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This thesis presents an analytical method based 
on classical matrix methods for computing the dynamic 
response of elastic-plastic multi-storey building frames. 
The method developed is comparatively simple and is of 
much use for building frames having large number of 
storeys. By this method, response of multi-storey build
ings could be calculated on high-speed digital computers 
of high storage capacity. The computer program developed 
saves huge storage locations and thus makes it possible 
to analyze multi-storey frames which till now were con
sidered as very difficult. Dynamic response of a two- 
storey and six-storey frame are shown to demonstrate the 
utility of the method.
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NOTATION

vi

[A] Displacement Deformation Matrix
{B} Column vector as defined in Eq. 3.19

[C] Damping Matrix

{D} Joint Displacement Column Vector
{Dr} Sub Column Vector of {D}

E Modulus of Elasticity

Foi Amplitudes of Applied Dynamic Forces

Fi(t) Dynamic Force acting at ith Mass

[G] Matrix as defined in Eq. 2.7

[H] Matrix as defined in Eq. 3.19

Ii Moment of Inertia of ith Member

J Matrix as defined in Eq. 2.7

[K] Frame Deformation-Force Transformation Matrix
[Km] Member Stiffness Matrix

[L] Matrix as defined in Eq. 2.7

Μ, M* Moment, Plastic Moment

{M} Column Vector as defined in Eq. 2.8

{N} Column Vector as defined in Eq. 2.7

{Q} Joint Load Column Vector
{Qr} Subvector of Q

{R} Structural Resistance Vector
[S] Frame Stiffness Matrix



[T] Submatrix of [S]
[W] Submatrix of [S]

{X} Floor Displacement Vector

[Υ] Submatrix of [S]
[Ζ] Submatrix of [S]

i,j Indices

li Length of ith Member
m Number of Members in a Frame

mi Lumped Mass at ith Floor
n Number of degrees of Freedom

{p} Frame Force Vector
{pm} Member Force Vector
qi ith load at a joint

t Time

t1, t2 Times at Beginning and End of the Small
Time Interval At

{u} Frame Deformation Vector
{um} Member Deformation Vector
y(i) ith Block of Elements of [A] Matrix as 

shown in Table 3.1

At Small Time Interval as used in Numerical
Integration Procedure

Σ Indicates Summation

*ij Kronecker Delta, = 1 if i=j , = 0 if i^j

Φ Curvature

V Exponential Decay Factor of Applied Force

ω Circular Frequency of Applied Force 
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σ, σ*
[] -1 

[] T

Strain
Stress, Yield Stress
Inverse Matrix
Transpose Matrix

Superscripts Single Dot and Double Dot denote
Differentiation w.r.t. Time
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CHAPTER I

INTRODUCTION

1.1 General
Structural systems such as high multi-storey 

building frames, when subjected to strong dynamic forces, 
are usually stressed in the inelastic region. Dynamic 
analysis of such multi-degree of freedom system in the 
inelastic region is one of the most important and most 
involved areas in the field of structural dynamics. The 
importance lies in understanding the dynamic response 
characteristics in the inelastic region so that suitable 
design criteria could be formulated. The formulation of 
design criteria will not only result in the overall 
economy of the structure but will also enhance the 
dependability on the behaviour of the structure under 
strong dynamic forces. The formulation of design criteria 
of such structures depends entirely on the availability of 
a simple and reasonably practical method for computing the 
dynamic response which was hitherto considered as perhaps 
the most complex and difficult. The methods available so 
far for carrying out such analysis are a bit cumbersome to 
use and in addition their use is limited to a small number 
of storeys due to their requirements of computer having

1



2 
high storage capacity.

In this thesis a method is presented for calcu
lating the dynamic response of inelastic multi-storey 
frames. The method is particularly developed for analyzing 
building frames having large number of storeys. This 
method is much simpler to use and requires minimum storage 
capacity of the computer. Economy of storage capacity has 
been achieved by making use of the repetitive geometrical 
shape of the structural system and elimination of some 
large matrices through logical programming.

1.2 Nature of the Problem
The complexities involved in the dynamic analysis 

of multi-degree of freedom structural system are manifold. 
As the structure vibrates back and forth under strong 
dynamic forces, there are frequent transformations of the 
system from one elastic behaviour to another inelastic 
behaviour and from resulting inelastic behaviour to a 
different inelastic behaviour and vice-versa. In all 
these transformations, the properties of one inelastic or 
elastic behaviour will be entirely different from the 
previous inelastic or elastic system. Such complex and 
frequently changing behaviour arises due to the formation 
of plastic hinges at different sections of the structure 
where the moments reach the plastic moment. Formation of 
a single hinge at any section of the structural system 
completely changes the stiffness of the system. Due to 



this changed stiffness, response characteristics of the 
system become altogether different from those existing 
before the formation of plastic hinge. At subsequent 
instants, as this new system responds, other sections may 
plasticize. This may further change the properties of 
the structure. Subsequently, more sections may either 
plasticize or some of the plastic hinges may re- 
elasticize due to reversal of stresses resulting from 
reversed curvature changes. Under this situation it 
becomes a formidable task to compute the response of such 
a structural system possessing multi-degree of freedom and 
whose properties are changing frequently as it vibrates. 
The problem becomes still more complicated and challenging 
when the formation of plastic hinges or re-elasticizing 
of the formed plastic hinges occur at different instants 
during a very short time interval. The complications 
arise due to the fact that at every instant various sec
tions likely to plasticize or sections where plastic 
hinges exist, should be checked to ascertain whether a 
plastic hinge is forming or the one already formed is 
elasticizing respectively or not. In case at any section, 
a plastic hinge is forming or any plastic hinge already 
formed is elasticizing, the stiffness of the resulting 
structural system should be reassessed to determine the 
future behaviour of the structure.



4
The process of assessing the changed stiffness of 

the structure at every transition of its changing from one 
structural system to another structural system, is itself 
quite complicated. In addition to this, after each small 
time interval every elastic section likely to become 
plastic is required to be checked whether a plastic hinge 
is occurring there or not. Similarly it is required to 
ascertain whether a section where a plastic hinge exists, 
is re-elasticizing or not at the end of each time inter
val. This whole process elaborated above poses a 
challenge even now due to limited capacity of digital 
computers unless some simplifying assumptions are made 
and special programming techniques are applied.

In the future discussion of inelastic behaviour, 
the term "phase" refers to a particular state of elastic 
plastic deformation and the term "transition" refers to 
a change of phase either by formation or re-elasticizing 
of one or more hinges.

1.3 Previous Work
To date various approaches pursued in this field 

could be categorized as (a) Normal Mode Approach and (b) 
Lumped Mass System. Several authors have proposed methods 
which fall mainly in either of the above categories.

(a) Normal Mode Approach
A general method using the normal mode approach 



for dynamic analysis of elastic plastic structures was 
presented by Bleich and Salvadori.1* The method was 
initially used for dynamic analysis of elastic plastic 
beams. Its application for dynamic analysis of elasto- 
plastic structures was extended by DiMaggio.2 In this 
method normal modes of vibrations of the elastic struc
ture are computed. As the structure responds, moments 
at sections likely to develop maximum moments are com
puted and when these moments become equal to plastic 
moment, a hinge is inserted at this section with 
plastic moment constraints applied. A new set of normal 
modes are now computed for the resultant system. The 
procedure of computation of normal modes and boundary 
conditions at every stage of transition limits this 
approach to relatively simple structures loaded symme
trically, such as a free beam or a simple fixed or two 
hinged single storey portal frame whose normal modes are 
usually simple to calculate. This approach is certainly 
impracticable from the point of view of computational 
difficulties for a multi-storey building frame in which 
numerous plastic hinges may occur and re-elasticize 
during a very short interval of time. At every transition 
of such a system, the computation of normal modes and 
boundary conditions for a multi-degree of freedom system

*Numbers refer to the Bibliography listing. 
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will not only be a formidable task but will also be a 

sheer waste of time when the transitions occur frequently 
in a short interval of time. Convergence problems with 
the series of modes for determining flexural moments 
further emphasizes the impracticability of the method to 
multi-storey frames Further difficulties appear in this 
method when a structure turns into a mechanism. In the 
mechanism state the consideration of rigid body modes of 
separate component segments of the structure going 
through rigid body motion further complicates the whole 
normal mode approach and makes it unsuitable for analysis 
of multi-storey frames.

(b) Lumped Mass System
In this approach masses are assumed to be concen

trated at floor levels and computation of dynamic response 
is carried by following some numerical integration pro
cedure .

3 Berg and DaDeppo presented a method in which 
masses are assumed to be concentrated at floor levels. 
Response is calculated by numerical integration of equation 
of motion for an elastic system. The bending moments are 
calculated elastically after each time interval. If these 
moments exceed the plastic moments , linear corrector solu
tions composed of frames with actual hinges and moment 
constraints at those points at which a plastic hinge occurs 
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are superimposed in such a way that none of the moments 
exceed the yield moment at any point of the frame. At 
each hinge formed, moment and hinge constraints are 
introduced so that idealized moment curvature relation
ship is achieved. At each step plastic hinge rotations 
are calculated by iteration. For multi-storey fram.es 
this method will be too cumbersome and time consuming 
because of precalculation of the basic corrector solu
tions for all points and also because of actual computa
tion requiring complex operations during the analysis.

4Penzien also uses numerical integration pro
cedure for solution of differential equation of motion. 
The initial assumptions made are that the masses are 
concentrated at floor levels, all floor systems are 
infinitely rigid and all the storey heights are equal. 
There is only relative horizontal movement between floors. 
An idealized elastic-plastic force-deformation relation
ship is assumed. The equations of motions are expressed 
in terms of inter-floor shear resistance and are inte
grated by ’mid-acceleration* method. The assumptions 
made, though simplying the method, make it inapplicable 
for modern framed buildings with nonrigid floor system.

5Heidebrecht developed a method using the single 
step forward numerical integration procedure. Horizontal 
resistance to motion at each floor level is expressed in
terms of the horizontal deflection at floor levels for 

fram.es


any state of elastic plastic behaviour. Yielding of both 
columns and beams is considered. The horizontal resist
ance to motion and horizontal floor deflection relation
ship has been derived using the conjugate frame method 

6 
developed by Lee . The method is versatile and could be 
used for large multi-storey frames except that its 
practical application is limited by the storage capacity 
of the particular computer being used to perform the 
computation.

7Clough and Benuska developed a method for com
puting the inelastic earthquake response of tall buildings 
by assuming a special bilinear moment rotation property 
prescribed to each member of the structural system. The 
masses are assumed to be concentrated at floor levels. 
During a short time interval the acceleration is assumed 
to vary linearly and displacements are computed using a 
numerical integration procedure. In assuming a special 
bilinear moment rotation property associated with each 
member, the member is assumed to consist of two compon
ents in parallel. The first component is a basic 
elasto-plastic beam which develops a plastic hinge at 
either end when the respective end moment exceeds the 
yield moment while the second component remains fully 
elastic. The elasto-plastic beam component is assumed to 
possess a rigid plastic moment rotation property. The 
procedure adopted to calculate the response requires 
ascertaining the moments at sections at which maximum
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moments may develop to check whether elasto—plastic com
ponent develops a hinge or not. In case any elasto- 
plastic component develops a hinge the stiffness matrix 
associated with the structure is modified. In this 

approach simplifying assumptions prescribing a special 
bilinear moment curvature relationship makes the computa
tion relatively simple, but renders the method unsuitable 
for frames consisting of members which do not possess 
special moment curvature relationship prescribed by the 
authors. The assumptions made obviously neglect the 
penetration of plastic zone towards the centre of the 
member possessing usual bilinear moment curvature 
relationship.

8Saul presented a method of dynamic analysis of 
structures assuming a piecewise bilinear moment curva
ture and stress-strain relationship. The masses are 
assumed to be concentrated at floor levels. The pene
tration of plastic zone towards the centre of the column 
has been considered. An iterative method has been 
adopted to solve the differential equation of motion. 
Floors are considered as infinitely rigid, thus limiting 
the analysis only to shear buildings. In this method 
the effect of a concentrated load on floor system cannot 
be considered. These limitations renders the method 
applicable to limited cases.



CHAPTER II
DYNAMIC ANALYSIS

2.1 General

As elaborated earlier, dynamic analysis of a 
multi-storey building frame stressed in the inelastic 
region is an extremely complicated matter due to varying 
characteristics of the structural system resulting from 
frequent formation of plastic hinges and re-elastifica- 
tion of these hinges at various time instants. The 
assessment of stiffness at each change of phase could 
well be done by understanding the stress-strain relation
ship of the material used and also the moment curvature 
relationship of components forming the structural system.

2.2 Basic Assumptions
Usually multi-storey building frames are designed 

using structural steel which is fairly ductile, with 
ductility factor varying from eight to fifteen for various 

9 steels as shown by Beedle . The stress-strain relation
ship of steel within the strain hardening range is assumed 
to be of an idealized form as shown in Fig. 2.1a. This 
type of relationship is usually known as elastic per
fectly plastic stress-strain relationship and has been

10
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shown by Beedle9 to be a very good approximation to the 
actual stress-strain relationship of mild steel in the 
normal working range of strains.

The usual shapes used in multi-storey buildings 
are wide flange and I sections. Using the above men
tioned idealized stress-strain relationship, the moment 
curvature relationship of flexural members, i.e. beams 
and columns, can reasonably be assumed to be of idealized 
form as shown in Fig. 2.1b, as shape factor for these 
shapes is approximately 1.15.

Various authors9,10,11,12 in this field have

confirmed the assumption of idealized moment curvature 
relationship to be practically the same as that obtained 
experimentally.

The masses are assumed to be concentrated at 
floor levels. This assumption is practically justifi
able as in multi-storey buildings; the maximum mass is 
contributed by floor system. The contribution of mass 
due to columns on either side of the floor is also 
assumed to be lumped at floor levels. This simplifying

3,4,5,6,7,8assumption has been made by various other authors 

in this field.
Any damping is assumed to be of viscous type.

2.3 Differential Equation of Motion
The differential equation of motion for a viscously

damped multi-degree of freedom system is given by
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F±(t) - R. - Ση C.. X = m.X. (i = 1,2....n) ...(2.1)

x -1 = 1 XJ J 11

where Fi (t) is the applied dynamic force, R^ is the
structural resistance to deformation the dampingCij are
coefficients, Xi is the horizontal deflection of ith
floor, mi is the ith mass and n is the number of degrees
of freedom, i.e. the same as the number of storeys and
Xi and Xi are the velocity and accelerations of ith mass 
respectively.

It will be shown later in this thesis that Ri can 
be expressed in terms of horizontal floor deflections Xi 
as

Ri = Ση Xj + Bi ...(2.2)

(i = 1,2.... ,n) 

in which and are constant coefficients and are 
computed from known external loads and stiffnesses of the 

members in any phase.
Substituting R^ from Eq. 2.2, Eq. 2.1 yields 

F. (t) - . Σ” Η X - B. - _ C i. = η. X. (2.3)

2.4 Numerical Integration Procedure
Eq. 2.3 can most conveniently be solved by a 

single step forward numerical integration procedure de-
13 veloped by Fleming and Romualdi . In the development of 

this integration procedure, the deflection-velocity and 
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velocity-acceleration relationships are assumed to be
linear over a small time interval and are given by 

·· O ·
4(4) “ΣΕ ^4^2^ “ 4<4>1 “4(4) ...(2.4)

* 2 ·and X. (t2) = -4 [X. (t ) - X. (t..) ] - X. (t, ) ...(2.5)

in which At = t2=t1 and t is the variable. The 
quantities Xi(t1, Xi(t2), etc. are at time t1, t2 res
pectively.

Substituting Eq. 2.5 in Eq. 2.4 yields

) .__L 
(At)

[X.(t2)-Xi(ti)j - x^tp-x^tp^2

... (2.6)

Substituting the values of Xi(t2) and Xi(t2)

from Eq. 2.5 and 2.6 into Eq. 2.3 yields

χ^4) = Ση L..X.(t.) + Ση J..X.(t,) 
j=l 13 3 X j=l 13 3

+ miXi(t1) + 4 ...(2.7)

in which 
4 2G. . = —2—η· δ . . m. + -r C. . + H. .XJ ut)2 XJ i At XJ XJ

4 2Lij = (At) 2 4j mi + At Cij

Jij = aI rai + cij

Ni = - Bi

and is Kronecker delta and is defined as

δij= 1 if i=j and 6ij = 0 if i/=j.
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The numerical solution of differential equation

is carried out by using Eq. 2.7 which is expressed in its 

general form. In matrix form Eq. 2.7 can be written as

[G] {X (t2)} = {M} ...(2.8)
in which [G] is the matrix of coefficients Gij in Eq. 2.7 
and {M} is a column vector consisting of total quantities 
on the right hand side of Eq. 2.7.

For calculating the deflections X(t2) vector {M} 
is evaluated from known velocity, acceleration, deflections 
X(t1) at time t1, the known coefficients and applied 

force Fi(t2) at time t2. Eq. 2.8 is then solved by finding 
the inversion of [G] . Now using Eq. 2.5 and 2.6 velocities 
and accelerations at time t2 are computed. Knowing all 
quantities at time t2, the forward integration procedure 
is repeated over the next time interval. In case a hinge 
develops at any section or an already existing hinge re- 
elasticizes, the matrix [G] is modified by taking into 
account the changed stiffness of the structural system. 
Similarly, vector {B} is also modified by reassessing the 
stiffness of the structure.



CHAPTER III

DISPLACEMENT METHOD

3.1 General

Multi-storey building frames are highly indeter
minate structures. The degree of indeterminacy of such 
structures increases with the increase in number of 
storeys. For carrying out the dynamic response computa
tion of such structures in the inelastic range it is 
necessary to know the value of moments developed at 
sections which are known to have extremum value of 
moments. At sections which have developed plastic 
hinges, it is necessary to know the hinge rotations in 
order to ascertain whether a particular hinge is tending 
to retain its hinge property or if it is reverting back 
to the elastic state. Apart from the suitability of 
computation of the above mentioned requisites, the 
repetitive geometrical shape of multi-storey building 
frames can best be utilized by adopting the displacement 
method. This method of analysis is also known as the 
stiffness method and has been described in detail by 
McMinn14, Gennaro15 and various other authors for the 

static analysis of elastic structures. It will be shown 
in later sections that using this method, the structural 
resistance can be expressed in terms of floor displacements.

16
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3.2 The Displacement Method

The displacement method can be called an organized 
augmented form of the well known slope deflection method, 
as in this method, both, the basic assumptions and ex
pressions relating member forces and deformations are the 
same, except that in the former the set of equations are 
expressed in the matrix form so that the computation of 
unknown forces and deformations of highly indeterminate 
structures can be carried out easily on digital computers.

Using displacement method, member deformations 
and member forces are expressed in terms of joint dis
placements which are found by the solution of a set of 
simultaneous moment equilibrium equations at the joints 
and shear equilibrium equations for the members. It will 
be shown further that once the joint displacements are 
computed, the member deformations and member forces can 
be obtained easily.

3.3 Member Stiffness Matrix
The relation between end forces and deformations

of any ith member of a frame as shown in Fig. 3.1 can be

2EIi 
l1

4EI1
li

-6EΙi 
(li)2

...(3.1)
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FIG. 3.1 MEMBER FORCES AND DEFORMATIONS
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This relation can be expressed as

{pi} = [Kii] {ui} ...(3.2)

The member stiffness matrix [kii] is also called 

the deformation-force transformation matrix of ith member 
as it transforms the deformations into forces.

3.4 Frame Deformation-Force Transformation Matrix
Relation expressed by Eq. 3.2 can be extended to

all the members of a frame comprising a number of members

as below
{p} = [K] {u} ...(3.3)

when 

and

[K]

{u}

where superscript m denotes the total number of members 
in the frame. K11, K22 . ...Kmm denote the member stiff-
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ness matrices of 1st, 2nd, , nth member

{pi} and {ui} are the force and deformation vectors

respectively of ith member shown in Fig. 3.1 and are given 
by

and {ui} = ui2

and [Kii] is the member stiffness matrix as shown in 

section 3.3.
The number of rows and number of columns of [K] 

matrix will be 3m each.

3.5 Displacement-Deformation Matrix
In order to obtain member deformation produced

by the joint displacements, a matrix 'Ά' called the 
displacement deformation matrix is obtained from the 

rigidity of the joints and geometry of the frame. To 
facilitate the computation of 'Ά’ matrix, the members of 
the multi-storey frame and the loads acting on each 
joint are numbered as shown in Fig. 3.2a. The numbering 

of members starts from the bottom most storey and is 
carried out upward for successive storeys. Each load 
point on a floor is considered as a joint hence the beam
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(α) 

ith Storey
i____________ t______________ I___ i________________________ l

4i-3 4i-2 4i-l 4i
(b)

FIG. 3.2 NUMBERING OF LOADS AND MEMBERS OF 

n STOREY FRAME
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is divided into two components as shown and each of these 

components is considered as a different member. This is 
done so that a plastic hinge could be allowed to form at 

the load point if the moments there become equal to 
plastic moment of the beam. All the floors are numbered 
starting from 1st floor and in the increasing order 

upwards. The horizontal dynamic loads are also numbered 
starting the 1st load on 1st floor and in increasing 
order upwards. It will be shown later in this chapter 
that numbering the loads in such a manner facilitates 

expressing the structural resistance in terms of horizon
tal floor deflections. The remainder of the loads on 
the joints are numbered starting from the concentrated 

load followed by three joint moments on each floor as 
shown in Fig. 3.2a. The external moment loads qn+2, 
qn+3 and qn+4... in Fig. 3.2a are equal to zero.

To obtain 'Ά' matrix, as shown in Table 3.1, the 

first three rows of 'A' are assigned to three member
11 12 13deformations u , u , u of the first member xn order, 

the next three rows are assigned to second member 
deformations and similarly for other members. Thus for 
a structure comprising m members, which happens to be 
4h members for n storey building, the number of rows in 
'Ά' matrix will be 12n Each column of 'Ά’ matrix 

corresponds to a joint displacement which in turn corre
sponds to a joint load. First n columns are assigned



Elements of [λ] Matrix

TABLE 3.1
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to horizontal floor displacements and initially the 
remainder columns are sequentially assigned to displace
ments of each storey joint.

Thus, as shown in Table 3.1, columns n+1 to n+4 
correspond to vertical displacement of first storey 
concentrated load, rotation of joints where moments 
qn+2, qn+3 and qn+4 are acting respectively.

Thus for all n storeys, 'Ά’ initially will have
5n columns. In order to calculate the element Aij of ’A' 
matrix, a unit displacement at joint j is given. The 
deformations at i caused by the above displacement gives 
the value of Aij provided all other joint displacements 

are kept zero. For example, if a unit horizontal 
displacement is given to first floor, the first and 
fourth members are displaced by same amount and fifth 
and eighth members are displaced by unity in the negative 
sense. These are entered in the 3rd, 12th, 15th and 24th 
columns respectively corresponding to lateral deformation 
of 1st, 4th, 5th and 8th members respectively. Similarly 
if a unit rotation is applied at 1st storey left joint 
corresponding to (n+2)nd column of 'Ά’ matrix, 2nd end 
of first member rotates by unity, and first ends of 2nd 
and 5th members rotate by unity which are entered in the 
2nd, 4th, and 13th rows respectively against (n+2)nd 
column which corresponds to the above joint rotation.

In the same manner all the elements are calculated.



In case a plastic hinge forms at a certain end
of a member, the hinge is considered as a separate joint 
for purposes of rotational displacement. In such a 
situation, a column is added to ’A' matrix beyond 5n th 
column and an entry of plus one is made in this column 
against the row corresponding to rotational deformation 
of the member where this hinge has formed. The element 

of 'Ά’ corresponding to rotation of member where hinge 
has formed is made zero. Thus, as is shown in Table 3.1, 

if a hinge develops at 6 which is 2nd end of member 3, 
the element A8,n+4 is made zero and column 5n+l is 
added and element A8,5n+1 becomes unity as a unit rota

tion at this hinged joint causes unit rotation at the 

end of this 3rd member. All other elements of this 
5n+l column remain zero as no other member deformations 
take place. If each column beyond 5n columns of ’A' 

matrix is reserved for formation of each hinge, another 
8n columns would be needed as no. of possible hinges 

as shown in Fig. 3.3 is 8n. It will be shown in 
Chapter IV that this huge matrix having 12n rows and 
13n columns can be manipulated to reduce storage thereby 
facilitating the computation of inelastic response of 

multi-storey frames.
Knowing displacement deformation matrix, the 

relation between member deformations for whole structure 
and joint displacements can be expressed as
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FIG. 3.3 NUMBERING THE ENDS OF MEMBERS AND JOINTS



{u} = [A] {D} ...(3.5)
where vector {D} represents the joint displacements 
corresponding to the loads acting on the joints. In 

case of absence of an external load on the joint, the 
load is considered to be zero. For instance, all the 
external moments on the joints are considered zero.

For a multi-storey building frame as shown in
Fig. 3.2a, the load vector {Q} will be given by

q1
q2

{Q}

qn+4

q5n

3.6 The Force-Load Matrix
The force load matrix transforms the member 

forces of a structural system to joint loads. It can 
be shown by the principle of virtual work that relation 
between joint loads and member forces is given by

{Q} [A]T {p} ... (3.6)
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T where [A] is the force load matrix, which is the trans

pose of the previously defined displacement-deformation 
matrix.

3.7 Displacement-Load Matrix

From the relations expressed in Eqs. 3.5 and 3.6, 
a relation between joint displacements and loads could be 
derived. Substituting for {p} from Eq. 3.3, Eq. 3.6 
yields

{Q} = [A]T [K] {u} ...(3.7)

and substituting {u} from Eq. 3.5, Eq. 3.7 yields 
 T{Q} = [A] [K] [A] {D} ...(3.8)

or {Q} = [S] {D} ...(3.9)

where [S] = [A]T [K] [A] . [S] is a square matrix and

could be inverted. Thus, joint displacements are obtained 

from the known load vector {Q} and known [A] as below
{D} = [S]-1 {Q} ...(3.10)

3.8 Expression for Moments 
Member forces which include moments at the ends

of member are given by {p} from Eq. 3.3

{p} = [K] {u}
Substituting for {u} from Eq. 3.5 in above equation

{p} = [K] [A] {D} ...(3.11)

again substituting for {D} from Eq. 3.10, Eq. 3.11 yields
{p} = [K] [A] [S]-1{Q) ...(3.12)
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As showη in 3.4 vector {p} consists of three rows 
for each member of the structural system. Thus it will 

have three times as many elements as the number of 
structural members. The first two out of these three 
represent the end moments at the left and right end of 
the member respectively. The third element represents 
the shear. Thus, every 1st, 4th, 7th.... (12n-2)th 
elements represent the left end moment and 2nd, 5th, 
8th .... (12n-l)th elements represent the moment on the 
right end of the member. These moments are obtained 
from the corresponding elements of {p} .

In order to designate left and right end of 

vertical and horizontal members, each storey is con

sidered to be flattened by opening out its lower columns 
as shown in Fig. 3.2b for ith storey. Thus the left end 

of left column will be the lower end and right end the 
upper end. For right column, the left end will be the 
upper end and right end the lower end. For beam there 
is no confusion because of its horizontal configuration.

3.9 Hinge Rotations
The sections at which moments may attain 

extremum values are shown in Fig. 3.3. As soon as 
moments at these sections become equal to plastic mo
ment, a plastic hinge is inserted at these points. If 
a hinge develops at sections 1 or 8, the hinge rotations 
at such points,where only one end of a member exists, are 
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given by angular displacement at the end considered. 

Similarly, where three members meet, if all the member 

ends develop hinges, the hinge rotations are the angular 
displacements of respective members at the end considered. 
In the situation at such joints when only one or two 

hinges exist in a particular phase, the hinge rotations 
are the algebraic difference of the displacements at the 
end of hinged member and the rotational displacement of 
the remaining elastic joint.

At sections where beams are loaded by a concen
trated vertical load, the beam is divided into two 

elements as in Fig. 3.2. If a hinge develops at this 

section, the hinge rotation is given by the algebraic 
difference of the rotational displacement of the end of 

member under consideration and that of the other end of 
the member meeting at the joint. Such sections are 4, 5; 
12, 13; 20, 21; ....  8n-6, 8n-5; 8n-2, 8n-l th sections

of a frame of n storeys.

3,10 Resistance Deflection Relationship
As shown in Fig. 3.2a, the horizontal loads 

q1, q2, ....... qn are the resistances required to hold the 
frame in its deformed state. For integration of differ
ential equation of motion, Eq. 2.1, it was stated in 

section 2.3 that the structural resistances Ri could be 
expressed as a function of horizontal floor displacements 

xi·
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From Eq. 3.9

{Q} = [S] {D}

or <----- >
qn+l

qn+2 Dn+2

... (3.13)

where {Q} is partitioned into {R}, the structural re- 

sistance vector and {Qr} the remaining external loads 

vector. Similarly, {D} is partitioned into horizontal 

floor displacement vector {X} and the remaining dis
placements vector {Dr}. Accordingly, [S] is partitioned 

into [T] , [W] , [Y] and [Z] matrices in which [T] and [Z] 

are square matrices and can be inverted. Thus Eq. 3.13 

can be written as

R T W X
r r ...(3.14)

Q Y Z D

or
{R} = [T] {X} + [W] {Dr} ...(3.15)

{Qr) = [Y] {X) + [Z] {Dr} ...(3.16)
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From Eq. 3.16

{Dr} = [Z]-1{{Qr} - [Y] {X}} ...(3.17)

substituting {Dr} from Eq. 3.17 in Eq. 3.15 we get

{R} = [[T] - [W] [Z]-1 [Y]] {X} + [W] [Z]-1 {Qr}

or {R} = [Η] {X} + {B} ...(3.18)

where [Η] = [T] - [W] [Z]-1 [Y]
-1  ...(3.19)and {B} = [W] [Z]  {Qr}

Matrix [II] and vector {B} are constant for a 

particular phase and are re-calculated after each transi

tion as the structural stiffness matrix is re-calculated 

after each transition because of addition or subtraction 

of plastic hinges in the structure.



CHAPTER IV

COMPUTER PROGRAM

4.1 General

The computer program for computing the dynamic 

response of multi-storey building frames when stressed 
in the inelastic region is a bit involved due to large 

matrices such as [K] , [S] and [A] which require large 

storage locations and thus would have limited the analysis 

to a small number of storeys only. It will be shown in 

the following paragraphs, as to how the storage necessity 

of [K] and [A] has been eliminated through logical pro

gramming and how the size of [S] is controlled and 

varied so that minimum storage is required and time is 

saved in the inversion of [Z] by reducing its size to 

the minimum possible.

4.2 Computer Program Outline
The first operation in the computer program is 

to read in the initial data which consists of (a) pro

perties of given structural system, (b) the properties of 

numerical integration procedure and (c) the properties of 
the applied dynamic force. The details of these properties 
are shown in Appendix A. After this the natural fre

quencies of the system are computed and if desired, the 

33
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damping matrix can be computed and stored. The computation 

of damping matrix incorporated in the program is based on 
percentage of critical damping in the various modes as 
obtained from modal analysis and discussed by Biggs16. Now 

the initial conditions are calculated which are initial 

deflections of floors, initial accelerations and velocities 
of the masses. The matrices [S] , [T] , [W] , [Y] , [Z] and 

{B} are then computed and differential equation of motion 

Eq. 2.8 is solved for deflections at the beginning of the 
next time interval. Knowing these deflections, moments at 

all the elastic sections and hinge rotations at all the 
plastic sections are computed. All these sections are now 

tested to ascertain whether any section is passing through 
a transition from elastic to plastic or plastic to elastic 

phase. If it is found that elastic-plastic transition is 
occurring, the computation is reversed back to the beginn
ing of the time interval, and at this time a smaller time 
interval of th of the previous time interval is 
adopted and point of transition is approached slowly till 
it is achieved. If plastic-elastic transition is indicated, 

it becomes necessary to go two time steps back as shown by 
17 Heidebrecht and approach the transition with a smaller 

time interval. Elastic-plastic transition occurs if any 
section attains moment equal to the plastic moment for 
that section. Plastic-elastic transition occurs if the 
plastic hinge rotation begins reversing direction. This



is indicated by the change in sign of the plastic hinge 
rotation velocity.

The transition procedure adopted is basically the 
  17same as described in detail by Heidebrecht , except that 

in the transition loop it is checked to know at what joint 

how many hinges are being formed and released. If a hinge 
is formed, a column is added to [A] in the end. If a 
hinge is released, the corresponding column of [A] is 

eliminated and all the columns following the one eliminated 
are shifted one column position to the left so that size 
of [Z] is kept as small as possible. Matrix [Z] is required 
to be inverted at each time interval and keeping its size 

to a minimum possible results in saving of computational 
time. The procedure of manipulating column numbers and 
their positions in [A] matrix is explained in details later 

in this chapter.
After checking the transitions, velocities and 

accelerations of masses at the beginning of next time 
interval are computed from Eq. 2.5 and Eq. 2.6 respectively 

to repeat the procedure. In case transition has taken 
place, matrices [S] , [H] and {B} are re-calculated from new 
[A] before solving differential equation of motion Eq. 2.8. 
Thus, knowing all the quantities at the beginning of next 
time interval, the above procedure is repeated to compute 

further response.
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4.3 Storage of [K] Matrix

As expressed in 3.4, [K] contains three times as 
many rows and columns as number of members of the struc- 

tural system. In multi-storey single-bay frames, the 

number of members in each storey are four. Thus, for a 

six storey building, number of members will be 24 and 

number of columns and rows of [K] will be 72 each and 

hence it will require 72 x 72 = 5184 storage locations. 

For a multi-storey building of n storeys, the storage 
2 required for [K] will be 144n locations. This will be 

a heavy drain on the available storage locations.

A careful study of [K] reveals that three rows 

of [K] are assigned to a particular member. These three 

rows contain nine elements, three per row which are not 
equal to zero. For a particular member, say mth member, 

the locations of these in [K] matrix are given by 
(3m -2, 3m - 2) (3m - 2, 3m - 1) (3m - 2, 3m)

(3m-1, 3m - 2) (3m - 1, 3m - 1) (3m - 1, 3m)

(3m, 3m - 2) (3m, 3m - 1) (3m, 3m)

where first expression within the bracket shows the row 

number and second the column number in which the element 

is located.
Out of these nine elements, as shown in Eq. 3.1, 

for m equal to 1, (3m - 2, 3m - 2) th and (3m -1, 3m - l)th 

elements are having the same value. Similarly, 
(3m - 2, 3m - 1) and (3m - 1, 3m - 2) are identical. The 
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remaining elements,excluding (3m, 3m) th element, are 
identical. Thus, for each member actually there are four 
constant values which need real storage. The remaining 
five are identical to one of these four. It is possible 
to store only four constant values per member and use 
these in proper order so that (K] matrix is reproduced. 
With this technique 144n2 - 16n storage locations are 
saved. For a ten storey building frame, this figure will 
be 14240 locations which is a significant economy.

The non-zero elements having different values are 
four per member and these are stored in an array XA(i,j) 
where i refers to a particular non-zero element value and 
j refers to the number of member. Thus, for first 
member, the four values are XA(1,1), XA(2,1), XA(3,1) and 

XA(4,1).

4.4 Storage of [A] Matrix
As is evident from Table 3.1, the [A] matrix con

sists of 12n rows and as many columns as number of ex
ternal loads, i.e. horizontal loads, vertical loads, and 
external moments at the joints. (Zero in the elastic 
phase of the structure) . Thus, initially it will have n 
columns for resistances R, and 4n columns for other 
static loads. Thus, total number of columns in the 
elastic phase will be 5n. This will be 30 for six storey 
building and 50 for 10 storey building. If provision is 
made for all the possible hinges to develop, the number
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of columns of [A] matrix will become 5n + 8n = 13n. This 
will mean 78 columns for a six storey frame and 130 

columns for a 10 storey frame. It is quite clear from 
above figures that [A] matrix will require huge storage 
capacity of 156n2 memory locations unless it is augmented 
so that these locations could be saved.

A careful examination of [A] shows that except 
for 2n - 2 rows which are 15th, 27th, 39th ... (12n-9)th 
and 24th, 36th, 48th ... 12nth, every row contains only 

one element having a non-zero value and this too is unity 
and positive except in 9th, 21st, 33rd ... 12n-3 th rows 
in which it is minus one. The remainder of the elements 

in each row are zeros. At the hinge points, not only 
the row contains an element unity but the corresponding 
column also contains only one element having a value of 

plus one. All other elements are zero.
These properties are made use of to reproduce 

the [A] matrix through logical programming and augmenta
tion in such a way that only minimum storage is used. 
This is achieved by the following technique.

(a) Reproduction of [A] up to 5n columns.
The one dimensional subscripted variable KP(i) is 

used whose subscript corresponds to the number of the row 
of [A] and whose numerical value is an integer corresponding 
to the column number in which the element under considera
tion has a value of one. Thus, each time an element of [A],
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say Aij is used in computation, the value of KP(i) is
compared with j . In case it is equal to j Aij is
assigned a value of unity; otherwise it is taken as zero.

Thus, using only 13n+l locations for storage, one 
2for each row of [A] , 156n -13n-l storage locations are 

saved. For a six storey building this comes to a saving 
of 5537 locations and a saving of 15469 storage locations 

for a ten storey building as shown in Table 4.1.

(b) Reproduction of [A] beyond 5n columns.

As already discussed, the size of [A] is increased 
by one column if a hinge is formed and is decreased by one 
column if a hinge is released.

At a joint where two members meet, if a hinge is 
developed, only one column is added as the other hinge 
which is at the same location is assumed to be formed by 

giving a value of one to a variable DIC(i) which is 
multiplied by the element of [A] having the unit value. 
Similarly, for removing the element when a hinge has 
developed, the element is multiplied by a variable 
(1 - DIA(i) ) where i refers to the location of the par

ticular hinge. The variable DIA(i) is defined as follows: 
DIA(i) = +1.0 if i is plastic and moment at i is positive
DIA(i) = -1.0 if i is plastic and moment at i is negative

DIA(i) = 0.0 if i is elastic.
For all such even numbered sections DIC(i) takes a 

value of 1.0 or 0.0 at elastic-plastic of plastic-elastic 
transitions respectively.



Matrices [K] [A]

No. of Storeys

(1)

Normal Storage 
Required

(2)

Storage Used

(3)

% Saving in 
Storage

(4)

Normal Storage 
Required

(5)

Storage Used

(6)

% Saving in 
Storage

(7)

n 144n2 16n x 100 2 156n 13n + 1 100

2 576 32 94.5 624 27 95.6

6 5184 96 98.1 5616 79 98.5

10 14400 160 98.8 15600 131 99.2

Storage Requirement and % Saving of Same for [K] & [A] Matrices

TABLE 4.1
Λ
O
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At a joint where three members meet, there is 

possibility of one hinge developing first and a second 
following or second and third developing at the same time 
to keep the moment equilibrium. In the worst case all 
the hinges may develop at the same time.

For the first hinge developing at such a joint, a 
column is added in the end of [A] matrix. A variable 
JT(j) is used which assumes a value equal to the number of 
elastic ends meeting at a joint. Here j corresponds to 
the number of joint marked in Roman figures as shown in 
Fig. 3.3. Initially it has a value of three and it becomes 
less by one if the end of a member meeting at the joint in 

question develops a hinge. Thus, the value of this 
variable keeps record of the number of hinges formed at 

 
the joint. If a hinge already formed is released, the 
value of JT(j) increases by one. In case such a joint 
develops three hinges in a particular phase, no extra 
column is added to [A] matrix for the last hinge formed. 
In such a situation, DIC(i) assumes a value of unity for 
the last hinge formed. The original column for jth joint 

is used for this last hinge. The record of retaining the 
column for the last hinge formed in the column correspond
ing to the joint in question is maintained by another 
variable LX(j) which assumes a value of i at such an occa
sion. In a situation where a particular joint has all the 
hinges formed and if ith hinge is released subsequently, 
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the value of LX(j) is compared with i. If it equals i, 
DIC (i) assumes a value of zero and the column correspond

ing to jth joint is restored in its original place. If 
i does not equal to LX(j), the column corresponding to i 
beyond 5n columns is eliminated and columns after this 

removed column are moved to the left by one column to 
fill this gap. The element corresponding to ith section 
is restored in the column corresponding to jth joint and 
another column is added in the end to restore the hinge 
which was formed in the end and which is indicated by the 

value of LX(j).
The number of columns added beyond 5n and then 

reduced for elastic-plastic and plastic-elastic transi

tions, respectively, are taken care of by the value of 
a variable KF. Its value initially is zero but is in
creased by one if a column is added and decreased by one 
if a column is eliminated. The tracing as to which 
column corresponds to which hinge is done by another 
variable KL(j). The value of KL(j) gives the hinge 
number for which (5n + j)th column was added in [A] . In 
case of plastic-elastic transition of ith hinge, the 
value of i is compared with KL(j) by varying j from 1 to 
KF. At the point where KL(j) becomes equal to i, the 
particular column, i.e. (5n + j)th column of [A] matrix 
is eliminated and the rest of the columns beyond (5n + j)th
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column are shifted by one column space to fill this gap.

In this manner the number of columns of [A] are 
kept minimum which results in the reduction of the size 

of [S] as the number of rows and columns of [S] equal the 

number of columns of [A] . This technique ultimately 

results in the reduction of the size of [Z] which is to 
be inverted after each transition.

(c) Repetition of the elements of [A] .

Because of the repetitive geometrical shape of 

the multi-storey frame, a careful examination of the non
zero elements of [A] as shown in Table 3.1 reveals that 
the elements of block y^ in first storey repeat in sub

sequent storeys and the block is shifted by four column 
positions to the right for every additional storey.

(2)Similarly, the elements of block y in first storey 
repeat in subsequent storeys and this block is shifted by 

one column position to the right. The elements of block 
y(3) and y(4) in second storey repeat in subsequent 

storeys and their positions are shifted by one column 

space and four column spaces respectively to the right.

The above property is useful in calculating the 

values of KP(i) variable for a frame of n storeys where 
i refers to the number of the row of the [A] matrix. The 

value of KP(i) for a frame of n storeys can be calculated 

as follows:
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KP(12j - 11)

KP(12j - 10)
KP(12j - 9)
KP(12j - 8)

KP(12j - 7)
KP(12j - 6)

KP(12j -5)
KP(12j -4)

KP(12j - 3)

KP(12j -2)
KP(12j - 1)

KP(12j)

4j + n-6
4j + n-2 

j
KP(12j - 10)
4j + n-1
4j + n-3 
KP(12j - 7)

4 j + n
KP(12j - 6)
KP(12j - 4)
4j + n-4
KP(12j - 9) when j = l,2...n

except that KP(1) = KP(ll) = 0.
This variable KP (i) is used to reproduce [A] matrix 

as described in section 4.4b above.

4.5 Computation of [S] Matrix
As per Eq. 3.9
[S] = [AT] [K] [A]

It has been described in section 4.3 that all the 

non-zero elements of [K] are stored in an array XA(i, j). 
Because of this definition it can be shown that an element 

Si,j of matrix [S] is given by
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4η
SI,j = ^^31-2, j>‘ + <*31-1, j) -XA(2,i)

* (A3i, 1>-XA(3,i)]’(A3i_2r n)

+ l(A3i-2, + <A3i.l, J-XAd.i)

+ <A3i, j>-XA(3,i)].(A3i_li n)

+ [(A3i-2, 3>·ΧΑ(3,ί) + (A3i_1; .).XA(3,i)

+ (A3i, .ρ-ΧΑΗ,ί)].^ n)}

This expression is further simplified by manipu

lation of [A] matrix as described in details in 4.4. 

The elements of [A] occurring above are stored in a 

variable AG(i) where i = 1,2...6. The six elements of 

[A] corresponding to a particular member are reproduced 

through logical programming and thus final expression of 

Sij becomes

4n 
St. = i { [AG(1) »XA(l,i) + AG(2) .XA(2,i) 

i«l

+ AGO) ’XA(3ri)]«AG(4)
+ [(AG(1)·XA(2,i) + AG(2).XA(l,i)

+ AG(3)»XA(3,i)],AG(5)

+ [ (AG(1).XA(3,i) + AG(2).XA(3,i) + AG(3)·XA(4,i)] 

•AG(6) }
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4.6 Computation of {u} and {P}

Similar techniques as described in section 4.5 
are used to reproduce [A] which appears in Eqs. 3.5 and 
[K] which appears in Eq. 3.3, in order to calculate {u} 
and {P} vectors. In calculating {u}, [A] is reproduced 

by a single variable AGX. AGX keeps on attaining values 

of +1.0 or -1.0 whenever a non-zero element of [A] appears 
in subroutine for calculating {P}. Logical sequence is 

developed which reproduces [A] through a single variable 
AGX. [K] is reproduced through XA(i,j) as already des

cribed in section 4.3.

4.7 Saving in Storage Locations

Using the repetitive geometry of the multi-storey 

frame and developing a logical sequence to reproduce 

sparse matrices like [K] and [A] , which normally require 
2 2huge storage of 144n and 156n memory locations res

pectively, it has been possible to reduce their storage 
necessity to only 16n and 13n+l locations respectively. 
Table 4.1 shows the details of the saving in storage 

for frames of varying storeys. The saving in storage of 
[K] and [A] is 98.1% and 98.5% respectively for a six 
storey frame which would normally require 10800 memory 

locations for both these matrices. The corresponding 

figures for normal storage requirement for [K] and [A] 

matrices for ten storey frame is 30,000 memory locations 
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but by using the logical sequence this figure has been cut 
down to only 291 locations which gives 99% saving. Using 
this technique the program developed could handle a frame 

of up to ten storeys on a computer having about 32,000 

memory locations.



CHAPTER V

ANALYTICAL RESULTS AND CONCLUSIONS

5.1 General

As discussed in Chapter IV, a computer program has 
been developed which could handle the computation of re

sponse up to ten-storey frame. The program developed as 

shown in Appendix A is fairly general and could be used 

for any number of storeys. The IBM 7040 available at 

McMaster Computing Center has a core memory of 32,000 

locations. With this capacity the program developed 

could handle up to a ten storey frame. Computation of 

response of two and six storey frames has been carried 
out and the results obtained are discussed in the follow

ing paragraphs.

5.2 Response of Two Storey Frames
The dynamic response of the two storey frame shown 

in Fig. 5.1 has been computed. The computation has been 

carried out for various loading conditions, of which two 

examples are included here. These examples are chosen in 
particular because the forcing function and damping matrix 

are such that the frame responds in the inelastic region 

and has several transitions between the elastic and plastic

48
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20Kips

FIG..5.1 TWO-STOREY FRAME
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phases. For both of these examples the forcing function 
is of the form

Fi (t) = Foie-uit Cos wit where i = 1,2

The data used in the above expression are shown 
in Table 5.1.

(a) Example 5.1

The dynamic response curves for the floor deflec
tions X1 and X2 are shown in Fig. 5.2.

As the structure responds, hinges appear at 
sections 6, 14 and 16. These are soon released as the 

floor deflections move in the opposite direction. Now 

the hinges appear at 10 and 9 and are soon released. 

Section 1 and 2 become plastic and then become elastic 
soon after. In the next cycle of response, hinge forms 
at 12 and soon released. Beyond this point, i.e. after 

0.68 seconds, the forcing function decays so much that 

the response reamins elastic thereafter.

(b) Example 5.2
The dynamic response curves for this example are 

shown in Fig. 5.3.
As the structure responds, a plastic hinge appears 

at section 8 followed by hinges at 6 and 1. Soon after, 
hinge at 6 is released and section 7 becomes plastic.

MILLS MEMORIAL LIBRARY 
McMaster university



Example Masses
2Kip x sec 

in ..

Amplitudes 
Kips

Mus
Rad/sec

ωΐ
Rad/sec

[C]
Kip x sec' ·
. . . in

5.1

ml m2 Fol Fol u1 u2 ω1 ω2 C11 C12
C21  C22

0.0817 0.0538 -36.0 -23,0 6.0 6.0 13.0 13.0
0.2816 0.0000
0.0000 0.1855

5.2 0.0041 0.0021 -29.0 -21.75 48.0 48.0 13,0 13.0
0.0456 0.0000

0.0000 0.0234

Data for Examples 1 & 2

TABLE 5,1 Ui
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Now the floors start moving in the positive directions 
and hinges at 8, 1, and 7 are released and structure 

returns to elastic behaviour.  Now after a little lapse 

of time, hinge forms at 16 and is soon released. Now 

hinges appear at 10 and 9 and are released immediately 

after and the structure returns to the elastic phase. 
The process of formation of hinges and their subsequent 

release continues till the forcing function decays so 

much that no hinges form subsequently and the structural 

response becomes elastic.

5.3 Response of Six Storey Frame 
Dynamic response of six storey aluminium frame 

shown in Fig. 5.4 was computed. The elastic properties 

of the frame are listed in Fig. 5.4 and the forcing 
function which is a bilinear pressure wave is shown in 

Fig. 5.5. As stated in the beginning, the masses of 

beams and columns were assumed to be lumped at the floor 

levels. The masses lumped at first through fifth floor 
2are 0.00021 Kip x sec /inch each and that at sixth

2 floor level is 0.000205 Kip x sec /in.
The response curves of first and sixth floors are 

shown in Fig. 5.6. The floor deflections are plotted 
against small time interval which for this particular 

example has been taken as th of the first natural period.
-4Thus, each time interval represents 6.88 x 10 seconds.
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The response has been computed using a damping 

factor proportional to masses. The damping matrix is 
shown in Table 5.2.

As the structure responds, sections 1 and 8 

become plastic at the 19th time interval. At the 25th 

time interval, section 2 and 7 also become plastic. 

This turns the first storey into sway mechanism. The 

deflections continue to increase up to 284th interval. 
At 285th interval, hinges at sections 2 and 7 are re

leased. Immediately after this, hinges at section 1 and 
8 are released at 286th interval. As the first storey 

starts moving backwards, while remaining storeys continue 

to move forward, hinges form at sections 9, 10, 15 and 

16 at 288th interval followed by formation of hinges at 

1, 2, 7 and 8 in the negative direction. As the first 

two storeys become plastic, the deflections of first storey 

increase rapidly in the negative direction as shown by the 

dropping curve in Fig. 5.6. The remainder of the storeys 

continue to vibrate with a small amplitude in the absence 

of forcing function. This phase continues till at 488th 

interval hinges are released at 10 and 15 followed by 

further releasing of hinges at 1, 2, 7, 8, 9 and 16 at 
489th interval. Soon after, hinges are formed at 17, 18, 

23 and 24, followed by formation of hinges at 1, 2, 7, 8, 

9, 10, 11, 14, 15 and 16. This helps in regaining the 

negative deflection of first storey as shown by the rising



0.009584 0.0 0.0 0.0 0.0 0.0

0.0 0.009584 0.0 0.0 0.0

0.0 0.0 0.009584 0.0 0.0
0.0 0.0 0.0 0.009584 0.0 0.0
0.0 0.0 0.0 0.0 0.009584 0.0
0.0 0.0 0.0 0.0 0.0 0.009356

Damping Matrix for Six Storey Frame

TABLE 5.2
ui
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response curve of the first floor. There is little change 
in the deflections of remaining floors as the amplitude 

of vibration is very small except the second floor which 

starts moving in the negative direction with slow rate due 
to forming of sway mechanism in the first three storeys. 
The rigid body motion of first and second floor is now 

very small. The configuration of the frame after 496th 
interval is shown in Fig. 5.7. At this stage the third 

storey has again become elastic. There is little change 

in the position of remaining floors. The residual de
flections till this stage are -0.89, 0.83, 2.57, 2.45, 

2.43 and 2.43 inches of first through sixth floors res

pectively. The first floor is still moving in the posi

tive direction. It may be expected that the first mass 

might reach near about the original position and the 

remainder of the masses may have permanent delfections of 
about 21/4” or so.

5.4 Conclusions
The object of this investigation has been to 

develop a simple method which could permit computation of 
dynamic response of multi-storey frames using high speed 

digital computer of high storage capacity. The method 

formulated here is quite simple and is applicable to any 

number of storeys. Though the computer program developed 

is meant for a single-bay frame, of n storeys, the same 

program with slight modification in the procedure for
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reproduction of [A] matrix could be used for a multi-bay 
multi-storey frame. The generality of the program has 

been kept such that only the basic data need to be read 
in along with the value of number of storeys and the 

program automatically takes care of all the computational 

work of initial conditions, and response. Any type of 

forcing function could be used and also the concentrated 

loads are allowed to act on the beams where hinges may 
form.

The program developed could compute inelastic 

dynamic response of up to ten storey frame on a computer 

having a core memory of 32,000 locations. As the method 

and program is developed for n number of storeys, the 

same could be used for computation of response of frames 

having larger number of storeys depending upon the storage 

capacity of the particular computer used.

The author feels that the objective of developing 
a simple and general method for dynamic analysis of in

elastic multi-storey frames, which usually have idealized 

elastic perfectly plastic behaviour, has been attained. 

However, it is worth mentioning that there is still a 

vast field lying uncovered in the dynamics of inelastic 
structures which need to be explored. For example, areas 

like ’dynamic stability of structures’, ’nature of damping 

in the inelastic region’ need special attention due to 

their paramount importance in the dynamic analysis of



G3 
structural systems. It still needs further exploration 

to determine the maximum number of storeys which could 

be handled for inelastic dynamic analysis of multi-storey 

frame for a given storage capacity of the computer as 

the economy in the use of storage locations depends on 

manipulation of large matrices to eliminate their storage.
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C CALCULATION OF INITIAL COND I T I "MS
C CALCULATION OF STIFFNESS -ΆΤΟΙα

TMS = TIML{3)
ECU I VAL Ei ICE ( T I ’ 'E ( 3 ) s T Γ' S )
CALL STri·'.
CALL I NVMAT ( C » 1 U , LTL ,'/ · · I EC.» ' I ) 
h R I T E ( 6 » 2 3 -) I E R 
DO 314 A=1»OTL
D(K»3)=v«o
DO 311 J - 1»LT L
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ύ(ί<>3)=0(ΐχ»3)/Ε

314 CORT I RUE
DO 393 I = 1»NF
DO 39 3 J =1»Γ!F
A(I,J)=3(I»J)/E

393 CONTINUE
UR ITE(6 s 22 )
CALL I ‘-iVMAT ( A » 1 - » NF » - · » I E!?»I )

<_ A NOU BECOMES STIFFNESS '·ΆΤΡΙΧ
DU 3 9 3 I = 1,Nr

395 OR 1TE(6 j 211) (A(It J) »J = 1? 0F)
DO 322 I = 1»XF
DO 322 J=1»NF
b( I ,J)=3.U
I F ( I · E Ω · J ) B ( I ♦ J ) = 1 · -

32 2 AA( I » J) ^-A( I , J) /AMASS! I )
CALL EBERVC ( ΛΛ CF , 1 , ? JU , . ' I » . C 1 * 1 0 00 . , Γ' ,g · -1 . ° )

2 XHF ARE NATURAL FREQUENCIES
C B IS EIGENVECTOR

DO 32 3 I = 1»NF
Xf,F( I ) =SQRT(AA( I »I ) )
>;RITE(6,213)XNF( I )

323 aRITE(0>215)(B(I,J)»J=1»NF)
GC TO 410

4 9 C A — a A ( J j U I
A A ( J » J ) = A A ( I , I )
AA(i »I )=CA
GO TO 407

414 K=2
J = K-1

4U7 DO 396 I=K»MF
IF(AA(J»J)»GT«AA{I»I))GO TO 409

3 >· 6 CONT I i■!UE
l F = 0 R T ( A A ! — ♦ 1 ) ) 
URITE(6,223)GF

. ( 1H4 ».?7H FIFJT NATURAL CJUr,!CY = ,E20.6)



TA(1)=2./L Γ( I )
TD( I ) =TA( I ) -2.

; ICi1)-T3(I)/DT( I)
GO TO(933,931,934),KREP

S .'j J L 0 3 2 o K = 1 , i >i F 
00 32^ I = 1 , Nt 
DO 324 J-1»Γ.F 

3^4 A A ( I» J)= Ξ(I, J ) / B ( I « ) 
_>2 5 A ( I } ^2 . -AMASS ( K ) * ΧΝΓ ( I ) *DECO ( I ) 

oALL jCL Vc. ( AA , W , I D , NF, 1D ) 
u 0 326 L = 1, N F

3 Z 6 DMX ( A , L ) = ui ( L ) 
00 TO 932

9^1 READ ( 5 »15 ) ( ( DMX ( I , J ) ,J=1,NF) ,1 = 1,NF) 
GO TO 932

9 34 DO 9 3 5 I = 1»NF 
DC 935 J=1,NF 
DFiX ( I , J ) = · U 
IF ( I · EG· J ) Di iX ( I , J)=2.«AMASS( I ) ~QP*DECC( I }

9 .> 5 C 0;; Γ Ir; J E
9 32 wRIIc(6»212)
212 FORMAT(1H->3vH DAMPING COEFFICIENT MATRIX IS//) 

DC 3 2 7 I = 1 , N F
3 2 7 ά'Κ I TE ( 6 ♦ 2 11 ) ( DMX ( I »J ) , J=1»NF) 

CALL TICKS 
CALL FORCE(TMS.FCE) 
DO 333 1 = 1,NF
D(I,1)=D(I,3)
ACL (I,l)=FCEiI,3)/AMASS(I) 

^33 \Z ( I , 1 ) =u. u
I TE ( 6,2 14 )

214 FORMA T ( lri“»13X, 4H TI. 'Z , 15 a , 3HDE FLN , 16X , 3R VEL , 16 a , 5 nA ΖΖ;_;.,15α,5γ:γ 
IE// )

»o\ i T E ( ό , 2 19 ) 1 I ME ( 1 ) , D ί I , 1 ) , V ( 2 ,1 ) , ACL (1 ,1) , FCZ II,")
DO 344 I=2 ,NF

344 UR I ί E(ό » 218)D(I,1)» V(I,1) ,ACL(I,1) ,FCE(I,3) 
DO 345 I =1,NF
D(I,2)=D(I»1)
V(I,2)=V(I,1) 
P D ( I ) = 'u · ύ

345 ACL(I,2)-ACL( I , 1) 
ocTl = ^
K b - j
K=2J
Du 899 1= KK,A 

ri ■> j O ( I ) = o · 0
Drj 3ό2 I = 1 ,NH
U I C ( i ) = 3 e V 
r r /\ ( I )-v·- 
uIAi i ) 
l· n.\ ( i ) - U · - 
ti R { I , i) = v · 
nA( I ,Z ) = C ·

I — Λ , ‘ s



J i (1)-3
I x ί — L· 69
C A L L i1c
3 L T 2 = 0 · 1 j

uvj 3o> Ι = 1»,'Π
L/C 3 o 3 J=1,Hr

33 5 T A A (I , J ) - 3 ( I »J )
DO 33b 1 = 1»NF
DO 33b J = l,iiX
A = a 4- f, F

3 -j 6 TGJ(I»J)=3(i,K)
i>0 7 I = 1» MX
A - N F + i
DO o3 7 0=1,NF

3 j ί i CC ( 1 , J ) = o ( A s J )
DO 334 1=1,MX
A = ;X F + I
DO 33 4 O=1,M.X
L=nFtO

i o(I,D)=oiA»L)
CALL I NVMA7 ( -j ♦ 1 “L ,ι ίλ » v· » I ER »
X k I T C ( b » 2 3 9 ) I E k
DO 36ό 1 = 1»kF
DO 365 0=1»MX
C = U. u
DO 3 64 L=1»MX

364 C=C+TD^(I,L5"3(L»J)
365 l(u ) -C

DO 36 6 0=1,MX
3 bo IdD(I»J}=k>(^)

DO 33 9 1 = 1»MX

9 u ά A ( I »J ) = 7 A A ( 1 »J )

3 _) > a Ei I ) = Q ( K )
DO 36 3 I = 1 , NF
.. A ( I ) = o · u
DO 3όο 0 = 1»MX

368 v. Α ί I ) = o A ( 1 ί -« 7 3 6 ( I » J ) >· λ 3(05 
u 0 9 v 2 I = 1 »। v F
DO 1 u = 1»NF
k, — · L·
DO L=1»MX

7 W C = C + T 0 ί; ( I »L ) :; T C C ( L , J )
o ( J ) = C
m 0 9 v 2 J = 1 > A F
ϊ ο ΰ ( I , J ) = J ( J )
ίAA(I,J) = iAΑ ίI» J)— 7D-iI»3!

CALL i! V ··’A · Ϊ ! »1 - »‘iF , - · 5 I Ξ
4 1 9 I F ( I E 

\-mLL

' > · , ^ ·

7 ICAO
FlTFii,?.??}

2 z. ? r Οί\· .A 7 ( lri-»3^ ΓΊ
- ( » » ( » -4

 n ί·Ί ■ . Λ । Γ?
i Γ i
1 · i O L A □ 1 ) - L < A ~ x· ·



il l . I v. · · uts o · .. o · . , . ... - . — _T . 7Q
I 1 ■ L. [ j I = I 1 .· c. k i. > i I k lx A J

I Γ k I . L i J i · Ά. > ι .1 ‘ · .0 I ’ ’

I r ( Γ * i k 3 } o j । · ι I I A L: " = X L. ” +1
ir ( XL; ..00.2 }G0 TO 937

9 30 G U I Ο οo
937 READ ( 5’15 5 »A.X I I ! , 1 = 1 ‘ΟΓ } » ( 0 'Ll ' I 1 · I = 1 s X ' 

oLT1-1■u 
KLL. = >XE '-i-l

οo xAlL F OR C Γ( iMS » F C F) 
1JV?. go 10 1^ 
1-^ DO luul I=1»;.F 
1 o i FCEil»3)=^· 
icvZ Do j2o Ι=1»ΝΓ 

DO 32c u-l’t.F
328 AB( I ♦ J)=TC(XA) “TX ί I »J) "^‘rZZ^ I ) 4 7 - WXI I ,J)+T ' ‘ ( τ , j) -r 

DO 33 v I - 1»NF 
A L ( I ) - 0 .
AF.( I ) - v.
DO 32 j J-1»ΝΓ
aL ( I ) = AL ( I ) ·< ( i C (·Ά ) ” D < ( I , J ) ·”Λ··’,\3ό ( I ) τ T A ! R/ ) ■·’ 3 X ί I ».J J ! ' . · ~ 1

3z9 An ( I ) = Ai·' ( I ) + ( T0 ( ?.Α ί ’“O . ( I ϊ J 1 ''A.-0.30 ( I ' +3. ’X ( I » J ΐ ! . X · Z J
5 3U ύ A ( I ) = Au ( I ) 4 AM ( I ) +Ai' 'OS ( I ) “ACL ί I » 2 ) + FCE ( I » ? 1 -. MI'

CALL 3CLV l ( A » ..’A , I 0 »XF » 1 J ) 
DO 331 i = 1 j rir 
<·.' D ( i ) — λ Α ί I ) 
ΛΑ(I)=0Λ(I)-PDiI) 

3 31 D( I» 3)-λ A(i ) 
DU 9»-Ά I = l»i'iX 
λ = o · u 
u U 9 o 3 J = 1 ’ N F

·> - ji a = a + i C C ( I »J ) 0 A ( 0 '
v v A u ( I ) = X 

DO 372 1=1’MX 
9^5 0 A iI )--0(I)

i f ( nc r r . eq· o j I a (i) =v;o (i i / z-r ,:a c i )
3 72 CONTliiUE

1 L -1 +1
IFiJl(I)«i';c»^)G0 70 A C 

■ i = LX ( 1 )
h λ (. · 1 » 3 i = D ( M » 3 1

4 Jb lF(JT(IL)»>«i-»vI.jo .. -3- 
■ ■ = L λ i 1 u )
Hi\ (. ;z » 3 ) ·’.■■·· ’. )

o 1. o', i' 1 oi.



L - .xL ( J j 
l».P λ-L / ύ 
.· p4-=/b0( L»E )+l
GO T 0 ( 7 0 - » 7 - 1 , 7C 2 ’ 7 ~ 2 > " ' » 7 ■ 5 · 7 7 j 7Z ' ) , "F Z 

ί vz ιιί· X-iiP X + l
ir O'P-X.EC .NF ) GO TO 7^3

/ w 1 ί ί ■ ( L · E Q . 1 ) G 0 TO 711
I L = 2^P.PX-1
wO TO 7v7

7wo i iHX-MPX+1
I F (i-iP X · EQ · NF ) 30 TO 720
i L = 2*i<PX
GO TO 7 G 7

7 3b I F ( Fi P X · E 0 · 1 ) 3 0 TO 711
IL=2~HPX-2

7w7 IF(JT(IL).EQ.b)G0 TO 711
ii-2* I L+NF
HR ( L , 3 ) =D (EZ » 3 ) —D (, i» 3 )
GO TO 363

7u9 M = K J
GO TO 70S

1^2 hi = KJ —2
GO TO 7g8 

7v5 11= ( L + l )/2+NF 
/ u 8 H R ( L > 3 ) = D ί Μ Z > 3 ) — D ( M » 3 )

HR ( L-1 » 3 ) = -I i R ( L » 3 )
GO TO 360

711 HR ( L , 3 ) =D ( FiZ » 3 )
360 CONT I NOE
9^3 DO 354 1 = 1, NH

D I b (1) =0 · 0
3 54 TrlR ( I ) =HR ( I » 3 ) +PHR ( I )

CALL XFCE
00 39ο I = 1>NE
PA(2*I-1)=P(3-1-2)+PPA(2”1-1) 

39υ PA(2*I)=Ρ(3*Ι-1)+ΡΡΛ(2*Ι)
C PLASTIC - ELASTIC TR ANS I 7 I O’;

00 341 I = 1»N H
IF(01A(I).EO.w.w)GO TO 341
olb(I)=1.υ

916 IF(DIA(I)x(HR(I,3)-HR(I»2ί).LT.O.)G0 TO 341
IF(EPE.EO.-.LJGO TO 4C
GO TO 42

4b IF(EEP·EQ·w.w)CO TO 43
42 DlA(I)=b.O

01C ( I ) = v .
b R I T E ( 6 > 2 2 ·> ) I
j L I 4. = 1 · ■·>
bLTl=l.^
DO 3 5 3 .·. = 1»I a » 2

= ■· .· — 2
I L-i i+i
IF ( I .EC.K.OR. I .70. (R + i 1 .OR. I . E G . ( >■” ) )"0 TO 4,?o 
IF( I .LG. I χτΛ ) .ο:;. I .EQ. ί ; + 5 ) .OR· I . EO. (Z4 14 ) 100 T? 

J 36 CONTINUE
0 b j 3 'i J -■ 4 ϊ I P ·



। · c η ο) J I

ZL.

1 I * ( ( ι ) > >d— ( I ) V d i * υλ
·;;: u ·οχ

01 CO(I 
U7 01 00(I

01

ίρ· ι τ π

2" Π3 1 .-’I 
t I ) Vd ) J I

1 ·(I)Vd)J I

? I 1S'/"I3
! it·Z « —!-'T ) J V'.'O.'O J

3ΠΜΙ1ΚΌ9 T^r 
ηη^ΙΙΧΌπ A or

(Ι+Χ3Ί)?"(Χ3Ί)O
Γ>+Ί=Υ3Ί

(ΐ+Ί)U =(Ί)Ί> 
jy«0=1 a no on 

Iff 01 09(Γ·1Ί·JN)ji

TVS 01 09
SOMIlMOO TnC

SOV 01 09((0)Ί>’03·I)3 I 
jj*T=r Tor oo ς?<7 

( I )Vd+(XCD0=( YODO ητηΐ
JN+Hi^XOl ST ΟΙ 
Tfr 01 09 Sn9 
·Γ>= ( I ) 0 I H 77b 

^(ΌΤΙϋ TT^T 
t+j\+?/o=y?j t-i^T

Z^ 01 09
η·η-(ry)o 0 T^T 
?rf 01 09

c«o=(7-r>)o 7τητ 
7£f 01 09

r'=(b:)X3 Oft· 
01 09

(II )Yd=( YCD^ 
0>!+-!>' = γα-ι
1 I = (JX)3^ 

T+3N=J>
(I)Vd=(XV0)9

J KI 4-[V .χ. 3 = Y w “I 
^•o=( 11)010 ^r+/ 

n = ( >;) ΥΊ 
(W)X"I=1T Tr-V

Iff 01 on
• ('a')XTC\'VT ·03· (λ) 10) JI
• (;1) XI · OXV· I · 93 ·(■·.') 1r ) J I
GIST 01 09( I ·19· (r ) 10 ).JI Ζηθ

T + (? )10=(/ ) I 0 SZf 
7rP 01 OH 

“! y -bi
T^flllio-fnjiir +77^ 

τhe f' j nn
• I · 'JO’ I ·n-1 · I ) J 1 
( (Z-dI ) ··I)J I 
( (z-rl )*ro·I)J I

?n j £\ion > c’f
T ( I T

9 T ' T 01 0 0 ( 0 · n o · I ) -! I



- i I Λ ( I )-GICX( I · > ♦ P A ( I ' ' 73
IF(PA(I).Εϋ·v·0)SC TO 41?
Λ K I Γ E ( 6 » 2 2 1 ) ί » D I A ( Ϊ ) » 3 ’· ί I '
PH (i)= PA(I)-^1A(I)
o L I £ = 1 · u
SLi1 = 1 · v
DU 3^3 J=1»IK>2
K=4*J~2
IL-J+i
I F ( I · EQ. K.OR · I · EG. ( K + l ) · OR. I . ECj. ( K+? > ) GO To
IF(I.EG.( K+4 ).OR.I.EG.(:>5 ).OR.I.r0.(K+lή))^^ λ?ι

3 ν'3 CON i I HUE
DO 386 J=4»IP,o
I F (I.EQ.J)GC TO 1016
I F(I·EQ.(J+1 ) ) GO TO 1005

386 CONTINUE
IF(I.EG.(IP-2))GO TO 100"
IF(I.EQ.(I P+2))GO TO 100 6
I F ( I . EQ. 1 .OR . I . EG . 3 · OR · I . E" . ( I P-1 ) . OP. I . - C . ( T P+"3 ) ) "O T~ 1Cn
GO TO 342

421 J=IL
44^ JT(J)=JT(J)-1
8^6 I F ( J7 ( J ) . GT · 0 ) GO TO 42 2

IF(JT(J)·EQ.0)LX(J)=I
GO TO 427

422 KF=KF+1
KL(KF)=I
LFX=KF+KJ
Q(LFX)=PA(I)
LGX=2*J+NF
Q(LGX)=Q(LGX)-PA(I)
GO TO 342

lUuv Q(KJ-2)=PA<I)
GO TO 427

lul6 LHX =J/2+NF +1
iυu4 Q(LHX)=PA(I)

GO TO 427
1uυ6 Q(kJ)=PA(I)
427 DIC(I)=l.v

GO TO 342
10 05 K F = K F +1

KL(KF) = I
L I X = KF+KJ
Q(LIX)=PA(I)

3h 2 GONTI NUE
2 21 FORMAT ( 11 H » 2 2H HINGE IS FORME? Λ T — »!?».? “20,ft)

DO 391 I = 1>NF
D ( Ϊ » 3 ) = 6 D ( 1 )
C=D(I»3)-D(I,2)
V( I »3 ) =TA(KA)^C-V(1,2)

39 1 ACL ί I , 3 ) = Ϊ C ( KA ) “C-TS ( ) " V ( I , 2 ) -AEL ( I , o )
iF(3LT2.EQ.0.v.AND.:<2.EG.2)G0 TO 2017 
aRITE(6 »217)TI MF(3) »D(1» ?)» 7(1·’)»ACL(]»’),FCE(1 ·?

219 FuR’·’A7 ( IX » 5E2 v · 6 )
DO 34 j I = 2 »i\F

343 aRITΞ(6 > 213)0 ίI,3)» V(I·2) » ACL(T♦» FCE ίI» Q)
218 FOKi'iAi (21X»4c2v.6)

i 17 DO 3 5/ I = 1♦'. F



j(I>l)-!y(i»2i 
v ( i »1 J - v ( Ϊ » 2 ) 
A x L ( 1 » i )-ACL i I » 2 ) 
D(i,2)=2li»3) 
V ( I ί 2 ) = v ( I » 3 )

3 5 j ACL(Ij£)-ACL(I»3) 
DO j »2 I - 1»AH 
HR( I ,1)=HR( I » 2 )

3 9 2 HR ( I » 2 ) = i IR ( I ♦ 3 I
i i i'.u ί 1 ) - 7 I τ ( 2 )
7 I ME ( 2 ) - 7 Ii iE ( 3 )

9 36 IF(TI ME(2)·ΰT· iL M)30 7 3 4 0 3 
IF(oLI2·EQ·£·0)GO 70 4 00 
NCTR=NC TRi-1

917 I F(NCTR.GT.MTR)GO 70 406 
DO 3 61 -1 »NH
PPA In)-PA(A) 
h R ( K » 2 ) = v · v«

31> 1 PHk ί A ) = THR ί K. ) 
DO 3 51 I -1 > Nr

351 PD(I)-D(I»2) 
ί I i L = K U+K F

916 GO TO 4^2
C 43 IS EXI7 STATEMENT FOR PLA57IC - ELASTIC TN?RS 17IC'

•+3 E P E -1 · U
K A — 2
IF(SLT1.GT.S.U)GO TC 400
DO J7o I = 1»NF 
v ( I »2)=V(I>1 ) 
D( I ,2)=D(I»1 ) 

5 7υ ACL(I» 2)=ACLU »1)
DO 93 ο I = 1»NH

93u HR(I»2)=HR(I»1)
1IME(2)=7 I ME(1) 
GO TO 400

C 4b IS EXIT STATEMENT -OR ELASTIC - PLASTIC Τ^^!ττλ·< 
48 EEP=1·u

K A = 2
GO TO 4d0

915 GO TO 406
412 WRITE(6»222)
222 FORMAT(1H+,71 iERRCR^1)
4^>ο λ R I T E ( 6 » 2 3 )

23 FORMAT(1H-»17H COMPUTATION ENDS) 
3 7 OP
END

3 i ΰ F Γ C S 7 F M 3
SUBROUTINE 3TFM

ς. jOoROuTINE TO COMPETE STIFFNESS M TRIX 
^I.-iEuSION \G(6)
COM. ;0i: <- I 12 2 ) >;. L ( 50 ? »DI ( °0 ) ? ’>T " ' = 1 0.0 1 > .P ( 1 . Λ ( 1 <· 1 ,

1 a .-u ί i-) »o‘:eg (ίο ) ,ο ί ] .M)»ntl?f "·',r, Iy i1-' - ·r '· \·- ·y' λ ·τ n nr.. >
2 » D ( 1 s 0 » 3 )

DO 3 c U-1»N 7L



υϋ 3 α ι — 1 » \ ϊ_
I = 3*M
I J= IJ + 2
I K = I fx + 2
JO 3 13 l = 1 s 6

3 73 Ab(L)=o.»
IE( J.GT.Aw.A.'.D.R.CT.AJJCO TO 111
111 = <P( I — 2 } 
M2 ί I -1 ) 
. i 3 = ·χΡ ( I )
IF(J·EQ.Ml)AS(1)=1. J-? I Λ ( I J ) ·’■'' i+V I C ( I J ) 
I F (K. EQ· Ml )AG(4)=1. 3—D I A ( I J ) ” I C ( IJ ) 
IF(J·EG.M?) IC (?)=1. 3-n IM IK) **·7+[) T C ( T '< ) 
IF(R.EQ.M2)AG(5)=1.O-DI Λ ( I K ) 7 4-0 I C ( j < >
IF(J·EG.M3J AG(3)=1·0 
IFίK.EQ.M3)AC(6 ) = 1 · ~ 
DO 376 IC-1»N F 
i^iZ — 12 4 IC —3
IF(J.EQ.M3-AMD.I.ZQ.MZ)ΛG(3)=-l.n 
IF(A.EQ.M3.AMD.I.EG.MZ) ■'G (M=-l.* 

376 CONT I NJE
Ir(J·GT.I X.AND·X·CT·I X)GO TO 2'0 
JO 373 ID = 1» I X 
। iL-i 2 ·· I u
I Γ ( I · EG . ( ML-? 3 ) . AN" . J . EQ . I *)AG(’1=-].0 
I F ( I .EG. ( -Τ r 3 ) .AND.X.EQ·ID)'G(6)=-1.3 
IF(1.EQ. (ML412 ).AND.J.EG.ID)AGί3)=-1 .
I Γ ( I .EQ. i MLH 2 ) .AND·X.EQ·ID) Λ^(6)=-! . 

3/3 CONTINUE
IF(KF·EQ.J)GO TO 38
IF(J.uE.KJ.AND.K.LE.KJJGC TO 33 

ill DC 334 L=1»KF
IY=KL(L)

7S

ID=L+KJ

3 ο Λι

I F ( I 
IF ( I 
I F ( I 
IF ( I
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38 Ϊ (J » κ ) = ( A G ( 1 ) · ·’ A / t ( ΐ , M )+ag: ~ } ·* V A( 2 ?5 Λ X 5 { 9 * ’ 1 } " ( ' ) - ' * f · Λ
L ( 2 )+AG(2)" XA(J »i-i) + AGO ) A » i i • M) )"AG(5 H(2G(S~XA(3, )+AC(2 I "
? , ,4 ) +aG ( 3 ) “Α. » ( 4 , M 5 ) -"-A G ( 6 ) + T (J, ,5» l

R £ T J R N 
END

S 1 B F T C λ F C f f>
uOLROk-TINE aFCE

O jCLiGu i I ι·ίc I C CNF C·c L ’' F , C _ —
uOM ON <xP (12 ) t K L ( 5 u ) , D I Λ ί ~ 1 ) · I C ί 2 ) »C ί 1 2 0 ) , '12'') 0 ) ,

ί Ai .u i i u) ,c; eg »io) ,q ί i. z) ■>nil »·■"-mf · ix · ·>z j· n·~· x.■ f > . zj· ) · 8 · r ·
2,Dil^^»-)

K- c

JO 312 I - 1 ’ > <
KJ ( i ) = V . K.
Ixb-AJT 1
i Γ ( 1st: · u i . · ί A "Ιχ-t J.
ί r M ■. o · c kv · 3 ) ,x 3 -
I^C · J ·- U= J. ♦ i . ■ L



i ;■ i J · L । · Kw, i Ο 3 TG 12
i ( I )

I r ( I · ΰ G · {···-»- > j J ‘ 3 X - — 1 ·
7 CUh I I HUE

I r ί I · HE · 3 - ( J + 2 - ‘IF ) ) 30 TO 312 
iF(ΜΟύ(I»12)·NE·9)GO TC 322 
IF(I·ll· (12:-RF-3 ) ) AGX = -1...

i Go io 31^ 
912 DO 71 L=1»AF 

IY=KL(L ) 
ID=L+KJ 
IF(lY.EQ.K.AND.J.EQ.IDJGC TC 7 2

71 CONTINUE 
GO TO 312 
iir(KG*EQ*3)G0 i0 312 

A G X = 1 · kJ
312 U ( I ) = U ( I j +AGX^*D ( J » 3 ) 

DO 313 M-l, HE
P ( 3^M-2 ) = ( J ( 3 " ’ H? ) - aA ( 1 ,' ■) +L ( 3 " 1[ ) 'X Λ ( 2 »" } +0 ( 3 ”'■ ) ' X ‘ ('’»"):-■
P ( 3*i :-i} - ( J ( ) "XA (2 »M · -0(3 "··-! )*ΧΛ (1 »“) -«-υί ?·’'<“) "XA (- ‘ -

313 P ( ) = (U ( 3 RM-2 ) "XA( 3 ·/')+L (?"-“-! ) »ΧΛ ( 3 » " ) +0 (') Λ,ν ’ (A,··) )
RE·0 R Γ 4 
END 

ILF TC rURGE7 
oJBROOTINu FORCE(Τ'Έ »FCS)

<. SJGROOTIisZ TO CC.rJTC THE DYuA‘'IC F02CZ3 JOES I" T .2 A'.AL S’ 
C GF TivC“STORFY FRAl’E

DI MEi\S ION FCS(]v>3)
COFi -OR kF ( 12v) ,KL(30) >DIA(3C) ,DIC(9C) 2 ?C) »Α·Έ( ’ 'll »

lA.:b(l<,),OMEG(l-) »C(1-C) τχΤΕ,’Έ,·^» lX,r.F»AJ*f'»E»X' f' ·' ~! , 2 ( 1" 
2 > ΰ ( 1 o v , 3 )

DO 332 1 = 1» Nr
3 32 F Co ( I » ^ ) = APL ( I ) ■"■CXr ( — ·"<;·'J ( I ) ;- T. '.E 1 ·■ COS ( G'lFG ( I ) ' > F ) 

RETURN 
END

oiuFTC F0RCE3 
ϋνυίνύυ T I f,E FORCE ( THE » FCS )

S. SUoRC^TINZ TO CO PUTS THE 9Υ’:Λ ’IC -PRC^S- '.'Sr^ T’ T-‘- A ’ 'Lw'·! 
C SIX—STOREY FRAME

DIMENS ION FCS(10 » 3)
Cvrii-'Cii K.P (12 ^ ) » AL ( 5O J ,D I 7, ( S 3 ) »01 C ( £ v· / » 0 (12 1 ) ,F ( I 2C ' »/ 'L ( ' 0 ' » 

1 AMU (1 v ) , 0; 'ZG ( 1 v ) »C (1 -j ) ? N TL » E » Γ · * X ♦ » ζ J ·' »~ ' ( ' »' ‘ · (10
2 > D ( 1 » 3 )

DO 332 1 = 1 »AΓ
3^2 FCS(I,3}=A?LίI)- MU(I)”T E X '^0(I}? 

। x E 7 U R r.
E H u



LOOP TO CAL.[Sj402
SET ΕΕΡ,ΕΡΕ, SLT2& 

KA EQUAL TO ZERO

CAL. [S] cal. Lt],M,M,[zJ

IF TIME>TDfHkB = O

CAL. [Zj^Hj

F KB=3 OR KA = 2

F(t) = 0.0

F

CAL. INITIAL X

KB = KB+I

-a- SLTI= 0.

WRITE [Cj ^932

F KA.EQ.

F KF

MOMENTS

WRITE X(t3), X (t3), X(t3)

E

CAL. Ft(t) qjCAL. [G] &[Mj |>|SOLVE FOR X(t2)^CAL.[pr'

CAL. END! fPLASTIC-ELASTIC
TRANSITION

·>

CAL. HINGE
ROT ATIONS

342ELASTIC-PLASTIC 
TRANSITION

F
NCTR=NCTR+I

400 SLT2 = STOP

CAL. X(t^,XU^>

STOP r^NTL=KJ + KFCTR.GT.NTR

13»a3,a3,

AND t2X2,X2,

^X2,X2,— RESPECTIVELY 

h Λ X ,-RESPECTIVELY.

SET PERMANENT 
DEFORMATION (402'

FIG.A.I FLOW DIAGRAM FOR RESPONSE COMPUTATION
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