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Lay Abstract

Accurate traffic monitoring systems are needed to improve the safety of road users.

These systems allow the intersection to “see” vehicles and pedestrians, providing near

instant information to assist future autonomous vehicles, and provide data to city

planers and officials to enable reductions in traffic, emissions, and travel times. This

thesis aims to design, build, and test a traffic monitoring system that uses a camera

and 3D laser-scanner to find and track road users in an intersection. By combining a

camera and 3D laser scanner, this system aims to perform better than either sensor

alone. Furthermore, this thesis will collect test data to prove it is accurate and able

to see vehicles and pedestrians during the day and night, and test if runs fast enough

for “live” use.
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Abstract

Intelligent Transportation Systems are advanced technologies used to reduce traffic

and increase road safety for vulnerable road users. Real-time traffic monitoring is an

important technology for collecting and reporting the information required to achieve

these goals through the detection and tracking of road users inside an intersection. To

be effective, these systems must be robust to all environmental conditions. This thesis

explores the fusion of camera and Light Detection and Ranging (LiDAR) sensors to

create an accurate and real-time traffic monitoring system. Sensor fusion leverages

complimentary characteristics of the sensors to increase system performance in low-

light and inclement weather conditions. To achieve this, three primary components

are developed: a 3D LiDAR detection pipeline, a camera detection pipeline, and a

decision-level sensor fusion module. The proposed pipeline is lightweight, running

at 46 Hz on modest computer hardware, and accurate, scoring 3% higher than the

camera-only pipeline based on the Higher Order Tracking Accuracy metric. The

camera-LiDAR fusion system is built on the ROS 2 framework, which provides a

well-defined and modular interface for developing and evaluated new detection and

tracking algorithms. Overall, the fusion of camera and LiDAR sensors will enable

future traffic monitoring systems to provide cities with real-time information critical

for increasing safety and convenience for all road-users.
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Chapter 1

Introduction

Smart cities are urban areas that use advanced technology to improve public services

such as transportation, healthcare, and safety [16]. One of the technologies to achieve

these goals is Intelligent Transport Systems (ITS), which provide transportation and

traffic services. By collecting real-time data, smart cities can improve traffic flow by

detecting traffic congestion, reduce travel time, and create safer intersections by iden-

tifying accidents, near-misses, and illegal manoeuvres. Accurate, real-time detection

and tracking are necessary to provide this valuable information to city planners and

officials so they can monitor and validate the impact of their decisions.

One type of ITS is a roadside perception system that can accurately detect and

track objects to monitor traffic and output road-user location and speed, and intersec-

tion occupancy. This information can be shared to accelerate and support technology

such as the autonomous vehicle (AV). Stationary traffic monitoring devices can share

information to help solve the over-the-horizon issue and make roads safer by pro-

viding information outside the perception of a singular vehicle [17]. The roadside

perception systems will be a critical component of the vehicle-to-everything (V2X)
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concept, which utilizes distributed information from multiple sources external to an

autonomous vehicle to increase its safety and ability to function in complex driving

scenarios. To effectively assist AVs, the roadside system must be robust to changing

lighting and weather conditions, and process data in real-time. Figure 1.1 visual-

izes the V2X concept, information is shared between all users of an intersection to

maximize perception and planning capabilities.

Figure 1.1: Visual representation of the V2X concept [1].

Smart cities and traffic monitoring systems will enhance safety, equity, and in-

clusion for vulnerable road users and the public. Aside from assisting AVs, these

systems can be combined with smart traffic lights [18] to improve traffic flow based

on live measurements of traffic density. By dynamically adjusting the timing and syn-

chronization of street lights, queue lengths and congestion can be reduced. This will

also improve air quality and commute times for all road users in the city. Long-term

statistical trends of city traffic can be aggregated to assess the effectiveness of city

policies related to road safety and congestion. Having automated data-collection will

2
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provide data for governments and researchers to model and design better solutions

for traffic related problems.

A smart city can have thousands of intersections equipped with traffic monitoring

sensors, each producing massive data streams. Thus, the monitoring of intersections

should be an online process, where sensor data is processed via edge devices and

only incidents and aggregated intersection statistics are saved for offline processing

and querying. Since edge devices are located near the sensors that provide the data

streams, the financial cost of the computational hardware should also be minimized

due to the number of devices required. This poses an additional constraint on the

underlying algorithms, which need to process the data online while respecting the

computational limits of the hardware. Another benefit to online data processing

is that object detection results preserve road-user privacy, since aggregated results

rather than raw data are transmitted to a database.

Many commercial solutions for traffic monitoring use one or more cameras per

intersection. Vision-based systems offer a mature and low-cost solution with high

accuracy in good lighting conditions. However, poor lighting conditions and inclement

weather reduce their performance. An event as common as nighttime snowfall can

drastically reduce the accuracy and range of these systems. This has led to interest in

Light Detection and Ranging (LiDAR) or combining multiple sensors through sensor

fusion.

Sensor fusion merges information from multiple sensors to generate a more accu-

rate output than either sensor alone. This can include multiple sensors of the same

type or two or more different types of sensors. The goal is to combine complimentary

characteristics from each sensor to provide better accuracy and increased robustness

3
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in difficult environmental conditions and complex scenarios. Common object detec-

tion and tracking sensors include cameras, LiDAR sensors, and Radio Detection And

Ranging (RADAR).

This thesis will explore a camera-LiDAR sensor fusion system for traffic monitor-

ing, with an emphasis on computationally efficient and modular software.

1.1 Motivation and Objectives

LiDAR sensors are increasing in popularity for many applications requiring high-

accuracy three-dimensional measurements. Once restricted to research and develop-

ment projects, LiDAR is successfully used in robotics, mapping, surveillance, and

AVs, further advancing its adoption via increased production volume and reduced

costs. The properties of the LiDAR sensor make it a strong candidate for traffic

monitoring applications.

The primary objective of this thesis is to design, implement, and test an online

multi-object tracking (MOT) system based on camera images and LiDAR point cloud

data for static traffic monitoring applications. The system processes live LiDAR data

directly from the sensors and outputs position, velocity, size, and a tracking identifier

for each object in the region of interest (RoI). The system runs at real-time on modest

computer hardware. Additional objectives include:

• Design and assemble a test fixture for data collection, including a LiDAR and

camera sensor.

• Capture a synchronized dataset of LiDAR point clouds and images in multiple

lighting scenarios.

4
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• Design and implement a modular LiDAR data processing pipeline.

• Implement a baseline algorithm for fusing camera and LiDAR object detections

• Create a set of supporting tools for deploying the system in a real environment.

1.2 Contributions

The main contributions of this thesis include:

1. Design of an end-to-end Camera-LiDAR fusion MOT pipeline for traffic mon-

itoring applications. Algorithms are selected to achieve real-time performance

on modest computer hardware.

2. Implementation of a modular framework with a clearly defined interface for ease

of experimentation. Algorithms can be swapped and run on live or pre-recorded

data.

3. Development of a test fixture for collection of a synchronized LiDAR point cloud

and image dataset. The images are labelled with object detections and track

IDs for pipeline evaluation.

1.3 Overview

This thesis is structured as follows. Chapter 2 provides an introduction and review of

sensor technology for object detection and a comparison between camera, RADAR,

and LiDAR sensors. Then, sensor selection and calibration are discussed. Finally,

5
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datasets are discussed and the CMHT Traffic dataset is introduced. Chapter 3 re-

views neural networks for image classification and object detection. Then discusses

the implementation and evaluation of a camera-based detection pipeline. Chapter 4

provides a literature review of 3D object detection in LiDAR point clouds and then

details the theory and implementation of the object detection module. Chapter 5

reviews LiDAR object classification and then discusses the algorithm design. Chap-

ter 6 includes a literature review of multi-object tracking and then explains the data

association and tracking method. Then camera and LiDAR tracking pipelines are

evaluated. Chapter 7 provides a literature review of sensor fusion approaches and

then details the camera-LiDAR fusion method. Chapter 8 details the implementa-

tion of the system, including the frameworks and tools used. Chapter 9 provides

an overview of accuracy and runtime performance evaluations. Chapter 10 provides

concluding remarks and possible future work.

6



Chapter 2

Sensors and Calibration

2.1 Introduction

This chapter will explore the role of sensors in MOT systems. Sensors convert in-

formation from their environment into signals that can be consumed and processed

by a computer algorithm. The choice of sensor(s) is critical to system performance

since each type of sensor varies in accuracy, cost, and robustness. Camera, RADAR,

and LiDAR are common sensors that are currently used for traffic monitoring and

other systems that require accurate tracking of objects. This chapter will begin by

examining each sensor, including strengths, weaknesses, and example output. Then

comparisons will be drawn between each type of sensor. The chapter will conclude

with a discussion on datasets and data collection.

There are many ways to categorize each sensing modality, such as the dependence

on external energy for capturing measurements. Passive sensors function on the

energy that already exists in the environment, and active sensors emit energy to

capture measurements.

7
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2.2 Cameras

A camera is a passive sensor that can be classified by the wavelength that it measures,

and can be used in multiple configurations, such as monocular or stereo. Modern

digital cameras use a lens to focus light onto an image sensor that converts the light

into an electrical signal. The signals vary based on intensity and colour and are

processed into a digital image. A digital image is a two-dimensional array of pixels

(picture elements). The pixels are usual 8-bit unsigned integers that represent the

discretized amplitude at that point. Images contain rich information including colour,

texture, shape, and context of objects. Images are also dense because they have a high

resolution. Challenges in image processing include viewpoint variation, occlusion,

scale, deformation, and motion blur. While these problems can be trivial for humans,

computer algorithms can be significantly impacted if not designed properly. Figure

2.1 demonstrates the effect of scale, where two objects with the same physical size

are scaled based on their distance from the sensor, posing an additional challenge for

detecting objects as the same object is represented with a different number of pixels

depending on its distance.

Figure 2.1: Example of different object scales in an image when objects are
approximately the same size in 3D space.
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Red, green, and blue (RGB) cameras use digital optical components and colour

filters to convert the visible spectrum of light entering the sensor into images with

three channels for red, blue, and green colours. These tristimulus colours are a stan-

dardized method of representing 224 colours via three 8-bit channels. These sensors

are inexpensive, produce high-resolution images, and are capable of high frame rates.

These characteristics make RGB cameras a popular choice for many applications.

However, they perform poorly in low light conditions and inclement weather such as

fog and snow, since these conditions limit the amount of energy that the camera can

passively measure. Figure 2.2 demonstrates the blooming effect when a bright light

source is present in a dark scene, this can cause an image-based object detector to

fail. Additionally, extremely bright scenes or large changes in lighting can produce

artifacts including shows, highlights, or blurring. Furthermore, images are inherently

two-dimensional and provide no depth information.

Figure 2.2: Example of camera sensitivity to changes in lighting, shown by vehicle
headlamps.
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2.2.1 Infrared and Thermal Cameras

IR cameras function similarly to RGB cameras, operating in a different part of the

light spectrum, and detecting near-infrared (NIR) light reflected from objects. Figure

2.3 illustrates the differences in wavelength for RGB and IR cameras and provides

an example image from each. IR cameras function better in low-light conditions and

are often combined with IR light-emitting diodes (LEDs) for nighttime applications.

Since the infrared wavelength is larger than visible light, the image sensor must use

larger detectors, resulting in fewer pixels per image. This leads to lower resolutions

and a lower sensitivity compared to RGB cameras. Thermal cameras measure emitted

in the medium and long IR range and suffer from additional issues, such as thermal

crossover and blooming. Thermal crossover occurs when unique objects have a neg-

ligible temperature delta and differentiation between these objects becomes difficult.

Thermal blooming occurs when an object or the environment emits heat, causing

blurring and distortion of the image.

Figure 2.3: Wavelengths of the RGB and NIR cameras [2].
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2.2.2 Depth Cameras

A monocular camera system uses a single camera sensor for capturing images. The

image sensor only records a two-dimensional projection that lacks depth informa-

tion. Since object tracking is inherently a three-dimensional problem, it can be more

difficult to accurately localize three-dimensional objects in the image plane.

In addition to RGB channels, depth cameras provide an additional channel of

depth information. Common methods for acquiring a depth image include structured

light, time-of-flight (ToF), and stereo cameras. Structured light and ToF cameras

require a precise external source of light to determine depth information, these ap-

proaches are affected by lighting conditions and surface material. Stereo cameras

function much like the human eyes, by capturing the scene with two precisely offset

perspectives. Since the exact positioning of the lenses is known, the stereo photogra-

phy technique can be used to create a depth image that includes a third dimension

for each pixel. All depth cameras have a limited working range, which limits their

usefulness for outdoor detection applications.

2.3 LiDAR

LiDAR is an active sensing technology that uses laser beams to accurately measure

distance. The sensor uses the reflection of the laser beam from distant objects to

measure the range and other properties such as reflectance and intensity [19].

LiDAR acquires 3-dimensional laser scans of their environment by sweeping an

array of laser beams. The number of beams determines the vertical resolution, thus

affecting the scan density and increasing the amount of data processing required.
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Common values include 32, 64 and 128 beams.

A point cloud is a set of points with discrete Cartesian x, y, z values. For LiDAR

sensors, each laser beam measures a single point that contains the (x, y, z) position.

One sweep of the laser is called a frame, and collectively, the points within the frame

form a point cloud. The size of the point cloud size is dictated by the vertical and

horizontal resolution of the sensor. Some LiDAR provide additional information per

point, such as, intensity and reflectance. Figure 2.4 shows an example point-cloud

where the points are coloured using the intensity data.

Figure 2.4: Example of a point cloud generated from a LiDAR sensor.

LiDAR data can be in the form of an organized or unorganized point cloud.

Organized point clouds use the x, y values to create a multidimensional array similar

to images, which allows algorithms to take advantage of the spatial relation between

points in the array. Unorganized point clouds contain all the points in a 1-dimensional

vector.

Since LiDAR produces an accurate 3D representation of their environment, objects

are represented by an approximation of their true size regardless of the distance from

the sensor. However, since the angle of the laser beams is fixed, the density of the
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point cloud decreases proportionally to the distance of the objects being measured.

Figure 2.5 demonstrates this, when the same vehicle is measured further away from

the sensor, the number of measurements decreases from 7 to 3.

Figure 2.5: Visualization of beam divergence for a LiDAR sensor. The same size
object will be represented by a number of points inversely proportional to the

distance from the sensor.

The type of material effects an object’s reflectivity and LiDAR detectability. Ad-

ditionally, the angle of the object’s surface to the sensor has a strong influence on

detection. Figure 2.6a exemplifies the reflectance of a material, Rλ as a function of

the angle of incidence θ. The curve shows that objects more perpendicular with the

sensor will have a higher reflectivity. Figure 2.6b demonstrates that for a range of

distances, the reflectance of an object is critical to its detection.
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(a) Exemplary reflectance Rλ curve
depending on the incidence angle θ [20].

(b) Exemplary reflectance limits function
RL(r), depending on range r [20].

Figure 2.6: The effect of reflectivity on LiDAR performance.

2.3.1 Mechanical LiDAR

Mechanical LiDAR sensors operate by rotating internal components to acquire a 360-

degree scan. The field-of-view (FoV) of a mechanical LiDAR can be seen in Figure

2.7, where 45 degrees in the vertical plane is swept 360 degrees horizontally. Since

it has moving parts, mechanical LiDAR is heavier, uses more power, and tends to

have a larger package size. Figure 2.7 is an Ouster OS1-64. The sensor has 64 laser

beams, and takes 2048 steps for each rotation, producing a laser scan with 2048× 64

points. LiDAR point cloud density is relatively low compared to an HD camera with

1920× 1080 resolution, but has a higher density than a RADAR.

Figure 2.7: Diagram of the FoV of a mechanical LiDAR.
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2.3.2 Solid-State LiDAR

Solid-state LiDAR uses micro-electromechanical systems (MEMS) technology to ac-

quire 3D scans without conventional moving parts. The benefit of using MEMS

includes reducing weight, size, and power consumption. The FoV of solid-state Li-

DAR sensors vary depending on the task they are designed for. Some models offer

a configurable resolution to balance density and computational effort. Solid-state

LiDAR are capable of significantly denser point cloud output. Figure 2.8 shows the

Blickfeld Cube 1 solid-state LiDAR sensor, which offers a maximum of 400 vertical

beams, a configurable resolution, and a FoV of 70× 40 degrees. Due to its lower en-

ergy consumption, the Blickfeld Cube 1 uses Power-Over-Ethernet to transmit data

and provide power using a single cable.

Figure 2.8: Blickfeld Cube 1 outdoor solid-state LiDAR.

2.3.3 Laser Sources and Measurement

There are two popular wavelengths used in LiDAR laser sources, 905 and 1550

nanometers. Table 2.1 details the differences between them. Furthermore, there

are two methods of measuring distance, ToF and Frequency modulated continuous

wave (FMCW).
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Table 2.1: Comparison of LiDAR laser wavelengths.

Property 905 nm 1550 nm

Cost Lower Higher

Range Lower Higher

Power Consumption Lower Higher

Accuracy Lower Higher

Weather Penetration Better Worse

Maturity Older Younger

Maximum Permissible Exposure Lower Higher

Best Use Case Shorter range Long-Range, fair-weather

Time of Flight

Pulsed ToF LiDAR use discrete pulses of a single-frequency laser to generate a dis-

tance measurement. A pulse is emitted from the sensor, and the time for it to bounce

back to the receiver is recorded. The distance is calculated as d =
ct

2
, where c is

the speed of light. Figure 2.9 shows how the emitted and returned beam travels

2d. Given the distance and vertical and horizontal angles of the laser beam, the 3D

Cartesian coordinate can be determined. ToF technology is used in both mechanical

and solid-state sensors.
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Figure 2.9: A diagram of the ToF method.

Frequency Modulated Continuous Wave

Frequency-modulated continuous wave (FMCW) LiDAR sensors uses a continuous

coherent laser source which varies its frequency [21]. The received waves are compared

to the original signal to determine the distance and velocity for each point. Thus,

FMCW LiDAR are four-dimensional sensors that produce a (x, y, z, v) measurement

for each point and may include additional data such as intensity or reflectivity. The

spatial density of these sensors can be significantly greater than standard ToF-based

LiDAR. FMCW is the more expensive technology since it is less mature and requires

more complex hardware.

2.4 RADAR

RADAR is an active sensing technology that uses electromagnetic frequencies, typ-

ically between 76 and 81 GHz, to measure speed and distance. For applications

that perform dynamic object tracking and detection, such as autonomous vehicles or

traffic monitoring, mm-wave RADAR is a popular choice [22]. RADAR produces a

(x, y, z, v) per point, where v is the radial velocity calculated from the Doppler effect.

RADAR point clouds have a lower density relative to LiDAR due to a lower angular

resolution. RADAR is robust to lighting because mm-waves are invariant to changes
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in ambient lighting conditions. It is also robust to weather conditions since mm-wave

RADAR is not attenuated by moisture or particulates in the air such as smoke or dust

[23]. A drawback to RADAR is the clutter and noise the sensor produces, which can

lead to false defections. Furthermore, most commercially available RADAR produce

outputs for moving objects only, which complicates the detection of static objects in

a traffic scene, such as a stopped vehicle.

2.5 Sensor Comparison

Figure 2.10 shows the characterization of three common sensors used for object detec-

tion and tracking. From the shape of the graph, it can be seen that combining camera

and RADAR or camera and LiDAR would be beneficial. The density and richness in

digital images are complimentary to the sparser RADAR and LiDAR point clouds,

which provide 3D measurements and depth.

Figure 2.10: A comparison of Camera, RADAR, and LiDAR.

2.6 Sensor Selection

This section will describe the sensors that have been selected for this thesis.
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2.6.1 LiDAR

An Ouster OS1-64 LiDAR sensor was used due to its technical specifications and

availability in the Centre for Mechatronics and Hybrid Technologies (CMHT) lab-

oratory. It has 64 beams with a maximum resolution of 2048 × 64 points, and a

maximum range of 120 meters. Table 2.2 provides the full technical specifications of

the sensor. An important consideration is the sensor range, as the maximum range

can be affected by the target reflectivity and angle of the target surface relative to the

sensor. Thus, the Ouster OS1 range will be sufficient for capturing city intersections.

Table 2.2: Specifications for the Ouster OS1-64 Gen. 1 high resolution imaging
LiDAR [14].

Specification Value

Range
120 m @ 80% reflective Lambertian target

40 m @ 10% reflective Lambertian target

Range Resolution 1.2 cm

Vertical Resolution 64

Horizontal Resolution 512, 1024, 2048 (configurable)

Field of View
Vertical: +16.6 to -16.6 (32.2 deg)

Horizontal: 360 deg

Rotation Rate 10 to 20 Hz (configurable)

# of Returns 1 (strongest)

Laser Wavelength 850 nm

Points per second 1,310,720

Data Per Point Range, intensity, ambient, reflectivity, angle, timestamp

Data Connection UDP over gigabit Ethernet
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(a) The Ouster OS1-64 used for data
collection with a synchronized camera

mounted on a tripod. (b) The sensor in the testing location.

Figure 2.11: The experimental setup.

2.6.2 Camera

A Logitech Brio HD Webcam is used to collect image data of the city intersections.

Table 2.3 outlines the resolution, FoV, maximum frame rate, and other specifications.

This camera was selected for its size, simple USB interface, and universal mounting

option. The proposed fusion system uses images with a resolution of 1920 × 1280

collected at 10 Hz.
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Table 2.3: Specifications for the Logitech Brio HD Webcam.

Specification Value

Resolution

4090× 2160 (30 FPS)

1920× 1080 (30, 60 FPS)

1280× 720 (30, 60, 90 FPS)

Field of View Diagonal: 90 deg

Focus Type Autofocus

Mounting Type 1/4”-20 thread

Weight 64 grams

2.6.3 Sensor Platform

Figure 2.11a shows the experimental setup that includes an Ouster OS1-64 LiDAR

sensor and Logitech Brio camera to collect synchronized images and point clouds.

Both camera and LiDAR capture data at 10 Hz, although they are not explicitly

synchronized via hardware or software trigger. The timestamps between the image

and point cloud pair are approximately 10 ms. Figure 2.11b shows the data collection

location on top of the McMaster Automotive Resource Centre (MARC) building,

approximately 12 m above the road surface, the sensors are rigidly mounted to a

tripod for ease of repositioning and data collection.

2.7 Calibration

This section provides an introduction to sensor calibration and its applications. In-

trinsic calibration relates to the internal parameters of the sensors. And extrinsic
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calibration is the relation between sensor coordinate systems.

2.7.1 Intrinsic — Camera

Intrinsic camera calibration is required to localize the camera in 3D space and to

project 3D points into the 2D image plane. The intrinsic calibration is not dependent

on the scene and thus can be calculated once for a given camera and fixed resolution.

The pinhole camera model provides a first-order approximation for the relation

between a point in 3D space and the 2D image plane. Equation 2.7.1 defines the

relation between a 2D point in the image, p, and a 3D point in the camera frame, Pc,

via the camera projection matrix, K. It assumes the camera that is used to take the

image follows the ideal pinhole model, and it does not take into account distortion or

blurring caused by the sensor. For most computer vision applications, this assumption

does not have a large impact on the accuracy of the final result. Figure 2.12 depicts

the pinhole camera model, where f is the distance along the optical axis from the

origin to the image plane.

p = KPc (2.7.1)
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Figure 2.12: The pinhole camera model [3].

Since the optical image sensor is not perfectly aligned with the origin of the

image, the camera projection matrix, K, takes the form defined in Equation 2.7.2

with α = fmx and β = fmy. The variables mx and my are the ratio of pixels per

unit of distance. And cx, cy is the translation to align the optical centre with the

origin of the reference frame.

K =













α 0 cx

0 β cy

0 0 1













(2.7.2)

A common calibration procedure involves taking multiple images with a checker-

board pattern of known dimensions in multiple orientations. The edges and corners

are detected, and with the assumption that the board has perfect lines, the distortion

within the image can be calculated. OpenCV [3] provides a convenient method of

camera calibration. Intrinsic camera calibration only needs to be performed once per

camera per the selected resolution.
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2.7.2 Intrinsic - LiDAR

LiDAR sensors are calibrated at the factory, and most algorithms using LiDAR data

do not need access to these parameters. However, it is common for firmware to

support functions for querying these values [14].

2.7.3 Extrinsic

In roadside traffic monitoring systems, a sensor can be mounted at arbitrary positions

overlooking an intersection. Furthermore, systems that fuse multiple sensor data

require the extrinsic transformation between sensor origins, since the sensors can be

arbitrarily mounted relative to one another. Extrinsic calibration refers to obtaining

the rotation and translation components of a homogeneous transformation matrix

between the reference frames or coordinate systems.

For cameras, the pixel coordinate system has the origin in the top left corner of the

image, using the Z-axis out of the image plane, the X-axis for horizontal measurement

and the Y-axis for vertical measurement. Figure 2.12 illustrates the pixel coordinate

system as shown by u, v. The camera coordinate system is denoted by Xc,Yc,Zc,

and a 3D point in the world coordinate frame as Xw, Yw, Zw.

The LiDAR coordinate system follows the right-hand rule and uses the Z-axis

for height, the X-axis for the front of the sensor and the Y-axis for the left face

of the sensor. Figure 2.13 shows both sensors and the relative position between the

coordinate frames. The transformation, LTC , defines the transformation of the camera

frame relative to the LiDAR frame. Equation 2.7.5 shows how LTC is constructed,

measurements from the physical system provide the values for each parameter.
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Figure 2.13: The coordinate frames for the camera (left) and LiDAR (right).

Two rotations and a translation are required to align the sensor origins

LTC =Rot(X, θ1)× Rot(Z, θ2)× Trans(dx, dy, dz) (2.7.3)
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(2.7.5)

where θ1, θ2 are rotation angles and dx, dy, dz are the translation components.
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2.8 Datasets

Although traffic monitoring systems are designed for online data processing, recorded

datasets are useful for development and comparing algorithm performance.

2.8.1 Public Datasets

Public datasets with stationary roadside LiDAR data are limited compared to the

availability of autonomous driving datasets. Additionally, LiDAR data lacks porta-

bility of cameras due to the variability between manufacturers, number of beams,

noise characteristics, and scanning patterns. This complicates research and commer-

cial development, since the sensor used in the dataset collection should match the

sensor used in the algorithm development and deployment.

For AV research there are many popular high-quality datasets such as NuScenes

[24], Panoptic Nuscenes, [25] KITTI [26], Waymo [27], PandaSet [28], and A2D2 [29].

These datasets use sensors mounted on a moving vehicle, which produces very differ-

ent data compared to a static sensor mounted greater than 5 meters from the ground.

These differences include point cloud density distribution, object occlusion, back-

ground points, and mounting height. Thus, they provide limited utility for roadside

traffic monitoring systems [18].

Recently, a few datasets have been released with static roadside LiDAR and cam-

era data. Table 2.4 shows the details of the A9 [30], A9-I [31] LUMPI [32], DAIR-

V2X [33], IPS300+ [34], and BAAI-VANJEE [35] datasets. Currently, only the A9-I

dataset uses the same Ouster OS1 sensor available in the CMHT laboratory.
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Table 2.4: Details for stationary roadside datasets.

Name Year LiDAR Annotated Frames Conditions Scenario Sensor Height

A9-Dataset 2022 Ouster OS1-64 5300 frames Day, Snow, Fog Highway, Urban 7 m

BAAI-VANJEE 2021
32L-LiDARp-R

32-beam
2500 frames Day, Night, Cloud, Rain Urban 4.5 m

DAIR-V2X I ∗ 2022 300-beam 10084 frames Day, Night, Rain, Fog Urban -

IPS300+ ∗∗ 2022
Robosense Ruby-Lite

80-beam
14198 frames Day, Night Urban 5.5 m

LUMPI 2022
VLP-16, HDL-64,

Panda-64, PandaQT
145 minutes Day, Cloud, Haze Urban -

∗ 40% of data from roadside perspective, 60% from vehicle perspective.

∗∗ Buses and trucks are sparsely represented.

2.8.2 CMHT Traffic Dataset

A custom dataset was collected for evaluating the system presented in this thesis.

Three data collection locations were used to provide a realistic static scenario for

traffic monitoring that a system would experience when deployed in the field. The

rooftop location is approximately 12 meters above the road surface on the NE corner

of the MARC building, facing Longwood Road South in the NNE direction. Figure

2.14a shows the data collection setup on the MARC rooftop, containing a laptop,

sensors, and a tripod. The first roadside location is 3 meters from the road surface

with a tripod on the rooftop of a sedan facing SSW on Longwood Road South.

Figure 2.14b shows the first roadside location during nighttime recording. The second

roadside location is on Frid Street, facing Longwood Road South. Table 2.5 provides

an overview of the sequences that were labelled with 2D bounding boxes and track

IDs. There are 6 sequences that cover day, dusk, and night lighting scenarios.
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May10 R5 andMay10 R7 contain data from a sunny afternoon, with a medium-

low traffic density. There is some slight occlusion from the streetlight, but overall

these two sequences are considered easy.

Dec7 R1 was recorded in the evening during rush hour on a cloudy winter day.

This sequence contains many detections due to the high traffic density, although the

scene is darker, the lighting and quality is high. This sequence is considered easy.

Dec14 R1 was recorded at night, with a medium traffic density. Due to the low

sensor height of 3 meters, vehicles may occlude each other, which gives this sequence

a medium difficulty.

Oct18 R1 and Oct R9 contain nighttime data with a medium traffic density.

Due to the low sensor height (3 meters) and multiple occlusions in the RoI, these

sequences are hard.

(a) The data collection setup on the MARC
rooftop, 12 meters above the road surface.

(b) The roadside data collection setup, 3
meters above the road surface.

Figure 2.14: The data recording locations (a) MARC rooftop, (b) roadside on
Longwood Road South.

An ideal dataset would contain snow, rain, and other challenging conditions, how-

ever, the exposed nature of the laptop during data collection limited these opportu-

nities. Furthermore, rooftop access to the MARC building is restricted to working

hours and during fair weather.
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Table 2.5: Overview of the CMHT Traffic Dataset.

Name Conditions
Mounting
Position

Frame
Count

Detection
Count

May10 R5 Day, sunny. Rooftop (12 m) 186 370
May10 R7 Day, sunny. Rooftop (12 m) 65 192
Dec7 R1 Dusk, cloudy. Rooftop (12 m) 350 2071
Dec14 R1 Night, clear. Roadside 2 (3 m) 233 663
Oct18 R1 Night, clear. Roadside 1 (3 m) 200 633
Oct18 R9 Night, clear. Roadside 1 (3 m) 115 348

2.9 Summary

This chapter covered current sensing technology for traffic monitoring and compared

camera, RADAR, and LiDAR sensors. The details of the selected sensors are detailed

and intrinsic and extrinsic calibration is explained. Finally, existing public datasets

for traffic monitoring are reviewed and the CMHT Traffic dataset is presented.
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Chapter 3

Camera Object Detection

3.1 Introduction

The image processing pipeline aims to detect and classify relevant objects in consec-

utive images from a video stream. This chapter will review image classification and

object detection with supervised neural network techniques. And then describe and

evaluate a camera-based detection pipeline.

3.2 Background

This section will introduce the background required for object detection in images.

3.2.1 Artificial Neural Networks

The artificial neural network (ANN) is loosely based on the idea of biological neurons.

Equation 3.2.1 shows the output of an artificial neuron, which is represented by

the sum of its inputs, each multiplied by a weight to represent the strength of the
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connection with an additional constant. The output, z, is passed to a non-linear

function known as the activation function. The term machine learning (ML) refers

to the procedure of estimating the parameters in an ANN to perform a task [36].

Learning is enabled by backpropagation and an optimization algorithm.

z =
∑

i

wixi + b (3.2.1)

A Feedforward Neural Network (FNN) is a type of ANN where input signals are

propagated in one direction without cycles. Varying the number of neurons in a

layer (width) and the number of layers (depth) of an ANN affects its accuracy for a

specific task. Layers between the input and output are called hidden layers, as they

can contain an arbitrary number of neurons. Since neurons are passed through an

activation function, increasing the number of hidden layers affects the complexity of

an ANN’s decision boundaries. Figure 3.1 shows a simple feedforward ANN with 2

input neurons, a hidden layer with a width of 4, and 1 output neuron.

Input #1

Input #2

Output

Hidden
layer

Input
layer

Output
layer

Figure 3.1: Feedforward Neural Network diagram.
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Activation Functions

Non-linear activation functions allow an ANN to produce non-linear outputs and can

be categorized as saturated or non-saturated [37]. Saturated functions have bounded

outputs, and non-saturated functions have non-finite bounds. The Sigmoid and hy-

perbolic tangent functions are popular saturated activation functions, shown in Fig-

ures 3.2a and 3.2b. Commonly used examples of non-saturated activation functions

include the Rectified Linear Unit (ReLU) [38] and Leaky-Rectified Linear Unit [39].

Non-saturating functions are critical for increasing the learning efficiency of deeper

networks. They aid backpropagation by maintaining a constant rate-of-change, even

when input values are large, compared to saturating functions that have a diminishing

slope for large values.

Backpropagation

Backpropagation is a method of computing the gradient of a loss function with respect

to the parameters of a neural network. Hinton et al. popularized backpropagation

for neural network training applications [40]. Computing the gradient of a loss func-

tion begins with a forward pass, or inference of the network with a training sample.

Starting from the output layer, the loss is multiplied by the derivative of the previous

layer and the activation function using the chain rule. This process is repeated up to

the input layer.

Once the gradient of the loss function is computed, it can be passed to an opti-

mization function that determines the new values of each parameter in the network

to reduce error for that training sample.
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(c) ReLU function, f(x) = max(0, x).
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(d) Leaky-ReLU function,

f(x) =

{

x if x ≥ 0

αx if x < 0
.

Figure 3.2: Common activation functions.

3.2.2 Evaluation Metrics

Metrics are critical to ML, since they are used in the loss function. Moreover, metrics

are required to quantitatively compare multiple strategies for the same task. This

section will cover some metrics for classification and visions tasks.

Precision and Recall

There are four possible results for a binary classification task: true positive (TP),

true negative (TN), false positive (FP), and false negative (FN). Precision and recall
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for a classifier are defined as:

Precision =
TP

TP + FP
(3.2.2)

Recall =
TP

TP + FN
(3.2.3)

where recall is the proportion of positive predictions and recall measures the pro-

portion of correct predictions. There is a trade-off between precision and recall —

increasing one can reduce the other. Plotting a precision-recall curve and estimating

the area under the curve accounts for this tradeoff when comparing model perfor-

mance.

Intersection over Union

The Intersection over Union (IoU) provides a measure of overlap between the pre-

dicted bounding box and the ground truth. IoU is also used in the loss function for

training bounding box regression. Figure 3.3 shows the family of IoU metrics, includ-

ing the Generalized Intersection over Union (GIoU) and Distance Intersection over

Union (DIoU), which were proposed to speed up convergence and regression training

[4].
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Figure 3.3: Diagram of IoU, DIoU, GIoU [4].

GIoU adds an area, D, to the calculation to eliminate the vanishing gradient

problem when the boxes do not overlap, but it can still degenerate to IoU. DIoU

adds the Euclidean distance of the centroids to the loss, which assists convergence by

minimizing the centre distances directly.

Mean Average Precision

Mean Average Precision (mAP) is popular for evaluating object detection models.

To calculate mAP, often called average precision (AP), an IoU threshold is applied

to each detection to determine if it is a TP. Then the area under the precision-recall

curve is calculated. The results for each class are averaged to determine the final

mAP score. Some calculations use the average results from multiple IoU thresholds

to evaluate the model at different levels of localization accuracy.

There are variations between mAP calculations for benchmark datasets. The

Microsoft Common Objects in Context (COCO) [41] dataset uses 101 interpolated

points along the precision-recall curve and averages multiple IoU values from 0.5

to 0.95 to compute AP. This calculation is more complex but provides fine-grained

performance metrics. The KITTI dataset [26] first separates the evaluation dataset
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into easy, moderate, and hard based on factors such as distance and occlusion. Then

the mAP is calculated separately for the three groups using multiple IoU thresholds.

3.2.3 Non-Maximum Suppression

Non-Maximum Suppression (NMS) is a post-processing step for object detection that

eliminates redundant detections with the goal of retaining a single bounding box per

object. A common NMS algorithm method begins with the detection with the highest

confidence score, then compares the IoU of the other detections. If the IoU is greater

than a set threshold, that detection is removed. All detections that overlap with a

more confident detection are removed. The performance of NMS relies on the IoU

threshold and will vary depending on the needs of the application. A low threshold

will increase the number of detections, but may increase the number of FPs. A high

threshold may eliminate detections for similar objects that are very close together in

an image.

3.2.4 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a subset of neural networks that employ

kernels to map inputs into feature maps. Each kernel is learned during the training

of the CNN, compared to traditional hand-crafted features. Equation 3.2.4 shows 2D

discrete convolution given a l× l kernel, H. In computer vision applications, common

kernel sizes are 3×3, 5×5 and 7×7. The convolution result is passed to an activation
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function.

y(i,j) =
l

∑

n=1

l
∑

m=1

H(n,m)x(i+n,j+m) (3.2.4)

Figure 3.4a demonstrates the application of a convolutional layer, where image

resolution is traded for feature map depth, dc1 which is proportional to the number

of kernels used, kc1.

To improve network efficiency, a technique known as pooling is employed to reduce

layer sizes. Pooling layers downsample the information by retaining just one value

from a kernel, usually the average or maximum value. A common pooling layer will

retain the maximum value of a 2×2 kernel with a stride of 1. Figure 3.4a demonstrates

the dimension reduction in layer when wp1 =
wc1

2
, hp1 =

hc1

2
. Max pooling functions

do not have trainable parameters.

After a series of convolution and pooling layers, known as a convolutional back-

bone, the output of the final set of feature maps is flattened and attached to the

classifier head, usually a fully connected ANN. Figure 3.4b shows the dimensions of

the feature map dictating the input size of the ANN, hp4 × wp4 × dc4 = nF latten.
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(a) Visualization of convolution, activation, and max pooling operations [42].

(b) Visualization of the convolutional backbone to ANN transition [42].

Figure 3.4: Details of a CNN architecture.

CNN structures are powerful because they learn hierarchical and spatial features

from images and are robust to small changes in positions and distortion [43]. Many

state-of-the-art image classifiers and object detectors employ a convolutional back-

bone in their network architecture.
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3.2.5 Image Classification

Image classification is a computer vision task that takes an entire image and assigns

a class. It is a building block for more complex tasks such as object detection. This

section will highlight important image classification networks.

AlexNet

AlexNet [5] ignited a wave of research in deep learning for image classification in

2012 when it outperformed every method from the 2010 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [36]. AlexNet employed a new method of regular-

ization, called dropout, in the fully connected layers to prevent over-learning. The

authors showed that using a ReLU activation function speeds up CNN learning. Fig-

ure 3.5 demonstrates that ReLU reaches a 25 % training error approximately 30

epochs before tanh, which is a significant decrease. By combining a 63 % accuracy

in the ILSVRC-2010 and reducing overfitting and training time, AlexNet popularized

the ReLU function and deep learning for image classification.

Figure 3.5: Training error versus time for ReLU (solid line) and tanh (dashed line)
activation functions [5].
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VGG

The VGG [44] CNN architecture builds off of AlexNet by increasing depth and se-

lecting a 3× 3 kernel compared to 11× 11. This benefits the efficiency and training

time of VGG over AlexNet by reducing the number of parameters by an order of

magnitude. Two variations of the VGG architecture were released, containing 16 and

19 convolutional layers. Figure 3.6 shows the VGG16 architecture.

Figure 3.6: VGG16 architecture [6].

ResNet

The performance improvement between AlexNet and VGG networks may suggest

that increasing the depth of a network will increase its performance, however, there

is a limit. Figure 3.7 shows the training and test error of a 56-layer CNN is notice-

ably higher compared to a 20-layer variant. This effect is attributed to two issues,

the vanishing/exploding problem [45] and accuracy degradation. First, the vanish-

ing/exploding gradient problem is a disappearance or explosion of the variance of the
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backpropagated gradient. This can occur in deep networks, which can potentially

destabilize or slow training. However, this issue can be mitigated with normalized

initialization [45]. Second, a degradation in output accuracy in larger networks can

be seen in Figure 3.7, where errors for the deeper networks converge to a larger error.

Figure 3.7: Training and Test error for 20-layer and 56-layer networks [7].

He et al. proposed the ResNet [7] architecture and a residual learning framework.

Figure 3.8 shows the “shortcut-connections” or “skip-connections”, which perform an

identity mapping from one layer to another. The result of these skip-connections is

faster convergence for model training and mitigating accuracy degradation in deeper

networks.

Figure 3.8: Example network architectures. Top: Residual network with
skip-connections. Bottom: Plain network. [7].
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3.2.6 2D Object Detection

Object detection is a multitask problem, requiring the localization and classification

of an arbitrary number of objects in an image. Traditional image processing methods

use a sliding window and hand-crafted features for each position in the image. Then

an ML classifier would determine if the current window contains an object of a specific

class [46]. These traditional approaches have challenges when the number of classes

grows. Deep learning is a popular approach to object detection.

Object detectors can be classified as one-stage or two-stage. One-stage detectors

regress bounding boxes and classify detections in a single step. They are generally

faster because of fewer parameters, and are more suitable for real-time systems. Two-

stage detectors first create region proposals, then classify and regress bounding boxes.

The following section will outline important networks from these two categories.

Two-stage Detectors

The Region-based CNN (R-CNN) family of networks includes R-CNN [47], Fast R-

CNN [48], and Faster R-CNN [49], which are popular two-stage object detection

models that successively improve inference and training speed. R-CNN uses a CNN

for feature extraction for each region proposal generated via the selective search algo-

rithm [50], then uses a traditional ML classifier. Fast R-CNN introduces a multitask

head that combines classification and bounding box regression, which increases train-

ing efficiency [42]. Additionally, Fast R-CNN improves speed and performance by

computing an image-wide shared feature map instead of recomputed features per

proposal. However, Fast R-CNN still relies on the slow external selective search al-

gorithm for region proposal. In 2015 Faster R-CNN introduces the Region Proposal
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Network (RPN), which is a purpose built replaces the more general selective search

algorithm. The RPN is a specialized network that re-uses the same feature map to

generate region proposals. Faster R-CNN is end-to-end trainable, which is faster and

more efficient than composing multiple components. Overall, Faster R-CNN is 245

times faster than R-CNN [51]. Figure 3.9 shows the evolution of the R-CNN family,

where 3.9a is a composite of three independent components, compared to the two and

one components found in 3.9b and 3.9c respectively.

(a) R-CNN diagram [47].

(b) Fast R-CNN diagram [48]. (c) Faster R-CNN diagram [49].

Figure 3.9: R-CNN family diagrams.

One-stage Detectors

One-stage detectors aim to achieve real-time and accurate results, by passing the

input once through the network. Real-time refers to inference speeds of 20 FPS or

greater.
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MethodMethod

Figure 3.10: Example anchor box set [8].

Anchor boxes enable an object detection network to process an entire image

at once. Instead of a sliding window approach found in two-stage detectors, anchor

boxes for each class are spatially mapped from output to input. The anchor boxes are

an a priori estimate of object locations, and through the training process, the network

learns to adjust the size and location of the anchor boxes to make predictions. Anchor

boxes should be designed to be similar to the scale and aspect ratio of the expected

objects to increase accuracy. Figure 3.10 shows a set of anchor boxes that would be

spatially distributed throughout a feature map [8]. Furthermore, anchor boxes are

necessary for images because of the scale ambiguity of objects with different distances

from the sensor [52].

The You Only Look Once (YOLO) family of networks are extremely popular for

their speed, accuracy, and generalizability. The first YOLO network [53] was proposed

in 2016, named YOLOv1 in this thesis. To perform object detection in one-shot, the

feature map produced by the 24-layer convolutional backbone is divided into a S×S

grid. For each grid element, B bounding boxes and confidence scores are predicted

per class. NMS is used to remove redundant detections. YOLOv1 uses a three-part

loss function, consisting of localization, confidence, and classification losses. There

are three primary drawbacks of this network. First, there is a limit of B objects of
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each class that can be detection in each cell, thus multiple nearby objects could be

ignored. Second, aspect ratios not found in the training data caused accuracy issues

during testing. Finally, the network is not able to learn from fine-grained features

since the detection occurs after the downsampled feature map is created [10].

YOLOv2 [54] presented several improvements over its predecessor, including a

fully convolutional architecture, finer-grained features, and anchor boxes. YOLOv2

introduces the fully convolutional Darknet-19 backbone, which allows for a variable

input size. The authors took advantage of this by changing the input size during

training, increasing the model’s robustness to different image sizes. YOLOv2 uses

a set of anchor boxes in each grid element, to find good anchor box sizes k-means

clustering was applied to the training data.

In 2018 YOLOv3 [55] continued to improved performance. The backbone is

replaced with Darknet-53, including 53 layers and ResNet [7] inspired connections.

Furthermore, YOLOv3 adds multiscale prediction by branching three detection heads

at different levels of resolution. Figure 3.11 shows the network’s structure with three

increasing prediction scales that help detect small objects, a weak point of YOLOv1

and YOLOv2.

A new set of authors introduced YOLOv4 [56], which significantly improved ac-

curacy and inference speed. This was accomplished with architectural upgrades and

advanced training approaches. Figure 3.12 shows the YOLOv4 network architecture,

which integrates multiple updates. The Darknet-53 backbone was modified with

cross-stage partial connections (CSPNet) [57], which reduces memory consumption

and computational bottlenecks. The red section in Figure 3.12 shows how CSPNet

splits the base layer, passing one through a dense block, and connecting the other at
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Figure 3.11: YOLOv3 network architecture. Darknet53 is branched in three places
to provide multiscale detections [9].

the end. After the backbone comes the neck of the model, YOLOv4 uses spatial pyra-

mid pooling (SPP) [58] combined with a modified path aggregation network (PANet)

[59]. SPP extracts features from multiple scales to increase the receptive field, which

increases detection performance [58]. PANet combines top-down, bottom-up and lat-

eral connections. The bottom-up path provides the semantic information, while the

top-down path upscales the feature maps to improve spatial resolution. Finally, the

lateral connections concatenate the paths. YOLOv4 also leverages advanced training

techniques such as mosaic data augmentation, which combines 4 training images into

one, and the use of genetic algorithms for hyperparameter tuning.

YOLOv5 [15] was created as an independent repository, with no associated re-

search paper. However, it takes advantage of improved strategies for data augmen-

tation and training. YOLOv5 is developed with Python and PyTorch, which makes
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Figure 3.12: YOLOv4 network architecture [10].

it more accessible and simpler to integrate compared to Darknet’s C++ implementa-

tion. The YOLOv5 object detector has multiple model sizes, from nano to extra-large.

Larger models have more parameters and offer higher accuracy at the expense of in-

ference time and memory.

3.3 Method

Since the focus of this thesis is the overall fusion pipeline, where camera-based ob-

ject detection is one of many components, a pre-trained object detection network

was leveraged. The pre-trained medium-sized YOLOv5 architecture was selected for

its combination of accuracy and inference speed. Table 3.1 compares the different

YOLOv5 weights based on size, accuracy, and inference time for a batch size of 1.

The values mAP50:95 and mAP50 represent the mAP for IoU values from .5, 0.6, ...0.95
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and 0.5. Section 8 discusses the implementation and modularity of the system, which

allows it to easily benefit from the state-of-the-art detectors.

Table 3.1: The speed, accuracy, and number of parameters for each YOLOv5
network given an input of 640× 640 [15]. V100 refers to a specific GPU model.

Model
size

(pixels)
mAP50:95 mAP50

Speed

CPU

(ms)

Speed

V100

(ms)

params

(M)

YOLOv5n 640 28.0 45.7 45 6.3 1.9

YOLOv5s 640 37.4 56.8 98 6.4 7.2

YOLOv5m 640 45.4 64.1 224 8.2 21.2

YOLOv5l 640 49.0 67.3 430 10.1 46.5

YOLOv5x 640 50.7 68.9 766 12.1 86.7

The camera-based object detection pipeline is simple. First, the raw image is

scaled to 640 × 480 and the pixel values are normalized to [0, 1]. The preprocessed

image is passed to the model for inference. Then, Non-Maximum Suppression (NMS)

is applied to the detections to remove overlapping bounding boxes of the same object.

The result is a set containing a 2D bounding box and class for each detection in the

image.

3.4 Evaluation

Table 3.2 shows the mAP results for different classes at two IoU values. The first is

the COCO default, using a range of IoUs from 0.5 to 0.95 and the second is using

an IoU value of 0.5. The May sequences were recorded during the daytime and
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YOLOv5 performs very well with mAP50s of 0.92 and 0.95. For the Dec and Oct

sequences, which are low light conditions, perform approximately 50% with mAP50

average of 0.45. The mAP decreases proportionally to the decrease in ambient light.

Furthermore, the pedestrian detection results are significantly lower than the car

class.

Table 3.2: mAP results for YOLOv5 on the CMHT Traffic dataset.

Sequence
mAP50:95

All classes

mAP50

All classes

mAP50:95

Pedestrians

mAP50

Pedestrians

mAP50:95

Cars

mAP50

Cars

May10 R5 0.72 0.92 - - 0.78 0.92

May10 R7 0.83 0.95 - - 0.72 0.92

Dec7 R1 0.38 0.83 - - 0.26 0.78

Dec14 R1 0.36 0.45 0.015 0.024 0.27 0.37

Oct18 R1 0.30 0.47 0.18 0.28 0.41 0.66

Oct18 R9 0.29 0.45 0.002 0.013 0.58 0.90

Combined 0.48 0.68 0.066 0.16 0.50 0.76

Based on a qualitative evaluation of the detection pipeline, the YOLOv5 Medium

sized model generalizes well to the CMHT Traffic dataset. During daytime condi-

tions, most objects within 100 meters of the sensor are detected. Distant and highly

occluded objects are missed, which is expected. Figure 3.13a shows a daytime de-

tection example from sequence May10 R5. All the vehicles on the road are detected,

including the vehicle partially occluded by the pole. During nighttime operation,

image quality is reduced, subsequently diminishing range and accuracy. Figure 3.13b

demonstrates a missed detection when occlusion and motion blur are combined in the

49



M.A.Sc. Thesis—A. Sochaniwsky McMaster University—Software Engineering

Oct18 R1 sequence.

(a) Example frame from sequence May10 R5.(b) Example frame from sequence Oct18 R1.

Figure 3.13: Example camera pipeline results.

A major drawback for the camera-based system is nighttime pedestrian detection.

Figure 3.14 illustrates this problem, where the vehicles are assigned bounding boxes,

but the pedestrian is missed. This is expected since YOLOv5 is trained on the COCO

dataset, which does not have many images with very dark scenes and pedestrians at

small scale.

Figure 3.14: Examples of missing pedestrian detection at night.
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3.5 Summary

This chapter covered the background, implementation, and evaluation for a camera-

based object detection pipeline. First, ANN and CNN fundamentals, model eval-

uation, and relevant architectures for image classification and image-based object

detection were reviewed. Then the implementation of the image-based object detec-

tion pipeline was discussed. Finally, the pipeline was evaluated qualitatively and with

the COCO mAP metric.
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Chapter 4

LiDAR Object Detection

4.1 Introduction

The purpose of an object detection algorithm is to locate objects in 3D space and

provide the 3D size. The desired output is an accurate bounding box for each road

user in the scene. Challenges for LiDAR object detection include the amount of data

in each frame and the variation in density for objects at different distances from the

sensor. This chapter will review traditional and data-driven approaches to LiDAR

object detection, and then describe the algorithm implemented in this thesis. The

results will be evaluated and discussed.

Object detection refers to the localization and classification of objects, however,

this thesis will present LiDAR object classification in Chapter 5.
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4.2 Background

Object detection algorithms for roadside LiDAR can be split into two categories,

traditional (unsupervised) and data-driven (supervised). Figure 4.1 highlights the

differences between the two methods. The supervised approach preprocesses the

LiDAR frame and then uses a DNN to identify features and produce object detections

in an end-to-end trainable network. For the unsupervised pipeline, background points

are removed, and then the remaining foreground points are clustered to produce

detections. The detections are then classified. The following sections will discuss

these approaches.

Background
Filtering

Clustering
Feature

Extraction
Classification

Raw
LiDAR
Data

Preprocessing
Feature
Learning

Backbone

Deep Learning
Region Proposal

Network

Unsupervised

Supervised

Figure 4.1: The flow of data in a roadside LiDAR object detection algorithm.

4.2.1 Traditional Methods

3D Object detection in point clouds for roadside applications is dominated by tra-

ditional unsupervised clustering approaches. These methods do not rely on large

amounts of labelled data, which is difficult to find for roadside applications. Tradi-

tional techniques are well-studied and offer good performance, however, require expert
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knowledge to tune parameters and may not generalize well to different deployment

regions.

The general process includes processing the point cloud to remove background

points and then clustering the remaining points, with the goal of each cluster repre-

senting an object of interest. The following subsections provide a detailed literature

review of background subtraction and clustering methods in the context of traffic

monitoring applications.

Background Removal

Background removal is the removal of irrelevant points from a point cloud. Exist-

ing methods can be categorized as referenced-based, voxel-based, and model-based

methods.

In traffic monitoring applications the LiDAR sensor is fixed thus, without any road

users present, each frame will contain the same background points. Many reference-

based techniques borrow ideas from classical image processing to construct a back-

ground frame to subtract from the current frame. If the range of a point in the

current frame is less than the background, it is assumed to belong to a foreground

object and retained. Otherwise, the point is removed. Lee and Coifman [60] com-

puted the background using a temporal median, setting the median of the range of

each point observed over an extended time as the background. This assumes free-

flowing traffic, as stationary objects become part of the background over time. For

dense traffic scenarios, [60] use the mode of the furthest distance instead of the me-

dian. Zhang et al. [61] applied the Coarse-Fine Triangle Algorithm, which uses range
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histograms for each point to automatically determine if a point belongs to the back-

ground. It requires the same assumption that the background is measured more often

than a foreground object. The main drawback of reference-based methods is their

dependence on an organized point cloud, which can limit preprocessing options, since

not all algorithms retain cloud structure. Furthermore, any movement by the sensor,

such as swaying in the wind, will cause misalignment in the current and background

frames and reduce the accuracy of this method.

Voxel-based methods discretize point clouds into a 3D grid before determining if

that cell belongs to the background [62]. Shackleton et al. [63] proposed an occupancy

grid-based method, where each 3D cube maintains an occupancy history. The cubes

that have been consistently occupied are considered part of the background. This

approach trades the necessity of a structured point cloud with the burden of storing

and maintaining a 3D occupancy map, which may be too computationally expensive

for large outdoor environments. Wu et al. [64] introduced 3D-DSF, which discretized

up to 1000 LiDAR frames into 5 cm cubes. The frames are spatially overlapped and

concatenated, then cubes that surpassed the density threshold were considered part

of the background.

Model-based methods remove points based on proximity to a defined plane or

volume. Zimmer et al. [65] removed all points outside a pre-defined 3D RoI, then

removed points within a threshold of a pre-defined ground plane.

Clustering

Different clustering algorithms will produce varying outputs given different data char-

acteristics such as density, shape, and dimensionality. This section will cover some
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popular clustering techniques for 3D data.

k-Means clustering separates n points with m dimensions into k clusters. Given

data points x, k-means aims to separate the data to minimize the within-cluster sum

of squares (WCSS), as seen in Equation 4.2.1. Common implementations iteratively

refine the point assignments to each cluster and apply a heuristic to reduce the runtime

[66]. The primary drawback of k-means clustering for object detection is that the

number of clusters needs to be provided, which is often not known in advance.

argmin
x

k
∑

i=1

∑

x∈Si

||x− µi||
2 (4.2.1)

Euclidean clustering groups all points that are within a set Euclidean distance

of each other. Each cluster must contain a minimum number of points to be considered

valid. The benefits of Euclidean clustering are that the number of clusters does not

need to be specified, and the algorithm runtime is relatively fast.

r

Figure 4.2: Euclidean clustering on a set of points with a distance threshold r.

Segmentation via Region Growing extends Euclidean clustering to compare

additional features besides distance to add a point to a cluster [67]. Other features

include surface normals or intensity, the additional data can help over-segmentation

by ensuring points are not only close to each other but part of a similar surface or

object.
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Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

[68] is a popular algorithm for 3D clustering due to its robustness against outliers.

DBSCAN begins by computing point density. Points with a minimum amount of

neighbours within a set radius are considered core-points. Clusters are formed by

finding all reachable points from each core-point, non-reachable points are considered

noise. DBSCAN has two parameters; the radius, eps, and the number of points

within the radius to form a core-point, minPts. Traditionally the eps radius is the

Euclidean distance, however, other distance metrics can be used. DBSCAN struggles

with varying densities, which is common for LiDAR data, given the beam dispersion

over long distances. Other disadvantages include sensitivity to parameter changes and

the slower runtime compared to Euclidean and K-mean clustering methods. Figure

4.3 demonstrates how points outside the eps distance of any point in a cluster are

considered noise, and given minPts = 4, two core points are located in this data.

eps

eps

eps

Figure 4.3: DBSCAN example, minPts = 4, eps is shown.

4.2.2 Data-based Methods

Data-based methods leverage deep learning to process point clouds to produce de-

tections. These approaches require expensive GPU hardware, and require extensive
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datasets with tedious 3D labels for training. Work such as [69] and [70] extended

the CNN from 2D images to 3D point clouds, called volumetric CNNs. However, due

to large computation time and inefficiencies from the sparsity of LIDAR data, these

methods are not viable for real-time systems. More recently, new methods are split

into two categories; voxel-based and point-based [52].

Complex YOLO [71] and PIXOR [72] are voxel-based methods that aggregate

points into a 3D grid. Pseudo images are created by converting the vertical columns

into a fixed-length handcrafted feature vector [52]. The pseudo images are processed

by 2D image-based detectors with modified regression heads to obtain yaw angle and

height. PointPillars [73] furthers this idea by creating pseudo images using PointNet

[74] to replace the hand-crafted features, as well as ensuring the pseudo image is dense.

These changes allowed PointPillars to achieve greater accuracy and speed compared

to previous work. A drawback to voxel-based methods is the loss of information, since

raw points are aggregated into the grid cells.

Point-based methods such as 3DSSD [75] and PointRCNN [76] use set abstraction

layers for downsampling and feature extraction. The features are projected back to

the points so that the 3D RPN can propose bounding boxes directly onto the points.

The 3D detections are then refined. 3DSSD is a one-stage network, and PointRCNN

is two-stage.

4.2.3 Evaluation Metrics

3D Object detection can be evaluated similarly to the methods described in Section

3.2.2 by extending IoU to 3 dimensions, using volume instead of area. Another method

is to use 2D bird’s-eye-view (BEV) projections to compute a 2D mAP, as seen in the
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KITTI dataset [26]. Both methods require a labelled ground truth for the 3D LiDAR

data, which is more labour-intensive to create compared to image data.

A simple approximation that avoids 3D ground truths is projecting 3D detections

to the image plane. Then, 2D evaluation metrics can be used on labelled images.

While this is easier than the 3D methods, it is less accurate because the image plane

may have different levels of occlusion.

4.3 Method

The object detection module implemented in this thesis follows the procedure shown

in Figure 4.4. Beginning with raw LiDAR point clouds, and outputting an oriented

bounding box (OBB) for each object. The first steps focus on data reduction with

downsampling, cropping, and ground point removal. Then, outliers are filtered before

clustering the objects and computing the OBB.

Downsample RoI Crop Ground Point
Removal Outlier Filter

Oriented Bounding Boxes

Clustering

Raw LiDAR Pointclouds

Figure 4.4: LiDAR object detection algorithm.
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4.3.1 Data Reduction

Raw LiDAR frames arrive as a structured point cloud in Cartesian XY Z format,

and each point in the 2048 × 64 array contains [x, y, z] information. This amount

of information makes processing each frame a computationally expensive task. Since

many point cloud operations iterate over each point, reducing the number of points

is effective for reducing the computation time.

Voxel Grid Filter

Voxel grid filtering discretizes the 3D space into regularly spaced cubes called voxels

(volume pixels). The points within each voxel are approximated by their centroid, ef-

fectively downsampling the point cloud. Figure 4.5 demonstrates the result of varying

the size of the voxels. There is a tradeoff between the number of points and memory

use versus the resolution of the point cloud.

Another benefit to applying a voxel grid filter is that the effect of beam divergence

is reduced. Since the density of measurements on an object decreases with distance,

the voxel grid filter helps normalize the distribution of points throughout the point

cloud [77].
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(a) Voxel leaf size 0.1 meters. (b) Voxel leaf size 0.3 meters.

(c) Voxel leaf size 0.9 meters.

Figure 4.5: Effects of voxel grid filter leaf size.

Region of Interest Cropping

Since this system is interested in traffic on roadways and intersections, a region of

interest (RoI) can be identified in 3D space. Points which lay outside this region

are removed. This is a simple method that reduces information that is not useful

to the output of the pipeline. The RoI is determined with one or more 3D cuboid

objects, defined by size (h, w, l) and pose relative to the sensor. The pose has a

translation vector and orientation defined by a quaternion (x, y, z, w) relative to the

ground reference frame. Figure 4.6 demonstrates an example of an intersection scene

61



M.A.Sc. Thesis—A. Sochaniwsky McMaster University—Software Engineering

with the RoI in the yellow prism.

Figure 4.6: Visualization of the region of interest.

Ground Point Removal

Ground plane removal helps reduce the size of a point cloud and is important for

downstream operations such as clustering by reducing object connectivity. Assuming

the largest plane in the cloud is the road, a RANSAC-based approach [78] is used

to robustly estimate the parameters of the ground plane, Algorithm 1 defines the

process of fitting a plane model to the data. All the points within a set threshold of

this plane are removed. Figure 4.7 shows the result of this procedure. Ground plane

removal has the additional benefit of further reducing the size of the point cloud.
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Algorithm 1 RANSAC

1: while n < N do

2: Randomly select m points.

3: Solve for the parameters of the model with the randomly selected points.

4: Determine i, the number of points that are within the error tolerance, ϵ.

5: if i
p
> τ then

6: Re-estimate model with all inliers.

7: Exit while loop, save parameters.

8: end if

9: Increment n.

10: end while

Given n as current number of iterations, N is the maximum number of iterations,

m is the minimum number of points required to estimate the desired model (m = 3

for a plane), p is the total number of points, i is the number of inliers for a given

model and a given error threshold ϵ.

Figure 4.7: Roadside scene with ground points removed.

63



M.A.Sc. Thesis—A. Sochaniwsky McMaster University—Software Engineering

4.3.2 Outlier Removal

Noise and outliers in a point cloud can negatively affect the detection results by caus-

ing false detections or reducing the accuracy of detections. Furthermore, in condi-

tions with rain or snow, the precipitation can reflect some LiDAR beams and produce

speckled noise and points that are not useful for the algorithm.

Outlier removal is achieved by comparing each point’s mean distance from n neigh-

bours. If the mean distance is greater than a defined threshold, the point is removed.

The threshold is a multiple of the standard deviation of the means and assumes that

the distribution of points is Gaussian. Figure 4.8 shows an unfiltered point cloud

on the left side, and the right side shows the filtered result. Removing outliers im-

proves the accuracy of downstream processes and also reduces the number of points

to process.

Figure 4.8: Example of outlier removal in a point cloud [11].

4.3.3 Clustering

The LiDAR pipeline uses Euclidean clustering because of its speed and performance.

Algorithm 2 provides a high-level explanation of the clustering algorithm.
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Algorithm 2 Euclidean Clustering [67]

1: Create an empty list of clusters, C, and a queue of points to be checked, Q.

2: for pi ∈ P do

3: Add pi to Q.

4: for pi ∈ Q do

5: Search for the set Pk
i of neighbours of pi within radius, r.

6: For each neighbour pk

i
∈ Pk

i , if the point was not processed, add it to Q.

7: end for

8: Once all points in Q are processed, add Q to the list of clusters, C.

9: end for

10: Exit when all points pi ∈ P are processed and in a cluster within C.

Parameters were selected by iterating the radius, r, and the minimum number

of points to validate clusters, minPts, until satisfactory qualitative results were

achieved. Qualitative criteria include the following:

• Maximizing number of points in a cluster that belong to a single object.

• Reducing or eliminating clusters that contain points from more than one object.

• Size of the cluster as the object range increases (as points become sparse).

• Consistency of clustering at various distances from the sensor.

• Consistent performs across all sequences in the dataset.

Figure 4.9a shows the effects using r = 0.3m on the pre-processed LiDAR data, where

r is not large enough to cluster all points belonging to a single object. Figure 4.9c

uses r = 3.3m which causes over-segmentation by combining all three objects. Figure
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4.9b shows the result when r = 1.3m, each cluster contains the points of a single

object. Figure 4.9d provides visual context for the processed LiDAR points, there

are 4 vehicles in an intersection scene. The final values were chosen to be r = 1.3m,

minPts = 3.

(a) Clusters with r = 0.3m. A single object
is represented with multiple clusters.

(b) Clusters with r = 1.3m. Each object
corresponds to a single cluster

(c) Clusters with r = 3.3m. Three objects
are grouped.

(d) The synchronized image for the displayed
LiDAR clusters.

Figure 4.9: Effect of varying the radius value, r, in a point cloud.

4.3.4 Bounding Box

A bounding box is a method of encoding the location of a detected object. This

section details how a bounding box is computed.
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Axis-Aligned Bounding Box

An axis-aligned bounding box (AABB) is the minimum bounding rectangle that has

edges parallel to the axis of the frame of reference. Although simple to compute,

each AABB is not guaranteed to be the minimum bounding volume and will have a

heading of 0 radians. To compute the AABB, the minimum and maximum values

of the cluster in x, y, z are obtained. The combinations of maximum and minimum

values for each axis create the set of vertices of the AABB. For example, in a 2D

cluster, the four corners are (xmin, ymin), (xmax, ymin), (xmax, ymin), (xmax, ymax). The

AABB is common in 2D computer vision-based object detection algorithms.

Oriented Bounding Box

In 3D applications, the heading of an object is useful for tracking and downstream

applications such as trajectory estimation. The oriented bounding box (OBB) is a

rectangle with edges that are not parallel to the basis vectors of the coordinate frame.

Algorithm 3 describes calculating the OBB in 3D space. The key to obtaining the

OBB is principal component analysis (PCA). PCA represents an approximation of

the original data with a set of orthogonal vectors, ordered by largest variance. In the

traffic monitoring context, it is assumed that vehicles remain flat on the road and their

orientation is described by position and yaw angle. Thus, using the first two principal

components of a cluster is a good approximation of the vertical and horizontal axes

of a vehicle. PCA is popular for computing the OBB because it balances the tradeoff

between accuracy and computational speed.
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Algorithm 3 Oriented Bounding Box Calculation

1: Determine principal axes using principal component analysis (PCA).

2: Determine a transform, T , from the origin frame to the principle axes using

rotation between the axes and the centroid of the cluster.

3: Apply T to transform points to a space with the principal axes as the basis vectors

and the centroid as the origin.

4: Determine min(x),min(y),min(z) and max(x),max(y),max(z).

5: Construct 8 vertices of the bounding box with a combination of the min and max

points.

6: The heading is the yaw component of the T .

7: Return the size, centroid, and heading of the OBB.

Figure 4.10 highlights the difference in bounding boxes. The AABB (left) has

more space, while the OBB (right) provides a more accurate object localization and

heading angle. The LiDAR pipeline will use the OBB to localize 3D detections.

Figure 4.10: Comparison between the axis-aligned bounding box (left) and the
oriented bounding box (right). The OBB provides a heading and contains less

empty area.
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4.4 Evaluation

Since labelling 3D point cloud data is labour-intensive, the 3D object detection algo-

rithm was evaluated qualitatively. The preprocessing stages before clustering includ-

ing, cropping, Ground removal, outlier removal, and bounding box calculations were

visually validated during development.

To select a clustering algorithm, Euclidean clustering, region growing, DBSCAN,

and OPTICS [79] clustering methods were applied to the data. All the algorithms

performed similarly, thus, Euclidean was selected because of its faster runtime. The

qualitative results suggest that the density of the point cloud has the largest effect

on the quality and range of the detections. Occlusion cannot be compensated with

a clustering algorithm. Furthermore, static elevated positions such as the MARC

rooftop produce an ideal candidate for clustering, as each cluster that represents a

vehicle is well separated from other road users. In intersections with many pedestrians

and cyclists near each other, the clustering algorithm may need to be re-tuned to

effectively separate individuals.

Figure 4.11a shows an example frame from sequence Oct18 R9, where the red

points have been processed, and the green OBB are the detection results. The red

and green circles show the detection results on occluded objects, in both the image

and LiDAR frame. The LiDAR sensor easily detects the pedestrians regardless of the

lighting conditions, shown by the yellow circle. Figure 4.11b is an example frame from

sequence Dec7 R1. The vehicles inside the red and blue circles have very few LiDAR

points. This sparsity reduces the detection accuracy and cannot be compensated for

by a clustering algorithm.
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(a) Example frame from sequence Oct18 R9.

(b) Example frame from sequence Dec7 R1.

Figure 4.11: Example LiDAR pipeline results.

4.5 Summary

This chapter covered LiDAR-based object detection. A review of traditional back-

ground removal and clustering is followed by data-based techniques. Then the object

detection pipeline was proposed and detailed. Finally, the pipeline was evaluated and

discussed.
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Chapter 5

LiDAR Object Classification

5.1 Introduction

The goal of object classification is to determine the class of an object given a set of

features. For traffic monitoring applications, an objects class is useful for collecting

usage statistics on the type of road users interacting at a specific location. Once

an object is given a class, it assumes the characteristics of that class, which can

assist downstream applications such as tracking or trajectory prediction based on

class-specific knowledge.

5.2 Background

This section will detail the classification algorithms and features relevant for LiDAR

objects.
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5.2.1 Classifiers

Supervised machine learning techniques are commonly used for classification prob-

lems. Once an object is localized via clustering, classification algorithms use infor-

mation about each cluster to decide which category it belongs to.

Support Vector Machines

The Support Vector Machine (SVM) [80] is a supervised ML algorithm that can per-

form regression and classification tasks. For a classification task with N dimensional

data, the SVM aims to find an N − 1 dimensional hyperplane that maximizes the

margin between two classes. Figure 5.1 shows a 2D example of binary classification

with an SVM. The samples outlined in grey are the support vectors, which lie on the

margins. Equation 5.2.1 defines the equation for the N − 1 dimensional hyperplane,

where xi are the points and w are the weights that are learned during the training

process. Equation 5.2.2 defines the output of the SVM, where yi is the class label.

Figure 5.1: Binary classification with an SVM. The square points are the support
vectors.

72



M.A.Sc. Thesis—A. Sochaniwsky McMaster University—Software Engineering

w · x+ b = 0 (5.2.1)

yi =















+1 w · x+ b ≥ 0

−1 w · x+ b < 0

(5.2.2)

There are two types of margins that can be used: hard and soft. A hard margin

requires every point from each class to lie on the correct side of the hyperplane,

and cannot be computed if the data contains outliers. The soft-margin allows some

points to violate the margin, which adds robustness to noise. Equation 5.2.3 shows the

minimization goal of a soft-margin SVM, which uses the hinge loss to penalize points

on the wrong side of the margin proportional to their distance from the margin. The

parameter, λ, controls the trade-off between the size of the margin and the number

of samples on the correct side of the margin.

λ||w||2 +
1

n

n
∑

i=1

max(0, 1− yi(w
Txi − b)) (5.2.3)

The SVM is capable of non-linear classification through non-linear kernels. The

“kernel trick” implicitly maps data to a higher dimension that allows the SVM to

perform non-linear classification. Figure 5.2 demonstrates this with 1D data that

is mapped to a 2D plane, where a hyperplane can easily separate the two classes.

Equation 5.2.4 and 5.2.5 show the polynomial and Radial Basis Function (RBF)

kernels, where varying the kernel parameters controls the complexity of the decision

boundary.
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Figure 5.2: Example of non-linear mapping to allow linear separation.

Kpoly(xi, xj) = (xi · xj + c)d (5.2.4)

KRBF (xi, xj) = exp






−
||xi − xj||

2

2σ2






(5.2.5)

There are two strategies that enable multi-class classification with a binary clas-

sifier; one-vs-rest and one-vs-one. The one-vs-rest strategy trains one classifier per

class to predict whether it belongs to that class or any other class. To make a pre-

diction on a new sample, the classifier with the maximum score assigns the label. In

one-vs-one, there is a binary classifier for each combination of individual classes.

Given n classes, n(n− 1)/2 binary classifiers will be trained. To predict the class of a

new sample, each classifier is evaluated and the class with the most votes is assigned.

One-vs-one requires more computational resources because it requires more binary

classifiers. In both strategies, it is possible that certain samples will have an equal

amount of votes for more than one class.

The SVM is memory efficient since it only requires the support vectors after

training.
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K-Nearest Neighbours

The K-Nearest Neighbours (k-NN) [81] classifier uses k closest points to determine the

class of a test point. The k points are based on a distance metric such as Euclidean,

Manhattan, or Minkowski. Figure 5.3 demonstrates classification with two different

k values. For k = 3 the sample is assigned to the blue class, when k = 5 it is

assigned to the yellow class. k-NN calculates each distance at runtime, which can be

computationally inefficient depending on the dataset.

k-NN is sensitive to feature scale, thus normalizing the data and scaling fea-

tures relative to their importance can help increase accuracy. Other methods such

as dimension reduction, data-reduction and feature extraction are also important for

increasing classification accuracy.

Figure 5.3: Example of k-NN classifications. The sample (green circle) is assigned to
the blue class when k = 3. If k = 5 the sample is assigned to the yellow class.

The k-NN classifier is not memory efficient, since it keeps every training point in

memory to compute the class of a test point. Furthermore, k-NN is sensitive to noise

because it assumes similar objects are nearby in the feature space.
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Decision Trees

A decision tree is a recursive structure that defines rules for classification or regression

[82]. Each node contains a test that has a set of mutually exclusive outcomes, and

each leaf has a class associated to it. To classify a sample, a path from root to leaf

is traced depending on the result of each test. Decisions trees are easily interpreted

since the tests and outcomes can be visualized in a flow chart.

Common decision tree algorithms use a greedy divide and conquer strategy to

construct the tree. Tests are determined by selecting a variable that best splits the

data at that node. Metrics to determine which variable to use include information

gain, Gini impurity [83], and Chi-square.

Decision trees can be used in ensemble methods that combine multiple trees. Two

ensemble methods are bagging and boosting. The bagging technique uses model

averaging, with models that are trained on differently sampled datasets. The random

forest classifier [84] is an example of the bagging ensemble method applied to decision

trees, and benefits from reduced overfitting. Boosting sequentially combines multiple

weaker classifiers to produce a result. AdaBoost [85] is a popular boosting algorithm

that uses decision trees. Figure 5.4 highlights the parallel and sequential structure of

bagging and boosting, respectively.
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Figure 5.4: Comparison of bagging and boosting architecture [12].

5.2.2 Features

Traditional techniques for classification problems rely on handcrafted features by do-

main experts to accurately distinguish objects from different classes while maintaining

intraclass similarity. Once features have been computed, an ML technique is applied

to create decision boundaries in the feature space. There are many examples of classi-

fication for 3D point clouds, Lin et al. [86] propose an eight-dimensional solution that

uses distance from the LiDAR, velocity, object size, number of LiDAR-measurement

points, and distribution of reflection intensities with a multi-class SVM. Teichman

et al. [87] uses twenty-nine cluster descriptors, including oriented bounding box size

and multiple histogram of oriented gradients (HOG) [88] descriptors computed on 2D

projections of the segment.

Data-driven techniques use learned features created by a DNN. A popular network

for 3D point cloud classification is PointNet [74], which learns features directly from

the unordered set of points. More details on LiDAR-based data-driven techniques are

discussed in Section 4.2.2.
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5.2.3 Evaluation Metrics

In addition to precision and recall introduced in Section 3.2.2, the F1 score is used to

compare classifier performance. Equation 5.2.6 defines the F1 score as the harmonic

mean of precision and recall.

F1 =
2× Precision× Recall

Precision + Recall
(5.2.6)

however, its use has been criticized for oversimplifying the analysis of classifiers, since

not all applications benefit from equal weighting of precision and recall [89].

For multi-class problems, a confusion matrix provides insight into which classes

the classifier performs well on and which classes get confused. Figure 5.5 shows how

a confusion matrix shows correct and incorrect detections. A normalized confusion

matrix converts the counts of TP, FN, FP, and TN such that each row sums to 1.

Figure 5.5: Visualization of the values in a confusion matrix [13].
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5.3 Method

This section describes the methodology used to implement LiDAR object classification

using supervised machine learning. First the dataset is described, then the features

and classification are explained.

To create the training dataset, the labelled 3D ground truth from the R02 S01,

R02 S02, R02 S03, R02 S04 sequence of the A9 dataset [30] were used to segment

individual object point clouds from the scene. Features were computed for each

object point cloud. In total, there are 9 classes with 42,373 detections, with 70% used

for training and 30% for testing. Figure 5.6 shows the distribution of the detection

classes, which is heavily skewed towards the car class.

Figure 5.6: Plot of the class distribution of the training and test data.

The feature vector, f , is a set of seven descriptors detailed in Equation 5.3.1.
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Where density is the number of points divided by the OBB volume.

f =
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(5.3.1)

Once the feature vector is computed for each sample in the training set, it is

scaled and reduced. Scaling the individual feature ensures that a single feature with a

significantly larger magnitude does not bias the training result. It is assumed that the

range of each vector in the testing data is similar to the training data, since the scaling

values can not be changed by the test data. After scaling, the features are reduced by

representing the data with the first three principal components determined by PCA.

Three components were selected since using four did not increase accuracy, while

2 components had significantly lower results. The reduced feature vector decreases

classifier training and inference time. Once trained, the scaling parameters, PCA

parameters, and classifier parameters are saved to a file for processing and inferencing

new data.

5.4 Evaluation

Accuracy and inference speed were used to determine which classifier to use. Table

5.1 shows the F1 score per class of a few popular classification algorithms and their
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runtime averaged from 100 inferences of 50 feature vectors. The F1 score was macro

averaged, since the class imbalance would grossly influence the results. The macro

weight averages the F1-score of every class, irrespective of the size of the class. The

Random Forest classifier was selected because it has the best combination F1 inference

speed. It has the added benefit of interpretability since the decision trees can be

converted to a human-readable format.

Table 5.1: Classifier results on test data.

Classifier
Macro-Averaged ↑

F1-score

Runtime (ms) ↓

(50 samples)

RBF SVM 0.982 4.11

Random Forest 0.978 0.68

Decision Tree 0.974 0.04

k-NN, k = 7 0.953 0.94

Linear SVM 0.768 4.27

AdaBoost 0.255 3.01

The Random Forest classifier has a macro-averaged F1-score of 0.978 and an

inference time of 0.68 ms for 50 objects. Figure 5.7 shows the confusion matrix for

the test split. The worst performing class is the Emergency Vehicle, it was often

misclassified as the Van class. This is likely because there are only 22 occurrences

in the entire dataset. However, every other class is 96%− 100% accurate. Although

the performance on the test set is good, more data from other locations and weather

conditions would help the classifier become more robust.
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Figure 5.7: Confusion matrix of test results.

5.5 Summary

This chapter discussed LiDAR-based object classification. First, previous work and

classifiers were reviewed. Then multiple classification algorithms are compared. The

Random Forest classifier was selected, for its balance of accuracy and speed.
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Chapter 6

Object Tracking

6.1 Introduction

The purpose of multiple object tracking (MOT) is to continuously maintain identities

for detected objects, and provide trajectories given a sequence of frames. MOT

algorithms can be split into online and offline categories. Online, or causal systems

can use previous information up to the current frame, whereas offline algorithms can

use information from every frame to compute results for the current frame. Another

categorization is detection-based-tracking (DBT) and detection-free-tracking (DFT)

[90]. DBT works on the principle of assigning detections to trajectories and is the most

common since the detector provides a dynamic number of objects. DFT algorithms

rely on initialization and then proceed to track the object over multiple frames without

detection input. The primary drawback of DFT is manual initialization, which fixes

the number of tracks. The remainder of this chapter will refer to DBT as tracking.
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6.2 Background

6.2.1 Single Target Tracking

Accurately tracking an object using noisy sensor measurements and clutter is an

important task. The Bayesian filter is the optimal tracking method, defined by a

prediction step in Equation 6.2.1 and an update step in Equation 6.2.2. However, in

practice, the Bayesian filter is often computationally intractable since it requires all

previous observations.

p(xn|yn−1:0) =

∫

p(xn|xn−1)p(xn−1|yn−1:0)dxn−1 (6.2.1)

p(xn|yn:0) =
p(yn|xn)p(xn|yn−1:0)

p(yn)|yn−1:0

(6.2.2)

Assuming linear Gaussian systems, the Kalman Filter (KF) [91] provides an opti-

mal estimate of the state, x, given the following discrete state and output equations:

xn =Axn−1 + wn−1 wn−1 ∼ N (0, Q) (6.2.3)

yn =Cnxn + vn vn ∼ N (0, R) (6.2.4)

where A is the state transition matrix, C is the output matrix, wn−1 is the process

noise, and vn is the measurement noise. The noise is assumed to be normally dis-

tributed with a zero mean, wn−1 can be adjusted to compensate for model inaccuracy.

Figure 6.1 shows the predict-update cycle of the KF, where the variables with the ∼

are estimates and the + denotes an a priori estimate. After incorporating the current

measurement, the a posteriori estimate is produced. The Kalman gain, Kn, controls
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how much the filter trusts the current measurement or predicted estimate.

Prediction
Update

Figure 6.1: Kalman Filter diagram.

The Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) were

proposed to handle non-linear dynamics by using first and third order Taylor series

approximations however, they are more computationally expensive and still require

the Gaussian assumption. The Particle Filter (PF) is another Bayesian-based state

estimator that uses Monte Carlo simulations. PFs can approximate the posterior

probability of non-linear and non-Gaussian systems with a set of N weighted points.

This is achieved through sequential importance sampling and resampling of the points

(particles). PFs require considerably higher computational resource.

6.2.2 Data Association

In the context of a MOT system, data association refers to maintaining the same

object ID in subsequent frames. The measurements from the current time step need

to be matched to the previous tracks.

The Hungarian Algorithm (HA) [92] performs one-to-one matching that solves the

linear assignment problem. Given n workers and n tasks, the HA aims to assign one
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task per worker that minimizes the total cost. A popular variant of the algorithm,

known as the Jonker-Volgenant algorithm [93] has a time complexity of O(n3).

Probabilistic Data Association (PDA) takes a statistical approach to assigning a

measurement to a single target. Instead of direct assignment, it maintains a proba-

bility of the measurement being related to the target. The Joint Probabilistic Data

Association (JPDA) extends this concept to multiple targets. JPDA can suffer from

track coalescence, where nearby tracks have a tendency to merge together.

6.2.3 Multi-Object Tracking

The simplest tracking algorithm in the 2D image space uses the HA to associate

new and previous detections based on IoU scores. It is assumed that the current and

previous detections which overlap the most are the same object. This naive algorithm

fails when an object’s inter-frame movement is large and consecutive detections do

not overlap, such as fast-moving vehicles, lane changes, or accelerations.

The SORT algorithm [94], provides a simple and computationally efficient method

of solving the MOT problem in the presence of good-quality detections. By directly

tracking bounding box size and location in each frame, the KF provides an estimate

for the position of the bounding box in each frame, while the HA associates detec-

tion with existing tracks. Unmatched tracks must be observed in three consecutive

frames before being added to the track list. Tracks without new detections for five

consecutive frames are deleted. SORT performs poorly when object motion is highly

non-linear or objects are occluded. Extensions include OC-SORT [95], DeepSORT

[96], StrongSORT [97]. OC-SORT uses detections to fix error accumulation from

periods of occlusion with a virtual trajectory. DeepSORT and StrongSORT employ
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learned object descriptors instead of handcrafted features such as IoU for data associ-

ation. Additionally, StrongSORT uses a Re-identification (ReID) network to mitigate

periods of occlusion by identifying the object as previously detected or not. ReID

is an additional network that is inferenced with each detection, which adds compu-

tational time proportional to the number of tracked objects. The intention is that

previously detected objects are assigned to their original track. Both deep descriptors

and ReID networks must be trained.

6.2.4 Evaluation Metrics

Qualitative evaluations are a quick method to determine if detection or tracking func-

tions are functioning as expected. However, to properly evaluate different methods, a

quantitative metric is required. For MOT problems, quantitatively determining the

best algorithm is non-trivial and is an active area of research.

Multi Object Tracking Accuracy and Precision

Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision

(MOTP) [98] are used together for MOT evaluation. The MOTA score uses three

tracking errors, FPs, FNs, and identity switches (IDSW). In the tracking context, an

FP is an extra detection that is not mapped to the ground truth, and an FN is a

missing detection. An IDSW is defined as a TP that swapped ID values with another

TP, or a re-initialized track that has a different identity than before. Equation 6.2.5

defines the calculation of MOTA score, which averages the sum of all FN, FP, and
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IDSW over the sum of ground truth detections. MOTA has a range of (−∞, 1].

MOTA =1−

∑

(FN + FP + IDSW)
∑

GT
(6.2.5)

MOTP is a measure for localization performance independent of maintaining con-

sistent track IDs. Equation 6.2.6 defines MOTP as the average IoU score over all

TP.

MOTP =

∑

TP IoU
∑

TP
(6.2.6)

Drawbacks to using MOTA is that it is biased towards detections. Furthermore,

the impact of recall and precision are asymmetrical.

Higher Order Tracking Accuracy

The Higher Order Tracking Accuracy (HOTA) metric is composed of several sub-

metrics that provide insight into a tracker’s performance [99]. The sub-metrics are

detection, assignment, and localization. The detection and assignment sub-metrics

decompose further, each having a precision and recall metric. Equation 6.2.7 shows

the computation for the overall HOTA score, where HOTAα is the geometric mean

of detection and association accuracy for a given localization threshold, α.

HOTA =

∫ 0

1

HOTAα dα ≈
1

19

∑

α∈{
0.05,0.1,...
0.9,0.95 }

HOTAα (6.2.7)
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Integrating over the range of localization thresholds controls the tradeoff between

association and detection, which overcomes the limitations of previous metrics that

focused too much on either sub-metric.

A drawback of HOTA is that it does not penalize track fragmentation. Depend-

ing on the application, accounting for fragmentation could be more valuable than

rewarding long-term global tracking [99].

6.3 Method

A modified-SORT algorithm is developed to track the 3D LiDAR detections. It re-

mains lightweight but requires good-quality detections. It uses the Jonker-Volgenant

algorithm [93] for data association, and the KF for tracking the state of each object.

The tracker uses the 2D ground plane projection of the 3D detections. Equation 6.3.1

and 6.3.2 show the state vector, x, and the measurement vector, z.

x =[x, y, l × w, l/w, θ, θ̇, ẋ, ẏ]T (6.3.1)

z =[x, y, l × w, l/w, θ]T (6.3.2)

Where x, y are the position on the ground plane, l, w are the length and width

of the OBB, and θ is the yaw angle of the OBB. A constant velocity model provides

sufficient performance to predict and track between frames [100]. Equation 6.3.3

defines the constant velocity motion model used. Since the initial velocity is unknown,

the velocity terms of the state vector are given a larger covariance than the position.
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





xn

yn






=







xn−1 + ẋn∆t

yn−1 + ẏn∆t






(6.3.3)

Algorithm 4 details the modified-SORT algorithm. Where a minimum IoU cost is

required for a match to be valid.
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Algorithm 4 Modified SORT Algorithm

1: tracker list = {}.

2: for detection in detection list do

3: Take 2D ground plane OBB from 3D Detection.

4: Extract the measurement, z, for data association.

5: end for

6: for Existing Trackers do

7: Predict next state vector, x.

8: end for

9: Associate current detections and tracker predictions via IoU from rotated rectan-

gles.

10: for matched detections do

11: Retain camera detection, delete LiDAR detection.

12: Update tracker with camera measurement, and increment hit counter.

13: if hit counter > min hits then

14: Add tracker to tracker list.

15: end if

16: end for

17: for unmatched detections do

18: Create new tracker and set hit counter to 0.

19: end for

The height of each object is set to a static height based on the class.
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6.4 Evaluation

This section will evaluate camera-only and LiDAR-only MOT results with the HOTA

metric on the CMHT Traffic dataset. Since only 2D images have been labelled, the

3D LiDAR tracking results have been projected to the 2D image plane for evaluation.

Detections from the ground truth, camera, and LiDAR projections are preprocessed

by removing detection results outside the RoI.

Camera-only Tracking

To evaluate the camera-based approach on the CMHT Traffic dataset, the camera

detections are passed to the SORT tracker to generate the MOT output. Table

6.1 shows the HOTA score, sub-metric accuracies, and number of detections and

IDs. The camera pipeline performs better on sequences with more ambient light,

and significantly degrades in the darker sequences. These results are expected for a

camera-based system. First, less ambient light causes the camera to compensate with

a slower shutter speed, which creates motion blur for fast moving objects. Second,

dark-coloured objects are difficult to distinguish from the background, especially for

pedestrians on the sidewalk. Detections are missed by the object detection model

because it struggles to generalize to the distorted and dark images. Figure 3.14

demonstrates missing pedestrian detection problem. This is shown by the degraded

detection accuracy score and lower detection counts. However, localization accuracy

remains mostly unaffected since the objects that are detected have accurate bounding

boxes.
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Table 6.1: Tracking performance of camera pipeline.

Sequence HOTA ↑ DetA ↑ AssA ↑ LocA ↑ Dets GT Dets IDs GT IDs

May10 R5 65.5 70.6 61.3 85.6 337 370 20 12

May10 R7 72.7 77.0 69.4 86.9 190 192 12 8

Dec7 R1 64.8 68.2 62.0 85.2 1810 2071 53 39

Dec14 R1 51.0 44.7 59.7 83.8 396 663 23 23

Oct18 R1 31.3 30.4 32.2 79.7 445 633 38 20

Oct18 R9 32.5 26.9 39.3 80.5 127 348 7 6

Combined 56.8 55.6 58.9 84.5 3305 4277 153 108

LiDAR-only Tracking

To evaluate the LiDAR-based approach on the CMHT Traffic dataset, the 3D LiDAR

detections are passed to the modified-SORT tracker and then projected to the 2D

image plane. Table 6.2 shows that the LiDAR results follow the same trend as the

camera pipeline, but performs worse overall. There are three primary reasons why the

LiDAR is score significantly lower than the camera score; 2D projection error, data

density, and sensor range. First, the 3D perspective causes the projected bounding

boxes to be larger than the 2D ground truth, which impacts the localization score.

Second, since the LiDAR data is less dense, some object may be represented by only

three points. The resulting OBB will be much smaller than the camera result, which

reduces the IoU score. Finally, the camera detections are more consistent within

the working range, where the LiDAR point cloud becomes less dense after 40 meters,

which causes inaccurate bounding box estimations. Figure 6.2 shows example tracked

OBBs with track IDs and coloured spheres to represent previous centroid location per
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object.

Table 6.2: Tracking performance of the projected LiDAR pipeline.

Sequence HOTA ↑ DetA ↑ AssA ↑ LocA ↑ Dets GT Dets IDs GT IDs

May10 R5 33.8 26.8 44.4 66.2 238 370 16 12

May10 R7 38.7 33.0 48.8 67.9 153 192 8 8

Dec7 R1 31.5 29.0 35.1 66.1 1515 2071 50 39

Dec14 R1 35.2 28.9 44.3 66.8 469 663 23 23

Oct18 R1 26.0 22.8 30.3 65.7 378 633 27 20

Oct18 R9 30.5 23.3 40.4 65.6 206 348 6 6

Combined 31.9 27.6 38.3 65.9 2959 4277 130 108

However, the LiDAR outperforms the camera in pedestrian detection. The lighting

conditions do not have a noticeable impact on the detections, this is exemplified when

comparing camera detections from Figure 3.14 and LiDAR detections from Figure

4.11a.
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(a) Example detection result from sequence Dec14 R1.

(b) Example detection result from sequence Oct18 9.

Figure 6.2: 3D LiDAR tracking detection results.

6.5 Summary

This chapter covers multi-object tracking. A review of single-target trackers and data

association, and previous works are presented. Lidar-only and camera-only tracking

pipelines are evaluated using the HOTA metric on the CMHT Traffic dataset. Both

modalities have similar trends, the best and worst scores for each pipeline occurs on

the same data. The camera pipeline has a higher overall score, since the projections
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are less accurate in the 2D plane. Chapter 7 will cover the fusion of camera and

LiDAR sensors, and Chapter 9 provides an analysis over different IoU thresholds for

the camera, LiDAR and fusion pipelines.
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Chapter 7

Sensor Fusion

7.1 Introduction

Sensor fusion, or information fusion, is a technique of combining multiple data sources

to accomplish a task more effectively compared to a single sensor. Sensor fusion aims

to leverage the strengths of each sensing modality to overcome an individual weakness.

In the context of traffic monitoring, challenges include small object detection, low

light, and changing weather conditions. Sensor fusion can help overcome missed

detections and increase the accuracy of a system. This section will provide background

on sensor fusion for object detection, and then detail the method and evaluation of

the camera-LiDAR fusion pipeline.

7.2 Background

Sensor fusion techniques can be split into three categories: early fusion, late fusion,

and hybrid fusion. In early fusion, data-level or feature-level information from each
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sensor is fused before entering the detection model. Directly using the data or feature

vectors retains the most information and allows a model to learn the relationship

between the sensors [101]. In BEVFusion [102] camera and LiDAR data are fused in

the top-down BEV space. The network extracts image features and projects them

to the BEV and then concatenates this data with the LiDAR features. The fused

information is used for both object detection and segmentation tasks. Other examples

of early fusion with camera and LiDAR include [103], and [104]. A benefit to early

fusion is that the training process can be simplified with a unified end-to-end model,

which makes the training procedure more efficient. Figure 7.1a shows the early fusion

framework, which combines multiple data sources into a single model. A drawback

of early fusion is the amount of data required to train the model, since combining

heterogeneous sources often requires a larger, more complex network with higher

dimensional inputs. Moreover, a single sensor failure can stop the entire network.

Another application of early fusion is fusing homogenous sensor data. Data from

the same type of sensor at a different orientation can be fused at the data level to

increase FoV or data density. By stitching images and point clouds from multiple

views, Zimmer et al. [65] provides the opportunity for longer continuous tracking

results and a greater number of detection compared to one set of sensors.

In late fusion, decision-level information such as detection or track results from

multiple sensors are combined. Figure 7.1b shows the framework for late fusion; a

model for each sensor modality is trained and then integrated with the other mod-

els. A benefit to late fusion is that an error with one sensor is likely independent

of the others, and the system can produce output in the event of a sensor failure.

Moreover, each model is simpler and easier to train, but, requires separate training
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procedures and is no longer end-to-end. Drawbacks to late fusion include a potential

loss of information, and a requirement for multiple concurrent models. Senel et al.

[105]propose a late-fusion method that supports an arbitrary number of sensors and

can operate both on a vehicle or roadside. Detections are assigned via the Hungarian

Algorithm and tracked via the Unscented Kalman Filter. In [106], a camera-LiDAR

fusion model is proposed that combines projected 3D LiDAR detections and 2D cam-

era detections using a learned fusion model. Furthermore, a novel appearance and

motion-based association metric is proposed. In [65], camera and LiDAR detections

are combined after extracting 3D detections from each modality. Other examples of

late fusion include [107] and [108].

Hybrid fusion combines early and late fusion techniques, shown in Figure 7.1c.

While it has the benefits of both frameworks, it is the most complicated approach

since it requires both uni-modal models and a multi-modal early fusion model to be

trained.

(a) Early fusion framework. (b) Late fusion framework. (c) Hybrid fusion framework.

Figure 7.1: The three sensor fusion frameworks.
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7.3 Method

In this thesis, a late fusion method between camera detections and projected 2D

LiDAR detections is proposed. This pipeline can be used in two ways, 2D mode and

3D mode. 2D mode leverages detection contributions from both sensors, and the

fused track outputs are in the 2D image plane. This combines the long distance and

high quality daytime detections of the camera with the nigh-time performance of the

LiDAR using a simple matching based strategy.

In 3D mode, the output position and velocity of the tracks are in 3D. This fuses the

3D position and velocity from the LiDAR with the camera’s classification information.

Figure 7.2 illustrates the flow of information, beginning with detections from each

sensor, then association and tracking to produce the fused IDs and bounding boxes.

A benefit of this approach is that RADAR or other sensor data can contribute to this

strategy without significant modification of the fusion module, and without updating

of the camera and LiDAR detectors.

SORT Tracker

2D Camera
Dets

2D LiDAR
 Dets

Data Association

Camera-
LiDAR

Matches

Camera
Unmatched

LiDAR
Unmatched

Fusion Module

BBox,
Position
Track ID,

...

BBox,
Position
Track ID,

...

BBox,
Position
Track ID,

...

Size,
Position,
Velocity,
Track ID

Figure 7.2: Fusion module diagram.

To fuse camera and LiDAR data, the 3D LiDAR OBBs are projected to the 2D

image plane so that both modalities are in the same space. A 3D point in the LiDAR

frame can be projected to the image plane using the intrinsic matrix, K from equation
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2.7.1, and the extrinsic transformation matrix, LTC from equation 2.7.5, as shown
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(7.3.2)

where u, v are the corresponding pixel coordinates.

To convert LiDAR detection into 2D, the 8 corners of the 3D bounding box are

projected into the image plane. Then the bounding box of the corner points is com-

puted by finding the AABB shown in Section 4.3.4.

Once the 2D LiDAR bounding boxes are obtained, the synchronized camera and

LiDAR detections are fused. Algorithm 5 shows the steps to fuse the data and

maintain the track IDs. An IoU-based matching algorithm matches detections from

the camera and the LiDAR sensor, if they surpass a set threshold. Once matched,

the 2D data and class are retained from the camera data and the 3D location and

velocity are kept from the LiDAR detection. The fused list is the set of matched

camera detections, unmatched camera detections, and unmatched LiDAR detections.

The fused list is tracked using the SORT algorithm which produces the final set of

bounding boxes, classification IDs, and track IDs.
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Algorithm 5 Fusion Algorithm

1: f list = {}

2: Initialize SORT tracker.

3: while Synchronized camera and LiDAR data arrive do

4: Perform data association between camera and LiDAR AABBs using IoU.

5: for matched detections do

6: Append camera detection to f list.

7: Retain 3D position and velocity estimate from LiDAR detection.

8: end for

9: for unmatched detections do

10: Append to f list.

11: end for

12: Update SORT tracker with f list.

13: Return states, class IDs, and track IDs.

14: end while

For applications that require 3D position and velocity, only fused, or LiDAR-only

detections contain 3D information. Thus, camera-only detections would be excluded

from f list.

7.4 Evaluation

The camera-LiDAR fusion pipeline results are processed as mentioned in Section 6.4.

Table 7.1 shows the HOTA score, sub-metric accuracies, and number of detections.
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Table 7.1: Tracking performance of fusion pipeline on the CMHT Traffic dataset.

Sequence HOTA ↑ DetA ↑ AssA ↑ LocA ↑ Dets GT Dets IDs GT IDs

May10 R5 67.6 69.6 66.2 84.1 352 370 19 12

May10 R7 76.7 76.2 77.9 86.8 190 192 11 8

Dec7 R1 66.3 67.8 65.2 84.7 1891 2071 55 39

Dec14 R1 56.1 49.0 66.5 80.6 522 663 25 23

Oct18 R1 39.1 37.3 41.0 77.0 593 633 39 20

Oct18 R9 42.0 33.4 53.7 72.4 237 348 7 6

Combined 59.8 57.0 63.6 82.6 3785 4277 156 108

Figure 7.3a shows an example rooftop image with detections and track IDs. The

orange label is a LiDAR-only result, the green labels are camera-only detections, and

the blue labels represent objects detected by LiDAR and camera. The number at

the bottom right of every bounding box represents the track ID. Figure 7.3b shows a

nighttime roadside sample result. In both examples, the sensors support each other

when the other fails to detect an object. This is apparent in Figure 7.3a with the

occluded white vehicle and Figure 7.3b with the pedestrian on the opposite sidewalk.
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(a) Rooftop daytime fusion result. (b) Roadside nighttime fusion result.

(c) Roadside nighttime fusion result. (d) Rooftop evening fusion result.

Figure 7.3: Qualitative Camera-LiDAR Fusion results. The green, blue, and orange
label represent camera only, LiDAR only, and fused results respectively.

7.5 Summary

This chapter discusses camera-LiDAR fusion. First, a review of sensor fusion and

relevant works is provided. Then the proposed camera-LiDAR fusion framework is

presented, it leverages the camera’s classification ability and the LiDAR’s low-light

performance, achieving a HOTA score of 59.8 on the CMHT Traffic dataset. The

fusion pipeline will be compared with the single sensor methods in Chapter 9.
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Chapter 8

System Design and

Implementation

8.1 Introduction

This section details the design and implementation of the proposed camera-LiDAR

fusion system. The system is designed with a modular architecture, allowing easy

integration and algorithm evaluation, while maintaining a fast runtime that is critical

for real-world deployment. The modular design not only simplifies development and

testing of new components but also ensures that the system can be easily adapted to

different algorithms and hardware configurations.

Figure 8.1 shows the diagram of the combined camera-LiDAR fusion system. On

the left, the top and bottom blocks represent the camera and LiDAR object detection

pipelines. The right-most block is the fusion module, which outputs the final track

list.
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Figure 8.1: Diagram of the proposed Camera-LiDAR Fusion pipeline.

Part of the objective is to create a system that performs online processing at 10

Hz on minimal hardware. The host computer used for development and testing has a

modest GPU, but still has greater computing resources compared to many embedded

edge devices. Table 8.1 outlines the specifications of the host computer used to run

the system. The GPU has 4 GB of VRAM, which is modest compared to the GPUs

used in current 2D and 3D perception work that often have 12–32 GB.

Table 8.1: Host computer specifications.

Part Specification

CPU i7-11800H @ 2.30GHz × 16

RAM 32 GB

GPU NVIDIA T1200 4 GB

The goal of the system to minimize the runtime, which enables computationally

weaker systems to achieve the minimum 10 Hz processing rate. Chapter 9 will present

and discuss the timing results of the proposed framework.
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8.2 Software

The Robot Operating System 2 (ROS 2) is used to manage the parallel processes in

the pipeline and provide a middleware for inter-process communication. The system

consists of modules written in C++ and Python, and libraries such as the Point

Cloud Library (PCL) [11], Eigen [109], NumPy [110], PyTorch, and others.

Since ROS 2 supports nodes implemented in Python and C++, selecting a pro-

gramming language was based on development effort and performance. The LiDAR

object detection node was written in C++, primarily since the PCL is native to

C++ and there is high quality documentation and examples. Furthermore, it would

be beneficial to have a compiled program executing the code instead of Python for

computationally heavy modules. However, for computer vision tasks, many existing

modules and libraries exist in Python, thus to save time and effort the decision was

made to write them in Python. Moreover, many Python function calls are wrappers

for C++, depending on the task the marginal increase in speed is outweighed by the

extra development effort.

The ROS 2 framework has many features that assist project development. Firstly,

it is an open-source project with a large community, which means that various bugs

and issues may have existing solutions. And many tutorials and documents can

be easily accessed online. Secondly, ROS 2 comes with many useful programs to

help develop complex systems such as Rviz2, rosbag, and RQT. Rviz2 is a graphical

visualization tools with built-in support for 3D point clouds, images, and other forms

of data, this is useful for debugging and demonstrating the algorithms, as seen in

many of the figures of this thesis. Rosbag is a tool that allows for recording and

playback of data, it publishes the recorded data similarly to the original data source.
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This allows a developer to use recorded data or a live sensor without changing source

code. Furthermore, rosbag has function to slow or speedup the data playback rate,

this assists in debugging and evaluating a system. RQT is a collection of graphical

tools that help understand the system, one example is the graph tool which provides a

system graph, with processes as the nodes, and the data as the edges. Finally, ROS 2

provides inter-process communication and synchronization of independent processes

and threads. All nodes are automatically given their own process, which reduces

development effort compared to a custom solution.

NVIDIA TensorRT was used to speed up YOLOv5 inference times. This works

by converting the PyTorch model weights into an engine file and using specialized

software that is optimized for NVIDIA GPUs. TensorRT increased the inference rate

by two times compared to the default PyTorch implementation.

8.2.1 Design

The design of this system followed software engineering principles. Modularity and

separation of concerns were primary influences, since they enable ease of algorithm

swapping and testing. Figure 8.2 shows the module interfaces for each node in the

system, each implements a single high-level task such as detection, tracking or clas-

sification.
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LiDAR

Camera

Camera_Processor (Python)

- img: Image

- dets: Detection2DArray

+ getImage(img):

+ publishDetections(dets):

LiDAR_Detector (C++)

- cloud: PointCloud2

- dets: Detection3DArray

+ getCloud(cloud):

+ publishClouds():

+ publishDets(dets):

LiDAR_Tracker (Python)

- tracks: Detection3DArray

- dets: Detection3DArray

+ publishTracks(tracks):

+ getDetections(dets):

+ updateTracker(dets): tracks

LiDAR_Projection (C++)

- tracks: Detection3DArray

- lidar2d: Detection2DArray

+ projectLidar(tracks): lidar2d

+ publish2dLidar(lidar2d):

Fusion_Processor (Python)

- l_dets: Detection2DArray

- c_dets: Detection2DArray

- f_dets: Detection2DArray

+ getSyncdets(l_dets, c_dets):

+ publishTracks(f_dets):

+ fuse(l_tracks, c_dets):

+ updateTrackers(f_dets):

LiDAR_Driver (C++)

- cloud: PointCloud2

+ getConfig():

+ publishCloud():

Camera_Driver (C++)

- img: Image

+ getConfig():

+ publishImage():

LiDAR_Classifier (Python)

- clouds: PointCloud2Array

- dets: Detection3DArray

- dets_w_class: Detection3DArray

+ getDetections(dets):

+ classify(clouds, dets): dets_w_class

+ publishDets(dets_w_class):

Output_Recorder (Python)

+ results: Detection3DArray

+ publishMarkers(markers):

CSV File

Figure 8.2: Module interfaces of for the camera-LiDAR fusion framework.

This project leverages ROS 2 to increase reusability, adaptability and understand-

ability for future research and development. ROS 2 provides inter process commu-

nication via topics. Any node that publishes or subscribes to a specific topic can

share or consume the information. Moreover, the topic names and other variables

can be parameterized, allowing a node to be instantiated with different parameters

at runtime. Multiple system configurations can be easily created to evaluate different

detectors, trackers, and fusion strategies. Figure 8.3 shows a graph of the Camera-

LiDAR fusion pipeline created by the ROS 2 RQT Graph tool, the edges of the graph

are labelled with the message that is passed between nodes.

Another important part of the system is logging data and evaluating performance

regardless of its configuration. With ROS 2 it’s trivial to create another node that

subscribes messages containing intermediate or final results and store them for offline

evaluation.

109



M.A.Sc. Thesis—A. Sochaniwsky McMaster University—Software Engineering

Figure 8.3: Diagram of the ROS 2 system graph for the fusion pipeline.

As shown in the above diagrams, the camera and LiDAR processing occurs in

parallel. The sensors are pseudo synchronized, the average temporal misalignment

is between 5-10 ms. Thus, the pipelines start at the same time, but have different

processing times. The fusion node, which consumes the processed sensor detections,

waits for both sets of detections before fusing and tracking the data. The original

timestamps from each sensor are propagated through the processing steps so that the

fusion node does not erroneously fuse data from a previous time step. If 90 ms passes

before a synchronized set of data arrives, the frame is dropped.

8.3 Tools

Version control is critical in a large project to provide backups and opportunities

to experiment on other branches without disturbing the main code. Version control

is managed via Git and GitHub. Git provides the ability to revert files to previous

states and provides tools to manage changes to software. GitHub provides online

hosting and graphical access to the repository.

Ground Truth Labelling. The collected image data was labelled to create

a 2D ground truth to evaluate the camera, LiDAR, and Camera-LiDAR pipelines.

Supervisely [111] is an online platform that was selected for this labelling task. Since

the ground truth required 2D bounding boxes and track IDs, a video is created with

consecutive images, and the system provides tools for drawing bounding boxes and
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track maintenance.

Metric Calculation. Many popular metrics have public repositories to compute

metrics using custom data. HOTA calculations were made using the publicly available

repository [112]. mAP was computed using [113], custom Python scripts converted

the ground truth and detection results into the required COCO format. Classification

metrics and the confusion matrix were calculated using Sciki-Learn [114].

8.4 Summary

This chapter provides an overview of the tools and implementation of the entire

camera-LiDAR fusion system. ROS 2 is used to provide multiprocessing and inter-

process communication for components of the system. This enables future algorithms

and strategies to be easily integrated and evaluated. By effectively using a version

control system, following best practices and creating documentation, future re-use

and modification is simplified.
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Chapter 9

System Evaluation

This chapter provides a comprehensive evaluation of the proposed camera-LiDAR

fusion framework. The assessment is designed to validate the system’s performance

against real-world data, evaluating its robustness, accuracy, and speed. First, the pro-

posed system will be compared against camera-only and LiDAR-only pipelines using

the CMHT Traffic dataset and HOTA. Then the runtime results and computational

resources are presented to determine if the real-time requirement is met.

9.1 Pipeline Comparison

Table 9.1 shows the aggregated HOTA scores for the LiDAR-only, camera-only, and

camera-LiDAR fusion pipelines, as shown in Sections 6.4 and 7.4. Camera-LiDAR

outperforms the other methods by a margin of 3%. This result is expected since

detections from both modalities are combined and tracked.
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Table 9.1: Summary of pipeline tracking performance on the CMHT Traffic dataset.

Sequence HOTA ↑ DetA ↑ AssA ↑ LocA ↑ Dets GT Dets IDs GT IDs

LiDAR Only 31.9 27.6 38.3 65.9 2959 4277 130 108

Camera Only 56.8 55.6 58.9 84.5 3305 4277 153 108

Camera-LiDAR 59.8 57.0 63.6 82.6 3785 4277 156 108

Figure 9.1 plots Detection Accuracy (DetA) vs. Assignment Accuracy (AssA) for

each pipeline, the contour lines denote constant HOTA score. The camera and fusion

results are similar in detection accuracy (1.4 %), however the fusion has significantly

association accuracy (4.7 %). This suggests that the camera-LiDAR fusion is able to

reduce identity switching and track fragmentation. One reason for this is that the

LiDAR detections supplement detections that the camera misses, which allows the

track to continue without fragmentation.

Figure 9.1: Comparing tracking pipelines. Grey curves are contours of constant
score.
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When comparing multi-object detection and tracking results, it is important to

consider the effect of the localization threshold, alpha. Since HOTA is computed us-

ing a threshold range from [0.05, 0.95], systems with a constant localization error will

significantly suffer in the upper range. Moreover, in the traffic monitoring context, a

bounding box result with an IoU score of 0.95 is not necessary. Figure 9.2 plots the

HOTA score for each alpha value. The alpha value controls the localization threshold

that determines if two detections are a match, i.e., the IoU score between a detection

and the ground truth exceeds alpha. All trackers will have a lower score as alpha is

increased, since the stricter threshold reduces the number of valid detections used to

calculate the score. Figure 9.2b shows that the LiDAR-only results are comparable to

the camera and fusion methods for alpha values up until 0.2. This is expected since

the LiDAR method loses localization accuracy from the 3D to 2D projection, cali-

bration errors, and temporal misalignment. Therefore, the LiDAR-only performance

is understated with the default HOTA score. It is also interesting to note that the

fusion method only exceeds the camera-only in the [0.0, 0.5] range.
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(a) Camera-based pipeline using YOLOv5m
+ SORT.

(b) LiDAR-based pipeline using the proposed
unsupervised method + modified SORT.

(c) Camera-LiDAR fusion-based pipeline
using YOLOv5m and the proposed

unsupervised LiDAR method + SORT.

(d) HOTA at each alpha level for all
methods.

Figure 9.2: Plots of HOTA score vs alpha. A lower alpha value represents a lower
localization threshold.
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9.2 Runtime Results

Since traffic monitoring is an online task, runtime is an important system performance

measure. Table 9.2 details the time in milliseconds (ms) and the implementation

language for each component of the LiDAR pipeline. All tests were performed on the

hardware mentioned detailed in Section 8.1 and calculated using the mean from 200

frames from the Dec14 R1 sequence.

The tracking module is the slowest due to the rotated rectangle IoU calculation in

the data association step. Implementing the tracking module in C++ would yield a

significant speed-up. Overall, the LiDAR pipeline time is 12.9 ms per LiDAR frame.

The runtime varies with the number of points, a larger RoI or denser point cloud will

increase the runtime.

Table 9.2: LiDAR pipeline runtime results.

Module Runtime (ms) Implementation

Downsample 3.6 C++

Region of Interest Crop 1.8 C++

Ground Point Removal 0.5 C++

Outlier Filter 0.9 C++

Clustering 1.3 C++

Classification 0.9 Python3.8

2D Projection 0.2 C++

Tracking 3.7 Python3.8

Total 12.9 (78 Hz)

Table 9.3 shows the runtime results and the processor that was used for the
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camera-LiDAR fusion system components. Since the camera and LiDAR pipelines

execute in parallel, the maximum of the two is added used. Overall, the system

runtime is 21.8 ms (46 Hz). Although the LiDAR sensor publishes data at 10 Hz,

it is important to minimize the runtime for multiple reasons. First, the remaining

78.2 ms can be used for higher level functions such as occupancy detection, counting,

or near-miss detection. Second, the additional time can be used to implement more

complex algorithms to increase accuracy. Finally, minimizing the runtime enables a

wider range of hardware to run the system within the 100 ms requirement, including

edge devices with integrated GPUs and slower or fewer processing cores.

Table 9.3: Fusion framework runtime. Total runtime is max(tcamera, tLiDAR)+ tfusion.

Module Runtime (ms) Processing Unit

LiDAR Pipeline 12.9 CPU (1 core @ 2.3 GHz)

Camera Pipeline 20.7 GPU (0.5 GB Used)

Fusion Module 1.1 CPU (1 core @ 2.3 GHz)

Total 21.8 (46 Hz)

9.3 Summary

This chapter compared the overall MOT results between the sensor pipelines. The

camera-LiDAR fusion system achieved the highest HOTA score. Then the runtime of

the individual modules and overall system were presented. The overall runtime of the

camera-LiDAR fusion pipeline is 21.8 ms (46 Hz), providing room for more complex

algorithms or porting to a less powerful device.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

Traffic monitoring systems will be important components of a safer future for all

road-users. Reducing accidents, traffic, and pollution can be achieved with Vehicle-to-

Everything communication and accurate road use statistics. To accomplish this, Multi

Object Tracking (MOT) systems need to be robust to lighting and environmental

conditions and operate at real-time on embedded systems. This thesis aimed to

design and implement a lightweight camera-LiDAR fusion framework for static traffic

monitoring applications. To achieve this, a custom LiDAR pipeline including object

detection, classification, and tracking was presented. The fusion module combined

detections from a pre-trained CNN with the LiDAR pipeline to produce a robust 2D

tracking system. The camera-LiDAR fusion system achieved the highest HOTA score

against camera-only and LiDAR-only MOT pipelines on a custom dataset containing

varying lighting conditions. The pipeline achieved an overall throughput of 46 Hz

with an entry-level GPU.
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The following primary objectives were achieved:

• Design of a lightweight, end-to-end Camera-LiDAR fusion system for traffic

monitoring, that performs multi-object detection and tracking.

• Implementation of the above system that achieves real-time processing speed

on live and recorded data. An interface simplifies algorithm substitution and

evaluation.

• Evaluation of the above system comparing camera, LiDAR, and camera-LiDAR

fusion approaches. This was accomplished via assembly of a test fixture for

capturing a synchronized dataset of LiDAR point clouds and images in multiple

lighting scenarios. Hand-labelled detections and track IDs were created for the

images.

10.2 Future Work

The work throughout this thesis has yielded a simple yet effective baseline for LiDAR-

based detection and camera-LiDAR fusion. Since the algorithms are built upon a

modular software system, it is easy to extend this software and compare it to new and

existing datasets. Future work can be categorized as extensions and upgrades of the

algorithms themselves, and the integration of this system in V2X or ITS applications.
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10.2.1 Camera Object Detection

2D Detection

Since many modern tracking algorithms are part of the detection-based tracking

paradigm, a logical extension would be to increase the detection performance of both

the camera and LiDAR pipelines. For the camera, performing transfer learning or

fine-tuning the model weights to a traffic monitoring dataset will increase detection

accuracy for road users. The default YOLOv5 model weights trained on the COCO

dataset generalize well, however, the size and angle of pedestrians and cars combined

with varying weather conditions challenge the model. Another focus can include in-

creasing the inference speed of the model via pruning or quantization. These methods

reduce the number of computations and hence time required to process an image.

3D Detection

3D Camera detections enable 3D fusion between camera and LiDAR detections. 3D

Detections are significantly more valuable for V2X applications, since AVs use 3D

perception and path planning pipelines.

10.2.2 LiDAR Object Detection

For the LiDAR pipeline, a deep learning-based 3D object detection model could be

trained on a road-side dataset to increase the accuracy of the detections. Furthermore,

the integration of multiple LiDAR sensors from different perspectives would allow a

system to track objects over a larger FoV, and increases the point cloud density,

increasing the quality of detection and track results. Finally, exploring other LiDAR
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sensors, such as solid-state LiDAR with higher resolution and FMCW LiDAR that

include point velocity, could improve detection performance.

10.2.3 Data Fusion

This thesis presents a simple fusion implementation, further work could include de-

veloping a more complex fusion framework that includes confidence scores and prob-

ability of detections. Moreover, experimenting with data-level fusion by combining

camera and LiDAR information with a DNN could improve detection accuracy by

reducing information loss.

10.2.4 Dataset Diversity

Since a traffic monitoring system is expected to function consistently at all times, a

diverse dataset should contain most environmental conditions expected during stan-

dard use. Rain, snow, and fog, during both day and night conditions for evaluation

would provide a better understanding of system performance. Furthermore, labelled

data from these diverse conditions can be used to fine tune models, as mentioned

above.

10.2.5 ITS and V2X Integration

Other future work includes integrating the object tracking results into an ITS system.

Possible experiments include integration with street light controllers to dynamically

update pedestrian crossing times based on intersection occupancy, or integration with

a vehicle’s on-board detection system to create a Vehicle-to-Infrastructure system.

Thank you for reading this far.
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