
SUPPRESSION OF SINGULARITY IN

STOCHASTIC FRACTIONAL BURGERS

EQUATIONS WITH MULTIPLICATIVE NOISE



SUPPRESSION OF SINGULARITY IN STOCHASTIC

FRACTIONAL BURGERS EQUATIONS WITH

MULTIPLICATIVE NOISE

By SADIA MASUD, M.Sc

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science

Mathematics © Copyright by Sadia Masud, May 2024

https://gs.mcmaster.ca/
http://www.mcmaster.ca/


Mathematics

MASTER OF SCIENCE (2024)

Hamilton, Ontario, Canada (McMaster University)

TITLE: SUPPRESSION OF SINGULARITY IN STOCHASTIC

FRACTIONAL BURGERS EQUATIONS WITH MUL-

TIPLICATIVE NOISE

AUTHOR: Sadia Masud

M.Sc (Mathematics),

University of Dhaka, Dhaka, Bangladesh

SUPERVISOR: Professor Bartosz Protas

NUMBER OF PAGES: xi, 70

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Abstract

Inspired by studies on the regularity of solutions to the fractional Navier-Stokes sys-

tem and the impact of noise on singularity formation in hydrodynamic models, we

investigated these issues within the framework of the fractional 1D Burgers equation.

Initially, our research concentrated on the deterministic scenario, where we conducted

precise numerical computations to understand the dynamics in both subcritical and

supercritical regimes. We utilized a pseudo-spectral approach with automated reso-

lution refinement for discretization in space combined with a hybrid Crank-Nicolson/

Runge-Kutta method for time discretization.We estimated the blow-up time by an-

alyzing the evolution of enstrophy (H1 seminorm) and the width of the analyticity

strip. Our findings in the deterministic case highlighted the interplay between dissi-

pative and nonlinear components, leading to distinct dynamics and the formation of

shocks and finite-time singularities.

In the second part of our study, we explored the fractional Burgers equation under

the influence of linear multiplicative noise. To tackle this problem, we employed the

Milstein Monte Carlo approach to approximate stochastic effects. Our statistical

analysis of stochastic solutions for various noise magnitudes showed that as noise

amplitude increases, the distribution of blow-up times becomes more non-Gaussian.

Specifically, higher noise levels result in extended mean blow-up time and increase its
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variability, indicating a regularizing effect of multiplicative noise on the solution. This

highlights the crucial role of stochastic perturbations in influencing the behavior of

singularities in such systems. Although the trends are rather weak, they nevertheless

are consistent with the predictions of the theorem of [41]. However, there is no

evidence for a complete elimination of blow-up, which is probably due to the fact

that the noise amplitudes considered were not sufficiently large. This highlights the

crucial role of stochastic perturbations in influencing the behavior of singularities in

such systems.
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Chapter 1

Introduction

The Navier-Stokes equations form the cornerstone of the mathematical modeling of

viscous, incompressible fluid flow, playing a pivotal role in a multitude of scientific and

engineering applications. These equations, which describe the evolution of velocity

and pressure fields in incompressible fluids, reflect the principles of mass and momen-

tum conservation. Despite their extensive utility, a full mathematical understanding

of these equations, especially in the three-dimensional (3D) context, is still an area

of active research. Global classical solutions are established for the Navier-Stokes

equations in two dimensions [5, 45, 15], ensuring well-defined behavior for arbitrar-

ily long times, but this certainty does not extend to 3D [34, 31]. In 3D, classical

solutions have been constructed in finite time only [35], with their long-term dynam-

ics remaining a significant unresolved issue. Although there are known global weak

solutions in 3D [10], they need not be smooth nor unique, which leaves the possibil-

ity of formation of singularities in finite time open [14, 39]. A definitive resolution

of the question whether all initial conditions yield global, smooth solutions of the

3D Navier-Stokes system remains one of the seven Millennium Prize Problems [16],
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representing a critical, yet unsolved, question in mathematics, carrying a substantial

reward for a conclusive answer.

Due to the complexities involved in studying the 3D Navier-Stokes system, we

aim to investigate the effect of multiplicative noise on the singularity formation in

solutions of the fractional Burgers equation. In mathematical terms, a singularity in

this context refers to a point in time and space where the solution to the differential

equation becomes undefined or such that it cannot satisfy the equation locally. This

typically occurs when the derivatives of the solution increase without bound as they

approach a certain point, leading to a breakdown in the classical description of the

system’s evolution. Understanding singularity formation is crucial for understanding

the limits of predictability and stability within these dynamic systems, particularly

under the influence of stochastic disturbances. This research is underpinned by the

significance of the Navier-Stokes equations in modeling fluid flow, where challenges

in fully grasping their 3D dynamics motivate the study of simpler models such as

the fractional Burgers equation. This model provides a manageable framework for

investigating the impact of stochastic forcing impact on fluid dynamics, aiming to

deepen our mathematical and physical insights into singularity formation. The be-

havior of this model hinges on the fractional dissipation exponent, α, which controls

how dissipation, which has a regularizing effect, acts on different length scales. When

α ≥ 1
2

—– in the critical and subcritical regimes —– the system maintains global

well-posedness. In contrast, in the supercritical regime where α < 1
2
, the system

exhibits a finite-time blow-up [27]. This situation mirrors some aspects of the 3D

Navier-Stokes system, which also remains globally well-posed with fractional dissipa-

tion for α ≥ 5
4

[26]. As expected for α = 1, the fractional Burgers equation becomes

2
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the well-known viscous Burgers equation, a widely studied model for one-dimensional

fluid flow [4]. Further, the fractional Burgers equation has been a subject of interest

in turbulence-related studies [8]. To date, significant attention has been given to the

complex interaction between stochastic forcing and the behavior of hydrodynamic

models, particularly in relation to singularity formation. A crucial aspect of this re-

search focuses on the potential of a stochastic input to excite the systems, through

its interaction with the nonlinearity and dissipation, possibly accelerating, delaying,

or completely averting singularities [7, 17, 13, 1, 2]. Key contributions in this do-

main have been the restoration of global well-posedness in systems that otherwise

exhibit finite-time blow-up in the deterministic framework, using stochastic excita-

tion [40, 17, 13, 28]. This is notably evident in the case of the stochastically forced

Burgers equation, which has been instrumental in advancing the understanding of

3D turbulence, particularly in its connection to the Kardar–Parisi–Zhang equation

[22]. The extreme behavior of the solution is measured through the growth of various

Sobolev norms of the solutions and their connection to the deterministic regime, as

explored in references [3] and [36]. Additionally, issues surrounding the formation

of singularities in the dispersive Burgers equation were examined through numerical

studies, as detailed in reference [28]. Research in this area also encompasses the dy-

namics of statistical equilibria in turbulent flows, focusing on how stochastic forcing

influences the scaling of energy spectra, intermittency of structure functions, and the

extreme behavior of these systems [11, 12, 50, 19]. These investigations have not only

deepened the understanding of fluid dynamics under stochastic conditions but also

opened new pathways in the study of intricate hydrodynamic systems.

3
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Investigating the effects of noise on general stochastic partial differential equa-

tions (SPDEs) necessitates a clear differentiation between additive and multiplicative

noise types. The effect of additive noise has been thoroughly explored, with signif-

icant progress made in the analysis of weak convergence and the identification of

random attractors in SPDEs subjected to this type of noise [47, 18, 48]. Additionally,

advancements have been made in developing numerical approximation methods for

SPDEs driven by additive noise, achieving higher orders of convergence compared

to traditional approaches [49, 24]. On the other hand, our understanding of SPDEs

affected by multiplicative noise is still evolving. Multiplicative noise refers to random

perturbations in a system where the intensity of the noise depends on the state of the

system itself, often leading to more complex and varied behavior compared to additive

noise. Research indicates that in SPDEs, the presence of linear multiplicative noise

plays a crucial role in preventing the formation of finite-time singularities within the

supercritical regime [41]. Studies in this field have mainly focused on overcoming the

challenges associated with numerically approximating SPDEs under the influence of

multiplicative noise, highlighting the urgent need for further exploration in this area

[43, 25].

Building on the foundational understanding of noise effects in general SPDEs, re-

searchers have extended their investigations into more specific domains, such as the

study of additive and multiplicative noise within the context of the fractional Burgers

equation. The insights from general SPDEs with additive noise have informed nu-

merical schemes [38] and theoretical analyses [40, 21] aiming to capture the behavior

of solutions under stochastic activation, improving our understanding of dissipation

and diffusion mechanisms in the presence of randomness. Conversely, consideration

4
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of multiplicative noise has been a focal point for advancing our comprehension of how

intrinsic variability within the system or its environment can lead to fundamentally

different outcomes compared to those driven by additive noise. The existence and

uniqueness of a mild global solution to the Cauchy problem for the stochastic frac-

tional Burgers equation on an interval, subjected to multiplicative space-time white

noise and periodic boundary conditions, were thoroughly investigated by Brzeźniak

and Debbi [9]. In reference [41], the authors examined how properties of solutions to

the fractional Burgers equation vary depending on the noise type. Specifically, they

demonstrated that when multiplicative noise of a certain structure is present, it pre-

vents the formation of finite-time singularities in the supercritical regime. However,

the regularizing effect of multiplicative noise has been numerically validated in other

equations [13], suggesting a broader potential for its application in mitigating singu-

lar behavior in complex systems. This potential for multiplicative noise to regularize

singularities, especially when its effect is less straightforward compared to additive

noise, underscores the importance of further study in this area.

In the numerical exploration of SDEs that characterize the intricate dynamics

of singularity formation in fractional Burgers equations with multiplicative noise,

selecting an appropriate numerical scheme is crucial. The literature reveals a spec-

trum of numerical methods tailored to these equations, from the foundational Euler-

Maruyama scheme to the more sophisticated Milstein and pseudo-spectral methods.

While the Euler-Maruyama method is known for its simplicity and broad applicability,

as evidenced in the seminal works [29, 23], it often falls short in accurately capturing

the detailed behaviors of nonlinear systems influenced by multiplicative noise [29, 30].

On the other hand, the Milstein method, recognized for its enhanced convergence and

5
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accuracy in dealing with SDEs featuring multiplicative noise [33, 20, 25, 46], is partic-

ularly promising for the objectives of the present study. Coupled with pseudo-spectral

methods, which efficiently manage spatial discretization, the Milstein method is adept

at accurately simulating the stochastic dynamics that underpin singularity formation.

This study primarily aims to computationally verify the regularization effect of

linear multiplicative noise on singularity formation in the stochastic fractional Burger

equation, as studied in reference [41]. Employing the Milstein pseudo-spectral method

as our principal numerical approach not only leverages its enhanced accuracy and con-

vergence but also optimizes the handling of discretization with respect to noise, thus

allowing for precise simulation of the complex dynamics at play. This strategic choice

of methodology is central to addressing the key question of our research: the impact of

multiplicative noise in modulating the behavior of singularities within such stochastic

systems. To fulfill our research objectives, Chapter 2 delineates our primary prob-

lems—the deterministic and stochastic fractional Burgers equations. Here, we recall

some established results and introduce two critical quantities essential for analyzing

singularity formation. In Chapter 3, we detail the numerical methods applied to solve

these equations, validate the numerical scheme for the stochastic system and outline

our approach for calculating estimates of blow-up times. Chapter 4 is dedicated to

presenting the results derived from our numerical analyses. Finally, in Chapter 5, we

summarize the key findings and discuss directions for future research.

Our findings reveal some insights into both deterministic and stochastic cases

of the fractional Burgers equation. In the deterministic case, we observed distinct

dynamics in both physical and Fourier spaces. The results highlighted the interplay

between dissipative and nonlinear elements, where the dominance of the nonlinear

6
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term led to the intensification of solution fronts, and the dissipative term contributed

to the eventual flattening of these fronts. This duality is particularly evident when

comparing the subcritical regime with the supercritical regime, with the formation of

finite-time singularities in the form of shocks evident in the latter.

In the stochastic analysis, the introduction of multiplicative noise altered the

system’s behavior. Increased noise amplitude ρ ∈ R demonstrated some regulariz-

ing effect on the solution, which delayed the blow-up and increased its variability.

Specifically, as ρ increased, the mean blow-up time was extended, and its distribution

became increasingly skewed and non-Gaussian. This indicates that noise introduces a

stabilizing influence, delaying the onset of singularities that are otherwise observed in

the deterministic case. These findings underscore the critical role of noise in modulat-

ing the dynamics of the system, providing a detailed understanding of how stochastic

perturbations can influence the evolution of solutions.

These insights provide an improved understanding of the system’s behavior under

different conditions, establishing a crucial link between deterministic and stochastic

frameworks. By comparing the deterministic and stochastic cases, we gain a deeper

appreciation of how noise can regularize and modify the evolution of solutions, leading

to new perspectives on the control and prediction of singularity formation in nonlinear

partial differential equations.

7
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Chapter 2

Fractional Burgers Equation

In this chapter, we introduce the deterministic version of the fractional Burgers equa-

tion as a basis for comparing it with its stochastic counterpart, which incorporates

multiplicative noise. This comparative analysis aims to provide a comprehensive un-

derstanding of both systems. Furthermore, we will delve into two critical measures

— the width of analyticity strip and enstrophy, to investigate the regularity of the

solution.

Before proceeding further, it is necessary to define the functional spaces that are

instrumental in our analysis. Before proceeding further, it is necessary to define the

functional spaces that are instrumental in our analysis.

Definition 2.0.1. Lp space: This space is defined over a measure space (Ω,F , µ). For

1 ≤ p < ∞, it consists of equivalence classes of all measurable functions f : Ω → R

(or C) such that the integral of the p-th power of their absolute values is finite. This

8
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is expressed as:

Lp(Ω) :=

{
f : Ω→ R measurable |

∫
Ω

|f(x)|p dµ(x) <∞
}

(2.0.1)

Here, Ω is the domain over which functions are defined and can be any set equipped

with a measure µ, where functions f : Ω→ R or C are identified as measurable. F is

the σ-algebra of measurable subsets of Ω, a structured collection that includes Ω itself

and the empty set, and is closed under complementation and countable unions. In

equation (2.0.1), µ is a measure defined on the σ-algebra F , assigning a non-negative

extended real number to subsets in F according to the axioms of non-negativity, null

empty set, and countable additivity.

The norm in the space Lp is defined as,

‖f‖p =

(∫
Ω

|f(x)|p dµ(x)

) 1
p

(2.0.2)

Definition 2.0.2. L2 space: The space L2(Ω,F , µ) is of special case of Lp space when

p = 2,

L2(Ω) :=

{
f : Ω→ R (or C) measurable |

∫
Ω

|f(x)|2 dµ(x) <∞
}

(2.0.3)

This space is a Hilbert space, which means it is equipped with an inner product defined

as follows:

〈f, g〉 :=

∫
Ω

f(x)g(x) dµ(x) (2.0.4)

where g(x) denotes the complex conjugate of g(x). The norm induced by this inner

9
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product is given by:

‖f‖2 =

(∫
Ω

|f(x)|2 dµ(x)

) 1
2

. (2.0.5)

This is a special case of (2.0.2) which measures the ”energy” of the function across

the domain Ω.

Definition 2.0.3. Fourier coefficients: For a function v defined on the interval

[0, 2π], the Fourier coefficients v̂k are given by

v̂k =
1

2π

∫ 2π

0

v(x)e−ikx dx, k ∈ Z

where dx is the Lebesgue measure restricted to [0, 2π], and the function v can be

expressed as a Fourier series in terms of its Fourier coefficients:

v(x) =
∞∑

k=−∞

v̂ke
ikx, x ∈ [0, 2π].

Definition 2.0.4. Hs space: The Sobolev space Hs(0, 2π) with s ∈ [0,∞) is defined

as

Hs(0, 2π) :=

v ∈ L2([0, 2π]) : ‖v‖Hs(0,2π) =

(
∞∑

k=−∞

(1 + |k|2)s|v̂k|2
) 1

2

<∞


(2.0.6)

In this expression, s represents the degree of smoothness (differentiability).

Note that this definition is equivalent to standard definitions by basic properties

of the Laplacian.

10
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2.1 Deterministic Case of Fractional Burgers Equa-

tion

Given a sufficiently smooth function v : [0, 2π] → R, the Fourier transform of the

fractional Laplacian (−∆)α applied to v is represented as follows:

̂(−∆)αvk = |k|2αv̂k, (2.1.1)

where [̂·]k refers to Fourier coefficients with wavenumber k ∈ Z. Here α ∈ (0,∞]

The 1D fractional Burgers equation has the form:

∂u

∂t
+

1

2

∂

∂x
u2 + ν(−∆)αu = 0 for (t, x) ∈ (0, T ]× [0, 2π] (2.1a)

and is considered subject to periodic boundary conditions:

u(t, 0) = u(t, 2π) for t ∈ (0, T ], (2.1b)

and an initial condition:

u(0, x) = g(x) for x ∈ [0, 2π]. (2.1c)

We focus on periodic solutions for several reasons. Periodic boundary conditions

simplify the analysis and numerical simulations by avoiding edge effects that can

complicate the solution behavior near boundaries. Moreover, periodic solutions are

often used in modeling physical phenomena with inherent periodicity or in cases where

the domain can be conceptually extended to infinity by repeating the pattern. This

11
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approach ensures that the solution remains consistent and well-defined over the entire

spatial domain [0, 2π]. In this equation, u represents the dependent variable, t denotes

time, and x represents the spatial variable. The parameter ν represents the viscosity,

and α represents the order of the fractional Laplacian (−∆)α where ∆ = ∂2

∂x2
. The

function g ∈ H1(0, 2π) is the initial condition of u at t = 0, where H1(0, 2π) is

the Sobolev space of square-integrable periodic functions on (0, 2π) such that their

first weak derivatives are also square-integrable. The periodic boundary conditions

in Equation (2.1b) indicate that values of the solution u at the boundaries x = 0 and

x = 2π are equal for all time t in the interval (0, T ]. The solution u(t, x) preserves

the mean value of the initial condition over the spatial domain. This conservation is

derived below:

∂

∂t

∫ 2π

0

u(t, x) dx = −1

2

∫ 2π

0

∂

∂x
u(t, x)2 dx−

∫ 2π

0

ν(−∆)αu(t, x) dx. (2.1.2)

For the first term, using integration by parts:

−1

2

∫ 2π

0

∂

∂x
u(t, x)2 dx = −1

2

[
u(t, 2π)2 − u(t, 0)2

]
= 0, (2.1.3)

due to periodicity of u(t, x). For second term, we consider:

−
∫ 2π

0

ν(−∆)αu(t, x) dx = −
∫ 2π

0

ν

(
− ∂2

∂x2

)α
u(t, x) dx

=

∫ 2π

0

ν
∂

∂x

(
∂

∂x

)α−1

u(t, x) dx = 0.

(2.1.4)
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Combining both terms, we get:

d

dt

∫ 2π

0

u(t, x) dx = 0. (2.1.5)

This integral result is pivotal because it establishes that the initial average state

of the system is zero. Also, it ensures that any changes in the system’s state over time

are purely redistributive in nature, and maintaining the initial condition’s symmetry

throughout the temporal evolution of the model. Additionally, T > 0 represents the

length of the time window.

The key results, addressing questions about the existence of solutions for system

(2.1) are established in [27, Theorem 1] and briefly summarized below.

Theorem 2.1.1. (Subcritical Case)

Assume that α > 1
2

and the initial data g ∈ Hs(0, 2π), where s > 3
2
− 2α and

s ≥ 0. Then, there exists a unique global solution u of problem (2.1) that belongs to

C((0,∞);Hs(0, 2π)) and is real analytic in x for t > 0.

Theorem 2.1.2. (Critical Case)

Assume that α = 1
2

and g ∈ Hs(0, 2π), where s > 1
2
. Then, there exists a global

solution u of system (2.1) that belongs to C((0,∞);Hs(0, 2π)) ∩ C((0,∞);C(0,∞))

and is real analytic in x for any t > 0.

Theorem 2.1.3. (Supercritical Case)

Assume that 0 < α < 1
2
. Then, there exists a smooth periodic initial data g ∈

Hs(0, 2π) such that the solution u of (2.1) blows up in Hs(0, 2π) for each s > 3
2
− 2α

in a finite time.

13
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In the supercritical regime, solutions of system (2.1) are analytic until the blow-up

time. Assuming g ∈ H1(0, 2π), Theorem 2.1.3 asserts that solutions blow up for some

initial data when 1
4
< α < 1

2
.

However, for α ∈ [0, 1
4
], the situation is more complex for several reasons. Firstly,

if 0 < α ≤ 1
4

and g ∈ H1(0, 2π), Theorem 2.1.3 does not provide conclusive results.

Secondly, numerical findings indicate that solutions of system (2.1) may still exhibit

blow-up for values of α in (0, 1
4
) with a specific initial condition g ∈ H1(0, 2π) [38].

Lastly, a conjecture proposed in [49] suggests that if 0 ≤ α ≤ 1
4
, system (2.1)

might not be locally well-posed in H1(0, 2π) for certain initial data. This implies that

the condition for parameter values s > 3
2
− 2α in Theorem 2.1.3 might not be space ,

as blow-up could potentially occur outside that condition under specific initial data,

for example, when s = 1, 0 < α ≤ 1
4
, and g(x) = sin(x).

2.2 Stochastic Fractional Burgers Equation with

Multiplicative Noise

We consider the following stochastic version of the fractional Burgers system (2.1):

∂u

∂t
+

1

2

∂

∂x
u2 + ν(−∆)αu = G(u)

dW (t, x)

dt
for (t, x) ∈ (0, T ]× [0, 2π], (2.4a)

subject to periodic boundary conditions:

u(t, 0) = u(t, 2π) for t ∈ (0, T ], (2.4b)

14
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and an initial condition:

u(0, x) = g(x) for x ∈ [0, 2π]. (2.4c)

Note that at any point (t, x) ∈ (0, T ] × [0, 2π], our solution is a random variable

u = u(t, x;ω), where ω ∈ Ω, for some probability space, Ω. It is important to mention

that in this context, α is in the interval (1/4, 1/2) for the supercritical case and [1/2, 1)

for the subcritical case. Here the right hand side of (2.4a) is the noise term which

can be additive or multiplicative in nature. Here, G is a measurable mapping from

H to L2(K,H) (i.e., all Hilbert–Schmidt operators from K to H), where K and H

are separable Hilbert space. In this analysis, we define the noise function G(u) in the

context of multiplicative noise as G(u) = ρu, where ρ ∈ R represents the magnitude

of the noise. Conversely, for the additive noise scenario, the noise function is defined

simply as G(u) = ρ, representing a constant noise term independent of u [38]. Let us

define the Wiener process as:

W (t, x) =
N∑
k=1

γkβk(t)χk(x), (2.5)

where {βk(t)}Nk=1 are independent and identically distributed (i.i.d.) standard Brow-

nian motions on the filtered probability space (Ω,F ,Ft ∈ [0, T ], P ) [32], in which

F is the sigma-field representing the total information (set of all events) at the end

of the observation period, and Ft represents the information available up to time

t, evolving as time progresses within the filtration (Ft)t∈[0,T ] , {χk}k∈N are elements

of a trigonometric orthonormal basis of L2([0, 2π]), and {γk}k∈N are scaling coeffi-

cients. We define the basis functions as follows: set χ0(x) = 1, for even indices
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χ2k(x) =
√

2 cos(kx), and for odd indices χ2k−1(x) =
√

2 sin(kx), where x ∈ [0, 2π]

and k ranges over positive integers. For the purpose of analysis, we employ a finite

number N of these Fourier modes in ansatz (2.5), which corresponds to the number

of Fourier components used for spatial discretization of system (2.4). This alignment

ensures that the noise influences each Fourier component. Additionally, the scaling

coefficients are selected to ensure `2-summability

γ0 = 0,

γ2k−1 = γ2k =
1

kθ
, k > 0, θ >

1

2
,

(2.6)

so that W (t, x) has finite variance in the limit N →∞. This definition of the Wiener

process W (t) — ensures that the noise is a square-integrable function in the L2 space

for all times. Specifically, this choice of W (t) allows us to assert that the enstrophy

is a well defined quantity particularly when α > 1
2
. Moreover, with W (t) satisfying

these conditions, the mild solution of the system (2.4), as described in equation (2.8),

is well-defined in the H1 space. This setting is particularly important as it affects the

solution’s regularity. To define solutions of the stochastic problem more precisely, it

is necessary to rewrite system (2.4) in the corresponding differential form:

du =

(
−1

2

∂x

∂u2
− ν(−∆)αu

)
dt+G(u)dW for (t, x) ∈ (0, T ]× [0, 2π], (2.7a)

subject to periodic boundary conditions:

u(t, 0) = u(t, 2π) for t ∈ (0, T ], (2.7b)
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and an initial condition:

u(0, x) = g(x) for x ∈ [0, 2π]. (2.7c)

Definition 2.2.1. [41] Fix a stochastic basis (Ω,F , P, (Ft),W ):

(i) Let τ be an (Ft)-stopping time, and u = (u(t))t≥0 is a predictable Hs0-valued

process, see section A.2.1. Here τ is a random variable that takes values in the non-

negative real numbers [0,∞). It has the property that for each time t, the event

{τ ≤ t} belongs to the sigma-algebra Ft. This defines τ as the F- predictable random

time at which certain conditions of a stochastic process may cease to hold, rendering

the solution to a differential equation potentially undefined or invalid beyond this time.

And let u be a predictable process that takes values in the Sobolev space Hs0, s0 ≥ 1.

A process is termed predictable if the value of u at any time t can be determined using

the information available up to just before t i.e., it is measurable with respect to the

sigma-algebra ({Fs}0≤s<t). Hence (u, τ) is the local strong solution of (2.2), such that:

• u(· ∧ τ) ∈ L2(Ω;L2
loc([0,∞);Hs0+α

2 ))

• u(· ∧ τ) ∈ C([0,∞);Hs0
2 ) P -a.s. (Here, P -a.s. stands for ”almost surely” with

respect to the probability measure P , meaning this property holds with probability

1 i.e., except on a set of measure zero.)

• For every t ≥ 0, φ ∈
⋂∞
l=1H

l
2:

〈
u(t∧τ), φ

〉
+

∫ t∧τ

0

〈
u
∂u

∂x
−(−∆)αu, φ

〉
dt =

〈
u0, φ

〉
+

∫ t∧τ

0

G(u)dW ·φdt P -a.s.
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The space L2
loc([0,∞);Hs0+α

2 ) denotes the set of functions that are locally (in

time) square-integrable in Hs0+α
2 .

(ii) We say that local pathwise uniqueness holds if, given any pair (u1, τ 1), (u2, τ 2)

of local strong solutions of equation (2.2) the specified equation with the same initial

condition, the following statement holds truecondition is satisfied:

P [u1(t) = u2(t) for all t ∈ [0, τ 1 ∧ τ 2]] = 1.

(iii) A maximal strong solution of (2.2) is a pair (uRR∈N, (τR)R∈N) such that for each

R ∈ N:

• (uR, τR) is a local strong solution

• τR is increasing such that T∞ := limR→∞ τR > 0 P -a.s.

• supt∈[0,τR] |(A
s0
2 uR(t)| ≥ R P -a.s. on the set [T∞ <∞].

where A := ν(−∆)α is associated with periodic boundary conditions. Then, the

relevant concept of a solution is the mild solution defined as:

u(t) = e−tAg − 1

2

∫ t

0

e−(t−s)A ∂

∂x
u2ds+

∫ t

0

G(u)e−(t−s)AdW (s), (2.8)

where the semigroup e−tA is defined in terms of its action on the elements of the basis

{φk}k∈Z = {eikx}k∈Z of L2([0, 2π]) as e−tAeikx = e−νt|k|
2α
eikx, while the second integral

is understood in Itô’s sense ,cf. Appendix A.

The existence of such solutions is then asserted by the following theorem, adapted

from [41, Theorem 5.5]. It is assumed that the operator G satisfies two key conditions

for 0 < α < 1 and s0 ≥ 1:
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(G.1) For all s ∈ [s0, s0 + 1], G is an operator from Hs to L2(K,Hs), and there exists

a locally bounded function σ1 on R such that for all v ∈ Hs, ‖A s
2G(v)‖L2(K,H) ≤

σ1(|A
s0
2 v|)(|A s

2v|+ 1).

(G.2) There exists locally bounded functions σ2, σ3 on R such that for v1, v2 ∈ Hs0 ,

‖G(v1)−G(v2)‖L2(K,H) ≤ (σ2(|A
s0
2 v1|) + σ3(|A

s0
2 v2|))|v1 − v2|.

Theorem 2.2.2 ([41]). Fix 0 < α < 1. Assume that G(u) satisfies (G.1) and (G.2)

with s0 ≥
(

3
2
− α

)
∨ 1. Assume that u0 is an Hs0

2 -valued, F0-measurable random

variable with E|A
s0
2 u0|2 <∞, where E denotes the expectation of the random variable

which, in this case, is the squared norm of A
s0
2 u0.

(i) Then local pathwise uniqueness holds, and there exists a maximal strong solution

(u, (τR)R∈N) of (2.4).

(ii) Moreover, for G(u) fi = δ1iρu, where, {fi} is an orthonormal basis on K, there

exists a positive deterministic function κ : [1,∞)× (0,∞)→ (0,∞) defined by

κ(R, ρ2) :=

(
ρ2

4C1

)2δ(s0)
1

R
, (2.9)

where C1 is a constant and δ := δ(s) = ε
s+α−q , for q > 1 and ε > 0 satisfying

lim
ρ2→∞

κ(R, ρ2) =∞, (2.10)

such that whenever |A
s0
2 u0|2 ≤ κ(R, ρ2) P -a.s., then

P (T∞ =∞) ≥ 1− 1

R1/4
(2.11)
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and

P
(

lim
t→∞
|A

s0
2 u(t)| = 0

)
≥ 1− 1

R1/8
. (2.12)

Hence for multiplicative noise defined in Theorem 2.2.2(ii), (2.8) becomes,

u(t) = e−tAg − 1

2

∫ t

0

e−(t−s)A ∂

∂x
u2ds+

∫ t

0

ρue−(t−s)AdW (s), (2.13)

2.2.1 The Limiting Cases

Theorem 2.2.2 asserts that, under the condition that s0 ≥ 1 and that G(u) = ρu,

the stochastic differential equation (2.7) admits a unique local solution that depends

continuously on the initial conditions, almost surely. Additionally, the theorem es-

tablishes the existence of a maximal strong solution, indicating that there is a largest

possible interval of existence—–potentially infinite—–over which the solution is well-

defined. The solution of the stochastic problem (2.13) is a result of two inputs, namely,

the initial condition g and the stochastic actuation with the magnitude controlled by

the parameter ρ. Informally speaking, the theorem asserts that the probability of

the solutions of problem (2.13) existing globally in time increases as the effect of the

stochastic excitation becomes more significant relative to the ”size” of the initial data,

with the balance between the two parameters represented by the function κ(R, ρ2) in

(2.9) The implication that limt→∞ |As0/2u(t)| = 0 is highly probable suggests that

the system is likely to stabilize to a state of minimal energy or fluctuation over time,

assuming the initial conditions and noise intensity adhere to the bounds prescribed

by κ(R, ρ2).

To explore implications of this theorem for blow-up phenomena under different

conditions, we analyze the behavior of the function κ(R, ρ2). Given Theorem 2.3.1, we
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have s0 >
3
2
− 2α and for our problem we have s0 = 1 [38]. Then, in the supercritical

regime, i.e., for α ∈ (0, 1
2
), we select α > 1

4
. This also confirms [49] that α should

be α > 1
4

to ensure the local well-posedness in H1 for certain initial data in the

deterministic case.

To fix attention, consider the case where α = 3
8

and s0 = 1. This gives δ(s0) > 0

for q > 1 and ε > 0 [41], which generally occurs as long as q falls within the range

1 < q < 1 + α. Hence the following scenarios may occur:

1. For a fixed ρ and R→ 0:

• Significant changes occur in the behavior of the function κ(R, ρ2) that

sets the threshold for the squared norm |As0/2u0|2 of the initial conditions.

Specifically, κ(R, ρ2) increases without bound, suggesting that the restric-

tions on the initial conditions necessary to guarantee global existence and

the decay property of the solution become less stringent. Practically, this

implies that almost any initial condition could meet the requirement as R

decreases.

• In terms of the probability of global existence, denoted by P(T∞ = ∞) ≥

1 − 1
R1/4 , it becomes undefined as R vanishes. This trend suggests a di-

minished confidence in the solution’s persistence, indicating an increased

likelihood of the solution blowing up or ceasing to exist within a finite

time, particularly under very small R values.

2. For a fixed ρ and R→∞:

• The upper bound set by κ(R, ρ2) on |As0/2u0|2 becomes increasingly re-

strictive. This means that the initial conditions must be progressively
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closer to zero for the bounds set by κ(R, ρ2) to be satisfied. Practically,

this restricts the set of initial conditions that guarantee global existence

and the decay property of the solution as stipulated by the theorem.

• The probability that the solution exists globally in time, P(T∞ = ∞), is

given by 1− 1
R1/4 . As R grows, this probability approaches 1, indicating an

increased confidence in the solution persisting indefinitely. This suggests a

stronger likelihood of stability and a reduced chance of blow-up phenom-

ena as R becomes significantly large. In particular, with the stochastic

actuation of finite magnitude ρ > 0 and with the initial data of vanishing

”size”, solutions of problem (2.13) exist globally in time almost surely.

3. For a fixed R and ρ→∞:

• The upper bound κ(R, ρ2) on |As0/2u0|2 becomes large, effectively becom-

ing unbounded. This indicates that the initial conditions could be increas-

ingly large while still satisfying the requirements set by κ(R, ρ2) for global

existence and decay of the solution. The practical implication is that the

system can start from a broader range of initial states and still exhibit

controlled behavior according to the theorem.

• The practical effect of an unbounded κ suggests that there are fewer con-

straints on achieving global existence. In other words, as the noise magni-

tude increases, a given probability P(T∞ = ∞) of global existence can be

achieved for initial data of increasing ”size”.

In summary, while decreasing R relaxes the constraints on initial conditions, it

also reduces the probability of global existence. Conversely, increasing R enhances the
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probability of a global existence of solutions but necessitates smaller initial conditions.

Furthermore, an increase in ρ directly contributes to the system’s ability to handle

larger initial conditions, thus reducing the likelihood or delaying the onset of blow-up.

We define E0 := ‖u0‖H1 , which is subject to the inequality:

E0 < κ(R, ρ2) ≈ O

(
1

R

)
as R→∞,

indicating that as R increases, the upper bound on E0 becomes more stringent, ap-

proaching zero.

Upon replacing R with E−1
0 , we observe:

P (T∞ =∞) ≥ 1− E1/4
0 , for E0 � 1,

This substitution simplifies the analysis by directly relating E0, a measure of the ”size”

of the initial condition, to the probability of the solution existing globally.

Objective of this Work: The primary goal of this work is to illustrate these theo-

retical predictions numerically. By conducting comprehensive numerical experiments,

we aim to quantify the effects of varying R and ρ on the global existence of solutions.

Since in this work we considered, a fixed initial data g(x) = sin(x) this allows us to

explore how changes in ρ impact the persistence of solutions. This numerical analysis

not only serves to validate the theoretical insights but also provides practical guidance

on parameter selection for ensuring desired system behaviors in stochastic differential

equations.
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2.3 Diagnostic Quantities

Two quantities that will be used to characterize the behavior of the solutions, namely

whether or not these solutions blow up, are the width of analyticity strip, δ and the

enstrophy, E .

Firstly, in case of deterministic system (2.1), the enstrophy, denoted E(t), is com-

puted as follows:

E(t) := π

∫ 2π

0

∣∣∣∣∂u(t, x)

∂x

∣∣∣∣2 dx, (2.13)

For the stochastic system (2.4) the enstrophy, denoted as Eω(t), is computed pathwise,

that is for each ω ∈ Ω

Eω(t) := π

∫ 2π

0

∣∣∣∣∂u(t, x;ω)

∂x

∣∣∣∣2 dx, ω ∈ Ω (2.14)

This expression remains well-defined because the function u(t, ·;ω) belongs to the

space H1([0, 2π]) for all time t ∈ [0, τ ], as established in Theorem 2.2.2. On the other

hand, the blowup of an individual realization of the stochastic process u(t, x, ω) is

signalled by an unbounded growth of Eω(t) for t > τ.

Using (2.14), we introduce the ”stopping time”, denoted as τ̃R, and the corre-

sponding ”maximum existence time,” denoted T∞. These are defined similarly to the

quantities introduced in Definition 2.2.1 and expressed as follows [41]:

τ̃R(ω) := inf{t > 0 : Eω(t) ≥ R}, R ∈ N, (2.15)
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T∞ := lim
R→∞

τ̃R (2.16)

It is important to note that when dealing with zero-mean functions the space

H1([0, 2π]), the expression for enstrophy in (2.13) is equivalent to the H1 norm. As

a result, the maximum existence time T∞ defined in Definition 2.2.1 aligns with the

concept introduced in (2.16). This allows us to compute T∞ by means of (2.15).

Furthermore, it is worth mentioning that the maximum existence time in the

context of system (2.4) is as a random variable, characterized by a specific distribution

T∞ = T∞(ω), ω ∈ Ω. The determination of this distribution forms an integral part

of solving the problem at hand.

Secondly, the width of the analyticity strip at a time t, δ(t), is defined as the

distance from the nearest complex singularity in the complex extension of the solution

at the time t to the real axis. To understand the importance of this quantity, let us

recall the following theorem from [44]:

Theorem 2.3.1. (Paley-Weiner Theorem) Let u ∈ L2(R) have Fourier Transform

F [u] = û. Suppose there exist δ, δ1 > 0 such that u can be extended to an analytic

function in the complex strip | Im(z)| < δ with ‖u(· + iy)‖2 ≤ δ1 uniformly for all

y ∈ (−δ, δ), where ‖u(·+iy)‖2 ≤ δ1 is the L2 norm along the horizontal line Im(z) = y.

Then uδ ∈ L2(R), where uδ(k) = eδ|k|û(k) for k ∈ R. The converse also holds.

The results of Theorem 2.3.1 also extend to functions defined on periodic domains.

The maximum value of δ in Theorem 2.3.1 represnts the width of the analyticity strip

of u(t, x). In the context of problem (2.1), a solution loses its analyticity when the

singularities, present in its extension into the complex plane collapse onto the x-axis,

leading to the vanishing of the width of the analyticity strip δ(t). In other words,
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the solution experiences a blow-up. As solutions of the stochastic system (2.4) are

generally not analytic in x, the width of the analyticity strip cannot be used to

characterize their regularity.
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Chapter 3

Numerical Approach

In this chapter we delve into the numerical methodologies employed to explore the

properties of the fractional Burgers equation in both the deterministic and stochastic

setting. The chapter begins by introducing the solution approach for the deterministic

model, focusing on numerical methods that replicate theoretical behaviors accurately

in the absence of stochastic actuation. It then progresses to include stochastic compo-

nents that reflect the uncertainty of the systems. The deterministic analysis provides

a foundational understanding, establishing a baseline against which the effects of

stochastic variables are evaluated.
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3.1 Deterministic Fractional Burgers Equation

In the numerical solution of system (2.1), we utilized the Fourier-Galerkin pseudo-

spectral method suitable for the periodic boundary conditions. The solution is ap-

proximated by a finite sum of Fourier modes:

uN(t, x) =

N/2∑
k=−N/2+1

ûk(t)e
ikx, (3.1)

where ûk(t) represents the Fourier coefficients of u(t, x), computed as:

ûk(t) =
1

2π

∫ 2π

0

u(t, x)e−ikxdx. (3.2)

For an efficient computation of the Fourier coefficients, N = 2n (where n ∈ N)

is chosen to be a power of 2. The solutions are real-valued functions, so only half

of the Fourier modes are computed due to the conjugate symmetry, i.e., û−k = ûk,

k ∈ Z. Additionally, we ensure that û0(t) = 0 at all times to maintain the zero-mean

property (cf. equation (2.1.1)). Substituting equation (3.1) into system (2.1) yields

an ODE system:

dû

dt
= r(û(t)) + Aû(t), (3.3a)

û(0) = ĝ, (3.3b)

where û(t) and ĝ are vectors of the Fourier coefficients at time t and the initial

condition, respectively. The operators r and A map from CN/2 to CN/2, with their
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k-th components defined as:

[r(û(t))]k = −1

2
ik[û2(t)]k,

[Aû(t)]k = −κk2ûk(t),

for k = 1, . . . , N/2, where û2(t) denotes the Fourier coefficients of the function u2(t, x).

The Fast Fourier Transform (FFT) is employed for the computation of Fourier coef-

ficients, and the ”3/2 rule” of dealiasing is employed in spectral methods to prevent

aliasing errors during nonlinear operations, such as convolutions. Initially, the spec-

tral representation of a function is padded to extend the number of modes to 3/2

times the original number, effectively preventing high-frequency components from

wrapping around and causing aliasing. Nonlinear operations are performed in this

extended spectral space, and the result is then truncated back to the original number

of modes, eliminating potential aliasing errors. This technique ensures more accurate

numerical solutions by mitigating the impact of aliasing in spectral methods.

The temporal integration is performed using a hybrid method combining Crank-

Nicolson (CN) and a three-step Runge-Kutta (RK) method. The numerical scheme

is:

(
I− hrk

2
A

)
ûrk+1 = ûrk +

hrk
2

Aûrk + hrkφrkr(ûrk) + hrkψrkr(ûrk−1), (3.4)

where rk = 1, 2, 3, and the constants are defined as h1 = 8
15

∆t, h2 = 2
15

∆t, h3 =

1
3
∆t, φ1 = 1, φ2 = 25

8
, φ3 = 9

4
, ψ1 = 0, ψ2 = −17

8
, ψ3 = −5

4
. In this scheme,

û1 and û4 represent the solutions of system (3.3) at the current and future time,

respectively. In the context of the Runge-Kutta integration method, the steps û2 and
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û3 serve as intermediary calculations. We will be referring to this numerical method

as CNRK3. Important features to highlight concerning the numerical method (3.4)

are an explicit and an implicit treatment of the nonlinear and linear part of equation

(3.3a), respectively. Deduction of the numerical method can be found in [6]. The

order of convergence of the CNRK3 method is two, which is the order of convergence

of the less accurate method between CN and RK3. As regards stability, we require

the time step to be small enough, i.e., we will ask that

∆t ≤ C(∆x)η; (3.5)

where C is a constant, η ∈ {1, 2}, and ∆t and ∆x are the grid sizes in time and

space, respectively. Here, η = 1. Our objective includes accurately approximating

solutions of system (2.1), particularly in the supercritical region close to the blow-up

time. For this, a substantial number of Fourier coefficients, is essential. Nonetheless,

starting the solution of the partial differential equation with a high resolution from the

outset is not efficient. In the initial stages, especially with smooth initial conditions,

only a few Fourier coefficients accurately resolve the solution. To address this, an

automatic grid refinement strategy is implemented [38]. As the solution develops, the

resolution N is initially set low and doubled progressively based on an analysis of the

Fourier coefficients. If these coefficients do not exhibit exponential decay—signifying

an under-resolve solution—a refinement is triggered. To prevent the accumulation of

round-off errors, a sharp low-pass filter is applied to discard Fourier coefficients below

a machine precision threshold of 10−17. The spatial and temporal grid sizes (∆x =

2π
N

and ∆t = O
(

1
N

)
, respectively) are adjusted dynamically until the spectrum’s

resolution is deemed adequate.
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Using Parseval’s identity and representation (3.1), the enstrophy (2.13) is approx-

imated as [38]

E(t) ≈ 4π2

N/2∑
k=1

k2|ûk(t)|2. (27)

Regarding the width of the analyticity strip δ(t), we adopt the methodology from the

classical paper [42]. Assuming the extension of the solution u(t, ·) into the complex

plane has its nearest singularity at zj ∈ C, where Im(zj) = δ, as stated in Theorem

2.3.1, and near this singularity the solution behaves as

u(z) ∼ (z − zj)η,

it can be shown using Laplace’s method that the Fourier spectrum of u(t, .) admits

the following asymptotic representation

|ûk| ∼ Ck−(1+η)e−δk, for k →∞, (28)

where C is a scaling parameter. An estimate of δ = δ(t) can then be obtained by

minimizing the least-squares error between this representation and the amplitudes of

the Fourier coefficients |û1(t)| , . . . ,
∣∣ûN/2(t)

∣∣ .
3.2 Stochastic Fractional Burgers Equation

We will be using the Euler-Maryama method (EM) and Milstein method (MIL) to

study system (2.13). A Monte Carlo method was selected to sample noise primarily

because of its well-documented convergence behavior and ease of implementation.

While newer techniques, such as polynomial chaos expansions, could theoretically offer
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more rapid convergence, their implementation complexity and higher computational

demands make them less practical. Furthermore, representing the nonlinear term in a

polynomial orthonormal basis introduces significant complexity, as discussed in [32].

It is also noteworthy that the time-invariant structure of the noise characteristics

in the model equations (2.5)–(2.6) means that grid refinement is unnecessary for

accurately resolving the stochastic model, as the required resolution does not vary

over time.

3.2.1 Euler-Maruyama Method (EM)

We will consider a Fourier representation of the solution as in expression (3.1). Again,

the conjugate symmetry property holds and only functions with mean zero are con-

sidered. Now, plugging expression (3.1) in equation (2.13), we obtain

dû = (r(û(t)) + Aû(t))dt+ ρû(t)dW(t), û(0) = ĝ, (3.6)

where û(t), r(û(t)) and Aû are as in system (3.3) and W(t) = [W1(t), . . . ,WN/2(t)]T ,

where

Wk(t) =

√
2

2k
(β2k(t)− iβ2k−1(t)), k = 1, 2, ... (3.7)

and β1, . . . , βN are i.i.d standard Brownian motions. According to [37], (3.7) ensures

that the noise W (t) is square-integrable in L2 for all times which in turn guarantees

that the mild solution (2.13) of the system (3.6) is well defined in H1.

Following the same idea as in the numerical approach to the deterministic version

of the fractional Burgers equation, we will use the FFT to compute the Fourier

coefficients. We will also use the ”3/2 rule” to avoid the aliasing phenomenon. For a
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time step ∆t > 0 and initial condition û0 ∈ Rd, the Euler–Maruyama approximation

ûn to the solution û(tn) of (3.6) for tn = n∆t is defined by

ûn+1 = ûn + f(ûn)∆t+G(ûn)∆Wn, (3.8)

where ûn stands for the solution of system (3.6) at the n-th time step, ∆t is the size

of the time step, f(û) = r(û(t)) + Aû(t), G(û) = ρû(t) and ∆Wn = Wn+1 −Wn,

where Wn is the noise at the n-th time step. To compute ∆Wn, we use the expression

1. Consider ξ as independent CN/2-valued Gaussian variables with distribution

N (0, IN/2), where IN/2 is the identity matrix of size N/2×N/2.

2. Set ∆Wn =
√

∆t ξ

3.2.2 Milstein Method (MIL)

The Milstein method has a higher order of convergence compared to the Euler-

Maruyama method [32], ûn to the solution û(tn) of (3.6) for tn = n∆t is defined

by

ûk,n+1 = ûk,n + fk(ûn)∆t+ gkk(ûn)∆Wk,n +
1

2

∂gkk
∂ûk

(ûn)gkk(ûn)
(
∆W 2

k,n −∆t
)

(3.9)

where ∆Wi,n =
(∫ tn+1

tn
dWi(r)

)
, and ûk,n is the k-th component of ûn. Here G(ûn)

has the k-th component gkn, f(ûn) has the k-th component, fk. Also, it is supposed

that the noise is diagonal (i.e., G is a diagonal matrix), i.e., each component uk is
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affected by Wk only, as gkj = 0 when j 6= k. Also, The noise is commutative when

∂gkj
∂ûl

gli =
∂gki
∂ûl

glj, (3.10)

for any indices i, j, k, l. The commutativity condition implies that the order in which

these operations are computed does not affect the outcome, reducing the potential

for error accumulation in the numerical integration process.

3.3 Validation of the Methods

Here, we compare the results of Euler-Maryama method and Milstein method in the

subcritical case. The methods are employed with the following parameters: the frac-

tional exponent α = 0.9, the resolution N = 28, initial condition g(x) = sin(x) and the

viscosity ν = 0.11 for different values of ρ. To compare the results, the statistical mo-

ments of Emaxω are analyzed, keeping the spacial and temporal discritization fixed and

varying the discritization of the probability space. Here, the stability and convergence

of a method can depend heavily on how the noise is discretized and that is why only

the discritization of the probability space is allowed to vary. To recall, the initial four

statistical moments of a random variable X, specifically, the mean µ denoted as E[X],

variance σ2 denoted as E[(X−µ)2], skewness S denoted as E
[(

X−µ
σ

)3
]
, and kurtosis

K denoted as E
[(

X−µ
σ

)4
]
, where E[·] represents the expectation as defined earlier,

are computed for the maximum attained enstrophy defined as, Emax
ω := maxt≥0 Eω(t)

acquired under varying noise amplitudes ρ in the subcritical case. We focus here on
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the subcritical regime. A approximation of these moments are constructed as follows:

Mean (µ) ≈ µm :=
1

m

m∑
ω=1

Emax
ω (3.11.a)

Variance (σ2) ≈ σ2
m :=

1

m

m∑
ω=1

(Emax
ω − µm)2 (3.11.b)

Skewness (S) ≈ Sm :=
1

m

m∑
ω=1

(
Emax
ω − µm
σm

)3

(3.13.c)

Kurtosis (K) ≈ Km :=
1

m

m∑
ω=1

(
Emax
ω − µm
σm

)4

(3.11.d)

Here, the number of samples, m ranges from 1 toM , notation of the number of samples

used for the approximations, and {Emax
ω }, ω = 1, ..,M is the maximum enstrophy value

attained in the ωth realization. Here M=10000 is the total number of samples used.

We compare these approximations to the normal (Gaussian) distribution given by

the expression

f(Emax
ω , µ, σ) =

1√
2πσ

exp

(
−(Emax

ω − µ)2

2σ2

)
, (3.11.e)

where µ is the mean and σ is the standard deviation of a certain set of samples.

Figure 3.1 illustrates the PDF of maximum enstrophy derived from simulations us-

ing the Euler-Maryama method and the Milstein method. Both the distributions show

a pronounced peak with tails tapering off symmetrically, characteristic of the Gaus-

sian distribution. This suggests that the stochastic processes governing enstrophy

dynamics, despite their complexity, conform to the Central Limit Theorem (CLT).

The theorem posits that a mean of a large number of small, independent disturbances
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Figure 3.1: PDF of the maximum enstrophy Emax
ω for (a) EM and (b) MIL with

ρ = 5 · 10−2

tends to exhibit normal distribution, assuming identically distributed independent

increments. The absence of non-Gaussian features implies that these conditions are

effectively met, indicating the simulations lack significant skew or extreme events

that might disrupt this behavior. Additionally, the similarity in distributions ob-

tained from both numerical methods underscores their reliability and suggests that

numerical settings, like discretization, do not adversely affect the observed statistical

properties. This consistency is crucial for validating these methods for studying the

system’s statistical dynamics.

In the analysis of the mean enstrophy µm in Figure 3.2 the Milstein method ex-

hibits lower values across the simulations when compared to the Euler-Maruyama

method, demonstrating less sensitivity to the increase in ρ. Notably, the reduced

fluctuation in mean enstrophy with the Milstein method suggests that it may reach a

stable solution with fewer samples, enhancing computational efficiency. Also, Figure

3.2c suggests that for lower noise magnitude ρ = 7 · 10−4 the mean from both meth-

ods may converge for sufficiently large samples. The ability of the Milstein method
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(a) (b)

(c) (d)

Figure 3.2: Mean of maximum enstrophy Emax
ω for different simulations: (a) EM

method with ρ = 5 · 10−2 and ρ = 7 · 10−2, (b) MIL method for ρ = 5 · 10−2 and
ρ = 7 · 10−2, (c) comparison of both methods with a lower noise intensity

ρ = 7 · 10−4, and (d) comparison of both methods for a higher noise intensity
ρ = 7 · 10−2.
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(a) (b)

(c) (d)

Figure 3.3: Varience of maximum enstrophy Emax
ω across different simulations: (a)

EM method with ρ = 5 · 10−2 and ρ = 7 · 10−2, (b) MIL method for ρ = 5 · 10−2 and
ρ = 7 · 10−2, (c) comparison of both methods with a lower noise intensity

ρ = 7 · 10−4, and (d) comparison of both methods for a higher noise intensity
ρ = 7 · 10−2.
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(a) (b)

(c) (d)

Figure 3.4: Skewness of maximum enstrophy Emax
ω for different simulations: (a) EM

method with ρ = 5 · 10−2 and ρ = 7 · 10−2, (b) MIL method for ρ = 5 · 10−2 and
ρ = 7 · 10−2, (c) comparison of both methods with a lower noise intensity

ρ = 7 · 10−4, and (d) comparison of both methods for a higher noise intensity
ρ = 7 · 10−2.
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(a) (b)

(c) (d)

Figure 3.5: Kurtosis of maximum enstrophy Emax
ω across different simulations: (a)

EM method with ρ = 5 · 10−2 and ρ = 7 · 10−2, (b) MIL method for ρ = 5 · 10−2 and
ρ = 7 · 10−2, (c) comparison of both methods with a lower noise intensity

ρ = 7 · 10−4, and (d) comparison of both methods for a higher noise intensity
ρ = 7 · 10−2.
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Figure 3.6: The time evolutions of the enstrophy in the stochastic realizations
characterized by the largest and smallest values of Emax

ω for ρ = 5 · 10−2 with the
deterministic case.

to produce solutions with a potentially reduced number of samples could translate

into significant savings in computational time and cost, along with maintaining high

accuracy in the presence of stochastic perturbations.

The variance of enstrophy σ2
m reveals crucial differences between the Euler-Maruyama

and Milstein methods in Figure 3.3. A larger variance observed with the Euler-

Maruyama method, especially at increased noise intensities ρ, may not only indicate

greater system fluctuations but also raises questions about the sample size adequacy

for variance estimation. A sufficient sample size is critical to ensure that the calcu-

lated variance is an acurate estimator of the system’s actual variability. The Milstein

method displays a notably lower variance, suggesting not only its higher accuracy

but also potentially implying its efficiency in achieving statistically reliable variance

estimates with a smaller sample size. This efficiency of the Milstein method makes

it preferable in scenarios where computational resources are limited or when a high
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number of simulations are required for a thorough exploration of the system’s behav-

ior.

The analysis of skewness (Sm), as depicted in Figures 3.4, offers insights into the

asymmetry of the enstrophy distribution under different noise intensities (ρ). Fig-

ure 3.4a reveals that the Euler-Maruyama method exhibits lower skewness for higher

ρ values, suggesting an initial prevalence of lower enstrophy values and hinting at a

potential bias in the early phase of the simulation. As the simulation progresses, the

skewness metric gradually trends towards zero, indicative of the distribution’s move-

ment toward symmetry around the mean enstrophy. On the contrary, the Milstein

method, as shown in Figure 3.4b, demonstrates relatively consistent skewness from

the outset, which persists across the simulation time. This consistency is indicative

of the method’s ability to maintain symmetry in the distribution of enstrophy values

and implies a stable simulation process. The less variable skewness observed with the

Milstein method from Figure 3.4c and Figure 3.4d may also suggest that a smaller

sample size is sufficient to achieve an accurate representation of the system’s behavior,

thus enhancing computational efficiency.

Figures 3.5 provide a analysis of the kurtosis of the maximum enstrophy (Km) for

the Euler-Maruyama and Milstein methods under varying noise intensities, ρ = 5·10−2

and ρ = 7·10−2, respectively. Notably, the Euler-Maruyama method exhibits an initial

spike in kurtosis particularly for the larger value of ρ, hinting at a higher likelihood

of extreme enstrophy outcomes early in the simulation. As the number of samples

m increases, the kurtosis for both levels of noise intensity diminishes, suggesting

a regression of enstrophy distribution towards that of a normal distribution. This

convergence towards a normal distribution indicates that the initial extremes may be
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transient and that the system’s dynamics become more stable over time.

Figure 3.6 illustrates the enstrophy Emax
ω (t) as a function of time t, comparing

stochastic simulations using the Milstein method with a deterministic case. The

solid lines represent the realizations achieving the largest and smallest maximum

enstrophy values Emax
ω obtained from an ensemble of stochastic simulations at noise

intensity ρ = 5 · 10−2, while the dashed line denotes the enstrophy trajectory of the

deterministic system. The stochastic results, bounded between maximum of Emax
ω and

minimum of Emax
ω , reflect the variability in the system’s enstrophy due to the random

perturbations, in contrast to the deterministic scenario which follows a single, noise-

free trajectory. In the context of the Milstein method, the graph demonstrates that

while the stochastic system exhibits a broader range of behaviors due to noise, the

overall trend in enstrophy over time remains consistent with the deterministic case.

Together, these figures provide a comprehensive statistical understanding of the

system dynamics under stochastic influence. The higher noise intensity leads to more

variable and extreme enstrophy values initially, but as the a larger number of sam-

ples is accumulated, this variability is mitigated. Across all statistical measures, the

Milstein method outperforms the Euler-Maruyama method, especially at higher noise

levels, suggesting its suitability for systems where accurate representation of the noise

influence is critical. These findings underscore the importance of choosing an appro-

priate numerical method for solving SDEs in the presence of significant stochastic

forces, such as those investigated in the fractional Burgers equation.
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Chapter 4

Results

It is important to emphasize that, while our primary focus is on the stochastic case, we

begin by presenting the deterministic case as a reference. The deterministic scenario

serves as a baseline, allowing us to understand the underlying dynamics without the

influence of randomness. By first examining the deterministic case, we can establish a

clear framework for the behavior of the system under controlled conditions. This foun-

dation is crucial for highlighting the deviations and effects introduced by stochastic

elements when we later analyze the stochastic case. Hence, the deterministic analysis

provides essential insights that aid in the interpretation and contextualization of the

results obtained from the stochastic simulations.

4.1 Deterministic Case

Building upon the insights from Section 2.1, this study focuses on the deterministic

problem (2.1) across different regimes: in the subcritical regime we set α= 0.9, and in

the supercritical regime α=0.4. The initial condition and viscosity are g(x) = sin(x)
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and ν = 0.11. To solve this problem, the CNRK3 method, as outlined in Section 3.1,

is employed. This approach features an adaptive resolution ranging from N = 29 to

N = 218 in the supercritical scenario, and from N = 29 to N = 222 in the subcritical

context.

(a) (b)

(c) (d)

Figure 4.1: Solution of system (2.1) with α = 0.9 in (a) the physical space u(t, x)
and (b) the Fourier space |ûk(t)| at the indicated time levels with the corresponding

evolution of (c) the enstrophy E(t) and (d) the width of the analyticity strip δ(t).
The symbols in panel (c) and (d) correspond to the time instances at which the

solution is shown in panels (a) and (b).

In Figures 4.1 and 4.2, the dynamics of the solution in both physical and Fourier
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(a) (b)

(c) (d)

Figure 4.2: Solution of system (2.1) with α = 0.4 in (a) the physical space u(t, x)
and (b) the Fourier space |ûk(t)| at the indicated time levels with the corresponding

evolution of (c) the enstrophy E(t) and (d) the width of the analyticity strip δ(t).
The symbols in panel (c) and (d) correspond to the time instances at which the

solution is shown in panels (a) and (b).
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spaces, alongside the enstrophy and the width of the analyticity strip, are illustrated.

Figure 4.1 is associated with the subcritical regime, while Figure 4.2 represents the

supercritical regime. The interplay between dissipative and nonlinear elements in

system (2.1) is showcased in the physical space via Figures 4.1a and 4.2a. In Figure

4.1a, the early stages are characterized by the dominance of the nonlinear component,

leading to an intensification of the solution’s front. However, as time progresses, the

dissipative term becomes more influential, resulting in the flattening of the front.

In contrast, Figure 4.2a highlights the dominating effect of the nonlinear term in

equation (2.1a), which induces the formation of shocks and subsequent finite-time

singularities.

The Fourier space representations are detailed in Figures 4.1b and 4.2b. Figure

4.1b indicates that a limited number of Fourier coefficients are adequate for resolving

problem (2.1) in the subcritical regime. On the other hand, Figure 4.2b shows that in

the supercritical regime an increasing number of Fourier coefficients becomes neces-

sary as time progresses. The enstrophy, as depicted in Figures 4.1c and 4.2c, behaves

as anticipated: it remains bounded for smooth solutions and becomes unbounded

when a singularity occurs at the blow-up time. Lastly, the width of the analyticity

strip, shown in Figures 4.1d and 4.2d, reveals the emergence of a singularity in the

supercritical case and remaining above zero for smooth solutions.

4.2 Stochastic Case

In this section, we examine the stochastic problem (2.7) in the supercritical regime

with α = 0.4. The initial condition and viscosity are kept as previously defined, with

g(x) = sin(x) and ν = 0.11. A fixed resolution of N = 214 is employed. Our focus is
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on investigating the impact of the noise amplitude ρ on the estimates of the blow-up

time, particularly in terms of deviations from the deterministic case. Since the blow-

up time is a stochastic variable characterized by a certain probability distribution,

it will be described appropriately. As mentioned in Section 2.3, due to the lack of

analyticity in the solution caused by the noise, we will use enstrophy exclusively to

estimate the blow-up time.

We use a Monte Carlo approach to sample the blow-up times distribution. We

construct many samples of the stochastic solution, each derived with a distinct noise

realization, using the Milstein approach covered in Section 3.2.2. Next we estimate

the maximum existence time for every sample using the formula 2.16. This is done

by performing a least-squares fit to the data τR vs. R using the formula:

τR = T∞ − αRβ, (4.2.1)

T∞, α < 0, and β < 0 parameters that need to be determined.

In Figure 4.3a the accumulated mean of the random variable T∞ is shown for

different values of the noise amplitude ρ. We observe that as the amplitude of the

noise ρ increases, the mean of the blow-up time also increases. Additionally, the

blow-up in the solution of the stochastic case tends to occur later compared to the

blow-up time in the deterministic case.

In Figure 4.3b, the relative error with respect to the accumulated mean blow-up

time is presented in function of the number of Monte Carlo realizations. As expected,

the error decreases slowly due to the slow convergence rate of Monte Carlo methods

O
(

1√
m

)
. These results also show that as ρ increases, a larger number of samples is

necessary to achieve a small error.
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(a) (b)

(c) (d)

Figure 4.3: (a) Accumulated mean and (c) variance of the blow-up time estimates
for various noise amplitudes. The black line in (a) represents the blow-up time

estimate in the deterministic case for refined spatial resolution while the yellow line
in (a) is the deterministic blow-up time estimated by algebraic extrapolation fit
(4.2.1). (b) and (d) Relative errors of the accumulated mean and variance of the

blow-up time estimates for different noise amplitudes, respectively. The black curve
in (b) and (d) illustrates the function 1√

m
. We used 1,000 samples for ρ = 10−3 ,

5,000 samples for ρ = 10−2, and 7,000 samples for ρ = 10−1.
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(a) (b)

(c) (d)

Figure 4.4: (a) Skewness and (c) Kurtosis of the blow-up time estimates for various
noise amplitudes. The black line in (c) represents the normal distribution. (b) and
(d) Relative errors of the skewness and kurtosis of the blow-up time estimates for
different noise amplitudes, respectively. The black curve of (b) and (d) illustrates

the function 1√
m

. We used 1,000 samples for ρ = 10−3 , 5,000 samples for

ρ = 10−2,and 7,000 samples for ρ = 10−1.
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In Figures 4.3c and 4.3d, the accumulated variance of the blow-up time estimates

and the corresponding relative errors are depicted. We note that with increasing ρ,

the variance increases, indicating a greater variability in blow-up times. The relative

errors decrease slowly, similar to the mean, necessitating more samples for higher ρ.

Figures 4.4a and 4.4b show the skewness of the blow-up time estimates and the

corresponding relative errors. The skewness reveals an asymmetry in the distribution

of blow-up times, and as ρ increases, the distribution becomes more skewed. The

relative errors in skewness also follow the O
(

1√
m

)
trend.

Lastly, Figures 4.4c and 4.4d present the kurtosis of the blow-up time estimates

and the corresponding relative errors. The kurtosis quantifies the presence of rare

events usually associated with algebraic, rather than exponential, tails of the PDFs.

Higher ρ values result in higher kurtosis, suggesting more outliers. The relative errors

in kurtosis similarly decrease slowly with the number of samples, adhering to the

expected Monte Carlo convergence rate.

Figure 4.5 presents the probability density functions (PDFs) of the blow-up times

for various noise amplitudes ρ. As ρ grows, these histograms are increasingly skewed

towards longer blow-up times, indicating longer blow-up times in comparison to the

deterministic case. When compared with the deterministic blow-up time, as deter-

mined in [38], the mean blow-up time for ρ = 0.1 is notably higher. Conversely,

for ρ = 0.001, the mean of the PDF closely aligns with the value in the determinis-

tic case. The distribution for ρ = 0.01 is intermediate between these two extremes.

Hence, for small noise magnitudes the PDFs of the maximum existence time have dis-

tributions close to the Gaussian distribution whereas, for increasing ρ they develop

“heavy” tails and become skewed towards longer times. Interestingly, this increasing
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(a) (b)

(c)

Figure 4.5: Histograms depicting the distributions of blow-up times for solutions of
the stochastic problem (2.7) with varying noise amplitudes: (a) ρ = 10−3, (b)
ρ = 10−2, and (c) ρ = 10−1. The red curves represent the corresponding normal

distribution. The red vertical lines indicate the mean of the Normal curve for each
case, while the black lines denote the blow-up time in the deterministic case with

extrapolation (4.2.1) and the blue line depicts the blow-up time in the deterministic
case with a finer spatial resolution [38].
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non-Gaussianity of the distributions is accompanied by a shift of the mean value of

T∞ towards longer times. Therefore, realizations with longer maximum existence

times become more likely. This suggests that increasing the noise amplitude ρ has a

regularizing effect on the blow-up of the solution of the fractional Burgers equation

in the supercritical regime, as predicted by the Theorem 2.2.2.

(a) (b)

(c) (d)

Figure 4.6: (a) Mean and (b) variance of the blow-up time T∞ as functions of ρ.
The black line in (a) represents the blow-up time obtained with the deterministic

case for algebraic extarpolation fit (4.2.1) and the red line in (a) potray the blow up
time for deterministic case with finer spatial resolution [38]. (c) Skewness as a

function of the noise amplitude ρ. (d) Kurtosis as a function of the noise amplitude
ρ. The black line in (d) represents for the kurtosis of normal distribution.
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Ultimately, Figure 4.6 displays the estimated mean T∞ together with its variation,

skewness, and kurtosis as functions of ρ. As is evident from Figure 4.6a, the mean

T∞ increses with ρ and for ρ = 0.1 becomes greater than the blow-up time T∞ in

the deterministic case. Subsequently, Figure 4.6b shows that the variation of the

T∞ increases with ρ, following a power-law trend. Since the slope of the line in the

log-log plot is 3, the power law exponent is 3. Figures 4.6c and 4.6d demonstrate

how skewness and kurtosis increase with increasing ρ, indicating that the distribution

becomes more non-Gaussian.

Figure 4.7 displays the evolution of enstrophy in stochastic realizations with the

highest and lowest values of T∞ for noise amplitudes ρ = 10−3, ρ = 10−2, and

ρ = 10−1, compared to the deterministic case. For ρ = 10−3, the stochastic enstro-

phy aligns closely with the deterministic case, indicating minimal impact from the

noise. At ρ = 10−2, there is a significant divergence, accompanied by a noticeable

delay in blow-up time. This divergence becomes even more pronounced at ρ = 10−1,

showing a broad range of behaviors and substantial delays in blow-up time. These

findings emphasize that increasing the noise amplitude delays blow-up time, high-

lighting the significant impact of stochasticity on the fractional Burgers equation in

the supercritical regime.
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(a) (b)

(c)

Figure 4.7: The time evolutions of the enstrophy in the stochastic realizations
characterized by the longest and shortest values of maximum existence time T∞ for

(a) ρ = 10−3, (b) ρ = 10−2, and (c) ρ = 10−1 deterministic case.
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Chapter 5

Conclusions

The investigation focused on how stochastic excitations impact the creation of sin-

gularities and other extreme behaviors in non-linear dissipative partial differential

equations, specifically the 1D fractional Burgers equation (2.4) with multiplicative

colored noise. To address this question, firstly, we implemented the necessary code,

combining spectrally accurate spatial discretizations with a Monte-Carlo method to

ensure convergence. This allowed us to perform a series of accurate numerical cal-

culations. Next, we devised a numerical scheme to capture the system’s behavior

under different noise amplitudes. This scheme enabled us to investigate the effects

of multiplicative noise on the global existence of solutions. Finally, we ran extensive

computations, varying the noise amplitude ρ to observe changes in the distribution

of the maximum existence times T∞. These experiments provided valuable data that

informed our conclusions.

The investigation is driven by the question how stochastic excitations impact the

creation of singularities and other extreme behaviors in non-linear dissipative partial

differential equations (2.1). The 1D fractional Burgers Eq. (2.1) with multiplicative
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colored noise has been considered as a model problem. By combining spectrally ac-

curate spatial discretizations with a Monte-Carlo method in which the convergence

of all approximations was meticulously verified, a series of accurate numerical calcu-

lations was performed to provide insights about the question we are interested in, as

described in Theorem 2.2.2 we are interested in. This system is intriguing because it

raises the question whether the magnitude of the noise, ρ, affects the global existence

of solutions in the stochastic setting.

Our key conclusion is that there is some evidence that noise regularizes the emer-

gence of singularities in the supercritical regime; that is, as the noise amplitude ρ

increases, the distribution of the maximum existence times T∞ (interpreted as a

stochastic variable) becomes more non-Gaussian. It is interesting to note that when

ρ grows, the mean maximum existence time likewise becomes larger, increasing the

likelihood of solutions with noticeably longer maximum existence durations. This is

due to the fact that as ρ grows, the PDFs of T∞ get increasingly skewed and form

heavier tails towards long maximum existence times. Under this method, increasing ρ

beyond 1 ·10−1 with the current time step leads to numerical instabilities. Decreasing

the time step to maintain stability would result in prohibitively long computation

times, making it impractical.

Reference [38] reports no evidence that additive noise prevents singularity forma-

tion in the supercritical regime. In contrast, our results indicate that multiplicative

noise might regularize solutions by postponing blow-up. Specifically, as the noise

amplitude ρ increases, the distribution of the maximum existence times T∞ in our

study suggests a delay in blow-up. Furthermore, while Reference [38] finds a non-

monotonic decrease in the mean maximum existence time with increasing additive
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noise, our observations show an increase in the mean maximum existence time with

higher multiplicative noise amplitudes.

Our numerical observations, though limited by the computational constraints,

indicate that larger noise amplitudes may help in postponing blow-up, aligning with

the Theorem 2.2.2’s implication that sufficient noise can lead to global existence and

decay of the solution over time. However, further exploration with significantly larger

noise magnitudes is needed to conclusively determine the regularizing effect and the

required noise magnitude to prevent blow-up.

In conclusion, the answer to the query concerning the impact of stochastic exci-

tations on isolated and extreme behavior in fractional Burgers flows is clear from the

explanation above. Our results suggest that there is a possibility that noise regular-

izes solutions in the supercritical regime by postponing blow-up. It is still an open

topic if these tendencies will hold for considerably larger noise amplitudes. Also, will

we be able to prevent blow-up by increasing the noise amplitude and if prevention is

possible, what will be the required noise magnitude?
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Appendix A

Itô Integrals and Their Properties

A.1 Introduction to Itô Integrals

Itô calculus extends classical calculus to random processes such as Brownian motion

(Wiener process). Itô integrals are crucial in stochastic calculus, with applications

in mathematical finance, differential equations with noise, and other fields where

stochastic models describe inherent uncertainties. This appendix provides a founda-

tional understanding of Itô integrals, focusing on their definitions, properties, and

examples [32].

A.2 Definitions and Basic Concepts

Definition A.2.1 (Predictable Process). A stochastic process {X(t) : t ∈ [0, T ]} is

predictable if there exist an Ft-adapted and left-continuous processes {Xn(t) : t ∈

[0, T ]} such that Xn(t)→ X(t) as n→∞ for all t ∈ [0, T ].

Definition A.2.2 (SXN (t)). .Let {t0, t1, . . . , tN} be a partition of [0, T ] such that 0 =
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t0 < t1 < · · · < tN = T . Then,

SXN (t) =
N−1∑
j=0

X(tj)1[tj ,tj+1)(t),

where 1[tj ,tj+1)(t) is the indicator function of the interval [tj, tj+1).

Definition A.2.3 (Banach Space L2
T ). Let L2

T denote the space of predictable real-

valued processes {X(t) : t ∈ [0, T ]} with

‖X‖L2
T

:=

(
E
[∫ T

0

|X(s)|2 ds
])1/2

<∞.

Then, LT2 is a Banach space with the norm ‖ · ‖LT2 .

Definition A.2.4 (Itô Isometry). The Itô isometry is given by:

E

[(∫ t

0

X(s) dW (s)

)2
]

=

∫ t

0

E[|X(s)|2] ds, (A.2.1)

where the left-hand side represents the L2(Ω) norm squared of the Itô integral.

Definition A.2.5 (Itô Integral). Let W (t) be an Ft-Brownian motion and let X ∈ LT2 .

By definition, X equals the limit in LT2 of a sequence of left-continuous and Ft-adapted

processes Xn(t), n ∈ N. The stochastic integral In(t) =
∫ T

0
Xn(s) dW (s) is well

defined by Theorem A.3.1 and, from equation A.2.1 with X = Xn −Xm,

‖In(T )− Im(T )‖L2(Ω) = E
[
(In(T )− Im(T ))2] =

∫ T

0

E
[
(Xn(s)−Xm(s))2] ds.

Then, In(T ) is a Cauchy sequence in L2(Ω), and the Itô integral
∫ t

0
X(s) dW (s) is

defined as limn→∞
∫ t

0
Xn(s) dW (s) in L2(Ω,Ft).
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A.3 Itô Integral Properties and Examples

Theorem A.3.1. Let Wt be an Ft-Brownian motion and let {X(t) : t ∈ [0, T ]} be an

Ft-adapted process with left-continuous sample paths.

1. SXN (t) : t ∈ [0, T ] is Ft-adapted and has continuous sample paths.

2. E[SXN (t)|Fsj ] = SXN (sj) for 0 ≤ sj ≤ t almost surely. In particular, E[SXN (t)] = 0.

3. If Y (t) : t ∈ [0, T ] is also Ft-adapted with left-continuous sample paths and both

X, Y ∈ L2(Ω, LT2 (0, T )), then for t1, t2 ∈ [0, T ],

E[SXN (t1)SYM(t2)]→
∫ (t1∧t2)

0

E[X(s)Y (s)] ds as N,M →∞.

Theorem A.3.2 (Itô Integral Process). Let X ∈ LT2 (Rd×m). The following hold:

1. (
∫ t

0
X(s) dW (s))t∈[0,T ] is a Ft predictable process.

2. The martingale property holds: for 0 ≤ r ≤ t ≤ T ,

E
[∫ t

0

X(s) dW (s)

∣∣∣∣Fr] =

∫ r

0

X(s) dW (s), almost surely,

and the integral has mean zero: E[
∫ t

0
X(s) dW (s)] = 0.

3. For X, Y ∈ LT2 (Rd×m),

E
[(∫ t1

0

X(s) dW (s),

∫ t2

0

Y (s) dW (s)

)]
=

∫ (t1∧t2)

0

m∑
i=1

E [〈Xi(s), Yi(s)〉] ds,

where 〈·, ·〉 is the Rd inner product.
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Example: Consider the stochastic integral I(t) =
∫ t

0
W (s) dW (s), for t ≥ 0. The

martingale property gives E[I(t)] = 0. The Itô isometry gives:

E
[
I(t)2

]
=

∫ t

0

E[W (s)2] ds =

∫ t

0

s ds =
1

2
t2,

and

E[I(t)I(s)] =

∫ min(s,t)

0

E[W (r)2] dr =

∫ min(s,t)

0

r dr =
1

2
(min(s, t))2.

As Itô integrals have mean zero, Cov(I(s), I(t)) = 1
2
(min(s, t))2.
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