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Lay Abstract  

Plastics in the environment break down into smaller particles called micro- and 

nanoplastics. These plastic particles are pollutants present in the aquatic and terrestrial 

environments entering every level of the food chain and ultimately reaching humans, yet 

few studies have examined the effects of nanoplastics on human health. A recent World 

Health Organization (WHO) report on nanoplastics has stressed the urgent need for 

toxicological studies to assess potential human health effects. Therefore, this study 

examined the effect of nanoplastics on the female reproductive system. This study was 

carried out in female mice exposed orally to a solution containing a vehicle control 

(water) and two different concentrations of nanoplastics (100 and 1,000 µg/l). Exposure 

occurred daily for a period of 29 days. At the conclusion of the study the mice were 

humanly euthanized with their blood and reproductive tissues collected for laboratory 

analysis. Results showed that nanoplastics exposure resulted in irregular reproductive 

cycle in mice along with a decrease in antral follicle size and progesterone levels which 

are indicators of anovulation and can lead to disorders, such as infertility and polycystic 

ovary syndrome (PCOS) which should be further investigated in future studies.   
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Abstract 

Introduction   

The degradation of plastic waste into smaller micro- and nanoplastic (MNPs) molecules 

has led to widespread distribution of these particles and accumulation in the 

environment, making human exposure inevitable. This can result in, or exacerbate, 

pathological conditions leading to immune dysfunction, neurodegenerative diseases, 

and infertility. Yet few studies have examined the effects of nanoplastics (NPs) on 

human health, especially the reproductive system. Reproductive toxicity of plastic 

particles has been mostly studied in males with most studies investigating microplastics. 

Therefore, the present study aims to assess the reproductive health consequences of 

NPs exposure in females by quantifying serum estradiol and progesterone, examining 

estrous cyclicity, and assessing ovarian reserve (number and quality of follicles) which 

is a key indicator of female fertility.  

  

Materials & Methods   

The present study was carried out in female mice (C57BL/6) exposed orally to water 

(control) or one of two solutions containing different concentrations of Polystyrene 

nanoplastics (PS-NPs; 100 µg/l or 1000 µg/l in water. Exposure occurred daily for 29 

days, and vaginal lavage samples were collected for the last 15 days of the exposure 

phase to check for change in estrous cyclicity. Mice were euthanized at the end of the 

study and their blood samples and reproductive tissues were collected. Ovaries were 

fixed in 10% formalin, embedded in paraffin wax, serially sectioned at 5 µm thickness, 

and stained with hematoxylin and eosin (H&E) for microscopy and follicle analysis. 

ELISA was also performed to quantify the progesterone and estradiol serum levels.  

  

Results   

There was a significant increase in the estrous cycle length in the high dose (1000 µg/l) 

PS-NPs exposure group compared to control (5.53±.25 days vs 4.7±0.23 days, P=0.02). 

Moreover, there was a significant decrease in serum progesterone levels in the high-

dose exposure group compared to control (mean difference=1.64 pg/ml, standard error 

of difference (SED)=0.64, P=0.03). Additionally, it was shown that PS-NPs exposure 

significantly reduced antral follicles’ diameter in both the low dose (238.61±19.01 µm vs 

167.35±19.01 µm, P=0.03) and high dose exposure groups compared to the control 

group with the higher dose showing a more pronounced reduction in antral follicle' size 

(238.61±19.01 µm vs 131.95±19.01 µm, P=0.001).  

  

Conclusion   

Oral PS-NPs exposure in female mice appears to induce toxicity by reducing antral 

follicles size, increasing the estrous cycle length, and decreasing progesterone levels 

which may result  in anovulation and different reproductive issues, such as infertility and 
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polycystic ovary syndrome (PCOS). The effect of PS-NPs on infertility along with NPs’ 

mechanism of action in female reproductive system should be investigated in future 

studies. 
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1. Introduction  

1.1 Plastics toxicity 

The impact of environmental contaminants on human health is a subject of ongoing 

concern. Among these concerns, the global production of plastics has garnered 

significant attention. This surge in plastic pollution coincides with the period of global 

industrialization and modernization, which has witnessed a substantial increase in the 

production and consumption of plastic items since the early 1950s (1,2). Additionally, 

the COVID-19 pandemic has contributed to the substantial rise in plastics production 

and pollution, amounting to approximately 700 million tons in the year 2020 alone (3). 

This includes the disposal of single-use face masks, gloves, gowns, COVID-19 testing 

kits, and eye protectors (4,5). Global plastics production has been estimated to exceed 

1.1 billion metric tons by the year 2050, representing a surge of over 30% from current 

levels (6).  

 

Plastics are generated by polymerization of different monomers or derived from 

combinations of a range of materials such as cellulose, starch and petrochemicals like 

crude oil, natural gas and coal (7). The most prevalent types of plastics produced 

globally include polyethylene (PE; 36%), polypropylene (PP; 21%), polyvinyl chloride 

(PVC; 12%), polystyrene (PS) and polyurethane, each comprising less than 10% of total 

global plastic production. These plastics are commonly found in different environmental 

compartments such as oceans, sludge, or soil (8).  
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Plastics in the environment originate from discarded consumer and manufacturing 

products with human activities playing a pivotal role in the escalating global plastic 

production. These activities include but are not limited to packaging and food waste, 

littering of single-use plastics, and insufficient waste management practices, such as 

open landfills (9–12). When plastics are not recycled or disposed of properly, they can 

end up in landfills where they may degrade and get released into the surrounding soil or 

water. Plastic debris on land can be transported into water bodies through runoff. 

Rainwater can carry plastic waste from streets, landfills, and other areas into storm 

drains, eventually leading to rivers, lakes, and oceans (13). Additionally, synthetic fibers 

from clothing, microbeads from personal care products, and other small plastic particles 

can pass through filtration systems and end up in rivers, lakes, and oceans (14). Over 

time, larger plastics can break down into smaller fragments called micro and 

nanoplastics (MNPs) via different factors, such as exposure to sunlight 

(photodegradation), physical forces (mechanical degradation), oxidative processes, 

biodegradation, and hydrolysis. MNPs are ubiquitous in the environment and can be 

transported over long distances by wind and water currents, infiltrating land, water 

bodies, and even the air (Figure 1) (15). Plastics will persist in the environment for 

hundreds of years due to their high ratio of aromatic compounds and consequent 

resistance to degradation, posing serious threats to ecosystems and wildlife (15)  

(Figure 1).  
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1.1.1 Micro & Nanoplastics (MNPs) 

Microplastics (MPs) are typically defined as plastic particles that are less than 5 

millimeters in size. However, they can vary greatly in size, ranging from microscopic to 

several millimeters in diameter (7,16). MPs are classified into primary and secondary 

sources. Primary MPs are manufactured in microscopic size and are designed for 

commercial use such as cosmetics and microfibers (17–19). Secondary MPs are from 

degradation and breakdown of larger plastics such as plastic bags and food packaging 

(19). Nanoplastics (NPs) are smaller, range between 1-1000 nm in size and are also 

divided into primary and secondary sources. Primary NPs are manufactured nano-sized 

plastic particles directly released into the environment for biomedical, industrial, and 

agricultural uses (17,20,21). Secondary NPs come from degradation of MPs and macro 

plastics, such as bulk plastics and plastic litter (22,23). NPs are used in the 

manufacturing of cosmetics, exfoliants, paints, toothpaste, medications, and abrasives 

making human exposure inevitable. Given their higher surface-to-volume ratio and 

surface reactivity, NPs likely represent a greater toxicity than MPs. Due to their small 

size, MNPs can be readily taken up by land or marine organisms and enter the food 

chain. This combined with their persistent non-biodegradable nature leads to chronic 

human exposure and intensified toxicity. Research has shown that the uptake and 

toxicity of MNPs are intricately linked to their size and duration of exposure (24). 

  

In addition to their small size and persistent nature, MNPs contain different additives 

and can carry environmental pollutants which can further enhance their toxicity. Plastics 

additives are used during plastic processing to give them their desired characteristics, 
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such as the ability to tolerate extreme temperatures and pH levels. Additives can make 

up to 70% of the composition of some plastics (25). Additives can be heavy metals like 

chromium, lead, and cadmium (26–28) or organic compounds such as polybrominated 

diphenyl ethers [PBDEs], phthalates, organotins, perfluorinated compounds, and 

bisphenol A (BPA) (29,30). Some MNPs additives have been shown to be endocrine 

disruptors that can influence the expression of various hormone receptors and interfere 

with the synthesis, secretion, transport, or action of hormones, leading to endocrine and 

developmental abnormalities (31). Additionally, MNPs interact with the environment. 

Due to their high surface area MNPs act as vectors for microorganisms like bacteria and 

pollutants such as Polychlorinated biphenyls (PCBs) and dioxins. These pollutants are 

not only very resistant to degradation, but they also accumulate in animal fats and 

tissues and induce toxic effects (32,33).  
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Figure 1. Plastics cycle in the environment. 

Plastics predominantly stem from human activities, notably the inadequate management 

of industrial waste and disposal of single-use plastics. Over time, these macroplastics 

degrade into smaller micro and nano-sized particles through weathering processes such 

as biodegradation, mechanical breakdown, and exposure to sunlight 

(photodegradation), resulting in the formation of secondary MNPs. Additionally, MNPs 

can be directly produced and introduced into the environment such as microbeads in 

cosmetics (primary MNPs). These particles disperse into water, soil, and air, where they 

are ingested by aquatic and terrestrial organisms, eventually finding their way into the 

human food chain. Created with BioRender.com.  
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1.2 MNPs & aquatic toxicity 

The degradation of plastic waste into smaller MNPs, as well as their synthesis by 

various industries, has led to widespread distribution of these particles and their 

accumulation in aquatic wildlife species. MNPs tend to float on water due to their size 

and density (34). Upon entering aquatic environments MNPs get colonized by algae and 

microorganisms. It has been reported that upon exposure to the environment, microbial 

biofilms rapidly colonize plastic surfaces. Estimates suggest that plastic marine debris 

may harbor between 1000 and 15,000 metric tons of microbial biomass (35). This 

biomass accumulation increases MNP density and causes them to sink (36). Alternative 

pathways of sedimentation include adhering to microalgae or ingestion by zooplankton, 

followed by deposition within fecal pellets (37,38). 

MNPs impact every trophic level and microalgae are the first level in the food chain that 

are also indispensable for the marine ecosystem equilibrium. MNPs seem to affect the 

well-being and growth of microalgae, induce oxidative stress, and reduce chlorophyll 

and photosynthesis (39,40). Zooplankton is the second food chain level and a study by 

Cole et al. has highlighted that polystyrene beads are ingested by zooplankton which 

negatively affects their health and leads to reduction of algae consumption as well (41). 

The ingestion of hazardous substances and MNPs facilitates their transfer from one 

trophic level to the subsequent one, resulting in bioaccumulation within the food chain. 

Given that MNPs do not undergo degradation, they persist in the digestive systems of 

marine organisms throughout the entire food chain, causing adverse biological and 

physical impacts on marine life (42,43). While large fish may not immediately manifest 

the effects of chemically contaminated MNPs upon ingestion, the gradual accumulation 
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of these particles could potentially lead to fatal consequences. Limited studies have 

delved into the fate of these particles in freshwater environments due to lack of 

standardized and reliable methods for sampling, detecting, and characterizing MNPs. 

Consequently, the level of toxicity that NPs pose to freshwater ecosystems remains 

uncertain. The existing studies on this subject are primarily laboratory-based and may 

not accurately replicate the same biological toxicity observed in natural environments 

(44).  

With more than 890 fish species (mostly marine species), fish are the most reported 

organisms to contain MNPs in their bodies (45–47). MPs have been reported to exist in 

various fish species’ brains, guts, livers, and gills (48). Furthermore, among aquatic 

organisms, bivalves, including mussels, oysters, and clams, constitute the second most 

extensively researched group, as highlighted by Li et al (49,50). MNPs are frequently 

identified in crabs and shrimps as well (51,52). These species are globally significant in 

aquatic food sources and are commonly consumed by organisms at high trophic levels, 

including humans. The widespread prevalence of MNPs in these organisms has a 

crucial role in amplifying health risks for consumers. 

 

1.2.1 MNPs reproductive toxicity in aquatic animals 

Several studies have demonstrated the adverse effects of both MPs and NPs on 

aquatic organisms, with NPs being identified as more harmful (53–55). For example, in 

zebrafish, NPs have been found to diminish locomotor activity and reduce body length 

(54), induce oxidative stress and impede microalgal growth in freshwater biofilms (55), 

and result in tissue accumulation and embryonic developmental toxicity (53), whereas 
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MPs exhibit negligible effects. These studies suggested that owing to their smaller 

dimensions and increased surface area, NPs possess a greater capacity to adsorb 

additional contaminants, rendering them more hazardous than MPs (56). Consequently, 

inadvertent ingestion of NPs by organisms is likely to result in more severe damage 

(57). An increasing body of research indicates that NPs can increase the production of 

reactive oxygen species (ROS), elevate the activity of antioxidant enzymes, and modify 

gene expression patterns. These alterations can lead to adverse outcomes including 

oxidative stress, neurotoxicity, cytotoxicity, intestinal inflammation, and toxicity to the 

reproductive system (58–62). Given the widespread presence of NPs in the aquatic 

environment, there is limited information on the effect of NPs on reproductive system of 

aquatic vertebrates especially at environmentally realistic concentrations. Existing 

studies have shown that NPs can affect sperm mobility and velocity by binding to sperm 

membranes which results in reduction in fertilization rate in oysters (63,64). Moreover, 

PS-NPs exposure has been shown to affect the early development of zebrafish 

embryos in a size and dose-dependent manner (53). For example, exposure to 20 nm 

PS-NPs causes oxidative stress and DNA damage due to accumulation in the brain 

(65). 100 nm PS-NPs exposure has been shown to activate oxidative stress and base 

excision repair pathways which caused a reduction in heart rate and body length. 

Similarly, hatching and survival of zebrafish embryos was decreased as well (66). 

Moreover, 100 nm PS-NPs exposure at a higher dose exacerbated oxidative stress in 

oocytes, resulting in oocyte apoptosis and impaired reproductive function in zebrafish 

(67). Additionally, a recent study on zebrafish has revealed that NPs exposure resulted 

in higher testosterone levels and decreased fecundity in females along with a reduced 

https://www-sciencedirect-com.libaccess.lib.mcmaster.ca/topics/earth-and-planetary-sciences/gametocyte
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proportion of mature spermatocytes in the testis and developmental impairments in the 

F1 generation (68). NPs have also been shown to delay gonadal maturation by 

inhibiting oogenesis and spermatogenesis in medaka (69).  

Overall, existing literature showed that exposure to MNPs can trigger a range of 

toxicological effects in aquatic animals including oxidative stress (70) and reproductive 

abnormalities (71,72). Zooplankton, planktivorous fish, and piscivorous fish directly 

ingest MNPs within the aquatic ecosystem. MNPs will then be transferred up the food 

chain eventually reaching terrestrial animals and humans (73). 

 

1.3 MNPs in terrestrial environment  

MNPs are also found in terrestrial environments, with MP contamination reported to be 

4 to 23 times higher in land compared to oceans (74). Every year, between 44,000 and 

300,000 tons of MPs are deposited into the agricultural soil of North America (75). 

MNPs are taken up by land animals, through ingestion, inhalation via lungs or gills (e.g., 

land crabs), and epidermal infiltration (76–78). Studies have reported that terrestrial 

animals such as rodents, birds, chicken, snails, earthworms, and humans are mostly 

exposed to MNPs through ingestion (79–81). For example, up to 2019 MNPs have been 

detected in the digestive system of approximately 87,000 individuals (46). Ingestion of 

MNPs can cause damage at the organ, tissue, and cellular level, such as inflammation, 

gut blockage, DNA damage, hepatotoxicity, neurotoxicity, mortality, and reproductive 

toxicity in terrestrial organisms (82–84).  
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1.4 MNPS in humans 

The presence of plastic particles in food, drinking water and in the atmosphere indicates 

that human exposure is inevitable. Human exposure to MNPs can occur via ingestion, 

inhalation, and dermal contact. (85,86) (Figure 2).  

 

Figure 2. MNPs routes of uptake in humans. Humans can be exposed to MNPs 

through ingestion, inhalation, and skin contact. Created with BioRender.com. 

 

1.4.1 Dietary intake 

In 2018, plastic particles were found in the stool of eight people for the first time and 

researchers estimated that more than half of the world population may have MPs in 

their stool (87). This confirmed humans’ exposure through ingestion which varies based 

on age, lifestyle, sex, and diet. MNPs can be found in food packaging, drinking water, 
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table salt (1–10 MPs/kg) and food (88,89). A Chinese study looked at different water 

samples within the country and found MNPs in 38 tap water samples from different 

cities with the proportion of smaller particles (<40 μm) being the greatest  (90). Another 

study looked at different bottled water brands and found that 93% were contaminated 

with MNPs (91). MNPs originating from environmental pollution have infiltrated lower-

level animals and plants, thus entering the human food chain and posing a significant 

threat to food safety (92). For example, it has been reported that consumption of the 

soft tissues of bivalves from Germany can expose humans to 0.36 particles/g of MPs 

and bivalves from Belgium, France, and Netherlands resulted in exposure of 0.2 

particles/g MPs (93,94). Moreover, it has been shown that MNPs get released from 

plastic food packaging and containers under high temperatures leading to food 

contamination (95). The average mass of ingested plastics in adults has been estimated 

at 4.1 μg per week (96) corresponding to 50 plastic bags per year (97) (Figure 2).  

 

1.4.2 Inhalation 

Inhalation is another MNPs exposure route for humans. It has been estimated that on 

average an individual inhales up to 130 MPs per day (98). MPs has been reported to 

make up 4% of indoor air and sources of airborne MPs include construction materials, 

road-wear particles, landfills, sewage, synthetic textiles, abrasions of plastic materials, 

and waste incineration (86,99–102). These plastic particles can reach the respiratory 

system and cause adverse health effects in humans (103,104). The smaller the plastic 

particles, the further they can penetrate the airways, leading to more severe health 

consequences. Particles smaller than 2.5 μm are more prone to reaching alveolar sacs, 
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translocating from epithelial to endothelial cells, and permeating the capillaries (105). 

Consequently, NPs have the capacity to disperse throughout the human body by 

entering the circulatory system (106) (Figure 2).  

 

1.4.3 Skin contact 

Another route of MNPs exposure is through skin contact. Major sources of skin 

exposure are microbeads in personal care and cosmetic products and atmospheric 

fallout of synthetic fibers (107,108). Exposure through skin contact can be significant. 

For instance, a single laundry cycle can release millions of fibrous MNPs into the 

environment (109). Similarly, wearing a single synthetic fiber sweatshirt can emit tens of 

thousands of microplastic particles (110). It has been reported that NPs can pass 

through dermal barriers (85). Skin has four layers: the stratum corneum, viable dermis, 

dermis and the subcutaneous connective tissue (111). The stratum corneum is the 

outermost layer and forms a defensive barrier against injuries, chemicals and 

pathogens (112,113). Since MNPs are hydrophobic, it is predicted that absorption 

through the stratum corneum is unlikely; however, plastic particles can be transported 

through the skin barrier via the transappendageal pathway, which involves passage 

across hair follicles, sebaceous glands, and sweat glands (112). It is important to note 

that transport of MNPs across the skin is size dependent. For example, in a study by 

Vog et al, a notable concentration of Langerhans cells (dendritic cells) was observed 

surrounding hair follicles. These cells demonstrated an ability to internalize 

nanoparticles of assorted sizes. However, the transport across the epidermis was found 

to be limited to particles measuring 40 nm or less in their experimental model (114). 
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Comprehensive research is necessary to investigate the precise amount of MNPs that 

can penetrate the skin (Figure 2).  

 

 

1.5 MNPs mechanism of toxicity  

Presently, there is limited research on the mechanism of toxicity of MNPs, with most 

studies focusing on assessing morphological changes. The few mechanistic studies 

conducted have primarily used animal or in vitro models. To our knowledge, there are 

no in vivo studies involving humans to date. The current evidence indicates that the 

accumulation of MNPs in mammalian and human tissues may have adverse long-term 

effects. Although the exact nature of these consequences remains uncertain, current 

literature employing various test models indicates the translocation and distribution of 

MNPs from the primary exposure site to distant locations within the body (115,116).  

 

1.5.1 Translocation and biodistribution 

Upon ingestion and inhalation, MNPs encounter different host defense mechanisms. 

The first line is the mucus layer covering the epithelial barrier. Within the gut, the mucus 

layer lines the inner layer of the digestive tract, playing a vital role in preserving 

intestinal homeostasis (117). Similarly, the lungs contain goblet cells within the epithelial 

layer, which generate mucus to entrap inhaled particles (118). Following entrapment in 

the mucus layer, particles, including plastic particles, may reach the epithelial layer, 

encountering two potential pathways for crossing this barrier. Smaller particles (<100 

nm) are transported transcellularly through the epithelium by endocytosis and larger 

particles are transported paracellularly (119–122). For example, within the lungs, 
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particles smaller than 10 μm typically become trapped in the nasopharyngeal area by 

hair and mucus, while those smaller than 2.5 μm can reach the bronchioles and alveoli. 

Particles smaller than 0.1 μm can directly translocate across the alveolar epithelium via 

the transcellular route (118,123).  

Paracellular transport is primarily governed by junctional complexes, including tight 

junctions, adherence junctions, and desmosomes. Tight junctions, located at the apical-

most position, serve as adhesive complexes that seal the intercellular space, presenting 

a challenge for the paracellular transport of particles (124). Nonetheless, goblet cells 

intervene by disrupting the network of tight junctions, thereby loosening the connections 

between epithelial cells and adjacent goblet cells. This facilitates the paracellular 

transport of MNPs (122,125). After MNPs cross the epithelium, they encounter another 

line of defense which are immune cells such as dendritic cells, macrophages, T and B 

lymphocytes, mast cells, and eosinophils. These immune cells reside underneath the 

interstitium of the lung, the dermis of the skin or within the lamina propria, deep to the 

dermis (126). The exact transport mechanism of MNPs that may trigger inflammatory 

responses has not been fully investigated. However, it has been shown that MNPs can 

be phagocytosed and internalized by macrophages (127-129) which can trigger an 

inflammatory response resulting in cytokine secretion (130) or MNPs will migrate into 

the mesenteric lymph nodes and trigger an immune response there. Following immune 

response activation, MNPs can travel through the lymph vessels, reaching the thoracic 

duct, entering the blood stream and distributing throughout the organism (131–135) 

(Figure 3).  
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Figure 3. Translocation and biodistribution of NPs upon ingestion, inhalation, and skin 

contact. MNPs are ubiquitous in the environment resulting in constant exposure. Upon 

ingestion, inhalation, and skin contact, MNPs encounter different barriers, including 

mucosal surfaces, epithelial barriers, and immune cells. They can cross these barriers 

and enter the circulatory system, reaching various organs in the body. Created with 

BioRender.com.  

 

1.5.2 Cellular uptake  

After absorption into the body, MNPs interact with cells depending on size and surface 

properties and encounter different macromolecules, such as lipids, carbohydrates and 

proteins (136). Once NPs enter the biological milieu and encounter tissues, they are 

exposed to protein molecules and form a complex known as a “corona” (137).  
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Coronas have been shown to modulate transportation, internalization, biodistribution, 

and elimination of MNPs within biological systems (138,139). Walczyk and colleagues 

showed that protein coronas significantly increase NPs interactions with the 

environment (140). Cao et al demonstrated that protein coronas facilitate entry and 

translocation of NPs into the cell at higher rates (141). In vitro studies have also 

reported higher translocation rates of NPs due to protein coronas (142). Additionally, 

protein coronas trigger physiochemical changes affecting MNPs behaviour and toxicity 

(141). This has been reported in mice and zebrafish studies (143,144).  

 

1.5.3 Internalization & toxicity  

MNPs can get internalized into the cell via passive or active transport. Passive transport 

takes place when there is a difference in concentration of MNPs inside and outside of 

the cell. Active transport works against MNPs concentration and requires ATP (125). 

Under a normal physiological state only passive transport can take place given that 

MNPs can pass through the surface pores. This is called size-dependent internalization 

of MNPs. For example, it has been demonstrated that 50 and 500 nm PS-NPs showed 

significant penetration and distribution in lipid membranes (145) while no cellular uptake 

was reported for 3–5 μm MPs (146). This further suggests the size, corona compounds, 

shape, and surface modifications affect MNP mode of transport (125,147). In addition to 

passive transport, MNPs can penetrate cellular barriers through endocytosis which is an 

active internalization pathway and typically includes phagocytosis and pinocytosis 

(clathrin- and caveolae-mediated endocytosis, clathrin/caveolin-independent pathways, 

macropinocytosis) (148–150). Xu and colleagues identified macropinocytosis and 
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clathrin-mediated endocytosis as the primary mechanisms for NPs uptake in an 

immortalized intestinal epithelial cell line (Caco-2) (151) Internalization of MNPs starts 

with cellular membrane damage leading to intracellular biological effects, change in 

fluidity, and eventually leading to cell death and apoptosis (152–154). Following 

internalization, MNPs can permeabilize the endosomal membrane and be released into 

the cytosol. Once they enter the cytosol, they can interact with different organelles such 

as mitochondria and the nucleus and affect important cellular processes such as mitotic 

spindle formation and migration of chromosomes during cell division. MNPs could also 

interfere with the trafficking of transport carriers in the cell along the exocytotic pathway 

consequently leading to inhibition of the cell surface expression of important signaling 

receptors or membrane transports (155,156). Additionally, MNPs can disrupt endosomal 

membrane traffic that many cellular processes depend on, such as surface protein 

turnover and signaling attenuation as well as retrograde signaling from endosomal 

compartments. Furthermore, the buildup of MNPs within the lysosome or late endosome 

may hinder their ability to degrade substances and disrupt the essential cellular 

membrane turnover process known as macroautophagy (157). A disruption in 

autophagic clearance has the potential to initiate cascading processes that ultimately 

result in autophagic cell demise. Conversely, internalized MNPs can also activate 

autophagy. It is documented that metallic nanoparticles can influence autophagy thus 

raising the possibility that MNPs might have a similar effect (158).  

These processes inherently induce cellular stress. Stressors affecting both the plasma 

membrane and endo-lysosomes prompt cellular stress responses. Research conducted 

on freshwater flea species Daphnia has revealed that exposure to PS-NPs impacts 
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growth and reproduction (159). Intriguingly, this exposure also led to an increase in 

AMP activated protein kinase (AMPK) levels, signaling a stress response occurred 

(160).   

A broader aspect related to cellular stress response seems to involve the generation of 

reactive oxygen species (ROS), which has been recognized as the molecular initiating 

event in recent analyses of adverse outcome pathways within the field (161). Cells 

generate ROS through two primary mechanisms: either through the mitochondrial 

electron transport chain (ETC) during regular aerobic respiration or through oxidative 

bursts facilitated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) 

(162). Elevated ROS levels from impaired mitochondrial function may stem from the 

former, whereas the latter is often linked to bacterial invasion, as NOXs are triggered by 

bacterial byproducts and cytokines. Every cell possesses a conserved innate immune 

system, evolved to defend against pathogen intrusion or exposure to foreign substances 

(163). Nevertheless, elements of the innate immune system, like Toll-like receptors 

(TLRs), have the capability to react to a range of internally produced or secreted 

molecules referred to as damage-associated molecular patterns (DAMPs) as well 

(164,165). This can lead to sterile inflammation, characterized by inflammatory 

reactions in the absence of pathogenic infection (166). Within the organism, pro-

inflammatory cytokines released during local inflammation can draw circulating immune 

cells, potentially exacerbating the inflammation and resulting in cell and tissue damage. 

Notably, NPs have been demonstrated to induce stress responses in the innate immune 

system of fish (167) (Figure 4).  
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Figure 4. Cellular uptake and internalization of NPs.  

 

MNPs can be taken up internally via endocytosis, breaching the plasma membrane and 

disrupting the signaling of cell surface receptors. They can also interfere with the 

endocytic pathway. This disturbance can trigger the activation of the immune system 

due to the emergence of stress, facilitated by both endogenous and secreted damage-

associated molecular patterns (DAMPs), thereby activating toll-like receptors (TLRs) 

that mediate innate immunity. Furthermore, stress induced by MNPs can prompt the 

production of reactive oxygen species (ROS) from NADP oxidases (NOXs) or from 

impaired mitochondrial function in the electron transport chain (ETC), potentially 

resulting in DNA damage and cellular apoptosis. Created with BioRender.com.  
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1.6 Reproductive toxicity 

MNPs pose a significant risk to human health due to their frequent and continuous 

presence in the human living environment. MNPs research is still in its early stages with 

MNPs reproductive toxicity in humans being the least investigated, especially in 

females. Studies have been increasing in recent years using animal models primarily 

focusing on phenotypic changes. While these findings may not directly apply to humans, 

they offer valuable insights into understanding the potential effects and mechanisms 

involved in the reproductive toxicity of MNPs. 

 

1.6.1 Male reproductive toxicity  

When it comes to reproductive toxicity, most studies have focused on males. In 

numerous animal studies MNPs have been shown to interfere with the blood-testis 

barrier, potentially causing detrimental effects on male reproductive function. For 

instance, recent research suggests that even at a minimum human equivalent dose, 

estimated to be 0.016 mg/kg/d, MNPs could lead to abnormalities in semen quality 

(168). Different studies have showed that PS-MNPs can disrupt the blood-testis barrier, 

leading to male reproductive toxicity, such as spermatogenesis disorders. For example, 

it was shown that following oral administration of PS-MNPs in mice, they were absorbed 

in the blood 30 minutes after and penetrated the blood-testis barrier within four hours 

(169). Similarly, in a study by Jin et al, PS-MNPs were found in mouse testes 24 hours 

after exposure, and testosterone concentration and sperm vitality and quality decreased 

28 days after exposure (170). Furthermore, research indicated that the combined 

exposure to MNPs and plasticizers could exacerbate reproductive harm in male mice, 
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leading to reduced sperm count, decreased sperm motility, and lower testosterone 

levels (171,172). Most of the studies mentioned earlier have found that MNPs 

negatively impact male reproductive health, though the exact mechanisms remain 

unclear. Recent research suggests that the primary mechanisms of toxicity are likely 

inflammatory changes and oxidative stress damage (173,174).  

 

1.6.2 Female reproductive toxicity 

Female reproductive disorders, such as infertility and polycystic ovarian syndrome 

(PCOS) are global health issues, which may be closely related to environmental 

deterioration (175–177). The ovaries are vital in endocrine and reproductive functions. 

Ovaries are vulnerable to endocrine disrupting chemicals (EDCs) which are natural or 

human-made substances that mimic, interfere, or even block endogenous hormones 

and they have been reported to exist in MNPs as well (178). Studies have shown that 

exposure to EDCs can lead to reproductive health issues, such as premature ovarian 

insufficiency, sex hormone imbalance, and infertility (179).  

Studies have also shown that MNPs exposure can lead to reproductive toxicity in the 

female reproductive system. A study by Wang et al showed that a 60-day PS-MPs 

exposure reduced 17β-estradiol (E2) and testosterone (T) concentrations in the plasma 

of female Oryzias melastigma (180). Moreover, Zhang and colleagues showed that 

mice exposed to PS-MPs through oral administration for 30 days (40 mg/kg/day) 

underwent oxidative stress, DNA damage, and mitochondrial dysfunction in their 

oocytes. This led to a reduction in their fertilization rate, oocyte maturation, and 

disturbances in embryonic development (181). This further was investigated by Liu et al 
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who showed that continued exposure (35 days) to PS-MPs led to polar body extrusion 

rate and a decreased survival rate of superovulated oocytes in mice ovaries (182). 

Overall, these studies showed that a 30 to 35-day PS-MPs exposure could lead to 

ovarian inflammation and a decrease in oocyte quality in mice. Nevertheless, these 

investigations remain constrained, primarily centered on MPs, and have solely 

examined morphological alterations without delving into the underlying mechanisms. 

Recent studies have shown MNPs exist in the human placenta and that placental 

translocation depends on MNPs physicochemical properties, such as size, corona 

formation, and charge (183). For example, Dusza and colleagues conducted an in vitro 

study with BeWo b30 choriocarcinoma cells and showed that MNPs uptake was size-

dependent. They also showed that MNPs passing through the placental barrier could 

contribute to the disturbance in fetal development (184). Another study by Wick et al 

used an ex vivo human placental perfusion model and showed that PS NPs with 

diameters up to 240 nm can pass through the placental barrier and are capable of 

transplacental transfer (185). Remarkably, Ragusa and colleagues observed 12 MP 

fragments (5–10 μm in size) in 4 human placentas for the very first time. The presence 

of MPs in human placentas may trigger adverse pregnancy outcomes and 

transplacental passage and could potentially have intergenerational transfer (186). 

Over time plastic particles degrade and release low levels of chemicals resulting in 

potentially prolonged chronic exposure (187,188). All plastics contain reactive oxygen 

species due to their polymerization and synthesis. Given their persistence, NPs can 

induce oxidative stress, resulting in cell death (188,189). A concern associated with 

exposure to NPs is that they can act as vectors for microorganisms and other pollutants 
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and have been shown be more reactive and infiltrate deeper in the tissues due to their 

higher surface area and smaller size respectively, and thus inducing more toxic effects 

compared to MPs (190,191). NPs’ persistent nature and induction of oxidative stress, 

especially those consisting of polystyrene, can cause inflammation in vivo and vitro 

(189,192,193). A World Health Organization (WHO) report on NPs in drinking water 

indicated that levels in drinking water are low but stressed the urgent need for 

toxicological studies to assess potential human health effects (194). While the 

mechanisms by which environmental factors impact human health vary, dysregulated 

inflammation represents a common mechanism associated with multiple environmental 

factors (195,196). Such effects can result in, or exacerbate, pathological conditions 

leading to immune dysfunction, neurodegenerative diseases, and infertility. MPs have 

been linked to PCOS and endometriosis and recent studies have shown that MNPs 

have lowered sperm count and quality, decreased male fertility, and overall are harmful 

to male reproductive system (173,197–199). However, there is limited understanding of 

the effect of NPs on the female reproductive system, which this study aims to 

investigate. 
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1.7 Summary & objectives 

The emergence of plastics as global pollutants has received considerable attention. 

MNPs are reported to accumulate in the environment and their presence in food, 

drinking water and the atmosphere indicates that human exposure is inevitable, yet few 

studies have examined the effects of NPs on human health. NPs can enter the human 

body and translocate through its physical barriers to reach secondary organs, including 

the reproductive organs and tissues. Some studies demonstrate the impact of NPs on 

cultured immune cells including induction of ROS and genotoxicity in lymphoblasts (Tk6 

cells), and lymphocyte (Raji B-cells) cell lines (200). Immune cells including natural killer 

(NK), monocytes, macrophages and dendritic cells are present throughout the female 

reproductive tract and are involved in intra-ovarian regulation and endometrial 

physiology (197,201). Cytokines, chemical messengers synthesized by cells including 

immune cells, like IL-6 and IL-12 are involved in folliculogenesis, cumulus-oocyte 

interactions, ovulation, corpus luteum formation and leuteolysis (201,202). A finely 

tuned balance of immune cells is important for reproduction. Dysregulation of immune 

cells and thus function adversely affects folliculogenesis, oocyte maturation, and 

ovulation, and is thought to be central to chronic inflammation characteristic of PCOS, 

endometrial angiogenesis, spiral artery remodeling and endometriosis (197,198,201). 

Therefore, this study aims to investigate the effects of chronic NPs exposure on female 

reproductive function in a mouse model. The study will examine the impact of NPs on 

ovarian function and structure by assessing circulating reproductive hormones, estrous 

cyclicity, and follicle development in female mice orally exposed to NPs.   
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2. Materials and Methods  

2.1 Experimental design 

To elucidate the reproductive effects of NPs exposure, sexually mature (40-60 days of 

age) female C57bl6j mice (n=30) were randomly assigned to one of the three exposure 

groups as follows: control (0 μg of polystyrene beads/l in tap water tap water), low dose 

(100 μg of polystyrene beads/l in tap water), and high dose (1000 μg of polystyrene 

beads/l in tap water). During the exposure phase mice were exposed to fluorescently 

labeled polystyrene beads (500 nm in diameter) in their drinking water for 29 days at a 

concentration of 0 (vehicle control), 100 or 1,000 μg/l (n=10/group) (203). Mice were 

weighed weekly and checked daily for signs of systemic toxicity including change in fur 

color and lacrimation. Vaginal smears were collected for the last 15 days to check for 

the estrous cycle stages, as per below. At the end of the exposure period (day 29) mice 

were euthanized by CO2 inhalation, and cervical dislocation. Blood was collected by 

cardiac puncture and reproductive tissues were collected for analysis (Figure 5). 
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Figure 5. Methodology summary 

Following acclimatization, mice were randomly assigned to one of three exposure 

groups: control, low dose, and high dose PS-NPs. Exposure phase lasted 29 days and 

estrous cycle stage was assessed by vaginal lavage during the last 15 days. At the end 

of the exposure phase, mice were euthanized, and peripheral blood and reproductive 

tissues were collected.  

 

2.2. Vaginal smears collection  

To assess the effect of PS-NPs exposure on the estrous cycle, vaginal lavage was 

collected from mice each day at 8 AM beginning on study day 15 and continuing 

through to the end of the study for a total of 15 days. To collect the vaginal lavage 0.5 

mL of phosphate-buffered saline (PBS) was placed at the vaginal opening using a 

pipette and a pipette tip and was gently pushed into the vaginal canal and then 
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aspirated. Vaginal lavage was collected in Eppendorf tubes, placed on a clean glass 

histology slide, air dried and then placed under the microscope to identify the estrous 

cycle stages of the mice. Identification of estrous cycle stages was done by two 

investigators (MG & JMW). In case of disagreements, consensus was achieved by 

discussion between the two investigators (MG & JMW). The estrous cycle is the rodent 

reproductive cycle. Unlike the roughly 28-day reproductive cycle in women (e.g. the 

menstrual cycle), the mouse estrous cycle typically lasts 4-5 days and does not include 

menses (bleeding and shedding of the uterine lining). The estrous cycle consists of 4 

stages: proestrus, estrus, metestrus, and diestrus. Proestrus lasts about 12 hours; 

indicated by round, nucleated epithelial cells and only few leukocytes in the vaginal 

lavage. During proestrus, around 80-90% of the epithelial cells are intact, active, and 

nucleated. Additionally, clumps of leukocytes are present (Figure 6A). Estrus is the next 

stage in the estrous cycle and is a period of sexual receptivity lasting about 12 hours 

(typically 12-8 AM in mice). Estrus can be identified by the dominance of large, cornified 

(degenerative cells that lose nuclei) epithelial cells in the vaginal lavage. Approximately 

100% of epithelial cells are cornified during estrus (Figure 6B). Estrus is followed by 

metestrus and takes place shortly after ovulation lasting about 21 hours. Metestrus is 

indicated by large cornified epithelial cells mixed with polymorphonuclear leukocytes 

(about 1/3 the size of the epithelial cells) and a lot of cellular debris in the vaginal 

lavage.  During metestrus, there is an approximate equal distribution of about 50% 

cornified cells and 50% leukocytes (Figure 6C). Diestrus is the final stage and is a 

period of inactivity lasting about 60-70 hours; indicated by mostly polymorphonuclear 

leukocytes and a few nucleated epithelial cells in the vaginal lavage. During diestrus, 
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approximately 80-95% of the cells present are leukocytes, with some epithelial cells 

also observed (204) (Figure 6D). To evaluate the impact of PS-NPs on the estrous 

cycle, both the overall length of the estrous cycle and the duration of each stage were 

tracked.  

 

 Figure 6. Mice vaginal cytology. The panels depict the estrous cycle stages; (A) 

proestrus, (B) estrus, (C) metestrus, and (D) diestrus. 

 

2.3. Staining with hematoxylin and eosin (H&E) & histomorphometric analysis  

Ovaries were fixed in 10% formalin, dehydrated in graded concentrations of ethanol and 

xylene and embedded in paraffin wax. The entire ovary was serially sectioned at 5 µm 

thickness and stained with hematoxylin and eosin (H&E) for microscopic examination 

and quantification of ovarian follicles. Five random sections per ovary were chosen for 

follicle counting and diameter measurement, based on the method by Smith et al (205). 
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Images of ovarian sections were captured at 10X, and the number of primordial, 

primary, secondary, and antral follicles was counted, and their diameter was measured. 

To prevent double counting the follicles, multiple images were taken per section in a row 

or column and then were stitched together using ImageJ (Figure 7). ZEISS ZEN 

Microscopy Software was used for imaging. Follicle types were identified using Myers et 

al approach which is based on morphological features including the number of 

granulosa cell layers surrounding the oocyte (206). Primordial follicles were identified as 

an oocyte surrounded by one layer of squamous (flattened) granulosa cells (Figure 8 A). 

Primary follicles were identified as an oocyte surrounded by one layer of cuboidal 

granulosa cells (Figure 8 B). Secondary follicles possessed more than one layer of 

cuboidal granulosa cells while antral follicles had more than one layer of cuboidal 

granulosa cells with a defined antrum (Figure 8 C & D respectively). To measure the 

diameter, three diameters per follicle were measured, and the average was calculated 

for a more accurate measurement. 
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Figure 7. Imaging and stitching process of the ovary sections. (A) Imaging of 

ovarian slides was performed row or column-wise and ovarian sections were stitched 

together for a full section visualization (B).  
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Figure 8. Morphological classification of ovarian follicles. (A) primordial follicle with 

one layer of squamous granulosa cells (red circle), (B) primary follicle with one layer of 

cuboidal granulosa cells (red circle), (C) secondary follicle with more than one layer of 

cuboidal granulosa cells and no visible antrum (red circle), and (D) antral follicle with a 

defined antral space.  

 

2.4 ELISA Analyses of serum reproductive hormones  

The levels of estradiol (E2) and progesterone (P4) were measured using commercially 

available ELISA kits (MyBioSource, San Diego, CA, USA), according to manufacturer's 

instructions.  
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2.5 Statistical Analysis 

Data is presented as Mean ± Standard Deviation (SD) unless otherwise stated. All 

analyses were performed using SPSS 29.0 Software (SPSS Inc.Chicago, USA). 

Repeated measures analysis of variance (ANOVA) was performed to examine the effect 

of PS-NPs exposure on murine body mass. Welch’s t-test (unequal variance assumed) 

was performed to examine the effect of PS-NPs on estradiol and progesterone levels in 

the control vs low dose exposure group and control vs high dose exposure group. Mixed 

model two-way ANOVA was performed to compare the estrous cycle stage lengths, and 

follicles count and diameters between the three exposure groups (control, low dose 

exposure, and high dose exposure). A P ≤ 0.05 was considered statistically significant.  

 

3. Results    

3.1 Effect of chronic oral exposure to PS-NPs on murine body mass  

Mice were orally exposed to PS-NPs for 29 days, and mass was documented on a 

weekly basis for each mouse. There was no significant change in body mass over the 

period of PS-NPs exposure was observed in either group exposed to PS-NPs as 

compared to the control, unexposed, mice (P>0.05) (Figure 9).   
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Figure 9. Murine body mass is unaffected by chronic PS-NPs exposure.  

This figure shows mean and SEM of mice in the control group (no exposure to PS-NPs), 

low dose exposure group (100 ug/l PS-NP), and high dose exposure group (1000 ug/l 

PS-NPs) on weeks 0 (baseline body mass),1, 2, 3, and 4 of the experiment.  

  

3.2 Effect of PS-NPs on murine estrous cycle   

Estrous cycle stage was monitored using vaginal cytology for the final 15 days of the 

study period. Mice in the control group (N=10) spent an average of 2.30±2.00 days in 

proestrus, 5.50±1.84 days in estrus, 2.40±1.43 days in metestrus, and 4.80±2.20 days 

in diestrus during the 15 days of estrous cycle staging. Mice (N=10) in the low dose 

exposure group (100 µg/l PS-NPs) spent an average of 2.00±1.56 days in proestrus, 

6.20±1.69 days in estrus, 2.80±1.69 days in metestrus, and 3.90±1.59 in diestrus. Mice 

(N=10) in the high dose exposure group (1000 µg/l PS-NPs) spent an average of 
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1.9±2.02 days in proestrus, 5.80±1.93 days in estrus, 2.40±1.71 days in metestrus, and 

4.90±2.23 days in diestrus respectively. No significant change in the length of estrous 

cycle stage was observed as a result of PS-NPs exposure (P>0.05) (Figure 10). The 

effect of PS-NPs exposure on the overall length of the estrous cycle was also 

measured. There was a significant increase in overall estrous cycle length in the high 

dose PS-NPs exposure group compared to the unexposed controls (5.53±.25 days vs 

4.70±0.23 days, P=0.02) (Figure 11).

Figure 10. Effect of PS-NPs on the length of proestrus, estrus, metestrus, and 

diestrus in mice. This figure shows the average amount of time (hours) that mice in 

each exposure group spent in each estrous cycle stage over one estrous cycle during 

the final 15 days of exposure. Data is presented as mean ± SEM.   
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Figure 11. Effect of PS-NPs on overall estrous cycle length in mice. This figure 

shows the estrous cycle length in days of mice exposed to PS-NPs. Cycle stage was 

monitored by vaginal cytology for the last 15 days of the 29-day exposure period and is 

presented as mean ±SEM. *P<0.05 

 

3.3 Effect of PS-NPs on serum estradiol and progesterone levels  

Serum estradiol levels were measured by ELISA, and no significant change was 

detected in the PS-NPs exposed groups as compared to the controls (high exposure 

group vs control: mean difference=5.60 pg/ml, standard error of difference (SED)=2.95, 

P=0.09 and low exposure group vs control: mean difference=1.97 pg/ml, SED=2.92, 

P=0.52) (Figure 12). Serum progesterone levels were also quantified by ELISA, and 

there was a significant decrease in progesterone levels in the high dose exposure group 
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compared to control (mean difference=1.64 pg/ml, SED=0.64, P=0.03). However, 

chronic exposure to PS-NPs had no significant effect on progesterone levels in the low 

dose exposure group (mean difference=1.10 pg/ml, SED=0.65, P=0.12) (Figure 13).  

 

  

Figure 12. Effect of PS-NPs on serum estradiol level in female mice. This figure 

shows the change in the estradiol level as a result of PS-NPs exposure for 29 days.  
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Figure 13. Effect of PS-NPs on serum progesterone level in female mice. This 

figure shows the change in serum progesterone level as a result of PS-NPs exposure 

for 29 days. *P<0.05 

  

 3.4 Effect of chronic oral exposure to PS-NPs on ovarian follicle count and 

diameter 

The effect of PS-NPs on ovarian follicle count and diameter was investigated. On 

average there were 1080.20±58.27 primordial follicles, 411.40±21.02 primary, 

298.40±15.43 secondary, and 216.90±16.02 antral follicles in the control group. The 

low-exposure PS-NPs group had an average of 1023.00±58.27 primordial, 

408.10±21.02 primary, 284.50±15.44 secondary, and 187.50±16.02 antral follicles. 

Finally, the high-exposure PS-NPs group had an average of 1018.60±58.27 primordial, 
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383.70±21.02 primary, 271.00±15.44 secondary, and 177.10±16.02 antral follicles. 

When compared with controls, there was no statistically significant difference in the 

number of primordial follicles, primary, secondary, and antral follicles in the PS-NPs-

treated ovaries (Figure 14). 

 

Next, the diameter of follicles was measured in the three groups. Antral follicle diameter 

was significantly smaller in the PS-NPs exposure groups compared to the control group 

mean diameter (Figure 15). When compared to the controls, PS-NPs had a more 

pronounced effect on reducing antral follicle diameter in the high dose exposure group 

(p=0.001) compared to the low dose exposure group (p=0.03). 
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Figure 14. Effect of PS-NPs on Follicle Count. These figures show the primordial, 

primary, secondary, and antral follicles count of different PS-NPs exposure groups. 

Data is presented as mean and SEM.  
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Figure 15. Effect of PS-NPs on follicles size These figures show the primordial, 

primary, secondary, and antral follicle size of different PS-NPs exposure groups. Data is 

presented as mean and SEM.  *P<0.05, **P<0.001 
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4. Discussion  

4.1 Principal findings and implications 

Industrial development and anthropogenic activities have led to a dramatic expansion of 

global production chains for plastic inputs for decades (207,208). Currently, 460 million 

tons of plastic materials are produced each year, a mass projected to reach 33 billion 

tons in the next 30 years (209,210). Due to accelerated production and limited reuse, 

transformation or recycling initiatives, the world's ability to deal with excess plastic 

products has been surpassed (211,212). These problems are even more evident in 

developing countries, where plastic waste collection and treatment systems are often 

inefficient or unavailable (207). As a result, the most common destination for industrial 

and domestic plastic waste is environmental disposal, determining extensive land and 

water pollution (213,214). It is undeniable that plastic materials have a notorious 

relevance and applicability in the food, pharmaceutical, agrochemical, transport, 

construction, and electronic industries (215,216). However, the irrational disposal of 

plastic products with very low shelf life (e.g., bags, packaging and bottles) often ignores 

the negative environmental impact of these pollutants, which can persist for decades or 

hundreds of years in nature causing ecological imbalances (207,217). Plastics break 

down into MNPs which can enter the human body and systems through digestion, 

inhalation, and dermal contact and cause inflammation and immune dysfunction. NPs 

can pose a serious risk to human health due to their smaller size and larger relative 

surface area which allows for an enhanced ability to adsorb toxic chemicals and 

pathogens and a higher penetration rate into tissues. It has been shown that NPs can 

accumulate in the human heart, liver, spleen, lung, kidney, brain, stomach, large and 
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small intestine (218) and can lead to neurotoxicity, developmental toxicity, oxidative 

stress, DNA damage, and compromise the immune and circulatory systems 

(16,219,220). However, there is little known about the accumulation and distribution of 

NPs in the female reproductive system. Therefore, this study experimentally 

investigated the effect of chronic oral exposure to NPs on the female reproductive 

system using a mouse model. 

In this study we showed that PS-NPs exposure decreased antral follicle diameter, 

decreased serum progesterone levels, and increased estrous cycle length in female 

mice. Ovarian reserve, indicated by antral follicle count, is the capacity of the ovary to 

provide oocytes (egg cells) and is a key indicator for assessing female fertility. Poor 

ovarian reserve characterized by a reduction in the ovarian follicle pool is an important 

cause of infertility (221,222). It has been shown that poor ovarian reserve is associated 

with lower pregnancy rate and higher rates of pregnancy loss (223).  

A follicle is the basic structural unit of the ovary which through the process of 

folliculogenesis undergoes different morphological and functional changes from a 

primordial to ovulatory follicle, ultimately releasing an oocyte (egg) through ovulation. 

Folliculogenesis can be divided into gonadotropin-independent stages which consist of 

preantral follicles (primordial, primary, and secondary follicles) and gonadotropin-

dependent stages which include antral follicles (224). Preantral stages are 

characterized by growth and proliferation of granulosa cells. Luteinizing hormone (LH) 

stimulates internal cells to produce androgens which diffuse into the granulosa cell 

compartment via the basal lamina. Under the influence of follicle stimulating hormone 
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(FSH) granulosa cells turn androgens to estrogens, mainly estradiol, which causes 

granulosa cells to proliferate. During the antral phase, production of estradiol by 

granulosa cells increases under the combined effect of FSH and estradiol. This surge in 

estradiol is a crucial signal for the neuroendocrine system indicating that the antral 

follicle is ready for ovulation. The process of ovulation happens around day 14 in a 28-

day human reproductive cycle. An increase in estradiol increases gonadotropin 

releasing hormone (GnRH) secretion onto the pituitary gland, leading to a surge of LH. 

The LH surge triggers a series of events in the ovary, including an increase in 

intrafollicular proteolytic enzymes. These enzymes weaken the follicular wall, facilitating 

the release of the mature follicle (ovulation). Additionally, the LH surge induces 

luteinization of thecal and granulosa cells, leading to the formation of the corpus luteum. 

This structure is pivotal in synthesizing progesterone, and is crucial for maintaining 

pregnancy if fertilization occurs. Following ovulation, the ovulated follicle is guided into 

the fallopian tubes by the fimbriae. Meanwhile, the oocyte within the follicle remains 

arrested in metaphase II of meiosis II until fertilization takes place (225).  

In this study, we found chronic oral exposure to PS-NPs significantly decreased antral 

follicle diameter.  A decrease in antral follicle diameter can disrupt folliculogenesis and 

increases follicle atresia. This can lead to anovulation (absence of ovulation) as antral 

follicles are the only ovarian functional unit capable of releasing an oocyte through 

ovulation. Anovulation can cause irregular menstrual cycles; without regular release of 

an oocyte, the hormonal signals that regulate the menstrual cycle can become 

disrupted. This can result in cycles that are shorter or longer than usual, or cycles 

without ovulation altogether (226). Interestingly, in addition to the decrease in antral 
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follicle diameter, a significant increase in estrous cycle length was observed for mice 

chronically orally exposed to high dose PS-NPs which further confirms the lack or 

decreased in ovulation. In humans, chronic anovulation may have implications for long-

term health, as ovulatory cycles are important for maintaining hormonal balance and 

overall reproductive health. Women with persistent anovulation may be at increased risk 

for conditions such as polycystic ovary syndrome (PCOS), which can have various 

metabolic and reproductive implications (227). Moreover, ovulation is essential for 

fertility, as it is the process by which an oocyte is released and can be fertilized by 

sperm. Anovulation can make it difficult for women to conceive, as there is no oocyte 

available for fertilization (228). Additionally, a decrease in antral follicle diameter and 

follicle atresia can ultimately lead to a lower AFC which is a marker of ovarian reserve. 

AFC is proportionally related to the size of the ovarian reserve and has been reported to 

be lower in infertile women (229–231). Therefore, it is possible that PS-NPs exposure 

could lead to anovulation contributing to infertility, menstrual irregularities, and PCOS.  

Arrest in antral follicle development has been linked to an abnormal endocrine 

environment and insulin resistance as well. For example, in PCOS, an increase in LH 

levels relative to FSH can disrupt normal ovarian function and contribute to the arrest of 

antral follicle growth (232). Normally, FSH stimulates the growth and development of 

ovarian follicles, while LH is responsible for triggering ovulation. However, in PCOS, the 

elevated LH levels can disrupt this balance. High levels of LH can lead to premature 

luteinization of ovarian follicles, causing them to stop growing at the antral stage (232). 

There is very limited literature on the effect of NPs on LH or FSH levels in females and 

variability exists among the few studies. For example, a study by Wei and colleagues 
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reported LH surge in mice exposed to 0.1 mg/d of S-MPs for 30 days (233). In contrast, 

Liu et al reported a reduction in antral follicle count but no change in FSH or LH levels 

after chronic exposure for 35 days to 790 nm PS-NPs (182). Insulin resistance is 

another potential cause of antral follicle arrest that is also observed in PCOS and could 

be linked to NPs exposure as well. Insulin resistance in PCOS leads to elevated insulin 

levels in the blood (hyperinsulinemia) which can directly impact ovarian function by 

stimulating androgen production in the ovaries (234). Insulin stimulates thecal cells in 

the ovarian follicles to produce excess androgens, such as testosterone. Androgens can 

disrupt the normal development and maturation of ovarian follicles. For instance, the 

excess androgens produced as a result of insulin resistance can disrupt the normal 

selection and growth of dominant follicles (235). Instead of a single dominant follicle 

maturing and ovulating, multiple small follicles may continue to grow but fail to reach 

maturity. This can lead to the accumulation of small antral follicles in the ovaries, 

contributing to the characteristic appearance of "polycystic" ovaries seen on ultrasound. 

Elevated androgen levels can also lead to systemic effects, such as increased LH 

secretion from the pituitary gland (234). LH further stimulates androgen production by 

the ovaries, exacerbating the hyperandrogenic state and contributing to the arrest of 

antral follicle growth which we observed with NPs exposure as well.  

Recent literature has demonstrated the potential of NPs to induce insulin resistance. For 

example, a study conducted by Wang and colleagues where mice were orally exposed 

to PS-NPs over an 8-week period, resulting in a notable elevation in blood glucose 

levels, glucose intolerance, and oxidative stress, ultimately culminating in insulin 

resistance (236). Furthermore, another recent study revealed that mice exposed to 
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airborne nanoparticles exhibited a systemic inflammatory phenotype and manifested 

complete insulin resistance, characterized by weight loss and elevated blood glucose 

levels (237).  

Overall, our results show a reduction in antral follicle size and arrest of antral follicle 

growth. This phenomenon can potentially be attributed to NPs triggering a surge in LH 

levels and inducing insulin resistance and metabolic dysregulation. A decrease in follicle 

size and volume can lead to follicle atresia and a diminished antral follicle count over 

time or with a higher NPs exposure dose, resulting in a lower ovarian reserve and 

impaired fertility. Our study is the first to quantify follicle size and currently, there is no 

research addressing the impact of NPs on ovarian follicles. However, some literature 

has explored the effects of MPs on follicle count. For example, Liu et al showed a lower 

antral follicle count after exposing mice to 30 mg/kg body mass PS-MPs for 35 days 

(182). Wei et al reported a lower total follicle count in the 0.1 mg/d PS group compared 

to the control group (233). Additionally, a study by Haddadi et al showed that PS-MPs 

exposure for 0.1 mg/day (5 µm diameter) for 24–26 days by oral gavage perturbed 

folliculogenesis, disrupted follicles maturation, differentiation, and increased number of 

atretic and cyst follicles in Wistar rats (238).  

Furthermore, in the present study estrous cycle length was measured, and it was found 

to be significantly longer in the high dose PS-NPs exposure group compared to control. 

The estrous cycle is the reproductive cycle in rodents and is 4-5 days long. The estrous 

cycle has 4 stages: proestrus, estrus, metestrus, and diestrus. During metestrus and 

diestrus, estradiol levels are low but gradually rise. In the late afternoon of proestrus, 

heightened estradiol levels prompt a surge in GnRH release from the hypothalamus. 
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This surge, in turn, triggers the LH and FSH surge during proestrus, typically occurring 

at the onset of the active (dark) period. Ovulation typically occurs 12 to 14 hours later 

during estrus, which spans approximately 15 hours (204). On the other hand, the ~28d 

human menstrual cycle has three phases of menstrual, proliferative (follicular), and 

secretory (luteal) and ovulation occurs around day 14 of the cycle.  

Ovulation is essential for fertility because it releases an oocyte from the ovary, which is 

necessary for conception. If ovulation does not occur, the menstrual/reproductive cycle 

may become irregular which can result in infertility (239). Anovulation often occurs due 

to hormonal imbalances, such as elevated levels of androgens (male hormones) or 

disruptions in the balance of estrogen and progesterone. These imbalances can disrupt 

development and release of oocytes from the ovaries, leading to irregular menstrual 

cycles and longer cycles without ovulation (239).  

This aligns with our previous finding as reduction in antral follicle size can lead to 

anovulation which in turn can result in a longer estrous cycle further confirming that PS-

NPs could lead to irregular ovulation and contribute to infertility.  

There is currently no literature on the effect of NPs on estrous cyclicity but there are a 

few MPs studies yielding varied results. For example, Wei et al showed no significant 

effect from 5-5.9 µm PS-MPs chronic exposure on the length of the estrous cycle of 

mice (233). On the other hand, Haddadi et al showed a significant decrease in 

metestrus stage of exposed rats to 5 µm PS-MPs compared to control (238). These 

findings suggest a potential size-related effect of MNPs, with smaller particles exhibiting 

toxicity towards estrous cyclicity. 
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Moreover, we showed that PS-NPs exposure caused a significant decrease in P4 

levels. A drop in P4 has been linked to anovulation (240). In cases where a follicle fails 

to mature and release an oocyte, progesterone remains unreleased, causing the uterine 

lining to continuously thicken in response to estrogen. Over time, this thickening 

becomes unstable and eventually collapses, resulting in bleeding. This bleeding can be 

unpredictable, often characterized by heavy flow and prolonged duration. Without 

ovulation, the corpus luteum does not form, leading to low progesterone levels during 

the luteal phase (240). Anovulation can result from hormonal imbalances, or 

hypothalamic dysfunction, and can contribute to infertility and irregular periods and 

reproductive cycles. In the case of ovulation, P4 is primarily produced by the corpus 

luteum which is a structure formed in the ovary after ovulation. During the luteal phase 

of the menstrual cycle, progesterone levels rise to prepare the uterine lining for 

implantation of a fertilized egg. If there is insufficient progesterone production during this 

phase (known as a luteal phase defect), the endometrial lining may not develop 

adequately, making it difficult for a fertilized oocyte to implant and establish a pregnancy 

(241).   

Overall, a decrease in P4 levels can be suggestive of anovulation which our results 

have suggested through longer estrous cycle length and a decrease in antral follicle 

size in the PS-NPs exposure groups.  

Decrease in P4 has also been shown in previous studies; It has been suggested that 

MNPs’ additives and pollutants act as endocrine disruptors causing hormonal changes 

(31). For example, Bisphenol A (BPA) which is used primarily in the production of 

polycarbonate plastics and resins has been shown to decrease progesterone and 
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estradiol levels in humans (242). Polychlorinated biphenyls (PCBs) are other plastics 

additives and have been shown to lower progesterone levels and cause follicle atresia 

(243). Reduction in progesterone levels can contribute to irregular menstruation, 

difficulty conceiving, and pregnancy loss (244).  

Additionally, P4 has been shown to be a potent suppressor of several inflammatory 

pathways. For example, it has been shown that the withdrawal of P4 increases 

expressions of IL8 and monocyte chemoattractant protein-1 (MCP1) transcripts in 

human endometrial explants, suggesting that P4 suppresses these cytokines in the 

uterine tissues (245). Therefore, P4 stimulates anti-inflammatory responses while 

suppressing pro-inflammatory responses and reduction of P4 by PS-NPs suggest that 

NPs can contribute to inflammation and immune dysfunction which needs to be 

investigated in future studies.  

Lastly, we measured mice body mass at baseline and every week, however, no 

significant change was detected in PS-NPs exposure groups compared to the 

control.  The effect of MNPs on body mass in the literature is variable. For example, 

Shen et al showed that treatment with 1 mg/L of PS-MPs had no effect on mice body 

mass (246) but Haddadi et al showed a significant decrease in body mass gain in rats 

exposed to PS-MPs (238). These suggest that the effect of NPs on body mass is size 

dependent. Further studies are needed to investigate the effect of long-term treatment 

of PS-NPs in mice. 
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4.2 Strengths, limitations & future directions 

This study is the first to examine the effect of NPs on several female reproductive 

characteristics in mammals. It is also the first plastic toxicity study to have measured 

follicle size and overall estrous cycle length. In this study we showed that NPs exposure 

affected the estrous cycle length, progesterone levels and antral follicle size, suggesting 

the potential translocation of these particles into the ovaries. While current literature 

lacks definitive insights into the precise mechanisms governing NP transport and 

translocation within biological systems, emerging research provides intriguing insights. 

Notably, a recent ex vivo study demonstrated the transport of PS-NPs across the 

intestine of the European sea bass (fish species) (247). Additionally, aquatic studies 

have documented the translocation of microplastics from the gastrointestinal tract to 

systemic circulation and other tissues (248–250). Furthermore, Jin and colleagues have 

revealed the ability of PS-MPs to traverse the testis-blood barrier (170,251) and Hadadi 

et al and An et al have reported accumulation of PS-MPs in luteal cells of the corpus 

luteum and in the thecal cells of the follicles as well (238,252). Hence, it is plausible that 

the translocation of NPs into ovarian tissues may occur through crossing the intestinal 

barrier, entering the circulatory system, and even crossing the blood-follicular barrier. 

However, future studies should prioritize delving into the fundamental mechanisms 

governing the translocation of NPs and their subsequent effects on the female 

reproductive system.   

This study is not without its limitations. One of the limitations of our study is that mice 

were euthanized at different estrous cycle stages which could potentially serve as a 
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confounding variable in our analysis. Therefore, in future studies euthanasia should take 

place during the same estrous cycle stage. Additionally, we did not have an adequate 

sample size for subgroup analysis including controlling for the difference in estrous 

cycle stages prior to euthanasia. Therefore, a larger sample size is required for future 

studies to allow for post hoc analysis. Finally, it is noteworthy that our study utilized 

manufactured PS-NPs, which may not fully replicate the characteristics of NPs in the 

environment with regard to their size, shape, and composition. This limitation is inherent 

in toxicological investigations involving synthetic particles.   

5. Conclusion 

Overall, this study suggests that PS-NPs exposure can induce reproductive toxicity by 

disrupting folliculogenesis through decreasing antral follicle diameter (arrest in antral 

follicle growth), increasing the estrous cycle length (irregular cycles), and decreasing 

progesterone levels. Disruptions in folliculogenesis and estrous cycle length serve as 

significant indicators of anovulation, a condition associated with infertility and PCOS. 

Furthermore, the reduction in progesterone levels not only signals the possibility of 

anovulation but also acts as an indicator of heightened inflammation. This observation 

suggests a potential link between the induction of inflammation and immune responses 

in the reproductive system by NPs. This should be further investigated in future studies. 

It is imperative to acknowledge that this study constitutes a repeated dose toxicity 

assessment, specifically designed to discern potential adverse effects of NPs on the 

female reproductive system. It is conceivable that certain effects may necessitate a 

prolonged duration to fully manifest or become apparent. Therefore, our study provides 
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a basis for further exploring the molecular mechanism of NPs exposure induced 

reproductive dysfunction in female mammals.  
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