2020).  The hand landmark model was trained on 30,000 images 

and rendered synthetic hand models. MPH has also been evaluated on sex and skin tone. 
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MPH tracks 21 hand landmarks with a single camera and provides X and Y coordinates 

for each marker (Figure 3.2).  

 

 

 

 

Figure 3.1: The four images on the left illustrate the different perspectives captured 

by the cameras: A) the Centre camera, B) the 90-degree camera (90°), C) the Left 45-

degree (L45°) camera, and D) the Right 45-degree (R45°) camera.  
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To obtain three-dimensional coordinates, a series of calibration steps were 

performed. For each camera, we determined the internal characteristics (intrinsic 

parameters by capturing twenty still images of a 4-row by 7-column checkerboard. The 

checkerboard was shown to each camera individually and moved to different positions 

within the frame to ensure it was clearly visible. Capturing twenty images was intended to 

Figure 3.2: The 21 joint landmarks predicted by MediaPipe are 

highlighted in red. On the right, are the same 21 joint landmarks not on 

the hand (MediaPipe Hands, Google Research). 1-4 = CMC, MCP, IP, TIP 

of the thumb. 5-8 = MCP, PIP, DIP, TIP of the index finger. 9-12 = MCP, 

PIP, DIP, TIP of the middle finger. 13-16 = MCP, PIP, DIP, TIP of the ring 

finger. 17-20 = MCP, PIP, DIP, TIP of the little finger.  
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provide sufficient frames with a clearly visible checkerboard, allowing us to exclude any 

poor-quality frames due to any movement. To determine if we had a good calibration, an 

RMSE was outputted for each camera. The RMSE represents the pixel projection error, 

quantifying how accurately the calibration aligns the projected points with the actual 

points on the checkerboard. Our target RMSE was less than 0.50; any calibration resulting 

in an RMSE above this threshold was repeated until the desired accuracy was achieved. 

Next, for each camera pair (L45°/R45°, C/90°, and C/L45°), we determined the relative 

position and orientation (extrinsic parameters) by holding the checkerboard in view of 

both cameras and capturing 20 simultaneous paired images. These paired images were 

used to calculate the rotation matrix and translation vector, which describe how one 

camera is positioned and oriented relative to another to derive a global coordinate system. 

An RMSE threshold of less than 0.50 was used to determine good accuracy.  Three-

dimensional coordinates are then determined using a direct linear transform (DLT). 

3.3.3. Experimental setup and protocol 

Motion capture was completed using two systems: (i) standard motion capture and 

(ii) markerless motion capture. Twelve Raptor-4 cameras (Motion Analysis Corporation, 

Santa Rosa, CA, USA) provided the hardware for the standard motion capture system.  

Marker trajectories of the marker-based system were collected at 30 Hz to match the 

markerless motion capture system capture rate at 30 frames per second (FPS). Before 

placing the reflective markers on our participants, we recorded their anthropometric 

measurements, including height, weight, age, and sex. Additionally, we measured their 

hand dimensions, including hand length, width, breadth, and the lengths of each finger. A 
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total of seventy-seven reflective markers were used: 19 calibration markers and 58 

tracking markers, placed on the finger joints and segments (Figure 3.3). 

Data was collected in one 2-hour session for each participant. All participants 

were seated with their right arm fully extended into the capture volume, ensuring their 

hand was positioned above the origin space. They were instructed to maintain this posture 

while completing each task to ensure consistency across all measurements. Participants 

then performed a series of five dynamic hand tasks, each 30 seconds in duration and 

repeated three times. The 5 tasks included (i) index finger flexion, (ii) concurrent finger 

flexion of digits 1-5, (iii) sequential finger flexion (i.e. flexion of digits 1-5), (iv) typing 

of a set text passage, and (v) object manipulation task (pinch grip in different postures - 

JengaTM task). During tasks i, and ii, participants followed the beat of a metronome at 60 

BPM and 100 BPM during task iii. For tasks iv (typing) and v (object manipulation), 

participants were given 30 seconds to complete the task. Participants were given a 1-

B) A) 

Figure 3.3: Marker set used to obtain motion using Motion Analysis. 77 

hemispherical markers (4 mm diameter) consisting of A) 19 Calibration markers 

(Palmar surface) and B) 58 Tracking markers (Dorsum) were outfitted on the right 

hand. 
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minute (minimum) break after each task to mitigate any fatiguing effects. Participants 

performed the five tasks with (concurrent) and without (non-concurrent) reflective 

markers.  

3.3.4. Data analysis 

Three-dimensional joint positions were defined in the markerless motion capture 

system defined the joint positions (MCP, PIP, DIP for digits 2 to 5, and MCP and IP for 

digit 1) A second-order, 6 Hz dual-pass Butterworth filter was applied to the motion 

capture data. Joint angles for both the markerless and marker-based data were then 

computed using OpenSim’s inverse kinematics function,  using a musculoskeletal model 

of the hand and wrist (McFarland et al., 2022). Two models were used to calculate our 

kinematics: one for the markerless motion capture data and one for the marker-based 

motion capture data. The only difference between them was the number of markers on the 

model due to the different marker sets—58 reflective markers for the marker-based 

system and 21 virtual markers for the markerless system. All the joint centres were in the 

same location except for the TIP marker for each of the digits exclusive to the markerless 

system. Each model was scaled to the participant's hand measurements, which were 

obtained by manually measuring hand length, width, and digit lengths. Constraints were 

added to the models to ensure the computation of realistic joint angles. For digits 1-5, the 

MCP joint was constrained to a range of -5° extension to 90° flexion. For digits 2-5, the 

PIP joints were constrained to a flexion range of 0° to 100°, and the DIP joints were 

constrained to a flexion range of 0° to 80°. For digit 1, the IP (thumb) joint was 

constrained to a flexion range of 0° to 100°.  



M.Sc. Thesis – N. Majoni                                 McMaster University – Kinesiology 

30 
 

A total finger angle (θfinger) was calculated as the sum of the MCP, PIP, and DIP 

joint angles for digits 2-5 and MCP and IP for digit 1 [Equation 1]. We utilized the total 

finger angle to condense the data, providing a representative measure of the finger's 

overall movement rather than individual joint angles. This approach focuses on a single, 

comprehensive angle per finger. 

θfinger = θMCP + θPIP + θDIP        [1] 

Due to the interference from the reflective markers on our markerless joint 

predictions during our pilot work we found that the predictions were not correctly 

annotated on the participants' hands, and the hand model appeared smaller with shorter 

segment lengths. We made a strategic decision to primarily analyze descriptive statistics 

for the session without reflective markers. We used our concurrent marker-based 

kinematics and compared those to our non-concurrent markerless kinematics. Task (v), 

the object manipulation task (pinch grip in different postures – JengaTM task) was not 

analyzed due to actual and virtual marker loss caused by occlusion in both systems. 

Amplitude probability distribution functions (APDFs) of the total finger angles were 

generated for each task, with the 1st (minimum), 50th (median), and 99th (maximum) 

percentiles. To ensure an equal comparison between marker-based and markerless 

systems, five participants were excluded from the analysis due to hardware issues and 

noisy data from the marker-based motion capture, resulting in 15 participants being 

analyzed. For the analysis comparing the marker-based and markerless systems, we also 

excluded these participants' markerless data to maintain equal numbers. The APDFs were 
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calculated from all three trials per participant. R² and RMSD between each of the three 

camera pairs, and in this analysis, data from all twenty participants was included. 

A factorial ANOVA was conducted to assess finger angles for the three markerless 

camera pairs and marker data. For each task and percentile (4 tasks x 3 percentiles), a 

two-way ANOVA was employed with camera pair orientation and finger as factors. A 

factorial ANOVA was performed to examine differences in R² and RMSD across the 

markerless motion capture camera pairs, reported as mean [95% confidence interval]. For 

each task and measurement (4 tasks x 2 measurements), a two-way ANOVA with camera 

pair and finger as factors was utilized. Post-hoc pairwise comparisons were conducted 

using Tukey’s method for all tests with significant interaction effects. An alpha level of 

0.05 was set for all analyses. Statistical analyses were performed using RStudio (v4.3.3). 
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3.4. RESULTS 

3.4.1. Markerless motion capture vs marker-based motion capture 

 Sample trials for the concurrent finger flexion, sequential finger flexion, index 

finger flexion and typing tasks of what the index finger angle motion is for each task can 

be observed in Figure 3.4. The representation of the APDFs for one participant for each 

finger is depicted, showing how the 1st, 50th, and 99th percentiles were calculated (Figure 

3.5).  This analysis was extended to include all fingers, with similar results on the middle, 

ring, little and thumb provided in the supplementary documentation (Table S1). The 

results for the index finger will be reported for each task, comparing the concurrent 

marker-based kinematics with the non-concurrent markerless kinematics results. 

Significant interactions (p < 0.001) between camera orientation and finger were identified 

in several conditions: the 50th percentile sequential finger flexion task, the 50th percentile 

concurrent finger flexion task, the 50th and 99th percentile index finger flexion task, and 

the 50th percentile typing task (Table S1). Significant main effects were observed for 

camera orientation (p < 0.001) and finger (p < 0.001) for all percentiles (1st, 50th, and 99th) 

and all tasks, except for sequential finger flexion at the 1st percentile, where only a 

significant main effect of finger was found (p < 0.001).  
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Figure 3.4: Subplots of the index total finger angle for the 4 tasks analyzed for our 

markerless camera pairs: (A) Concurrent Finger Flexion, (B) Index Finger Flexion, 

(C) Sequential Finger Flexion, and (D) Typing.  
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The means [95% confidence interval] of our concurrent marker-based kinematic 

with the non-concurrent markerless kinematics result is reported, highlighting the 1st, 50th, 

and 99th percentiles difference between the camera pairs and the marker-based system for 

the index finger for each task (Table 3.1). There was no statistically significant difference 

between the C/90° and C/L45° camera pairs when compared to the marker-based system. 

This is true for the concurrent finger flexion, sequential finger flexion, and typing tasks, 

except for index finger flexion at the 99th percentile where the index finger exhibited a 

mean finger angle of 97.9° [85.6, 110.3°] for the concurrent marker-based measurements, 

differing from the C/90° and C/L45° camera orientations, which showed angles of 122.3° 

Figure 3.5: Amplitude probability distribution functions (APDFs) for 

the concurrent finger flexion task for Participant P01.  
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[102.5, 128.4°] and 124.1° [112.2, 136.1°], respectively (p < 0.001). The L45°/R45° 

camera pair exhibited statistically significant differences across all tasks, except for 

sequential finger flexion, when compared to the C/L45° and C/90° markerless camera 

pairs. Specifically, for the 99th percentile in index finger flexion, the L45°/R45° camera 

pair differed from the other two markerless pairs, with the index finger angle recorded as 

88.3° [76.4°, 100.2°]. This angle did not show a statistically significant difference from 

the concurrent marker-based measurements, indicating agreement between the L45°/R45° 

camera pair and the marker-based measurements in measuring the index finger angle 

during index finger flexion. Statistically significant differences were observed at the 50th 

percentile for the index finger when comparing the L45°/R45° camera pair to the C/90° 

and C/L45° camera pairs during typing and concurrent finger flexion tasks. During the 

concurrent finger flexion task, the 50th percentile index finger angle for the L45°/R45° 

camera pair was 60.4° [51.6°, 69.1°], compared to 44.1° [35.4°, 52.8°] for the C/90° 

camera pair and 46.6° [37.9°, 55.4°] for the C/L45° camera pair. Similar trends were 

observed during the typing task, with the L45°/R45° camera pair showing greater joint 

angles than the C/L45° and C/90° camera pairs. For the middle, ring, and little fingers, no 

significant differences were found across all tasks, except for some differences in index 

finger flexion and the thumb exhibited statistically significant differences, similar to the 

index finger with the L45°/R45° camera pair. The differences between the marker-based 

and markerless systems arise because the marker-based system measured finger motions 
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are not identical to those measured by the markerless system, whereas the markerless 

systems evaluated identical motions for each task.  

Table 3.1: Estimated marginal means [95% confidence intervals] for the 1st, 50th, 

and 99th percentiles (°) for the index finger and all tasks, across different camera 

orientations. The orientations C/90°, C/L45°, and L45°/R45° refer to the markerless 

motion capture camera pairs, and Motion Analysis refers to the marker-based 

system. 

Concurrent 

Finger Flexon

Sequential 

Finger Flexion 
Typing

Index Finger 

Flexion

1st
19.24

 [14.90, 23.57]

14.90

 [9.38, 20.42]

29.76

 [24.75, 34.78]

20.83

 [16.22, 25.44]

50th
44.10

 [35.37, 52.84]

32.63

 [22.22, 43.03]

40.62

 [32.04, 49.20]

47.63

 [40.94, 54.33]

99th
116.08

 [106.42, 125.74]

115.45

 [102.46, 128.43]

115.78

 [97.76, 133.80]

122.25

 [110.32, 134.17]

1st
16.57

 [12.23, 20.90]

11.22

 [5.70, 16.74]

25.32

 [20.31, 30.33]

19.34

 [14.73, 23.94]

50th
46.63

 [37.90, 55.37]

30.80

 [20.39, 41.20]

37.98

 [29.40, 46.56]

55.90

 [49.21, 62.60]

99th
115.39

 [105.73, 125.05]

109.30

 [96.31, 122.28]

97.56

 [79.54, 115.58]

124.14

 [112.21, 136.06]

1st
23.39

 [19.05, 27.72]

16.90

 [11.38, 22.42]

30.78

 [25.77, 35.79]

25.42

 [20.81, 30.02]

50th
60.39 ***

 [51.65, 69.12]

37.79

 [27.39, 48.20

59.44 ɣ

 [50.86, 68.02]

44.96

 [38.27, 51.66]

99th
125.14

 [115.48, 134.80]

88.59

 [75.60, 101.57]

119.82

 [101.80, 137.84]

88.29 #

 [76.36, 100.21]

1st
19.31

 [14.83, 23.80]

20.58

 [14.86, 26.29]

30.65

 [25.26, 36.03]

21.43

 [16.67, 26.20]

50th
43.32

 [34.29, 52.36]

42.46

 [31.69, 53.23]

43.74

 [34.52, 52.96]

52.49

 [45.56, 59.42]

99th
81.34

 [71.34, 91.34]

97.88

 [84.44, 111.32]

86.66

 [67.30, 106.02]

97.97 Ͱ

 [85.63, 110.32]

C/90°

C/L45°

L45°/R45°

Motion 

Analysis

Index
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3.4.2 Markerless motion capture camera pairs comparison  

 The C/L45°, C/90°, and L45°/R45° camera pairs were compared to each other to 

measure how they agree with one another using the R2 and RMSD. This analysis was 

conducted for each trial for the concurrent finger flexion, index finger flexion, sequential 

finger flexion, and typing tasks. A sample trial for one participant for the index finger 

during the concurrent finger flexion task showcasing this analysis comparing the C/L45°, 

C/90°, and L45°/R45° camera pairs can be observed in Figure 3.6. 

Figure 3.6: Comparison of the index finger angles during the concurrent finger 

flexion across different camera pairs for P01 during Trial 1. Top: Comparison 

between C90° and C/L45° camera pairs. Middle: Comparison between C/90° 

and L45°/R45° camera pairs. Bottom Plot: Comparison between C/L45° and 

L45°/R45° camera pairs.  
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Statistically significant interactions between camera pairs and fingers were 

evident for all tasks and measurements (R² and RMSD) ( (p < 0.001). Significant main 

effects were observed for both camera pairs (p < 0.001) and fingers (p < 0.001) across all 

tasks and measurements (R² and RMSD). For each task, significant differences were 

found when comparing different camera pairs and fingers.  

In this study, we examined the correlations for concurrent finger flexion of the 

index, middle, ring, and little fingers across three camera pairs. Overall, correlations were 

high, during this concurrent finger flexion task ranging from 0.91 to 0.99. For the thumb, 

the correlation was high when comparing C/90° to C/L45°, with an R² of 0.97. However, 

lower correlations were observed for the thumb when comparing C/90° to L45°/R45° and 

C/L45° to L45°/R45°, with R²  of 0.71 and 0.74, respectively. The consistency of the 

different camera pairs in measuring finger angles varied depending on the task performed. 

When observing all the fingers during the sequential finger flexion, typing, and index 

finger flexion tasks the correlation between the camera pairs varied. In the sequential 

finger flexion task, the index finger had an R2 of 0.77  when comparing the C/90° to 

C/L45° camera pairs but drops to 0.34 and 0.38 in the comparison between C/90° vs 

C/L45 and C/L45° vs. L45°/R45°, respectively. A similar trend is present when also 

looking at the thumb during the sequential finger flexion task where the thumb had 

correlations of 0.88 when comparing the C/90° to C/L45° camera pairs but drops to 0.17 

and 0.16 in the comparison between C/90° vs C/L45 and C/90° vs. L45°/R45°, 

respectively. For the middle, ring, and little fingers during the sequential finger flexion 

task, a similar trend is present, but instead of the C/90° to C/L45° camera pairs 
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performing the best, it is the C/L45° to L45°/R45° camera pairs. The correlation for the 

ring finger when comparing the C/L45° to L45°/R45° camera pairs was 0.76 but drops to 

0.50 and 0.44  in the comparison between C/90° vs C/L45 and C/90° vs. L45°/R45°, 

respectively. This trend is similar for the typing and index finger flexion tasks, where the 

index finger and thumb perform the best during the C/90° vs C/L45° comparison, and the 

middle, ring, and little fingers perform the best during the C/90° vs. L45°/R45° 

comparison (Figure 3.7). 

Figure 3.7: Box plot comparison of camera pair R2 across the thumb, index, 

middle, ring, and little finger and tasks (index finger flexion, finger roll flexion, 

finger flexion, and typing) with the markers off (non-concurrent).  



M.Sc. Thesis – N. Majoni                                 McMaster University – Kinesiology 

40 
 

 For the concurrent finger flexion tasks, the finger angle RMSD for all the camera 

pair comparisons for the index, middle, ring, and little fingers ranged from 5.7° to 16.8° 

but the RMSD was closer to 5.7° being ~ 9-10° and for the thumb it showed an RMSD of 

6.1° in the comparison for C/90° vs C/L45° but a larger RMSD of 22.4° and 22.1° for the 

comparison between C/90° vs L45°/R45°and C/L45° vs. L45°/R45°, respectively. When 

observing the fingers during the sequential finger flexion, typing, and index finger flexion 

tasks, the RMSD between the camera pairs varied. In the sequential finger flexion task, 

for the index finger, when comparing the C/90° vs C/L45° camera pairs, the RMSD was 

13.1° but increased to 20° and 22° in the comparison between C/90° vs L45°/R45° and 

C/L45° vs. L45°/R45° camera pairs, respectively. Similar results are present when 

looking at the thumb during the sequential finger flexion task where the thumb had an 

RMSD of 10.3° when comparing the C/90° VS C/L45° camera pairs but increases 

significantly to 39.6° and 38.5° in the comparison between C/90° vs L45°/R45° and 

C/L45° vs. L45°/R45° camera pairs, respectively. This is similar when observing the 

RMSD for the middle, ring, and little fingers in the concurrent finger flexion task but 

similar to the correlation analysis. Instead of the C/90° to C/L45° camera pairs 

performing the best, it is the C/L45° to L45°/R45° camera pairs. This trend is common, 

and the RMSD is similar for the index finger flexion and typing tasks where the index 

finger and thumb perform the best during the C/90° vs C/L45° comparison, and the 

middle, ring and little fingers perform the best during the C/90° vs. L45°/R45° 

comparison (Figure 3.8).   
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Figure 3.8: Box plot comparison of camera pair RMSD across the thumb, index, 

middle, ring, and little and tasks (index finger flexion, finger roll flexion, finger 

flexion, and typing) with the markers off (non-concurrent).  
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3.5. DISCUSSION  

 This study developed a markerless motion capture system capable of tracking 

hand and finger kinematics, filling a gap in biomechanical analyses. The joint angles 

obtained from the markerless system were comparable to those from marker-based 

motion capture during the concurrent and sequential finger flexion, index finger flexion, 

and typing tasks. Although a direct comparison was not conducted, the non-concurrent 

markerless finger angles closely matched the concurrent marker-based angles. Our 

findings also highlight the consistency of joint angles across different camera pairs, with 

variations depending on the specific camera pair and finger being analyzed. 

3.5.1. Markerless vs marker-based motion capture 

Due to issues with reflective markers, we were unable to directly compare the 

three markerless camera pairs with the marker-based data. The reflective markers 

interfered with our markerless joint predictions at the hand. A similar problem was 

reported in a study examining whole-body motion in which where reflective markers 

negatively impacted pose estimation using the Kinect system, resulting in inaccurate joint 

location identification and interference with markerless predictions (Naeemabadi et al., 

2018). Consequently, we focused on comparing descriptive statistics.  

Analysis of the C/90°, C/L45°, and L45°/R45° camera pairs revealed no 

significant differences in the non-concurrent markerless index finger angles across all 

tasks when compared to the concurrent marker-based measurements. While these data 

were not the same trials, they were performed within moments of each other. This 

suggests that the markerless system can provide measurements comparable to those 
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obtained with marker-based techniques for the index finger across various tasks. There 

was a wide range of differences, from as little as 1° to large differences such as 19° in the 

total finger angle for our index, middle, ring and little fingers but most of the finger angle 

differences between the markerless camera pairs and the concurrent marker-based 

measurements were small for all the tasks, typically ranging from 1°-10° at the 50th 

percentile. By focusing on the 50th percentile, we gain insight into the central tendency of 

our joint angle measurements. By looking at the 50th percentile, we can see if the joint 

angles are similar between our markerless camera pairs and the concurrent marker-based 

finger angles. Our findings for our index, middle, little, and ring fingers are comparable to 

the joint angle differences of the index finger when using a markerless motion capture 

system on a trained model from DeepLabCut compared to a marker-based motion capture 

system where they found the MCP joint to have an RMSE of 7.5°, the PIP joint 2.3° and 

the DIP joint 3.2°, if summed, would be 13°, aligning with our results (Geelen et al., 

2021). These findings are also comparable to a previous study that validated the Kinect 

sensor against a marker-based system, where the average differences for the MCP, PIP, 

and DIP joints were 2.4° ± 10°, 4.8° ± 12°, and 4.8° ± 11°, respectively (Metcalf et al., 

2013). The individual joint angles in that study sum to align with our results. It is 

noteworthy that an error of 7°- 9° is considered clinically acceptable and the standard for 

determining individual joint angles in the hands and fingers using goniometry (Ellis et al., 

2002; Ballan et al., 2008). Our total finger angles are similar to this threshold.  

 For our maximum finger angles, we used the 99th percentiles, where we saw the 

largest differences for the index, middle, ring, and little fingers between the markerless 
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camera pairs and the marker-based finger angles. Even though we found no statistical 

differences for the C/90° and C/L45° camera pairs the absolute difference of these joint 

angles was large. For instance, the index finger angle difference ranged from 34° to 35° 

during concurrent finger flexion, 9 to 17° during sequential finger flexion, and 10 to 34° 

during the typing task. We did, however, find statistically significant differences during 

the index finger flexion task with differences ranging from 24 to 26°. It is important to 

note that the comparison of the markerless camera pairs on the finger angles compared to 

the marker-based system was not completed at the same time. The 99th percentiles are the 

largest values of finger angles, and we should expect these larger variations. The 

markerless camera pair finger angles not being compared at the same time to the marker-

based system is the biggest factor that influences the large variation at the 99th percentiles. 

Another factor is that the reflective marker used in the marker-based system needed to be 

placed firmly to prevent movement and ensure its accuracy during data collection but 

because of this, participants reported that during data collection the reflective marker 

impeded their full finger movement, affecting their range of motion during all the tasks 

(Debril et al., 2009; Lucchetti et al., 1998).  This observation is consistent with previous 

literature indicating that reflective markers can influence natural movement (Das et al., 

2024). Although our findings comparing our markerless camera pairs and the marker-

based system are not a direct comparison, the results of this analysis still indicate that a 

two-camera markerless motion capture system can be a tool used to assess hand and 

finger kinematics comparable to a marker-based motion capture system.  
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3.5.2. Markerless motion capture camera pairs 

 In our study, we compared joint angles derived from three camera pairs (C/90°, 

C/L45°, and L45°/R45°) by analyzing R² and RMSD. Despite differences in the tasks 

performed and the different anatomy our markerless hand and finger motion capture 

system produced R² comparable to those of the OpenCap system, which achieved R²  of 

0.65-0.80 for dynamic measures of the lower extremity (Uhlrich et al., 2023). Unlike 

prior studies focusing on single-camera setups for hand and finger kinematics (Gionfrida 

et al., 2022; Metcalf et al., 2013; Sridhar et al., 2014), our work evaluates different two-

camera setups for markerless motion capture. Our results indicated that certain camera 

pair comparisons exhibited higher correlations than others. Specifically, the C/90° to 

C/L45° camera pair showed higher correlations for the index finger and thumb compared 

to the C/90° to L45°/R45° and C/L45° to L45°/R45° comparisons. Conversely, the 

C/L45° to L45°/R45° camera pair demonstrated higher correlations for the middle, ring, 

and little fingers compared to the C/90° to L45°/R45° and  C/90° to C/L45° camera 

comparisons. Several factors could at least potentially explain these differences, as all 

camera pairs tracked the same motion simultaneously. The higher correlations for the 

index finger and thumb in the C/90° to C/L45° comparison may be attributed to the clear 

visibility of these fingers by both the 90° and L45° cameras. In contrast, the middle, ring, 

and little fingers did not perform as well in this comparison because the 90° and L45° 

cameras could not consistently see the 3 fingers despite the centre camera's visibility. For 

accurate joint position tracking, it is essential that both cameras in a pair have a clear 

view of the corresponding joints. This likely explains why the C/L45° to L45°/R45° 
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camera pair, had better visibility of the middle, ring, and little fingers and showed higher 

correlations for these fingers. Also, the difference between the camera pairs also might 

likely be due to the overlapping fields of view in the comparisons. For example,  the 

C/90° to C/L45° both share the centre camera, and the C/L45° to L45°/R45° share the 

L45° camera. The camera pairs C/90°, and L45°/R45° do not share a camera and have 

different views from one another. This comparison performed had the lowest correlations 

compared to the other two camera pair comparisons.  

The camera pair error results are consistent with the R² results; the index and 

thumb showed better performance with lower RMSD in the C/90° to C/L45° camera 

comparisons, while the middle, ring and little fingers performed better in the C/L45° to 

L45°/R45° comparison. Specifically for the concurrent finger flexion task, C/L45° to 

L45°/R45° had higher RMSD for the index finger with 15.6° and the thumb with 22.1°. In 

contrast, the C/90° to C/L45° comparison had slightly higher RMSD for the middle finger 

with 9.8°, the ring finger with 9.5°, and the little finger with 10.1°, compared to the 

C/L45° to L45°/R45° comparison for the middle finger with 8.4°, 5.7° for the ring finger 

and 6.9° for the little finger. This trend was consistent across all tasks. Additionally, an 

inverse relationship was observed between R² and RMSD: higher correlations resulted in 

lower RMSD and vice versa. These findings indicate that both R² and RMSD are 

influenced by the camera pairs being compared for each task and finger. 

3.5.3. Limitations 

 There are several limitations to our study. First, a direct comparison between 

markers and markerless motion capture was not feasible in our setup. Other studies have 
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successfully conducted concurrent analyses of markerless and marker-based systems for 

hand kinematics, as markers were not reported to influence the markerless system 

(Gionfrida et al., 2022; Metcalf et al., 2013; Geelen et al., 2021). Secondly, due to 

hardware issues and noisy data from the marker-based motion capture, we had to exclude 

five participants from our markerless vs. marker-based assessment. This underscores the 

potential advantages of markerless systems for hand and finger kinematics. Lastly, we did 

not include tasks involving both hands. Most hand tasks require the use of both hands, but 

our study did not assess this. Future work should incorporate a broader range of tasks and 

include assessments involving both hands. 

3.5.4. Conclusions 

 In conclusion, we developed a two-camera markerless motion capture system 

using two cameras to track and analyze 3D hand and finger kinematics with open-source 

tools. Our findings indicate no significant differences between the markerless motion 

capture system and the marker-based system. Additionally, our results show that different 

markerless camera pairs generally produced similar predictions of joint angles with little 

or no significant differences in most cases. Certain camera pairs demonstrated better 

agreement than others, and this agreement was based on the camera pairs showing better 

consistency across different camera comparisons than others when for each task and 

finger. Future work should aim to evaluate markerless hand tracking with a wider range 

of tasks.  
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Table S1: Estimated marginal means [95% confidence intervals] for the 1st, 50th, and 99th percentiles (°) for each finger and task, across different 

camera orientations. The orientations C/90°, C/L45°, and L45°/R45° refer to the markerless motion capture cameras, while Motion Analysis refers 

to the marker-based system. 
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CHAPTER FOUR: THESIS DISCUSSION 
The overarching goal of this thesis was to develop and assess a markerless motion 

capture for the hands and fingers. This thesis filled a gap in the literature by providing a 

tool needed to assess hand and finger kinematics. This research journey involved 

overcoming various challenges, implementing innovative methodologies, and refining 

techniques to ensure accurate and reliable data from our markerless motion capture 

program.  

 We initially explored the development of a markerless motion capture system 

utilizing DeepLabCut (DLC), an open-source tool (Mathis et al., 2018; Nath et al., 2019). 

The goal was to train to produce hand and finger kinematics. DLC appeared highly 

promising due to the flexibility it offered in the model input. However, this flexibility 

presented challenges, particularly the extensive time required for manual image labelling 

and model training. Despite these challenges, I managed to annotate over 1400 images to 

evaluate model accuracy in predicting joint positions with virtual markers. Unfortunately, 

this number of images is insufficient for achieving accurate and consistent results in 

markerless motion capture. Nonetheless, the extensive time to annotate frames and the 

limited image dataset prompted a shift in our approach. This transition led us to 

MediaPipe Hands (MPH), which offered a pre-trained hand-tracking model. This solution 

significantly streamlined the process, allowing us to focus more on tracking 3D hand and 

finger kinematics without training our model.  

MPH proved effective because of its pre-trained model tracking 21 hand 

landmarks. This model utilizes two distinct models: a hand landmark model and a palm 
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detection model. An interesting feature of MediaPipe is its ability to handle both hands 

simultaneously. However, to simplify our process and reduce the number of required 

markers, we chose to track only one hand instead of two. Initially, I planned to use four 

cameras in the markerless system, necessitating the triangulation of these cameras. This 

process, however, was challenging and complex. Dute The real-time calibration process 

involved streaming video data from each camera and capturing still images, which posed 

several difficulties. Although capturing still images for individual cameras and obtaining 

their internal parameters was straightforward, streaming video from all four cameras 

simultaneously to obtain their rotation and translation to one another, overwhelmed our 

hardware. The computer lagged and eventually crashed, unable to handle the multiple 

video feeds. Even reducing the video resolution to 480p from 720p did not alleviate the 

lag. Switching to a more powerful computer with GPU integration also failed to resolve 

the issue. Even when reducing the number of cameras from four to three, the same 

problems persisted. At the time, it seemed that Python and OpenCV could not effectively 

manage multiple video feeds, leading to the computer's crash and lag. Due to time 

constraints and needing to complete our data collection we had to move on to a different 

approach. We used three camera pairs to evaluate how views might influence the angle 

predictions. This solution allowed me to continue my research without the limitations 

imposed by the initial hardware and software constraints. By doing so, we were able to 

get effective tracking of the hands and fingers when we did this. To ensure the joint 

predictions were tracking the hands we measured the distance between the joint 

predictions and matched them to real-world measurements of the hands and fingers. The 
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segment lengths analyzed from MediaPipe matched within 0.5 cm, indicating these were 

accurate predictions.  

A significant factor that influenced the markerless joint predictions was the 

reflective markers used in the marker-based system. For MediaPipe to work effectively, 

the model needs to detect a palm in the frame first and then detect the 21 joint landmarks 

on the hand. The reflective markers impacted this detection because they were placed 

directly on the joints near the landmarks MPH uses to track the hand fingers. 

Additionally, the segment marker triads were intrusive, covering most of the participant's 

fingers. This was anticipated since any obstruction would prevent MediaPipe from 

detecting the hand within the frame, highlighting how the model was trained to detect the 

skin for the hand landmark predictions. This highlights a key moment during this thesis 

because a concurrent frame-by-frame assessment of the marker-based motion capture 

system was not feasible due to prediction errors, which would not accurately represent the 

feasibility of the markerless motion capture system. Therefore, when participants came 

into the lab, we collected markerless data concurrently with the marker-based data to 

understand and address these errors. Then, participants performed the series of tasks again 

without any reflective markers on. During these errors, the predictions were not correctly 

annotated on the participants' hands, and the hand model appeared smaller with shorter 

segment lengths. This issue was noticeable in static/extended postures. The results of the 

analysis with the markers during collection can be seen in Figure A2 to see how the 

markers affected the results. Also, as participants performed their tasks, the segment 
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lengths changed significantly, resulting in a complete failure to predict joint locations 

accurately. This is illustrated in Figures 4.1 and 4.2, where in the top right, you can see 

the predictions are of the participant's hands, and the finger lengths are smaller.  

Figure 4.1: A) Shows the Centre (C) camera view during the concurrent finger 

flexion task without reflective markers. B) Shows the Centre (C) camera view 

during the concurrent finger flexion task with reflective markers. C) Shows the 

Left 45° (L45 °) camera view during the concurrent finger flexion task without 

reflective markers. D) Shows the Left 45° (L45 °) camera view during the 

concurrent finger flexion task with reflective markers. These images illustrate 

when the fingers are in extension during the task. 
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Figure 4.2: A) Shows the Centre (C) camera view during the concurrent finger 

flexion task without reflective markers. B) Shows the Centre (C) camera view 

during the concurrent finger flexion task with reflective markers. C) Shows the Left 

45° (L45 °) camera view during the concurrent finger flexion task without reflective 

markers. D) Shows the Left 45° (L45 °) camera view during the concurrent finger 

flexion task with reflective markers. These images illustrate when the fingers are in 

flexion during the task. 
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Using OpenSim to calculate joint kinematics for markerless data also presented 

challenges. To scale our models accurately and ensure the precision of joint kinematics, 

we manually inputted participants' hand anthropometrics and uniformly scaled the hand 

model for each participant. Initial inverse kinematics results showed significant extension 

angles (up to 15 degrees) in the MCP and PIP joints, which were not observed during the 

trials. We made sure to add these constraints to our marker-based data to ensure we can 

confidently compare the results. Another issue we saw was problems with the DIP joints 

in the index, middle, ring, and little fingers. During flexion, the lengths of distal phalange 

segments changed, affecting the inverse kinematics. To resolve this, we aligned the tip 

marker with the other finger joints, which were centred in the participant's joints when 

scaling our models. This adjustment was crucial, resulting in a fully constrained model 

for each participant without these issues. Modelling with OpenSim was challenging due 

to its complexity, but it allowed us to explore abduction and adduction angles that 

influence flexion and extension at the joints. This was important because when I 

performed my own joint angle calculations for the MCP, PIP, and DIP joints for all the 

fingers, it focused solely on flexion and extension by measuring the segment lengths 

between the MCP, PIP, and DIP joints and using the segment vectors to calculate the joint 

angles. However, my joint angle calculations could not be compared to the marker-based 

kinematics since the calculation of obtaining the joint angles was different from the 

inverse kinematics calculation in OpenSim. Overall, although it was challenging 

OpenSim helped overcome the issue of the changing segment lengths in the markerless 

data.  
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4.1. Future directions 

 There are several potential directions for this research. First, we need to analyze 

more than one hand to evaluate the performance of the markerless motion capture system 

with multiple hands in the scene to obtain 3D motion and joint angles. Most tasks require 

the use of both hands, and this would be beneficial for others using this system for data 

collection. Next, the model needs to be improved by adding more data to the training set. 

Currently, there are errors when joints are obstructed. For instance, Theia 3D can predict 

joints through clothing because it has been trained on over 500,000 images, compared to 

MediaPipe's 30,000 images. Increasing the training data would significantly enhance the 

system's ability to capture hand and finger kinematics and potentially resolve issues with 

reflective markers interfering with predictions. This would also enable a more 

comprehensive concurrent assessment with the marker-based motion capture system. 

Lastly, expanding the model to include the elbow could allow us to obtain wrist 

kinematics. Currently, the wrist is represented as a single point, but including the elbow 

could provide more detailed wrist kinematics. 

4.2. Contributions 

 Currently, no markerless motion capture system can track 3D hand and finger 

kinematics. This thesis fills that gap, being the first of its kind to create and assess a 

markerless motion capture system using open-source tools. We will share our code with 

the scientific community, allowing others to expand or improve upon our work. This 

system will also benefit researchers who wish to use it in their own studies. By 

developing more tools, we enhance the field's ability to collect and analyze hand and 
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finger motion capture data. This can be used in different applications ranging from in-lab 

and out-of-lab collections and potentially clinical settings. 
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APPENDIX A – SUPPLEMENTARY TABLES

Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3

Concurrent finger 

Flexion

0.95

 [0.94, 0.95]

0.92

 [0.92, 0.93]

0.93

 [0.92, 0.94]

0.96

 [0.96, 0.97]

0.95

 [0.94, 0.96]

0.98

 [0.98, 0.99]

0.96

 [0.95, 0.97]

0.94

 [0.94, 0.95]

0.99

 [0.98, 0.99]

0.94

 [0.93, 0.95]

0.91

 [0.91, 0.92]

0.98

 [0.97, 0.99]

0.97

 [0.97, 0.98]

0.71

 [0.71, 0.72]

0.74

 [0.73, 0.74]

Sequential Finger 

Flexion

0.77

 [0.76, 0.78]

0.34

 [0.33, 0.36]

0.38

 [0.36, 0.39]

0.69

 [0.68, 0.71]

0.64

 [0.63, 0.66]

0.76

 [0.74, 0.77]

0.50

 [0.49, 0.51]

0.44

 [0.42, 0.45]

0.76

 [0.75, 0.77]

0.55

 [0.54, 0.57]

0.54

 [0.52, 0.55]

0.80

 [0.79, 0.81]

0.88

 [0.87, 0.90]

0.17

 [0.15, 0.18]

0.16

 [0.15, 0.18]

Typing
0.71

 [0.69, 0.73]

0.56

 [0.55, 0.58]

0.55

 [0.53, 0.57]

0.78

 [0.76, 0.79]

0.77

 [0.75, 0.78]

0.83

 [0.81, 0.84]

0.62

 [0.61, 0.64]

0.65

 [0.63, 0.66]

0.75

 [0.73, 0.77]

0.45

 [0.43, 0.47]

0.50

 [0.48, 0.51]

0.74

 [0.72, 0.76]

0.82

 [0.80, 0.83]

0.27

 [0.26, 0.29]

0.27

 [0.25, 0.29]

Index Finger 

Flexion

0.86

 [0.84, 0.88]

0.52

 [0.51, 0.54]

0.62

 [0.60, 0.64]
- - - - - - - - - - - -

Index ThumbLittleRingMiddle

Table A1: Estimated marginal means [95% confidence intervals] for the  R
2
  for each finger and task across different camera 

pairs. Pair 1 refers to C/90° to C/L45°, Pair 2 refers to C/90° to L45°/R45°, and Pair 3 refers to C/L45° to L45°/R45°.  

Table A2: Estimated marginal means [95% confidence intervals] for the RMSD (°)  for each finger and task, across different 

camera pairs. Pair 1 refers to C/90° to C/L45°, Pair 2 refers to C/90° to L45°/R45°, and Pair 3 refers to C/L45° to L45°/R45°.  

 

Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3 Pair 1 Pair 2 Pair 3

Finger 

Flexion

10.80

 [9.95, 11.64]

16.79

 [15.94, 17.63]

15.63

 [14.79, 16.48]

9.47

 [8.62, 10.31]

9.76

 [8.92, 10.60]

8.41

 [7.56, 9.25]

9.51

 [8.67, 10.36]

10.27

 [9.42, 11.11]

5.72

 [4.87, 6.56]

10.09

 [9.25, 10.93]

13.35

 [12.50, 14.19]

6.99

 [6.15, 7.83]

6.06

 [5.21, 6.90]

22.44

 [21.59, 23.28]

22.03

 [21.19, 22.87]

Finger Roll 

Flexion

13.18

 [12.38, 13.98]

19.97

 [19.17, 20.77]

22.04

 [21.24, 22.83]

12.10

 [11.30, 12.90]

11.44

 [10.64, 12.24]

10.89

 [10.09, 11.69]

20.08

 [19.28, 20.88]

19.06

 [18.26, 19.86]

9.89

 [9.09, 10.68]

21.09

 [20.29, 21.89]

20.30

 [19.51, 21.10]

12.17

 [11.37, 12.97]

10.33

 [9.53, 11.13]

39.62

 [38.82, 40.41]

38.49

 [37.69, 39.29]

Typing
13.09

 [11.90, 14.28]

28.74

 [27.55, 29.93]

27.52

 [26.33, 28.71]

10.76

 [9.57, 11.95]

10.80

 [9.61, 11.99]

11.48

 [10.29, 12.67]

14.11

 [12.92, 15.30]

12.27

 [11.08, 13.47]

11.62

 [10.43, 12.81]

17.01

 [15.82, 18.20]

15.94

 [14.75, 17.13]

12.44

 [11.25, 13.63]

9.25

 [8.06, 10.44]

37.94

 [36.75, 39.13]

37.82

 [36.63, 39.01]

Index Flexion
14.13

 [13.16, 15.10]

34.34

 [33.37, 35.31]

33.40

 [32.44, 34.37]
- - - - - - - - - - - -

Index Middle Ring Little Thumb
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Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3

Pair 1
0.023

 [0.010, 0.037]

0.019

 [0.006, 0.032]

0.014

 [0.001, 0.027]

-0.018

 [-0.032, -0.005]

0.016

 [0.003, 0.029]

-0.027

 [-0.040, -0.014]

0.026

 [0.012, 0.039]

-0.040

 [-0.053, -0.026]

0.259

 [0.246, 0.273]

0.237

 [0.224, 0.250]

Pair 2 -
-0.004

 [-0.017, 0.009]
-

-0.032

 [-0.045, -0.019]
-

-0.043

 [-0.057, -0.030]
-

-0.065

 [-0.079, -0.052]
-

-0.023

 [-0.036, -0.009]

Pair 1
0.337

 [0.308, 0.365]

0.240

 [0.212, 0.269]

0.021

 [-0.008, 0.050]

-0.254

 [-0.283, -0.225]

0.014

 [-0.015, 0.043]

-0.423

 [-0.452, -0.394]

0.068

 [0.039, 0.096]

-0.485

 [-0.514, -0.456]

0.350

 [0.321, 0.378]

0.270

 [0.241, 0.299]

Pair 2 -
-0.096

 [-0.125, -0.067]
-

-0.275

 [-0.304, -0.246]
-

-0.437

 [-0.466, -0.408]
-

-0.552

 [-0.581, -0.523]
-

-0.080

 [-0.108, -0.051]

Pair 1
0.147

 [0.119, 0.176]

0.158

 [0.130, 0.187]

0.010

 [-0.019, 0.038]

-0.049

 [-0.078, -0.021]

-0.023

 [-0.052, 0.005]

-0.125

 [-0.154, -0.097]

-0.048

 [-0.077, -0.020]

-0.292

 [-0.320, -0.263]

0.542

 [0.513, 0.571]

0.547

 [0.519, 0.576]

Pair 2 -
0.011

 [-0.018, 0.039]
-

-0.059

 [-0.088, -0.031]
-

-0.102

 [-0.130, -0.073]
-

-0.243

 [-0.272, -0.215]
-

0.005

 [-0.023, 0.034]

Pair 1
0.429

 [0.405, 0.453]

0.393

 [0.369, 0.417]

0.051

 [0.027, 0.075]

-0.063

 [-0.087, -0.039]

0.061

 [0.037, 0.085]

-0.260

 [-0.285, -0.236]

0.017

 [-0.007, 0.041]

-0.246

 [-0.270, -0.222]

0.717

 [0.692, 0.741]

0.721

 [0.697, 0.745]

Pair 2 -
-0.036

 [-0.060, -0.012]
-

-0.114

 [-0.138, -0.090]
-

-0.321

 [-0.345, -0.297]
-

-0.263

 [-0.287, -0.239]
-

0.005

 [-0.019, 0.029]

Concurrent 

Finger 

Flexion

Index 

Finger 

Flexion

Typing

Sequential 

Finger 

Flexion

Index Middle Ring Little Thumb

Table A3: Pairwise differences in means [95% confidence intervals] for the R
2
 for each finger and task, across different 

camera pairs. The values should be read as (row-column). For instance, the R
2
 of 0.023 at the finger flexion row, column 

(Pair 1, Pair 2) is interpreted as a 0.023 higher average for all participants when comparing the Pair 1 R
2
 to the Pair 2 R

2
. 

Pair 1 refers to C/90° to C/L45°, Pair 2 refers to C/90° to L45°/R45°, and Pair 3 refers to C/L45° to L45°/R45°.  



M.Sc. Thesis – N. Majoni                                 McMaster University – Kinesiology 

75 
 

 

 

 

Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3 Pair 2 Pair 3

Pair 1
-5.99

 [-7.42, -4.57]

-4.84

 [-6.26, -3.41]

-0.29

 [-1.72, 1.13]

1.06

 [-0.37, 2.48]

-0.75

 [-2.18, 0.67]

3.80

 [2.37, 5.22]

-3.26

 [-4.68, -1.83]

3.10

 [1.67, 4.52]

-16.38

 [-17.81, -14.96]

-15.97

 [-17.40, -14.55]

Pair 2
1.15

 [-0.27, 2.58]

1.35

 [-0.07, 2.78]

4.55

 [3.12, 5.97]

6.35

 [4.93, 7.78]

0.41

 [-1.02, 1.83]

Pair 1
-20.21

 [-21.85, -18.57]

-19.28

 [-20.92, -17.64]

0.45

 [-1.19, 2.09]

4.23

 [2.59, 5.86]

0.78

 [-0.86, 2.42]

8.97

 [7.33, 10.61]

-1.49

 [-3.13, 0.15]

6.25

 [4.62, 7.89]

-26.33

 [-27.96, -24.69]

-23.86

 [-25.50, -22.22]

Pair 2
0.93

 [-0.71, 2.57]

3.78

 [2.14, 5.42]

8.19

 [6.55, 9.83]

7.74

 [6.10, 9.38]

2.47

 [0.83, 4.10]

Pair 1
-15.65

 [-17.66, -13.64]

-14.43

 [-16.44, -12.42]

-0.03

 [-2.05, 1.98]

-0.72

 [-2.73, 1.29]

1.83

 [-0.18, 3.85]

2.48

 [0.47, 4.50]

1.07

 [-0.94, 3.09]

4.57

 [2.56, 6.59]

-28.69

 [-30.70, -26.68]

-28.57

 [-30.58, -26.56]

Pair 2
1.22

 [-0.79, 3.23]

-0.68

 [-2.70, 1.33]

0.65

 [-1.36, 2.66]

3.50

 [1.49, 5.51]

0.12

 [-1.89, 2.13]

Pair 1
-6.79

 [-8.14, -5.44]

-8.85

 [-10.20, -7.51]

0.66

 [-0.69, 2.01]

1.21

 [-0.14, 2.56]

1.02

 [-0.33, 2.37]

10.19

 [8.85, 11.54]

0.79

 [-0.56, 2.14]

8.92

 [7.57, 10.27]

-29.29

 [-30.64, -27.94]

-28.16

 [-29.51, -26.81]

Pair 2
-2.06

 [-3.41, -0.72]

0.55

 [-0.80, 1.90]

9.17

 [7.82, 10.52]

8.13

 [6.78, 9.48]

1.13

 [-0.22, 2.47]

Concurrent 

Finger 

Flexion

Index 

Finger 

Flexion

Typing

Sequential 

Finger 

Flexion

Index Middle Ring ThumbLittle

Table A4: Pairwise differences in means [95% confidence intervals] for the RMSD for each finger and task, across different 

camera pairs. The values should be read as (row-column). For instance, the RMSD of -5.99° at the finger flexion row, column 

(Pair 1, Pair 2) is interpreted as a 5.9° higher average for all participants when comparing the Pair 1 RMSD to the Pair 2 RMSD. 

Pair 1 refers to C/90° to C/L45°, Pair 2 refers to C/90° to L45°/R45°, and Pair 3 refers to C/L45° to L45°/R45°.  
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APPENDIX B – SUPPLEMENTARY FIGURES 

Figure A1: Box plot comparison of camera pair R² and RMSD across multiple 

fingers (thumb, index, middle, ring, and little) and tasks (index finger flexion, 

finger roll flexion, finger flexion, and typing) with the markers off (non-

concurrent). The left column presents the R² for all tasks and fingers, indicating 

the correlation between camera pairs, while the right column shows the 

corresponding RMSD, reflecting the differences in angles measured between 

camera pairs. The (blue) box plots represent the comparison between C/90° and 

C/L45°, the (orange) box plots represent the comparison between C/90° and 

L45°/R45°, and the (green) box plots represent the comparison between C/L45° 

and L45°/R45°. Each point within the box plots denotes the R² or RMSD for 

each trial for each participant. 
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Figure A2: Box plot comparison of camera pair R² and RMSD across multiple 

fingers (thumb, index, middle, ring, and little) and tasks (index finger flexion, 

finger roll flexion, finger flexion, and typing) with the markers on (concurrent). 

The left column presents the R² for all tasks and fingers, indicating the correlation 

between camera pairs, while the right column shows the corresponding RMSD 

values, reflecting the differences in angles measured between camera pairs. The 

(blue) box plots represent the comparison between C/90° and C/L45°, the 

(orange) box plots represent the comparison between C/90° and L45°/R45°, and 

the (green) box plots represent the comparison between C/L45° and L45°/R45°. 

Each point within the box plots denotes the R² or RMSD for each trial for each 

participant. 
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APPENDIX C – PILOT STUDY NACOB ABSTRACT 
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APPENDIX D – ETHICS CONSENT FORM 

 

 

 

 

 

 

 

 

 

LETTER OF INFORMATION AND CONSENT 

 

Validity of markerless motion capture for the hands and fingers 

 

 

Principal Investigator:    Student Investigator:  

Dr. Peter Keir, PhD     Nigel Majoni, MSc Candidate  

Department of Kinesiology   Department of Kinesiology 

McMaster University    McMaster University 

Hamilton, Ontario, Canada   Hamilton, Ontario, Canada 

(905) 525-9140 ext. 23543   (905) 525-9140  

E-mail: pjkeir@mcmaster.ca   E-mail: majonit@mcmaster.ca
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Purpose of the Study:  

We use our hands to interact with the external environment every day. Hand and finger postures and 
movement play important roles in the development of hand-related musculoskeletal disorders and 
injuries. Nevertheless, these postures and movements are often poorly represented in many 
biomechanical and ergonomic studies. As such, a broader understanding of how the hands and 
fingers interact with the world is needed to expand the avenue in assessing the risk of developing 
hand-related musculoskeletal disorders in the workplace and at home. Movement varies between 
individuals, and assessing hand activity is difficult. Tracking upper limb movements, particularly in 
the hands and fingers, is challenging. Simple hand movements such as grasping depend on several 
factors ranging from the size and shape of the object to the postures being adopted by the hand and 
fingers. Furthermore, accurate assessment of hand and finger kinematics can be limited by 
technology. Historically, human movement is tracked by putting markers on specific points of the 
body. These are bulky and intrusive and will likely change how people move. In recent years, there has 
been an advancement in the evaluation of markerless motion capture. There is a growing interest in 
investigating the feasibility of markerless motion capture systems as a viable alternative to marker-
based systems and exploring their potential for advancing research in motion analysis. Currently, no 
markerless motion capture system is available that can provide accurate tracking of hand and finger 
kinematics. Consequently, we need to determine the accuracy of markerless motion capture 
systems for hand and finger kinematics compared to marker-based motion capture systems. 

Procedures involved in the Research:   

The study will involve a single laboratory session taking approximately 2 hours to complete. All 
procedures will be completed by the researchers in the study.  

1) An informed consent form with details of the experiment will be explained, and all questions 
will be answered before signing. 

2) Participants will be seated at the assessment table, and markers will be placed on the 
participants by the researcher to collect motion capture data. Anatomical landmarks will be 
palpated, and participants will be asked to flex certain joints to ensure the location of the 
specific body being collected. Markers will be placed at landmarks on the right hand. The 
markers will be taped down using tape. These procedures are required to obtain a high-
quality signal. 

3) Participants will be told that video recording will begin for each task performed using the 
Logitech c920 webcam. These cameras will only be recording their hands and finger up until 
the elbow and upper arm. 

4) Once the markers and video is recording are secure, the participant will be asked to 
complete a series of six (6) functional hand tasks. The tasks are: 

I. Typing on a keyboard. Participants will be asked to type out a phrase three (3) times 
“The quick brown fox jumps over the lazy dog.” The sentence contains all the letters 
of the alphabet, and all the keys on the keyboard will be used. 

II. Stacking a Jenga tower. Participants will be asked to stack half a Jenga tower, and 
then unstack the tower. They will be instructed to do so by taking three (3) building 
blocks and stacking them perpendicular to the other blocks and unstacking them 
the exact same way.  

III. Perform the peg test. Participants will have the pegboard in front of them with pegs 
beside them. They will be instructed to insert all the pegs available into the pegboard 
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in sequential order and then remove the pegs in sequential order. They will perform 
three (3) rounds of this to complete the task. 

IV. Open fist, close fist task. Participants will be asked to perform this task using a 
metronome (sound cue) and do this for 15 seconds. It will be repeated 3 times. 

V. Open hand forearm pronation and supination task. Participants will be asked to 
perform this task using a metronome (sound cue) and do this for 15 seconds. It will 
be repeated 3 times. 

VI. Open hand wrist flexion and extension task. Participants will be asked to perform 
this task using a metronome (sound cue) and do this for 15 seconds. It will be 
repeated 3 times.  
 

               Each of these tasks will be completed for three (3) trials.  

5) Once the participants have completed data collection, markers will be removed. 
 

Potential Harms, Risks or Discomforts: 

Minimal risks are anticipated for this study. 

Psychological Risk 

There is a potential risk that you might feel embarrassed if you cannot perform the tasks correctly. 
This will be managed by explaining and demonstrating how to perform each task prior to collection 
correctly. 

Social Risk 

There is a potential risk to privacy regarding the video recording. This will be managed by ensuring 
there are no distinguishable features in the recordings, and all videos will be kept on a password-
protected computer. 

Skin Sensitivity 

You may experience mild skin irritation/redness from the adhesive of the reflective marker and tape. 
This is similar to the irritation that may be caused by a bandage and typically fades within 2 to 3 days.  

Potential Benefits: 

The outcome of the study will allow us to validate our markerless motion capture system. The research 
will not benefit you directly. 

Incentive 

You will receive $20 for participating in this study as remuneration for your time. Your contact 
information may be shared with the Kin Grad Admin to ensure your compensation. The amount 
received is taxable. It is your responsibility to report this amount for income tax purposes. 

Confidentiality:  

Your identity will be kept confidential, and the data collected will be used for research purposes only. 
The information directly pertaining to you will be locked in a cabinet or stored electronically on a 
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password-protected computer for 7 years. During the collection, there may be undergraduate 
research assistants present in the lab space. 

Participation: 

Your participation in this study is voluntary. If you decide to participate, you can decide to stop at any 
time, even after signing the consent form or part-way through the study. If you decide to stop 
participating, there will be no consequences for you. If you choose to withdraw at any time in the 
study, you will still be compensated for your time. Once the data collection is completed, you will not 
be able to withdraw from the study, as the data is being collected without your name. . 

Information about the Study Results:   

You may obtain information about the study results by contacting Dr. Peter Keir at (905) 525-9140 (x 
23543) or indicating “Yes” at the bottom of this form. 

Questions about the Study:  

If you have questions or need more information about the study itself, please contact me at: 

 

Nigel Majoni 
majonit@mcmaster.ca 

 

This study has been reviewed by the McMaster University Research Ethics Board and received ethics 
clearance. If you have concerns or questions about your rights as a participant or about the way the 
study is conducted, please contact:  

   McMaster Research Ethics Secretariat 

   Telephone: (905) 525-9140 ext. 23142 

   C/o Research Office for Administrative Development and Support  

   E-mail: ethicsoffice@mcmaster.ca 

 

 

CONSENT  

 

• I have read the information presented in the information letter about a study being 
conducted by Nigel Majoni and Dr. Peter J. Keir, of McMaster University.   

• I have had the opportunity to ask questions about my involvement in this study and to receive 
the additional details I requested.   

• I understand that if I agree to participate in this study, I may withdraw from the study at any 
time. 

mailto:ethicsoffice@mcmaster.ca
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• I understand that if I choose to withdraw from the study after the collection, you cannot 
withdraw your  data since your data is being collected without your name 

• I understand I will receive a signed copy of this form via email 
• I agree to be recorded via marker-based and markerless motion capture to capture motion 

data of the upper extremity. Only your hands and fingers and potentially your elbow will be 
recorded.  

• I agree to participate in the study. 
 

Signature: ______________________________________ Date: _________________________ 

 

Name of Participant (Printed) ___________________________________ 

1._____ YES, I would like to receive a summary of the study’s results 

Please send them to me at this email address: _________________________________________ 

OR to this mailing address: _________________________________________________________ 

                                            _________________________________________________________ 

                               _________________________________________________________ 

______ NO, I do not want to receive a summary of the study’s results 

Person Obtaining Consent 

Signature: ______________________________________ Date: _________________________ 

Name of Participant (Printed) ___________________________________ 

 

 

 


