NUCLEAR MAGNETIC RESONAFGE STUDY OF COLEMAHITE

moclear hagnetic resoralce study of colemanite

时

FRANTR EOLJJ, B.Sc., M.Sc.

A Thesis
Sukinitted to the Faculty of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Doctor of Philosophy

KaMaster University
Octoker 1958

DOCTOR OF PHILOSOPHY (1958)
MCNASTER UIIVERSITY
(Physics)
Hamilton, Ontario

TITIE: Nuclear Magnetic Resonance Study of Colemanite
ATTHOR: Frank Holuj, B.Sc. (University of London)
M.Sc. (Mcllaster University)

SUPERVISOR: Professor H. E. Petch
NUIBER OF PAGES: $x, 72$.
SCOPE AID CONTENTS:
A single crystal of colemanite, which is ferroelectric at temperatures below about $-2.0^{\circ} \mathrm{C}$., has been investigated by maans of nuclear inagnetic resonance ($n . m . r_{0}$) techniques, over a temperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$.

The splitting of the B^{11} n.m.r. signal in colemanite, caused by the perturbation of the nuclear Zeenan levels by the interactions between the nuclear electric quadrupole noment and the electric field gradients existing at the boron sites at room tomperature and at $-40^{\circ} \mathrm{C}$., has been fully analysed, using the procedure developed by Volkofs and coworkers. The quadrupole coupling constents, the asymetry parameters and the orientations of the principal axes of the electric field gradient tensors at room temperature and $-40^{\circ} \mathrm{C}$. are given in Tables $X X V$ - XXVII. A selected set of $B^{1 l}$ n.m.r. lines has boen oxamined over the temperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$. This investigation auggests that the ferroelectric transition is second-ordor and not the orderdisorder or martensitic type. The transition temperaturs itself has
been found to depend upon the history of the crystal, but is apparently about $2^{\circ} \mathrm{C}$. higher than previously reported temperatures of about $-2.0^{\circ} \mathrm{C}$. In addition, a previously unknown phase in colemanite is reported. A large temperature hysteresis loop is associated with the transition to the new phese; on cooling, the transition takes place at about $-80^{\circ} \mathrm{C}$. whereas on heating, the transition takes place at about $-35^{\circ} \mathrm{C}$. The point groups for the three phases have been determined as $2 / \mathrm{m}, \mathrm{g} 2$ and 1 going from room temperature to $-80^{\circ} \mathrm{C}$., respectively. The results of the n.m.r. investigation have been interpreted, as far as possible at present, in terms of the crystal structure.

ACHOWLEDGE:WNTS

I would like to express my sincere thanks to Frofessor Petch for his constant interest and kind help throughout my experimental work, culminating in this thesis, and expecially for his excellent suggestion as to the topic for this thesis. I would also like to thank Dr. H. D. Negaw for many interesting discussions while she atayed at lichaster University as a Visiting Professor. Acknowledgement is also due to Mr. R. D. Datars who carried out a prelimingry hork on sone single orystals of colemanite.

Thanks are due to the employees of the Hachine Shop for constructing the crystal holders, the cold-cell and the copper coils at the heat exchanger.

This research was made possible by Defense Research Board of Canada grants-in-aid to Professor Petch. The author is grateful for financial supnort in the form of a Cominco Followship avarded for three consecutive years by the Consolidnted Mining and Smelting Co. Ltd. of Canada.

TABLE OF COTTHNTS

PACE
CHAPTILR I IHTRODTCTIOH 1
CHAPTER II THEORY 13
GHAPTER III APPARATTS AID FXFERTEHTAL PROCEDITIZ 32
CHAPTHI IV RESTJTS 43
CHAPTER V DISCTSSIO!T 59
RETMRENCES 71

LIST OF DLUSTRARIOIS

FIG. SIBJJECT PACE
Fig. 1 The Operation of the Point Group $2 / m$ on (a) the ITuclear Site, (b) $\bar{\nabla} E$ 16
Fie. 2 Ifuclear Zeeman Levels of B^{11} Ifucleus, (a) Mot Showing the Quadrupole Eirect, (b) Showing the Guadrupole Effect 20
Fig. 3 A Rlock Diagram of a li.H.R. Spactrometer 33
Pig. $4 \quad \Lambda$ Cross-Section of the Cold-Coll 37
Fig. 5 Chart Recordings of the B^{11} M.M.R. Spectrum in Colengnite at Room Temperature Shouing (a) the Cbserved liaximum ITuber of Iines, (b) the Observed haximum Ifunber of Lines in the Reduced Spectruna 43
Fig. 6 The Rotation Pattern of B^{11} N. If.R. Inss in Cole- manitc at Room Temoerature for the X-Rotation 44
Fig. 7 The Rotation Fattern of N.H.R. Lines Belonging to the B^{11} Sites M in Colemanite at Room Temperature for the X -Rotation 44
Fig. 8 The Rotation Pattern of B^{17} H. M.R. Lines in Cole- manite at Room Temperature for the V-Rotation 44
Fig. 9 The Rotation Fattorn of $\mathrm{B}^{17} \mathrm{H} \cdot \mathrm{K} . \mathrm{R}$. I ines in Cole- manite at Room Temperature for the 2 -Rotation 4
Fig. 10 Chart Recording of the B 11 IT.N.R. Spectrum inColeranite at $-40^{\circ} \mathrm{C}$. Shoving (a) the TypicalSpectrum, (b) the Typical Reduced Spactrum50
Pig. 11 The Rotation Pattern of E^{11} H.N.R. Lines in Cole- menite at $-40^{\circ} \mathrm{C}$. for the X -Rotation 50
Fig. 12 The Rotation Fattern of Hol..R. Lines Relongine to
the B^{11} Sites it * in Colemsnite at $-40^{\circ} \mathrm{C}$. for the X-Rotation 50

IIE。

Fig. 13 Colemanite at $-40^{\circ} \mathrm{C}$. 今or the $\mathrm{I}-$ Rotation 50
Fig. 14 The Rotation Pattern of B^{11} H.li.R. Lines in Colernoite at $-40^{\circ} \mathrm{G}$. for the Z -Rotation 50
Fig. 15 Temperature Depencience of a Solected Sct of B^{11} Satellite Iines in Colemanite at Tenparatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$. 56
Tig. 16 Temerature Dependence of a Selected Set of in 11 Satellite ines in Colowanite at Temperatures in tire Range $52^{\circ} \mathrm{C}$. to $-100^{\circ} \mathrm{C}$. 57
Fig. 17 Stereogram of the Principal Axes of $\tilde{\nabla} E$ at the $B^{1 l}$ Sites $I I$ and of the Neighbours of $B_{1 A}$ 63
Fig. 18 Stereogram of the Frincipal Axes of $\bar{\nabla} \mathrm{F}$ at the $B^{1 l}$ Sites L and of the Neighbours of $B_{2 A}$ 63
Fig. 19 Stereograry of the Frincipal Nxes of $\bar{\nabla} E$ at the $B^{l l}$ Sitos K and of the leighbours of $B_{3 A}$ 63
Fig. 20 Temperature Effects upon Satellite Lines Belonging to the B^{11} Sites II in Colemanite at Cemperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$. 67
Fig. 21 Temperature Effects upon Satellito Lines Eelonging to the Bll Sitos L in Colemanito at Tcmperatures in the Rango $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$. 67
Fig. 22 Temperature Effects upon Satellite Lines Belongingto the BII Sites 4 in Colemanite at Tomporaturesin the Range $25^{\circ} \mathrm{C}$. to $-15^{\circ} \mathrm{C}$.67
Fig. 23 Typical Satellite Lines Belonging to the B^{11} Sites M in Colemenite in the Threo Rnown Fhases 70

LTST OF TABLES

TABLE	SUEJECT	PAGE
Table I	Exporimentally \%easured B^{17} Resonance Frequencies for the X-Rotation of Coleranite at Room Temperature	44
Table II	Exporimentally lieasured B^{11} Resonance Frequencies for the Y -Rotation of Colemanite at Room Temperature	44
Tablo III	Experimentally lieasured Bll Resonance Frequencies for the Z-Rotation of Colemanite at Room Temperature	44
Table IV	The Separation of the Satellite Lines for the \mathbb{S} Sites in Colemanite at Room Temperature	47
Table	The Separation of the Satellite Lines for the I, Sites in Colemanite at Room Temperature	47
Table VI	The Separation of the Satellite Lines for the f Sites in Colemanite at Room Temperature	47
Table VII	The Separation of the Central Line from the Unporturbad Frequency for Sites M in Colemanite at Room Temperature	47
Table VIII	The Separation of the Centre of Gravity of the Satellite Linea from the Unperturbed Irequency for the MSites in Colemanite at Room Temperature	47
Table IX	The First- and Second-Order Fourier Coofficients for the M Sitos in Colemanite	48
Table X	The Pirst-Order Pourier Coefificients for the K and L Sites in Colomanite at Room Temperature	48
Table XI	The Separation of the Satelifte Lines for all $B^{\text {ll }}$ Sites in Colenanite Orientod in the Specifiad Directions	48
Table XII	The Components of $\nabla \tilde{E}$ for all B^{11} Sites in Colemanite at Room Temperature	49

TABLE FACE
Table XIII 50
Table XIV The Experizontally lieasured B^{17} Resonance Fre- quencies for the Y-Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.The Experimentolly Veesured B^{11} Resonailce Fre-quencies for the Z-Rotation of Colemanite at$-40^{\circ} \mathrm{C}$.50
Table XVI The Separation of the Satellite Lines for tho E^{11} Sites $\mathrm{K}^{\prime \prime}$ in Colomanite at $-40^{\circ} \mathrm{C}$. 53
Table XVII The Separation of the Satellite Lings for the B^{11} Sites L^{*} in Colemanite at $-40^{\circ} \mathrm{C}$. 53
Table XVIII The Separation of the Satellite Lines Nor the B^{11} Sites If^{*} in Colemanite at $-40^{\circ} \mathrm{C}$. 53
Table ZIX The First-Order Fourier Coefificients for allBll Sites in Colemanite at $-40^{\circ} \mathrm{C}$.53
Table XX The Separation of the Satellite Lines of the in the Specified Direction 54
Table XXI The Components of $\nabla^{2} E$ for B^{17} Sites $K^{\text {it }}$ in Colemanite 54
Table XXII The Components of $\tilde{\nabla}$ E for B^{11} Sites L^{*} inCole:ranite54
Table XXIII The Components of $\widetilde{\nabla E}$ for B^{17} Sites M^{*} in Colemanite 54
Table XXIV The Averages of the Components of $\tilde{\nabla E}$ for all B^{11} Sites in Colemanite at $-40^{\circ} \mathrm{C}$. 54
Table RXV The Quadrupole Coupling Constants and the Asymetry Parameters for all B^{11} Sites in Colananite at Roon Temperature and $-40^{\circ} \mathrm{C}$. 55
Table XXVI The Direction Cosines of the Principal Axes of $\overline{\nabla E}$ witin Respact to the (X, Y, Z) Axes for all B^{11} Sites in Colemanite at Room Temperature 55
TABLE PAGE
Table XXVII The Direction Cosines of the Frincipal Axes of $\widetilde{\nabla E}$ with Respect to the (X, Y, Z) Axes for all. B^{11} Sites in Colemanite at $-40^{\circ} \mathrm{C}$. 55
Tablo XXVIII The Separation of the Satellite Lines for all 3^{11} Sites in Colemanite at Temperatures in the Range $25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$. 57
Table XXIX The Separations of the Satellite Lincs For B^{11} Sites L and 4 in Colemenite at Temperatures in the Range $52^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$. and in the Range $-22^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C} .57$

CHAPTLR I

IUSRODTCRION

I. 1. The first successful nuclear ragnetic resonance (n.t.r.) experiments, using buik material, were carried out independentily near the end of 1945 by Purcell, Torey and Pound ('46) and by Bloch, Hanson and Packard (46). The first group of physicists found the n.m.r. signal of protons in parafin whereas the second group found it in water. The two groups used methods which appeared different at that tive but are now regarded as equivalent. The theoretical basis of both methods is the resonance condition:

$$
\nu_{0}=\frac{\mu \mathrm{Ho}}{\mathrm{Ib}}
$$

Here $V 0$ is the frequency at which the n.m.r. absorption takes place, Ho is the externally applied agnotic field, μ is the nuclear nagnetic monent, I is the nuclear spin quantun number and h is Planck's constant. The importance of the discovery lies in the facts that with values of fo oasily obtained in the laboratory (of the orders of soveral kilogauss) n.m.r. frequencies occur in the radio-frequency range and that the resonance Prequencies can bs measurod with groat precision.

The most direct application of n.m.r. mothods is to the neasurenent of gyromegnetic ratios (g-factors) of stable isotopes. Only relative measuremonts can be made so that the absolute value of at least one nuclear g-factor must be lnown in order to put all the measurements on an absolute basis. The nuclear magnetic moment of a nuclido can be calculated if its spin, I, is lnown as well as ita g-factor. Conversely,
the mothod can be used to measure Ho in absolute units once a nuclear g-factor is known. ADart froa the extraordinary precision which it made possible in the weasurements of some nuclear quantities, the n.m.r. technique vas found useful in other branches of physics. The fins structures of n.ther. spectra, arising from the interactions of nuclei with their surroundings, supplied a zeans of studying some aspects of nuolear environment. For examples the shift of the resonant frequencies due to the local variations of the magnetic field at nuclear sites, occupled by the same isotope, gave the chenist a means of studying chemical reaction rates and of solving some problens in stereochenistry. Also, the interaction of a nuclear electric quadrupole moment with an inhomogeneous eleotric field set up by its environment, supplied the solid state physicist with a tool to study electrical properties, phaso transitions, and crystal symetry in solids. It is this latter interaction with which we shall concern ourselves in this thesis. In other words, nuolei, already present in their normal sites in a crystal, will be used as probes to explore the properties of the crystal.
I. 2. What follows is a brief review of the origin and of some previous studies of n.m.r. spectra in crystals. The Hamiltonian of a single nucleus, whose spin quantum nupber is I and eagnetio moment is $\vec{\mu}$, placed in a uniform magnetic field, $\overrightarrow{\mathrm{Ho}}$, is:

$$
\mu=-\vec{\mu} \cdot \overrightarrow{\mathrm{Ho}}
$$

The nualeus in these circuastences possosses $2 I+1$ equidistant Zeeman energy levels. A radiation field of frequency,

$$
\nu_{0}=\left|\frac{\mu \mathrm{FIO}}{\overline{\mathrm{~L}}}\right|
$$

and with the correct polarisation properties, vill induce transitions
between the adjacont energy levols. In a sample contoining many identical nuclei which interact only with the uniform magnetic field Elo, the energy levels will be the same for all the nuclei. If the nuclear apins are in thermal equilibrium with their surroundings, the lower energy atates will have a larger population, so that the induced transitions betveen adjacent onergy levels will give a net absorption of energy. If in addition, the nucleus has a non-zero electric quadrupole monent, referred to from now on as \tilde{q}, it will interact with a non-vanishing electric field gradient, referred to from now on as $\tilde{V_{E}}$. At the site of any nucleus, $\nabla \mathbb{F}$ is characteristic of the crystal structure. The Hamiltonion of a nucleus in these circumstances is:

$$
\mathscr{U}=-\vec{\mu} \cdot \overrightarrow{\mathrm{Ho}}+Q \cdot \overrightarrow{\nabla \mathrm{E}}
$$

The last term in this expression represents the interaction of \hat{Q} uith FE. The result of this additional interaction is that the $2 I+1$ nuclear Zeeman lavels are shifted in energy so that they no longer are equidistant. This means that the $2 I$ transitions betweon adjacent levels no longer involve the same energy, but give rise to a soactrum or $2 I$ diatinct n.m.r. lines. If the quedrupole effect, $\tilde{Q} \cdot \hat{\nabla E}$, is small when coupered with the magnatic term, $\vec{\mu} \cdot \overrightarrow{H_{0}}$, this Ganiltonian can ba solved by the perturbation rethod. The expression for the energy eigenvalues are then given by Eq. (8) of Chapter II. For most practical purposea only the first throo terms are retained because the serias converges rapidly. The second and the third terns of Eq. (8) are colled in this thoais tho first and the second order nuclear quadrupole terms, reapectively. If the quadrupole effect is sufficiently small it is accurately desorfbed by the first order nuclear quadrupole torm alone.

The first tivoretical and experinental inveatigation or the quadrupolo effect in cryatalline matter was carried out by Pound ('50). He investigated the n.m.r. spectrun of Ha^{23} in iiailO 0_{3} and of $A I^{27}$ in $\mathrm{Al}_{2} \mathrm{O}_{3}$ (comundur). The $\mathrm{He}{ }^{23}$ n.m.r. spectrum was completely deacribed by the first order nuclear quadrupole term, whereas in the case of the Λ^{27} n.mor. spectrum it was necessary to include tio second order nuclear quadrupole tern. Pound's uork is actually a apecial case of the general theory. The lack of generality arises from tine fact that all ija and Al nuclei occupy orystallographically identical sites in the unit cell of their respoctive, axially symotric crystals. Volkoff anc coworkers extended both theory and experimental procedure to the completely general case of several non-equivaleni nuclear sitos per unit cell in non-axially symetric orystals. They studied the n.m.r. spectra of Li7 (Volkoff, '51) and A1 ${ }^{27}$ (Petch, '53, and Volkoff, '53) in Bpodumene and of B1l in kernite (Vaterman, '55). The first paper in the series describes the study of the n.m.r. spectrum of Li^{7} in spodumene. The case of Li^{7} in 3poducene is sinflar to the case of $\mathrm{Ha}_{2} 2$ in NallO_{3} since all lithium auclei occupy crystallographically identical sitos and the Li ${ }^{7}$ n.m.r. spoctrum dionicye small nuclear quadrupole effect, but the cace of Li^{7} in srodurnene is more genoral bocause spodumene is non-axially symmetric. The next two papers of the sories describe the n.n.r. spectrium of $A I^{27}$ in spodumenc. Tho analysis of the spectrum is carried out using only the second order nuclear quadrupolo term. In other respects the $A I^{27}$ n. n.r. spoctrun ia similar to that of Li^{7} bacause it originates from crystallographically identical $A]^{27}$ sites in the unit cell of spodumene. A perfectly general n.n.r. spectrum is described in the last paper of this series, i.e., the n.n.r.
apectrun of B^{17} in leernite. This generality lies in the fact thet boron nuclei occupy severol non-equivalent sites in the unit cell of kernite.
I. 3. It was mentioned before thet the nuclear quadruple effect can co usod to study electrical properties, phase transitions, crysial syineciry, otc. in solids. The interprotation of certain foatures of n. $\mathrm{m} . \mathrm{r}$. spectra in terms of crystal symetry is a straightforuard natter. ghe eigenvalues of the product $\hat{Q} \cdot \tilde{\mathrm{VE}}$ and the orientations of its principal ayəs with reapect to a syster of coordinate axes fired in a crystal come out of the mathomatical analysis of the spectra. However, the compiete interpratation of n.m.r. resulta in teris of microscopic crystallins electric fields is difficult bocause of the following: the evaluaticn of the tensor $\tilde{\nabla E}$ fron the experimentally measured product $\tilde{Q} \tilde{\nabla} \tilde{E}$ is difficizlt because of the uncertainty of the values of a guoted in the literatura.* Another difficulty arises from the lack of a complote theory for the wave functions involved in chomical bonding in crystals. lind jet another serious difficulty arises fron the following: only a part of tise total nuclear quadrupole effect, $\tilde{Q} . \tilde{\nabla E}$, arises from the gradient of the electrostatic field denoted by $\nabla \tilde{\varepsilon}$ produced by all other ato:s in the crystal structure. The balance is produced by the electric field eradient sct up by the distortion of the atom in which the nucleus is situated. This distortion originates from the nuclear quedrupolar electric fiele and from the electric field, ε, mentioned above, and adois, in effect, a contribution $\gamma \tilde{\nabla}$ to the total fisld gradiont, ∇^{\sim} E. The coefficient

* \hat{Q} denotes the nuclesr electric quadrupole tonsor. it stands for the customarily defined nuclear electric quedrupolo ronent, i.e., the laresst componest of त्रि nensured in the direction of the spin axis of the nucleus.
γ, called the "antishielding factor," plays a very important port in the theory of electric field gradients in crystals because of its large magnitude in some atoms (for example, for B^{+3} ion γ is -0.145 (Das,'56) but for Cs^{+}(in it is +143.5 (Sternheimer, ${ }^{\prime} 56$). The accuracy with which γ is calculated is low because it is based on a series of approximations.

The n.m.r. method lends itself well to the study of relative changes occurring within the crystal framework at phase transitions. This is because the product $\tilde{Q} . \tilde{V E}$ depends critically upon the crystal structure. The validity of this was amply denonstrated by Cotts and Knight (54). They studied the nomer. spectra of Nb^{93} in $\mathrm{KHbO} \mathrm{O}_{3}$ as a function of temperature. KrbO_{3} had been known to exist in four different phases in the temperature range $410^{\circ} \mathrm{C}$. to $-196^{\circ} \mathrm{C}$. Three of these phases had been known to be ferroelectric, and the transition temperatures had been accurately eatablished. The changes in the configurations of the n.m.r. spectra obtained when the orystal temperature was varied from $400^{\circ} \mathrm{C}$. to -196° C. confirmed the existence of the four phases. The temperatures at which these changes occurred corresponded to the trangition temperatures. The abruptness with which each change occurred supplied information about the order of the respective transition. The three phase transitions in this temperature range were of first order because the change in the configuration of the spectrum occurred abruptly at the three transition temperatures. Cotts and Knight encountered ereat experimental difficulties. The single crystals of KNbO_{3}, which they used, frequently twinned and shattered while their temperatures were varied. Considering that the crystals were difficult to replace and that the proper orientation

There is a sudden appearance of surface charges at the transition. The changes in atomic arrancenent at the transition into the ferroelectric phase, since they are completely reveraible, rust be very small. In crystallographic language they are referred to as "displacive" transitions which only involve very siall distortions of the atonic network in contrast to the "reconstructive" transitions in which the network is broken up into small parts and reassembled. This description of the transition emphasises only the crumpling of the franevork and not the small moverents of atoms relative to the frarework which are important in ferroelectrics. Accordingly, a more doscriptive term for a ferroelectric phase is "pseudoay:metric," which means that the phase is derived from a structure of higher symetry by smell diaplacements of soma, or all, atoms in the network. The sinall, rolative displacenents of atora in the ferroelectric phase give rise to eloctric dipoles, which are, in turn, responsible for the spontaneous polerisation. These atomic movemonts can occur in opposite directions equally woll and the directions of tho clectric dipoles are thereby reversed. The reversal of the direction of ajontaneous polarisetion can be effected by the application of an olectric field greater than the coercive field (the biassing field) to the ferroelectric crystal or a sanall eloctric field ebove the Curie point.

From the thermodyamic standpoint tho question arises: is it a first-order or a second-crder transition? It will bo recallod that a first-order transition involvea a discontinuous change of volums and enerey which appoars es a rel ase of latent hoat in an infinitely narrow tenperature range. A second-ordor transition shows no discontinuity in the

Tolum of enorgy but the teupcreture derivative of volure (thervai expansion coefficient) anci of onerg (spocific hect)s shoii snoualiss extonding ovor a finito tongerature range. It is not easj to deteci samges in these therwodyanic cantities because their discontinuities are vary amall.
I. 5. Although colemanite has long been lnown as a comon boron-containing mineral found in California, it was only recently that interest had been aroused regarding its physical properties. The study of colemanite in this laboratory was started because of several hints which sugsestod that the crystal iaight have very interesting structural properties.

Certain faces of colemanite have sometices been observed to collect dust particles in rineralogical museums. This is a comon foatrre of crystals exhibiting a snontaneous nolarisation. This ray ba taken to mean that colemanite is sometines pyroelectric in uhich case its crystal symatry would allow it to bs forroolectric. This conjocturo would be of great incerest because no boron-containing material has been :now to exhibit Porroolectricity. It seomed also plausible thet colemnito undergoes a phase transition because these cortain faces of colomanits tencled to attract dust only under special circumatances. These obsorvations, togocher with the facts that B^{17} is relatively ensy to study by n.n.r. technique and the ready availability of large single crystrls of colonanito, encouraged the prosent vork.

Before the actual oxperimontal rork was begun in this laboratory, Ciarist ot al. (54) had published the prolininary results of an X-ray analysis of cole:anite. Finey found that their resulte were conaiatont

Witin tho space-group $P 2_{1} / a$ and the unit cell dimensions were:
$a=8.743-0.004 \AA$
$b=11.264-0.002 \mathrm{R}$
$c=6.102-0.003 \AA$
$\beta=110^{\circ} 7^{\prime}$
They found that the structure of colemanite consists of infinite boronoxygen chains running parallel to the a-axis, the chain elecent being made up of a BO_{3} triangle and two BO_{4} tetrahedra forming a ring. Each Ca ion is roughly octahedrally coordinated by 5 oxpecns and 1 rater molecule. The formula for colemanite noy thus be uritten $\mathrm{CaB}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ and each unit cell contains 4-formule units. Refined colemanite paramoters and boron-oxygon bond lengths became available to us by private commuication (Clark,'57).

During the prelininary stage of our work Davisson (56) puiblished the results of his dielectric brealcdom studies of colemanite. On the one hand he obtaincd the centrosymeiric breakdown paths covering a wide temperature range and on the other hand, the pyroelectric and the piezzoelectric tests indicntod that colemanite cannot be centrosymeatric.

These two papers leave the symetry properties of colemanito unsolved.

A little later Goldsmith (56) discovored that colemanite was indeed ferroelectric. He observad the following ferroelectric behaviour in colemanites it undergoes a transition at $-2.5^{\circ} \mathrm{C}$. with the ferroolectric direction along the :monoclinic b-axis; it has a very sharp dielectric anomaly with a peak value of 7000 and a half-wiati of $0.5^{\circ} \mathrm{C}$. along the
b-azis and finelly its sponteneocs polarisation is 5×10^{-17} coni. $/ \mathrm{ca}{ }^{2}{ }^{2}$. Colemanite displavs squaro hysterests loops on a plot of the annied electric field versus the dielectric displacement with a coercive fiold of $10^{4} \mathrm{volts} / \mathrm{cm}$. at $60 \mathrm{co} / \mathrm{sec}$. and at $-6^{\circ} \mathrm{C}$.

Coldsmith's vork posed more questions regarding the structiare of coleranite. These questions refer to the following:

1. What are the symetry properties of colomanite below the transition temperature?
2. Which atoms in colemanite structure undergo displacement relative to their room temperature positions?

3 What is the thermodynanic order of the obsorved transition?
4. Are there other transitions?

In August 1957 Chynowath ('57), using a refined tochnicue, reexanined the pyroelectric and ferroelectric behaviour of colenanite. He found that the curve of pyroelectric coefficient versus temperature showed a high and narrou peak at $-2.5^{\circ} \mathrm{C}$., possessed an appreciable tail extending to low temperatures and a rapidly decreasing tail on the high temperature side. He concluded that an ideol singlo crystil of colemanito would ghou no pyroalectric effect above the transition tempratures and therefore was consistent with tho centrosyciatric point eroup 2/m. Erior to the date of publication of Chynoweth's work, hovever, wa had pablicly commicated (Petch,'57) our room temporature results in colomanite, including the fact that we had found its structurs consistent with tho point group $2 / m$.

Abstract

Sumarlaing, the problea for this thegis ves to use the n.f.r. Eethod to angwer at least somo of the quastions raised in the alove diccussion and to supply completoly now information regarding tine paysical proporties of colerantite.

CHAPTER II

THEORY
II. 1. This chapter outlines the theory of the dependence of the nuclear magnetic resonance frequencies in a single crystal on the orientation of the crystal with respect to the uniform magnetic field, Ho, in which the crystal is immersed. For a particular nucleus in a particular situation, the energy due to the interaction of its quadrupole moment tensor, \tilde{Q}_{1} with the electric field gradient tensor, $\bar{\nabla} \tilde{E}$, existing at its site, is not necessarily small as compared to the interaction of its magnetic moment, $\vec{\mu}$, with the external magnetic field, $\overrightarrow{H o}$. However, this discussion, following Pound ('50), Bersohn ('52), and Volkoff ('53), is reatricted to cases where the nuclear electric quadrupole interaction, $\widetilde{Q} . \tilde{\nabla E}$, is weak as compared to the nuclear magnetic interaction, $\vec{\mu}, \overrightarrow{H O}$, but large as compared with magnetic dipole-dipole interactions which are neglected. Furthermore, this discussion is limited to cases where the nuclear spin quantum number I is $3 / 2$, since for B^{11}, the case in which we are interested, I equals 3/2.
II. 2. An elementary description of the electric field gradient tensor, $\tilde{\nabla E}$, will be useful in the following pages. $\tilde{\nabla E}$ is a tensor of rank two. In Cartesian coordinates (X, Y, Z), fixed with respect to crystal axes, it has nine componants

$$
\left(\begin{array}{lll}
\phi_{X X} & \phi_{X Y} & \phi_{X Z} \tag{1}\\
\phi_{Y X} & \phi_{Y Y} & \phi_{Y Z} \\
\phi_{Z X} & \phi_{Z Y} & \phi_{Z Z}
\end{array}\right)
$$

where $\phi X X=-\partial V / \partial X^{2}$ etc. with V being the electrostatic potential. Not all components of this tensor are indepencent. Firstly, it will be recalled that the scalar product, $\vec{\nabla} \cdot \overrightarrow{\mathrm{E}}$, is equal to zero and is invariant under a coordinate transformation, hence the sum of the diajonal components is always zero. Secondly, the vector product, $\vec{\nabla} \times \overrightarrow{\mathrm{E}}$, is also zero and is invariant under a coordinate transformation. Hence $\nabla^{2} \mathrm{E}$ is syminetric, ie., $\phi_{\mathrm{XY}}=\phi_{\mathrm{YX}}$, etc. Thus only five components are independent.

A symmetric tensor can always be diagonalised; that is, there exists a coordinate system (x, y, z), fixed with respect to the crystal in which the off-diagonal components vanish. When diagonalised the tensor assumes the following forms

$$
\left(\begin{array}{ccc}
\phi \mathrm{xx} & 0 & 0 \\
0 & \phi_{y y} & 0 \\
0 & 0 & \phi z z
\end{array}\right)=\left(\begin{array}{ccc}
{\left[\phi_{x z}(\eta-1)\right] / 2} & 0 & 0 \\
0 & -\left[\phi_{z z}(1+\eta)\right] / 2 & 0 \\
0 & 0 & \phi z z
\end{array}\right) \ldots(2)
$$

where $\eta=\left(\phi_{z a}-\phi_{y y}\right) / \phi_{z z}$ is called the "asynuretry parameter." Since $\phi_{\mathrm{xx}}+\phi_{\mathrm{yy}}+\phi_{\mathrm{zz}}=0$, the magnitude*of $\tilde{\nabla E}$ is specified by two parameters, in this case $\phi \mathbf{z z}$, which is chosen to have the largeat absolute value of the three eigenvalues, and the asymatry parameter, η. $\phi x x$ and ϕ yy are chosen negative uith $\left|\phi_{x x}\right|<\left|\phi_{y y}\right|$. With this definition, the asymetry parametor is specified within the linits $0 \leqslant \eta \leqslant \varnothing$ (At first sight, it night appear that by referring $\tilde{V_{E}}$ to its principal axes the number of independent components has been reduced to two. However, this is not the case because three additional quantities are necessary to specify the orientation of the principal axes (x, y, z) with respeot to the (X, X, Z) syetem).
*The term "magnituden refers to the eicenvalues of $\tilde{\tilde{F E}}$.

The tensor scalar product, $\tilde{Q} . \overline{\mathrm{YE}}$, must be calculated in coordinates that diagonalise the magnetic part of the Hamiltonian Eq.(4), that is, in Cartesien coordinates ($x^{\prime} y^{\prime} z^{\prime}$) whose z^{\prime} direction coincides with that of Ho and the x and y axes are chosen arbitrarily. Both tensors appoaring in this scalar product are expressed in their irreducible forms. The five irraducible tensor components of $\overline{\nabla E}$ are $\nabla^{\prime} E q$ where $q=0, \pm 1, \pm 2$. Expressed in terms of the components in ($x^{\prime} y^{\prime} z^{\prime}$) system, $\nabla^{\prime} \mathrm{Eq}$ are

$$
\begin{aligned}
& \nabla^{\prime} E_{0}=-1 / 2 \phi x^{\prime} x^{\prime} \\
& \nabla^{\prime} E_{ \pm 1}= \pm \sqrt{6} / 6\left(\phi x^{\prime} z^{\prime} \pm i \phi x^{\prime} y^{\prime}\right) \\
& \nabla^{\prime} E_{ \pm 2}=-\sqrt{6} / 12\left(\phi x^{\prime} x^{\prime}-\phi y^{\prime} y^{\prime} \pm 2 i \phi x^{\prime} y^{\prime}\right)
\end{aligned}
$$

$\tilde{\nabla E}$ reflects strongly the symatry of a nuclenr site.
From the point of view of symmetry, nuclear sites can be idontical or non-identical in a unit cell. The non-identical character of nuclear sites arisea from two sources:
(a) The formula unit contains more than one atom.
(b) Yore than one formula unit is allowed to occur in the unit cell by the crystal symmetry. It is obvious that in case (a) the nuclear sites are unrelated by symmetry. This implies that the magnitudes and orientations of the $\nabla^{\sim} E^{\prime \prime}$ at these sites are unrelated. He spoak of these sites as non-equivalent. In the case (b), starting with any one nuclear aite in general position in the crystal structure, other sites can bo generated by the operation of the crystal space group. $\sim \nabla^{\prime}$'s at these

Fig. 1. (a) Nuclear Sites Related by the Point Group 2/m. (b) $\overline{\mathrm{E}}$'s Related by the Point Group $2 / \mathrm{m}$.
nuclenr sites are then identical in ngenitude, but diffor in the orientations of their principa] nres. We refer to these sites as the symnetry-equivalent sites.

Consider, for oxample, a nuclear site in a crystal whose point eroup is $2 / \mathrm{m}$. This point group demands that, in eddition to a two-fold eymmetry adis, there exists a mirror plene whoso parpendicular coincides with the two-fold axis. An equivalent interpretation of this point group is that in addition to the two-fold symmetry exis there exists a centre of symetry. Fig.l(a) illustrates the inter-relation bstween the nuclear sites under these circunstances. The sites are represented by dots and brackets each numbered by $1,2,3$, and 4 . 1 and 2, 3 and 4 are related by the two-fold sym:atry axis; 1 and 3, 2 and 4 are related by the centre of symetry. The inter-relation between the $\overline{\mathrm{V}} \mathrm{F}$'s existing at these sites is illustrated in F'ig. $\mathcal{I}(b)$ where oach $\nabla \tilde{E}$ is described by its representative quadric, the hyperboloid of two sheets. The four ∇^{2} 's, numbered $1,2,3$, and 4 in Fig. $1(b)$, are related in the following way. 1 and 2, 3 and 4, by the two-fold symmetry axis, 1 and 3, 2 and 4, by the centre of symotry. It follows from Fig. $1(\mathrm{~b})$ that $\overline{\nabla E}$ denoted by 1 can be derived from that denoted by 3 by translation through the centre of symmetry. The case of 2 and 4 is ainilar. Fron the point of vie: of n.m.r. theory 1 and 3 (or 2 and 4) are identical in all respectz. Those ideas can be expressed in the tonsor notation as follows. Tho opsration of two-fold rotation aris essumed along the Y-axis a日ncs X into $-X, Z$ into -7 but lenves Y unchanged. It follaws that the tensor componenta, $\phi_{Z X}, \phi_{Y X}, \phi_{Z Z}$, and $\phi Z X$ rerain
unchanged, but the tensor components $\phi Z Y$ and $\phi X Y$ are sent into - $\phi Z Y$ and - $\phi X Y$, respectively. Hence VE retains its iangitude but differs only in the orientation of its principal axes. Next, consider the operation of the centre of symatry on $\tilde{\pi}$. . This operation sends Y. into $-\bar{n}, \mathrm{Y}$ Into -7 , and Z into -7 . It follows that the tonaor corr ponents remain unchanged, hence the operation of the centre of oymetry on $\tilde{\nabla} \tilde{H}$ leaves it unchanged in both the uagaituce and the orientation of its principal axes.
II. 3. This section is devoted to the calculation of the shift of the nuclear Keenan levels by the quadrupole effect. He have seen that the Hamiltonian of the nucleus in these circumstances is

$$
\begin{equation*}
\mathscr{H}=-\vec{\mu} \cdot \vec{H}_{0}+F \tag{4}
\end{equation*}
$$

where $\mathrm{F}=\tilde{\mathrm{C}} . \tilde{\nabla} \mathrm{E}$.

$$
=Q_{0} \nabla^{\prime} E_{0}+Q_{ \pm 1} V^{\prime} E_{I 1}+Q_{ \pm 2} \nabla^{\prime} E_{ \pm 2} .
$$

In the case when $\tilde{Q} \cdot \tilde{\nabla} E$ is much smaller then $\vec{\mu} \cdot \overrightarrow{H O}$, the energy el genvalues are calculated using the perturbation method. For this purpose we calculate the matrix eleconts of P in the representation diagonalising the Zeeman energy operator, $-\vec{\mu}$. $\overrightarrow{H O}$. In their general form, the ae matrix elements are

$$
\begin{align*}
F m m^{\prime} & =\sum_{q=2}^{-2}\langle\alpha I m| Q_{q} \nabla^{\prime} E_{q}\left|\alpha I m^{\prime}\right\rangle \\
& =\sum_{q=2}^{-2}\langle\alpha I m| Q_{q}\left|\alpha I m^{\prime}\right\rangle \nabla^{\prime} E_{q} \tag{5}
\end{align*}
$$

since $\bar{V}^{\prime} E q$ is assumed to be independent of the nucleus.* Here, a denotes
*The contribution of tho quadrupolar part to $\tilde{\nabla E}$ is ignored.
the mognetic quantum number, I the angular nomentur quantum nuaber, and α the additional quantum number characterising the nucleus. The energy of the perturbed level thich in the linit of zero perturbation is charactorised by tho angnetic quantum number in is given as a sura:

$$
\begin{equation*}
u_{m}=u_{m}^{(0)}+u_{m}^{(i)}+u_{m}^{(2)}+\ldots \tag{6}
\end{equation*}
$$

where $U_{\text {in }}^{\text {i }}=-m \mu H_{0} / I$

$$
\begin{align*}
& u_{m}^{(1)}=F_{m m} \tag{7}\\
& u_{m}^{(2)}=\sum_{m^{\prime}}^{m \neq m^{\prime}}\left(F_{m m^{\prime}} F_{m^{\prime} m}\right) /\left(u_{m}^{(0)}-u_{m^{\prime}}^{(0)}\right)
\end{align*}
$$

All toris higher than the second have been ignored cacause they aro not generally useful. Substituting Eq , (5) into (7) we get

$$
\begin{align*}
U_{m}^{(\prime)}= & e Q /[2 I(2 I-1)]\left[3 m^{2}-I(I+1)\right] \nabla^{\prime} E_{0} \\
U_{m}^{(2)}= & \frac{3 e^{2} Q^{2}}{[2 I(2 I-1)]^{2}} \frac{I m}{\mu H H_{0}}\left\{\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}\left[4 I(I+1)-1-8 m^{2}\right]-\right. \\
& \left.\left|\nabla^{\prime} E_{ \pm 2}\right|^{2}\left[2 I(I+1)-1-2 m^{2}\right]\right\} \tag{8}
\end{align*}
$$

To clearly demonatrate the perturbation of nuclear Zeoinan energy lavels by the quadrupole effect, Eq.(8) will now be used to calculate the energy levels for $B^{1 l}$ nuclei at one of the sitos in colemanite: Assume a particular orientation of the crystal auch that the coordinate axes (X, Y, Z)* arbitrarily fixed in the cryetal bear the following relation to ($x^{\prime}, y^{\prime}, z^{\prime}$) axes fixed in the laboratory:

$$
X=y^{\prime}, \quad X=z^{\prime}, \quad Z=X^{\prime}\left(\text { i. } \theta ., \quad \theta_{X}=0\right)
$$

*Seo saction III. 2 for dofinition of (X, Y, Z) system.

Using Eqs.(3): $\nabla^{\prime} E g^{\prime}$ s are

$$
\begin{align*}
& \nabla^{\prime} E_{a}=-1 / 2 \phi_{y y} \\
& \nabla^{\prime} E_{ \pm 1}= \pm \sqrt{6} / 6\left(\phi_{z y} \pm i \phi_{x y}\right) \\
& \nabla^{\prime} E_{ \pm 2}=-\sqrt{6} / 12\left(\phi_{2 z}-\phi_{x x} \pm 2 i \phi_{z x}\right) \tag{9}
\end{align*}
$$

Inserting the numerical values for I and n into $E q$. (8) and substituting Eqs.(9) into Eq.(8), and denoting $\mu \mathrm{Ho} / \mathrm{I}$ by v°, we get the following energy levels

$$
\begin{align*}
U_{3 / 2}= & -3 / 2 u^{0}-h / 4 \psi_{y y}+I h /\left(8 \mu H_{0}\right)\left\{-2 / 3\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 12\left[\left(\psi_{z z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} \\
U_{1 / 2}= & -1 / 2 u^{0}-h / 4 \psi_{y y}+I h /\left(2 \psi \mu H_{0}\right)\left\{2\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.-1 / 4\left[\left(\psi_{z z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} \\
U_{-1 / 2}= & 1 / 2 U^{0}+h / 4 \psi_{y y}-I h /\left(24 \mu H_{0}\right)\left\{2\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 4\left[\left(\psi_{2 z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} \\
U_{-3 / 2}= & 3 / 2 u^{0}-h / 4 \psi_{y y}-I h /\left(8 \mu H_{0}\right)\left\{-2 / 3\left(\psi_{2 y}^{2}+\psi_{x y}^{2}\right)-\right. \\
& \left.1 / 12\left[\left(\psi_{2 z}-\psi_{x x}\right)^{2}+4 \psi^{2} x z\right]\right\} . \tag{10}
\end{align*}
$$

where ${ }^{1 / 2 j}=(e Q / h) \phi_{i j}$ and is in units of frequency. Using the appropriate values of $\psi_{i j}$ from Table XII and the experimental value of $\mu \mathrm{Ko} / \mathrm{In}$ ($11.981 \mathrm{mc} . / \mathrm{sec}$.) vo get the following set of energy levels in kc./sec. for B^{11} nuclei at the H sites:

$\left(U_{3 / 2}\right) / h$	$\left(U_{1 / 2}\right) / h$	$\left(U_{-1 / 2}\right) / h$	$(0-3 / 2) / h$
-18331	-5633	6308	17656

Fig. 2. Nuclear Zeeman Levels, in Mc./Sec., of $B^{11}(I=3 / 2)$ Nuclei in External Magnetic Field of 8.75 Kilogauss, (a) Not Showing a Quadrupole Interaction, (b) Showing the Quadrupole Interaction at B^{11} Sites M in Colemanite at Room Temperature and at $\theta x=0^{\circ}$. The Arrows Show the N.M.R. Transitions. The Spectrum is Drawn at the Bottom.

These energy levels have been dram to scale in Fig.2(a) and (b). To the left, Fig.2(a), are the unperturbed energy levels given by $\mu \mathrm{HO} / \mathrm{Ih}$, i.e., in units of frequency; those to the right, Fig.2(b), are the perturbed levels. The arrows indicate transitions between adjacent levels. For $I=3 / 2$ there are three possible frequencies. They are denoted by $\nu_{s_{1}}, \nu_{c}$ and $\nu_{s_{2}}$ in Fig. $2(b)$. $\nu_{s_{1}}$ and $\nu_{s_{2}}$ are the satellite frequencies corresponding to the transitions $m= \pm 3 / 2 \leftrightarrow \pm I / 2$ and ν_{c} denotes the central frequency corresponding to the transition $m= \pm 1 / 2 \leftrightarrow \mp 1 / 2$. Except at very low temperatures, there is no way of detervining experimentally which of the two satellite frequencies $\nu_{s_{1}}$ and $\nu_{s_{2}}$ corresponds to the transition $m=+3 / 2 \leftrightarrow+1 / 2$ and which to $m=-3 / 2 \leftrightarrow-1 / 2$. All the transitions in Fig.2(a) have been indicated by a single symbol ν_{0}. Additional relationships between $\nu_{s_{1}}, \nu_{0}$ and $\nu_{s_{2}}$ can bs obtained from Eq.(8). Inserting values for I and a we get

$$
\begin{align*}
& \Delta \nu=\nu_{s_{2}}-\nu_{s_{1}}=2(e Q / h) \nabla^{\prime} E_{0}+3^{\text {rd }} \text { arder term }+\ldots \tag{II}\\
& \bar{\nu}-\nu_{0}=\left(\nu_{s_{1}}+\nu_{s_{2}}\right) / 2-\nu_{0}=(e Q / h)^{2} 1 / \nu_{0}\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}+ \\
& 4^{+h} \text { order term }+\ldots \tag{12}\\
& \nu_{c}-\nu_{0}=(e Q / h)^{2} 1 / \nu_{0}\left(1 / 2\left|\nabla^{\prime} E_{ \pm 1}\right|^{2}-\left|\nabla^{\prime} E_{ \pm 2}\right|^{2}\right)+ \\
& 4 \stackrel{\text { th }}{=} \text { order term }+\ldots . \tag{13}
\end{align*}
$$

in units of frequency. $\bar{y}=\left(\nu_{s_{1}}+\nu_{s_{2}}\right) / 2$ is called the centro of gravity of the satellite frequencies and ν_{0} is the unperturbed froquency, $/ \mu H_{0} / I h \mid$.Eqs.(11)-(13) show that, if the second-ordor torms are negligible, the two satellite frequencies are symotrically situatod below and above the central frequency, V_{c}, which in thic caso coincides
with Vo. If the second-order teras are not negligible they shov that the centre of gravity of the satellite frequencies and the contral component no longer coincide uith ν_{0}. This is demonstratcd at the bottom of Fig. 2(b) where the n.m.r. spactrum of B^{11} has been dram to scale. The frequency ν_{0} is reprosentod thore by tho broksu Iine.
II. 4. Eqs.(3) and (11)-(13) show that by neasuring the spectra at five differont crystal orientations with raspect to fo one can deternine the five independent components of $\bar{\nabla}$ E. Thie, howevers vould herdly constitute a satisfactory exparimant for the following reasons. The satollite linos, bolonging to the same nuclear sits, dapand sirongly on the cryatal orientation with the result that they may cross and overlap. This males the identification of the lines difficult. These difficulties increase then the complete n.n.r. spoctrum consists of $2 n I-1$ ines, where n is the number of both the non-equivalent end the symietry-oquivalent nucloar sites in the unit cell. Another ingortant reason is that the accuracy of the experimentel results would then be very low. For these reasons a systematic investigation of the spectra is necessary. It permits not only a reliable classification of the lines but also increases experimental accuracy. A scheme for such inveatigation was first developod by Volkoff ot al ('52).

In Volhoff's schemo vo select a set of axes (X, Y, Z) fixed vith respoct to the crystal (for exangle, this set may involve soce of the crystallographic axes), and study the relation between the cocponents of $\nabla \mathrm{F}$ in this system of ares, and in the laboratory syston of axes
($x^{\prime}, y^{\prime}, z^{\prime}$) as the crystal is rotated abolition san, its y axis munich is leet in coincidence with the y^{\prime} axis perpendicular to Wo. The initial position of the crystal, in which the anele of rotation is zero, fe chosen so that $Y, 7$ coincide with w^{\prime}, x^{\prime}. Tho transformation between (X, X, Z) and ($X^{\prime}, y^{\prime}, Z^{\prime}$) is given by

$$
\begin{align*}
& x=y^{\prime} \\
& y=\cos \theta_{\times} 2^{\prime}+\sin \theta_{x} x^{\prime} \\
& z=-\sin \theta_{x} z^{\prime}+\cos \theta_{x} x^{\prime} \tag{14}
\end{align*}
$$

The tensor components in the ($z^{\prime}, y^{\prime}, z^{\prime}$) system are related to those in the (X, Y, Z) by the transformation law:

$$
\begin{equation*}
\phi q_{i}^{\prime} g_{j}^{\prime}=\sum_{\alpha, \beta} \phi Q_{a} Q_{\beta} \frac{\partial Q^{\alpha}}{\partial q_{i}^{\prime}} \frac{\partial Q^{\beta}}{\partial g_{j}^{\prime}} \tag{15}
\end{equation*}
$$

where 0 refers to the (X, Y, Z) system, while q^{\prime} to ($x^{\prime}, y^{\prime}, z^{\prime}$) system, α, β, i and j each take the values $1,2,3$, and $\phi_{q i} q^{\prime} j^{\prime}$. $p \alpha_{\alpha} Q_{\beta}$ are tho tensor components in $\left(z^{\prime}, Y^{\prime}, z^{\prime}\right)$ and (X, Y, Z) system, respectivolyr. Trine Eq. (14) and (15) we get

$$
\begin{align*}
\phi_{z^{\prime} z^{\prime}} & =\sum_{\alpha, \beta} \phi_{Q_{2} Q_{\beta}} \frac{\partial Q^{\alpha}}{\partial z^{\prime}} \frac{\partial Q^{\beta}}{\partial z^{\prime}} \\
& =1 / 2\left(\phi_{y y}+\phi_{z z}\right)+1 / 2\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta_{x}-\phi_{y z} \sin 2 \theta_{x} \tag{16}
\end{align*}
$$

Similar relationships hold for $\phi^{\prime} x^{\prime} x^{\prime}$, $\phi_{y^{\prime} y^{\prime}}$, otc. Substituting these relationships into (3) wo got

$$
\begin{aligned}
& \nabla^{\prime} E_{0}= 1 / 4\left(\phi_{y y}+\phi_{z 2}\right)+1 / 4\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta x- \\
& 1 / 2 \phi_{z y} \sin 2 \theta_{x} \\
& \nabla^{\prime} E_{ \pm 1}= 1 / \sqrt{6}\left\{\mp\left[\phi_{y z} \cos 2 \theta_{x}+1 / 2\left(\phi_{y y}-\phi_{z z}\right) \sin 2 \theta_{x}\right]-\right. \\
&\left.i\left(\phi_{x y} \cos \theta_{x}-\phi_{z x} \sin \theta_{x}\right)\right\} \\
& \nabla^{\prime} E_{ \pm 2}= 1 / \sqrt{24}\left[3 / 2\left(\phi_{y y}+\phi_{z z}\right)-1 / 2\left(\phi_{y y}-\phi_{z z}\right) \cos 2 \theta_{x}+\right. \\
&\left.\phi_{y z} \sin 2 \theta_{x} \pm 2 i\left(\phi_{z x} \cos \theta x+\phi_{x y} \sin \theta_{x}\right)\right]
\end{aligned}
$$

Substituting (17) into Eqs.(11)-(13) and introducing $\psi_{i j}=e Q / h \phi_{i j}$ we get the following equations:

$$
\begin{equation*}
\Delta \nu_{x}=a_{x}+b_{x} \cos 2 \theta_{x}+c_{x} \sin 2 \theta_{x} \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{x}=1 / 2\left(\psi_{y y}+\psi_{z 2}\right) \\
& G_{x}=1 / 2\left(\psi_{y y}-\psi_{22}\right) \\
& c_{x}=-\psi_{z y} \tag{19}
\end{align*}
$$

*For reasons discussed earlier tho experimental results appear in terms of $\psi i \dot{j}$. The symbol $\psi i \ddot{j}$ is rasorved for the $\bar{V} E$ components $\phi i j$ times the constant $\theta 0 / h$. Thus $\psi_{x x}=e Q / h \phi_{x x}, \psi_{x^{\prime} x^{\prime}}=e Q / h \phi_{x^{\prime}}^{\prime}$ etc.

$$
\begin{align*}
\left(\bar{\nu}-\nu_{\theta}\right) x & =\bar{n}_{x}+\bar{p}_{x} \cos 2 \theta_{x}+\bar{r}_{x} \sin 2 \theta_{x}+ \\
& \bar{u}_{x} \cos 4 \theta_{x}+\bar{v}_{x} \sin 4 \theta_{x} \tag{20}
\end{align*}
$$

where,

$$
\begin{align*}
& \bar{n}_{x}=1 /\left(12 \nu_{0}\right)\left(\sigma_{x}^{2}+c_{x}^{2}+c_{y}^{2}+c_{z}^{2}\right) \\
& \bar{p}_{x}=-1 /\left(12 \nu_{0}\right)\left(c_{y}^{2}-c_{z}^{2}\right) \\
& \bar{v}_{x}=-1 /\left(6 \nu_{0}\right) c_{y} c_{2} \\
& \bar{u}_{x}=-1 /\left(12 \nu_{0}\right)\left(6_{x}^{2}-c_{x}^{2}\right) \\
& \bar{v}_{x}=-1 /\left(6 \nu_{0}\right) 6_{x} c_{x} . \tag{21}\\
& \left(\nu_{c}-v_{0}\right) x=n_{x}+p_{x} \cos 2 \theta_{x}+\gamma_{x} \sin 2 \theta_{x}+ \\
& \quad u_{x} \cos 4 \theta_{x}+v_{x} \sin 4 \theta_{x}, \tag{22}
\end{align*}
$$

where,

$$
\begin{align*}
& n_{x}=1 /\left(96 \nu_{0}\right)\left[18 a_{x}^{2}-7\left(6_{x}^{2}+c_{x}^{2}\right)-4\left(c_{y}^{2}+c_{z}^{2}\right)\right] \\
& p_{x}=1 /\left(8 \nu_{0}\right)\left(-a_{x} 6_{x}-c_{y}^{2}-c_{z}^{2}\right) \\
& v_{x}=1 /\left(8 \nu_{0}\right)\left(a_{x} c_{x}+2 c_{y} c_{z}\right) \\
& u_{x}=3 /\left(32 \nu_{0}\right)\left(6_{x}^{2}-c_{x}^{2}\right) \\
& v_{x}=3 /\left(16 \nu_{0}\right) 6 x c_{x} . \tag{23}
\end{align*}
$$

Similar relations hold for the I and Z rotations by cyclic permutation
of the subscripts. Eqs.(19) show that the coefficients a_{i}, b_{j}, and c_{i} in the three rotations are related by the following identities:

$$
\begin{align*}
& a_{x}=1 / 2\left(b_{y}-a_{y}\right)=-1 / 2\left(b_{z}+a_{z}\right) \\
& b_{x}=-1 / 2\left(3 a_{y}-b_{y}\right)=1 / 2\left(3 a_{z}-b_{z}\right) \tag{24}
\end{align*}
$$

Eqs.(24) are useful in checking the consistency of the experimental data.

As can be seen from Eqs.(11)-(13) and from Eqs.(18)-(24), the separation of the satellites $\Delta \nu=\nu_{S_{2}}-\nu_{S_{1}}$ is independent of
V_{0} and so independent of $\Pi 0$, if the third-order tern is neglected. For this reason the coefficients a_{i}, b_{i}, and c_{i} are sometimes referred to as the first-order coefficients. The separation of the centre of gravity of the satellite frequencies from the unperturbed frequency, $\nu_{0}, \bar{y}-\nu_{0}$, and the separation of the central component from ν_{0}, $\nu_{c}-\nu_{0}$ are entirely dependent upon the second-order tern (again, if we neglect the fourth-order tern, etc.) and so are inversely propertional to Ho. For this reason the coefficients \bar{n}_{i} etc. and n_{i}. etc. are referred to as the second-order coefficients. If the secondorder term is large one single rotation determines the five independent tensor components $\psi_{i j}$ as follows: an analysis of $\Delta \nu_{i}$ gives the throe diagonal components plus the component $\Psi_{j} \cdot k$. The remaining components $\psi_{i k}$ and $\psi_{i j}$ can be got from the second-order coafficionts. However, this procedure would result in a low experimental accuracy. The three rotations are therefore necessary from the point of flew of improving the experimental accuracy.

Having determined the tensor $\Psi_{i j}$ in X, Y, Z coordinates we may not refer it to its principal axes (x, y, z) by determining its eigenvalues and the direction cosines of (x, y, z) with respect to (X, Y, Z). The characteristic equation for the eigenvalues, γ, is the equation

$$
\begin{equation*}
\gamma^{3}-a \gamma-b=0 \tag{25}
\end{equation*}
$$

where

$$
\begin{align*}
a= & \psi_{x y}^{2}+\psi_{y z}^{2}+\psi_{z x}^{2}-\psi_{x x} \psi_{y y}- \\
& \psi_{y y} \psi_{z z}-\psi_{z z} \psi_{x x} \tag{26}\\
G= & \psi_{x x} \psi_{y y} \psi_{z z}+2 \psi_{x y} \psi_{y z} \psi_{z x}-\psi_{x x} \psi_{y z}^{2}- \\
& \psi_{y y} \psi_{z x}^{2}-\psi_{z z} \psi_{x y}^{2} \tag{27}
\end{align*}
$$

The reversal of signs of $\psi_{i} ; j$ leaves the sign of a of Eq. (26) unchanged but it reverses the sign of b of Eq.(27). The undetermined common sign of $\psi_{i j}$ is always chosen so that $b=|b|$.

The trigonometric solution of the cubic equation with three
real roots is

$$
\begin{equation*}
\gamma_{n}=2(a / 3)^{1 / 2} \cos (\alpha-2 \pi n / 3) \tag{28}
\end{equation*}
$$

where

$$
n=1,2,3
$$

and

$$
\cos 3 \alpha=|b| / 2(3 / a)^{3 / 2}
$$

γ_{3} is always positive while γ_{2} and γ_{1} are always negative and $\left|\gamma_{3}\right|>\left|\gamma_{2}\right|>\left|\gamma_{1}\right|$.

If we denote the principal axes of the tensor $\psi_{i j}$ by (unprinted) (x, J, z) then γ_{n} are defined as:

$$
\begin{align*}
& \gamma_{3}=\psi_{z z}=e Q / h \phi_{x z} \\
& \gamma_{2}=\psi_{y y}=e Q / h \phi_{y y} \\
& \gamma_{1}=\psi_{x x}=e Q / h \phi_{x x} \tag{30}
\end{align*}
$$

As it was shown earlier we define the asymetry parameter as

$$
\begin{equation*}
\eta=\left(\gamma_{1}-\gamma_{2}\right) / \gamma_{3}=\left(\phi_{x x}-\phi_{y y}\right) / \phi_{x x} \tag{31}
\end{equation*}
$$

γ_{3} is also frequently called the "quadrupole coupling constant."
The process of diagonalisation also gives the direction cosines of the principal axes (x, Y, z) with respect to the axes (X, Y, Z),

$$
\begin{equation*}
\lambda_{n} / D_{1 n}=\mu_{n} / D_{2 n}=y_{n} / D_{3 n}= \pm 1 /\left(D_{1 n}^{2}+D_{2 n}^{2}+D_{3 n}^{2}\right)^{1 / 2} \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& D_{1 n}=\psi_{x y} \psi_{y z}-\psi_{z x}\left(\psi_{y y}-\gamma_{n}\right) \\
& D_{2 n}=\psi_{y x} \psi_{x z}-\psi_{2 y}\left(\psi_{x x}-\gamma_{n}\right) \\
& D_{312}=\left(\psi_{x x}-\gamma_{n}\right)\left(\psi_{y y}-\gamma_{n}\right)-\psi_{x y}^{2} \tag{33}
\end{align*}
$$

The relative signs of λ_{n}, μ_{n} and ν_{n} for each value of γ are fixed by the relative signs of $D_{l_{n}}$, but not their absolute sign, because for the second rank tensor, $\psi_{i j}$, it does not matter which direction along a principal axis is chosen to be the positive one.
II. 5. The theory developed above is adequate for a full analysis of the nomor. opectra, sirmlo or complex." If in o complex spectrum io investigated in a crystal possessing a twofold symmetry axis, mirror plane, etc., and if one of the axes about whin the crystal is rotated coincides with the direction of these symmetry clements, then the secondorder term is very helpful in the analysis of the spectra, because of the following, Consider a crystal with the point group $2 / \mathrm{n}$, the case in which we are especially interested. It was shown previously that an operation of twofold symotry axis, coinciding with \bar{F}-axis, on $\bar{\nabla}$ E leaves its magnitude unchanged but changes the orient action of its principal axes, and that the two tensors have the form (correct to a relative sign),

$$
\left(\begin{array}{lll}
\phi_{x x} & \phi_{x y} & \phi_{x z} \tag{34}\\
\phi_{y x} & \phi_{y y} & \phi_{y z} \\
\phi_{z x} & \phi_{z y} & \phi_{z z}
\end{array}\right) \text { and }\left(\begin{array}{ccc}
\phi_{x x} & -\phi_{x y} & \phi_{x z} \\
-\phi_{y z} & \phi_{y y} & -\phi_{y z} \\
\phi_{z x} & -\phi_{z y} & \phi_{z z}
\end{array}\right)
$$

Experimentally, however, the two tensors are determined in the form

$$
\left(\begin{array}{ccc}
\phi x x & |\phi x y| & \phi x z \tag{35}\\
|\phi y x| & \phi y y & |\phi y z| \\
\phi z x & |\phi z y| & \phi z z
\end{array}\right)
$$

*The tern, "simple spectrum," refers to the noinor. spoctryir consisting of 21 lines, the term, "complex spectrum," refers to the ono consisting of 2 nI lines, who re n is the number of non-cquifalent or symotry-cquivalont nuclear sites.

The problem is, :hat combination of signs in front of $\phi x y$ and $\phi 2 y$ ic the correct one? An inspection of the sign of \bar{r}_{i} in Eq.(21) and the value of r_{i} in Eq. (22) furnishes an answer to this problem only if the socond-ordor term is measurable. If, however, the second-order torn in not measurable one has to modify tho experimental procedure in one of the three ways. Firstly, ono can reduce Ho until the secondorder term is measurable. However, the measurements of n.m.r. spectra at low fields are inherently more difficult then at high fields. Secondly, one can make a different choice of ames (X, Y, Z) so that none of than coincides with the axis of symotry. This, however, nay be objectionable from both the oxperinantal point of vies and from the point of view of analysis of the spectra. Thirdly, one conducts the oxpriment as if the second-order tern were present except that a few additional measurements of the n.n.r. spectra are made with the crystal oriented in such a way that none of the (X, Y, Z) axes are either parallel or perpendicular to Ho. Since this procedure is not mentioned in the literature it is fully developed below.

Consider an orientation of the crystal such that the laboratory axes $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ have $\left(I_{i}, m_{i}, n_{i}\right)$ for their direction cosines in (X, Y, Z) system. Using the transformation lav, Eq.(15), we arrive at tho following relations between $\phi_{q_{i}^{\prime}} q_{j}^{\prime}$ and $\phi Q_{\alpha} Q_{\beta}$,

$$
\begin{aligned}
\phi_{x^{\prime}}^{\prime}= & \phi_{x x} l_{3}^{2}+\phi_{y y} m_{3}^{2}+\phi_{22} n_{3}^{2}+ \\
& 2\left(\phi_{x y} l_{3} m_{3}+\phi_{y 2} m_{3} n_{3}+\phi_{2 x} n_{3} l_{3}\right) \\
\phi_{y y^{\prime}}= & \phi_{x x} l_{2}^{2}+\phi_{y y} m_{2}^{2}+\phi_{22} n_{2}^{2}+ \\
& 2\left(\phi_{x y} l_{2} m_{2}+\phi_{y 2} m_{2} n_{2}+\phi_{2 x} n_{2} l_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& \phi x x^{\prime}= \phi x y l_{1}^{2}+\phi y y m_{1}^{2}+\phi_{22} n_{1}^{2}+ \\
& 2\left(\phi x y l_{1} m_{1}+\phi_{y 2} m_{1} n_{1}+\phi_{2 x} l_{1} n_{1}\right) \\
& \phi x^{\prime} y^{\prime}= \phi x y l_{1} l_{2}+\phi_{y y} m_{1} m_{2}+\phi_{22} n_{1} n_{2}+ \\
& \phi x y\left(l_{1} m_{2}+l_{2} m_{1}\right)+\phi_{y 2}\left(m_{1} n_{2}+m_{2} n_{1}\right)+\phi_{2 x}\left(n_{1} l_{2}+l_{1} n_{2}\right) \\
& \phi y^{\prime} z^{\prime}= \phi x x l_{2} l_{3}+\phi_{y y} m_{2} m_{3}+\phi_{22} n_{2} n_{3}+ \\
& \phi x y\left(l_{2} m_{3}+l_{3} m_{2}\right)+\phi_{2 x}\left(l_{2} n_{3}+l_{3} n_{2}\right)+\phi y 2\left(m_{2} n_{3}+m_{3} n_{2}\right) \\
& \phi z^{\prime} x^{\prime}= \phi x x l_{1} l_{3}+\phi_{y y} m_{1} m_{3}+\phi_{22} n_{1} n_{3}+ \\
& \phi x y\left(l_{1} m_{3}+l_{3} m_{1}\right)+\phi y 2\left(m_{1} n_{3}+m_{3} n_{1}\right)+\phi_{2 x}\left(n_{3} l_{1}+n_{1} l_{3}\right) \tag{36}
\end{align*}
$$

Inserting these values into Eqs.(17)-(13), using also $\mathrm{Eq} .(3)$, wo can predict $\Delta \nu, \vec{\nu}-\nu_{0}$ and $\nu_{c}-\nu_{0}$ for this particular crystal oriontation. Actually, only the value of $\phi z^{\prime} x^{\prime}$ needs to be calculated for our purpose; the additional calculation of $\bar{\nu}-\nu_{0}$ and of $\nu_{c}-\nu_{0}$ is desirable for checking purposes.* The two combinations of signs in front of $\phi x y$ and $\phi 2 y$, for example, $(+\phi x y,+\phi z y)$ and $(-\phi x y,+\phi z y)$ are tried in celculating $\Delta \nu$ from Eq.(36). The correct combination predicts the experimontrily measured $\Delta \nu$.

A summary of the methods of analysis of the experimental results Hill be appropriate in concluding this chapter. The coofficionte of Eq.(18) are dotomined by the Fourier analysis of the experimental values
*The calculation of tine second-order terr for sites which do not display it is, of course, pointless. However, such calculation in the case of other sites, whose seconci-order torn is zoasurable, serve as a reliable check on whether the axes (X, Y, Z) have been followed consistently both during the three rotations of tine crystal and during those additional moseuranzats.
of $\Delta \nu$. These Fourier coefficients are next used to determine the tensor components Ψ if with the aid of Eq.(19). The experimental values of $\left(\bar{\nu}-\nu_{0}\right)$ and $\left(\nu_{c}-\nu_{0}\right)$, if measurable, are treated sivilarly. In this way we obtain the second-order Fourier coefficients. If present, \bar{r}_{i} and r_{i} are used to identify the symmetry equivalent ∇E in the manner indicated above. If they are absent, additional measurements are made as described above. The tensor $\psi_{i j}$ is finally diagonalised using Eqs.(25)-(28) and the direction cosines of its principal axes determined using Eqs.(32) and (33).

CHAPTER III

APPARATUS AND EXPERITENTAL PROCEDURE

III. 1. Thia chapter describes briefly the n.m.r. spectroneter and ancillary equipment used in this work. A complete description of the spectrometer is given by Datars ('56).

The magnetic field was produced by a $12^{\prime \prime}$ Verian electromagnet. The magnet pole-faces measured 12^{n} in diameter and the gap between them was $5^{\prime \prime}$. Two sets of caps were availiuce which, when attached to the pole-faces, produced gaps 1 1/2n in width by $7^{\prime \prime}$ in diamater and 3^{n} in width by $7^{7 \prime}$ in dianpter. The work with the crystal at room temperature was enrried out using the $11 / 2^{n}$ gap. The 3^{n} gap was used for the work at other crystal temperatures because it afforded nore space for the cold-cell.

The magnet, energised by a stabilised power-supply, provided a field with longe and short-term stabilities of 2:100,000 and 1:100,000, rempectively, in the current range from 0.02 to 2 amperes, provided the temperature of the room was held constant. Fariations in the fleld due to temperature changes in the laboratory were compensated by manual adjustment of the current; a proton signal displayed on an oscilloscope served as a field-monitor.

A blook diagram of the n.m.r. spectrometer is shown in Fig.3. The oscillating-deteotor, similar to the Volkoff, Petch and Smellie type, consists essentially of a mareinal oscillator of the Colpitts type, a

Fig. 3. A Block Diagram of a N.M.R. Spectrometer.
radio-frequency anplifier, a detector, and a vide-band audio-frequency amplifier. The tank circuit of the zarginal oscillator consists of a aample coil, located inside the mageet gap between a pair of Helnholtz coils and a variable condenser. The frequenoy of the oscillating detector is varied by a Haydon clock-drive connected to the variable condenser through a chain of reduction gears. The frequency sweoperate mostly eaployed in this worls was $250 \mathrm{lce} . / \mathrm{sec} . / \mathrm{hr}$. The Helmholtz coils are energised by a $210 \mathrm{c} . / \mathrm{sec}$. alternating current supplied by the audiofrequency poier amplifior. Other parts of the spectrometer are: a narrow-band amplifier tumed to $210 \mathrm{c} . / \mathrm{sec} .$, a phase-sensitive detector, and a recording milliamoter. The frequency is measured with the aid of a Mollicrafter Radio model 5X-62A and a General Radio hetorodyne frequency meter and calibrator type No. 620- A .

The spectrometor functions in the following way. The Helmholtz coils modulate the external nagnetic field with an amplitude ruch smaller than the width of a n.m.r. signal (of the order of 3 gauss in crystala). The resongnce condition for the nuclei inside the sample coil, winich manifests itself as a drop of potential difference across the coil, is thus made repetitive at the modulation frequency. The signal, after radio-frequency amplification, is detected and then fed to the wide-band audio-frequency amplifier, the narrow-band audio-frequency amplifier and finally to the phase-sensitive detector which produces a d.c. sipnal approximately proportional to the first derivative of the absorption curve. The d.c. signal is plotted on the recording milliammetor. At suitable intervals frequency markers are acourately placed on the recorder chart.

The oriontation of a cryatal with respect to the external mapnetic field, Ho, has to be accurately lnom at all stagea of n. D. . . worls. An accurately calibrated anele-measuring device meets this demand. The angle-measuring device employed for the room temperature woris is slcotched in Fig. 3. . It consisted of a brass block which could bo adjusted by a set of screvs to ift tightly between the magnet pole-faceo and a calibrated dial assembly. The calibrated dial assembly could rotate in the brass block with its axis of rotation aluays held porpendisular to Ho. Tho dial was calibrated at one degree intervala and, with the aid of a magnifying flass, relative disasurements could be repeated to better then halp a degreo. Lucite crystal mounta woro, in turn, held by the dial assembly. Several lucito mounts, with shapes machined to fit the colemanite crystals in their particular orientations, were used. This arrangerent allowed accurate aliencent of the crystal. III. 2. A qualitative investigation of the B^{11} n.m.r. spectrua in colemanite precaded the quentitative intestigation. The purpose of this investigation was to establish the maximum number of resonance Iines ond the froquency region in which they occur for a given Ho. A number of crystals and cleavago fregronte of coleanaito from Inyo and San Bernardino Counties in California were used in this particular study, Colemanite has a perfect cleavage plane parallel to the (010) plane and consequently the crystallographic b-axis is woll defined. In addition, several available crystals had an edge defining the cryotallow graphic c-axis. Several of these crystals were oriented on their mounto with these crystallographic azes in turn parallel to the rotation axis of
the calibratod dial essembly, and their B^{il} nonor. signala investigated. From most of theso samplos, the simals wore foun to bery broed. Ordinnrily this wowld not be very serious, but, in the caso of coleranite, the beparation betveen many linsa, which were later identified as belonging to K and L sites, were unusually small, so that their ezcessivo breadth made their resolution inpossible over a wide range of crystsil orientations. Also some lines, later identified as belonging to the M sitc, vere so broadened at cortain orystal oriontations thet it was not possible to deteot them. Finally, a cleavage fragaent from San Rernerdino County, which, fudging from its outer apparance did not differ marledly fron other ammples already tried unsuccessfully, geve the desired narrov aienals which were detectable at all crystal positions. Since this particular crystal was used throigghout the present work we may note its physical appearance. It was a transparent cleavage frasient, meacuring $11 / 2 \mathrm{~cm} . \times 1 \mathrm{~cm} . \times 2 \mathrm{~cm}$. after it had been ground. In addition to a perfect clearage which defined the (010) plane, it had a 2 can. edge Which defined the c-crystallographic axis. The crystallographic axse were verified with the aid of X-rays. Because of these oxternal cryatel features the set of (X, Y, Z) axes was chosen as follows the $\vec{b} \times \vec{c}$ crystal direction defined the X-axis, the \vec{b} direction the \bar{Y}-axis and the $\overrightarrow{0} d i r e c-$ tion the Z-axis. Henceforth ve shall use X, Y, Z to denote these oryetal directions.

For the syateratio investigation, the axes X, Y, Z were held in turn acourately parallel to the axis of rotation of the calibratod dial asseably and the E^{11} n.m.r. spactre wero rocorded at many cryatal orientations. The orientation for which the X-axis was along the rotation
axis and the \bar{Y}-aris along the direction of Ho is marked $\theta_{x}=0$. It was checked egainst the cross-orer points of the lines denoted by $y_{s_{1}, 3}^{M_{1,3}}$ and $\nu_{S_{1}}^{M_{2,4}}$, $\nu_{S_{2}}^{M_{6,3}}$ and $V_{S_{2}}^{M_{2,4}}$ in Fig.6, Chapter IV. These cross-over points occurred exactly at the dial reading $0^{\circ}, 90^{\circ}, 130^{\circ}$, and 270°. A similar procedure vas uscd when the crystal had its Z -exis along the rotation axis. The $\theta_{z}=0^{\circ}$ orientetion was maried by the cross-over points of the same lines as show in Fig.9, Chapter 7. . The procedure used in aligning the crystal with its Y-axis parallel to the rotation axis differed somewhat from the above. This difference arose from the fact that in this case a reduced spoctrum was obtained. Accoraingly, the crystal aligment for the Y-rotation was checked by comparing the spectra obtained at $\theta_{\bar{J}}=0$ and 90° with those obtained at $\theta_{x}=90^{\circ}$ and $\theta_{z}=0^{\circ}$, respectivoly. The reduced spectrun was obtained in the range $\theta_{y}=0$ to $\theta_{y}=180^{\circ}$. In the range $\theta_{y}=180^{\circ}$ to $\theta_{y}=360^{\circ}$, however, amall splittings of the lines marked by $\nu_{S_{1}}^{M}$ and $\nu_{S_{L}}^{M}$ in Fig. 8 , Chapter IV, oocurred. Normally such small splittings would have been disregarded as arising from a slight misalignment of a crystal. In our case, howevar, sicne there was a controversy regarding the symetry properties of colemanite, it was essential to know whether auch splittings were due simply to a misalignment or due to an inherent property of colemanite, or both. When the crystal was re-examined, using a goniometer arc set in the crystal mount, the aplitting of these lines no longer appoared and therefore, this proved that the splittings were due to misnlignment. The B^{11} n.m.r. spectra wero recorded at 15° intervals in the range 0° - 360° for each of the three crystal rotations. The spactra

Fig.4. A Cross-Section of the "Cold-Cell."
were very complicated, and it was difficult to sort out the linas. It was therofore nocossary to re-examine the spectra over some regions at smaller intervals ois from 2° to 5° with hithor recolution. If two particular lines belonging to different sites overlapped, their frequoncies wore determined by interpolation. Sore lines belonging to K and L sites ovorlapped throughout the entire Z-rotation. Tise experinental frequencies used in the complete analysis of the spectra were obtained by talizing the avcrages botveen tho values nasaured at θ° and $180^{\circ}+\theta^{\circ}$.
III. 3. Since it was planned to study colomanito at temaratures other than that of the laboretory, it was necessery to construct the apparatus which is described belour. Fig. 4 shous the cross-section of the "coldcell" which, for all intents and purposes, replaced the calibrated dial assembly used for the room temperature work. Ths rotator-mount assombly consiats of a teflon rad, D, with calibrated circular scalc, A, at ono end and a crystal mount at the other ond. The circular scale ic atteched to a perspex disc, B, which, by meane of a pair of scraws, C, is attachad to the teflion rod. The cryatal rount consists of a Dnicam singlo crystal gonionoter arc set incorporating two mutually perpondicular are sets, G and F, and a platform of brass and lucito, H, to which a crystal can be glued. One end of the crystal rount fits tiehtly into the socloot provided for it in the teflon rod and is secured in position by zeans of a pin, E. The sample coil, it, which is wound around the crystal, is connected to the oscillating dotector via two copper wires, P, oinbedded in the teflon rod, a pair of amphenol connectors, $H_{\text {, }}$ and two coariol cablos.

This rotator-mount assembly is received into the brass block, J, fith the teflon rod Pitting tightly into a carefully machined and polished cyline drical hole, and with the circular acale fittine into a soclet provided for it in the brass disc, K. i also carried a circular verniare rhe brass block, which is expanded by means of two screws, fits tifhtly between the magnet pole-faces so that the axis of rotation of the rotatormant assembly is accurately perpendicular to the nametic field. The cylinder, L, is attached to the brass block by means of a screw-on cap, M. The inside of the cylinder is lined with teflon. L also carries an inlet and an outiet pipe which are bent in the manner indicated in Fig.4. The apparatus was assembled as shom and was randered air-tight by a systen of 0 -rings. The use of the expensive tefilon was dictated by the fect that it has nearly tho sane themsel expansion coefficient as brass at low temperatures and beceuse no Inbrication is necossary on vell polished metal-tefion contacts.

The cold-cell was cooled by a strean of cold, dry air which vac circulated through the cell and a heat oxchanger by means of a vacrum purp and compressor. The heat exchenger consisted of threo copper coils connected in series. Ono terminal of the series vas connected to the compressor-end of a "Speedivac Combined Compressor and Vacum Punp," model PL3/4, manufactured by Edvards High Vacunm Ltd., whilo the other terminal was joined to the cold-cell by means of the copper tube, T, of Fig. 4* The copper tubo, J, on the same diagram, was connected to the vacuumend of the plup. IThe three copper colls forming the series were designated as follows the one nearest to the fump was
designated the first coil; the next one, the drying coil; and the last onc, the cooling coil. The first coil was imersed in a cold water bath and served to precool the hot air issuing from the pump. The drying coil served essentially as a trap for oil and moisture which had joined the strearn of air during its passage through the pump. The cooling coil served to bring the temperature of the air stream to that of the refrigerant to naintain the crystal temperature at $-40^{\circ} \mathrm{C}$. The latter two coils were both imneraed in an acetone-dry-ice bath. To attain crystal temperatures in the range -40° to $-136^{\circ} \mathrm{C}$. the drying 0011 and the cooling coil were immersed in dry-ice and liquid air, respectively. For other temperature ranges the drying coil was omitted.

The $60^{\circ} \mathrm{C}$. to $25^{\circ} \mathrm{C}$. range was produced by controlled heating of an ethylene glycol bath, whereas the range $25^{\circ} \mathrm{C}$. to $-40^{\circ} \mathrm{C}$. was produced by cooling the bath using a "Blue M Electric Portable Cooling Unit," model PCC4. For fine control of the crystal temperatures the speed of pumping of the air strean was varied or the air stream was allowed to impinge upon a heated metal surface before it entered the cold-cell. The metal tubes connecting the cold-cell to the cooling coil were thermally insulated either with styrofoam sheaths or glasswool jackets.

The temperaiures of the crystal were reasured by means of a standardised copper-constantan thermocouple. One junction of the thermocouple was always kept in an ice-water mixture, whoreas the other was inserted into the cold-cell until it touched the crystal. The thermal e.m.f. was measured by neans of a "Thermocouple Potentioneter,"
type P4, manufactured by the Croydon Precision Instrument Co., Ltd. The potentiometer gave consistent readings to 2 microvolts. The thermocouple was standardised by measuring, with respect to the ice point, the thermal e.m.f. at tro temperatures, the solid CO_{2} point and the liquid O_{2} point. The deviation of the thermal e.m.f., when compared with the Adam's Scale,* was assumed to be of the form $\triangle E=a E+b E^{2}$, where E is the meabured thermal e.m.f., a and b are the constants determined by standardisation.
III. 4. The three rotations with the crystal at $-40^{\circ} \mathrm{C}$. vere carried out using the same crystal and the same technique as that described in Section III.2. The crystal was first aligned at room temperature using the arc set. In this connection it should be mentioned that the arcs were oriented so that the axis of rotation of one, arc (1), was parallel to the 0° - 180° line on the circular scale while that of the other arc, arc (2), was parallel to the $90^{\circ}-270^{\circ}$ line. Let us consider the procedure for aligning the crystal for the X-rotation. The crystal was glued with its X-axis approximately parallol to the axis of rotation of the rotator-mount assembly and its I -axis approximately parallel to the axis of arc (1). The Y-axis was then brought accurately perpendicular to Ho by rotating the rotator-mount assembly and noting the exact reading of the circular scale then the $\dot{\nu}_{S_{1}}^{M_{1 / 3}}$ and $\dot{\nu}_{S_{1}}^{M / 2,4}, \nu_{S_{2}}^{M_{1 / 3}}$ and $\nu_{S_{2}}^{M 2,+}$ resonance lines crossed. With exactly the same reading on the circular scale, the axis of arc (2) was varicd until X - and Z-axes were, respectively, exactly

[^0]perpendicular and parallel to Ho. This occurred when the separation of the lines $\nu_{s_{1}}^{M}$ and $\nu_{s_{2}}^{M}$ was the same as that obtained with the orientation $\theta_{y}=0$ and the mount described in the previous section. The procedure ueed in aligaing the crystal for the z-rotation was sinilar. The orientation of the crystal for the Y-rotation consisted simply of manipulating the two arcs until no spliting of either $\nu_{s_{1}}^{M}$ or $\nu_{s_{2}}^{M}$ Iine occurred at any crystal position.

The spectra were recorded at least 90 minutes after the cooling apparatus had been switched on. This procedure was necessary in order to allow the crystal to attain the temperature of the cold-cell. Owing to their very conplicated rotation pattern the spectra obtained in the X - and Z-rotations fere recorded at 5° intervals in the range $0^{\circ}=90^{\circ}$ which was sufficient to establish the pattern. In its other respects the procedure used at $-40^{\circ} \mathrm{C}$. was similar to that used at room tomperature.

The investigation of the nomor. spectra as a function of temperature was carried out with selected crystal orientations which gave messurable splitting of all the lines at $-40^{\circ} \mathrm{C}$. One crystal orientation would have been preferable because it would have eliminated the misalignment error. Since no single crystal position was found at which the separation of all the lines was measurable, the experiment had to be carried out with two crystal positions. They are defined in Section IV.6.

The influence of a static electric field upon the splitting of the innes was also investigated. An electric field of 2100 volts/am. was applied to the orystal in the following manner. The cleavago faces, (010) and (OIO), were painted with "aquadag," a suspension of
graphite in water, which served as electrodes. They were connected by neans of susall gauge copper wire to a 2100 volt pover tupply. After the field had been applied the crystal was cooled to $-10^{\circ} \mathrm{C}$. It vas necessary to awitch the field off while the spectrun wes actually being recorded aince the arrangement othervise cawsed an enormons increase in the spectrometer noise. This procedure was repeated uith the field direction roversed. Ho change in tho spectrum was observed.
(a)

Fig. 5. Chart Recordings of the $\frac{11}{5}$ N.H.R. Spectrum in Colemanite at Roon Temperaturo Showing (a) the Observed Maximua Nunber of Lines, (b) the Obsorved Maximum Number of Lines in the Reduced Spectrinn (for $\theta_{1}=150^{\circ}$). The Orientation of the Crystal in the Case (a) is Explained in Table XI $\left(\alpha=80^{\circ}, \beta=45^{\circ}\right)$.

CHAPTER IV

PESUITS

IV. 1. This chapter describes the complete analysis of the B^{11} nuclear magnetic resonance spectrum in colemanite at room temperature and at $-40^{\circ} \mathrm{C}$. It also includes the reaults of the investigation of a selected set of resonance 1 ines over the tomperature range $52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$. The number of lines observed and the dependence of their frea quencies on the orientation of the crystal with respect to the external nagnetic field, Ho, at both temperatures, are explained by the discussions of Chapters I and II. It is assumed, in partioular, that the boron nuclei occur at several sites per unit cell and that the resulting spectrum is a superposition of the simple 3-1ine spectra due to B^{11} nucloi at each type of site.
IV. 2. At room temperature, the observations consisted of recording the n.m.r. spectrum of B^{11} in colemanite over a wide frequency range as the crystal was rotated in turn about its \bar{x}-axis $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}$ - cryatallograpicic
 axis). Two sample chart records are reproducad in Figs.5(a) and (b), where the frequency acale is roughly $207 \mathrm{kc} /$ /sec. per chari division. Pig.5(a) shows the maximum number of Ines observed at roon temperaturo, which is 15. The crystal orientation in this case is explained in Table XI. Fig.5(b) represents a reducod spectrun at the crystal orientation for which $\theta_{y}=150^{\circ}$. The total number of lines in this case is only 8.

TADEE I
Exporinentally lionalurad Values of tho B^{31} Resonanco Fronnoncion
in lic./Soc. for tho X-Rotation of Colemanito nt Room Tomporature

0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	
		10.748	10.819	11.138	11.586		11.586	11.134	10.824	10.752		
	11.947	11.914	11.904	11.910	11.926		11.459	11.389	11.591		11.592	11.390
	11.347	11.826	11.831	11.923	11.929	11.934		11.461	11.776	10.950		
11.941	11.941	11.959	11.942	11.935	11.939	11.931	11.937	11.935	11.940	11.959	11.942	
11.969	11.956	11.963	11.969	11.949	11.945	11.953	11.945	11.951	11.971	11.962	11.956	
11.974	11.959	11.967	11.976	11.965	11.961	11.968	11.960	11.966	11.976	11.967	11.960	
11.979	11.980	11.980	11.980	11.980	11.981	11.980	11.980	11.930	11.981	11.979	11.930	
11.989	11.986	12.000	11.985	11.996	12.004	11.983	12.004	11.997	11.985	12.000	11.986	
11.994	12.001	12.003	11.997	12.006	12.016	11.995	12.017	12.006	11.998	12.003	12.002	
12.697	12.005	12.033	12.020	12.028	12.032	12.032	12.032	12.029	12.022	12.033	12.006	
	12.024	12.053	12.040	12.035	12.037	12.056	12.037	12.035	12.039	12.055	12.027	
	12.232	12.247	12.062	12.055	12.409		12.412	12.058	12.065	12.248	12.232	
	13.056	13.222	12.517	12.577	12.466		12.467	12.576	12.516	13.219	13.052	

Fig. 6. The Rotation Pattern of all the $\mathrm{B}^{l l}$ Lines in Colemanite at Roor Termperature for the Rotation About the X-Axis.

Fig. 7. The Rotation Pattern of the $\mathrm{B}^{1 l}$ Lines Depending Strongly Upon $20 x$ in Colemanite at Room Temperature.

Fig. 9. The Rotation Pattern of all the $B^{1 l}$ Lines in Colemanite at Room Temperature for the Rotation about the 2-Axis.

The frequencies of the lines, except the ones marked by V_{0} in Fige.5(a) and (b), depended upon the angular orientation of the crystal. Their relative intensities, however, did not vary appreciably. The line widthe, measured between the two maxima of each line, were of the order of $5 \mathrm{kc} . / \mathrm{sec}$. The angular dependence of these lines in the X-, Y-, and 2-rotations are reproduced in Figs.6, 7, 8, and 9. A chart of the type show in Fig. 5 was obtained for each crystal orientation on these figures and each point represents a line on the chart. The numerical data for Figs.6, 7, 8, and 9 are listed in Tables I, II, and III.

A detailed inspection of Figa.6, 7, 9, and 5(a) reveals that the lines can be conveniently grouped into four groups on the basis of their angular dependence. In the first group there are two resonance lines marked by $y_{c}^{M / 3}$ and $\nu_{c}^{M 2 / 4}$. These two lines always remain close in frequency to ν_{0}. Their dependence on θ contains an appreciable 4θ componont, in addition to a constant component and a 2θ component. On the basis of the discussion in Chapter II, these two lines must be central frequencies belonging to at least two different sites in the unit cell and they arise from transitions between the energy levels which contain an appreciable second-order term. Hence, these two lines are central frequencies belonging to two sites at which the quadrupole interaction is fairly strong. In the second group there are four lines
 depend strongly on 20 and are nearly symmetrically situated with respect to ν_{0}. Hence, they are satellite frequencies belonging to at least
two sites and they arise from transitions batucen energy levels which are strongly perturbed by the quadrupole interaction. In the third Group there are eight lines (four pairs), marked by $\nu_{S_{1}}^{h / 3}, \nu_{s_{2}}^{4 / 3}$ $\nu_{S_{1}}^{L_{1,4}}, \nu_{S_{2}}^{L_{2,4}}, \nu_{S_{1}}^{K_{1,3}}, \nu_{S_{2}}^{K_{1,3}}, \nu_{S_{1}}^{K_{1,4}}$ and $\nu_{S_{2}}^{k_{1,4}}$, Whic! depend almost entirely on 2θ and are symmetrically located about Vo. We can say that they are satellite frequencics beionging to at least four sites which arise from transitions between tho energu levels uhich are weakly perturbed by the quadmpole interaction. Lastiy, there 1s one line, marked by ν_{0}, which stands out by its lack of angular dependence and its great intensity. In order to assign this line to a particminr transition, or transitions, it should be noted that tise contra? frequencics for the four sites at which the quadrupole interactions are weak have not been accounted for yet. These transitions should all occur at frequencies almost exactiy equal to ν_{0}, the unperturbed frequency, because the expressions for their respective energy levels are expected to contain negligible second-order terms. The Iine, marked V_{0}, satisfies these conditions, hence, it is a composite Iine consisting of four separate, but inresolved, signals. Summarising, the first two groups of six lines in all must belong to th:e same two sites, while the next two groups of twelve lines in all, the third and fourth, mast belong to additional four sites. Hence, the n.m.r. spectrum of B^{11} in colemanite at room temperature contains 18 separate signals, not all of which can be resolved, and it arises from six non-identical B^{11} sites whose $\tilde{\nabla^{E}}{ }^{1} s$ differ in some respects.

Our next aim is to establish the point group of colemanite at room temperature. On the basis of chenical data and the unit cell.
dimensions, the formula for colemanite is $4 \mathrm{CaO} \cdot 6 \mathrm{~B}_{2} \mathrm{O}_{3} 1 \mathrm{OH}_{2} \mathrm{O}$. Hence, the unit cell of colemanite contains 12 boron sites. It will be recalled from Section II. 2 that the VE's at two sites rolated by a centre of symetry are identical from the point of view of the theory dealt with in Chapter II. Hence, colemanite must have a centrosymatric structure since of the 12 borons present in the unit cell we have found that only 6 have non-identical $\tilde{E} \mathrm{I}_{\mathrm{s}}$. Let us now refer to Figs.6, 7, and 9. It can be seen that the rotation pattern is symetrical with respect to $\theta=0^{\circ}$ and $\theta=90^{\circ}$ in the X - and Z-rotations, and that the reduced spectra occur at the following positions: $\theta_{\mathrm{x}}=0^{\circ}$ and $\theta_{\mathrm{z}}=90^{\circ}$ (Y parallel to Ho), $\theta_{x}=90^{\circ}$ and $\theta_{z}=0^{\circ}$ (Y perpendicular to Ho). Furthermore, a reduced spectrum results for the complete Y-rotation. The Y-axis must therefore be parallel to a two-fold rotation axis or to normal to a mirror plane or to both. However, the combinations, mirror plane plus centre of symetry twomfold rotation axis plus centre of symetry mirror plane plus two-fold rotation axis
are identical, all three being denoted by the point group symbol $2 / \mathrm{m}$. Actually, anticipating our low-temperature results, the presence of 12 boron sites in the unit cell of colemanite, and hence of the centre of symnetry at room temperature, will be established by the analysis of n.m.r. speotra alone. We shall return to this point later. The B^{Il} aites were classified on the basis that colemanite at room temperature possesses point group $2 / \mathrm{m}$. The three non-equivalent groups of sites were named by capital letters K, L, and M. Each group

TABTE IV
Tho Soparations, in KC./Sec., of the $B^{l l}$ Satellite Lines Belonping to the K Sitos in Colomanite at Room Tomperature. The Siens Are Rel itive.

Rotation	θ°	\bigcirc	15	30	45	60	75	90	105	120	135	150	165
X	$K_{1,3}$	15	-49	-102	-117	-93	-43	27	100	148	164	145	87
	K 2,4	15	83	139	158	145	98	27	-44	-94	-116	-103	-50
I	K	22	-131	-253	-307	-281	-18/4	-38	117	235	292	268	167
z	$K_{1,3}$	-36	-142	-208	-222	-181	-96	15	119	181	201	155	67
	$K_{2,4}$	-36	71	155	198	181	117	25	-91	-181	-221	-207	-139

TABIE V
The Separationge in Ko./Sece, of tho B ${ }^{11}$ Satollito Linos Bolonging to the I Sitos in Colomanite at Room Tempersture. The Sims Are Rolative.

Rotation	θ°	0	15	30	45	60	75	90105	120	135	150	165
X	L, 3	25	-6	-44	-78	-106	-111	-101-72	-31	9	38	42
	L2,4	25	42	37	9	-31	-71	-101-113	-105	-82	-44	-6
I	L	-96	-18	57	118	143	124	$72-5$	-83	-142	-165	-153
z	L,3	72	-61	-155	-199	-178	-96	25155	251	295	27	189
	L2,4	72	194	276	294	251	153	25-91	-181	-201	-155	-59

TABLE VI

The Soparations, in Kc./Sec., of the B ${ }^{\text {Il }}$ Satellite Lines Bolonging to the M Sites in Colemanite at
Room Tomporature. Tho Signs Are Relative.

g ¢ + + 0 0	θ^{0}	0	15	30	45	60	75	90	105	120	135	150	165
X	$M_{1,3}$	1350	2109	2474	2342	1752	880	-73	-820	-1186	-1055	-472	405
	M2,4	1350	406	-474	-1058	-1188	-818	-73	881	1758	2333	2467	2102
7	Mi,	-70	-26	-158	-427	-767	-1080	-1286	-1326	-1195	-921	-584	-268
Z	$M_{1,3}$	-1287	-1307	-975	-370	338	971	1348	1371	1036	429	-270	-909
	$M_{2,4}$	-1287	-903	-273	442	1045	1377	1348	970	339	-369	-974	-1312

Tho Senarationg. In Kc./Seo., of the Bll Control Inine from the Unporturbod Fregucncy. $V_{0}=12.981$. Mc./Soce. for the M Sitos in Colomanite at Roon Tomporatiure

TABIE VIII

Tho Soporationa, Ho./Sec.e of the $B^{\text {Il }}$ Contre of Grayity of tho Sntoplito I.inea from the Unporturbed Frequenoy, $V_{0}=11.981 \mathrm{Mc} / \mathrm{Soc.e}^{\text {. for the M Sites in Colemanito at Room Tomporature. }}$

Rotation	θ^{0}	0	15	30	1.5	60	75	90	105	120	135	150	165
X	$M_{1,3}$	42	22	5	10	34	46	40	22	3	9	32	50
	-												
	M2,4	42	49	30	8	3	20	40	47	33	11	6	21
Y	M	40	44	40	37	27	15	5	1	δ	19	29	36
2	$M_{1,3}$	2	1	18	36	50	49	43	42	48	51	40	20
	M $\mathbf{1 2}$	2	21	40	49		25	43	48	49	37	18	0

of these aites consists of four symetry-equivalent sites winich were denoted by the subscripts 1, 2, 3, and 4, as shown in Pig.l. Thus K_{1} and K_{2} are related by the two-fold symmetry axds and so are K_{3} and K_{4}. Since K_{1} and K_{3} (or K_{2} and K_{4}) are related by the centre of symmetry, $\tilde{\nabla E}$ at th:sse sites are identical; hence, at room tempereture, these two sites are simply denoted by $K_{1,3}$ (or $K_{2,4}$). The L and M sites are similarly denoted. The threo lines arising froin the transitions $a= \pm 3 / 2 \leftrightarrow \pm 1 / 2$ and $m= \pm I / 2 \leftrightarrow \mp 1 / 2$ uere denoted by $\left(\nu_{s_{1}}, \nu_{s_{2}}\right)$ and ν_{c}, respectivelj! the subscripts s_{1} and s_{2} wero chosen so that $\Delta \nu=\nu_{s_{2}}-\nu_{s_{1}}$ was positive. The site of their oricin was indicated by a suporscript, thus $\nu_{s_{1}}^{M / 3}, \nu_{S_{2}}^{M / 1,3}, \nu_{c}^{M / 13}$. Each lino occurring in the reduced spectiun should be denoted by the superscript $P_{1,2,3,4}(P=K, L, M)$ but, for brevity, it was denotod simply by the surersaript P. The group of Ines ν_{c}^{k}, ν_{c}^{L} in the Y-rotation and $\nu_{c}^{K_{1,3}}, \nu_{e}^{K_{2,4}}$, $\nu_{c}^{L / 3}, \nu_{c}^{L 2,4}$ in the X - and Z-rotation and in Fig.5(a) ware denoted simply by ν_{0}, since their frequencies were very close to $\nu_{0}=(H \mu) /\left(I_{\mathrm{h}}\right)$.
IV. 3. For the quantitative analysis of the angular dependence of the frequencies, the separntions of the satellite frequencies ν_{s}, and $\nu_{S_{2}}$ have bsen deduced from the Tables I - III for each oite, and aro listed in Tables IV - VI. The rolative signs havo benn chosen so that b of Eq.(27) is positive. The experimental valuos of $\nu_{c}^{M i, j}-\nu_{0}$ and $\left(\nu_{S_{1}}^{M i, j}+\nu_{S_{2}}^{M i, j}\right) / 2-\nu_{0}$, alao doduced froa Tables I - III, are listed in Tables VII - VIII, respectivoly. The corrosponding experimental values for tho aftes K and L have not boen considered since they aro negligibly salall.

TABIE IX

Emarimonial Fourier Coofficionts, in Ke./Sez.e for Bll sites in in

Colemanite at Room Temperature

Rotation	Site	a	b	c		
X	H1,3	642.17	711.03	1699.08		
	$\mathrm{H}_{2,4}$	640.50	708.00	-1697.77		
I	${ }_{1} 1,2,3,4$	-675.67	609.17	246.27		
z	$H_{1} 3$	31.25	-1315.30	-402.17		
	$H_{2,4}$	33.50	-1316.87	406.07		
		n	p	u	r	∇
Z	${ }^{1} 1,3$	-15.583	-6.230	-18.333	-14.033	18.767
	${ }^{12} 2$	-15.500	-6.117	-18.833	13.250	-19.033
Y	${ }^{11} 1,2,3,4$	-5.830	-24.870	2.500	12.750	-2.020
2	${ }^{i 2} 1,3$	-22.167	30.400	13.167	9.100	8.083
	${ }^{-1} 2$	-22.333	30.667	12.750	-9.433	-8.217
		$\bar{\square}$	$\overline{\mathrm{p}}$	\bar{u}	$\overline{\mathbf{r}}$	$\bar{\nabla}$
I	H,3	26.250	0.917	16.000	0.477	-15.867
	${ }^{2} 2,4$	25.833	0.767	15.917	-1.283	15.733
Y	H1,2,3,4	25.093	17.900	-2.500	9.167	-1.883
z	${ }^{11} 103$	33.250	-20.133	-10.750	-6.300	-7.367
	$\mathrm{H}_{2,4}$	33.417	-20.567	-10.333	6.683	6.650

TABLIE X

Exoerimental Fourier Goofficients in Kc./Soces of the
B^{11} Satelife Ifnes for the K and I_{1} sites in Colomanite
at Roon Tomperature

Rotation	Site	a	b	c
	$K_{1,3}$	23.50	-5.75	-140.6
X	$\mathrm{K}_{2,4}$	21.52	-6.28	138.08
I	$\mathrm{K}_{1,2,3,4}$	-7.75	29.95	-299.33
	$\mathrm{~K}_{1,3}$	-11.80	-26.98	-210.48
	$\mathrm{~K}_{2,4}$	-11.50	-26.40	209.17
X	$\mathrm{I}_{1,3}$	-36.25	63.53	-44.42
	$\mathrm{~L}_{2,4}$	-36.67	63.50	45.00
I	$\mathrm{I}_{1,2,3,4}$	-12.33	-83.85	130.00
Z	$\mathrm{L}_{1,3}$	48.53	22.66	-247.48
	$\mathrm{~L}_{2,4}$	48.17	22.62	248.48

A Comparison of the Values of $\Delta \nu$ Predicted for Specified Crystal Orientations Assuming Possible Sign Combinations of C_{z} and C_{x}, with the Experimentally Keasured Values of $\Delta \nu$. ${ }^{\prime}$

In order to determine the coefficients occurring in Eqse(18), (20), and (22), a harmonic analysis of the experimental results listed in Tables IV - VIII has been carried out using the rethod of 12-roint analysis by Thittaker and Robinson (43). The values of these coefficients for site II aro listed in Table IX; thoso for sites \bar{I} and I are Ifsted in Table X.

The problem of deteraining the relative signs of tie offdiagonal components of two $\overline{\nabla E}{ }^{\prime} \mathrm{s}$, related by a two-fold symintry axis, was discursed at length in Section II.5. The citos $\mathrm{H}_{2,3}$ and $\mathrm{K}_{2,4}$ can be dealt with in a straightforward way since they possess an appreoiable second-order teriu. Accordingly, the inspsction of the sign in front of \bar{r}_{1} in Table IX, reveals that, for $\mathrm{N}_{1}, 3, \overline{\mathrm{r}}_{\mathrm{x}}$ is positive, $\overline{\mathrm{r}}_{\mathrm{y}}$ is positive, $\bar{\Gamma}_{z}$ is negative; for $\mathrm{M}_{2,4}, \overline{\mathrm{r}}_{\mathrm{x}}$ is negative, $\overline{\mathrm{r}}_{\mathrm{y}}$ is positive, and \bar{r}_{g} is positive. It follows from Eqs.(21) that the signs of C_{i} are: $+\mathrm{C}_{\mathrm{x}},+\mathrm{C}_{\mathrm{y}},-\mathrm{C}_{\mathrm{z}}$ for $\mathrm{M}_{1,3}$, and $-\mathrm{C}_{\mathrm{x}},+\mathrm{C}_{\mathrm{y}}$, and $+\mathrm{C}_{\mathrm{z}}$ for $\mathrm{H}_{2,4^{\circ}}$. The offdiagonal tensor components follow from these values, using Eqg. (19). The remaining two non-equivalent sites, Z and L, have to be doalt with by the alternative method described in Chapter II. Table ZI Iists the values of $\Delta \nu$ celculated by means of Eqs.(36), using the two possible combinations of aigns of C_{A} and C_{y}. The experimental values of $\Delta \nu$ are listed in the last colum. As can be seen, the following combination of aigns predicts the experimentel results: $C_{z},-C_{z}$ for $\mathrm{K}_{1,3} ;+\mathrm{C}_{x^{\prime}}+\mathrm{C}_{\mathrm{z}}$ for $\mathrm{K}_{2,4} ;-\mathrm{C}_{\mathrm{x}},-\mathrm{C}_{\mathrm{z}}$ for $\mathrm{L}_{1,}$, $;$ and $+\mathrm{C}_{\mathrm{x}}$ + $+\mathrm{C}_{2}$ for $\mathrm{I}_{2,4 \text { " }}$ Table XI also liats the $\mathrm{M}_{1,2}$ and $\mathrm{iin}_{2,4}$ sites. The arreonent botweon the theoretically predicted and the experimental values of $\Delta \nu$ is poor for

Exporirental Yalues of the Tonsor Components Yile in Kc./Sec.,
for all Bil Sitos in Colemanito at Room Tomperature.

M sites because the M sites reflect a misalignment error much more strongly than the K and L sites. However, the agreement for K and L sites is very good.

Using the vaiues of a_{1}, b_{1}, and c_{1} listed in Tables IX and $X_{\text {, }}$ and Eqs. (19), the tensor components $\psi_{1 j}$ may now be calculated. They are listed in Table XII. The values of ψ_{11} deduced from a_{x} and b_{x} for the K and I sites, though, have not been used in the averaging process because these coefficients carry a large experimental error. This error arises chiefly from very small separations betreen the satellite lines in the X-rotation, as compared with the other two rotations. The average values listed in Table XII for each nuclear site have been used in diagonalisation calculations, using Eqs.(25)-(29). The resulting values of the coupling constants and the asymretry parameters are listed in the first and the third colums, respectively, in Table XXY. The estimated experimental error is included. The direction cosines of the principal axes (x, y, E) of ∇E, with reapect to (X, Y, Z) axes, have been calculated with the aid of Eqs. (32) and (33), and are listed in Table XXVI for all the sites. The signs are relative.
IV. 4. At $-40^{\circ} \mathrm{C}$., as at room temperature, the observation of the apectrum congisted of recording the $n . m . r$. spectrum of B^{11} over a wide frequency range as the crystal of colemanite was rotated in turn about the three axes (X, Y, Z) defined in Section III.2. Two sample chart recordings are reproduced in Pigs. $10(a)$ and (b), with the frequency scales roughly 71 kc./sec. per ohart division and $138 \mathrm{kc} / \mathrm{sec}$. per chart division, respectively. The spectrum in Fig.10(a) corresponds

TABIE XIII

Exporimontally- Moasured Valuos of tho Bll Rosonance Frequencios
In 2sc./Scc. for the x-Rotation of Colemanite at $-40^{\circ} \mathrm{C}$.

0°	$15^{\circ} \quad 30^{\circ}$	45°	60°	75°	90°	105°	$120{ }^{\circ}$	$135{ }^{\circ}$	150°	165°
		7.814						7.815		7.957
	7.953	7.848					8.138	7.849	7.744	7.970
	7.9677 .747	8.435	8.139				8.173	8.436	7.760	8.817
8.346 8.383	8.8137 .763 8.8668 .764	8.497 8.896	3.174 8.366	8.581 8.597		8.585 8.601	8.1765	8.494	8.757	3.8172
8.931	8.9338 .825	8.914	8.420	8.607	8.929	8.615	8.409	8.898	8.818	8.934
8.933	8.9468 .908	8.937	8.906	8.629	8.934	8.632	8.904	8.915	8.906	8.951
8.966	8.9588 .926	8.942	8.919	8.924	8.935	8.926	8.916	8.936	8.926	59
8.974	8.9628 .943	8.961	8.924	8.929	8.943	8.931	8.937	8.969	8.955	8.965
8.975	8.9688 .954	8.972	8.943	8.933	8.951	8.936	8.950	8.978	8.963	8.972
8.978	8.9748 .967	8.979	8.955	8.951	8.964	8.951	8.968	8.981	8.968	8.978
8.982	8.9788 .973	8.981	8.972	8.973	8.979	8.973	8.984	8.933	3.983	8.983
8.984	8.9848 .984	8.984	8.983	8.982	8.983	8.984	9.000	8.985	8.994	8.988
8.987	8.9908 .995	8.988	8.999	8.990	8.984	8.992	9.017	8.988	8.999	8.994
8.990	8.9958 .999	8.990	9.016	9.015	8.995	9.019	9.028	9.007	9.018	9.000
8.991	8.9999 .017	9.008	9.027	9.037	9.007	9.036	9.045	9.013	9.025	9.005
8.994	9.0069 .028	9.014	9.044	9.043	9.010	9.047	9.054	9.033	9.043	9.012
9.001	9.0139 .042	9.030	9.054	9.414	9.033	9.410	9.061	9.056	9.066	9.031
9.002	9.0339 .063	9.036	9.066	9.439	9.039	9.434	9.556	9.074	9.231	9.227
9.703	9.2339 .227	9.056	9.558	9.473	9.079	9.465	9.601	9.495	9.293	9.268
9.733	9.2819 .288	9.078	9.602	9.494	9.084	9.487	9.881	9.552	10.218	9.074
	10.06610.218	9.484	9.863				9.917	10.152	10.236	
	10.234	9.549	9.920					10.180		
		$\begin{aligned} & 10.152 \\ & 10.181 \end{aligned}$								

TARJ X XV
Exnerimentolly Measured Values of tho Bll Resonance Prequencige
In hoa/Soc. for the Z-Rotntion of Colomanite nt $-40^{\circ} \mathrm{C}$.

0°	15°	30°	45°	60°	75°	90°	105°	120°	$135{ }^{\circ}$	150°	265°
		8.513									
		8.547	8.813						8.813		
		8.833	8.824						8.828	8.517	
	8.319	8.866	8.849	8.516			8.334	8.512	8.856	8.547	8.321
	8.354	8.882	8.853	8.550	8.334		8.378	8.554	8.857	8.833	8.354
	8.554	8.884	8.860	8.835	8.382		8.547	8.836	8.858	8.862 8.881	8.552 8.559
8.329	8.559	8.885	8.873	8.873	8.552	8.345	8.568	8.868 8.872	8.872 8.875	8.881 8.882	8.559 8.885
8.355	8.885	8.887	8.876	8.874	3.569	8.383	8.893	8.872	8.875	8.882	8.885
8.947	8.894	8.899	8.882	8.882	8.893	8.934	8.923	8.882	8.878	8.896	8.891
8.960	8.916	8.913	8.894	8.892	8.922	8.966	8.929	8.894	8.893	8.597	8.918
8.963	8.941	8.935	8.911	8.897	8.928	8.975	8.932	8.898	8.909	8.909	8.943
5.972	8.952	8.951	8.929	8.912	8.934	8.978	8.939	8.911	8.927	8.934	8.952 8.977
8.971	8.973	6.954	8.952	8.927	8.945	8.982	8.942	8.928	8.951	8.948	8.977 8.984
8.980	8.983	8.984	8.985	8.985	8.984	8.984	8.984	8.985	8.984	8.985	8.984 8.996
9.005	8.995	9.037	9.058	9.056	9.025	8.987	9.026	9.055	9.060	9.038	8.996
9.006	9.013	9.062	9.080	9.073	9.033	8.990	9.032	9.068	9.078	9.061	9.013
9.014	9.016	9.075	9.087	9.079	9.045	8.991	9.035	9.074	9.089	9.074	9.020
0.015	9.032	9.086	9.092	9.085	9.050	8.994	9.046	9.085	9.094	9.086	9.031
9.025	9.052	9.092	9.108	9.097	9.079	8.995	9.050	9.094	9.105	9.093	9.054
9.619	9.074	9.104	9.114	9.134	9.532	9.001	9.079	9.132	9.113	9.104	9.075
9.647	9.084	9.138	9.155	9.233	9.544	9.002	9.543	9.237	9.155	9.139	9.085
	9.462	9.183	9.198	9.544	9.706	9.706	9.550	9.547	9.195	9.181	9.463
	9.475	9.471	9.220	9.579	9.743	9.732	9.707	9.581	9.220	9.188	9.475
	9.621	9.504	9.250				9.745		9.248	9.470	9.621
	9.658		9.279						9.275	9.503	9.656

(a)

 at $-40^{\circ} \mathrm{C}$. Chouine (a) tho Typical Spaotrum, (b) the Tymioal Roduced Stoctrixn (for $\theta_{y}=252^{\circ}$). Tho oriontetion of the Grystri in tho Case (a) 10 Iznlainci in rablo $2 \boldsymbol{x}$.

Fig. 11. The Rotation Pattern of all the Bll Lines in Colemanite at
-40° C. for the Rotation About the X-Axis.

Fig. 12. The Rotation Pattern of the $B^{1 l}$ Iines Depending Strongly lipon $2 \theta \mathrm{x}$ in Colemanite at $-40^{\circ} \mathrm{C}$.

Fig: 13. The Rotation Pattern of all the B^{11} Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the Rotation about the Y-Axis.

Pig. 14. The Rotation Pattern of all the Bll Lines in Colemanite at $-40^{\circ} \mathrm{C}$. for the Rotation about the 2 -Axis.
to the orystal position uhich is defined in Table XX. The spectrum in Pig.10(b) corresponds to $\theta_{y}=150^{\circ}$. Even though it was obtained with a perfectly general arystal orientation, Fig. $10(a)$ does not show the observed maximum muber of lines, because oartain lines for the K sites overlap for this particular orientation. Tables XIII, XIV, and XV list the frequencies of the lines at 15° intervals for the $X-, Y$, and Z-rotations, respectively. As explained in Section III.4, additional measurecents at 5° intervals have been made in order to establish the rotation pattern but are not listed in these tables. The reaults listed in Table XIII have been plotted in Figs. 11 and 12. Those Iisted in Tables XIV and IV have been plotted in Figs. 13 and 14, reapectively. The frequencies listed in Tables XIII - XV, and the scale of frequencies in Figs. 11-14, are different from their room temperature analogues, i.e,, Tables I III and Figs. 6-9, respectively, because V_{0} in this case was 8.985 mc./sec., as compared to $\nu_{0}=11.981 \mathrm{mc} . / \mathrm{sec}$. at room temperature. The line widths of most of the lines were, as at room temperature, of the order of $5 \mathrm{kc} . / \mathrm{sec} .$, measured in the usual way, and their relative intensities were independent of the crystal orientation. One feature of the spectrum at $-40^{\circ} \mathrm{C}$. was found puzaling, namely, consistently amaller intensities of the iines bearing the supersacript N_{3}^{*} and M_{4}^{*} than those bearing the superscript M_{1}^{*} and N_{2}^{*}. We shall, hovever, return to this topic in Section IV.

An inspection of Figa. 11-14 reveals that the rotation pattern consist: of 27 ourves in the X - and Z-rotations and 14 in the Y-rotation. . A comparison of Figs.11-14 with their room temperature analogues, Flgs.6-9,
confirms the following:
(a) The curves denoted by superscripts $\|_{1}^{*}, \mathbb{N}_{2}^{*}, \mathbb{N}_{3}^{*}$, and H_{4}^{*} have comparable amplitude with their room temperature analogues, i.e., the curves belonging to the sites $\mathrm{K}_{1,3}$ and $\mathrm{H}_{2,4}$. In the sare way, the curves having the superscripts $\mathbb{K}_{i}^{*}, K_{j}^{*}, L_{i}^{*}$ and L_{j}^{*} are sidilar to the room temperature curves belonging to the sites $K_{i, j}$ and $L_{i, j}$, respectively.
(b) At $-400 \mathrm{C} .$, as at room temperature, ν_{0} stands out by its great intensity, as exemplified by Figs.10(a) and (b), and by its lack of angular dependence.

In consequence of this aimilarity the spectral lines can be grouped at $-40^{\circ} \mathrm{C}$. In exactly the same way as they were grouped at room temperature.
(i) The first group contains 8 satellite lines (4 pairs).
(ii) The second group contains 4 central lines vhich, however, were not resolved and appeared as 2 lines, except for a amall splitting at certain arystal orientations.
(iii) The third group contains 16 satellite lines (3 pairs). (iv) ν_{0} representa 8 separate, though unresolved, central

lines.

We can conclude that the n.m.r. spectrun of B^{17} in colenanite at $-40^{\circ} \mathrm{C}$. contains 36 lines and therefore the unit cell of colenanite at $=40^{\circ} \mathrm{C}$. contains 12 boron sites at which VE differs in some respect.

He can establish the point eroup of coleuanite at $-40^{\circ} \mathrm{C}$. as follows. The presence of the 12 boron sites per unit cell of colenanite at -40° C. at which $\tilde{\nabla E}$ differs in some rospects proves that the crystal
has lost the centre of symustry. Referring now to Figs.11, 12, and 14, It can be seen that the rotation pattern is symetric with respect to $\theta=0^{\circ}$ and 90°, and that the reduced spectrum occurs at these crystal orientations. Pigs.10(b) and 13 show that the reduced spectrum also occurs throughout the entire I -rotation. Hence, the I -axis must be parallel either to a two-fold rotation axis or to the normal to a mirror plane, but it sannot be parallel to both of them similtaneously since the crystal atructure is no longer centrosymmetric. The point group is therefore either 2 or n.* Incidentally, the fact that there are 12 boron sites detectable by the n.ri.r. method at $-40^{\circ} \mathrm{C}$. establishes also the centrosymetric structure of colomanite at room temperature.

The logic behind the system of classification of the lines will now become clear. In the foregoing pages we stressed the similarity between the room temperature and $-40^{\circ} \mathrm{C}$. spectra. This similarity will deepen even nore on comparing the corresponding quadrupole coupling constants and the orientation of the principal axes of the tensor $\tilde{\nabla E}$ at the two temperatures. In view of this it should not be surprising that it has been possible to assign cach line of the spectrum at $-40^{\circ} \mathrm{C}$. to its parent line at room temperature. The disappearance of the centre of symetry has caused any two sites, formerly related by the centre, to become non-equivalent, i.e., the two identical V'E's at room tempera- $^{\text {E }}$ ture have become non-equivalent at $-40^{\circ} \mathrm{C}$. In accordance with this, the room temperature sites are denoted by $P_{i, i+2}$; the two sites at $-40^{\circ} \mathrm{C}$. are denoted by P_{1}^{*} and $\mathrm{P}_{\mathrm{i}+2}^{*}$ as follougs
*In the next chapter we shall eatablish that the point group of colecanite at -40° C. is 2 .

2ABIE XVI
The Soparations, in Kce/Soce, of the $\mathrm{I}^{\text {ll }}$ Sntollite I.incs for the K^{*} Sites in Colemanitio nt $-40^{\circ} \mathrm{C}$.

碳		0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
\mathbf{x}	K_{1}^{*}	5	-41	-85	-88	-61	-17	43	105	138	142	117	61
	K_{2}^{*}	5	67	116	142	135	108	43	-18	-67	-97	-87	-42
	K_{3}^{*}	19	-67	-116	-142	-120	-64	15	100	157	176	160	97
	K_{4}^{*}	20	100	155	182	100	108	16	-68	-126	-141	-117	-67
Y	$\mathrm{K}_{1,2}^{*}$	43	-110	-240	-303	-283	-192	-48	112	235	295	285	186
	$\mathrm{K}_{3}{ }^{*} 4$	16	-137	-271	-315	-291	-182	-35	124	246	307	270	108
2	K_{1}^{*}	-48	-136	-199	-219	-187	-99	5	103	170	185	152	68
	x_{2}^{*}	-48	64	149	186	176	99	5	-103	-180	-222	-205	-136
	E_{3}^{*}	-34	-136	-201	-219	-187	-99	19	127	203	211	177	68
	E_{4}^{*}	-36	64	176	205	203	128	20	-93	-380	-222	-205	-136

TABLE XVII
The Soparations, in Kc./Socen of the $\mathrm{B}^{\text {Ml }}$ Satollito Linos for the L^{*} Sites in Colemanite at $-40^{\circ} \mathrm{C}$.

		0°	25°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
X	L^{*}	13	-21	-63	-99	-120	-119	-99	-68	-32	10	36	35
	L_{2}^{*}	12	31	32	11	-27	-64	-98	-115	-126	-97	-63	-22
	L_{3}^{*}	36	12	-22	-53	-84	-108	-90	-68	-32	4	36	43
	L_{4}^{*}	35	44	32	7	-27	-64	-90	-105	-91	-56	-26	10
I	$\mathrm{L}_{1}{ }^{*}{ }^{\text {2 }}$	-99	-28	43	102	133	122	34	23	-47	-109	-148	-142
	$\mathrm{L}_{3,4}^{*}$	-90	-9	73	121	133	122	55	-23	-102	-159	-180	-154
Z	L_{1}^{*}	84	-22	-102	-147	-144	-80	13	117	203	247	242	184
	L_{2}^{*}	84	180	238	248	203	117	12	-84	-144	-151	-104	-19
	I_{3}^{*}	54	-91	-210	-265	-223	-117	36	186	296	342	306	200
	L_{4}^{*}	55	199	305	342	299	186	35	-117	-222	-257	-211	-88

The Sopnintions, in Kc./Sec.e of the Satollite

Lines for tho 4^{*} S1tes in Colomanite at $-40^{\circ} \mathrm{c}$.

		0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°
X	$\begin{aligned} & \mathrm{N}_{1}^{*} \\ & M_{2}^{*} \end{aligned}$	$\begin{aligned} & 1387 \\ & 1387 \end{aligned}$	$\begin{array}{r} 2113 \\ 468 \end{array}$	$\begin{aligned} & 2455 \\ & -402 \end{aligned}$	$\begin{aligned} & 2304 \\ & -997 \end{aligned}$	$\begin{array}{r} 1709 \\ -1138 \end{array}$	$\begin{gathered} 844 \\ -807 \end{gathered}$	$\begin{aligned} & -74 \\ & -74 \end{aligned}$	-795 833	$\begin{aligned} & -1147 \\ & 2708 \end{aligned}$	$\begin{array}{r} -1001 \\ 2303 \end{array}$	-413 2458	$\begin{gathered} 451 \\ 2117 \end{gathered}$
	$\begin{aligned} & \mathrm{N}_{3}^{*} \\ & \mathrm{I}_{4}^{*} \end{aligned}$	$\begin{aligned} & 1320 \\ & 1320 \end{aligned}$	2099	2487 -524	2367 -1114	1781 -1236	897 -858	-69 -69	-849 886	-1236 1779	-1116 2365	-536 2492	355 2104
Y	$\begin{aligned} & M_{1,2}^{*} \\ & M_{3,4}^{*} \end{aligned}$	$\begin{aligned} & -68 \\ & -61 \end{aligned}$	$\begin{aligned} & -39 \\ & -22 \end{aligned}$	-165 -152	$\begin{aligned} & -429 \\ & -403 \end{aligned}$	$\begin{aligned} & -774 \\ & -760 \end{aligned}$	-1096 -1063	$\begin{aligned} & -1309 \\ & -1259 \end{aligned}$	$\begin{aligned} & -1358 \\ & -1293 \end{aligned}$	$\begin{aligned} & -1231 \\ & -1165 \end{aligned}$	$\begin{aligned} & -961 \\ & -904 \end{aligned}$	-616 -572	$\begin{aligned} & -299 \\ & -270 \end{aligned}$
Z	F_{1}^{*} NC_{2}^{*}	-1318 -1318	-1339 -921	-991 -299	-367 455	360 1063	992 1409	1387 1387	1411 1003	1069 369	447 -363	-285 -992	-923 -1335
	M_{3}^{*} M_{4}^{*}	-1264 -1264	-1267 -903	-923 -299	-322 397	360	963 1324	1323 1323	1329 975	993 369	391 -320	-306 -923	-904 -1267

Ixporimantal Fourior Coofficients. in IKc./Sec.e of tho Soparatione of tho $\mathrm{I}^{1 l}$ Saiellite Lines for all Sitos in Colomanito at $-40^{\circ} \mathrm{C}$.

Rotation	Site	a	b	0
X	K_{1}^{*}	26.50	-19.91	-114.72
	S_{2}	25.50	-18.82	117.78
	\mathbb{E}_{3}^{*}	17.92	0.38	-160.15
	$\mathrm{K}_{4}{ }_{4}$	19.00	0.85	162.45
7	$\mathrm{K}_{1,2}^{*}$	-1.67	45.43	-300.20
	$\mathrm{K}_{3,4}{ }^{\text {\% }}$	-8.33	25.02	-310.17
Z	R_{1}^{*}	-17.08	-21.73	-203.35
	K_{2}	-17.92	-22.98	203.98
	K_{3}^{*}	-5.92	-26.03	-218.35
	K_{4}^{*}	-6.33	-29.12	216.53
Z	$\mathrm{I}_{1}{ }^{\text {a }}$	-43.92	53.10	-54.07
	I_{2}^{*}	-43.83	55.63	54.67
	I_{3}^{*}	-27.17	65.17	-31.30
Y	L_{L}^{*}	-27.58	63.35	34.37
	$L_{I, 2}^{*}$	-5.56	-91.88	106.47
	$\mathrm{L}_{3,4}$	-17.75	-73.48	141.27
2	I_{1}	49.58	36.63	-198.98
	L_{2}^{*}	48.33	36.72	299.28
	L_{3}	42.83	10.68	-300.05
	L_{4}^{*}	43.83	10.82	298.67

TABLE XTX (Continued)

Rotation	Site	a	b	c
I	k_{1}^{*}	652.75	729.83	1652.08
	$1{ }_{2}^{*}$	654.67	736.68	-1647.65
	NH_{3}^{*}	625.00	695.93	1743.10
	M_{4}^{*}	626.00	702.85	-1740.38
I	$M_{1,2}^{*}$	-695.42	614.25	263.22
	$\mathrm{H}_{3}{ }^{*} 4$	-660.33	597.65	242.42
Z	m_{1}^{*}	36.92	-1349.57	-409.48
	M_{2}^{*}	38.17	-1351.58	404.85
	$\mathrm{N}_{3}{ }^{\text {\% }}$	31.00	-1290.58	-360.15
	If_{4}^{*}	33.83	-1291.62	359.18

The symmetry-equivalent sites at $-40^{\circ} \mathrm{C}$. are P_{1}^{*} and P_{2}^{*}, or $P_{3}{ }^{*}$ and P_{4}^{*}.
In all other respects the nomenclature has been preserved.
IV. 5. The quantitative analysis of the angular dependenco of the n.mer. linos has been performed in the same way as described in Section IV.3. The values of the separation between the satellite lines, $\Delta \nu$ havo been deduced froin Tables XIII - XV and are listod in Tables XVI, XVII and XVIII for oach of the K^{*}, L^{*} and f^{*} sites, rospectively. The values of $\bar{y}^{M_{i}^{*}}-\nu_{0}$ and of $\nu_{c}^{M_{i}^{*}}-\nu_{0}$ jave not been listed since they are not escential in the anslysis of the spectra at $-40^{\circ} \mathrm{C}$. (see, hovever, balow). The Fourier analysis of the data in Tables XYI - XVIII hea bcen carried out as described in Scction IV. The rosulting values of the coefficients a_{1}, b_{1}, c_{i} are listed in Table XIX for all the sites. According to the evidence presented in tho provious aection, the sites P_{1}^{*} and P_{2}^{*}, or F_{3}^{*} and P_{4}^{*}, are relatcd by a two-fold sywetry axds; therefore they poseess nunerically identical $\nabla{ }^{\text {E's }}$ which differ only

A Comparison of the Values of ΔV Predicted for Specified Crystal Orientation. Assuming the Yossible Sign Combinations of C_{z} and C_{x}, with the Experimental Values of $\Delta \nu$.

Site	$\begin{gathered} \text { Sign } \\ \text { Combination } \end{gathered}$	$\begin{gathered} \Delta \nu \\ \mathrm{Ke} .1 \mathrm{l} e \mathrm{c} . \end{gathered}$	$\begin{gathered} \text { Sign } \\ \text { Combination } \end{gathered}$	$\begin{aligned} & \Delta \nu \\ & \text { ke. /oec } \end{aligned}$	Experime $\|\Delta \nu\|$	ntal kc. / oec.
K_{1}^{*}	=	+ 322	\pm	+292	314	
K_{2}^{*}	\pm	+ 270	7	+ 300	258	
K_{3}^{*}	=	+ 322	\pm	+ 290	314	
K_{4}^{*}	\pm	+ 260	\mp	+292	258	
L_{2}^{*}	$=$	-123	\pm	-151	127	
L_{2}^{*}	\pm	-162	\mp	-133	166	
L_{3}^{*}	=	-152	\pm	-196	152	
I_{4}^{*}	\pm	-202	\mp	-158	196	

Compononts. in He./Sec.e of the Tensor $\Psi 11$ for the B^{11} Sitos K^{*} in Colonnnito at $-40^{\circ} \mathrm{C}$.

Site	Rotation	$\psi_{X X}$	$\psi_{y y}$	$\psi_{z z}$	$\psi x y$	$\psi_{y z}$	$\psi_{2 x}$
K_{I}^{*}	X	-53.00	6.58	46.42		114.72	
	Y	-47.10	3.34	43.76			300.20
	Z	-38.81	4.65	34.16	203.35		
K_{2}^{*}	X	-51.00	6.68	44.32		-117.78	
	Y	-47.10	3.34	43.76			300.20
	Z	-40.90	5.06	35.84	-203.98		
K_{3}^{*}	I	-35.84	18.30	17.54		160.15	
	Y	-33.35	16.66	16.69			310.17
	z	-31.95	20.11	11.84	218.35		
\mathbb{K}_{4}^{*}	X	-38.00	19.85	18.15		-162.45	
	I	-33.35	16.66	16.69			310.17
	2	-35.45	22.79	12.66	-216.53		

TABLE XXII

Components, in Ka /Sece, of the Tensor Ψ if for

the B^{11} Sites L^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.

Site	Rotation	$\psi_{x x}$	*yy	$\psi_{2 z}$	$\Psi x y$	廿yz	$42 x$
L_{1}^{*}	X	87.84	14.18	-102.02		54.07	
	I	86.38	11.00	-97.38			-106.47
	Z	86.21	12.95	-99.16	198.98		
L_{2}^{*}	X	87.66	21.80	-99.46		-54.67	
	Y	86.38	11.00	-97.38			-106.47
	Z	85.05	11.61	-96.66	-199.28		
L_{3}^{*}	X	54.34	38.00	-92.34		31.30	
	Y	55.73	35.50	-91.23			-142.27
	z	53.51	32.15	-85.66	300.05		
I_{4}^{*}	X	55.16	35.71	-90.93		-34.37	
	Y	55.73	35.50	-91.23			-142.27
	Z	54.65	33.01	-87.66	-298.67		

TABIE XXIII

Componente. in Koa/Seo.e of the Tensor $\psi_{1 i}$ for

 the $B^{1 l}$ Sites M^{*} in Colemanite at $-40^{\circ} \mathrm{C}$.| Site Rotation | $\psi_{X X}$ | $\psi_{Y Y}$ | $\psi_{z z}$ | $\psi_{z Y}$ | $\psi_{y z}$ | $\psi_{2 x}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X | -1305.50 | 1382.58 | -77.08 | | -1652.08 | |
| Y_{1}^{*} | Y | -1309.67 | 1390.84 | -81.17 | | | -263.22 |
| 1 | Z | -1312.65 | 1386.49 | -73.84 | 409.48 | | |

| | X | -1309.34 | 1391.35 | -82.01 | 1647.65 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H_{2}^{*} | Y | -1309.67 | 1390.84 | -81.17 | | -263.22 |

	X	-1250.00	1320.93	-70.93	-1743.10		
$\mathrm{~N}_{3}^{*}$	Y	-1257.98	1320.66	-62.68			-242.42
	Z	-1259.58	1321.58	-62.00	360.15		

| | X | -1252.00 | 1328.85 | -76.85 | 1740.38 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M_{4}^{*} | Y | -1257.98 | 1320.66 | -62.68 | | -242.42 |

TABLI: XXIV

Azerages of the Cornonents, in $\mathrm{Kc} . /$ Sec., of the Tensor Ψ is for all Bil Sites in Colomanito at $-10^{\circ} \mathrm{C}$.

	$\psi_{x x}$	$\psi_{y y}$	$\psi_{z z}$	$\psi_{x y}$	$\psi_{y z}$	$\psi_{z x}$
$K_{1,2}^{*}$	-46.318	4.943	41.375	203.665	116.250	300.20
$K_{3,4}^{*}$	-34.657	19.062	15.595	217.440	161.300	310.170

$\mathrm{L}_{\mathrm{I}, 2}$	86.587	12.090	-98.677	199.130	54.370	106.470
$\mathrm{I}_{3,4}$	54.853	34.988	-89.841	299.360	32.835	-141.270

$$
\begin{array}{lllllll}
N_{1,2}^{*} & -1310.040 & -1388.642 & -78.602 & 407.165 & 1649.865 & -263.220 \\
\mathrm{H}_{3,4}^{*} & -1255.888 & 1323.021 & -67.133 & 359.665 & 1741.740 & -242.420
\end{array}
$$

in the orientation of their principal axes. We encounter, therefore, the same problem of assigning the appropriate signs to the off-diagonal components of $\overline{\nabla E}$. However, in view of the sivilarity of the spectrum at -40° C. to that at room temperature, one expects that $\tilde{\nabla_{E}}$'s at the sites $P_{i, i+2}, P_{i}^{*}$ and P_{i+2}^{*} should be similar, i. θ_{i}, their correaponding off-diagonal components should have the same signs. In the case of the M^{*} sites this can be easily eatablished simply by inspecting the curves $\nu_{c}^{M_{i, i+2}^{*}}$ in Figg. 11-14 and noting that they have the same shape as their analogues at room temperature, i.e., they contain nearly the same coefficient r_{i} measured at the same Ho. In the case of the K^{*} and L^{*} sites, however, this cannot be so easily established and therefore an additional measurement was done in the manner indicated in Section II.5. The results of this measurement are presented in Tablo XX , where only the K^{*} and L^{*} sites are listed. As can be seen, the offdiagonal components of $\nabla^{2} E^{\prime}$ a at sites P_{i}^{*} and P_{i+2} mast have the sane signs as those at the sites $P_{1, i+2}$, since they predict the experimental results. Accompanying Table $X X$ is the diagram indicating the crystal orientation at which the measurement was done. Incidentally, the spectrum of Fig.10(a) also corresponds to this crystal orientation.

The numerical values of a_{i}, b_{i} and c_{i} in Table XIX have been used to determine the tensor components, $\Psi_{i j}$, for each of the sites. Tables XXI, XXII and XXIII list the results for \mathbb{K}^{*}, L^{*} and M^{*} sites, respectively, and Table XXIV lists the averages for all the sites. The results in Table XXIV have been used in the diagonalisation process which was carried out in the usual way. The resulting values of the quadrupole

TABIE XXV

guadrupole Couplinp_Consiants_and Asymetry Paranaters at Room

 Tomperature and at $-10^{\circ} \mathrm{C}$. at the $\mathrm{B}^{l l}$ Sites in Colemanite.| Boron
 Sites | gradrupole Coupling Constant, | | Asymmetry Paramoter, | |
| :---: | :---: | :---: | :---: | :---: |
| | Roon Teip. | $-40^{\circ} \mathrm{C}$ | Room Temp. | $-40^{\circ} \mathrm{C}$. |
| $\mathrm{K}_{2}, \mathrm{~K}_{2}$ | $0.436 \pm .002$ | $0.421 \pm .005$ | $0.48 \pm .01$ | 0.57 5.01 |
| $\mathrm{K}_{3}, \mathrm{H}_{4}$ | | $0.462 \pm .005$ | | $0.43 \pm .01$ |
| $\mathrm{I}_{2}, \mathrm{~L}_{2}$ | $0.309 \pm .002$ | $0.259 \pm .005$ | 0.83+.01 | $0.86 \pm .01$ |
| $\mathrm{L}_{3}, \mathrm{~L}_{4}$ | | $0.359 \pm .005$ | | $0.79 \pm .01$ |
| $\mathrm{H}_{1}, \mathrm{M}_{2}$ | $2.540 \pm .003$ | 2.522 . 003 | $0.058: 0.001$ | $0.086 \pm .001$ |
| $\mathrm{H}_{3} \mathrm{OH}_{4}$ | | $2.552 \pm .003$ | | $0.023 \pm .001$ |

Direction Cosines of tho Frinoipal ($x_{0} y, \underline{z}$) Axes of E with Rospoct to the (Z, Y, Z) Axes at all B ${ }^{11}$ Sites in Colomanite at $-10^{\circ} \mathrm{C}$. The Two Sots of Signs Givan for inch Sot of Cogines Refer to the Two Sitos Rolated by the Iro-Fold Axis. The Signs Are Relative.

Boron Sites	Axis	Principal Axos		
$\mathrm{K}_{1,2}^{*}$	I	$\mp 0.078 \pm 0.01$	70.786 ± 0.01	$\pm 0.613 \pm 0.01$
	I	$+0.830$	+ 0.289	+0.476
	2	∓ 0.552	± 0.546	± 0.631
$\mathrm{i}_{3,4}^{*}$	I	$\pm 0.184 \pm 0.01$	$\pm 0.775 \pm 0.01$	$\mp 0.604 \pm 0.01$
	I	-0.831	-0.206	-0.517
	2	± 0.525	∓ 0.597	∓ 0.606
$\mathrm{L}_{1}{ }^{*}$ 2	X	$\pm 0.295 \pm 0.01$	$\pm 0.544 \pm 0.01$	$\mp 0.785 \pm 0.01$
	I	-0.566	-0.562	-0.603
	2	∓ 0.770	± 0.623	± 0.142
$\mathrm{L}_{3,4}^{*}$	x	$\mp 0.208 \pm 0.01$	$\mp 0.649 \pm 0.01$	$\pm 0.731 \pm 0.01$
	I	+ 0.409	+0.590	+0.657
	2	± 0.858	∓ 0.480	∓ 0.182
$N_{1,2}^{*}$	X	$\pm 0.005 \pm 0.002$	$\mp 0.992 \pm 0.002$	$\pm 0.126 \pm 0.002$
	I	-0.544	-0.108	-0.832
	2	± 0.839	∓ 0.064	∓ 0.542
$M_{3,4}^{*}$	X	$\mp 0.018 \pm 0.002$	$\pm 0.993 \pm 0.002$	$\mp 0.113 \pm 0.002$
	I	+ 0.559	+0.103	$+0.823$
	Z	∓ 0.829	± 0.050	± 0.557

coupline constants and the asymetry paraweters, and their estimated omporinental creors, aro listed in the second and fouth colums of Table XXV. The rosillting values of the direction cosines of the principal axes of $\tilde{V E}$ with respect to the (X, Y, Z) axes, and the estinated cxperimental error, are listed in Table 2 NWII . The rosulte listed in Tables XXV - XivII will be discussed in Chapter V of thes thesis.
IV. 6. Fror tho investigation of the temperature dependence of the resonance lines, the crystal vas accurately aligned so that its Y-axis coincided with the rotation axis. This choice of orlentation was made for the following reasons. Firstly, at roon temperature the lines are more intense for this orientation. Sccondly, ior this crystal orientation any departure from the room tenperature pymetry skow, up in an obvious uay. Thirdly, the elignment of the Y-exis parallel to the rotation aris could be made to better than 10 minutes. Each of the three sites, K, L and li , vere oxamined; i sites were oxamined at $\theta_{y}=35^{\circ}$ while L and in sites were examined at $\theta_{\mathrm{y}}=149^{\circ}$. The investigation of those sites consisted of recording the satellites at solected temperatures over the range $+52^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$.

He shall first descrice the resulte obtained ovor tho terperature renge $+25^{\circ} \mathrm{C}$. to $-16^{\circ} \mathrm{C}$., which includes the Curie point. Tablo XXVIII lists tho observod values of the seperation of the satellito linos bolonging to the K, L and IN sites. Eecause the changes of the lines vere quite small, separations rather than actual frequencics of the satcllite lines have been uscd to eliminate the orrore due to drift of the magnetic field. The values listed in Table XXVIII are plotted in

Fig. 15. Temperature Dependence of a Selected Set of Satellite Lines for all ${ }^{1 l}$ Sites in Colemanite for时 $=35^{\circ}$ (K Sites) and for $\theta y=149^{\circ}$ (L and M Sites).

Fig. 15 and the direction of temperature cyoling is indicated.
In inspection of Pige 15 reverls that there is no clear-cut transition temperature which is assumed to coincido with the temperature at which the lines are first split. Following are the teaperatures at which the splitting clearly occurred for various satellites:

H	L	K
$-2.0^{\circ} \mathrm{C} . \uparrow$	$-2.0^{\circ} \mathrm{C} . \uparrow$	$-3.0^{\circ} \mathrm{C} . \uparrow$
$-1.0^{\circ} \mathrm{C} . \downarrow$	$-1.9^{\circ} \mathrm{C} . \downarrow$	$-2.7^{\circ} \mathrm{C} . \downarrow$
$-2.0^{\circ} \mathrm{C} . \uparrow$	$-2.5^{\circ} \mathrm{C} . \uparrow$	
$0.1^{\circ} \mathrm{C} . \downarrow$	$0.1^{\circ} \mathrm{c} . \downarrow$	

The arrov pointing up indicates that the crystal temparature was being increased, while the arrow pointing down indicates that it was being decreased. The scatter of the temperatures at which the splitting was first observed is unlikely to be due to errors in the measurements of the crystal temperatures since great oare was exercised to ensure that the temperatures, measured by the thermocouple, corresponded to that of the arystal. The variation in the splitting point is probably directly connected with the history of the crystal, i.e., with the rate at which it has been cooled or warmed up, with the amount of strain present in the crystal, etc. Further details of the results obtained are:
(a) Broadening of the lines beloneing to the site M occurs at about $+1^{\circ} \mathrm{C}$. irrespective of the direction of temperature cyoling.
(b) Thare is a consistent increase in the values of $\Delta \nu$ for site 14 which starts at sbout $+10^{\circ} \mathrm{C}$. and persists until the lines soparate.

TABIE XXVIIIT

Scparation. in Kc./Sece, of the B ${ }^{11}$ Sateliste Ines in Colomanito at Various Tomperatures. I and L Sitas Nare kiasured at 9y 149^{0} K Sites at $0 \mathrm{x}=35^{\circ}$.

Decreasing Crystal Temperatures

TABLE XXIX

Separationg, in Kca/Socen of the B^{11} Satollite Lines in Colamanite at Various ennoratures for $\theta y-149^{\circ}$.

Sites	${ }^{\circ} \mathrm{C}$.	52	47	43	40	37	33	32	29	25
M		598	597	598	598	598	599	600	600	60
I		170	170	170	168	170	169	168	168	167

Dacreasing Crystal Temperatures

	${ }^{\circ} \mathrm{C}$.							
Sites	-46	-50	-60	-62	-75	-84	-126	
	633	633	636	637	640	640	Incomplete	
M	588	587	587	587	591	644		
		-	-	180	-			
L	-	-	140	-				

Increasing Crystal Temperatures										
Sites	-136	-99	-90	-87	-68	-60	-44	-38	-29	-22
H	$\begin{aligned} & \text { si } \\ & \text { " } \end{aligned}$	645	647	643	643	642	639	637		
		630	629	634	635	631	634	632	630	628
		596	596	596	594	593	595	592	589	589
		578	577	583	584	582	586	583		
L	0	-		-	178	-		-	-	177
)		137	138	141	-	140	-		147

Fig. 16. Temperature Dependence of a Selected Set of Satellite Lines for L and M Sites in Colemanite for $\theta y=149^{\circ}$.

As a final etep in this investigation, the spectrum of $\theta_{\bar{y}}=149^{\circ}$ was examined at crystal temperatures covering the ranges $+52^{\circ} \mathrm{C}$. to room teraperature and -22° C.to -136° C. Tablo XYIX lists the separation between the satellite lines belonging to tho sites L and 11 . The results listed in Table XXIX , and some results for sites L and K listed in Table XXVIII, are plotted in Fig.16. Roforring to Fig.16, there occurs a slight increase in the values of $\Delta \nu$ for site if and a slight decrease in this valuo for site L as the temperature is lovered from $+52^{\circ}$ C. to room temperature. The results obtained in the temperature range $-22^{\circ} \mathrm{C}$. to $-136^{\circ} \mathrm{C}$. Indicate that an additional splitting of the linos belonging to the aite 11 occurs at about $-80^{\circ} \mathrm{C}$. with decreasing tomperatures, and at about $-35^{\circ} \mathrm{C}$. with increasing temperaturos. The satellite linct belonging to the L site were broadened under exactly the same circumstences. These broadenings (L site), and the additional splittings (M site), could arise from two sources. First, the crystal has beon miagligned, or second, the crystal has undergone an additional transition. The first case cannot be true. The crystal orientation was repeatedly checked for misaligament before and after each set of measurements. In order to eliminate the possibility of misalignment due to anisotropic thermal contraction of the crystal platform, a perspex platform was used in addition to a lucite platform. These precautions did not influence the above results. The second case must therefore be true, i.e., colemanite undergoes an additional transition. Fig. 16 shows that this neuly discovered transition is characterised by a large thermal hysteresis loop extending fron about $-35^{\circ} \mathrm{C}$. to about $-80^{\circ} \mathrm{C}$.

Tho fact that the Ines belonging to the aites $M_{1,2}^{*}$ and $M_{3,4}^{*}$ are split, and those belonging to the sites $L_{1}, 2$ and $L_{3,4}^{*}$ are broadened, indicates that the tro-fold rotation axis has disappeared. In other words, the point group of colemanite in this phase is the triclinic point group 1.

CHAPTER $\overline{ }$

DISCISSION

V. I. Let us first discuss the room temperature resulte. The symmetry properties of colemanite have been studied by other vorkers using thres independent methods and following are the conclusions as to its symetry at room temperatures
(a) X-ray analysiss centrosymmetric, point group 2/m (Christ et al., 54).
(b) Dieleotric breakdoun studies: centrosymmetric (Davisson,'56).
(c) Pyroelectrio and piezsoelectric atudiess non-centrosymmetric (Davis3on, 56). It appears from the above that the evidence for the centrosymetria struoture is not conclusive. Davisson (56) has proposed that the structure of colemanite remains essentially centrosymmetric at all temperatures, Fiz. including the room temperature, and that the asymmetry may be due to slight displacements of certain conatituenta, preaumably the light atoms, from centrosymmetric positions.

As was stated in Chapter I, one of our objectives was to cheok the point group of colemanite at room temperature. As desaribed in Chapter IV, the results supplied an umbiguous answer aupporting the centrosymotric point group 2/m.

At this point one should enquire into the origin of this controversy, viz. the evidence from the piezzoelectric and pyroelectrio
studios. ijormally, in cases such as this, ono would be tempted to accept the results of the pyroelectric and piezzorlectric strdies in preference to the X-ray and dielectric breakdown results since the slight displacements from centrosymetric positions, if such exist, are likely to be associated with the light atoms which have relatively little influence on the X -ray and dielectric breakdow results. However, Chynoweth ('57) has suggested that an ideal crystal of colemanite would show no pyroelectric and plezzoelectric effect at roon temperature. According to Chynoweth, the pyroelectric behaviour at roon temperature can be explained by either a apace-charge field inside the crystal resulting in an induced polarisation when the crystal is in the paraelectric state or by a shift of the transition temperature in parts of the crystal as a result of strains. It is interesting to recall at this point that in our preliminary study we encountered many colemanite cryotals exhibiting excessively broad lines, a fact which can bo blaread on the existence of strains in a single crystal.
V. 2. It is interesting to spaculate on a possible correlation between the electric field gradient tensors found in this work and the boron positions proposed by Christ ot al. ('54). They propose that the three boron atoms in the asymatric unit are located near the centres of tho slightly distorted O_{4} tetrahedra and a slightly distorted O_{3} trianglo. In the discussion to follow it will be assumed that only the oxygen nearest-neighboura make significant contributions to $\tilde{\nabla E}$ at each of the boron sites. Let us first consider a BO_{4} unit. At the centre of a perfect tetrahedron the symnetry is cubic so that $\nabla \hat{\mathrm{E}}$ must be
identically zero. In a slightly distorted tetrahedron, however, one would expect $\tilde{\nabla} \mathrm{E}$ to be small. at the centre, although it need no longer be zero, but there seems to be no reason to expect the asymetry parameter to take any specific value within its range $(0 \leqslant \eta \leqslant 1)$ or the principsl axes to point in any specific direction. Considering now a BO_{3} unit, the symmetry of $\hat{\nabla E}$ at the centre of an equilateral triangle requires that η be zero and that the z-prinoipal axis be along the normal to the plane of the triangle. Unless the O_{3} triangle is greatly distorted, η should still be small at the boron site. Also, one might reasonably expect $\nabla^{\tilde{E}} \mathrm{E}$ to be larger at the boron site near the centre of the slightly distorted equilateral triangle than at the boron sites at the centres of the slightly distorted tetrahedra because in the triangle the average $B=0$ distance is shorter than in the tetrahedra (Christ et al.,'54) and the aymetry is not as close to being cubic. As shown in Table $\overline{X X V}$, we have indeed found that the quadrupole coupling constants at the B^{11} sites K and L are small and the values of η are not unusual whereas the quadrupole coupling constant is considerably larger and η is very small. at the B^{11} aites M. Also, it follows from the atomic coordinates, made available to us through the courtesy of Dr. C. L. Christ of the J. S. Geological Survey, that the z-principal aris of $\tilde{\nabla} \mathrm{E}$ at the sites M is nearly normal to the plane of the O_{3} triangle. This is shown by the diraction cosines with respect to the $\vec{b} \times \overrightarrow{0}, \vec{b}, \vec{c}$ directions, listed below:
\qquad
Direction cosinas of zeprincipal axis $0.123 \quad-0.826 \quad-0.549$
Direction cosines of normal to plane $0.109 \quad-0.843 \quad-0.527$

These arguments strongly suggest that the boron sites K and L are in the O_{4} tetrahedra and the k sites are in the O_{3} trianglo.

Incidentally, it is of interest to note that the n.m.r. study of the $\mathrm{B}^{1 l}$ sites in kornite (Waterman and Volkoff,'55) revealed that the electric fields existing at boron sites C and D (using Waterman and Volkoff's nomenclature) are very ainflar to those at our sites K and L; while the electric fields oxisting at boron sites E and F are very sioilar to those at our sites M. We sumarise our and Waterinan and Volkoff's results belou:

kernite	c	D	E	F
2	0.54	0.60	0.163	0.117
Q.0.0. (kc./sec.)	645	588	2563	2567
colemanite	K	L	M	
2	0.48	0.83	0.058	
Q.c.C. (ke./sec.)	436	309	2540	

In view of this similarity, we suggest that kernite contains two BO_{4} tetrahedra and two BO_{3} triangles in the asymatric unit, contrary to the results of X-ray. analysis by Portoles ($47,{ }^{\prime} 48$). This idea is supported by Dr. Christ (private comanication) on the basis of Norinoto's ('56) X-ray analysis of borax. The structure of borax which, except for the water of hydration, has the same chemical formula as kernite, contains two BO_{4} tetrahedra and two BO_{3} triangles in its asymmetric unit. Also, Dr. Christ suggested that, since kernite is derived from borax, kernite must contain infinite chains whose unit is formed by two BO_{4}

- Out of the plane of paper

Fig. 17. Stereogram of the Principal Axes of $\tilde{\nabla E}$ at the B^{11} Sites M in Colemanite at Room Temperature and at $-40^{\circ} \mathrm{C}$., and of the Nearest- and the Next-Nearest-Neighbours as Seen by Bla Boron Atom in Colemanite.

- Out of the plane of paper

Fig. 19. Stereogram of the Principal Axes of $\hat{\nabla} \mathrm{E}$ at the B^{11} Sites K in Colemanite at Room Temperature and at $-40^{\circ} \mathrm{C}$., and of the Nearest- and the Next-Nearest-Neighbours as Seen by $\mathrm{B}_{3 \mathrm{~A}}$ Boron Atom in Colemanite.
tetrahedra and two BO_{3} triangles.
We have attempted to correlate closely our results with the structure of colemanite as proposed by Christ et al. ('54, also private commuication mentioned earlier). We sumarise our findings in Figs.17, 18 and 19, winich are atereograms of the principal axes of \tilde{V} 's at the sites $M_{3} L$ and K, respectively. The direction cosines in Table XXVI wers used in this plot. Included in Figs. 17-19 are the directions of the nearest- and the next-nearest-neighbours as seen by the three borons in the asymmetric unit. Let us denote one arbitrarily chosen asymmetric unit as follows: BO_{3} triangle: $\quad \mathrm{B}_{1 A^{-0}} \mathrm{O}_{1 A^{-0}} \mathrm{OA}_{4 \mathrm{~A}}^{-0}$
 wator solecule: $0_{8 A}$ and calcium ion, $C a_{A}$. Two other amymetric units, B and C, appearing in Figs.17-19, are derived from A by the operation of the a glide plane and the 2_{1} axia, respectively. The asymetric unit D is derived from C by the operation of the glide plane. The 2_{1} axis is at $1 / 4$ a and Oxc whereas the glide plane is at $1 / 4 \mathrm{~b}$, where a, b, c are the unit cell dimensions. The normal to the 0_{3} plane of the BO_{3} triangle is indicated by N in Fig.17. It should be noticed that the insertion of the B^{11} sites L and K in the same stereograms as $B_{2 A}$ and $B_{3 A}$, respectively, does not imply that these sites are identical. As can be seen in Fig.17, N is parallel, to within I^{0}, to the z-prinoipal axis. The other two principal axes, x and y, are nearly parallel to the $B_{2 A}-O_{L A}$ and $B_{I A}-B_{2 A}$ lines, respectively. Recarding the K and L sites shown in Figs. 18 and 19, there seems to be no clearecut
corrcspondence between their principal axes and the neighbouring atoms as seen by both borons, $B_{2 A}$ and $B_{3 A}$, except that the z-axis of IL is parallol, to within 7°, to the $B_{2 A}-B_{3 A}$ direction and so is the y-exis of L, to within $11 / 2^{\circ}$. This fact appoors to be significant in that one could picture the electron-cloud of the intervening osfgens, $\mathrm{O}_{5 \mathrm{~A}}$, $0_{2 A}$ and $0_{1 A}$ to be distorted by the borons, which fact in turn contributes significantly to the non-spherical symatry of $\tilde{\nabla E}$ E's at the sites K and L. $\quad B_{2 A}$ seams to stand out in another respect. Fig. 17 shous that the y-axis of $\nabla \tilde{\nabla E}$ at the sites 4 is nearly parallel to $B_{1 A}-B_{2 A}$ and this fact may also be interpreted in terms of strong polarisation of the intervening oxygen, $\mathrm{O}_{2 \mathrm{~A}}$. Figa. 17-19 include 27 so the orlentatione of the $\tilde{\nabla}^{\tilde{E}} \mathrm{E}^{\prime}$ at the boron sites in colemanite at $-40^{\circ} \mathrm{C}$.
V. 3. Let us now discuss the results obtained at $-40^{\circ} \mathrm{C}$. Piezzoeleatric, pyroelectric and ferroelectric studies of colemanite suggest that the crystal undergoes a transition at about $-2^{\circ} \mathrm{C}$. belou uinich it is ferroelectric. An X-ray investigation of colemanite in the temperature range $155^{\circ} \mathrm{C}$. to $-195^{\circ} \mathrm{C}$. by Christ ('53) revealed no ovidence for such a transition.

We have studicd colemanite at $-40^{\circ} \mathrm{C}$., the results of uinich atudy are described in Chapter IV. The doubling of the resonance lines in the apectrum at $-40^{\circ} \mathrm{C}$., as compared with the room temperature spectrum, has been interprated as resulting from the lack of a centre of symotry at $-40^{\circ} \mathrm{C}$. Thus, on the basis of our results alone wo can say t.at colensnite at -4° C. possesses either the point group 2 or the point group m. Since colemanite at $-40^{\circ} \mathrm{C}$. is also ferroelectric with the
ferroelectric direction (i.e., the direction of spontaneous polarisation) coinciding with its orystallographic b-axis, the only acceptable point group is 2. Therefore, the alternative point group mas to be rejected.

The results obtained at $-40^{\circ} \mathrm{C}$. imply a redistribution of charges which is most certainly accompanied by displacements of the atoms from their centrosymetric positions. At present, it is im possible to say conclusively which atoms have undergone displacements. The possibility of all atoms undergoing displacement in the ferroelectric phase cannot be completely ruled out but it is very unlikely that calcium and oxygens are displaced since displacement of these heavy atoms would be revealed by X-rays on account of their high X-ray scattering cross-section as compared with that of other constituents. It appears then, that hydrogen and boron atoms are the constituents most likely to heve undergone displacement.

It is with this advance knowledge that results can be interpreted to a limited extent in terms of atomic movements. For the purpose of discussion, let us first consider the BO_{3} triangle. Table $X X V$ shows that the quadrupole coupling constant for the sites $V_{1,2}^{*}$ has a amaller value whereas that for the sites M $_{3,4}^{*}$ has a larger value than the quadrupole coupling constant for the sites M. This can be taken to imply that the boron nuclei at the sites $1 H_{1,2}^{*}$ have moved farther from and the boron nuclei at the sites $M_{3,4}^{*}$ have moved closer to the centre of the O_{3} triangle, when compared to the boron aites
occupied at room temperature. The values of the asymmetry parameters for the N sites listed in Table XiV support those ideas. As far as the boron sites K and L are concerned, the quadrupole coupling constants at $-40^{\circ} \mathrm{C}$. aplit, relative to their room temperature values, into one having a larger value and the other having a smaller value. This fact can be interpreted aimilarly as in the case of M sites. On one hand the boron nucleus at the site possessing the larger quadrupole coupling constant has moved further away from the centre of the tetrahedron and on the other hand, the boron nucleus at the site possessing a smaller quadrupole coupling constant has moved closer to the centre of the tetrahedron than thoir correaponding sites at rom temperature. If this hypothesis is true then it implies that the boronoxygen units form electric dipoles in the phase with tho point group 2, and that the reaultant of these individual dipoles must be parajlel to the monoclinic axis.

Although we feel that our results indicate that the boron atome have undergone displacements with respoct to the oxygen atoms, one cannot rule out the possibility that the effects at the boron sites are simply due to the new orientations of the hydrogen atoms. However, the contributions of H atoms to the $\tilde{\mathrm{VE}}$'s at boron sites are likely to be small because the oxygen nearest-neighbours provide a shield to the influence of the next-nearest-neighbours and because hydrogen atoms are both amall and far removed from these sites. Although hydrogen atoms may not contribute appreciably to the reaultant dipole moment per unit cell, they atill may play a very important rôle in the ferroelectricity

Fig. 20. 11 The Tompernture Effoct upon the Satejlite Lines Belongine to the B^{11} Sites K in Colemanite at Seleoted Tomporatures (for $\mathrm{e}_{\mathrm{y}}=35^{\circ}$).

Fig. 27. The Temperature Effect upon the Satellito Lines Belonging to the B^{11} Sites L in Colemonite at Selocted Terperatures (for $\theta_{y}=149^{\circ}$)

in coloranite. They may trigger the ferroolectric transition in a way similar to their action in the $\mathrm{KH}_{2} \mathrm{PO}_{4}$ type of forroelectrics.
V. 4. We shall now discuss the phase transitions in colemanite. The results of tho investigation of the selected set of b^{11} n.t.r. . lines over a temporature range were described in Chapter iV and sumparised in Fig.15. The offects are illustrated in Tigs. 20, 21 and 22, which shou the chances which occurred in representative resonance lines belonging to tho K, L and M sites, respectively, at selected tenperatures over the range room temperature to $-16^{\circ} \mathrm{C}$. As the temperature is lowered, the narrov signals are first broadened which implies a very small splitting, then they are split by a measurable amount and, finally, they separate into two components. It should be noted in particular that the changes in the n.m.r. spectrum occurring at the transition are not due to a gradual grovth of the signals belonging to the ferroolectric phase at the expense of the signal belonging to the centrosymectric phase. This implies that, provided the temperature of the single crystal is uniform, the two phases, the forroelectric and the centrosymatric, never coexdst togethor. In other words, the transition cannot be of tho order-disorder or martensitic type. Tihe fact that the soparation of the signals is at first infinitesimal indicates that, as far as the positions of the atoms are concerned, the tro phases differ only by infinitesinal amount then they are at exactly the transition temporature. Also, the fact that the separation of the signals is not rapid but is brought about gradually ovor a finite tenparature rango
indicates that the transition is of the thermodynamic second-order type.
Incidentally, it was mentioned in Section IV. 4 that the intensities of the lines belonging to sites M_{3}^{*} and $1 \frac{1}{4}_{4}$ were consistently smaller and broader than those belonging to the sites 1_{1}^{*} and 11_{2}^{*}. Since this effect was observed only at temperatures lower then $\mathbf{- 2 0}{ }^{\circ} \mathrm{C}$., its possible explanation may involve the second transition which was discussed in this work, but it is not certain in what way.

The point group of colemanite in the newly discovered phese cannot be other than the triclinic point group l. Now, while this point group admits ferroelectricity, no know crystal possessing this point group has ever been observed to be ferroelectric. Taking into consideration the fact that colemanite has been observed to be ferroelectric right down to $-195^{\circ} \mathrm{C}$. by both Chynoweth (157) and Goldsmith ('56), hence it must be ferroelectric in this newly discovered phase since the trensition temperature occurs between $-38^{\circ} \mathrm{C}$. and $-80^{\circ} \mathrm{C}$. Thus, it appears that colemanite is the only known example of a ferroelectric orystal with point group 1. This phase is also interesting because the ferroelectric axis is not confined by symmetry to any particular crystal direction.

Since it does not seem to have been pointed out in the literature, it may be worth mentioning that colemanite is likely to be enti-ferroelectric at room temperatire. Glide planes and two-fold screv axes, the symmetry elements of colemanite at room temperature, permit the existence of individual dipole moments within the wit cell although, of course, their resultant per unit cell must vanish for the point group

2/m. Nlso, calculations based on the atomic coordinates shon that all the borons are off-centre in their respective 0_{3} triangles and O_{4} tetrahedra but the displacements involved are so small that they may not bo significent. In addition, the variations of the $\Delta \nu$ values plotted in Fig. 16 for the temperature range $52^{\circ} \mathrm{C}$. to Curie point and the roon temperature results support this idea that the boron atons are displaced from the centre of gravity of their oxygen nearest-neighbours. An enumeration of the results described in this thesis nay now be appropriates

1) The point group of colemanite at room temperature has bsen found to be 2/m.
2) The point group of colemenite at $-40^{\circ} \mathrm{C}$. has been found to be 2.
3) The electric field gradient tensors at all $B^{\text {Il }}$ sites in colemanite at room temperature and at $-40^{\circ} \mathrm{C}$. have been completely determined.
4) The results have been partially interpreted in terms of the crystal structure.
5) The ferroelectric transition has been studied thoroughly with the following results:
(i) The Gurie point depends upon the history of the crystal. It probably lies close to $0^{\circ} \mathrm{C}$. in a colemanite crystal froe of strains.
(ii) The transition is not of the order-disorder, or nartensitic, type.

Fig. 23. Typical Satollite Lines Bolonging to the B^{11} Sites M in Colomanito in the Three Phases (for $\theta_{y}=149^{\circ}$).
(iii) The transition is second-order.
6) A new phase in colenanite has ceen discovered. The transition into this phase is characterised by a large thoran hrateresis loop extending beti;een the temperatures of about $-35^{\circ} \mathrm{C}$. to about $-30^{\circ} \mathrm{C}$.
Thus, following are the known phases in colemanite stable in the decreasing temparature scala:
monoclinic monoclinic triclinic
point group 2/m point group 2 point group 1
Fig.23 portrays typical satellite signals belonging to B^{11} N sites at $\theta_{y}=149^{\circ}$ in these three phases.

BEFERDACES

Bersohn, R. J. Chen. Phys. 20: 2505, 1952.
Bloch, F., Hansen, H. I. and Packard, M. Phys. Rev. E9: 37, 1946.
Christ, C. L. An. Jin. 30: 411, 1953.
Christ, C. L., Clark, J. il. and Evains, H. T. Acta Cryst. I2 453, 1954.
Chynoweth, A. G. Acta Cryst. 10: 511, 1957.
Cotts, R. M. and Knight, H. D. Phys. Rev. 96: 1235, 1954.
Das, T. P. and Berboin, R. Yhys. Rev. 102: 733, 1956.
Datars, R. D. M. Sc. Thesis, Mciaster University, Fanilton, Ont., 1950́。
Davisson, J. W. Acta Cryst. 2: 9, 1956.
GoldBmith, G. J. Bull. Am. Phys. Soc., Ser. II 1: 322, 1956.
Megaw, H. D. Ferroolectricity in Crystals, iethuen \& Co., London. 1957.
ISorinoto, N. 1 In. (Japan) 2: 1, 1956.
Petch, H. E., Cranna, it. G. and Volrofi, G. M. Can J. Phys. 31: 837, 1953.

Petch, H. E. and Holuj, F. Abstracts of the Corsmaications at the Fourth Annual Congress of Intornational inion of Grystallographers, 51. 13, 2957.

Portoles, L. Estud. Geol. Inst. Nalada 2: 3, 1947; 7: 21, 1940.
Pound, R. V. Phys. Rev. 79: 635, 1950.
Purcell, E. M., Torrey, H. C. and Pound, R. V. Phys. Rev. 70: 474, 1946.
Sternheimer, R. M. and Poley, H. M. Phys. Rev. 202: 731, 1956.

Volkoff, G. M., Petch, H. E. and Smellie, D. W. L. Phys. Rev. ily 602, 1951.

270, 1952.
Volkoff, G. M. Can. J. Phys. 31: 320, 1953.
Waterman, H. H. and Volkoff, G. M. Can. J. Phys. 33: 156, 1955.
Waterman, H. H. Ph. D. Thesis, University of British Columbia, Vancouver, B. C., 1954.

Whittaker, E. and Robinson, G. The Calculus of Observations, Rlalicie \& Son Ltd., London. 1948.

[^0]: *See "Temperature, Its ineasurement and Control in Science and Industry." Edited by the Americen Instirate of Physice, Table l, p.210.

