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Abstract

We investigate the potential applications of using machine-learning models in financial

crisis prediction. We aim to identify crises one or two years ahead of their start dates by

recognizing trends in a variety of economic variables. We look at two different datasets

of banking crises, as well as currency and inflation crises. For consistency in analysis, we

manually construct the crisis variables for the years 2017-2020. By analyzing the models

in both cross-validation and forecasting experiments, we show that machine-learning

models can outperform logistic regression in financial crisis prediction. We employ a

Shapley value framework in an attempt to mitigate the black box nature of the machine-

learning models. We show that the global economic climate is of vital importance in

identifying banking and currency crises. Wages are shown to be the most important

predictor of inflation crises. We then investigate the nonlinear relationships between

the predictors and their Shapley values to further understand the driving forces behind

the model predictions.
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Chapter 1

Introduction

Financial crises often shock financial systems, resulting in large economic and social

costs. Spotting a financial crisis before it occurs is a worthwhile task for policymakers.

The key to this is that the crisis must be spotted sufficiently early so policymakers have

time to implement policy to either prevent the crisis or dampen its severity.

Pinpointing a set of reliable early warning predictors can be challenging. First,

complex early warning models must be simplified into simple indicators for policy im-

plementation. Second, achieving a robust model can be challenging since the number

of observed crises over time is relatively low. Lastly, typical indicators for crises often

send a signal when it is too late for policy to make a difference.

This work aims to provide solutions to these problems. Following the work in

Bluwstein et al., 2021, we employ a wide variety of machine learning techniques and

show that these models can achieve better results than a baseline logistic regression

model. Machine learning models also offer greater flexibility, allowing them to learn

the nonlinear relationships between the predictors and the predictions. Identifying these

relationships can be useful in policy making.

Machine learning models are often criticized for being black boxes. This critique
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is about how machine learning models can achieve good results, but it is difficult to

determine how the model is making its predictions. A recent development in address-

ing this problem is called the SHapley Additive exPlanations, or SHAP method(Awan,

2023),(Lundberg & Lee, 2017),(Joseph, 2019). The SHAP method has desirable proper-

ties for analysis (Bluwstein et al., 2021). This framework allows the identification of the

economic drivers of the model predictions. Policymakers often face a challenge in trying

to use machine learning models to help inform their decisions, but the SHAP method

gives insight into how the predictions of the models are being made. The benefits of

using the SHAP method are important since policymakers need to be transparent and

give justification when they implement policy. Having a way to interpret the models is

desirable for everyone involved.

The goal of this thesis is to predict different types of financial crises 1 or 2 years

in advance of the crisis year. This is the typical horizon given in the literature for

early warning systems as it gives policymakers time to potentially prevent the crisis

or mute its effects (Bluwstein et al., 2021). We use the Macrohistory Database from

Jordà et al., 2017, henceforth denoted as JST, as our primary source of information

for financial crises. This database contains a large number of macroeconomic variables

for 18 countries from 1870-2020. It also contains a binary variable which indicates

whether a country experienced a banking crisis that year or not. The definition of a

systemic banking crisis used in this database is as follows: major bank failures, banking

panics, substantial losses in the banking sector, significant recapitalization, and/or

significant government intervention (Jordà et al., 2017). We test the performance of out-

of-sample prediction for the following machine learning models: decision tree, random

forest, extremely randomized trees, support vector machines, artificial neural networks,

extreme gradient boosting, and K-nearest neighbours. The main finding is that the

tree-based machine learning models often perform better than the benchmark logistic

2
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regression model. We then apply these same methods to different types of financial

crises, including a different type of banking crisis, currency crises, and inflation crises.

The definitions of these 3 types of financial crises are obtained from Reinhart and Rogoff,

2009, who have a narrative-based definition for banking crises that differs slightly from

that of the JST database, and threshold-based definitions for the currency and inflation

crises.

When looking at the two definitions of banking crises, we find that similar results

hold. Consistent with Bluwstein et al., 2021, we find that the major predictors for this

type of crisis are the credit growth and the slope of the yield curve. The literature has

identified credit growth as an important predictor of financial crises, but the importance

of the yield curve is less present (Schularick & Taylor, 2012), (Jorda et al., 2013). Our

results show that a flatter or inverted yield curve is indicative of a higher probability

of a crisis. These predictors are found to be important both domestically and globally.

However, it was found that global credit growth was the most important during the

global financial crisis, whereas the global slope of the yield curve was important over

the entire sample. The CPI, wages, and debt servicing ratio rank as the next set of

important features across both types of banking crises.

For currency crises, the global variables continue to rank as the top two predictors,

followed by the CPI, the public debt, and the debt servicing ratio. The weight given to

the global variables is quite significant, implying that currency crises could be heavily

influenced by global economic trends.

When predicting inflation crises, wages are the most important predictor. This is

followed by consumption, the global slope of the yield curve, and the debt servicing

ratio. The significant weight given to the wages variable implies that a significant rise

in nominal wages is indicative of a pre-inflation crisis period.

We employ a method of uncovering nonlinear relationships from Bluwstein et al.,

3
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2021 for the key predictors in the models based on the SHAP framework. An example

of a nonlinear relationship is that the predicted probability of a crisis increases dramat-

ically when the global credit growth exceeds 10%, but the global credit growth has little

to no effect on the predicted probability when credit growth is between 0% and 5%.

Stock and Watson, 1999 concludes in their work that there are nonlinear relationships

between indicators and inflation crises. The authors also show the importance of the

unemployment rate as a predictor of inflation (Stock & Watson, 1999).

The remainder of the thesis is structured as follows. Section 1.1 presents the problem

and dives into the existing literature on early warning systems and financial crisis

prediction, including the recent work done with machine learning, and Section 1.2

describes the main datasets used in this work. Chapter 2 outlines the procedure and

features used for the modelling in this work. This chapter concludes with a brief

description of all the machine learning methods used in this work, followed by the

Shapley value framework. Chapter 3 reports on the results of the experiment for the 2

types of banking crises. Chapter 4 reports on the results of the experiment for currency

and inflation crises. Chapter 5 concludes and summarizes.

1.1 Literature Review

Our research stems from two main lines of work. The first inspiration comes from Car-

men Reinhart and Kenneth Rogoff, with their 2009 book This Time is Different: Eight

Centuries of Financial Folly (Reinhart & Rogoff, 2009). They look at eight centuries

of many different types of financial crises for a wide range of countries. Throughout

their work, they push back against the claim that financial systems learn from their

past mistakes or the “this time is different” syndrome. Over the eight centuries covered

in their work, they show that this time is not different. Financial catastrophes are part

4
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of emerging and established markets (Reinhart & Rogoff, 2009). A part of their work

involved creating databases and narrative accounts for different types of financial crises.

In particular, we are interested in their work on banking, currency, and inflation crises.

The second, and greater, inspiration for this work comes from a paper written by the

Bank of England called Credit growth, the yield curve, and financial crisis prediction:

evidence from a machine learning approach (Bluwstein et al., 2021). In this work,

the authors look at predicting banking crises using a wide variety of machine learning

approaches and show that they can outperform a logistic regression in out-of-sample

prediction. They employ methods for interpreting the machine learning models, tackling

the black box problem often associated with these types of models (Bluwstein et al.,

2021). We now move on to discussing what work has been done previously on early

warning systems and predicting financial crises.

Early warning systems were a popular research topic following the global financial

crisis of 2008. Indeed, the literature on this topic is extensive, with many different

parties developing different systems to try and effectively capture trends preceding

financial crises. Some of the early work on more modern early warning systems was

done by the European Central Bank in the early 2000s following the financial crises of

the 1990s (Bussiere & Fratzscher, 2002). In this work, the authors review the 2 main

ways of constructing early warning systems at the time: extracting signals from a range

of indicators and using logit models.

The signals approach was first developed by Kaminsky and Reinhart, 1997. Under

this approach, each indicator is treated separately, and a threshold is chosen for each.

If the indicator crosses its specific threshold, it issues a warning signal. The threshold

chosen will determine the number of false alarms. The Kaminsky-Reinhart approach is

to choose the threshold levels based on a grid search that minimizes the noise-to-signal

ratio.

5
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Definition 1 (Noise-to-Signal Ratio).

NSR =
FalsePositives/(FalsePositives+ TrueNegatives)

TruePositives/(TruePositives+ FalseNegatives)

The shortfalls of this method are discussed in Bussiere and Fratzscher, 2002. They

point out that there is a significant loss of information when using the signals approach

since, for example, the current account dropping 1, 5, and 10 percentage points would

provide the same signal. They also note that this approach does not give a holistic

picture in terms of the vulnerability of a given country.

More recent work on the signals approach has attempted to deal with the sec-

ond criticism of this framework by implementing crisis indices or aggregated indicators

(Bhamani et al., 2018). The authors point out that it often does not make sense to try

and predict the likelihood of a crisis based on a single indicator. Thus, they combine all

of the indicators into a crisis index for each type of crisis. This approach also provides a

type of answer to the first problem listed above, as a larger value for the index indicates

a larger probability of crisis.

The logit models for financial crisis prediction were first presented in 1989 (Bussiere

& Fratzscher, 2002) and involve modelling the probability of a financial crisis as a

nonlinear function of the predictors using a logistic distribution. As described in Saab

et al., 2024, the model looks at the following equation:

P (crisis = 1) = Fw(x).

In this equation, P (crisis = 1) represents the probability of a crisis occurring for ob-

servation x, Fw is the logistic function which combines the independent features into

a probability using the weights (or coefficients) w, and x is the vector of predictors

being used for that observation. The nonlinear property given by this model is desir-

6
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able because other literature on financial crises has identified that there are nonlinear

relationships at work (Reinhart & Rogoff, 2009). However, the ability to capture these

nonlinear relationships is restricted to the logistic function in this model. While there

is potential in more effectively capturing these relationships using logistic regression,

the process of achieving that success is more trial and error, for example by manu-

ally adding polynomial functions of existing predictors. Bussiere and Fratzscher, 2002

offers a potential improvement for the logit model using pooled data, and they show

that their logit model outperforms a Kaminsky-Reinhart signals approach model. Saab

et al., 2024 claims that using a logit model is best because it is easy to understand,

is already the most common model in crisis prediction, and is more accurate than any

other model. In the literature, logit models have been used to estimate the global fi-

nancial crisis (Saab et al., 2024). Other works employing a logit model have found a

globalization aspect to financial crises (see references in Saab et al., 2024). Borio and

Drehman, 2008, Davis and Karim, 2008, and Frankel and Saravelos, 2012 all used logit

models in developing early warning systems for detecting financial crises.

1.2 Financial Crisis Databases

A handful of databases investigate banking crises worldwide. In this section, we will

look at each of the major databases and how they define a banking crisis. After an

introduction to each database, we will discuss different works that use each database

for financial crisis prediction.

We begin by looking at the database constructed by Laeven and Valencia, 2018. In

their work, a systemic banking crisis is defined by the following two events:

1. “Significant signs of financial distress in the banking system (as indicated by

significant bank runs, losses in the banking system, and/or bank liquidations).
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2. Significant banking policy intervention measures in response to significant losses

in the banking system.”

A positive label is placed for the ⟨country, year⟩ observation when the country first

meets both of these criteria. They do this to ensure that the beginning of the crisis

indicates the beginning of major problems. However, they mention that if the losses

are significant in the first criteria, it is sufficient to classify it as a banking crisis. The

losses are considered severe if: “a country’s banking system exhibits significant losses

resulting in a share of nonperforming loans above 20 percent of total loans or bank

closures of at least 20 percent of banking system assets, or fiscal restructuring costs of

the banking sector are sufficiently high, exceeding 5% of GDP.” One of the major goals

of their work is to reduce the amount of subjectivity that is present in other financial

crisis databases for classifying a crisis (Laeven & Valencia, 2018).

The next database we will introduce was created by Baron et al., 2020. Baron et al.,

2020 points out that an unfortunate thing about previous crisis databases is that they

often disagree about when a crisis happens or if it happens at all. This disagreement is

due to inconsistent definitions of what constitutes a banking crisis. However, there is

no single correct definition for a banking crisis! Thus, their work aims to provide “one

possible construction of clear-cut crisis episodes based on systematic criteria” (Baron et

al., 2020). Their database is constructed as the union of two separate crisis databases.

The first list of crises they construct is a list of “bank equity crises.” For this list, a crisis

occurs when there is a cumulative 30% decline in bank equity. From this set of potential

crises, they only select instances with narrative evidence of widespread bank failures

(retrieved from other databases). They append a chronology of “panic banking crises”

to this list. A panic banking crisis is defined as an episode when banks experience

“sudden salient funding pressures” (Baron et al., 2020). They combine these two lists

to create the BVX crisis database. Their work notes that they would rather be overly
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inclusive in classifying banking crises.

We now move towards databases that are employed in this work. The first dataset

used in this work that we will discuss is the dataset used by Reinhart and Rogoff in their

work This Time is Different: 800 Years of Financial Folly (Reinhart & Rogoff, 2009).

In their work, they build crisis lists for several different types of financial crises. The

types of crises that are of interest to us are banking crises, currency crises, and inflation

crises. For Reinhart and Rogoff, 2009, a banking crisis is defined by two different events:

“bank runs that lead to the closure, merging, or takeover by the public sector of one

or more financial institutions, or if there are no runs, the closure, merging, takeover,

or large-scale government assistance of an important financial institution that marks

the start of a string of similar outcomes”. The authors note that this approach to

dating crises is not perfect. Specifically, they note that this method may date crises too

early, as the worst of a crisis may come later. This approach can also date crises too

late, as financial problems often happen before a bank is fully merged or closed. The

authors also classify the first event involving bank runs as a systemic crisis, whereas, in

the absence of bank runs, the crisis is considered non-systemic. The authors define an

inflation crisis as “an annual inflation rate of 20 percent or higher”(Reinhart & Rogoff,

2009). In this work, we use the consumer price index, or CPI, to measure inflation.

We calculate the yearly change in CPI for each observation in the sample and code

a new variable called crisisInflation. If the yearly change is greater than or equal to

0.2, crisisInflation is given a 1 for that observation. Lastly, we discuss currency crises.

The authors define a currency crisis as “an annual depreciation versus the U.S. dollar

of 15 percent or more”(Reinhart & Rogoff, 2009). The database includes an exchange

rate variable against the USD for all observations. Similarly to the inflation crises, we

calculate the change of this exchange rate from year to year for all observations and

import a new variable called crisisCurrency. If the yearly depreciation is more than
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Figure 1.1: Various crisis variables used in the experiments

0.15, crisisCurrency is given a 1. Finally, we move on to the main database for this

work.

The Jorda-Schularick-Taylor Macrohistory Database is the main database used in

this work. It is a database constructed over several years of hard work in data collection.

The foundations of the database are based on work done by the authors in years prior.

This database is one of the main financial crisis databases and contains ⟨country, year⟩

observation pairs for 18 countries from 1870-2020. There is a variable called crisisJST,

which is labelled as 1 in the first year that a country experiences a systemic banking

crisis and zero elsewhere. One thing to note is that the definition mentioned above ex-

cludes the failures of small banks that do not have systemic implications. The database

also contains 48 macroeconomic variables, such as unemployment rate, wages, GDP,

interest rates, debt, and house prices.

Figure 1.1 shows a snapshot of the different crisis variables employed in this work.

This figure only shows 1871, but these observations exist for all years up to 2020.

The dataset begins in 1871 because the currencyCrisis and inflationCrisis variables are
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constructed based on the changes between 1870 and 1871, thus there can be no 1870

observations. The variables crisisCurrencyRR and crisisInflationRR come from the

narrative crisis lists from Reinhart and Rogoff, 2009. We report on the results of these

two crisis definitions in the appendix A.3.4.

With the advent of machine learning models, it has become a focus in this area of

the literature to try and use machine learning models to create early warning systems

for financial crisis prediction. However, the literature shows some controversy about the

usefulness of these algorithms in financial crisis prediction. Beutel et al., 2019 trains

models on monthly data from 1970 to 2016 and concludes that a logistic regression

almost always outperforms machine learning models. However, Bluwstein et al., 2021

looked at yearly data and a variety of machine learning models and showed that they

generally outperform logistic regression in predicting financial crises. Liu et al., 2021

uses similar methods on monthly data and shows that multiple machine learning models

outperform logistic regression in predicting banking, currency, and sovereign debt crises.

Liu et al., 2021 came to the same conclusion as Bluwstein et al., 2021, that the decision

tree is the only machine learning model that performs worse than logistic regression.

Tölö, 2019 looks at the same dataset as Bluwstein et al., 2021 and concludes that neural

networks can be useful models in financial crisis prediction.

The database constructed by Laeven and Valencia, 2018 has been widely used in

this realm of literature for financial crisis prediction. One advantage of this database

over the other main databases is that it includes monthly data, whereas the other main

databases involve yearly observations. As mentioned above, Beutel et al., 2019 used

a modified version of the Laeven and Valencia database and concluded that machine

learning models do not provide an advantage over standard logistic regression. A few

years later, Liu et al., 2021 trained a wide variety of machine learning models on

the Laeven and Valencia dataset and concluded that many machine learning models
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outperform logistic regression, specifically gradient-boosted trees and random forests.

The dataset constructed by Baron et al., 2020 has been on the rise recently as

potentially the strongest list of banking crises. Greenwood et al., 2020 uses this dataset

and concludes that financial crises are able to be reliably predicted ahead of time. While

they do not employ machine learning techniques, Greenwood et al., 2020 does show that

their results are robust across 3 of the main databases Jordà et al., 2017, Reinhart and

Rogoff, 2009,Baron et al., 2020. Bluwstein et al., 2021 also employs this database to

check the robustness in their work.

The Reinhart and Rogoff dataset was a masterpiece and a significant contribution

to the literature when it was published (Reinhart & Rogoff, 2009). More recently,

it has been used for robustness checks when authors would like to check their work

with a different definition of a crisis. Chen et al., 2023 uses this dataset to confirm

their findings on using textual data to predict financial crises. Casabianca et al., 2022

employs a synthesized version of the Laeven and Valencia database with the Reinhart

and Rogoff database to create a wider sample of countries for analysis. They found

that machine learning methods outperformed logistic regression.

When looking for annual data that is useful for financial crisis prediction, the Macro-

history database (Jordà et al., 2017) is more commonly used. Bluwstein et al., 2021, the

main inspiration behind this work, use this database for their work. Bluwstein et al.,

2021 and Reimann, 2024 both identify that the JST database is desirable because it

contains accurate yearly data for advanced economies. They find that machine learning

models outperform logistic regression in both cross-validation experiments and forecast-

ing experiments. Tölö, 2019 also uses the Macrohistory database but look specifically at

the neural network. They conclude that recurrent neural networks can outperform lo-

gistic regression models in both forecasting and cross-validation, although their models

are generally weaker than Bluwstein et al., 2021. Reimann, 2024 has recently updated
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the work done by Bluwstein et al., 2021, using the fifth version of the Macrohistory

database and showing similar findings. Namely, that tree-based methods can be useful

in predicting financial crises.

A common critique of machine learning models is that they are black boxes. The

models can achieve high accuracy in prediction, but it is often difficult to determine

what is driving the predictions of these models. A recent line of work, developed

by Lundberg and Lee, 2017, made use of Shapley values from cooperative game the-

ory. This framework allows for the identification of important predictors in the mod-

els. Combining this with the Shapley regressions presented in Joseph, 2019, one can

attribute statistical significance to the predictors and better understand the models.

Bluwstein et al., 2021 employs both of these methods to gain insight into what are

the driving indicators of banking crises. Liu et al., 2021 also employs both the SHAP

method and the Shapley regressions. Reimann, 2024 employs a different method for

interpreting machine learning models, namely accumulated local effects (ALEs) built

upon partial dependence plots. They allow for the decomposition of machine learning

models similar to the Shapley value framework (Reimann, 2024).

This work contributes to the literature in the following ways. Firstly, the dataset

used in this work is the first to our knowledge to use the sixth version of the Macro-

history database (Jordà et al., 2017). Our work investigates whether or not the up-

dated database affects the results found in the literature, either positively or negatively.

Reimann, 2024 updated the work of Bluwstein et al., 2021, and our work is one step

further in updating this work. Second, our work employs the commonly used SHAP

method and Shapley regressions to crises that are not banking crises (Joseph, 2019).

We also investigate the driving predictors and nonlinear relationships between the pre-

dictors of currency and inflation crises as described in Bluwstein et al., 2021. Our work

also ensures that all the main machine learning algorithms discussed in the literature
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are being compared in this study. To our knowledge, our work is also the first to use

machine learning methods to look at a long sample for currency and inflation crises.
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Chapter 2

Methods

2.1 Updating the Reinhart and Rogoff crises

The Macrohistory database contains all the variables of interest from 1870-2020. We

discuss the missing values in the appendix. The Reinhart and Rogoff crisis definitions

are only updated to 2016. Our first task is to manually determine the values for the

crisis variables for 2017-2020. Reviewing the literature shows many discrepancies in

when a banking crisis happens across the different narrative approaches. Baron et al.,

2020 notes that a problem with these narrative approaches is that some will place a

banking crisis in a year because some previous database had a crisis for that country in

that year. Since Baron’s crisis list aims to be overly inclusive so as to not miss a crisis,

we append Baron’s definition of a banking crisis to the Reinhart and Rogoff list for the

years 2017-2019. Tomczak, 2023 concludes that the COVID-19 pandemic increased risk

in the banking sector but did not lead to any banking crises. Applying both of these

works, we conclude that no banking crises occurred in any of the 18 countries for the

years 2017-2020. For a currency crisis, we calculate the value change of the currency

relative to the USD by calculating 1-year growth rates in the JST database on the
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xrusd variable (Jordà et al., 2017). We then apply the 15% threshold to the growth

rates and determine when a currency crisis occurred. A similar approach is used to

determine inflation crises, but the 20% threshold is applied to the consumer price index

growth rate data in the JST database (Jordà et al., 2017).

2.2 Features

The problem presented in this work is treated as a classification problem, where each

observation is treated as independent. The following predictors are used in the baseline

analysis: debt service ratio, the slope of the yield curve, credit growth, consumption,

investment, the current account, public debt, broad money, consumer price index, nom-

inal wages, and the unemployment rate. The slope of the yield curve is calculated as

the difference between short and long-term interest rates and is left in levels (i.e., with

no further transformation applied to it). The consumer price index and consumption

are transformed into percentage growth rates of the given variables. Wages and unem-

ployment rate are transformed into 2-year percentage growth rates. All other variables

are 2-year differences of GDP ratios. In addition to these variables, we also use two

variables in an attempt to capture any global trends that may be present when crises

happen (Bluwstein et al., 2021). In particular, we define global credit growth and the

global slope of the yield curve. These variables are calculated for a ⟨c, y⟩ observation

by taking the mean of the domestic variable in all countries except c in year y. For

example, the global credit growth feature for Canada in 2000 is calculated in the fol-

lowing way. All ratios are computed over a two-year horizon. The domestic credit is

calculated for all countries except Canada in 2000 and in 1998. The two-year differ-

ence is calculated for each country, and then the mean is taken to be the global credit

variable for Canada. Next, we will discuss why these features are appropriate for this
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problem and how they have been used in the past.

In the literature, credit growth has been found to be a crucial predictor of banking

crises (Schularick & Taylor, 2012). Oftentimes, high credit growth is reflective of high

risk-taking. Intuitively, periods of high risk can lead to financial instability. Further,

Aliber and Kindleberger, 2015 describes financial crises as “credit booms gone wrong”.

In fact, Bernanke and Blinder, 1992 shows that even a relatively small credit bubble can

be detrimental due to financial accelerator effects. There have been several studies that

have argued for the importance of looking at global credit growth. The main argument

for global variables lies in the fact that “financial crises often occur on an international

scale and may reflect global financial cycles” (Bluwstein et al., 2021). Furthermore,

Cesa-Bianchi et al., 2019 shows that global credit growth is a stronger predictor than

domestic credit.

The difference between long and short-term interest rates, referred to in this work

as the slope of the yield curve, has been identified in the literature as a strong predictor

of recessions (Bluwstein et al., 2021). Some work has also identified the slope of the

yield curve as an important predictor of crises, but those papers have not investigated

why this feature has such high predictive power. The yield curve aims to reflect the risk

premium for holding an asset. Bluwstein et al., 2021 notes that the slope will be positive

during normal times, meaning that long-term interest rates are higher than short-term

interest rates. Bluwstein et al., 2021 notes that there are two main reasons why a flat

or negative yield curve slope may have power for predicting financial crises. First, a

flatter yield curve is typically associated with lower banking sector profitability and net

interest margins. Because of this, the banking sector’s resilience may be in jeopardy,

particularly if these effects are severe. Second, flat or inverted yield curves will produce

lower-term premiums. If this is the case, investors will likely have to search for riskier

investments to obtain higher returns. For example, Bluwstein et al., 2021 notes that
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house prices rose as the yield curve flattened before the global financial crisis. This

suggests “the hunger for spread during this period of a flat yield curve could have been

fuelling sub-prime and other alternative mortgage activity” (Bluwstein et al., 2021).

This system-wide build-up can leave the financial system quite fragile and susceptible

to crises. Similarly to credit growth, there are also arguments for looking at a global

yield curve. At a global level, a flattening yield curve could be indicative of a global

economic slowdown, which could very well trigger any financial instabilities that are

present, resulting in crises.

The debt service ratio has been identified in the literature as a reliable early warning

indicator (Bluwstein et al., 2021). It tells us the interest rate payments relative to one’s

income. Thus, it provides a measurement of how overextended borrowers may be.

That is the higher the debt service ratio, the more likely a borrower is to experience

a fall in income or a rise in interest rate. The more overextension that is occurring in

borrowing can lead to increased default rates, a decrease in new investment, or a loss in

consumption smoothing capabilities. In this paper, we employ a rather simple version

of the debt service ratio, which is defined as the credit multiplied by the long-term

interest rate over GDP. Data availability is the main reason for this definition of the

debt service ratio. The downside to this definition is that we do not get insight into

short-term interest rates, capital repayments, or the maturity structure of the debt,

which may all be important (Bluwstein et al., 2021).

Imbalances in the current account have been found to be strong predictors of fi-

nancial crises since capital inflows push interest rates down and then, similarly to the

justification above, lead to excessive risk-taking. In an attempt to capture crises caused

by fiscal vulnerabilities, we include public debt as a feature. Public debt is defined as

the total amount a country owes to outside lenders. We look at this as a difference of

GDP ratio.
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To round out the set of features, we aim to get a sense of the macroeconomic trends.

Thus, real consumption, investment, the consumer price index, and the money supply

are all included.

Build up Non crisis
transformation Mean SD Mean SD Difference p

Yield curve slope level -0.14 1.51 1.01 1.65 -1.15 (0.178) 0.000
Credit 2-year difference of GDP-ratio × 100 7.62 10.34 1.95 6.10 5.67 (1.192) 0.000

CPI 2-year growth rate of index 5.60 9.17 8.33 9.91 -2.73 (1.084) 0.014
Debt service ratio 2-year difference of GDP-ratio × 100 0.66 1.16 -0.07 1.14 0.72 (0.137) 0.000

Consumption 2-year growth rate of index 4.57 5.75 4.83 4.91 -0.26 (0.671) 0.703
Investment 2-year difference of GDP-ratio × 100 1.27 3.71 0.35 2.50 0.92 (0.429) 0.035
Public debt 2-year difference of GDP-ratio × 100 -1.31 6.71 -0.36 8.51 -0.95 (0.803) 0.240

Broad money 2-year difference of GDP-ratio × 100 2.60 6.16 1.16 5.19 1.44 (0.718) 0.049
Unemployment Rate 2-year growth rate 12.31 77.45 14.23 141.50 -1.92 (9.740) 0.844

Wages 2-year growth rate 10.67 14.20 12.87 12.77 -2.20 (1.660) 0.189
Current account 2-year difference of GDP-ratio × 100 -1.06 3.21 0.01 2.80 -1.07 (0.375) 0.005

Global yield curve slope level 0.27 0.75 0.99 0.83 -0.72 (0.089) 0.000
Global credit 2-year difference of GDP-ratio × 100 5.37 3.89 1.94 2.90 3.43 (0.452) 0.000

Nominal short-term rate level 6.29 3.68 5.01 3.96 1.28 (0.435) 0.004
Nominal long-term rate level 6.15 3.36 6.02 3.73 0.13 (0.398) 0.742

Household loans 2-year difference of GDP-ratio × 100 3.86 5.08 1.59 3.68 2.27 (0.690) 0.002
Business loans 2-year difference of GDP-ratio × 100 5.16 7.01 0.30 4.19 4.85 (0.981) 0.000

House prices (index) 2-year growth rate of index 17.69 18.68 14.65 18.21 3.04 (2.257) 0.181

Table 2.1: Overview of the variables for observations one and two years before a crisis
(build-up) and non-crisis observations. crisisJST used as the outcome variable.

Table 2.1 is an updated version of the same table from Bluwstein et al., 2021.

It shows some preliminary descriptive statistics for the features used in the baseline

model and robustness checks. This table investigates the differences in the features in

the two years leading up to a crisis versus any of the non-crisis years. The difference

between the two means is calculated, and a t−test is used to determine statistical

significance. The key takeaway from this table is that there is often a statistically

significant difference between the means of the features in a build-up versus a non-crisis

observation. Indeed, we see that p < 0.01 for the global and domestic yield curve

slope, the global and domestic credit growth, and the current account in the baseline

experiment. The nominal short-term rate, household loans, and business loans used

in robustness checks also have statistically significant differences of means. This table

alludes to the potential importance of these features in predicting banking crises.
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Table 2.2 looks at the differences of the predictors in pre-crisis periods for currency

crises. We see that there are statistical differences in the means for the global slope of

the yield curve, the global credit growth, and the CPI. We do notice that compared

to Table 2.1, Table 2.2 has fewer statistically significant differences between the means

of crisis and non-crisis observations. This table suggests that interest rate changes are

very prominent in the build-up to currency crises. This is known in the literature on

currency crises (Kaminsky & Reinhart, 1997). Kaminsky and Reinhart also reviewed

the literature on currency crises and found that the theoretical approach uses the current

account, the public debt, wages, unemployment rate, and investment as indicators for

crises (Kaminsky & Reinhart, 1997).

Build up Non crisis
transformation Mean SD Mean SD Difference p

Yield curve slope level 0.81 1.64 1.03 1.83 -0.22 (0.192) 0.255
Credit 2-year difference of GDP-ratio × 100 2.59 6.76 1.36 6.36 1.23 (0.785) 0.121

CPI 2-year growth rate of index 11.17 9.28 8.11 10.35 3.06 (1.091) 0.006
Debt service ratio 2-year difference of GDP-ratio × 100 -0.14 1.29 -0.03 1.22 -0.11 (0.150) 0.450

Consumption 2-year growth rate of index 4.95 5.40 4.31 5.17 0.64 (0.627) 0.310
Investment 2-year difference of GDP-ratio × 100 -0.07 3.85 0.19 2.38 -0.25 (0.439) 0.565
Public debt 2-year difference of GDP-ratio × 100 0.11 15.33 0.51 8.23 -0.40 (1.744) 0.820

Broad money 2-year difference of GDP-ratio × 100 0.36 5.32 1.10 5.17 -0.74 (0.619) 0.234
Unemployment Rate 2-year growth rate 17.92 76.34 11.20 58.71 6.72 (8.776) 0.446

Wages 2-year growth rate 15.24 13.52 12.58 13.51 2.66 (1.576) 0.094
Current account 2-year difference of GDP-ratio × 100 0.50 3.55 0.01 2.76 0.49 (0.408) 0.236

Global yield curve slope level 0.82 0.47 1.02 0.90 -0.20 (0.060) 0.001
Global credit 2-year difference of GDP-ratio × 100 3.15 2.80 1.50 3.01 1.66 (0.329) 0.000

Nominal short-term rate level 6.72 4.04 4.78 4.00 1.94 (0.470) 0.000
Nominal long-term rate level 7.53 3.54 5.81 3.84 1.72 (0.416) 0.000

Household loans 2-year difference of GDP-ratio × 100 1.84 3.57 0.99 3.59 0.84 (0.437) 0.057
Business loans 2-year difference of GDP-ratio × 100 1.01 4.80 0.03 4.65 0.99 (0.593) 0.100

House prices (index) 2-year growth rate of index 13.67 14.25 12.66 18.53 1.02 (1.753) 0.562

Table 2.2: Overview of the variables for observations one and two years before a crisis
(build-up) and non-crisis observations. crisisCurrency used as the outcome variable.

Table 2.3 shows the same descriptive statistics for the predictors for pre-crisis and

non-crisis observations for inflation crises. Note that the CPI predictor is omitted since

the definition of crisisInflation is based on that feature. We see that the debt servicing

ratio, consumption, wages, interest rates, and house prices have statistically significant

differences in their mean values in pre-crisis versus non-crisis periods. Interestingly, the
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yield curve slopes, both domestically and globally, do not have statistical differences

despite those predictors being constructed from the interest rates. Stock and Watson,

1999 looked at a wide variety of indicators for forecasting inflation and found that

spreads between interest rates of different maturities (yield curve) are a leading indicator

of inflation crises. They also talk extensively about the potential importance of the

unemployment rate as a predictor of inflation.

Build up Non crisis
transformation Mean SD Mean SD Difference p

Yield curve slope level 0.72 2.14 0.98 1.70 -0.25 (0.574) 0.667
Credit 2-year difference of GDP-ratio × 100 3.27 5.61 2.21 7.07 1.06 (1.511) 0.494

Debt service ratio 2-year difference of GDP-ratio × 100 0.83 1.21 -0.06 1.18 0.88 (0.325) 0.017
Consumption 2-year growth rate of index 9.19 4.02 4.24 4.82 4.96 (1.082) 0.000

Investment 2-year difference of GDP-ratio × 100 1.75 3.89 0.19 2.31 1.56 (1.042) 0.158
Public debt 2-year difference of GDP-ratio × 100 -2.26 7.31 0.29 8.59 -2.55 (1.968) 0.218

Broad money 2-year difference of GDP-ratio × 100 2.76 4.98 1.33 5.24 1.43 (1.338) 0.305
Unemployment Rate 2-year growth rate 4.88 34.06 14.44 134.01 -9.56 (9.813) 0.343

Wages 2-year growth rate 38.79 14.61 10.59 10.75 28.20 (3.917) 0.000
Current account 2-year difference of GDP-ratio × 100 -1.21 2.93 0.08 2.65 -1.29 (0.786) 0.124

Global yield curve slope level 0.67 0.95 0.97 0.92 -0.31 (0.255) 0.250
Global credit 2-year difference of GDP-ratio × 100 1.77 1.42 2.11 3.35 -0.34 (0.389) 0.398

Nominal short-term rate level 9.09 3.45 4.75 3.72 4.34 (0.928) 0.000
Nominal long-term rate level 9.81 4.18 5.73 3.39 4.08 (1.122) 0.003

Household loans 2-year difference of GDP-ratio × 100 0.93 1.99 1.65 3.98 -0.71 (0.614) 0.269
Business loans 2-year difference of GDP-ratio × 100 1.87 5.52 0.58 4.89 1.29 (1.672) 0.457

House prices (index) 2-year growth rate of index 42.29 16.27 12.56 17.67 29.73 (4.723) 0.000

Table 2.3: Overview of the variables for observations one and two years before a crisis
(build-up) and non-crisis observations. crisisInflation used as the outcome variable.

2.3 Experimental Procedure

This work uses many of the same methods from Credit growth, the yield curve and fi-

nancial crisis prediction: evidence from a machine learning approach (Bluwstein et al.,

2021). As mentioned in the introduction, we aim to build models that can predict

crises ahead of time. When choosing which definition of crisis we are using, we trans-

form the outcome variable to be 1s in the 2 years preceding the crisis while removing

the actual crisis year and 4 years after to avoid post-crisis bias (Bluwstein et al., 2021).

For example, a crisis in the United States in 2008 will result in the United States ob-
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servations for 2006 and 2007 having positive outcomes and the years 2008-2012 being

removed from the data. Thus, we are trying to correctly predict pre-crisis years. The

main approach involves using cross-validation to evaluate the performance of the mod-

els. This method uses 5-fold cross-validation, which means that each ⟨country, year⟩

observation is assigned to one of 5 groups, called folds. For all assignments of folds,

all observations related to the same crisis event are assigned to the same fold. Then,

the models are trained using 4 of the folds and then evaluated on the remaining fold.

Thus, each fold for the cross-validation contains 20% of the observations, and the mod-

els are trained using 80% of the observations. To correct for potential biases in the

assignment of the folds, we repeat the assignment of the folds at least 50 times. Due

to the nature of this training, crises that happened in the past will be predicted using

observations from the future. In practice, these early warning models would more likely

use a recursive forecasting approach, where the model only uses past data to predict

whether a crisis occurred or not. Some of the models employed in this analysis require

tuning hyperparameters that affect the performance. The training set cannot optimize

these hyperparameters since the most flexible structure would always obtain the best

results (Bluwstein et al., 2021). Thus, nested cross-validation is employed to optimize

the hyperparameters. This involves applying 5-fold cross-validation within each of the

5 folds created in the cross-validation. The best combination of hyperparameters in

this nested cross-validation is what is used to train the model on the whole fold.

The models will be analyzed by comparing their area under the receiver-operator

curve (AUROC) scores. A model will be considered better than another if it obtains

a higher AUROC score. The ROC curve shows the true positive rate on the vertical

axis, known as the hit rate in this work. The horizontal axis shows the false positive

rate, which is called the false alarm rate in this paper. A perfect model would have a

hit rate of 1 and a false alarm rate of 0. However, choosing a higher hit rate in practice
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will lead to more false alarms (Bluwstein et al., 2021).

Definition 2. Hit rate

Hit rate =
True Positives

True Positives + False Negatives
.

Definition 3. False Alarm Rate

FAR =
False Positives

False Positives + True Negatives
.

All models will be calibrated to have a hit rate of 80%; however, this number is

somewhat arbitrary. The percentage of crises detected is more of a modeller’s choice,

and 80% has been seen in the literature before (Bluwstein et al., 2021),(Reimann, 2024).

Another justification for this high hit rate is that it is more costly to miss a financial

crisis than to be overly cautious in preventing it. Since the same hit rate is chosen

for all the models, a lower false alarm indicates that one model is better than another.

Another common model comparison technique is the noise-to-signal ratio. We do not

use this comparison technique from Kaminsky and Reinhart, 1997 because it provides

no new information compared to the FAR when a constant hit rate is chosen, since

NSR = FAR/0.8.

We then investigate the driving forces behind the predictions of these models by

applying the Shapley value approach (Lundberg & Lee, 2017),(Shapley, 1953). We

decompose the models’ predictions into their Shapley values and see which features

contribute the most to predictions. We also investigate the role of different predictors

over time. Next, we employ the Shapley regressions to test the statistical significance of

the features (Joseph, 2019). Finally, we investigate the nonlinear relationships between

the predictors and their Shapley values (Bluwstein et al., 2021).

This entire procedure is applied to the 4 different definitions of financial crises that
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were discussed in section 1.2. We begin by looking at a logistic regression model trained

on the data as a benchmark model. The machine learning models will try to outperform

this model later in the paper.

2.4 Logistic Regression - A benchmark

In order to determine whether or not machine learning models are potentially useful for

financial crisis prediction, we need a benchmark model with which to compare them.

As shown throughout the literature on early warning systems, logistic regression is the

most commonly used model for this task (Namaki et al., 2023). To help compare the

predictive power of the individual variables in the model, all variables are standardized

to have a mean of 0 and a standard deviation of 1.

All 13 of the baseline features are included. For the JST definition of a banking

crisis, Table 2.4 shows that global credit is the most important feature, followed by the

domestic slope of the yield curve. We see that the slope of the yield curve’s weight

in the model is negative, which is expected. This indicates that a negative slope will

correspond to a higher probability of a crisis. The same is true for CPI, consumption,

current account, and broad money. These features increase the predicted probability if

the features themselves decrease.

Comparing the coefficients of these logistic regression models between the two bank-

ing crises shows quite a few discrepancies. Firstly, we see less statistically significant

features and more negative coefficients for the Reinhart and Rogoff banking crisis. It

appears that the domestic credit growth is much less important for predicting this type

of crisis. On the other hand, the current account plays a much larger role, having a

statistically significant positive coefficient. We can see from the AUROC scores that

the JST definition of a crisis is slightly easier to predict than the Reinhart and Rogoff
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definition.

Turning our attention to currency crises, we see an immediate drop in model per-

formance. This suggests that currency crises are harder to predict, or that the features

chosen are not able to capture the trends in the pre-crisis periods. We immediately

get the sense that credit growth, both domestically and globally, as well as the CPI

are the most important predictors since they have statistically significant coefficients

that are larger than any of the other coefficients. We also see a very small effect from

the domestic slope of the yield curve compared to the global slope of the yield curve,

suggesting there may be global effects at play in currency crises. This is in line with the

construction of the currency crisis variable, since it is dependent on the United States

exchange rate.

Logistic regression achieves its best performance when predicting inflation crises.

Note that Table 2.4 omits the CPI in the model since CPI was used to construct

the crisisInflation variable. Investment, wages, and broad money are all statistically

significant predictors in this model, generating some large weights compared to the

other crisis types. We see a rather large weight is given to the wages, indicating that

it is perhaps a good indicator of inflation crises. Both global variables have negative

weights indicating that countries may be more susceptible to inflation crises if the global

economy is suffering.

Table 2.4 shows the number of observations and positive indicators for each crisis

as well. Since 4 years are removed after a crisis, we expect there to be less observations

when there are more crises. Indeed, there are almost 100 more observations for inflation

crises compared to all the other types since there are so few positive indicators. Note

that a positive indicator represents 1 or 2 years before a crisis occurs.
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JST Banking Currency Inflation
Domestic credit 0.3560∗∗∗ -0.0908 0.4598∗∗ 0.0778
Global credit 0.9543∗∗∗ 0.0701 0.6128∗∗ -0.5909
Domestic slope -0.7120∗∗∗ -0.1437 0.0367 0.1691
Global slope -0.4771∗∗ -0.0402 -0.2176 -0.5999
CPI -0.6270∗ -0.1788 0.5010∗∗ –
Debt service ratio 0.4166∗∗ 0.3138∗∗ -0.3554 0.5601
Consumption -0.1820 0.0718 0.2086 0.3400
Investment 0.2242 0.0978 0.0268 0.4470∗

Public debt 0.0069 -0.0588 -0.0360 -0.3672
Broad money -0.2518 -0.0049 -0.3219 0.6571∗∗

Wages 0.3078 -0.1498 -0.2137 1.045∗∗

Unemployment 0.1785∗ 0.0550 0.1169 -0.3714
Current account -0.1615 0.2072∗∗ 0.3088∗ 0.2295

AUROC 0.82 0.79 0.65 0.84
Observations 1257 1108 1141 1352
Positive Indicators 77 83 79 14

Table 2.4: Baseline logistic regression model. Feature weights shown for all crisis types.
Significance levels: ∗ ∗ ∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.10.

2.5 Machine Learning Models

In this section, we provide a brief introduction to machine learning methodology. After

this brief introduction, we will discuss each machine learning model used in more detail.

Let f represent a particular prediction of our model ŷ = f(X). Xn×k is our predictor

matrix which contains n observations and k features. In our classification problem

framework ŷ ∈ [0, 1] represents the predicted probability of a crisis. A crisis year for an

observation is denoted by y ∈ {0, 1} where 1 indicates a pre-crisis year and 0 indicates

no crisis. Thus, pre-crisis years are the positive class for our work, and the absence of

a crisis is the negative class.

In this work, we use a diverse set of machine learning models that are suitable

for classification. The models range in complexity and interpretability. The following

descriptions of these algorithms are rather high-level to provide a general understanding

of how the algorithms work. For an in-depth explorations of any of these algorithms,
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please consult the extensive literature available. The appendix includes details on the

implementation of all these algorithms in Python.

2.5.1 Decision trees

A decision tree is a simple machine learning model that is highly interpretable. It

works by splitting the data into subsets and testing a single predictor at each step.

For example, it will split the data into two groups based on whether the credit growth

is greater than or less than 1%. Every observation in one group has a credit growth

greater than 1%, whereas every observation in the other group has a credit growth less

than 1%. This process is then recursively repeated in each subset with the goal of

obtaining an optimal split.

Because of their relative simplicity, decision trees are very flexible models. However,

they are also prone to overfitting. Overfitting is the phenomenon in machine learning

where a model will not only learn the patterns in the data but also fit the noise in the

data. This leads the model to perform well on the data it was trained on but poorly

on a new set of observations. To help reduce the effects of overfitting in decision trees,

there exist many different pruning techniques which control the size of the decision

tree. The idea behind pruning is not to allow the tree to learn too much about the

data. Decision trees perform worse than other machine learning models, but they are

included in this work due to their simplicity and high interpretability.

2.5.2 Random forests

A random forest is a collection of many decision trees. In the random forest algorithm,

the prediction is made by averaging the predictions of this collection of trees. This

technique drastically reduces the amount of overfitting that occurs since the overall

variance in the predictions is reduced. Each individual decision tree may still overfit,
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but averaging the predictions somewhat cancels out the noise and improves performance

on new data. However, this only works if the trees are different from each other since

similar trees will fit the noise in a similar way. The random forest algorithm employs

two techniques to try and achieve this. First, each tree is trained on a different subset

of the data made with replacement. This method is known as bagging, or bootstrap

aggregating, and is a general technique for improving the stability of models Breiman,

1996. Second, a random sample of m candidates from the k predictors is chosen, and

the algorithm optimizes the forest for this subset. In a forest, given an observation,

each tree predicts either the positive or negative classes. The mean of these predictions

is the probability that the algorithm gives.

Due to all of these adjustments, a random forest often performs much better than an

individual decision tree. However, this comes at the cost of interpretability, a general

machine learning trend. Since the prediction is determined by many trees, it cannot

be decomposed into a simple flow chart like a decision tree. Fernandez-Delgado et al.,

2014 compared 179 classification algorithms on 121 real-world datasets, and random

forests were the best-performing algorithm on average.

2.5.3 Extremely randomized trees

Extremely randomized trees is yet another tree-based algorithm. It is similar to ran-

dom forests but tends to produce predictions that are continuous as a function of the

predictors (Bluwstein et al., 2021). This is done by creating trees that are more diverse

and random. There are two main differences between extremely randomized trees and

random forests. First, each tree in the extremely randomized trees algorithm is trained

on the complete training dataset. Second, the splitting for each tree is randomized

rather than optimized. That is, splits are made randomly across the range of the pre-

dictor for each of the m predictors that are randomly sampled. Then, the best split
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among the random splits is used to make the prediction.

When extremely randomized trees was first discovered, it was believed to achieve

comparable performance to random forests, most of the time slightly edging it out

(Geurts et al., 2006). Since then, this belief has been challenged, as it does not always

outperform random forests (Fernandez-Delgado et al., 2014).

2.5.4 XGBoost

Since Random Forest and Extremely Randomized Trees are bagging machine learning

algorithms, we decided to employ XGBoost, a boosting algorithm. XGBoost stands

for extreme gradient boosting. Boosting is a machine learning term that refers to

training many models sequentially to make a group of weak learners into one strong

learner (Santhanam et al., 2017). XGBoost improves upon basic boosting by having

each subsequent model trained to reduce the error of the previous model. XGBoost

also uses parallelization to decrease computation time (Santhanam et al., 2017). XG-

Boost presents similar postives and negatives when compared to the other decision tree

ensemble methods. It is likely to outperform a single decision tree, but at the cost of

interpretability.

2.5.5 Support vector machines

A support vector machine shares a few similarities to logistic regression. First, a support

vector machine algorithm learns a linear function of the inputs. However, the inputs

in a support vector machine are first transformed using a non-linear kernel function,

which allows them to model non-linear classification problems (Bluwstein et al., 2021).

A kernel takes the data and transforms it into a space of higher dimension, in which the

algorithm can learn to linearly separate the positive from the negative class. Fernandez-

Delgado et al., 2014 concluded from their comprehensive study that support vector
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machines were the second-best algorithm, only performing worse than random forests.

The major downside to using support vector machines is that the use of the non-linear

kernel makes the algorithm almost a complete black box. We have almost no insight

into how the model is generating its predictions.

2.5.6 Artificial neural networks

Artificial neural networks are the most researched machine learning technique recently

(Bluwstein et al., 2021) (Tölö, 2019). These models have achieved astounding results in

different types of classification problems, including face recognition and speech recog-

nition (Bluwstein et al., 2021). The basic structure of a neural network includes an

input layer, at least one hidden layer, and an output layer. Inputs are passed through

the hidden layers until they are aggregated into a prediction in the output layer. An

interesting thing to note is that in the absence of a hidden layer, a neural network is a

linear function. All the different nodes in a hidden layer are connected to the previous

hidden layer by different weights. Given a dataset with k features and m nodes in a

hidden layer, k ×m weights are needed to connect the hidden layer to the input layer

(Bluwstein et al., 2021). Since this is a binary classification problem, the output layer

is just a single node, so only m weights are needed to connect the last hidden layer to

the output layer. Due to their construction, neural networks are computationally ex-

pensive. Indeed, the training time required for the support vector machines and neural

networks in this work was at least 100 times larger than for the tree based ensembles.

2.5.7 K-Nearest Neighbours

When there is little to no prior knowledge of the dataset, the K-nearest neighbours al-

gorithm is one of the computationally cheapest (Imandoust & Bolandraftar, 2013). The

algorithm works by comparing all observations to those around them. Then, groups are
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made based on the value of K. The observation will be given the label that matches the

majority label in the K observations nearest to it. The simplest form of this algorithm

is when K = 1. In this case, an unseen observation will be given the same label as the

observation in the training set that is nearest to it. Observation 1 is considered nearer

to observation 2 than observation 3 if the distance between observation 1 and obser-

vation 2 is less than the distance between observation 1 and observation 3 (Imandoust

& Bolandraftar, 2013). Thus, different metrics for calculating distance can be used in

this algorithm.

2.6 Shapley Values

2.6.1 Shapley Additive Explanations

We move on to how we will address the black box nature of these models. There are

several popular techniques in the literature on this subject. Partial dependence plots,

or PDPs, show the marginal effects of 1 or 2 features on the predicted probability in a

model. These plots show the relationship between a feature and the output. However,

a downside to PDPs is that they cannot capture the interactions between all of the

features and suffer if features are highly correlated (Apley & Zhu, 2020). Accumulated

local effects, or ALEs, build upon the PDP framework. The advantage that ALEs give

over PDPs is that they are faster to compute and they are unbiased (Apley & Zhu,

2020). The goal of both of these methods is the same: to visualize the relationship that

1 or 2 features have with the output of a model (Apley & Zhu, 2020).

In this work, we chose to use SHapley additive explanations, or SHAP, as the

method for determining feature importance. The reason we chose to use SHAP over

PDPs or ALEs is that SHAP has the advantage of seeing all of the interactions between

features. This is because SHAP calculates the marginal payoffs for all the different
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combinations of the features. SHAP also has a well-defined package in Python which

makes it easy to implement. Finally, SHAP was the method used in determining feature

importance in Bluwstein et al., 2021, which serves as the foundation for this work. Thus,

for comparability, we employ SHAP in this work. We now move on to a more detailed

description of how these Shapley values work.

The machine learning models used in this work are all able to approximate any

well-behaved function if given enough training data. However, a common critique of

these machine learning models is that they can be difficult to interpret. Specifically,

it can be a challenge to identify which features of the dataset are driving a given

prediction. Thus, this work employs the Shapley additive explanations (Lundberg &

Lee, 2017),(Lundberg, 2018) method for determining feature importance. The main

idea behind this method is using Shapley values from cooperative game theory. Given

a team of players and a payoff, one can calculate the distribution of that payoff across

the players in a team (Shapley, 1953). When applied to a machine learning framework,

the team of players is the set of features used to train the model, and the payoff is

the value of the predicted probability of whether a crisis occurs or not. Thus, one can

decompose the predicted crisis probability into a sum of crisis probabilities from each

feature, which are called the Shapley values (Shapley, 1953). Using this framework

allows one to understand which features play a large role in driving the predictions of

the model. Lundberg and Lee, 2017 point out in their work that this framework can

be applied to any model and has some nice analytical properties. It has the following

properties: local accuracy, additivity, missingness, and consistency (Awan, 2023). The

local accuracy property refers to the fact that the Shapley values will sum to the

difference between the model prediction and the actual prediction. Additivity refers

to the fact that the Shapley values can be computed independently and then summed.

Because of this, the computation of Shapley values is said to be efficient, even with large
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datasets (Joseph, 2019). The missingness property means that if a feature is missing or

irrelevant to a prediction, then its Shapley value will be zero (Awan, 2023). This gives

Shapley values robustness to missing data and ensures that irrelevant features do not

distort the prediction. Lastly, the consistency property says that the Shapley values for

a model do not change unless a contribution of a feature changes. Thus, this approach

can provide consistent interpretations, even when the parameters of the model change.

The following description of the calculations behind the Shapley values comes from

Credit growth, the yield curve and financial crisis prediction: evidence from a machine

learning approach(Bluwstein et al., 2021). Suppose we have n observations and k

features; we begin by defining a Shapley value matrix Φn×k and ϕij as the Shapley value

of observation i and predictor j. Every observation i will have a predicted probability

associated with it. This predicted probability can be decomposed into the sum of the

Shapley values ŷi =
∑k

j=1 ϕij + c, where c is the base value that is set to the mean

predicted value in the training set.

Let N be the set of all the players in the game, and let f(S) be the payoff of a

coalition of players S. S is a subset of N . The following formula calculates the Shapley

value for player j:

ϕj =
∑

S⊆N\j

|S|!(|N | − |S| − 1)!

|N |!
[f(S ∪ j)− f(S)].

In this work, we treat the predicted probability that the models compute to be

the payoff in the Shapley value framework. The N players correspond to the features

used in the models. As mentioned above, the Shapley values must be computed for

every individual observation where we want to explain the predicted probability. To

calculate the exact Shapley value for a particular variable j and observation i, we need

to compute how much predictive value feature j adds to (fi(S ∪ j)− fi(S)) for all the
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possible subsets of the other features in (S ⊆ N \ j). To help with this explanation, the

following example is explained. Suppose you have three regressors in a linear model,

and ŷ is the payoff. First, you compute all the regressions with one, two, and three

regressors and then look at the marginal contributions of each regressor in each case.

From there, take the weighted average of these marginal contributions and account for

the number of possible permutations across one, two, or three variables.

2.6.2 Shapley regressions

Shapley values can give information on how a feature contributes to the prediction

of a model for a given observation without regard for the model’s accuracy. That

is, Shapley values by themselves cannot tell us how reliable a certain feature is in

predicting the correct outcome. We employ Shapley regressions (Joseph, 2019). The

general framework for how this is carried out is as follows: we regress the crisis indicator

y on the Shapley values Φn×k using a logistic regression (Bluwstein et al., 2021). In

other words, the unobservable predictions of the black box machine learning model get

transformed using Shapley values into a parametric space that is additive. Once we are

here, estimating the p-values is just a standard regression task. As we will see later, a

desirable property of this framework is that if it is applied to a linear function, it will

reproduce the results. The Shapley values used for these regressions are the mean of

the Shapley for a specific observation across all the different splits in cross-validation.
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Chapter 3

Banking Crises

3.1 JST Banking Crisis

3.1.1 Baseline Analysis

The first section of the results is based on the methods from Bluwstein et al., 2021

applied to an updated version of the JST database. The models in this work are

compared by two performance metrics: the area under the receiver operator curve

(AUROC) and the false alarm rate at a fixed hit rate of 80%. We can see from the

ROC curve below that extremely randomized trees and random forests outperform

logistic regression, immediately indicating that these machine learning methods have

value in financial crisis prediction. From the AUROC, we can quantify how much better

these models perform by comparing the false alarm rates.

Figure 3.1 confirms the immediate potential for machine learning models in creating

early warning models for predicting banking crises. Under the AUROC metric, both ex-

tremely randomized trees and random forests outperform logistic regression. XGBoost

performs slightly worse, with a single decision tree performing poorly. To quantify

just how much better these models are performing, observe that, at a fixed hit rate
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Figure 3.1: ROC curves for baseline models using the crisisJST as the outcome variable
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of 80%, extremely randomized trees generate an 18.3% false alarm rate, random forest

26.3%, and logistic regression 36.2%. Compared to Bluwstein et al., 2021, extremely

randomized trees obtain a marginally lower false alarm rate, whereas logistic regression

produces a false alarm rate that is about 6% higher. However, the model rankings are

consistent.

3.1.2 Robustness

Ensuring a model is robust is an important part of machine learning. A model is robust

if it performs relatively the same on training data as new data (Li, 2018). To show

that the ranking of the models is robust, we train many different models on different

subsets of predictors or transformations of predictors while applying cross-validation to

obtain stable results (Bluwstein et al., 2021). However, support vector machines and

artificial neural networks were not tested for robustness due to the considerably long

training time. Their performance in the baseline is also weaker than that of the tree-

based algorithms. K-nearest neighbours generally had a weaker predictive performance

as well, so the results of these models are presented in the appendix.

From the results reported in Bluwstein et al., 2021, we trained models including the

house prices feature since they were able to obtain marginally better results when they

included this variable. We also trained models using different filters on the variables.

Both the Hamilton filter and the HP filter were used in an attempt to show that

scaling the variables by the GDP was superior (Bluwstein et al., 2021). Lastly, we also

investigated replacing the slope of the yield curve with the short and long-term nominal

interest rates. The ranking of the models is consistent, and we observe that the best

results are obtained using the slope of the yield curve.
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AUROC
Experiment extree forest xgboost tree logreg
Baseline 0.87 0.86 0.80 0.65 0.82

House prices 0.87 0.86 0.81 0.63 0.82
HP filter on GDP ratios 0.87 0.86 0.83 0.61 0.80

HP filter on nominal variables 0.86 0.83 0.79 0.61 0.76
HP filter on real variables 0.84 0.84 0.79 0.64 0.77

Hamilton filter on GDP ratios 0.87 0.87 0.84 0.62 0.81
Replace yield curve with nominal rates 0.88 0.87 0.84 0.65 0.82
Replace yield curve with real rates 0.86 0.85 0.81 0.63 0.81

Table 3.1: AUROC scores for robustness check

3.1.3 Extremely Randomized Trees: the best predictive model

In an attempt to understand the results in more depth, we again follow the procedure in

Bluwstein et al., 2021 and analyze the extremely randomized trees algorithm in more

detail. Figure 3.2 shows correctly identified crises in dark green, correctly identified

non-crises in light green, incorrectly predicted crises in grey, and incorrectly predicted

non-crises in red. The black line in the figure shows the predicted probability for the

observations in the sample. The model fully misses 6 crises across the 18 countries from

1882-2020.

The model misses the following crises: United States in 1893 and 1984, United

Kingdom in 1890 and 1974, Japan in 1997, and Spain in 1977. For another 3 crises,

the model correctly identifies 1 of the 2 years preceding a crisis. 5 of the 6 fully missed

crises match the crises that are missed in Bluwstein et al., 2021.

The crisis in 1891 in the United Kingdom was known as the Barings crisis or the

Panic of 1890 (Mitchener & Weidenmier, 2008). Some poor investments in Argentina

led to the bankruptcy of the Barings Bank. The crisis in 1974 is known as the secondary

banking crisis. During the 1960s, many secondary banks were trying to increase their

market share in property and consumer loans. A policy was issued by the government

in 1970, which was accompanied by a credit boom that led secondary banks to finance
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Figure 3.2: Crisis probability estimated by extremely randomized trees at a hit rate of
80%, using crisisJST as the outcome variable

long-term loans with short-term liquidity. As inflation rose in 1973, these smaller banks

were unable to refinance their loans, leading to the banking crisis of 1974 (Reid, 1982).

The crisis in Spain in 1977 was supposedly caused by the government attempting to

dampen the effects of the global oil price shock. This led to a delay in firm consolidation

and increased public spending (Betran & Pons, 2013). Another explanation could be

the institutional change in the financial sector because of the end of the Franco regime

(Martin-Acena, 2014). All of these factors are not captured in the features used in this

model, so missing this crisis is not surprising.

The 1984 crisis in the United States is commonly known as the savings and loan

crisis, which was preceded by the global recession (Reinhart & Rogoff, 2009). There

was a significant increase in the discount rate, which led to the interest rates of existing

long-term loans being lower than the borrowing rates. This caused the saving and loan

associations to make risky investments to remain profitable. The risks did not pan out,

and a crisis occurred (Bluwstein et al., 2021). The 1893 crisis in the United States

was one of the most severe financial crises since the switch to national banking (Jordà
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et al., 2023). Over 500 national banks failed as a result of many railway companies

failing and the price of silver dropping. These two events, taken together, caused a

stock market crash in New York, leading to many withdrawals from banks, resulting

in many failures. Unsurprisingly, this would be one of the missed crises since none of

the features used in the model relate to the railway industry, the value of silver, or the

stock market. Interestingly, in the work done by Bluwstein et al., 2021, which included

a stock market variable, their model partially detected this crisis.

Lastly, the 1997 crisis in Japan was missed. This crisis is linked in part to the Asian

financial crisis of 1997 (Bluwstein et al., 2021). However, as we can see from Figure 3.2,

many ’false alarms’ lead up to the missed crisis. Reinhart and Rogoff, 2009 identify this

crisis as beginning in 1992 for Japan. Combining these false alarms with our knowledge

about how difficult it is to date the beginning of a banking crisis can provide some

understanding and comfort in missing this crisis.

Another thing to note about the model is that the number of false alarms is some-

what misleading. Recall that the model is calibrated to correctly predict 80% of the

crises, so the model is risk-averse by construction. Being risk-averse will come with

a higher false alarm rate. Part of the justification for this is that missing a crisis is

often much more expensive than preparing for a crisis that does not occur (Bluwstein

et al., 2021). Figure 3.2 also shows that many false alarms occur just before the 1-2

year window preceding a crisis. So, these false alarms still prove useful as early warning

signals. We can also see that many false alarms occur in countries when other countries

are experiencing a crisis in that same year. For example, there are false alarms in every

country that did not experience a crisis during the global financial crisis. These false

alarms indicate the elevated global risks and help justify the usefulness of the global

variables. We also do not have any features in the dataset that account for any policy

that may have been implemented to prevent a financial crisis. Because of this, the
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model may predict false alarms in countries where they would have suffered a crisis in

the absence of policy. Keeping all these things in mind means that the false alarms are

not necessarily bad and may still be useful for policymakers (Bluwstein et al., 2021).

Looking at pre-World War 2 in Figure 3.2, we can see the proportion of false alarms

is much higher than after the war. This can be in part due to how much the global

economy has changed over time. Thus, a model trying to capture macroeconomic

trends over 150 years will most likely not perform well in all sample periods. Since the

number of observations was fewer pre-World War 2, this period also had a lower weight

in the training of the model. Thus, the model will learn more about trends in recent

observations and perform better on such observations. Also, in the computer age, the

recorded data now includes much more detail. Thus, the quality of recent data is likely

higher than that of older data (Bluwstein et al., 2021).

3.1.4 Forecasting

We employ a recursive forecasting experiment to investigate how early warning models

are used in practice. All the results thus far have been based on cross-validation. Thus,

all observations in the training set need to be from years earlier than those in the test

set. For 1946 ≤ t ≤ 2020, we use all observations up to year t − 2 to train and then

test them against observations from year t.

Under this construction, the training sets will have significantly different numbers

of crises for different periods of time. An obvious example of this is after the global

financial crisis. When the forecasting model is being trained for t > 2009, the proportion

of crises in the training set will be much higher than when t < 2008. Since the AUROC

is highly sensitive to this proportion problem, we resample all the training sets so that

they contain an equal number of crisis and non-crisis observations (Bluwstein et al.,

2021). We employed two types of sampling for this experiment and will only report on
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the type of sampling that creates the best result. Upsampling involves resampling crisis

observations to match the number of non-crisis observations, whereas downsampling

involves resampling non-crisis observations to match the number of crisis observations.

Figure 3.3 shows the prediction chart for extremely randomized trees in the fore-

casting experiment. The model correctly identifies the global financial crisis and many

of the crises that occurred in the 90s. Compared to Figure 3.2, the location of the

missed crises is almost identical. The model fully misses 2 crises: United States in 1985

and Japan in 1997. The model partially misses 5 crises, and in most cases, it is the

first indicator that is missed. These partially missed crises are: United States in 2007,

Italy in 1989, United Kingdom in 1974, Spain in 1977, and Australia in 1989. This

shows that across the different experiments, the models recognize the same indicators

of crises.

In general, we see from these forecasting experiments that the identification of crises

is often quite similar to the cross-validation experiment, but there are substantially more

false alarms. In the cross-validation experiment, extremely randomized trees had a false

alarm rate of 18.3%, compared to logistic regression’s false alarm rate of 36.2%. Under

the forecasting framework, these false alarm rates change to 38.3% and 36.1%, respec-

tively. Extremely randomized trees suffer under the forecasting approach, but logistic

regression is able to achieve a marginally better false alarm rate. Indeed, in terms of the

false alarm rate, it appears that logistic regression is better than the machine learning

models. However, extremely randomized trees obtain a higher AUROC score, meaning

it would be more versatile in choosing hit rates other than 80%. Logistic regression

obtains an AUROC of 0.78, which is lower compared to the 0.81 achieved by extremely

randomized trees. Random forest sits in between with an AUROC of 0.80.

One thing to note about Figure 3.3 is that in every country in the sample, the model

gives a false alarm in the year 2020. Of course, the COVID-19 pandemic began in 2020,
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Figure 3.3: Forecasting crisis probability estimated by extremely randomized trees at
a hit rate of 80%, using crisisJST as the outcome variable

and many of the model’s features had introduced shocks. Where this gets interesting

is combining this with the knowledge of the banking crises that occurred in 2023. This

forecasting model provides a useful early warning indicator for a crisis that does not

even exist in the database.

3.1.5 Shapley value decomposition: variable importance

We employ the same SHAP method as described in Bluwstein et al., 2021. We define

the predictive share of a variable as the mean of that variable’s absolute Shapley value

across all observations. Figure 3.4 shows the normalized mean absolute Shapley values

for all the predictors in the baseline analysis. By comparing Figure 3.4 to Table 2.4, we

can immediately see the potential in using Shapley values as a way to determine the

feature importance. The ordering of the mean absolute Shapley value is nearly identical

to the order of logistic regression weights from Table 2.4. Since logistic regression is

interpretable, we can gain confidence in the SHAP approach according to the weights
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Figure 3.4: Mean absolute Shapley values of individual features for logistic regression
and extremely randomized trees, using crisisJST as the outcome variable

given to each variable. If the SHAP method works, it should somewhat agree with the

rankings given by logistic regression when applied to logistic regression.

In looking at the extremely randomized trees results, we get a similar ordering to

the results from Bluwstein et al., 2021, with both of the global features having the

highest predictive share. However, the global credit feature outranks the global slope

of the yield curve using the updated JST database. The new features to the database

prove themselves to be of moderate importance, with the wages and unemployment

rate features ranking 7th and 9th, respectively. These rankings are relatively robust

across all the models, yet again showing the importance of the global variables.

To show the value of being able to decompose predictions into their Shapley values

for interpretation, Figure 3.5 shows the decomposition of each prediction for each ob-

servation over time for several countries. The red and blue parts of the bars represent

the domestic and global slope of the yield curve. The yellow and green parts of the bar
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represent the domestic and global credit growth. The black dot is the predicted proba-

bility of a crisis in that year, and the red vertical bars represent the years leading up to

a crisis. The black horizontal line shows the threshold for an 80% hit rate. In keeping

with the analysis done thus far, this figure is based on the predictions of extremely

randomized trees. Unsurprisingly, the performance of the model varies across different

countries. We see a general trend of noisier predictions before World War 2. The ex-

pected results from Bluwstein et al., 2021 hold, as we see, the slope of the yield curve

dominating many of the pre-World War 2 predictions, whereas the predictions during

the global financial crisis are primarily driven by global credit. We also see domestic

credit growth plays a much more substantial role during the global financial crisis in

Denmark than in the United States or Sweden. Using this framework to investigate

which features drive which predictions is a further justification for using machine learn-

ing models for financial crisis prediction. This approach makes great strides toward

uncovering the black-box nature of these models.

3.1.6 Shapley regressions: variable significance

The previous section investigated variable importance. We now move on to investigating

the statistical significance of the features in the models. To do this, we regress the

predicted crisis probability on the calculated Shapley values. This works as an additive

feature transformation (Bluwstein et al., 2021). Table 3.2 shows the results of this

transformation for the extremely randomized trees model. The share column contains

the normalized mean absolute Shapley values, obtained from Figure 3.4. The coefficients

are the result of a one standard deviation change of the Shapley values on the predicted

log-odds of crisis (log ŷ
1−ŷ

) (Bluwstein et al., 2021). The sign of the coefficients does

not show the association between the predicted probability and the predictor. That is

captured in the direction column. The interpretation of the coefficient column is that
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Figure 3.5: Shapley values as a function of time using crisisJST as the outcome variable
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the higher the number, the greater the significance of the variable. If the model made

little use of a variable, then the coefficient is statistically insignificant and is represented

by a negative number in the table.

Variable Direction Share Coefficient p
Global credit + 0.230 0.4750 0.000
Global slope - 0.172 0.4325 0.015
Domestic credit + 0.108 0.3546 0.000
Domestic slope - 0.088 0.3467 0.000
Debt service ratio + 0.070 0.1280 0.157
CPI - 0.067 0.2438 0.012
Wages + 0.052 0.0406 0.353
Current account - 0.044 0.0642 0.327
Unemployment + 0.040 0.1152 0.170
Consumption - 0.035 0.1426 0.089
Broad money - 0.035 -0.2236 1.000
Public debt + 0.032 0.0045 0.486
Investment + 0.028 -0.0545 1.000

Table 3.2: Results of the Shapley regression. Shows the direction of the relationship
between predictor and crisis, coefficients, p-value against the null hypothesis, and the
predictive share. crisisJST used as the outcome variable.

Table 3.2 shows results that are consistent with the previous section. Both global

variables return the highest coefficients with low p-values. Consumption also seems

to be significant, with a p-value of 0.089. This means that even though consumption

has a relatively small predictive share, the value of consumption is significantly aligned

with the indicators. On the other hand, the debt service ratio, wages, and the current

account have moderate predictive shares, but the signals they provide are difficult for

the model to distinguish from the null. That is, there is not a clear alignment between

these variables and the actual crises. Broad money and investment both obtain p-

values of 1 and negative coefficients. This means that the model made very little use

of the information given by these variables and that their signals were not able to be

recognized against the null hypothesis.
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3.1.7 Nonlinearities

The benefits of using the SHAP method do not end here. We can investigate the

nonlinear relationship between the predictor values and their Shapley values. These

nonlinearities are unique to the machine learning methods. If we treat the Shapley

values as the weights in a machine learning model, then these nonlinearities act as a

weight function based on the predictor value. Figure 3.6 shows the Shapley values

of important predictors as a function of the predictor value. Crisis observations are

represented by the red dots, and non-crisis observations are the black dots. Shapley

values that are greater than 0 represent an increase in the predicted probability for that

observation (Bluwstein et al., 2021). The top 4 predictors in terms of Shapley share

are represented in Figure 3.6.

For each predictor, we fit a linear and cubic regression and compare the goodness-of-

fit in terms of R2. We can see that for the key predictors, the R2 is substantially higher

for the cubic polynomial line. From an economic view, these relationships are also not

surprising. Figure 3.6 shows that a flattening or inversion of the yield curve, either

domestically or globally, results in higher Shapley values, which means an increase in

predicted probability. Similarly, severe spikes in credit growth, either domestically or

globally, result in higher Shapley values. This relationship also makes sense the other

way around. When the yield curve is upwardly sloping, or if credit growth is relatively

muted, then these features have little effect on the predicted probability of a crisis.

What we can take away from Figure 3.6 is that these financial systems are much more

susceptible to crises if variables are in the far tails of their distributions (Bluwstein

et al., 2021). This is most easily seen in the global credit plot of Figure 3.6. When

global credit growth is above 10%, we see many clustered crisis observations.

We now ask the question of how the awareness of these nonlinearities affects the

predictions of the features. We will employ a simple test to judge whether the models
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Figure 3.6: Shapley values of key predictors as functions of the predictor values. JST
crisis observations shown in red.
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can use these nonlinear relationships. We train linear models for each of the predictors

on their own. The first model is trained on the actual predictor values, and the second

is trained on the Shapley values extracted from the extremely randomized trees model.

Table 3.3 shows the comparison of the AUROC for the univariate models under the

baseline approach.

Feature Linear Shapley
Domestic slope 0.71 0.77
CPI 0.56 0.69
Broad money 0.59 0.47
Unemployment 0.54 0.51
Wages 0.58 0.68
Consumption 0.51 0.56
Public debt 0.55 0.55
Investment 0.60 0.55
Current account 0.61 0.61
Domestic credit 0.69 0.63
Debt service ratio 0.67 0.68
Global credit 0.74 0.78
Global slope 0.74 0.82

Table 3.3: AUROC of univariate linear regressions compared to the crisisJST variable
being regressed on the individual predictor Shapley values.

We immediately see from Table 3.3 that regressing the crisis outcome on the Shapley

values improves the AUROC score for most of the key predictors. The AUROC scores

are significantly better for the domestic and global slope of the yield curve, the global

credit growth, and the CPI. The only key predictor for this type of financial crisis

that does not have its univariate AUROC improved is the domestic credit, which is in

line with the results from Bluwstein et al., 2021. The two new variables added in the

6th version of the JST database, the unemployment rate and the wages, have differing

results in this experiment. There is a 0.11 improvement for the wages variable when

it is regressed on its Shapley values and a 0.04 loss when the unemployment rate is

regressed on its Shapley values. These univariate regressions are not particularly useful
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on their own, but when we combine the results from Table 3.3 and Figure 3.6, we can

see that the nonlinear relationships found in these predictors are most likely important

and useful for predicting financial crises.

3.2 Reinhart and Rogoff Banking Crisis

3.2.1 Baseline Analysis

We now attempt to answer the following question: can machine learning be beneficial in

predicting other types of financial crises? We use the banking crisis narrative list from

Reinhart and Rogoff, 2009. Figure 3.7 shows a generally worse AUROC performance

across all models compared to the JST crisis case, but extremely randomized trees and

random forests still outperform logistic regression. The false alarm rates at an 80% hit

rate for extremely randomized trees, random forest, and logistic regression are 22.7%,

28.2%, and 35.3%, respectively. Extremely randomized trees produces the lowest false

alarm rate of all models.

3.2.2 Robustness

Using the same approach as for the JST crisis, the same transformations were used to

test the robustness of the model. We see that the model ranking is indeed robust across

these different experiments, with extremely randomized trees consistently performing

the best, followed by random forests. Under the Reinhart and Rogoff definition of a

crisis, XGBoost performs similarly to logistic regression. Table 3.4 shows these rank-

ings over the different experiments. We can note that replacing the yield curve with

the nominal short and long-term interest rates improves the performance of extremely

randomized trees by 1 percentage point. However, the analysis will be carried out on

the baseline model for comparability throughout this work.
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Figure 3.7: ROC curves for baseline models, crisisBanking used as the outcome variable
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AUROC
Experiment extree forest xgboost tree logreg
Baseline 0.86 0.84 0.72 0.62 0.79

House prices 0.84 0.82 0.75 0.63 0.78
HP filter on GDP ratios 0.86 0.83 0.80 0.58 0.76

HP filter on nominal variables 0.85 0.82 0.79 0.60 0.76
HP filter on real variables 0.84 0.83 0.77 0.61 0.76

Hamilton filter on GDP ratio 0.86 0.85 0.77 0.61 0.77
Replace yield curve with nominal rates 0.87 0.84 0.76 0.64 0.80
Replace yield curve with real rates 0.85 0.83 0.79 0.56 0.80

Table 3.4: AUROC scores for robustness check, crisisBanking used as the outcome
variable

3.2.3 The best predictive model

We have a similar figure for analysis as in the previous section. The model fully misses

4 crises while partly missing 9 crises. The 4 fully missed crises are 4 of the same fully

missed crises when using the JST definition of a banking crisis, namely: United States

in 1893 and 1984, United Kingdom in 1974, and Spain in 1977. The 9 partially missed

crises are: United States in 2007, Norway in 1988, Japan in 1992, United Kingdom in

1890 and 1985, France in 1995, Denmark in 1987, Germany in 1977, and Canada in

1984. It is interesting to note that the same crises are being missed despite changing

the definition of a crisis. The partially missed crises are split almost evenly, depending

on whether the first indicator (2 years prior to a crisis) or the second indicator (1 year

prior to a crisis) was missed. In 4 of the partially missed crises, the second indicator

was detected, while for the other 5, the first indicator was detected. Similarly to the

results of using the JST definition of a crisis, many of the false alarms occur before

World War 2 or during a time when many countries are experiencing crises.

The model missing the first indicator year of a crisis means that the conditions two

years before the crisis were not as severe as the year directly preceding the crisis. This

could be problematic because 1 year may not be enough time to implement effective
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policy to help mitigate the crisis. This model misses the first indicator year of the

global financial crisis in the United States, but this can be attributed to the dating

of the crisis by Reinhart and Rogoff. According to their dating, the United States

experienced the global financial crisis one year before all the other countries in the

sample. Since the models are trained with some global variables, it is not surprising

that the second indicator year is the one that is identified. The model also misses the

first indicator of the crisis in Norway in 1988. The 1980s involved an international trend

of liberalizing the entire banking system so that there was more competition between

financial institutions. Norway was no stranger to this trend. Real estate and stock

market prices increased at least twofold, leading to the three largest Norwegian banks

being supported by the government (Jordà et al., 2023). Since our model does not

contain house price data or stock market data, it makes sense that this crisis would

be partially missed. The Denmark banking crisis in 1987 also had the first indicator

missed. Due to similar international trends as the Norway crisis, Denmark’s banking

was deregulated in the 1980s as well. Asset prices also rose, and several major banks

required government assistance (Jordà et al., 2023). The last crisis, in which the first

indicator was missing, was the crisis in Germany in 1977. This crisis is not included in

the JST database and is the first of its kind in this analysis. Caprio and Klingebiel,

2003 classified this crisis as non-systemic and described it as a period when “so-called

giroinstitutions faced problems.”

The model partially missed the second indicator for 5 crises. Missing the second

indicator is somewhat less problematic than missing the first indicator in an early

warning approach. Missing the second indicator could be due to effective policy having

been implemented to prevent the crisis. In the absence of that, correctly predicting the

first indicator should give policymakers ample time to design and implement effective

policy. The first indicator was detected for the Japanese banking crisis in the 1990s.

54



Master’s Thesis - J. Voskamp; McMaster University - Mathematics

During this period, Japan’s real estate and stock prices were sharply falling, resulting

in Sanyo Securities collapsing. Japan implemented two rounds of capital injections, in

which many major banks received support from the government (Jordà et al., 2023).

We can see from Figure 3.8 that Reinhart and Rogoff actually classify all the years

from 1992 until 2001 as crisis years in Japan. They did not consider the crisis to be

systemic until 1997, which then lines up with the dating system of the JST database.

The United Kingdom in 1890 and 1984 experienced crises that were partially detected

by the model. The 1890 crisis is commonly referred to as the Baring crisis, which was

already mentioned in the previous section. It is difficult to accurately try and justify

why this crisis would be missed due to the very high proportion of false alarms during

that time period. Reinhart and Rogoff classify the 1984 crisis as a non-systemic crisis

and label it as a crisis because the “Johnson Matthey Bankers failed” (Reinhart &

Rogoff, 2009). This crisis is an example of the model trying to capture a crisis that had

somewhat successful policy implemented to mitigate. The Johnson Matthey bank was

going to fail and was bailed out by the Bank of England (“Bank failures case study:

- Johnson Matthey”, n.d.). The crisis in France in 1994 is described by Reinhart and

Rogoff as a period when Credit Lyonnaise, a major French bank, experienced severe

solvency problems. Again, this crisis is not classified as systemic by Reinhart and

Rogoff, 2009. Lastly, and perhaps surprisingly, Reinhart and Rogoff date a crisis in

Canada in 1983, which the model partially detects. During this period, 15 Canadian

Deposit Insurance Corporation members, including 2 major banks, failed. This crisis

was also classified as not systemic.

All 5 of the crises that had the first indicator detected were non-systemic, according

to Reinhart and Rogoff. Reinhart and Rogoff, 2009 makes the distinction between

systemic and non-systemic banking crises. Essentially, a systemic banking crisis is a

more severe event. In light of this, all the partially missed crises are classified as less
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Figure 3.8: Crisis probability estimated by extremely randomized trees at a hit rate of
80%, crisisBanking used as the outcome variable

severe. This would make these crises harder for the model to detect since if the change

in features is less severe, the predicted probability is less severe, which means the model

is less likely to classify that observation as a crisis. We also see that the majority of

false alarms happen before World War 2, or during the banking crises of the 1990s.

This is in line with the analysis of the other banking crisis.

3.2.4 Forecasting

We again shift our focus now to investigating the traditional way that these early

warning models are used in practice. We can see by comparing Figures 3.8 and 3.9 that

the same result holds as when the JST crisis definition was used. The crises that are

missed or partially missed in the forecasting experiment almost match perfectly with

those missed in the cross-validation experiment. The forecasting model fully misses 3

crises and partially misses 3 more crises. The 3 missed crises are: the United Kingdom

in 1974 and 1985 and Germany in 1977. The partially missed crisis are: the United
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States in 1985 and 2007 and Canada in 1983. There is a period during the mid 1980s

until the early 1990s where almost every prediction in the model is a positive indicator

prediction. This is in contrast to the model mostly predicting correct non-crises during

the period of the 1950s to the 1970s. What we see here is perhaps an elevated level of

global stress that the model is picking up on. Indeed, we see many of the false alarms

occurring in years when one or more countries are on the verge of experiencing a crisis.

An example of this is the forecasting model correctly identifying the global financial

crisis. Every prediction during the years of 2006 and 2007 is either a true positive or a

false positive.

In terms of the false alarm rates for comparing the different types of models, we

see that extremely randomized trees do perform best using this definition of a banking

crisis. Extremely randomized trees, random forest, and logistic regression produce false

alarm rates of 38.6%, 44.8%, and 43.6%, respectively. In comparison to the forecasting

results when using the JST definition of a crisis, extremely randomized trees produce an

almost identical false alarm rate, whereas random forest and logistic regression suffer.

This shows that the extremely randomized trees model is more robust to the definition

of a banking crisis that is used. In terms of the AUROC scores, extremely randomized

trees achieve the highest score of 0.79, beating the scores of 0.77 and 0.75 achieved by

random forest and logistic regression, respectively.

3.2.5 Shapley value decomposition: variable importance

We next investigate if there is any change in the importance of variables when we rede-

fine the crisis variable. Figure 3.10 shows the ranking of features in terms of the mean

absolute Shapley values while using the Reinhart and Rogoff definition of a banking

crisis. This ordering more closely matches that from Bluwstein et al., 2021, with the

global slope of the yield curve proving itself to be the most important feature, followed
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Figure 3.9: Forecasting crisis probability estimated by extremely randomized trees at
a hit rate of 80%, crisisBanking used as the outcome variable

by the global credit growth. The unemployment rate plays a less significant role under

this definition of a crisis, dropping from 9th to 10th. However, the wage feature shows

itself to be more important, ranking 6th rather than 7th. We see more agreement in

the ranking of the features compared to the JST crisis case. Both logistic regression

and extremely randomized trees agree that the pre-crisis period of the Reinhart and

Rogoff definition of a banking crisis is dominated by the global credit growth and slope

of the yield curve.

Again, we can decompose the predictions into their Shapley values over time. Figure

3.11 shows the same trends as in the JST crisis case. The slope of the yield curve plays

a very important role in the early part of the sample, whereas the identification of the

global financial crisis is driven by global credit growth. Looking closer at the plot for

the United States, we can note that the domestic slope of the yield curve also seems to

play a dominant role during the 1920s, which is not seen in Sweden and Denmark.
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Figure 3.10: Mean absolute Shapley values of individual features for logistic regression
and extremely randomized trees, crisisBanking used as the outcome variable

3.2.6 Shapley regressions: variable significance

Table 3.5 shows broad money has a low p-value. This means that the value of the broad

money predictor is well aligned with the crisis indicators. Contrarily, although domestic

credit growth has the 4th highest predictive share, it has a p-value of 0.403, meaning

that the signals it is issuing cannot be distinguished from the noise. The same can be

said for consumption, the current account, and public debt, although their predictive

shares are all much lower than domestic credit. We also see that the unemployment

rate and investment have p-values of 1 and negative coefficients. This suggests that the

model made little to no use of the information from these variables and that the signals

issued were not aligned with the crisis indicator. The three features with the highest

predictive share also happen to have the largest coefficients and smallest p-values in

this experiment. Table 3.5 shows just how aligned global credit growth and the slope
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Figure 3.11: Shapley values as a function of time using crisisBanking as the outcome
variable
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of the yield curve, both domestically and globally, are to the crisis variable.

Variable Direction Share Coefficient p
Global slope - 0.215 0.3982 0.003
Global credit + 0.186 0.4080 0.000
Domestic slope - 0.102 0.2991 0.008
Domestic credit + 0.079 0.0259 0.403
CPI - 0.074 0.2770 0.018
Wages + 0.065 0.1364 0.114
Debt service ratio + 0.063 0.1036 0.152
Broad money - 0.043 0.2127 0.027
Consumption - 0.040 0.0237 0.426
Unemployment + 0.037 -0.0270 1.000
Current account - 0.033 0.0109 0.469
Investment + 0.031 -0.0887 1.000
Public debt - 0.030 0.0594 0.332

Table 3.5: Shapley regression. Shows the direction of the relationship between predictor
and crisis, coefficients, p-value against the null hypothesis, and the predictive share.
crisisBanking used as the outcome variable.

3.2.7 Nonlinearities

Figure 3.12 shows similar results to Figure 3.6. The same 4 predictors are shown since

they are the top 4 for both banking crisis definitions. The same results hold as in the

JST crisis case. We see that a cubic polynomial fits the relationship for each predictor

much better than the linear fit. The biggest improvement in goodness-of-fit is with

the global credit growth, where we see the clustered crisis observations again when the

credit growth rises above 10%. We see that inverted or flattening yield curve slopes

result in higher Shapley values, as does a rise in credit growth. The spike in Shapley

values when credit growth is in the tail of its distribution is in line with the description

from Aliber and Kindleberger, 2015, who describe a financial crisis as “credit booms

gone wrong”. Indeed, across the 4 key predictors, the predicted probability of a crisis

increases when these variables are in the tails of their distributions.
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Figure 3.12: Shapley values of key predictors as functions of the predictor values.
Banking crisis observations shown in red.
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Feature Linear Shapley
Domestic slope 0.71 0.75
CPI 0.55 0.70
Broad money 0.59 0.62
Unemployment 0.52 0.52
Wages 0.59 0.69
Consumption 0.53 0.52
Public debt 0.48 0.52
Investment 0.56 0.50
Current account 0.57 0.56
Domestic credit 0.63 0.57
Debt service ratio 0.62 0.64
Global credit 0.67 0.70
Global slope 0.76 0.81

Table 3.6: AUROC of univariate linear regressions compared to the crisisBanking vari-
able being regressed on the individual predictor Shapley values.

Table 3.6 shows the results of the univariate regressions on the predictor values and

then repeats the univariate regressions on the Shapley values. The same general results

hold as in the JST crisis case. The AUROC is usually much better for these regressions

when the Shapley values are used, particularly for the important features. The wages

feature receives a similar improvement in AUROC compared to the JST case, and the

unemployment rate performs equally well rather than worse when regressed on the

Shapley values. 8 of the 13 predictors obtain better AUROC scores when regressed

on the Shapley values. The biggest loss in AUROC is for investment, which dropped

6 percentage points. However, we know from Figure 3.10 that investment is nowhere

near being an important predictor. Most losses are 1 or 2 percentage points, whereas

the improvements can be as high as almost 15 percentage points. Again, combining

these results with those from Figure 3.12 confirms the importance of recognizing the

nonlinear relationships for predicting financial crises.
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Chapter 4

Currency and Inflation Crises

We now move on to our investigation of machine learning models’ potential usefulness

in predicting different types of financial crises. This first section focuses on the currency

crisis definition given by Reinhart and Rogoff: An observation is classified as a currency

crisis if the country’s currency has “an annual depreciation versus the U.S. dollar of 15

percent or more” (Reinhart & Rogoff, 2009).

4.1 Currency Crisis

4.1.1 Baseline Analysis

Model performance according to Figure 4.1 is comparable to the performance of the

models when investigating banking crises. Something that is of immediate interest is

that while extremely randomized trees and random forests maintain their performance,

the performance of logistic regression suffers. The only change given to these models

is where the 0s and 1s are placed in the output variable. Instead of the machine

learning models outperforming logistic regression by just a few percentage points, they

now are performing over 20 percentage points better! Considering that our models are
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Figure 4.1: ROC curves for baseline models, crisisCurrency used as the outcome variable

constructed to have an 80% true positive rate, Figure 4.1 shows us that random forest

will produce a lower false alarm rate than extremely randomized trees, despite having

the same AUROC score. Extremely randomized trees and logistic regression produce

false alarm rates of 20.6% and 53.7%, respectively. Random forest beats both of these

with a false alarm rate of 17.4%. We also see XGBoost performing 17 percentage points

better than logistic regression. This confirms our hypothesis that XGBoost is a suitable

model for financial crisis prediction.
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4.1.2 Robustness

We can see from Table 4.1 that the performance gap between logistic regression and

the tree-based methods is robust. Across different experiments, extremely randomized

trees and random forests consistently perform much better than logistic regression.

We see most of the robustness checks providing better AUROC scores. However, for

consistency and comparability throughout the paper, we keep our analysis focused on

the baseline experiment.

AUROC
Experiment extree forest xgboost tree logreg
Baseline 0.86 0.86 0.82 0.61 0.65

House prices 0.86 0.86 0.83 0.62 0.68
HP filter on GDP ratios 0.87 0.87 0.83 0.63 0.68

HP filter on nominal variables 0.90 0.89 0.84 0.65 0.52
HP filter on real variables 0.87 0.85 0.83 0.65 0.53

Hamilton filter on GDP ratios 0.87 0.87 0.81 0.65 0.56
Replace yield curve with nominal rates 0.88 0.87 0.84 0.59 0.66
Replace yield curve with real rates 0.88 0.88 0.84 0.60 0.66

Table 4.1: AUROC scores for robustness check, crisisCurrency used as the outcome
variable

4.1.3 Extremely Randomized Trees in detail

In keeping with comparability across the sections of this work, we take a deeper look at

the extremely randomized trees model, despite random forests producing a better false

alarm rate in the baseline analysis.

The model can correctly predict the majority of the early 2000s currency crises. It

only partially misses 1 crisis during this period. Similarly, the model is able to predict

most of the mid-80s currency crises, only fully missing 1 crisis and partially missing 2.

The model fully misses 5 currency crises and partially misses 5 more crises throughout

the sample. The 5 fully missed crises are Sweden in 1921, Japan in 1971 and 2007,
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Finland in 1985, and Germany in 1973.

The model misses a currency crisis in Sweden that happened right after the First

World War. During the war, Sweden’s economy was booming and stock and asset

prices rose (Jordà et al., 2023). However, this was accompanied by rising inflation

rates, leading to Sweden returning to the gold standard. Indeed, this fall in the value

of the Swedish currency predated the banking crisis in 1922.

Japan experienced great economic growth after the Second World War. This crisis

is most likely due to the Nixon shock that happened in 1971. This is when former

United States president Richard Nixon ended the gold standard. In the post World

War 2 era, there were fixed exchange rates around the world, known as the Bretton

Woods System (Butkiewicz & Ohlmacher, 2021). For example, 360 yen was always

worth 1 USD (Butkiewicz & Ohlmacher, 2021). Since the gold standard was ended,

the Japanese government had to pay a substantial sum of money so that the yen would

not devalue against the US dollar, but that led to the foreign exchange reserves rapidly

increasing and the yen depreciating in value. The model also misses a crisis in Germany

in 1973. Butkiewicz and Ohlmacher, 2021 notes that the Nixon shock primarily told

Japan and Germany to devalue their currency for the sake of US trade. Germany was

not free from the shock of Nixon’s “America first” international policy (Butkiewicz &

Ohlmacher, 2021). This would be a difficult crisis for the model to predict since it was

heavily influenced by factors outside of the features used to train the model. Japan

also experienced a currency crisis just before the global financial crisis. This was due

to the lost decade, where the Japanese yen exchange rate was higher than the historical

average (Kawai & Takagi, 2011). The higher value yen encouraged the production of

goods, however, this reduced the price competitiveness of the manufacturers. Kawai and

Takagi, 2011 note that the production of these goods was beneficial in a nominal sense,

but it did not translate to a real sense. As Japan implemented a policy to climb out of
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this recession, its economy became very sensitive to the US housing price bubble, which

burst in the summer of 2006 (Kawai & Takagi, 2011). This led to the yen’s devaluation

against the USD, which is classified as a currency crisis. We can see that for both of

these missed Japanese currency crises their main causes were potentially driven by the

United States.

The missed crisis in Finland in 1985 is the only fully missed crisis caused by an event

known as The Plaza Accord (Frankel, 2015). This event was a result of the Nixon shock

mentioned above. The decade after Nixon implemented his policy, the US dollar had

risen 44% against the other major currencies internationally (Frankel, 2015). Since the

US dollar was worth so much, other countries could not afford to trade with the United

States. The G-7 countries agreed to devalue the US dollar to get US trade back online

(Frankel, 2015). Nixon’s policy made most currencies dependent upon the US dollar, so

intentionally dropping the value of the US dollar caused currency crises in 14 countries

in our sample. Another question is why Finland was the only country in which this

crisis was missed. Jonung et al., 2009 reports that during the mid-1980s, Finish banks

were doing a lot of lending in foreign currency, which could be a potential cause. The

model also partially missed the Finland currency crisis in 1994. Indeed, Jonung et al.,

2009 notes that between the currency crises of 1985 and 1994, the Finnish economy

was booming. However, stock prices began to fall, and the Finnish currency became

overvalued. Between 1990 and 1993, the GDP fell by 13 percent and was accompanied

by a much higher unemployment rate (Jonung et al., 2009).

The 5 partially missed crises by the model are as follows: Norway in 1985, the

United Kingdom in 1985, France in 1927, Finland in 1994, and Canada in 2003. We

have already discussed the global economic climate for the 1985 crises.

During the 1920s, France was accumulating more gold than any other country (Irwin,

2010). It is common knowledge that much of the Great Depression was facilitated by
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the gold standard (Irwin, 2010). “Countries not on the gold standard managed to avoid

the Great Depression almost entirely, while countries on the gold standard did not begin

to recover until after they left it” (Irwin, 2010). The post World War 1 world had the

gold standard reevaluated. France experienced some high inflation in the mid-1920s and

stabilized the franc in 1926. However, the franc was stabilized at an undervalued rate

(Irwin, 2010). Essentially, France was selling off their foreign reserves to accumulate

more gold. This led to the franc dropping in value compared to the US dollar.

Lastly, we briefly discuss the Canadian currency crisis that occurred in 2003. All

but three countries in our sample are classified as having experienced a currency crisis

in either 2002 or 2003. This is due to, yet again, a sharp depreciation of the US dollar.

The dating system used for identifying currency crises is based on Reinhart and

Rogoff’s threshold of 15% depreciation against the USD. However, because of this

construction, the United States is classified as having no currency crises. This is because

the positive cases of a currency crisis are based on the exchange rates given in the sixth

version of the JST database, which presents all exchange rates against the USD. This

means that applying this threshold to the JST database produces no positive cases

for the United States since the USD/USD exchange rate is always 1. We also train a

model on the narrative currency crisis list given by Reinhart and Rogoff. This model

is reported in the appendix.

4.1.4 Forecasting

We saw from the 2 cases of a banking crisis that machine learning has potential use in

forecasting financial crises. However, the results may not be as pretty for currency crises.

Due to the clustered nature of the currency crises, the construction of the forecasting

experiment causes some problems. The vast majority of the currency crises occurred

in 1985 or 2002, mostly due to the United States devaluing the USD as mentioned
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Figure 4.2: Crisis probability estimated by extremely randomized trees at a hit rate of
80%, currency crisis

above. Since the forecasting required a minimum number of crises in the training set,

the forecasting model in Figure 4.3 is only able to predict the early 2000s currency

crises, along with a few of the later currency crises in the 1980s. When the model is

calibrated to an 80% hit rate, we see that the majority of the predictions are false alarms

or correct identifications of crises. This forecasting model is very risk-averse. It misses

only 1 crisis completely and 6 other crises partially. All of the missed crises occur during

the 2002 currency crisis episode. The results do not get much better, even lowering the

hit rate to 60% or 30%. Those models obtain marginally more true negatives at the

cost of many more false negatives. This is not worth it since false negatives are a

much bigger problem than false positives. Extremely randomized trees does produce

the lowest false alarm rate of 86.2%. Random forest and logistic regression both have

false alarm rates of about 95%. The AUROC scores confirm this ranking but also show

that the models may be performing worse than random chance. Extremely randomzied

trees, random forest, and logistic regression produce AUROC scores of 0.44, 0.40, and
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Figure 4.3: Forecasting crisis probability estimated by extremely randomized trees at
a hit rate of 80%, crisisCurrency used as the outcome variable

0.41, respectively.

4.1.5 Shapley value decomposition: variable importance

Looking at currency crises we see a major change in the ranking of the features. How-

ever, the global variables still rank as the top predictors in the extremely randomized

trees model. The CPI plays a slightly more prominent role in predicting currency crises,

whereas public debt ranks 4th instead of being one of the bottom predictors for banking

crises. The two new variables introduced rank as the 3rd and 4th worst in predicting

currency crises. We can also see that there is not a lot of agreement between the logis-

tic regression model and the extremely randomized trees model. The only thing these

models agree on is that global credit growth is the most important predictor. It is

rather interesting that a global variable would be the top predictor in currency crises.

However, this could be due to the construction of the currency crisis variable. Since the

currency crisis variable is constructed using the exchange rate against the United States
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Figure 4.4: Mean absolute Shapley values of individual features for logistic regression
and extremely randomized trees, crisisCurrency used as the outcome variable

dollar, whatever is happening in the United States is going to be very important to the

other countries. Not only that, we saw from Figure 4.2 that many of the currency crises

are clustered in terms of the years that they occur. Thus, there will be elevated levels

of global risk during these periods, reflected in the top two predictors in the extremely

randomized trees model. Figure 4.4 is perhaps showing that logistic regression cannot

produce a good AUROC score for currency crises because it cannot identify trends in

predictors in pre-crisis periods. Extremely randomized trees achieve an AUROC score

of more than 20 percentage points higher, and the predictions of this model are driven

by very different features. After decomposing the predictions into their Shapley values,

we can see from Figure 4.5 that the signals are generally quite strong when the model

identifies a currency crisis. The advantage of this plot over the prediction charts from

earlier sections is that it exaggerates the actual predicted probability of a crisis rather

than just its classification as right or wrong. For example, the model produces its high-
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est predicted probability of a crisis 3 years in advance of the France crisis in the 1920s.

Due to the construction of our models, this comes across as a false alarm. However,

this false alarm would still have been a useful early warning indicator due to the high

predicted probability. Figure 4.5 also shows just how unexpected the Nixon shock was

in Japan, as the predictions during those years are nowhere near indicating a currency

crisis would occur.

4.1.6 Shapley regressions: variable significance

Table 4.2 shows the results of the Shapley regression. We see that there are only 3

statistically significant features for the currency crisis, and they are the 3 with the

highest predictive share. They are the global credit growth, the global slope of the

yield curve, and the CPI. It appears as though the CPI and the global slope obtain the

highest coefficients and lowest p-values, but the global credit growth still has a p-value

< 0.01. What this tells us about the extremely randomized trees model for currency

crises is that the majority of the information being used for the predictions comes from

these 3 features and that the signals they issue are statistically different from those

of the null hypothesis. In contrast, there are 5 features that have p-values of 1 and

negative coefficients, meaning that the model made little use of the information given

by those predictors. For the remaining predictors, we see p-values between 0.2 and 0.5

and positive coefficients of less than 0.1. This means that the model has a hard time

distinguishing between these predictors and the null hypothesis in terms of the signals

issued.

4.1.7 Nonlinearities

We now investigate the importance of nonlinear relationships for other types of financial

crises. From Figure 4.4, we can gather that the 2 global features, the CPI and the public
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Figure 4.5: Shapley values as a function of time using crisisCurrency as the outcome
variable
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Variable Direction Shapley Share Coefficient p
Global credit + 0.1870 0.5376 0.009
Global slope - 0.1781 0.7972 0.000
CPI + 0.1151 0.8917 0.000
Public debt - 0.0858 0.0411 0.411
Debt service ratio - 0.0813 0.0677 0.274
Domestic credit + 0.0610 -0.1703 1.000
Broad money - 0.0541 -0.1610 1.000
Current account + 0.0470 -0.1092 1.000
Consumption + 0.0460 0.0168 0.452
Wages - 0.0411 -0.2475 1.000
Unemployment + 0.0376 0.0241 0.441
Domestic slope - 0.0363 0.0342 0.382
Investment + 0.0296 -0.3574 1.000

Table 4.2: Results of the Shapley regression. Shows the direction of the relationship
between predictor and crisis, coefficients, p-value against the null hypothesis, and the
predictive share. crisisCurrency used as the outcome variable.

debt, are the 4 most important predictors of currency crises for our model. We plot

the relationship between the Shapley values of the predictor, and the predictor values

themselves in Figure 4.6 for these 4 features. Immediately, we can see that there are

indeed nonlinear relationships present in these features, as a cubic polynomial fits the

data significantly better than a straight line. What we notice about public debt is

that the Shapley values spike when the change in public debt drops by a significant

amount. For the CPI, we notice that the vast majority of crisis observations fall when

the CPI growth is between 0 and 20%. The highest Shapley values occur around the

20% growth mark. Interestingly, as you head towards the tails of this distribution,

there are very few crisis observations. The global slope of the yield curve, which is

listed as the second most important predictor in Figure 4.4, yields a very interesting

relationship between the predictor value and its Shapley values. What we see is a large

spike in the Shapley values for observations where the global slope of the yield curve

is right around or slightly below 1. This means that the long-term interest rates are

slightly higher than the short-term interest rates. The model learned that when the
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Figure 4.6: Shapley values of key predictors as functions of the predictor values. Cur-
rency crisis observations shown in red.

difference between the long- and short-term rates is just below one, it is more likely

to be a pre-crisis period. The global credit growth relationship shows a general trend

of rising global credit growth, resulting in greater Shapley value for that observation.

Again, this trend does not continue into the tails of the distribution but rather peaks

just shy of 5% global credit growth. Just before 5% global credit growth, we see a

cluster of crisis observations with high Shapley values. However, as the credit growth

rises past 7%, the number of crisis observations decreases greatly.

We apply the same experiment to check whether these nonlinearities can help im-
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prove predictive performance. Table 4.3 shows the results of this experiment. For 9

Feature Linear Shapley
Domestic slope 0.49 0.63
CPI 0.65 0.79
Broad money 0.57 0.55
Unemployment 0.51 0.67
Wages 0.59 0.72
Consumption 0.53 0.62
Public debt 0.52 0.61
Investment 0.50 0.49
Current account 0.56 0.53
Domestic credit 0.55 0.53
Debt service ratio 0.49 0.70
Global credit 0.66 0.81
Global slope 0.59 0.82

Table 4.3: AUROC of univariate linear regressions compared to the crisisCurrency
variable being regressed on the individual predictor Shapley values.

of the 13 predictors, the AUROC improves. The improvements are even more pro-

nounced, with the biggest improvement being for the global slope of the yield curve,

which improves by 22 percentage points. For the 4 key predictors shown in Figure

4.6, we see the AUROC improve by at least 10 percentage points. The biggest loss of

AUROC occurs for broad money, which drops 3 percentage points when regressed on

the Shapley values. Compared to the banking crisis cases, the nonlinear relationships

seem even more important for predicting currency crises.

4.2 Inflation Crisis

We now shift our attention to the definition of an inflation crisis given by Reinhart and

Rogoff: An observation is classified as an inflation crisis if the country experiences “an

annual inflation rate of 20 percent or higher” (Reinhart & Rogoff, 2009).
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4.2.1 Baseline Analysis

The first thing to note about the inflation crisis case is that the number of positive

cases in the dataset is much less than in the other 3 cases we have looked at. Indeed,

there are only 14 positive indicators for inflation crises, representing 8 distinct crises.

We do see from Figure 4.7 that the ranking of the models still holds. These are the

highest AUROC scores of all 4 cases. Some of the literature suggests that the AUROC

does not fare well with severely imbalanced datasets. However, in a more recent work,

Richardson et al., 2023 shows that the AUROC is indeed robust to class imbalance.

One difference between the baseline models for this definition of a financial crisis is

that the CPI variable is removed. This is because the CPI is basically the definition

of inflation in our sample, as the 0s and 1s are generated by that variable in the JST

database. Extremely randomized trees produce a false alarm rate of 13.1%, followed

closely by random forests with 15.7%. Both of these false alarm rates are significantly

lower than the 25.2% false alarm rate achieved by logistic regression. XGBoost does

not compare well to the other machine learning models in this case, still outperforming

a decision tree but not logistic regression.

4.2.2 Robustness

Table 4.4 that the model ranking is relatively robust across the different experiments.

Logistic regression performs best in one experiment, namely when the HP filter is

applied to the GDP ratios of the features. However, the AUROC that logistic regression

obtains is still lower than the baseline experiment using the extremely randomized trees

model, so we do not feel this is an issue. In general, across the table, we see that random

forest performs quite comparably to extremely randomized trees, even outperforming

extremely randomized trees in 1 experiment.
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Figure 4.7: ROC curves for baseline models, crisisInflation used as the outcome variable
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AUROC
Experiment extree forest xgboost tree logreg
Baseline 0.91 0.90 0.72 0.58 0.84

House prices 0.82 0.75 0.61 0.54 0.75
HP filter on GDP ratios 0.88 0.85 0.66 0.56 0.90

HP filter on nominal variables 0.91 0.87 0.67 0.55 0.83
HP filter on real variables 0.91 0.89 0.71 0.52 0.83

Hamilton filter on GDP ratios 0.92 0.92 0.71 0.58 0.85
Replace yield curve with nominal rates 0.89 0.91 0.66 0.58 0.89
Replace yield curve with real rates 0.92 0.92 0.67 0.55 0.84

Table 4.4: AUROC scores for robustness check, crisisInflation used as the outcome
variable

4.2.3 Extremely Randomized Trees in detail

With just a quick glance at Figure 4.8, we can see that since there are so few positive

indicators, the majority of the predictions will be true negatives. We can also see that

the predicted probability given by the model for many of these observations is very

close to zero. This figure represents this by the black lines being almost flat on the

bottom. There are 8 inflation crises in our sample, and the model misses 1 of them

fully and 1 of them partially. The fully missed crisis happened in France in 1926. The

partially missed crisis happened in Portugal in 1974.

The inflation crisis in France in 1926 is closely related to the currency crisis of 1927.

We mentioned above that the franc was stabilized at an undervalued rate as an attempt

to get France out of its stretch of inflation. This inflationary episode is confirmed by

Tryon, 1979, who looked in depth at the franc between world wars. “In April 1925 it was

announced that the legal limit of the currency in circulation had been exceeded earlier

in the year by the central banks” (Tryon, 1979). This inflation crisis was somewhat

brought about by poor government fiscal policy, making it unsurprising that the model

would miss it.

Portugal had the first indicator year of its inflation crisis of 1974 missed. This was
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Figure 4.8: Crisis probability estimated by extremely randomized trees at a hit rate of
80%, crisisInflation used as the outcome variable

during the oil crisis of the 1970s. Fundação Francisco Manuel Dos Santos, 2023 notes

a couple of things about Portugal during this time. First, Portugal had a stock market

boom along with an expansion in credit and money supply (Fundação Francisco Manuel

Dos Santos, 2023). Secondly, there was a political revolution in 1974, which resulted in

80000 workers being hired. Of course, all of these new salaries that were created out of

nothing caused the inflation rate to spike later that year.

4.2.4 Forecasting

As was the case with the currency crisis case, the forecasting period for inflation crises

is also much smaller than for banking crises. This is simply due to the low number of

positive cases in the dataset for inflation crises. We set the model to need 7 positive

indicators in the training set before training. This results in 3 inflation crises that the

model can try to predict while forecasting. Again, similarly to the currency crisis case,

we cannot choose a lower number than 7 since the forecasting training would begin
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Figure 4.9: Forecasting crisis probability estimated by extremely randomized trees at
a hit rate of 80%, crisisInflation used as the outcome variable

with only 1 positive case. Figure 4.9 shows us that after 1995, every country except

Ireland was never really at risk of experiencing an inflation crisis. We also note that

since there are only 5 indicators in the forecasting experiment, a minimum hit rate of

80% means that all crises will be identified correctly. Changing the minimum hit rate

so that 1 indicator was missed did improve the false alarm rate of the model that much.

Extremely randomized trees produce a false alarm rate of 17.1%. This is a drastically

better false alarm rate than logistic regression, which obtains a false alarm rate of 78.1%.

Random forests produce the lowest false alarm rate in this case at 16.4%. So, in terms

of how these early warning models are used in practice, the machine learning models

outperform logistic regression by a wide margin, confirming their potential usefulness

in inflation crisis prediction. The AUROC scores confirm this ranking, with random

forests achieving an AUROC of 0.910, extremely randomized trees an AUROC of 0.909,

and logistic regression an AUROC of 0.727.
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4.2.5 Shapley value decomposition: variable importance

We turn our attention to the most important features for predicting inflation crises.

Figure 4.10 shows that the wage variable is far and away the most important predictor

for the extremely randomized trees model. It has a mean absolute Shapley value of more

than double any other predictor. We knew from Table 2.4 that the wage variable was

potentially important for inflation crisis prediction, but extremely randomized trees

clearly recognized something different than logistic regression. Consumption ranks

second, followed by the global slope of the yield curve. Most of the other features

following have a relatively equal mean absolute Shapley value. The unemployment rate

has the definitively lowest mean absolute Shapley value for predicting inflation crises in

the extremely randomized trees model. There is not a lot of agreement between logistic

regression and extremely randomized trees. Logistic regression gives much more weight

to global credit growth and broad money. However, both of these models agree that

changes in wages are indicative of inflation crises. The decomposition of the predictions

into their Shapley values over time is slightly different for inflation crises compared to

the other types of financial crises. Figure 4.11 shows that the predicted probabilities

of inflation crises are, across the board, much lower than the other financial crises.

Spain is perhaps the most sporadic country in this sample but it seems to get a hold

of inflation by the 1990s. One thing to note here is that all countries have a spike in

predicted probability in the mid-1970s. We mentioned above the effect of the Nixon

shock, and Figure 4.11 shows just how global its effects were.

4.2.6 Shapley regressions: variable significance

Table 4.5 shows the results of the Shapley regression on the predictors. Compared

to the other 3 cases, the extremely randomized trees model for inflation crises is not
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Figure 4.10: Mean absolute Shapley values of individual features for logistic regression
and extremely randomized trees using crisisInflation as the outcome variable

Variable Direction Share Coefficients p
Wages + 0.297 0.2993 0.105
Consumption + 0.126 0.4308 0.016
Global slope - 0.103 0.5300 0.015
Debt service ratio + 0.072 -0.3762 1.00
Investment + 0.063 -2.2734 1.00
Domestic credit + 0.059 -0.2976 1.00
Global credit - 0.056 -0.0415 1.00
Broad money + 0.055 -0.1713 1.00
Current account + 0.049 -0.2626 1.00
Domestic slope + 0.048 0.2047 0.035
Public debt - 0.046 -1.2192 1.00
Unemployment - 0.026 -0.3897 1.00

Table 4.5: Shapley regression. Shows the direction of the relationship between predictor
and crisis, coefficients, p-value against the null hypothesis, and the predictive share.
crisisInflation used as the outcome variable.
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Figure 4.11: Shapley values as a function of time using crisisInflation as the outcome
variable
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able to differentiate between noise and signal for many of the predictors. Indeed, all

but 4 predictors have negative coefficients and p-values of 1. This indicates that the

model is making little use of the majority of the predictors. Table 4.5 shows that

consumption, the global slope of the yield curve, and the domestic slope of the yield

curve are the most significant predictors, yielding the highest coefficients and lowest

p-values. The wages predictor, which dominates the predictions regarding Shapley

share, is not considered statistically significant when regressed on the Shapley values.

However, it obtains a larger coefficient than the consumption predictor. This means

that it is still contributing meaningfully to the correct predictions. The model has a

marginally more difficult time distinguishing between its signals and the noise.

4.2.7 Nonlinearities

Figure 4.12 shows the relationship between Shapley values and the predictor values

for the 4 top predictors of inflation crises. The interpretations of these results are less

obvious than in the other 3 cases, mostly due to the small number of crisis observations

in the inflation crisis case. Figure 4.12 shows that cubic polynomials better fit the

data than a straight line for all 4 predictors. Looking at the consumption plot, we

can see there is definitely a spike in Shapley values when the consumption rises more

than 10% in a year, but this does not necessarily mean that correlates to a crisis

prediction. The global slope of the yield curve ranks third in variable importance.

Again, Figure 4.12 seems to show a nonlinear relationship between the predictor values

and the Shapley values, but the crisis observations are spread over a range of both

predictor and Shapley values. The debt servicing ratio seems to have most of the

crisis observations occurring when the model is attributing negative Shapley values

to the predictor. This interpretation is in line with Table 4.5, where we see that

the debt servicing ratio is not statistically significant and that the model has a hard
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Figure 4.12: Shapley values of key predictors as functions of the predictor values.
Inflation crisis observations shown in red.

distinguishing it from the noise. The top predictor of inflation crises by a long shot is

the wage variable. The cubic fits the data slightly better than the straight line, and we

get the general trend that as the wages rise from year to year, the model attributes a

higher likelihood of being in a pre-inflation crisis period.

Table 4.6 shows the results of the univariate regressions comparing the predictor

values and their Shapley values. 8 of the 12 predictors achieved a higher AUROC

score when regressed on the Shapley values compared to when they were regressed on

the predictor values. Because of the imbalanced dataset, the losses and gains when
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Feature Linear Shapley
Domestic slope 0.52 0.56
Broad money 0.44 0.63
Unemployment 0.50 0.61
Wages 0.95 0.94
Consumption 0.81 0.81
Public debt 0.45 0.79
Investment 0.61 0.72
Current account 0.61 0.60
Domestic credit 0.59 0.56
Debt service ratio 0.72 0.60
Global credit 0.49 0.69
Global slope 0.60 0.70

Table 4.6: AUROC of univariate linear regressions compared to the crisisInflation vari-
able being regressed on the individual predictor Shapley values.

regressing on the Shapley values are greater. The biggest loss is incurred by the debt

servicing ratio, which loses 13 percentage points when regressed on its Shapley values. In

contrast, the biggest gain is achieved by the public debt predictor, which has an increase

of 33 percentage points when regressed on its Shapley values. For both consumption

and wages, the AUROC change is less than 1 percentage point.

Combining the results from Table 4.6 and Figure 4.12 shows the importance of

accounting for the nonlinearities in the variables for the machine learning models.
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Chapter 5

Concluding Remarks and Future

Research

This thesis aims to show the potential benefits that can be gained by using machine

learning in financial crisis prediction. This was done by examining a variety of machine

learning algorithms and evaluating their performance on ⟨country, year⟩ observations

in both cross-validation and forecasting experiments.

Chapter 1.2 gives an overview of the framework of the procedure of the experiments,

including descriptions of the features, their transformations, the definitions of crises,

the cross-validation method, the forecasting method, and the AUROC scores for model

evaluation. Chapter 2.5 gives a brief description of all the machine learning algorithms

used in this work. A description of the Shapley value framework is then presented, which

is the method of choice for attempting to understand the drivers of the predictions in

these machine learning models.

Chapter 3 then shows the results of the experiments for the 2 different definitions

of banking crises used. The first set of banking crises used is from the Macrohistory

database (Jordà et al., 2017). The other set of banking crises is taken from Reinhart
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and Rogoff, 2009. The results of the experiments show that machine learning models

can indeed achieve better AUROC scores than logistic regression, particularly tree-

based algorithms like random forests and extremely randomized trees. Through the

Shapley framework, we find that the credit growth and slope of the yield curve, both

domestically and globally, are the top 4 predictors for both definitions of a banking

crisis.

We then turn our attention to different types of financial crises. Chapter 4 shows

the results of the experiments for both currency crises and inflation crises. The binary

variables for these crises were constructed from the thresholds described in Reinhart and

Rogoff, 2009. The results hold for these different financial crises, with the tree-based

machine learning algorithms outperforming logistic regression in cross-validation and

forecasting. The Shapley values show that the global credit growth, the global slope

of the yield curve, the CPI, and the public debt are the most important predictors of

a currency crisis in the extremely randomized trees model. For an inflation crisis, the

most important predictors are wages, consumption, the global slope of the yield curve,

and the debt servicing ratio.

At the end of the analysis for each financial crisis definition, we investigated the

nonlinear relationships between the predictor values and their Shapley values. Using a

univariate regression experiment, we find that using these nonlinear relationships can

improve model performance. This experiment confirms the presence of these nonlinear

relationships, which have been pointed out in the literature (Bluwstein et al., 2021).

The models presented in this work serve as a baseline. The aim of this work is to

show the potential use of machine learning in financial crisis prediction, not to build the

most accurate model. This work lays the foundation of machine learning for predicting

different types of crises ahead of time. However, there are a few potential directions

for future research. Firstly, reinforcement learning is another branch of machine learn-
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ing where the model will learn from past mistakes or successes. However, the use of

reinforcement learning for financial crisis prediction is less explored in the literature.

Reinforcement learning models require lots of training data for the model to learn from,

which may be one barrier in applying it to financial crisis prediction. Alkhafaji et al.,

2023 looks at using reinforcement learning for financial crisis prediction, but they do

not use a common dataset. Thus, there is room for research in training a reinforcement

learning model on one of the main financial crisis databases mentioned in Chapter 1.2.

Namaki et al., 2023 confirms that reinforcement learning was not even on the radar of

the financial crisis prediction literature up to 2022.

Second, this work focuses in a sense on crisis prediction by country. The economic

conditions in each country are different, though. We can see, for example, in the

JST crisis case that Canada experienced no crises throughout the entire sample. If

one wanted to train a model specifically for Canada, it could not be done under this

approach, as there would be no positive cases to learn from. There is a topic in machine

learning called transfer learning, where one applies a pre-trained model to a second task.

A similar phenomenon occurs quite frequently in our everyday lives. Take a person who

knows how to play the violin, for example. This person would be able to learn how to

play the piano much quicker than someone who has no musical training at all (Zhuang

et al., 2021). In the context of financial crisis prediction in Canada, the goal would

be to apply a model that was trained on data from a country with a similar economy

to that of Canada. Then, even though Canada had no positive cases in the training

data, we could still use the model to try and predict what would happen in the future.

Zhuang et al., 2021 shows that this realm of study is up and coming in the machine

learning world. We hope that this work serves as the groundwork for future work done

in financial crisis prediction.
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growth, the yield curve and financial crisis prediction: Evidence from a machine

learning approach. Journal of International Economics, 145, 103773. https://

doi.org/10.1016/j.jinteco.2023.103773

Borio, C., & Drehman, M. (2008). Assessing the risk of banking crises- revised. Bank

for International Settlements, 29–46.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24 (2), 123–140.

Bussiere, M., & Fratzscher, M. (2002). Towards a new early warning system of financial

crises.

Butkiewicz, J. L., & Ohlmacher, S. (2021). Ending bretton woods: Evidence from the

nixon tapes. The Economic History Review, 74 (4), 922–945. https://doi.org/10.

1111/ehr.13052

Caprio, G., & Klingebiel, D. (2003). Episodes of systemic and borderline financial crises.

Casabianca, E. J., Catalano, M., Forni, L., Giarda, E., & Passeri, S. (2022). A ma-

chine learning approach to rank the determinants of banking crises over time

and across countries. Journal of International Money and Finance, 129, 102739.

https://doi.org/10.1016/j.jimonfin.2022.102739

Cesa-Bianchi, A., Eguren Martin, F., & Thwaites, G. (2019). Foreign booms, domestic

busts: The global dimension of banking crises. Journal of Financial Intermedi-

ation, 37, 58–74.

93

https://doi.org/10.1016/j.jinteco.2023.103773
https://doi.org/10.1016/j.jinteco.2023.103773
https://doi.org/10.1111/ehr.13052
https://doi.org/10.1111/ehr.13052
https://doi.org/10.1016/j.jimonfin.2022.102739


Master’s Thesis - J. Voskamp; McMaster University - Mathematics

Chen, M., DeHaven, M., Kitschelt, I., Lee, S. J., & Sicilian, M. J. (2023). Identifying

financial crises using machine learning on textual data. International Finance

Discussion Paper, 1374, 1–40. https://doi.org/10.17016/ifdp.2023.1374

Davis, E., & Karim, D. (2008). Comparing early warning systems for banking crises.

Journal of Financial Stability, 4, 89–120.

Fernandez-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need

hundreds of classifiers to solve real world classification problems? The Journal

of Machine Learning Research, 15 (1), 3133–3181.

Frankel, J. (2015). The plaza accord, 30 years later. National Bureau of Economic

Research. https://doi.org/10.3386/w21813.

Frankel, J., & Saravelos, G. (2012). Can leading indicators assess country vulnerabil-

ity? evidence from the 2008-09 global financial crisis. Journal of International

Economics, 87, 216–231. https://doi.org/10.1016/j.jinteco.2011.12.009.

Fundação Francisco Manuel Dos Santos. (2023). 1973-1978: Three crises, one long re-

cession.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine

Learning, 63, 3–42. https://doi.org/10.1007/s10994-006-6226-1.

Greenwood, R., Hanson, S. G., Shleifer, A., & Sørensen, J. A. (2020). Predictable fi-

nancial crises.

Imandoust, S. B., & Bolandraftar, M. (2013). Application of k-nearest neighbor (knn)

approach for predicting economic events: Theoretical background. 3 (5).

Irwin, D. (2010). Did france cause the great depression? National Bureau of Economic

Research. https://doi.org/10.3386/w16350.

Jonung, L., Kiander, J., & Vartia, P. (2009). The great financial crisis in finland and

sweden—the dynamics of boom, bust and recovery, 1985-2000. European Econ-

omy Economic Papers, 350.

94

https://doi.org/10.17016/ifdp.2023.1374


Master’s Thesis - J. Voskamp; McMaster University - Mathematics

Jorda, O., Schularick, M., & Taylor, A. M. (2013). When credit bites back. Journal of

Money, Credit and Banking, 45 (s2), 3–28.
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Appendix A

Appendix

A.1 Replication Material

The following link redirects to a github page with all the necessary scripts and data for

running this code and reproducing the results.

A.2 Machine Learning model implementation

The following section of the appendix describes the packages used to train the machine

learning models and any tuned hyperparameters. Italicized words refer to parameters

in the model.

A.2.1 Logistic Regression

From the python package sklearn, the SGDCClassifier was used with penalty = None

and loss = log.

98

https://github.com/voskampj/thesis_replication_material


Master’s Thesis - J. Voskamp; McMaster University - Mathematics

A.2.2 Decision Tree

The DecisionTreeClassifier from the sklearn package was used to train the decision

tree. max depth and max features were tuned during cross-validation. max depth was

tested on values ranging from 2 to 20, whereas max features ranged from 1 to 10.

A.2.3 Random Forest

From the sklearn python package, the RandomForestClassifier was used with n estimators

= 1000. The other parameters were left as the default values since random forests have

been shown in the literature to be insensitive to the choice of parameters Bluwstein

et al., 2021.

A.2.4 Extremely Randomized Trees

The ExtraTreesClassifier from the sklearn package was used to train the extremely

randomized trees model. Similarly to random forests, we set n estimators = 1000 and

left the other parameters at their default value.

A.2.5 Artificial Neural Networks

The MLPClassifier from the sklearn package was used to train the neural networks.

We set solver = lbfgs and performed a hyperparameter search over alpha, activation,

and hidden layer sizes. 25 neural networks were trained on bootstrapped samples after

the training set was constructed. The prediction given by the model is the mean of all

25 neural networks.
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A.2.6 Support Vector Machines

The SVC from the sklearn package was used with hyperparameter tuning being applied

to C and gamma. Observations are upsampled in the training set of each of the 25 sup-

port vector machines being trained. The final prediction is the mean of the predictions

across the 25 models.

A.2.7 XGBoost

The XGBClassifier from sklearn was used and learning rate, max depth, n estimators,

colsample bytree, and subsample were hypertuned using a grid search over a range of

values.

A.2.8 K-Nearest Neighbours

The KNeighborsClassifier from sklearn was used with the following parameter tun-

ing. A grid search was done on n neighbors between 3 and 10, the weights being either

uniform or distance, the algorithm being auto, ball tree, kd tree, or brute, and the

leaf size being 30, 50, or 100.

A.3 Results not reported in the main body

A.3.1 Global variables

One limitation of this work is in the construction of global credit growth and global

slope of the yield curve features. The construction of these features in this work does

not give adequate weight to countries with larger GDPs than others. This method only

investigates the differences between the variables and then averages them.
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JST Banking Currency Inflation
ANN 0.79 0.80 0.82 0.82
SVM 0.82 0.78 0.71
KNN 0.77 0.77 0.75 0.55

Table A.1: AUROC scores for ANN, SVM, KNN for the baseline cross-validation ex-
periment

A.3.2 Other machine learning models

Table A.1 shows the AUROC scores for the artificial neural network, support vector

machine, and K-nearest neighbour models. The neural network and support vector

machine required substantial time to train and obtained poorer results than the tree-

based methods. Because of the mediocre performance and substantial training time,

these three methods were omitted from the forecasting experiment.

After performing the Shapley regressions, we investigated whether we could obtain

comparable results by training models with only the statistically significant indicators

included. Table A.2 shows the results of this experiment. Indeed, we actually see

improved performance for the currency and JST crisis cases, identical performance with

the banking crisis, and worse performance for the inflation crisis. This gives further

confidence that the Shapley regressions are indeed sorting out the important predictors

from those that are not important.

Baseline Important Predictors
JST 0.87 0.89

Banking 0.86 0.86
Currency 0.86 0.88
Inflation 0.91 0.85

Table A.2: AUROC scores for extremely randomized trees models trained with only the
statistically significant predictors compared to the baseline model in the cross-validation
experiment
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all pre-WW2 post-WW2
GDP 0.02 0.05 0.00
CPI 0.02 0.05 0.00

Current account 0.06 0.13 0.01
Short-term rate 0.07 0.15 0.01
Long-term rate 0.03 0.06 0.00
Broad money 0.07 0.12 0.03

Credit 0.09 0.20 0.01
Public debt 0.07 0.16 0.01

Consumption 0.06 0.15 0.00
Investment 0.08 0.18 0.01

Wage 0.02 0.06 0.00
Unemployment 0.27 0.62 0.02
Corporate Debt 0.28 0.60 0.04
Business loans 0.46 0.90 0.14

Household loans 0.43 0.84 0.14
House prices 0.24 0.45 0.08

Table A.3: Proportions of missing values for the predictors for the whole period, and
before and after WW2

A.3.3 Missing values

Table A.3 shows the proportions of the missing values for the variables used in this work.

We see most of the missing values occur in the pre-WW2 era, with very few missing

after. Most of the features with higher missing value proportions are only included in

the robustness checks, with the exception of the unemployment rate.

A.3.4 Reinhart and Rogoff Narrative crisis results

Looking at Figure 1.1, we can see that there were 2 definitions for currency crises and 2

definitions for inflation crises. Before beginning the analysis of this work, the baseline

models were trained on both definitions for each type of crisis. The models achieved

very similar results for both types of inflation crises. This was not the case for currency

crises, however! Table A.4 shows a comparison in terms of AUROC scores for these

baseline experiments. Recall that the manually constructed variables were made using
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Currency Currency (RR) Inflation Inflation (RR)
Extremely Randomized Trees 0.87 0.71 0.91 0.90

Logistic Regression 0.65 0.58 0.84 0.87

Table A.4: AUROC scores for the baseline models using Reinhart and Rogoff narrative
crisis definitions and the crises constructed using thresholds

the thresholds provided by Reinhart and Rogoff, 2009. The results may differ since

the thresholds are being applied to different datasets. Since the manually constructed

crisis variables obtained better baseline results, they were chosen for the main analysis

in this work.

A.3.5 Corporate debt

Another new variable introduced in the 6th version of the Macrohistory database was

corporate debt. We compared a variety of the 11 features mentioned in Bluwstein et al.,

2021 and added different combinations of the corporate debt, unemployment rate, and

wages features. Table A.5 shows the results of these preliminary models. What we

see if that the removal of the wages variable significantly decreased the performance of

the models in predicting inflation crises. We also see that adding the corporate debt

feature to the baseline model decreased performance across the board. When corporate

debt and the unemployment rate are removed, we see increased AUROC scores for

currency crises and inflation crises. Combining all of these facts, the final decision

was made to only exclude the corporate debt feature from the analyses in this paper.

The unemployment rate was used despite its inclusion weakening the performance of

currency and inflation crises because it is well-researched in the literature. The models

presented in this paper also do not aim to be the best models they can be, but rather

they show the potential use of machine learning models in financial crisis prediction.
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JST Banking Currency Inflation
Baseline (unemployment rate and wages)

Extremely Randomized Trees 0.87 0.86 0.86 0.91
Random Forest 0.86 0.84 0.86 0.90

Logistic Regression 0.82 0.79 0.65 0.84
Baseline + Corporate Debt
Extremely Randomized Trees 0.86 0.84 0.86 0.91

Random Forest 0.85 0.82 0.86 0.90
Logistic Regression 0.82 0.78 0.65 0.83

Baseline - Unemployment
Extremely Randomized Trees 0.87 0.83 0.88 0.92

Random Forest 0.85 0.81 0.87 0.91
Logistic Regression 0.81 0.79 0.64 0.89

Baseline - Unemployment - Wages
Extremely Randomized Trees 0.86 0.84 0.88 0.71

Random Forest 0.85 0.82 0.87 0.69
Logistic Regression 0.81 0.79 0.65 0.61

Averages
Extremely Randomized Trees 0.865 0.843 0.870 0.863

Random Forest 0.853 0.823 0.865 0.850
Logistic Regression 0.815 0.788 0.648 0.793

Table A.5: AUROC scores for the baseline models using different combinations of the
new features in the sixth version of the Macrohistory database
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