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PREFACE

Chapter 0 of this thesis is a preliminary chapter in which 

all the basic concepts end theorems which are needed for the under- 

standing of succeeding chapters are collected. In particular the 

notions of a Boolean lattice. Boolean space. Boolean ring. Boolean 

semi-group, categories, functors end various types of proper homo- 

morphisms are introduced end their fundamental properties are 

studied.

In Chapter I we note the topological properties of the ultra- 

filter space of a Boolean lattice end establish the main result, 

namely, the category of Boolean lattices and proper Boolean lattice 

homomorphisms is equivalent to the category of Boolean spaces and 

proper continuous maps.

In Chapter II we establish the relation between Boolean 

lattices and Boolean rings end prove that the category of Boolean 

lattices and proper Boolean lattice homomorphisms is equivalent to 

the category of Boolean rings end proper ring homomorphisms.

Chapter III is devoted to using the notion of a Boolean semi- 

group to arrive at an alternative characterization of a Boolean 

lattice.
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CHAPTER Ο.PRELIMINARIES
Introduction: In this chapter wo collect together all the basic 

theorems and definitions which are to be assumed later. In particular 

we introduce the notions of a Boolean lattice. Boolean ring and Boolean 

space and discuss some of their fundamental properties.

1. Boolean Lattices.

Let B be a lattice.

Definition 1: B is said to bo relatively complemented if given a<x<b, 

y exists τ/ith xΛy = a, xVy = b.

Definition 2: B is called .distributive if one of the following equivalent 

laws hold:

(1) xΛ(yVs) = (xΛy)v(χΛz) for any x, y, z in B.

(2) xy (yΛζ) = (xVy)Λ(xVz) for any x, y, z in B.

Wo combine the above definitions to introduce the notion of a 

Boolean lattice.

Definition 3: A relatively complemented distributive lattice with a 

zero element io called a Boolean lattice.

The following proposition shows that the distributivity con- 

dition in a Boolean lattice implies that relative complements are 

unique.

Proposition 1: In a Boolean lattice D relative complements are unique.

1.
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Proof: Let 0<x<y. Suppose there exists u, v with uΛx = vΛx = 0, 

uVx = vVx = y. Then u = uΛ(x Vu) = UΛ (xVv) = (uΛx)V(vΛu) = 

(νΛ x)V (vau) = vA(xVu) = νΛ(χνν) = v. Hence u = v and this 

completes the proof. Thus in a Boolean lattice we have for 0<x<y, 

an unique z exists with ΧΛΖ = 0, xVν = y.

Notation: We will denote this z by y~x and read it as the relative 

complement of x in y.

Remark: In case a Boolean lattice B has an unit e then the unique 

element e~x for any x in B is called the complement of x in B and is 

denoted by x1 Hence in every Boolean lattice with unit each element 

possesses an unique complement. In general a lattice L with o, e is 

called complemented if for any x in L an element y exists with xΛy = 0, 

xVy = e. Thus every Boolean lattice with unit is in particular comple- 

mented. On the other hand any distributive complemented lattice is 

clearly seen to be a relatively complemented distributive lattice with 

o, e, that is, a Boolean lattice with unit.

Definition 4: Let B be a Boolean lattice. A non empty subset F of B 

is called a filter if (1) a, beF implies aΛbeF (2) a£F end b>a 

for any b in B implies beF.

A filter F in B is called proper if F is distinct from B. It 

is clear that a filter F is proper if end only the zero element of B 

does not belong to F. We now proceed to introduce the important notion 

of an ultrafilter.

Definition 5: Let B be any Boolean lattice and F any filter in B. F is 

called an ultrafilter or a maximal proper filter if F is proper and if

G is any filter strictly containing F then G = B.
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The next proposition shows that every non-trivial 

Boolean lattice has many ultrafilters· Its proof depends 
on the axio n of ci.oice.
?roposition ί’: (existence Theorem for Ultrai‘ilt< rs'9
or any filter ?' in a Boolean lattice B there exists an 

ultrafilter U containin';: In fact any filttr F in ~ is
equal to the intersection of all ultrafliters containing

° /p
Proof: (1) 'fie apply Zorn's lentsa· Consider the set_J of 
all proper filters C in ' with contained in G. Then^is 
non-e:.ipty for 7 belongs to P. The set P is partially o - 
dered by inclusion and is clearly seen to Ie inductive, 
hence by Horn’s Leaua there exists -.uxinal elements In J „ 
Let U in maximal. Then U is a proper filt· r contain­
ing P. Suppose further that, then's exists another propel’ 
/liter V containing Uj then V belongs to which contra- 
dicts t:;e aaxiaality of U. Thus 'J is an ultrafllV r con- 
taining F. This establishes the first part of the propos- 
X C j.OM o
(ii) Let G=/Q|U/U^F, U an ultral’ilter J Whore .'is any 

x'iltcr in . It is then clear that C is a filter an 3 that 
. is any filter in R. Suppose F is strictly contrin<d i” 
G. Then there exists an x in G with x not in P. Take 
any y€ ? and ?ut :i=£s/zt , z>y~(yAx)] . ote t.-at 

i'or any u in ?, foi· if u Λ (y^ί? Λ x; )=o
t^en ua y< x. Since P is a filter uAyfeE and hence ? 
vi icii contradicts tae fact t^at Hence u.4 3^o for
a;.y u in z in K. Then the filter J ’entrated b, the 
s<t b’C' ^is proper. Let V be an ultrafiltcr containing J. 
Tlwn in particular V contains t·’ and γ~(/Λ x) eV. This 
inplii-.B that xiV· This contradicts the fact ti.at χβύ. 
Thus our supposition is i’alse and the preposition is es- 
tal 11shed.
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Corresponding to the notion of a filter in a Boolean lattice 

we now introduce the dual notion of an ideal.

Definition 6; Let B be a Boolean lattice. A non empty set I in B is 

called an ideal if (1) a, bEI implies aVbEI and (2) aEI and b<a 

for any b in B implies bEI.

An ideal I in B is called proper if I is distinct from D. Note 

that the zero element of B belongs to every ideal in B and hence every 

ideal I with the operations of B restricted to I forms a Boolean lattice. 

Definition 7: An ideal I in a Boolean lattice B is called prime if 

ΧΛΥEϊ and xEI implies yE I. I is called maximal proper if J is any 

ideal strictly containing I then J = B.

Concerning prime ideals we note the following proposition. 

Proposition 3: An ideal P in a Boolean lattice B is prime if and only 

if for any x, y in B, xEP or y~(xΛy)EP.

Proof: (i) Suppose P is a prime ideal in B and take any x, y in B. 

Clearly xΛ(y~xΛy) = 0EP. Thus since P is prime xEP or y~xΛye?· 

(ii) Take an ideal P in B with the property stated. Let ΧΛyEΡ and 

suppose xEP. This inplies by hypothesis that y.~XΛy E P. Also xΛyΛP. 

Then since P is an ideal (y~XΛy) V (xΛy) =yEP. This completes the 

proof.

Using Proposition 3 we now establish that the notions of a 

prime ideal and a maxlmal ideal in a Boolean lattice are the same. 

Proposition 4: An ideal P in a Boolean lattice B is prime if and only 

if it is maximal.
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Proof: (1) Let P bo a prime ideal in B. Let M be any ideal strictly 

containing P. Then there exists an xEM with xEP. By Proposition 3 

we then have that y~(xΛy)EP for any yEB. But xEM and since M is 

an ideal ΧΛΖEN and thus (xΛy)(y~(xΛy)) = yEM for any y in B. 

That is Μ = B and P is maximal.

(2) Suppose M is a maximal ideal in B. Let ΧΛyE·M and suppose xEM. 

Then since M is maximal the ideal generated by MU{x} is B. Then 

y<myx for sone mEM since clearly c{s/s<mvx, mEM} is the ideal 

generated by This implies y = yΛ(mνx) = (yΛn) v *yΛx)

Now by hypothesis y ΛxEΜ and ΥΛ mEM since M is an ideal. Thus yEM 

and this means M is prime. This completes the proof.

In a similar manner as in Proposition 2 ono can establish that 

any proper ideal I is contained in a maximal proper ideal. Concerning 

ideals in a boolean Lattice one can establish the following proposition: 
Proposition 5: Let B bo a Boolean lattice and let j denoto the set of 

all ideals in D. Then9 under set inclusion is a complete distributive 

lattice and in this lattice IV J =c{avb/sEI, bEj}, and ΙΛj =c{aΛb 

/aEI, bEj} where I, J are any ideals in B.

Proof: Let K ={aVb/aEI, bEJ). Take x, y in K. Thenx = ayb, y = 

CV d with a, c in I, b, d in 3. Then Xv y = (av c)v (b Vd) and thus xE,y 

is in K. Take any x in K and suppose a<x = aVb for some z in B. Then 

z = sΛx = ΖΛ (aVb) = (zΛ a)ν (zΛb) using the fact that B is distribu- 

tive. But sΛaEISs since ad, and they are ideals. Ilenco

ζθΚ. Thus K io an ideal and K clearly contains I, J. Dut on the other 

hand if H is any ideal containing I, 3 then II must clearly contain K.
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Hence Κ = IvJ. Clearly the intersection of any arbitrary collection 
of ideals in B is again an ideal in B and hence J is a complete lattice 

with meet being intersection. It is clear that the set {aΛb/aEI, bEJ} 

is an ideal in B contained in I, J and hence in On the other hand 
if then xEI and xEJ and hence χλχ =x belongs to{aΛb/aEI},

bEJ} Thus ΙΛJ = If]J ={aΛb/aEI, bEj}. It remains to show that 

In(JvK(  = (InJ)v(InK) for any I, J, K. How In (JvK)>(InJ)V (InE) 

in any lattice. But every element sΛ(bVc) (aEI, bE J, cEK) of In(JVK) 

is an element (aΛb) ν(aΛc) of (InJ)V(InK). Hence the reverse in- 

equality holds and the proof is complete.

Remark: In the above proposition we only required the fact that B be 

distributive and hence it is true in general for arbitrary distributive 

lattices.

We now proceed to define the motion of a Boolean lattice homomor­

phism. In the following B, C will always denote Boolean lattices. 

Definition 8: A mapping f : B—>C is called a Boolean lattice homomorphism 

if (1) f(xVy) = f(x)Vf(y) for any x, y in B.

(2) f(xΛy) = f(x)Λf(y) for any x, y in B.

(3) f(y~x) = f(y)~f(x) for any x, y with 0< x<y.

f is called a Boolean lattice isomorphism if in addition f is ono to ono 

and onto.

We note that in case B, C have units eB, cC respectively then a 

Boolean lattice homomorphism f · B—>C need not carry into cq, that is, 

f(eB) need not be ec. The following is an example illustrating thio fact.

Example: Let E be any non-empty sot and A any non-empty proper subset of E.
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Then R(S), the power class of S, under set inclusion forms a Boolean 

lattice with unit E. Consider the napping f: R (E)—>R(∏) defined ⅛r 

f(x) ≈ xnΛ for any Χ<Έ. Then

(D f(xnY) =xnAnxnA =f(x)nf(r).

(ii) f(xvr) = (xVY)n A ≈ (xflfA)V(YnA) = f(x)uf(Y).

(iii) f(Y-X) ≈YncxnΛ vΛth^<X<Y.

On the other hand f(Y) - f(x) = (YnA)n C(xnA) = YnA∏cx = f(Y-x). 
ε ε

Hence f is a Boolean lattice homomorphism but f(E)≠ E.

We distinguish the class of those Boolean lattices homomorphisms 

which carry the units into the units in the following definition. 

Definition 9: Let B, C be Boolean lattices with units eg, <¾ ro□pcctiv0¾7. 

A Boolean lattice h∞κnx>rphisιs f: D—is called unitary if f(¾) ≈ Cq. 

Remark: A unitary Boolean lattice homomorphism f carries complements 
into complements, that is, f(x1) ≈ (f(x))1 for any x in B where χ1 denotes 

the complement of x in B. This is so for f(x1) = f(¾~x) = f(e3)~f(x) 

≈ ec~f(x) = (f(x))1 since f is unitary. On the other hand if f iα a join 

and neet preserving nap which carries complements into complements then 

f is an unitary Boolean lattice homomorphism.

We now introduce a spacial class of Boolean lattice homomorphisms 

which have the pleasant property that when they are restricted to the 

class of Boolean lattices with unit they correspond precisely to the 

unitary Boolean lattice homomorphisms

Definition 10; Λ Boolean lattice homomorphisms f : B—>C is called proper 

if for any €6 C there exists b in 3 with f(b) > C

Clearly if B, C have units then any unitary Booloan lattice 

homomorphisms f between B and C is proper for then f(e) = ec>C for any eEC.

>1
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That the converse is true, that is, that the notion of a proper Boolean 

lattice homomorphisms coincides with that of an unitary homomorphisms for 

Boolean lattices with unit is established in the following proposition: 

Proposition 6; Let B, C, D bo any three Boolean lattices. Let f: B->C, 

g: C—>D be proper Boolean lattice homomorphism. Then (1) g.f: B—>D is 

a proper Boolean lattice homomorphism, that is, the composition of proper 

maps is proper, (2) If B, C have units eg, ec respectively then the proper 

Doolean lattice homomorphism f is unitary.

Proof: (1) Take any xE D. Since g is propor there exists y in C with 

g(y)>x· Since f is proper there exists s in B with f(z)>y. Since g 

is order preserving we have that (g.f)(s)>g(y) and g(y)>x. Hence 

g(f(s))>x. This moans that g.f is proper.

(2 ) Since f is proper there exists a x in B with f(x)>· ec. But x 

and thus f(e^)>f(x) since f is order preserving. Thus f(eg)> eg. But 

ec is the unit of C. Hence f(eB) = eC and f is unitary. This completes 

the proof.

2. Booloan Spaces.

Let E bo a topological space.

Definition 11; E is called a zero-dimensional space if the topology on 

Ξ is generated by the open closed subsets of E. E is called locally 

compact if each point of E possesses a compact neighbourhood.

Definition 12; E is called totally disconnected if for any two distinct 

points x, y in E there exists disjoint (open) closed sets A, B of E with 

x€A, yEB and AUD = E.

Proposition 7: A compactTspace E is totally disconnected if and only if
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it io zero dimensional.

Proof: (1) Let E bo totally disconnected. Let 0 be any open set of E 

containing a point x in E. By the total disconnectedness of E we have 

that for each point yE C 0 there exists open closed sets V(y) containing 

y but not x, ButCO is compact since S is. Hence there exists a finite 
n

number of open closed sets V(y( ),..., V(yn) withJ-7 V(yt) containing C 0. 

That is, xG/^Cv(yt ) 0. Hence there exists an open closed set con-

tained in 0 having x as a member. This establishes that E is zero- 

dimensional.

(2) On the other hand if E is zero-dimensional then E is clearly 

totally disconnected.

Definition 13» E is called a Boolean space if E is a zero dimensional 

locally compact Hausdorff space.

Concerning Boolean spaces we prove the following proposition.

Proposition The open and closed subspaces of a Boolean space E are 

Boolean spaces.

Proof: Since E is zero dimensional the topology on E is generated by 
open closed sets. LetR be a collection of open-closed subsets of E 

which generate the topology on E.

(1) Let T be a closed subset of E with the relative topology. Then T

is a Hausdorff space since 13 is a Hausdorff space. Take any x in T.

Then there exists a compact set K in E tilth xeK. KnT is then a compact 

subset of T containing x. Hence T is locally compact. Moreover, it is 
clear thatRnT = {OQT/O£(R} is a collection of relative open closed 

subsets of T which generate the relative topology of T since R generates 

the topology on E. Hence T is a Boolean space.
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(2) Let 0 be any open subset of E. Since any subspace of a Hausdorff 

space is a gain Hausdorff, 0 is a Hausdorff space. Take any x in 0. 

Since E is locally compact there exists a compact neighbourhood K of x. 

Then OnK is a compact subset of 0 containing x. Hence 0 is locally 
compact : Put RnO ={0/ RER}Then RnO is a collection of

relative open closed subsets of 0. Let A bo open in 0. Then since 0 
is open, A is open in E and hence there exists R in R with R<0. Then

0nλ = A. Thus RnO generates the relative topology of 0. Hence 

0 is a Boolean space. This completes the proof.

We now proceed to define a special class of continuous maps 

between Boolean spaces.

Definition Let E, F bo any two Boolean spaces. A continuous 

mapping f : E—>F is called proper if the inverse image of any compact 

set in F under f is compact in B.

Remark: The notion of a propar continuous map can be defined for arbi- 

trary topological spaces but we have restricted ourselves to Boolean 

spaces since we are interested in only such spaces.

Proposition 9: Let 3 be a Boolean space. Then the collection of all the 

compact open subsets of E is a basis for open sots.

Proof; Let L(E) denote the collection of all compact open subsets of E. 

Take any xEE and let G be an open subset with xEG<E. We want to show 

that there exists an xEL (E) with xEX<G. Since E is locally compact 

and Hausdorff there exists an open set Y with xEY<G and with the closure f 

of Y compact. If Y =fV we can take X = Y. Otherwise take 

an arbitrary point. Then x\=y and since E is zero-dimensional there exists 
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an open closed neighbourhood Z(y) of y with x not in Z(y). Now E = 
Z(y)uCz(y) and we have Γϊ = yu Ό^ΓϊΑζί?) / y^T YDCxJ’. Then 

since Py is compact there exists y( in pY/QCY with Ρΐ = 
1'0 O(pYnz(y, ) ). Put X = Yn/Vz(yt) =ΓTnnCz(y,). Note that

X is a subset of Y and Y is a subset of G. Hence X is a subset of G.

Also XE X<G. Moreover since X =ΧnΓυ, X is closed in P Y. Thus X is 

a compact subset of Py. But PY is compact in E. Thus X is compact open 

in E and xEX<G. Hence (E) is a basis for open sets and this completes 

the proof.

We use Proposition 9 in establishing.

Proposition 10: Any compact set K in a Booloan space E is the intersection 

of all the compact open sets of E containing K.

Proof: Let denote the collection of all compact open sets of E. Then 
because of Proposition 9 the set <£C£/la a basis for closed sets. 

Since K is a compant subset in a Hausdorff space K is closed. Hence K =
/K < C Clearly G R = TSaj. Take x£ T

and suppose x is not in K. Then there exists RoinR with C £>' Take 

any y£K then y£ C Sinco(^is a basis for open sets there exists 

R(y)ER with yE R(y) C Ro · Since K is compact there exists y1 ,..., 

yn in K with K< R(yt ) U...UR(yA)<CR Now each R(y) is compact open 

and hence so is R(y1)U..U R(yn). Now xET implies xER(y1 )U-- L>^(y^ ) 

and henca x£ C Ro · This contradicts the fact that Cf^'This complete· 

the proof.

The following proposition is an immediate consequence of Proposition 

10.
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Proposition 11: Let E, F be Boolean spaces. A map f : E—>F is proper 

continuous if and only if the inverse image of every compact open set in 

F under f is compact open in E.

Proof: (1) Let f : E—>F any map with the property stated. Since 

the collection of compact open subsets of F is a basis for open sets 

of F we have that f is a continuous map. Lot K be any compact subset of 
F. By Proposition 10, K =Λ|ι^Λ^ΒE R Then f-1(K) =Π 6'

But each f~1(R) with KCR is compact open in B. Hence f-1(K) is a closed 

subset of a compact set and hence f1(K) is compact. This means that f 

is proper continuous.

(2) On the other hand if f is proper continuous then by the very def- 

inition of a proper map we have f-1(K) is compact open for any compact open 

sot K of F. This completes the proof.

We conclude this section by showing that the composites of proper 

continuous maps are again proper continuous.

Proposition 12: Let E, F, G be Boolean spaces. Let f : E—>F, g : F—>G 

be proper continuous naps. Then the composite map (g.f) : E—> G- given 

by g(f(x) ) = (gf) (x) is proper continuous.

Proof: Since f, G are continuous maps so is the map (g.f). Wo check that 

it is proper. Let K be any compact subset of G. Since g is proper there 

exists a compact set T of F with g“1(K) =T. Since f is proper there 

exists a compact subset S of E with f-1(T) = S. Then (g.f)-1(K) = 

f-1(g-1(K)) = f-1(T) = S. Hence (g.f) is proper. This completes the 

proof.

3· Boolean Rings.

We introduce the notion of a Boolean ring by distinguishing those 
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rings which have the property mentioned in the following definition. 

Definition 15: A Boolean ring is a ring R each of whose elements is 

idempotent, that is, for each x in R x2 = x. R is said to be a Boolean 

ring tilth unit if H is a Boolean ring and there exists an element e in R 

with xe = ex = x for each X in R. e is called the unit of P..

Remark; It is clear that if a Boolean ring R has a unit e then it is 

unique for suppose e, e1 are two units in R. Then el = eel = e1e = e 

In the following proposition we list some of the important 

algebraic relations satisfied by elements of a Boolean ring.

Proposition 13: Let P. be a Boolean ring. Then

(1) x + x = 0 for each x in R, that is, every Boolean ring is of 

characteristic two.

(ii) If x + y = 0 then x = y for any x, y in R.

(iii) Every Boolean ring is commutative, that is, xy = yx for any x, y 

in R.

Proof: (i) (x + x)2 = x + x. This implies xx + xx+xx + xx=x + x.

Hence x + x = 0 using the fact that ^ = x.

(11) x + y = 0 implies x + y + y = y. Hence x = y using (1).

(iii) (x + y)2 = x + y. Hence xx + xy + yx + yy=x + y. Hence x + xy

+ yx + y=x + y. Thus xy + yx = 0. Then xy = yx using (ii).

Let R be an arbitrary ring. Introduce a relation in P. as 

follows: x<y if and only if there exists z in R with x = zy. This 

relation is known as the divisibility relation. In R the divis- 

ibility relation is clearly transitive. If R has a unit e then the 

divisibility relation is also reflexive for x = e.x for any x in R. 

This also means that x<e for any x. Moreover, 0<x for any x in R.
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In general the divisibility relation is not anti-symmetric. For example, 

in the ring of integers 1 is divisible by -1 end conversely, yet 

In a Boolean ring, however, the divisibility relation becomes a partial 

order. This becomes apparent when we proves

Proposition 14: Let R be a Boolean ring. Then x<y if end only if 

x = xy.

Proof: Suppose x = xy. Then take z = y in the definition of the 

divisibility relation. Hence x<y. Conversely suppose x<y. Then 

there exists a z in R with x = zy. Using the fact that R is a Boolean 

ring we got xy = (zy)y = zyy = zy = x; that is, x = xy. This completes 

the proof.

Proposition 15: In a Boolean ring the divisibility relation is a partial 

order.

Proof: (i) x<x for x2 = x. (ii) x<y, y< z implies x = xy, y = yz. 

Hence x = xy = xyz = xz, that is, x< z. (iii) x<y, y< x implies 

x = xy = xyz = xy = y. Hence < is a partial order.

We now introduce the notion of an ideal in a Boolean ring. The 

nation of an ideal in an arbitrary ring is defined similarly but we are 

interested here only with Boolean rings.

Definition 16: Let R be a Boolean ring. A non-empty subset I of R is 

called an ideal if

(1) I is a subgroup of R under addition, that is, for any x, y in R, 

x - yER.

(2) For any y in R, x in I we have yxEI.

Remark: Since a Boolean ring is commutative as we have seen we do not 

need to distinguish between left, right or two-sided ideals as one does 
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for arbitrary rings.

We distinguish contain classes of ideals in a Boolean ring as 

follows.

Definition 17: Let R be a Boolean ring and I any ideal in R. I is 

called prime if xyEI and xEI implies yEI. I is called a maximal 

proper ideal if I= end if J is an ideal strictly containing I 

then J = R.

Analogous to Propositions 3 and 4 is the following proposition 

which we now establish.

Proposition 16: Let 3 bo a Boolean ring and P any ideal in R.

(1) P is prime if and only if for any x, yER, xEP or y - yxEP, 

(2) P is prime if and only if P is maximal.

Proof;(1) Suppose P is a prime ideal. Take x, y in R. Then x(y-yx) = 0 

since R is a Boolean ring. Since OEP we have x(y-yx)E P. But P is a 

prime ideal. Hence xEP or y-yxEP. On the other hand let P bo an 

ideal with thE property stated. Suppose xyEP but xEP. Then y-yxEP 

and p and P is an ideal we have yEP.

(2) Suppose P is a prime ideal. Let M bo an ideal strictly containing 

P. Then there exists xEM with xEP. xEP implies by (1) y-yx€P for 

any y£R. Thus y-yx£N for any yER. However, N is an ideal and thus 

yxGM. Hence y = y-yxiyx is in ΣΙ for any y6P>. Hence M = R. This means 

P is a maximal ideal. Conversely suppose K is a maximal ideal of R.

Take xyEK and supposo xEM, Then since M is maximal the ideal generated 

by Μν^χ] 1α R. Then, in particular, y = m +^χ where R. Then 

xy = πκ + rx and since xy, mxGM and M is an ideal we have rxEM. Thus 

y = a + rxEM. This Beans M is prime. This completes the proof.
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Precisely as in Proposition 2 ono can establish that any proper 

ideal is contained in a maximal proper ideal. Ue now proceed to define 

the general notion of an algebra over a field.

Definition 18: Let K ba any field. A set R is called a K - algebra 

if (1) R is a ring, (2) there is a binary law of composition KxR—>R 

satisfying:

(i) a(r + s) = ar + as for any aEK, r, sER.

(ii) (a + b)r = ar + br for any a, b EK, rER.

(iii) (ab)r = a(br) for any a, bEK, rER.

(iv) er = r for e the unit of K and any rER.

(v) a(rs) = (ar)a = r(as) for any a€K, r, sER.

Consider the set R0 = (0, 1) end in this set introduce operations 

of addition and multiplication as follows: Put 0 + 0=1+1 = 0, 0+1 = 

1+-0 = 1, 0.1 = 1.0 = 0, 1.1 = 1, 0.0 = 0. It io clear that Ro under 

these operations is a Boolean ring. We will refer to it as the two clement 

Boolean ring. In fact we seo that RO is the field of characteristic two. 

Let E be any Boolean ring. Define a napping f : RO x R—>R by 

fi^ x) =Cx if < =16 Rq 

(.0 ifX = 0 C- Ro

It is seen then immediately that R with multiplication as defined is an 

R0 - algebra. Hence in the above way any Boolean ring R is an Rq - algebra.

We now introduce the notion of homomorphism for Boolean rings. 

Definition 19: Let R, S be Boolean rings. A mapping f : R—>S is called 

a ring homomorphism if (1) f (x + y) = f(x) + f(y) for any x, y in R and 

(2) f(xy) = f(x) f(y) for any x, y in R. In case R, 3 both have units 

eS respectively a ring homomorphism f from R to S is called unitary
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if f(ER) = es∙

Remark: If R, S have units eR, ES respectively then clearly any ring 

homomorphism f from R onto S is necessarily unitary. However, if f is 

into then f need not be unitary. For example let R0 be the two element 

Boolean ring and consider the Boolean ring R0 x R0 with addition and 

multiplication defined in the usual way·. Let f: R0 x R0 —>R x R 

bo defined by f((a,b)) = (a,0). Thon f is dearly a ring homomorphism 

but f is not unitary for f((l, l)) = (l,0)=(l,l).

We now introduce a special class of ring homomorphisms which 

have the nice property that when defined on the class of Boolean rings 

with unit they coincide with the unitary ring homomorphism.

Definition 20: Let R, S be eny two Boolean rings. A ring homomorphism 

f from R. into S is called proper if for any x∈S there exists y in E, 

with x≤f(y) where < stands for the divisibility relation in S.

Let R, S be Boolean rings with units eR, eS respectively. Then 

any unitary ring homomorphism f from into S is clearly proper for then 

f(eR) = eS>x for any x in S. We now establish that the converse of 

this statement is also true.

Proposition 17; Let R, S be Boolean rings with units eE, es respectively. 

Let f from R into S be a proper ring homomorphism. Then f is unitary. 

Proof: Since f is proper there exists y in R with f(y)>-e. Now e>Υ 

in R. Then since f is a ring homomorphism we have f(e)>-f(y). Since 

the divisibility relation is transitive we have f(e)>e. But eS is the 

unit of S. Ecnco f(e) = eS, that is, f is unitary.

We conclude thio section by establishing that the functional
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composition of proper ring homomorphisms is again proper.

Proposition l8: Let R, S, T be Boolean rings. Lot fs R—»S, g: S—> T 

be proper ring homoomorphisms. Then the composite function g.f : R—>T 

defined by (g.f)(x) = g(f(x)) io a proper ring homomorphism.

Proof: Take any xET. Since g is proper there exists y in 3 with 

fi(y)>x· Since f is proper there exists z in R with f(z)>y. Thus in 

all (g.f)(z) = g(f(z))^ g(y)^.x. Hence g.f is proper. That (g.f) carries 

sums into sums and products into products is clear since f and g do. This 

completes the proof.

4. Boolean Semi-groups.

In this section we introduce the notion of a Boolean semi-group 

and establish some of its fundamental properties.

Definition 21: A semi-group is a set C- together with a binary associative 

law of composition which we denote multiplicatively. A semi-group G is 

called a semi-group with zero clement if there exists an element 0 in G 

with Ox = xO = 0 for all x£G.

The zero element of any semi-group (if it exists) is unique for 

if 0 and 01. are two such then 0 = 001 = O1O = O1.. A semi-group G is 

called commutative if its law of composition is also commutative, that 

is, xy = yx for any x, y in G.

Convention: From now on whenever we speak of a semi-group we will always 

mean a commutative semi-group with zero element.

Definition 22: A semi-group G is called a Boolean semi-group if there 

is a unary operation defined on G which attaches to each x in G an 

element x1 in G such that (1) xx1 = 0 and (2) x1y = 0 implies yx = y.
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The following trivial statement io sometimes useful in proving 

equalities.

Proposition 19; Let G be a Boolean semi-group. Then xy1 = 0 if and 

only if xy = x.

Proof: Since G is a Boolean semi-group xy1 = 0 implies xy = x. Also 

x = xy implies xy1· = xyy·1· = x(yyl) = xO = 0. Hence the proposition.

Let G be any semi-group. In G introduce the following relation: 

x<y if and only if there exists a z in G with x = yz. This is the 

divisibility relation in semi-groups, As in the case of rings the divis- 

ibility relation in semi-groups is not a partial order. However, if G 

is a Boolean semi-group then ths divisibility relation is a partial 

order as the following proposition indicates.

Proposition 20: The divisibility relation in a Boolean semi-group is a 

partial order.

Proof: (1) x<x since xx1 = 0 implies x =xx. Hence < is reflexive. 

(2) Suppose x<y, y<z. Then since in (1) we seo that each element in 

a Boolean semi-group is idempotent we can say by Proposition 14 that 

x<y if and only if x = xy. Thus x = xy, y = yz. Hence xs = (xy)z = 

x(yz) = xy = x. Thus the transitivity of the relation is established. 

(3) Suppose x<y, y<x. Then x = and y = yx. Hence x = y and the 

relation is anti-symmetric. This completes the proof.

Proposition 21: Let G be a Boolean semi-group. Then the transformation 

x—>x1 which attaches to each x in G the element x1 with xx1 = 0, xyl = 0 

implies xy = x is one to one, onto and order inverting where G is partially 

ordered by divisibility.
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Proof: (1) To show x—>x1 is ono to one and onto it is enough to show 

that x1 = (χ!)1 = x, We show that x<x11 and x11̂  x. Since G is a 

Boolean semi-group we have that x1x11= 0. Hence by Proposition 19,
x11x = x11 and thus x11< x for all x in G. Note that (x11)1 = (x1)11 

for (x11)1 = ((x1)1)1 = (χ1)11. Now from the first part of the proof

we have that (χΐ)1^ χΐ. Hence (χϋ)1^ x1. Then xx^ = 0.

Therefore χ(χϋ)^ = 0, that is, z<x11. Finally since the divisibility 

relation is a partial order we have x = x11

(2 ) Now x y if and only if xy1 = 0. That is by (1) xy1 = 0 if and 

only if xl^yl = 0 = y1x. Hence x<y if and only if y^l = A that is, 

if and only if y1<x1. This completes the proof.

Let G, H be Boolean semi-groups ·

Definition 23: A napping f from G into H is called a Boolean semi-group 

homomorphism if the following conditions are satisfied:

(1) f(xy) = f(x) f(y) for any· x, y in G.
(2) f(x1) = (f(x))1 for any x in G.

We conclude this section by showing that the composite of Boolean 

semi-group homomorphisms is again a Boolean semi-group homomorphism.

Proposition 22: Let G, H, J be Boolean semi-groups and f: G—>H, g: H—>J 

bo Boolean semi-group homomorphisms. Then (g.f): G—defined by (g.f)(x) 

= g(f(x)) is a Boolean semi-group homomorphism.

Proof: (1) (gf)^) - g(f(:y)) = s(f(x)f(y)) = (gf)(x)(ef)(y), for any 

x, y in G.

(2) (gf)(x1) = g(f(x1)) = ^(fW)1) = ((g.f)ix))1.

Hence g.f is a Boolean semi-group homomorphism and this completes the proof.
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5. Categories and Functors.

In this section we introduce the genoral notion of a category.

The definition to bo given is motivated from considerations of common 

properties of collections such as

(i) topological spaces and continuous mappings,

(ii) groups and their group homomorphism,

(ill) modules and their module homomorphisms, etc.
Definition 24. A category is a class Lof objects in which the following 

is satisfied: With any pair X, Y in £ there is associated a set H(X,Y) 

called the set of maps St X—^Y such that for any three objects X, T, Z 

in L there is given a mapping H(X,Y) XH(T,Z)—>H(X,Z) denoted by (f,g) 

—>(g· f) which satisfies:

(1) If f: X->Y, g: Y->Z, h: Z->T then hr (g.f) = (h.g.).f.

(2) For each X in there exists a map o^ in H(X,X) such that ex = f = f 

for all fEH(y,y) and f · ex = f for all f&H(X,Y).

An element in H(A,A) for any A in is is called an identity map. 

The objects of are in one to one, onto correspondence A—>H(A,A) with 

the set of identities. Wo now introduce the notion of a functor as maps 

and let T bo a function which

between categories.

Definition 25: Let L and 

maps the objects of into the objects of and, in addition, assigns to 
each map f in jp a nap T(f) inD . The map T is called a covariant 

functor from to if it satisfies the following conditions: 
(1) If f€ H(A,B) then T(f)^H(T(A),T(B)) for any A, B inf .

(2) If eAG H(A,A) then Τ(οΛ) ~ ^(a) object A in £ .

(3) If f€H(A,B), βέΗ(Β,θ) for ary A,D,C in then T(g.f) =T(g)T(f).
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The map T is called a contravariant functor from to D if the

above conditions are replaced by
(11) If fE H(A,B) then T(f) C H(T(B),T(A))

(21) If eA&H(A,A) then Τ(θΛ) = σρ(Δ)

(31) Iff€H(A,B), g£H(B,C) then T(g.f) =T(f) T(g) where A,B,C are 

any objects in ·
If T is a functor from to cB and S is a functor from cB to f 

then they may be composed in the obvious manner to form a functor ST from 

to . If T, S have sane (opposite) variance then ST is covariant 

(contravariant). In view of property (2) above we see that a functor 

T is completely determined by the function T defined for naps only. 
Thus a covariant functor is essentially a momomorphism of the naps in L 

to the maps in D subject to the condition that identities be napped to 

identities. One functor that always exists is the identity functor Ig 

defined from G->G which keeps each object end map of G fixed.

In the ensuing chapters we will see examples of contravariant and co­

variant functors.

We now proceed to defino transformations between functors.

Definition 24: Let T end S be two covariant functors from the category 
to the category . A function P which assigns to each object C E & 

a map P(C) & D such that 

(1) /^(C) : T(C)—*S(C)

(2) If f : Cx—^C2 then P (C2) T(f) =S(f)P (0χ)

is called a natural transformation of the functor T into the functor S.

In case T and S are contravariant functors the condition (2) is replaced by
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(21) if f έΗ(C1, C2) then Γ (Οχ) T(f) = rfc2).

If the map P (C) has an inverse P (C) such that P(C) P (C) and 

ρ (c)p(c) are the identity naps for each C E C then P is called a 

natural equivalence of the functors T end S.

Condition (2) implies that commutativity hold in the following 

diagram:

nW
sw

It is clear that the notion of natural equivalence introduced 

above is an equivalence relation. We use this notion to define equiv­

alence between categories as follows:
Definition 25: Let G and D be categories. P and are said to be 

equivalent if there exists a covariant (or contravariant) functor S 

and a covariant (or contravariant) functor T : p such that the

composite functor ST —>Dis naturally equivalent to the identity 

functor ID on D and the composite functor TS : G—G is naturally 

equivalent to the identity functor 1G on G .

In the above we have introduced the notion of proper maps 

between Boolean lattices. Boolean spaces, Boolean rings and Boolcan 

semi-groups. In each case we have established that the composite of 

proper maps is again proper. This fact enables us to give several 

examples of categories.

EXAMPLES OF CATEGORIES

(1) The first example of a category is composed of Boolean lattices and 

Boolean lattice homomorphism. The objects are Boolean lattices and the 
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imps are Boolean lattice homomorphisms.
(2) The class G of Boolean lattices and proper Boolean lattice homo- 

morphisms forms a category.
(3) The class D consisting of Boolean spaces and proper continuous 

maps constitutes a category.

(4) The class of Boolean rings and ring homomorphisms constitutes 

a category.

(5) The class £ consisting of Boolean rings and proper ring homo- 

morphisms forms a category.

(6) As a last examplo of a category we note that the class consisting 

of Boolean semi-groups and Boolean semi-group homomorphism constitute 

a category.
Remark: In the ensuing chapters we will establish that the categories p 

and of examples (2) and (3) are equivalent, and that p is equivalent 

to the category · It should bo noted that the notion of proper 

homomorphism is such that when ono, for exanple, restricts the objects 
in p to Booloan lattices with unit end the objects in if to Boolean 

rings with unit, the proper Boolean lattice homomorphisms become 

unitary Boolean lattice homomorphisms and the proper ring homomorphisms 
become unitary. Hence when we establish that the categories E and E 

are equivalent we automatically establish that the categories of Boolean 

lattices with unit and unitary homorphisms is equivalent to the 

category of Boolean rings with unit and unitary homomorphisms.



CHAPTER I.BOOLEAN LATTICES AND BOOLEAN SPACES.
1. The Ultrafilter Space of a Booloan Lattice.

In this paragraph we study the consequences of introducing a 

topology on the set of all ultrafilters of a Boolean lattice B. The 

corresponding topological space that results will bo referred to as 

the ultrafilter opace of B. The rain result we will obtain here is 

that the ultrafilter space of a Boolean lattice is a Boolean space. 

We will also characterize the open, closed, and compact open sets of 

the ultrafilter space of B in terms of the ideals and filters in 53.

Let B be a Boolean lattice end let -Ω-—Λ(Β) denote the set 

of all the ultrafilters of B. For each a in 11 define (l)-fL(a) = 
■^ϋ/aCU Lot(^ = p^-(a)/aEBj . Then has the properties

which enables it to be used as a basis for a topology on_CL : namely 

(1) .Ο. (α)ΠΛ(Β) =Jl(aAb), that is, R is closed under intersection 

(ϋ)ϋ(^=-Π-. Property (ii) is obvious. Wo check: (i). Note that 

aΛbέU if and only if a&U and beU since U is a filter. Tide estab­

lishes (i). Let 0(R^) denote the topology generated We will

speak of the topological space (O.,O(Jt)) as the ultrafilter space of D 

For any ideal I in B defines
(2) 7^(1) ={u/UGA> ΗΠΙΦ^}

(3) JdW ={υ/ϋ£Ϊ1, um =

25.
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For each filter F in B define:
(4)£(F) »£v/U€-IL , U2FJ

The main properties of the ultrafilter space of B are established 

in the following theorem.

Theorem 1 : Let B be a Boolean lattice and Λ its ultrafilter space.

Then

(χ)_Ω_ is a Boolean space.

(ϋ)_Ω_ io compact if and only if B has a unit.

(il l) The character of_Q_(i.e. the least cardinal number belonging to 

a basis injQ_) is equal to the cardinality of B if B la infinite.

(lv) Let X be any subset of _Q_ . Then the closure of X in _fL , 
denoted by fx, is^U/VeJl , u-^vj

(v) The compact open sets of_il.are precisely the sets -Ω- (a).

(vi) The compact sets of-fl· are precisely the sots (F).

(vii) The open sets of-Ω. are precisely' the sets(I).

(viii) The closed sets of_iL are precisely the sets<D(I).

Proof: (i) We establish first that the sets -Q. (a) are compact. Let

-fi(a)S U-^ίΧ) for sone subnet L of B but suopose_Q.(a) strictly 
xeu

containsΙΚχχ)u ...υ-Ω-(^) for any finite number n with
Let I bo the ideal generated by L in B. Then I =^y/y£ D, y< VZ with 

Y<L and Y flnltsj" · Hence by the definition of I and our supposition 

a>y for each y in I. Let H =^z/a = a^y, y£I |. Since I is an ideal, 

H is a proper filter basis with a in H. Let U bo an ultrafilter contain— 
ing H. By construction a£U and y^U for any y in I. Hence U<£U&(x).

This, however, is a contradiction for tl€-il_(a) and-Ω-(a)^ ^-Ω_(::). Hence 
L.

supposition is false and the sets Ό- (a) are compact. Take any UE-Ω-



and pick an arbitrary point aEU. Then -CL (a) is a compact basic open 

neighbourhood of U. Hence each point of Π- has a compact neighbourhood, 

that is, it is locally compact. Let U, V bo any two distinct points 

of _TL . Thun there eclats a£U with a^V. implies since V is 

maximal proper that there exists a bGV u-ith bAa =0. Then 11(a), 

jfL(b) are basic open neighbourhoods of U, V respectively and these 

neighbourhoods are clearly disjoint. Hence Λ is a Hausdorff space.
In a Hausdorff space any compact set is closed. The set(R=£-£l(a) /a£B 

which generates the topology of/L is thus composed of open closed nets. 

Hence_Q_ is a zero dimensional space. Collecting all the results 

together we have established that Ω ss a Boolean space.

(ii) Suppose B has a unit o. Then-Λ =Ω(e) by (i)Ω(e) is 

compact. Hence-Ω. is compact. Conversely supposeΩl is compact. Then 
there exists some finite subset A of B withΩ. = U^Ωl(a) / ae A J . Let 

VA = b. ThenΩ. =Ω-(b). Hence b£U for each U inΩ. Tills means b 

met be the unit of B since the unit is the only element which belongs 

to every ultrafilter of B. Hence B has a unit.
(ill) Let B bo infinite. Let d? =Ωp)-(a) / aGB J find consider the map f: 

B—given by f(a) =_Ω_(α). This nap is clearly onto. We show that 

it is also one to one. Take a$b in D and without loss of generality 

(suppose οψ a^b. Let Γ be the filter generated by a and let U be an 

ultrafilter containing F. Then U€Ω(a) but U^Ω(b). That isΩ(a)4=Ω(b). 

Hence f is one to one. Since(J^ls a basis for the topology cnjTl. we now 

have that the character of Ώ. is less equal the cardinality of B = I & I 

On the other hand, suppose Gj) le a basis for_Ω . Then eachΩ(a)
1 VC I
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being open is the union of appropriate . The compactness of.Ω (a) 

yields indices^,...,with-Ω(a) = U ; Slnce ovory-Ω. (a) is the 

union of a finite number of G· s the cardinal number of R , docs not 

exceed that of the basis in question using the fact that B is infinite. 
That is ft f G^C- ΐ} Hence the character ofΩ is equal

to the cardinality of B.

Remark: In case B is a finite Boolean lattice then /d/ = 2n for some 

natural number n >.0 . Hence B has n minimal non-zero elements say 

a^,...,an. Each ultrafilter in B is principal and is generated by one 

of the elements ^,...,0^. Then-Ω has n elements; every subset of-Ω 
is open and a basis for the topology on say the set £Ω4 (a^),...,-^-(an) 

is composed of n elements. Thus in the case B is finite the character 

of-Ω_ is strictly less than the cardinality of B.

(iv) Let X be any subset of . By the definition of closure wo have 
Px = pj/UtΩ. , -^(a)Q for each α€ϋ^ .

Let Ϊ =^U/U &Ω, . We must show that PX = Y. Suppose ϋ € fx.

Then-Ωl(a)r) Χ= φ for each aEU. Hence for each a in U there exists a V 

in X with aE V. This implies that for each aEU a^U^V, which means 

that U€Y. On the other hand suppose UEY. Then for each aEU there 

exists a VEX with aEV. This moans that U EPx, Therefore Πx = Y. 

(v) In (i) we showed that the setsΩ(a) wore compact. Those sets are 

open by definition. We now establish the converse. Let 0 be any compact 
open set ofΩ. Then 0 open implies 0 = iJΩpl (a)/aG A ]· for sone 

suitable subset A of B. Since 0 is compact there exists a1,...,an in A 

with 0 =LΩW-(at) =ilΩ(ai*V...van). Lot b = a^v...v^. Then 0 =Ω(b) 

required.
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(vi) We now show that sots of the form J (F) are compact. We note 

trivially that (F) =ΛΐΩ(α)β Since cachXl(a) is a closed set wo have 
αeF

that (F) is closed. Also £ (F)<(l(a) for each a in F. Hence J (F) is 

a closed subset of a compact set and hence (F) in compact. Conversely, 

let T bo any compact subset ofΩ . T compact implies, since-Ω- is a 

Boolean space by (i), that T = (a)A≤Ω̂-(c∙) applying (v) and
Proposition 10 of the previous chapter. Let F “^a/a&B, T≤-Ω-(a)J .

It is clear that F is a filter in B and 2 (F) = ^U∕U G∙Λ∙, U≤fJ =∩ -Ω-(a). 

Hence T ≈ ζ (F).

(vii) We first show that any set of the form√⅛(I) i□ open. Dy defin- 

itionX(I) = { U∕VG√λ, U∩I±Φf. We show that//(I) ≈U,-∏-(a).

Take any UC,Λf (I). Then there exists a∈I with a∈U, that is, U∈-Ω(a). 

Hence U is in the right hand side. On the other hand take any ultrafilter 

U in the right hand side. This implies there exists aEI with a∈U, that 
is, UnII ≠ψ5. Hence our claim is established and∕M(I)is open. Con­

versely let 0 bo any open set forΩ- . Let I = £ ¾∕αtB,n-(a)≤ θj .

Then I is non-empty set, for example o£I, and I is clearly an ideal.
Also since 0 is open and the □cts-Ω- (a) is a basis we have 0 "⅛jl<a)∙ 

We now show that 0 ≈∕∕(∑)o Take any UEc 0. Then Utlλ(a) fox* some a∈-I. 

Hence ΜΙ 4= Ψ and thug ϋξ/f (I). On the other hand if UG√Y (I) then 

there exists a∈I with U∈n-(a)≤0. This establishes that the sets∕^ (I) 

are precisely the open sets of-∩- .

(viii) The setstf9 (I) are now seen to bo precisely the closed subsets 
of -Ωsince for each ideal I in B,z^(I) ≈ Qk∕∕(I). This completes the 

proof of the theorem.
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Theorem 1 has given us an insight into the topological features 

of the ultrafilter space -Ω- of B in terms of the lattice theoretic 

notions of filters and ideals. A fact of additional interoat is given 

in the next proposition.

Proposition 1 : Let B be any Boolean lattice andΩ its ultrafilter 

space· Let F, G,R, partially ordered by inclusion, be the lattices 

of open, closed and compact open soes respectively. Let denote the 

lattice of all ideals in B. Then
(i) Each of the lattices, F, G are lattice isomorphic to J , the 

isomorphism f from J to F being given by f(I) =M(I).

(ii) The lattice (R) is isomorphic to B by the mapping f: B—given 

by f(a) =-Ω(a).

Proof: (i) Consider fs 3—F given by f(I) =M(l). For any I, J 

in 9 we have by Proposition 5 in the previous chapter that IV J = 

•^aVb/aGI, bEjj· » “^aAb/a&I, be-jj". We now establish 

(1) (I) (J)
(2) Μ ωηΜω bM(w)·

Regarding (1) : Take any ϋέ/ΐ (I)u//(J). Then Η<ϊΐΨ φor ϋ<| 

Hence Un(IU J) = φ and thus Un(IVJ)4=/ . Therefore U6^(IV J). 

On the other hand take U (IVJ). Then UO(IV J)#^· Then there 

exists aEU with a = sVt for some s in I, t in J. Since U is an ultra­

filter cither b or t is in U. Thus either U<)I ^φον νΓυ^φ· Thero- 

fore VtM (I)u//(J). This shows (1).

.DegardinK (2) : Take uEM (ΐ'ίΠ/Κ.^· Then U/]I and are both 

non-empty· Pick aeUnI, b6b'/)j. Then aAb£IAJ and nAbtH. Hence 
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UH(I Λ J o Thus U β/ί(ΧΛ J). Conversely take any Uί?7(Ι Λ J).

Then there exists a£U with a = a Λ t where sGI, t6-J. Then s 

and t&U/VH . Thus This proves (2). (1) and (2)

together imply that the mapping f is a lattice homomorphism. Moreover 
f is clearly onto. Next take I, «J in 9 with 1^4 J. Then without loss 

of generality there exists beI with b^J. TJow//(I) j
= Up^-(a)/aE«7^ . Since b^<J,-£L(b) is not contained in«/M(J) 

but is contained in/M(I). Hence/YiI) =^//(J). Thus f is one to one. 

This establishes that f is a lattice isomorphism.

(ii) Consider the map g: B-»$.given by g(a) =_fL(a). By part (i) we 

have that-CL(aAb) =_Ω_(α)/^-Ω-(Β)? VL(aVb) =-^-(aJU^b)since

-Q-(a) =^((a)) where (a) is the principal ideal generated by a. Hence 

g is a lattice homorphisms. In Theorem 1 we established that the 

mapping g was one to one and onto. Hence g is a lattice isomorphism.

It follows directly from Proposition 1 that the lattice of 

all the compact open subsets of Ωl is a Boolean lattice.

2. The Boolean lattice of a Booloan Space.

In the last section we saw that the ultrafilter space of any

Boolean lattice is a Boolean space. We now proceed to establish the 

counterpart of Theorem 1.

Theorem 2 : Let E be a Boolean space. Then

(i) The set <^-(E) of compact open subsets of E partially ordered by 

sot inclusion is a Boolean lattice in which meet is set intersection, 

join is set union and Boolean complement is relative complement.

(ii) The character of E is equal to the cardinality of <2r (E) if E is 

Infinite.
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(ill) The ultrafilter spaceΩ-of ^(U) is homeomorphic to E, the 

hcomomorphisms f: E—^-Ω- being given by f (x) = F(x) where F(x) =

(iv) The filters in the Boolean lattice (Z) are preciseIy the sets 
ϊ·'(Κ) = £ V/ki V 6 £>- (s)j· where K ranges over all the compact subsets 

of S.

(v) The ideals in (E) are given precisely by the sets I(0) = 
[v/o 2X/e^(E)J where 0 ranges over all the open subsets of S. 

Proof: (i) Take any X, Y in (B). "hen since 3 is a Hausdorff space 

X, Y are closed. Thus XnY is a closed subset of a compact set X and 

hence ΧnY is compact. Also XnY in open since Z, Y are open. Thus 

Χ/1Σ& ^(λ). Also since X, Y are compact open so is ΧuY. next take 

any X, I in &(£.) XGI. Then Y - X = Yn C?x is an open-

closed subset of the compact set Y. Hence Y ~ X is coinpact open and 

hence belongs to^iE). since sat intersection and set union distribute 

over each other we have that (Ξ) is a relatively complemented, dis- 

tributive lattice. Also X for any X6-^>-(B) and φ is compact open. 

Hence (E) is a Boolean lattice.
(ii) Let E be infinite. Let^G^ ljbo any basis for open sets of E. 

Since by Proposition 9 of the previous chapter & (Σ) is a basis for open 

sets of K the character of E is less equal the cardinality of (E). 

Let X be any member of Λ-(ΐ’). Σ open implies X is the union of a suitable 

number of G’s. The compactness of X then yields indices* χ,·.. with 

X = LJ <r^.· o Hence every memberr of *?λ(Ν) in the union of a finite 
Cxi 1

number of elements from the basis under consideration. Since E is 

infinite this means H· Hence the character
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of E is e^ual to the cardinality of

Remark: In case E is a finite Boolean space then the Boolean lattice 
J&CE) is finite, say /<&■(£)/ = 2n for some n>o. Then (K) has n 

minimal non-zero members any Χ^,,.„,Χη and every member of2£-(E) is 

a union of suitable Χ2>···>^η· By Proposition 9 in the previous chapter 

& (E) is a basis for open sets. Hence X^,... is also a basis for E

and the character of E in this case is then strictly loss the cardinal­

ity of L (e)

(ill) Consider the mapping f:

.is as stated. F(x) is clearly a filter in oZj- 

in ^L- (E) with F(x)<F. Take any X in F. Let

Lot F be ny filter

Then g is a system of closed sets end is a proper filter basis. Also 

each member of is contained in the compact set X. Hence

ί Αγ = Γ xV for take any n in E with a=: x. Then since E is a
xc-y L J

Hausdorff space which has L (E) for a basin there exists compact open

Nov

neighbourhoods W of a and Y of x with Wn Y =

and hence ΤΙλιβΓΊχ = [:Λ
χι-y x^y 1 J

Tils means 'his implies

that is, x&X. Hence X€ F(x) and F£F(x), that is, F 

fore F(x) in an ultrafilter and hence belongs to_fl ,

There-

the ultrafilter

space of Xr (E). Take x, y two distinct points of E. Then since E is 

a Hausdorff space andir(E) is a basis for open sets, there exists X, Y 

in <&(E) with xEX and yEX. Hencee F(x)\=F(y) f -3 one to one Next 

let F be any ultrafilter inL(E). Then by a similar argument as above

ΛΊ X ^Φ· Take any point x€ j [x. Then clearly F<F(x). But F
Xe p ' Xf I-

is maximal proper and hence F = F(x). Thia shows that the nap f is onto.



Take any Χβ^ίΕ). Then f(X) = |ρ(χ)/χ&Χ^ =f F(x)/X&F(x)j" =J2. (X)

a basic open set in -CL . Hence f is one to one, onto and carries basic 

open sets of B into basic open acts of Ω . Hence f is a homeomorphism, 

(iv) Let K be any compact subset of E. Then F(K) as stated is cer- 

tainly a filter in L (E). On the other hand let F be stated filter in 

^-(D). Put N =^χ/χ&Ξ, F(x)3 FJ . The set M is the inverse image 

under the mapping f of part (iii) of the set K = £ F(x)/F(i:)G-i2- a 

F(x)3FJ · By Theorem 1, K is compact and since f is a homeomorphism 

We have that M is compact. Moreover F(j) = F. To establish this, take 

any V&F and then since xeM implies F(x)^ F we have V6F(x). This 

means xEV for any xeM. Hence li<V. Therefore V&F(x). On the other 

hand, take any VGF(K). Then x£V for each x&M. That is VtF(x) for 

each xEM and thus V€/Q F60. Dut by Proposition 2 of the previous 
χί/Ά

chapter we have /O Nk)=F. Hence VeF. This establishes (iv). 
AC-ίΛ

(v) For any open set 0, ϊ(θ) is certainly an ideal in ^2>-(D). Cn the 

other hand, let I be any ideal in L(e). Put 0 =L/x. Then 0 is an 
XCL

open subset of E and we show I(0) =I. Take any VeI. Then V<O 

trivially and hence VeI(0). Conversely take any V&I(0). Then 7^0^L7X .

The compactness of V implies there exists Χχ,...,Κη in I with ...UX.,.

Since I is an ideal X1V . G I and thus V6I. Hence the sets I(o) 

describe precisely the ideals in oL(3). This completes the proof.

Theorem 2 has given us a complete description of the ideals and 

filters in the Boolean lattice of compact open subsets of a Boolean space 

E in terms of the topological properties of D. Theorems 1 and 2 to- 

gether have shown that the ultrafilter space of any Boolean lattice is a 

Boolean space and conversely that any Boolean space F. given rise to a 



boolean lattice whose ultrafilterr space is homeomorphism to M, finally 

we have the following proposition analagous to η 1. "o state

it hero without proof since its proof is given in the manner as

Proposition 1.

Proposition 2 : Lot E be any Boolean. space and l;t .£ (."} La its 
lattice of compact open sets. Then (1) JZ:.e ideal lattice 5 of/J"(S) 

is lattice isomorphic to the lattice of all open σ-ZzeAz of L, t’.:e 

inc^orphiBL-i bning given by attaching to any open set 0 of 1 tho ideal 
Z(0) in 5 · the sublattice in 5 conaisting of all the principal 

ideals of ^(3) is a Boolean lattice isomorphic to

3. Equivalence of Categories,

Let denote the category whose objects are Boolean lattices 

and whose maps are proper Boolean lattice homeomorphism Let^ denote 

the category whose objects arc Boolean spaces and \i one mans are proper 

continuous mappings. In this section we establish that the categories 
ίρ and Dare equivalent.

Let D, C bo any two Boolean lattices and 1<Λ_Ω_(ϊ3),-Ω-(c) 

denote their respective ultrafilter spaces. Let f: B—>C bo a proper 

Boolean lattice homeomorphism. Then f gives rise to a map fΩ 5Ω(C) 

Ω. (D) defined as follows:
) Ο{:^£Β» L’cj

for any \Jq in -H-(O). Since f io a proper homemorphism and Uq is a 

filter, f*1(U£ )+^· Moreover f“1(N^ ) is an ultrafilter in B since 

f is a Boolean lattice homeomorphism and U in an ultrafilter in C. Thus 

Λζι_(^Ο ) ia a member ofΩ (B). Tako any basic open setΩ(a) in Ω (D).



Then ^(a)) “ UgAe VDf f =/L(f(a)), a basic 

open set inΩ(C) where f^U^) — Uy an ultrafilter in 1J with aeUβ.

Hence the inverse image under fn. of any basic open set ίηΩ(Β) is 

basic open inΩ(C). Hence is a continuous map. Since the set 

of allΩ(a) as a ranges through B characterize the compact open sets 

of -Ω- (B) we have by Proposition 11 of the previous chapter that 2 

ip proper continuous.

On the other hand let E, F be any two Boolean spaces and let 

^•(3), <Zr(P) denote their respective Boolean lattices of compact open 

sets. Let f : E—>F be a proper continuous map. Then f gives rise

to a map £^z (F)—*2r(E) defined by — f”1(X) for any X in & (F)

Since X is compact open and f is propor continuous we have that f-1(X) 

in compact open and hence belongs to (S). We proceed to show that f 

in a proper Boolean lattice homomorphism. For any X, Y inL-(F) we have

(1) tyzrw = ί-ΐ(χηγ) “ f"1(x)n r^Cf) = q?),

(2) ^(XVy) = f“!(XVY) = f-1(l)U fl(Y) = 2^^^}. 

If X, Ye^(F) with^C X<Y then

(3) f^_(Y-X) = f”1»-!) = f"1^) - f"1^) “ f^(Y) - f^(X).

Hence 2γ in a Boolean lattice homomorphism. Let X in LE) be 

arbitrary·. Then f(x)= Y is a compact sot in F since 2 is ccntinuous.

Take a compact open set Z in F with Z. containing X. Such a Z exists 

since Y is compact and L(F) is a basis for open sets of F. Then 2 ίs 

inL-(F) and fx_(Z) = f-1(2) contains f-1(Y) =X. Hence 2L is a proper

Boolean lattice homomorphism.



Diagranstaically we have the following situation:

The main result of this section is the following theorem, 

Theorem3 : The correspondences D—^D_(fi) ) and 13—^^(S)?

- * J x * -Z- J
are contravariant functors T : and 3 : which establish
the equivalence of the categories £ and D .

Proof: (i) Let A, B, C be Boolean lattices. The map T is certainly

well defined. Also we have,

(1) if f £H(A,B) then T(f) = 2^ H(4.(B),-<L(A)) = H<7( ν,Τ(Λ)).

(2) if oAt H(A,A) then T(c;) “ (o^Jl- (A)) = Of(A)·

(3) Finally suppose f&II(A,B) g6H(D,C). Vo must show that T(gf) = 

7(f) T(g). Itow T(gf) = (gf)^ and T(f) T(g) = Honco ;;e need

to show that (gf^iUg) = (fa· (Uc) "Co-G^Ug)) ^°r any Uc 
inΩ(C). Now (cf)n.(Uc) = (gf)"1(Uc) =£x/:c£A, g(f(::)) 6 Ugj· and

a ^(β”1^))· Take any y in  (g.^Uq). Then g(f(y)) = u 

for some ueUc. This means f(y)fecrl(u), that is, y6i”1(i“1(u)). Hence 

y€ir1(g”1(Uc)) “ Cin, •r1fl_)iuc)· On the other hand take any "&(£α_ ·επ_) 

(Uc)o Then x€-(f”1c”1)(u) for some uEUc. This implies ::&f“1(v") where 

v6{f1(u). Hence f(x) = veE“1(Ug)· Thus g(f(x)) = UGUC. Therefore 

x€(gf^£Uc). Hence we have established that (gf^iVg) = (f^. i'^JCt'c) 

for any ϋ0&-Ω_(θ). Hence T(gf) =T(f) T(g), that is, T is a contra- 

variant functor fromL to D.
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(ii) Let E, F, G be Boolean spaces.

(1) if f GH(S,F) then S(f) = f^6 H(Z-(F),^- (S)).

(2) If H(E,B) then S(en) 6 H(^-(B),^(e)) =

(3) Finally suppose f £H(S,F) end g6H(F,G). We must show that

S(ef) = S(f) 8(g). Thus we need to establish that (gf)^(X) = f^ (g^(Z)) 
for any X in^r(G)· How (eQg.(X) = (βί)"1^) =^x/x6E, g(f(x))6 xj- and 

f^(E^(X)) « f^E-^X)) “ {^({Γ1(χ))^χ€Χ^ . Take any y 6 (gf^X). 

Then g(f(y)) = X for some xg-X and thus yC g“\f”\x)) for some xe X.

Therefore yg (gf)^_(X). On the other hand if (fr'g^)^), then 

y £“1(g"1(x)) for some x£X, Hence g(f(y))6X which implies y e (Ef)^_(X). 

This shows that 3(gf) = 3(f)s(g), that is, S is a contravariant functor 
from D to G.

(iii) Since S, T are contravariant functors, the composites ST and TS 

are covariant functors on £ , respectively. Let Ig , 1D denote the 

identity functors on L , ,D respectively. In order to establish that the 

categories and 0 are equivalent we must share that there is a natural 

equivalence of the functors ST and I and a natural equivalence £ 

of the functors TS end Ig . In Proposition 1 wo saw that any Boolean 

lattice B is isomorphic to (Ώ-(Β)) the isomorphism i(B) being given 

by i(B)(a) =Ω.(a), Define a map which assigns to each B e (p the

map iB: ^(B) —>ST(B). Let B, C be in £ and let f : B —> C be a proper 

homomorphism. We show that ic f = (fn.)^^· Take any aeB. Then 

(ΙξίΧβ) = ic(fia)) = Ω (f(a)), the compact open set inΩ (C) 

determined by f(a). On the other hand we have (fn-^igia) = (frzJ^ (-^(a)} 

= f^-(ZL(a)) =lL(f(a)). Hence icf = (fa. ^1β· Thus is a natural 

transformation of the functor I6 into the functor ST. Also for each 
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B f U , the map 1(B) being one to one and onto has an inverse. Hence 

is a natural equivalence of the functors ST and I6 . We now show that 

there is a natural equivalence of the functors T3 and 1B. For each

E ED let i(E) denote the homeomorphism between E andΩ(c&(E)) given 

as in Theorem 2. Consider the map I which assigns to each E in the 

map i(E) : 1^ (B)—=?>T3(B). Then take any E, F in and let f : E—>F 

be a proper continuous map. We now show that iFf = (fiB. Take 

any x in S. Then ip(f(x)) = F(f(x)) - £Y/f(x)£YGZ-(F)^ . On the 

other hand (f£_^_is(x) = (f^. (F(x)).
= f^T/x &Ϊ ^(3)}

= £ z/f(x)GZ (-£&)]■

Hence ipf = (f^)^^· Since for each E ln^, i(B) has an inverse 1(E) 

with i(E)i“1(E) and 1*Ί(Ε)1(2) the identity maps, ζ is a natural 

equivalence between the functors TS and IB . Hence the categories £ and 

are equivalent. This completes the proof.

As a direct consequence of Theorem 3 we observe that a Boolean 

lattice is determined up to isomorphism by its ultrafilter space, that 

is, two Boolean lattices are isomorphic if and only if their ultra- 

filter spaces are homeomorphic. Moreover the group of automorphisms of 

any Boolean lattice is isomorphic to the group of homeomorphisms of its 

ultrafilter space.

4· The Spaces-Ω-(I) andΩ-(B/I).

Given a Boolean lattice B and its ultrafilter space-Ω-(Β), one 

night wonder what relation the ultrafilter space of an ideal I in B con- 

sidered as a Boolean lattice bears to the space Ω(B) ? We shall see
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in the following that the open subspaces ofΩ (B) correspond precisely 

to the ultrafilter spaces of ideal I in B.

Let D be a Boolean lattice and lot I be any ideal in B. Consider 
the open sety^(I) = £ υ/ΗΩΐΦ^ j corresponding to this ideal I. 

notation : For any ultrafilter U in I, let[u] denote the filter gen- 

erated by U in B.

One has the following lemma:

Lemma 1 : Let B be a Boolean lattice and I any ideal in B. LetΩ(I) 

denote the ultrafilter space of I considered as a Boolean lattice. The 

map f :Ω (I)—=>y^(I) given by f(U) =£uj is one-to-one and onto where 

U is ln-Ω(I).

Proof: Take any U Ω-0.(1). Then noto that (jjJ is iny^(I). Since 

UGI «ο have ΗΠί^^. We only need to show that [u] is an ultrafilter 

in B. Take a filter V in B with Then there exists an x6Vwith

x^fu] . Take any y in B. If ye U then y G V. If y u then there 

exists z in U with yΛZ =0. Also x not in [u] implies x not in U. 

Hence there exists s1 in U with z,λχ = 0. Now y = γνζζ^Λχ) = 

(yyz^A (yvx). Now both (yvx) and yys^ belong to V . Hence y£y· 

Thus in either case V = B. Hence is an ultrafilter in B and 

thus is a member ofM(I). Moreover since U is cn ultrafilter in I 

we have [υ]Πΐ = U. Take U, V in -<T(I) with U+V . Then [u] φ [V] 

for suppose [u] = Evj . Then [υ]Λΐ = U, [ν]Π I = v and U = V 

which contradicts U 4 V . Hence f is one-to-one. Take any U£//(!). 

Then uflI+ is a filter in I and fuAIj = U. It is sufficient to show 

US · Take xeU end suppose x [υ/ΊΙ^ . This implies a for 
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any zGUflI. If xaz = o then this would contradict the fact that ϋ 

is proper. Hence χλ o and also xa zC- UQ I. Also x> xa s end this 

contradicts the fact that x£ z for any z€ ϋ(Ί I. Hence U = fun f] , 

and tills means Η/ΊΙ is an ultrafilter in I. Hence f is onto. This 

completes the proof.

Using Lancia 1 we arrive at the answer to the question posed at 

the beginning of this section. Ue have the following theorems 

Theorem 4 : Let B be a Boolean lattice end I any ideal in B. Then the 

ultrafilter space-iL(I) of I is homeomorphic to/^(I), the map f : 

JL(I)—given by f(U) = [uj · Conversely lot E be any Boolean 

space and 0 any open subspace of E. Then the Boolean lattice^ (0) is 

an ideal in the Boolean lattice Xr(E).

Proof: (1) By Lemma 2 the map f :-Ω-(Ι)-^/Υ (I) given by f(U) =fuj 

is one-to-one and onto. First note that every sot-Ω. (α)<M(Ι) is 

compact open inM(l) since/£(I) is open. Moreover since theΩ(a) 

ore precisely the compact open subsets of_Q_(B), tho/L (a)^/V(I) are 

precisely the compact open subsets of^(I) end those form a basic 

for^AfiI). Also note that7^f((a)) =J7. (a) where (a) denotes the prln- 

cipal ideal generated by a. Hence we getdT_(a)^J^(I) if and only if 

aeI. Take a basic open setΩ̂L(a)^//(I). Then, 
^(-O-ia)) = fl [ U/a£UHI } = [ υΑΐ/αευΟί^ which is a basic 

open set inΩ-(I). On the other hand take a basic open setΩl(a)Cl2_(I). 

Then a£I and f(VL(a)) = f-^U/UGI, atuj

= {fuj /af-uj (Q/*t(I) which is open in>^(I). 

Hence f is a homeomorphism.



(ii) We allowed in the previous chapter that any open subset 0 of E is 
a Boolean space. Now^O) = ^X/X^O, X compact open J· . Now by 

Theorem 2 we have that (0) is an ideal inLE) for X compact in 0 

implies X compact in E.

Theorem 4 allows us to deduce that the ultrafilter spaces of 

ideals in a given Boolean lattice B are up to honeomorphisms, precisely 

the open subspaces of the ultrafilter spaco-ΩD-(b).

Let B be a Boolean lattice and I any ideal in B. We conclude 

this reaction by showing that the ultrafilter space-iL(B/j) of the 

quotient lattice B/i correspond precisely to the closed sets^ (I) of 

-TL(D). Let V : B—}B/l be the natural homomorphism and let the ultra- 

filters in B/l be denoted by U , V , etc.

We then have ths following theorem:

Theorem 5 : Let B be any Boolean lattice and I any ideal in B. Then 

the ultrafilter spaceΩL(B/i) of the quotient lattice B/j is homeo- 

Emorphic to the closed set$ (I), the homeomorphism fJL(B/i)— 

being given by f(U) = V ((H)).
Proof: Take any ultrafilter U in B/j. Then P [(B)) = U say is an ultra- 

filter in D. We must show ϋ is in «&(!). Since is a Boolean lattice 

homomorphism ((H)) is an ultrafilter in B. We must show lM")I = 0 

Take any a£U. Thcn9(a)tU, that is, V(a)^O. Hence a^I and thus 

HAI =^. f is clearly one-to-one. Toko U in/? (I), then UH I « 

Then V (U) = U is an ultrafilter in B/i end since V is onto we have 
f(U) = V 'f(ij)) = V. Hence f is onto. Take any open set in β (I). 

This is of the form/t(J)<l^(I) for some ideal J in B.
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Then ^((Λ(4)/7^(Ι)))

= ^(Λ(α))/Ί-Ω.(Β/χ)

“ U/U ^^(J) J Π -^-(B/l) which is an open set οί-Ω_(Β/χ).

Hence £ is continuous. On the other hand take an open subset/f (I) of
-C- (B/i). Then we have, ί(Λ(ϊ)) = f {ΰ/ΗΛΪΨ· pj

= { U/Um £ £ | where U = ^(U)) 

Hence f(/i(I)) (I). Hence f is a homeomorphism. This completes

the proof.

5. Illustrative Example.

An example of a compact Boolean space is ths Cantor ternary set 

or Cantor discontinuum D endowed with the relative topology of the reals. 

It is well known that each element of D which lies in the closed inter- 
εΛ ί

val [0, 1] can be written in the form φ; where a,* = 0 or 2. We 

will now establish that D with the topology mentioned is a compact 

totally disconnected space. The following proposition mentions a 

property of D which will be useful in achieving our goal.
•yi

Proposition 3 : Let D be the Center ternary set. Let x = ^
•O p

y = 2? be two distinct points of D with |x - y| < 3-r for some 

integer r. Then an = bn for at least the first r terms.

Proof: Since the points x, y are distinct there exists a smallest

integer m for which α^^η» that ®n “ ^η *or n “ 1» 2»···®”1· In 
particular if x<y we have |x - y| =|^S -"j*— |

Now suppose s r and an = for exactly the first s terms. Then by the
I Iproperty just stated (x - y | 3 and since s< r we have 3~r.

Thus lx-y |>3-r which is a contradiction to the hypothesis that|x - y|<3-r.



Hence our supposition is false and the proposition is established. 

We now establish that D io a Boolean space.

Proposition 4 : The Cantor ternary set D endowed with the relative 

topology of the reals is a compact Boolean space.

Proof: By Proposition 7 of the previous chapter it is enough to show 

D is compact and totally disconnected. Since D is a subset of the reals, 

to show D compact it io enough to show D is closed and bounded. D is 

a bounded set since each element of D lies between the real numbers 0, 1. 

In order to show that D is closed it is sufficient to show that the 

following condition is satisfied: If inf. |x - z| = 0 for some real 

numbar a then z is an element of D. Take such a real nunber z. Then 

since the greatest lower bound of ^x - z x e Dj is zero there exists 

a subsequence (Χη - ζ)η&Λ/ tending to zero. Thus to each integer r 

there corresponds a in D with - a | < 3-r-l. If r<s than we 

have, la^-xel^lxr-sl+lz - x8j< 3-^1 + 3“β-Ί< 3’r.

Say xr Then by ^Proposition 3 for at least
n = 1,..., r. Define w = ^2 -p? Then we have that the first r 

terms in the expansion of ward xj. coincide. That is,  - 3”r.

Thus for each r we have, |w - s|< |w ~ | + |χρ - s | < 3~r + 3-r-l^3-r+l,

Hence (w-a|—^Oasr—^0. Thus w = a. But by its very definition 

w is an element in D. Hence seD. Thus D io closed and wo have already 

noted that D is bounded. Therefore D is compact. We now show that D 

is totally disconnected. Taka x, y in D with, say x<y. Then by the 

proof of Proposition 3 there exists a smallest integer r for which

bn where x = , F “ ^- · We now define a = 2j -pc
i J I 3 Ks 1 3 



45.

where = Can  bn for n = l,...,r-l.

0 for n = r

(_ 2 for n > r.
Then clearly x<z<y. Put A = { p/pED, p<z} and B = {p/pED, 

p>z}. Then clearly xEA, yE-B, AnB =<^, AuB = D. Also A is 

clearly closed subset of D. Hence D is totally disconnected. In all

D is a compact Boolean space. This completes the proof.



CHAPTER II.BOOLEAN LATTICES AND BOOLEAN RINGS
Introduction : In this chapter we exhibit the connection between 

Boolean lattices and Boolean rings. The main result we trill establish 

here is that the category of Boolean lattices and proper Boolean lattice 

homorphisms is equivalent to the category of Boolean rings and proper 

ring homomorphisms.

1· The Boolean Ring of a Boolean Lattice.

Let B be any Boolean lattice and I any ideal in B. Let B/i 

denote the quotient lattice. Introduce two binary operations in the 

set B as follows (i) x + y = (x~xAy)v (y~xAy) for any x, y in B 

(ii) x-y =xAy for any x, y in B. We will denote the triple (B, +,·) 

for short by R(B). We establish the following general theorem about

Theorem 1 : (i) $(D) is a Boolean ring in which the zero of B is the 

zero of R(B).

(ii) D has an unit if and only if R(B) has a unit, and the unit of B 

is the unit of R(B) end conversely.

(ill) The ideals in R(B) are given precisely by the sets R(1) where

I is an ideal in B.

(iv) The prime ideals in R.(B) are given precisely by the sets R(Ι) 

where I is a prime ideal in B.

46.
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(v) The maximal ideals in R(B) are given precisely by the sets (I) 

where I is a maximal ideal in B.

(vi) The quotient rings of R(B) are precisely of the form R(B/i) where 

I is an ideal in B.

Proof: (1) Let -Λ =lT(B) denote the set of all ultrafilters in D and 
for each aEB let_Q(a) = {U/aeU€_fX}. For each a in B define ha : 

XL—> Rq = {o, 1J by ha(U) = Jo U^_iL(a) where Ro is the two element 

11 uEA(e)

Boolean ring. Then ha is the characteristic function οf O(α). Let j^(B) 

denote the set of all these characteristic functions, that is, let j^(B) 
={ha/aeB} . We first show that £(B) forma a Boolean ring under 

functional addition and multiplication. To this end tie check that the 

set Χ^(Β) is closed under the operations just stated. That the remaining 

properties hold which makes £(B) into a ring is then quite clear. Take

any U in-ft. Then (ha+ hb)(U) = ha(U) -i- hb(U). 

if and only if UE_fl(a) +il(b) where ’+' denotes

Thus (ha + hb)(U) = 1

symmetric difference.

We now show that.il(a) +_Q(b) =_Q(a + b) for any a, b in B. U6-O_(a+b) 

if and only if a~aAb or b~aAbEU. This is the casr if and only if 

a£U and b^U or a^U end bGU. Thus U6i^_(a+b) if and only if U6/L(a) 

+_Q_(b). Hence (ha + h^) is 1 on_i7_(a*b) end 0 otherwise, that is, h-a hb 
“ for any a, b in B. Thus £(Β) is closed under functional addition. 

0Now (ha hb)(U) = ha(U) hb(U)

hab(U)

Cl

J 0 if U^ίl(aΛb) .

1 if HelX(aAb)

if U£O_(^-b) while

if UelKaab)

It is now dear that hab



40.

that is, £(B) is closed under functional addition. Clearly, ho + ha 

ho+ao+a = ha ; hence ho is the zero of £(B) where o is the zero of B. 

Also (htt)2 = ha2 = ha, that is, £(B) is a Boolean ring. Consider the 

map f : £(B) >J^(B) given by f(ha) = a. Since the elements of B,R(B) 

are the same f is clearly onto. Also a = b implies_i).(a) =_Q.(b) from 

which it follows that ha = h^. Hence f is one to one. Moreover, we have 

f(ha-ihb) = f(ha+b) = a + b = f(ha) + f(hb,) and f(hahb) = f(hab) = ab = 

f(ha)f(hb), that is, R(Β) is ring isomorphic to the Booloan ring ^(B). 

Hence R(B) is a Boolean ring.

(ii) Suppose B has unit e. Then e>.x for each x in B, that io, eAx = x 

for each x in B. Kenoo ex = x for each x in i?(B), that is e is the unit 

of R(B). On the other hand, suppose R(Β) has an unit e. Then ex = x 

for each X in R(3). This means, eΛΧ = x for each x in B. Hence e>x 

for each x in B, and e is then also the unit of B.

(iii) Let I be any ideal in B. Take any x, y iniR(I). Then x, y are 

in I and hence xvyEI and xAy£l· Hence since I is ideal in B, 

(xVy)~ (x*y) G I. But x - y = (x/ y) ~ (xAy). Hence x - y is in 
R(1). Take any x in R(B) and y in R (I). Then ΧΛ y< yE1, and thus 

xAyEI which means xyER(I). Therefore R (I) is an ideal in R(Β) 

where I is an ideal in B. On the other hand lot J bo any ideal in the 

Boolean ring R(B). Then J is a subset of B and we show J is an ideal 

in B. Tako any x, y in J. Then x + y = (xvy)~ (xΛy) is in (J) 

and xy E (J). Thus ((xv y) ~(xAy)) v (x Ay) E J, that is, xvyEJ. 

Take any xG R(B), y€ J· Then J and hence xAyEJ considered as 

a subset of B. Hence J is an ideal in the lattice theoretic sense and 
taking J in this sense it is clear that R(J) = J. Hence the ideals 
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in (R(B) are precisely of the form R(I) where I is an ideal in B.

(iv) Let I be a prime ideal in B. We know that R(I) is an ideal in 
&(B). We must show that R(I) is prime. Since I is a prime ideal in

B we have that xAy in I implies x in I or y in I. This means that xy 
in R(I) implies x in R (I) or y in (R(I). Hence R (I) is a prime ideal 

in R(B). On the other hand let J be any prime ideal of R(B). In view 

of (ill) it is enough to show that J is prime when considered as a sub- 

set of B. Since J is prime in R(B) we have that xy in J implies x in J 

or y in J. Hence xa y in J implies x in J or y in J considered as an 

ideal in B. This establishes (iv).

(v) Let I be a maximal ideal in B. Then by (v) by Proposition 4 the 

set of all maximal ideals in B is equal to the set of all prime ideals 

in B and by Proposition 16 of the previous chapter the set of all 

maximal ideals in R(B) is equal to the set of all prime ideals in R (B). 

Hence by part (iv) the maximal ideals of R(B) are precisely the sets 

R(I) where I ranges over the set of maximal ideals of B.

(vi) To establish (vi) we show(R(B/i) = R(B)/(R(I). Denote the 

elements of B/i by x where x is ln B. For any two elements x, y in B 

put x=y if and only if (x~xAy) and (y·~XΛy) belongs to I. = is an 

equivalence relation and x denotes the equivalence class determined 

by x under this relation. The quotient ring R(B)/R(I) consists of 

elements [x] where [ x] is the equivalence class determined by x under 

the equivalence relation : x~y if and only if x - y is in R(1). 

How x~ y if and only if x + y is in it (I) since R(B) is a Boolean 

ring. Now χ + y = (χ-χλy) ν (y^-XAy). Hence x = y if and only if 

xxy. Then since B and R (B) have the sane elements, ^B>\md(f?.(B)/(^.(I) 
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have the same elements, that is, x = [x] . Moreover x + y = x + y = 

[_x]+ yj = [x] + [yj and x y = xy = [xy] = [x]' ^[] · Hence<fi-(D/i) 

“ <R(B)/(£(I) and the theorem is established.

Theorem 1 has shown that a Boolean lattice B can be regarded as 

a Boolean ring by defining operations of addition and multiplication on 

the underlying set B in terms of the lattice operations of B. Moreover 

those operations are defined in such a manner that the ring theoretic 

ideals of R(B) correspond precisely to the lattice theoretic ideals 

of 13. In the next section we show that in a similar way a Boolean ring 

can be regarded as a Boolean lattice.

2. The Boolean Lattice of a Boolean Ring.

We now proceed to establish the counterpart of Theorem 1.

Theorem 2 : Let R be any Boolean ring. Then (i) R under the divis- 

ibility relation is a Boolean lattice which we denote by β (R). In 

β (R), the zero of the ring is the zero of β (R), any = xy, xVy =

x + y + xy and if 0 < x< y then y~x = y - x.

(ii) R has an unit if and only if B (R) has an unit.

(ill) The ideals in β (R) are given precisely by the sets β (I) where

I is an ideal in R.

(iv) The prime ideals in B (R) arc given precisely by the sets (I) 

where I is a prime ideal in R.
(v) The mAximal ideals in 6 (H) arc given precisely by the sets β (I) 

where I is a maximal ideal in R.
(vi) The quotient lattices of β (R) are precisely of the form β (R/j) 

where I is an ideal in R.
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Proof: (i) The divisibility relation does partially order R. We show 

that xy = inf{£x,y} , xiy-xy = sup. under the divisibility 

relation. How xy < x,y for x(xy) = xy end y(xy) = xy. Thus xy is a 

lower bound for the set { x,y} . Let s be less equal x,y. Then 

sx = xy = x and thus sxy = sy2 = sy = s. Hence a<xy. Thus xy = inf. 

{x,yj . Clearly xty+xy>x,y for x(xvjK-xy) = lAxywty = x and yixryio^) 

= y using the fact tliat R is a Boolean ring. If z>x,y then xvy = 

zxs-ay and xtyrjty = z(xiy+xy), that is, z>xry+xy. Hence x-iytoy is the 

least upper bound of {x,y} under the divisibility relation. Hence R 

under divisibility is a lattice with meet and join as stated.

We now show that the operations meat and join distribute over 

each other. Now, xA(yyz) =x(y+a-ryz) = ry^xsJ.-ryz = (xay)v (xnz). 

Take the zero of R, Then ox = o for each x in R, that is, o<x for 

each x in R. Hence R under divisibility is a distributive lattice with 

zero. Take o<x<y and put s = y-x. Then ζΛχ = (y-x)x = 0 and xVz = y 

for x<.y. Hence y “ x+y+xy = x+z+zx for z = y-x. Hence y = x vs. Hence 

R under divisibility is a relatively complemented distributive lattice 

with zero, that is, a Boolean lattice.

(ii) Suppose R has an unit e. Then xo = x for each x in R. Hence 

ΧΛ e = x for each π in B (R). Thus e is also the unit of (β (R). On 

the other hand let (H) have unit e. Then e>.x for each x in (β (R), 

that is ex = x for each x in R. Hence e is the unit of R.

(ill) Let I be any ideal in R. Then β(Ι) is a subset of β (R). Take 

any x,y in B (I)· Then since I and β (I) have the same elements. 

Since I is an ideal in R we have x+y = (xy y)~ (xAy) and xy are in I.
Thus x+y-+xy « xvy is in I and hence in β (I). Next let xE B(I) and 
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suppose y<.x. Then yx =y and since x£I and I is an ideal in R we 

haveyxEI. Hence y£ (β (I). Thus β (I) is an ideal in (B (JI). On the 

other hand let J be any ideal of (β (R). We shot: that J is also an ideal 

of R. Take x,y in β (R)j then xvy “ xry+xy and xny belongs to J. 

Hence (xvy)~(xΛy) = xty belongs to J. Tako any x in R and y in J. 

Then ΧΛyE J and hence xy€ J considered as a subset of R. Hence J is 

an ideal in R and clearly (β (J) = J.

(iv) Let I be a prims ideal in R. Then by (iii) β(ΐ) is an ideal in 

<3 (R). Since I is prime in R wo have that if xy£I then xEI or y€I. 

Hence xyC β-(Χ) implies x Gβ(l) or y6(S (I), ihus 0? (I) la a prime 

ideal in B (R). On the other hand let J bo any prime ideal of β (R). 

Thon XAy in J implies x in J or y in J. Thus xy in J implies x in J 

or y in J. Hence J is prime when considered as an ideal in R and thus 

(iv) is established.

(v) By Proposition 16 the set of prime ideals in R is equal to the set 

of maximal ideals in R and by Proposition 4 the set of prime ideals in 

(β (H) is equal to the set of maximal ideals in β (E). Hence by print 

(iv) we get that β (I) ranges through the maximal ideals of β (Ji) as 

I ranges through the maximal ideals of R.

(vi) To establish (vi) we show that (β(R/ι) = B (RJ/(g (χ).where I is 

an ideal in H. For any two elements x,y in R, put x = y if and only 

if x-y£I. This relation is an equivalence relation on R and the 

equivalence classes determined by this relation constitute the elements 

of R/,. That is R/t = i x / x equivalence class determined
L (

by x under =

In R/j addition and multiplication is defined as follows: x + Y = x+y, 
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x.y = jy. The quotient lattice β(R)/(β (I) consists of elements [x] 

where [ xj ls the equivalence class determined by x in β (R) under the 

following equivalence relation : x/y if and only if (x~xAy) end 

(y~xAy) are in <8 (I). Operations, of meet, join and relative com­

plements in (β (R)/<g (I) is as follows: [xj Λ fy] = (χλγ] * [xjvfyj 

“ LXV3^ » if o<x<y then £y] fx] = [y^x] . It is now clear 

that xvy in B if and only if x-y^I end since the elements of R andC (R) 

are the same we have3c = [xJ . Moreover, xAy = xa? = Γχλυ| a[xJ^[yJ» 

xvy =(5cVy = [xv y] = [χ] ν [y] , x~y = x^y = [x~y] “[x] ~ (y)» 

if o<y<x. Hence β(ϋ/χ) = β (R)/^(I) and theorem is established.

3· Equivalence of Categories.

Let denote the category whose objects are Boolean lattices 

and whose maps are proper Boolean lattice homomorphisms. Let D denote 

the category whose objects are Boolean rings and whose caps are proper 

ring homomorphisms. In this sectien we establish that the categories 

and are equivalent.

Let B, C be any two Boolean lattices end let f : B—>C be 

any proper Boolean lattice homomorphism. Then f gives rise to a map 
fn : i?.(B)—>$(C) defined by fjj(x) “ f(x) for any x in ^?(B). The 

map fR has the following properties:
(i) fR (xiy) = f((x~xAy)v(y~x*y)) = (f (x) ~f (x) a f (y)) v^f (y) 

-f(x)Af(y))).

« (fR(x)~fR(xM fn(y)) ν (fR(y)~fn(xMfR (y)) = fR(x) + fa(y). 

(ii) fR(xy) = f(xAy) = f(x)Af(y) = fR(x) fn(y).
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(iii) Take any a inRC)· Then z is in C and since f is proper there 

exists an x in B with f(x)>,s, that is, f(x) is divisible by 3 in R(C), 

Thus fR is a proper ring homomorphism.

On the other hand let R, 3 be any two Boolean rings and let f : 

R —» S be a proper ring homomorphism. Then f gives rise to a map f3 : 

β (R) —> (3(3) defined by fg(x) = f(x) for any x in β (R). The nap fg 

has the following properties:

(i) fn(xny) = f(xy) = f(x)f(y) = fB(x)AfD(y)

(ii) f3(x Vy) = f(»W) = f(x)+f(y)+f(x)f(y) = fB(x) + fB(y) + 

+ fD(x)fa(y) = fa(x)vfB(y).

(ill) fB(y~x) = f(y-x) = f(y) - f(x) = fB(y)~fn(x) for any x,y with 

o<x<y.

(iv) Take any z in β(3). Then z is in S end since f is a proper ring 

homomorphism there exists an x in R with f(x) ^.3. Henco fB(x)^s.

In all this means that fB is a propor Booloan lattice homomor- 

phism between the Boolean lattices associated with tho Boolean rings 

R and S. We now establish the main result of this section. 

Theorem 3 : The two correspondences B—>Λ(β)) and R—><β(Π)7 

f—J J

are covariant functors T : C—and S : «0—? which establish
the equivalence of the categories and D · 

Proof: (i) Lot A, B, C be Boolean lattices.

(a) if f£H(A,B) then T(f) = fR€H(^(A),^(B)) = Η(Τ(Α),Τ(Β)).

(b) if eAe H(A,A) then T(eA) = (e^)^ Η(Λ (Α),β(Λ)). 

(c) Finally suppose f6H(A,3), g&H(B,C).
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We must show that T(gf) =T(g)T(f). Now T(gf) = (gf)R end T(g)T(f) = 

^R· But (β*^χ) “ (β^Χ*) “ g(f(x)) and (gRfg)(x) “ g(f(x)) for any 
x in (ft (A). Hence T(gf) = T(g)T(f), that is, T is a covariant functor 

fromC toD.

(ii) Let P, Q, R bo Boolean rings.

(a) if f €H(P,Q) then 3(f) = fB€H(0(P),fi(Q)) = H(3(P),3(Q)).

(b) if e&H(P,P) then S(e) = a3 &H((B(P)3 <β(ί’)). 

(o) Finally lot fEH(P,Q), g£H(Q,R).

We must show that S(gf) “ 3(g)s(f). Now (gf)B(x) “ (gf)(x) = g(f(x)) 

whereas S(g)S(f) = gjfB and (yQfB)(x) = g(f(x)) for any x in β(Ρ). 

Hence S(gf) =S(g)S(f). Thus S is a covariant functor from D to G 

(iii) Since T, S are covariant functors, the composites ST and TS are 

covariant functors onGrespectively. Lot IG , IB denote the

identity functors on E , D respectively. We show that ST = IG , 

TS = ID . This will establish that the categories E and D are equiv- 

alent. To this end wo prove, 

(1) D = (β((β(Β)) for any Boolean lattice and 

(2) E = & {β (R)) for any Booloan ring R.

To show (1) : Put R “ (R.(D), Β =(β (H). Let the operations in B be 

denoted by Λ , ν , and zero of B by o. We want to show Β = Β. B and B 

have the same elements namely the elements of R. Thus o =o. Also, 

xAy = xy = xAy for any x, 75 xvy = We now have that x+y =

(x vy)~(xAy) = (x/y) - xy. Thus xvy = x+y+ry = (xv y) - xy + xy = 

XVy. Let o<x<y. Then y~x = y - x = y~x. Hence Β = B. This proves 
(1). We now show (2). Let B = B(R) and R =  RB). Let the operations 
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in R be denoted by -+· , ~ and zero of R by 0 . Wo want to show 

R = R. R and R have the same elements namely the elements of D. Now 

x+ y = (χ~χλ y) v (y~ xAy) = (x-xy)V(y-v) a (»-xy) + (y-xy) + 

(x-xy)(y-xy) = x + y. Hence x?y = x + y for all x in B j x~ y = χλ y = 

xy. Hence R = R. Thus (ST)(B) = (g ((R.(B)) = B for any Boolean lattice B 

and take any f EH(A,B) say, then (ST)(f) = (fg)B has for its domain the 

domain of f namely A and (fR)(x) = f(x) for any x in B. Hence (ST) is 

the identity functor on , that is, ST = IG . On the other hand 

(TS)(R) =(R((B (R) =R for any Boolean ring R. Also if f GH(P,R) say 

then (TS)(f) = (fg)R has for its domain P and (fB)^(x) “ f(x) for any 

X in P. Hence (TS) is the identity functor on β t that is, T3 = Ig. 

Thus we have established that the categories β and D are equivalent.

4· Adjunction of Unit.

In this paragraph we describc a method of imbedding a given 

Boolean lattice B into a Boolean lattice B* with unit and a given 

Boolean ring R into a Boolean ring R* with unit. These imbeddings 

will be essentially unique in a sense to be made precise below. We 

will show, moreover, that if we imbed B in B* and B in R* then R(B*) 

is ring isomorphic to R* and (β (R*) is Boolean lattice isomorphic to B*.

Let Ro = ^0, lj be the two element Boolean ring and let R be 

any Boolean ring. Consider B as an algebra over Rq and let R* = 
{(^x) / £ Ho, x€ kJ . In the set R* introduce the following two 

binary operations:

(1) x) + (/^y) e +A for arbitl'ai:y elements in R .

(2) (^ x) · (|5,y) “ (°<Α> <* F+^x^) for any two elements in Π .

One now has the following proposition.
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Proposition 1 : R under ths operations (1), (2) is a Boolean ring 

with unit and contains R as a subring. R* is essentially unique in 

the following sense: If S is a Booloan ring with unit containing R 

as a subring then 3 contains a Boolean ring T isomorphic to R and 

containing R as a subring.
*

Proof ; It is clear that R under the operations mentioned does 

form a ring. It is a Boolean ring for x) (^; x) = (V* < xt-<* x + j^) 

= («K, x) for any element of R . R. has an unit, namely, (1,0), for 

(1,0) (*, x) = ( V, 0 -to-κ + lx ) = χ) and similarly (<, x) (1,0) = 
( X, x). The set { x) / xEr} is contained in and is clearly seen 

to be ring isomorphic to R, the isomorphism being given by to (o, x). 

We now show that R is unique in the sense indicated. Let S be any 

boolean ring with unit e containing R as a subring. Consider the map f : 

E*—> S given by f((5x)) = f(o() + x where f(o< ) = 0 if <* = 0 and f(« ) = 

e if o< nl. We show that f from R* onto T = + £(*) / x&R J is a

ring isomorphism. We first show that f is one-to-one. Take («'; x), 

(^y) in R* with (^ x) φ ( y).

Case 1 : , x = y. Without loss of generality say°< =0, ^ = 1.

Then f((<x} x)) = x and f(B; y) = ο + y and x^o + y for o is not in R. 

Case 2 : , x^y. Supposed = ^ = 0. Then f((«^ x)) = x, f(/f, y) = y

andx^y. Suppose ^ = ^ = 1. Then f((^> x)) = a + x, f((y)) = o + y 

and e + x^e + y for x+y.

Case 3 : , x^y. Without lost of generality suppose «< = 0, β = 1.

Then f(a; χ) = x, f(( y)) = e + y and x^o + y for e is not in R.

Hence f is one to one. It is clear that f is onto T for take x + f (o()

Then (£<*) x) is in R and f(^; x) = f(o<) + x. Moreover, we have
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£((* ( xX/J) y)) = , xi-y)) ·= f(X f/i >Wy « f(V hxtf(^}+y =

f((°<) x)) + f((/> y)) and,

x) ( y)) = ^/Sj^y -r xy)) = f(V )f ( ^ ) +<< y +βχ + xy

f((V, «)) f((^ y)). Hence f is a ring homomorphism. Thus R is 
isomorphic to T and T contains R = £f(o) + x^C-R j as a subring and 

this completes the proof.

We now describe a method of imbedding a Boolean lattice B into 

a Boolean lattice with unit. By Stone’s representation theorem D is 

isomorphic to a Boolean lattice of subsets of some set X. Take 
«e]a Boolean lattice of subsets isomorphic to

B, the isomorphic correspondence being given by x —>3χ. Let Y Λ 
and put G = iCy^/ x&B j . Let J· = i U J- , We now establish, 

,__w
Proposition 2 : J- s partially ordered by set inclusion, is a Boolean 

lattice with unit Y containing B. J- ia essentially unique in the 

following sense : If C is a Boolean lattice with unit containing D 

as a sub-Boolean lattice then C contains a Boolean lattice A with 
__ *

unit isomorphic to J- and containing B.

Proof: Take any Βχ in F and £. Sy in G. Then 3X Π i^Sy “ 3χ~χΛ^ 
,__ it

. Thus J- is closed under intersection. Moreover, it

is clear that the set J is closed with respect to taking complements 

in Y. Also, by the definition of Y each element of ± is contained 

in Y. Hence F is a Boolean lattice with unit Y. Nov/ ± contains J" 
_jf 

which is Booloan lattice isomorphic to B. Thus by identification J 

contains B as a Boolean lattice. We now.show that j is unique in the 

sense indicated. Let C be a Boolean lattice with unit e containing B. 
,-^X ΧΊ —

Consider the map f : J------ > Rlven = f x if M = Sx
Le^x if H = C S- . u y x

= 3X - (SxnSy)
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r_ y
Then f is one to one, for take N=N in J- .

Case 1 : Μ = 3χ, H = Sy say with x-=y. Then f(M) = x, f(Sy) = y 

and x^y.

Case 2 : 1-5 °C$x> W = Sy. Then f(Jl) = e~x and f(H) = y and e~xfy

for e is not in B.

Case 3 : II N =CySy and then x=y for M=N. Thus e~x#e~y,

that is, f(M)^f(N). Hence in all cases f(M)^f(N) and f is ono to one.
f is clearly onto the set A = ^x/xeajU .

Also (i) f(S,cOSy) = f(3x^y) =xay = f(Sx)H f(Sy)

(ii) f(£y 3yOSx) = f(Sx~XAy) = X-W = (o^y)Λ x = f(£ySy)f)f(S„).

(ill) f( CyS^HC^.) = f( £^(SxUSy)) = o~(xvy) = (e~x)n (e~y)

= f( cvsx)nf(iySy).

Thus f(MnN) = f(li)nf(ll) for any Μ, Il in 7*· Similarly f&t/n) = 

f(l0Uf(N) for any Μ, N in J” . Finally wo have, f(Y) = f(€ySo) = 

e~o = e. Hence f is a unitary Boolean lattice homomorphism which is 

also one to one and onto, that is, f is an isomorphism. Moreover, A 

contains B as a Boolean sublattice, completing the proof.

Notation : For any Boolean lattice B let U denote the Boolean lattice 

with unit into which B can be imbedded as described in Proposition 2. 

Similarly for any Boolean ring R let R denote the Boolean ring with 

unit into which R can be imbedded as described in Proposition 1.

We now state and prove in the following theorem the result 

announced earlier.
Theorem 4 : Let B bo a Boolean lattice and  R.(B) its Boolean ring. 

Then (J^(BX) is ring isomorphic to R(B) . Conversely let R be any 

Boolean ring and β (R) its Boolean lattice. Then B (R*) is lattice 
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isomorphic to β (Η )ί
•4ft X

Proof: (i) Let D, B ba given. Since B contains an isomorphic 

copy of B we have by Theorem 1 that R (B*) contains an isomorphic 

copy of the Boolean ring R(B). However, by Proposition 1 (R(’J)* is 

the smallest Boolean ring containing (R(B). Hence again by Proposition 

1, R(B) is contained isomorphically as a subring in (R (B*). By 

Theorem 3 (8(<R.(i3)}= B. Hence <β(όί(Β)*) contains on isomorphic copy 

of the Boolean lattice B. Then applying Proposition 2 we have that 

β (<K(B)* ) contains an isomorphic copy of B*. Hence (R(B*) is con- 

tained isomorphically as a subring within (R-(B)*. Hence we got R(β') 

ίs ring isomorphic to (R(B)*.

(ii) Let R, R be given. Since R contains an isomorphic copy of R 

we have that (β (R*) contains an isomorphic copy of the lattice β (R). 

Then by Proposition 2 -we have B (R*) contains an isomorphic copy of 

B (R)X which is the smallest Boolean lattice containing B (R). How, on 

the other hand, B(R)* contains an isomorphic copy of β(R). Hence 

( R (B (R)) is contained isomorphically as a Boolean ring in R(B (R)*). 

By Theorem 3 (R(^(H)) = R. Hence by Proposition 1 zR ((8(H)*) contains 

an isomorphic copy of R*. Thus βR( β(Η)*) contains an isomorphic copy 

of $ (R*). But B(R(B(R)*)) =B (R)* by Theorem 3· Hence in all 

β (R*) is lattice isomorphic to β and the theorem is established.

5. Free Boolean Lattices and Boolean Rings.

In this paragraph we introduce the notions of absolute and 

relative freeness for Boolean lattices and Boolean rings. Wo show that 

relatively free Boolean lattices correspond precisely to relatively free 
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Boolean rings and that free Boolean lattices correspond precisely to free 

Boolean rings.

Let R be any ring. By an extension ring of R we mean any ring S 

which contains R as a subring. Let D be any Boolean Lattice. By on 

extension lattice of B we mean any Boolean lattice C which contains B as 

a sub-Boolean lattice. We now make the following definitions: 

Dofinition 1 : An extension Boolean ring R of a Boolean ring R is said 

to be relatively free over R with X a free set of generators over R if and 

only if any napping fo : X—>3 where S is any extension Booloan ring of R 

extends to an unique ring; homomorphism f : —> S with f restricted to

R being the identity mapping.

Correspondingly we make the following definition: 

Definition 2 : Let B be a Boolean lattice.

An extension Boolean lattice B of B is said to bo free over B with X 

a free set of generates over B if and only if any napping fo : X —> C 

where C is any extension Boolean lattice of B extends uniquely to a 

Boolean lattice homomorphism f : B —> C with f restricted to B being 

the identity capping.

The following is an example of a relatively free Boolean ring. 

Example : Let R be a Boolean ring and X any set. Let R [x] denote the 

polynomial ring over R in the set of indeterminates X.

Let J bo the ideal in R [xj generated by tho sot G = - Χι·-

/sjGX, n>lj. Let f0: X—>S bo any mapping whore S is any extension 

Boolean ring of R. Then f0 extends to an unique ring homomorphism 

f : R with f restricted to R the identity. Let K be the kernel

of f· We note that KfIR “ 0 for f(R) = R and thus f(r) = 0 where r 6KD R 
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implies r = 0. We now show that the ideal J is contained in K. For this 

purpose .it is sufficient to show G is contained in K. How f (x1⅛r¾2-∏1w.¾) 

= f(x1)^ f(¾)2 - f(¾), ∙f(¾l) = 0 slnce f(x ) has in the Boolean ring S. 

Hence as claimed∕G is a subset K. Thus f gives rise to an unique ring 

homomorphism from the quotient ring R [xj ∕j into S with fpt, ≈ where 

■) is the natural homomorphism from R [z] to Γk Cxi ∕j. 1st r∈R be 

arbitrary. Then 9 (r) = 0 implies r∈B∩ J, But RnJ =0. Hence r = 0 

and √ is one-to-one on R. Thus R[X]3 ∕j i∙8 an extension ring of R with 

the property that any napping fo : X—»8 gives rise to an unique ring 

homomorphism g : R[x] -3 with g restr∙icted to R the identity 
mapping. We now show that f2 [kJ ∕j is a Boolean ring. Denote the 

elements of R [xj ∕j by p where p is a polynomial in R[×] ∙ Then 

p op ÷ J and to show (p)≡= p we need to show p2 - p ∈J. Since pE R[x]
∣ Cι Hi

mg have p = 7, ckι-√g ×< ■ ∙ with at∣..ς∙^ in R and ¾ in X. Hence,
r—1 l∩ tl CAΛ2^ <ΓΙ a in J⅛P< =^l∣ai( ∙ ι∙fι K, ∙ xft I =∙ ? , ⅛ ∙ι∙fc Λ ■ ■ ik 1 
<>lι ' ι∣ n J

using the fact that R is a Boolean ring. Thus to show p^-p is in J it
2li ∙i<A 11 it , , 

is enough to show that xj_......... — κl ’' ' xA =1 ^λ9
latter, however, belong to G and hence to J. Thus R[x] /j is a 

relatively free Boolean ring over R width X a free set of generators.

Concerning relatively free Boolean rings and Booloan lattices 

one has the following general theorem.

Theorem 5 5 Let B he a Boolean lattice and lot B bs a relatively free 

extension of B with X a free set of generators. Then (R(B*) is a rel- 

ativoly free extension of R(B) with X a free set of generators. Con- 

versely let R* be a Boolean ring which is a relatlvely free extension of 

a Boolean ring R with X a free set of generators. Then β (R*) is a
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relatively free extension of (R) with X a free set of generators.

Proof : (1) Let R be any extension Booloan ring of ^(B). Let fo : X-5>H 

be any mapping. Then fo is also a mapping of X into β (R). Since B* is 

a relatively free extension over B with X a free set of generators fo 
extends uniquely to a Boolean lattice homorphisms f : B*—?$(R) with 2 

restricted to B the identity map. f gives rise to a map s i? (B*)-^ R 

defined by ^x) = f(x) for any x, noting that (k((β(K)) =R. We saw in 

section 3 that is a ring homomorphism and dearly fR restricted to it (3) 

is the identity on (R_(D) since f is the identity on B. Moreover, fR is 

unique since f is unique. Hence R(ΒΧ) is a relatively free extension 

over (R.(B) with X a free set of generators.

(2) Lot C be any extension lattice of β (R). Let 2Q : X—?C be eny 

mapping. Then fo ία also a mapping of Ji—^(C). 2Q gives rise to an 

unique ring homomorphic:.! f : R —(C) with 2 restricted to R the 

identity since R is a relatively free extension over E. f gives rise 

to a map fy : β (R*)—$ β ((&(C)) = C defined by fB(x) = x for any x. 

Now, the have seen in section 3 that fB is a Boolean lattice homomrphism 

Moreover is unique since f is and fβ restricted to β (R) is the identity 

map since £ restricted to R is the identity map. This completes the proof.

We have thus shown that relatively free extensions over a Boolean 

lattice B correspond precisely to relatively free extensions over R(B). 

We now proceed to introduce the notion of absolute freeness for Boolean 

lattices and Boolean rings.

Definition 3 : A Boolean ring R is said to be free with X a free set of 

generators if any mapping fo : X—where S is any other Boolean ring
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extends uniquely to a ring homomorphism f : R—>S. A Boolean lattice

B is said to be free with X a free set of generators if any napping fo: 

X C whore C is any other Boolean lattice extends uniquely to a Boolean 

lattice homomorphism f : B—>C.

Theorem 6 : Let R be a free Boolean ring with X a free set of gen- 

erators. Then β (R) is a free Boolean lattice with Z a free set of 

generators. Conversely let B be a free Boolean lattice with X a free 

set of generators. Then R(B) is a free Boolean ring with X a free 

set of generators.

Proof : (1) Let C be any Boolean lattice. Let fQ : X—>C be any 

mapping. Then fo is also a mapping of X into (R(C) since C and R(C) 

are the same set. Since R is a free Boolean ring with X a free set of 

generators f0 extends to an unique ring homomorphism f : R—>R(c). 

f gives rise to a map fy : β (R) —? C defined by ίβ(χ) = f (x) for any x. 

We saw: in Theorem 3 that fB is a Boolean lattice homomorphism and fB is 

unique since f is unique. Hence β (R) is a free Boolean lattice with 

X a free set of generators.

(2) Let R be any Boolean ring. Let fo : X—> R be any mapping. Then 

fo is also a mapping from X to (β (R). Since B is a free Boolean lattice 

with X a free set of generators fo extends to an unique Boolean lattice 

homomorphism f : D—β(R). Now f gives rise to a mapfR : (R (D)—? β 

defined by ^x) = f(x) for any x. Then we have seen earlier that £^ 

is a ring homomorphism and is unique since f is unique. Thio completes 

the proof.



CHAPTER III.

BOOLEAN SEMI-GROUPS.

Introduction : In this chapter we describe how the notion of a Boolean 

semi-group can be used to give an alternate characterisation of a Boolean 

lattice with unit. We will conclude this chapter by proving that the 

category of Boolean lattices with unit and unitary Boolean lattice homo­

morphisms end the category of Boolean semi-groups and Boolean semi-group 

homomorphisms are equivalent.

1. Boolean Semi-groups and Boolean Lattices.

The main result we establish in this section is the following: 

Theorem 1 : Any Boolean semi-group G is a Boolean lattice with unit 

under the divisibility relation. In this Boolean lattice the zero of 

the semi-group G is the zero of the Boolean lattice, the priming oper­

ation of G is the complementation in the Boolean lattice, XAy = xy, 
XV y = (x1 yl)1· Conversely any Boolean lattice B with unit is a 

Boolean semi-group under meet and complementation.

Proof : We establish the theorem in several stops.

(i) We first show that a Boolean semi-group G partially ordered by 

divisibility is a lattice in which ΧΛΥ = xy, xyy = (x1y1)2 and that 

in this lattice 0 of the G is the zero of the lattice and 01 is the unit 

of the lattice.

To show xy = XAy we must show (i) xy<x,y and

(ii) if z<x,y then z<xy. How (xy)xl = (xx1)y = oy = o.65.
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Hence by Proposition 14 (xy)x = xy. Hence xy_<x. Nov: xy = yx<y.

Thus xy^x,y as required. Hext take z such that s<x,y. Then zx = z, 

zy = z. Thus z(xy) = (zx)y = zy = z. Hence z <xy. Therefore xy = 
inf.[x,y] .

Next we show that x\/y “ (x1y1)·1· for any x, y in G. We first shot; that 

x, y<· (x1y1)1. By Proposition 16 lie have χ11 = x, y11= y. Now 

x\1<x!,y1. Thus applying Proposition 16 once more we have x,y4.(xV1)1 

Thus (xlyl)l is an upper bound for x,y. Take any z in G such that x,y<^ z 

Then we have z1< x1 y1. Hence z^< xV-· Applying Proposition 16 once 

more we have (x^yl)·^ z. Hence xvy = (x1y)1· Hence G is a lattice 

under the divisibility relation with meet and join as stated. Since 

ox = o for each x in G o is a lower bound for each x in G. Hence o is 

the zero element of the lattice. To show that o1· (where o is the zero 

element of the lattice) is the unit of the lattice G we only need to show 

that x<o1 for all xEG. That is we must show xyol - ol. But we know 

that o·^ = o and xV o^· = (χ^-οϋ)Ι = (x-^o)l = o1. Hence o- is the unit of 

the lattice G.

(2) Now we show that the lattice G with o,o- as zero and unit is com­

plemented. Since G is a Boolean semi-group χλχ^ = XX1 = o for any 

x€G. Also o1 = (χΛχ1)1 = (χ11Λχ1)1 = χνχΐ. Hence each x in G has 

for its complement the element χ1 where 1 is the priming operation of G. 

Hence the lattice G is complemented,

(3) We now show that the complemented lattice G is distributive. In 

any lattice we always have, (χΛ7)ν (χΛζ)< ΧΛ(χVs) and hence in 

particular for G. It remains to show that x x(yy z)< (xAy)V (χΛζ).



To this end it is sufficient to show that

x Λ(yVz)Λ(xΛy)1Λ (xnz)l = o

We first establish that χλζ =χΛ(χ1νζ).

(a) χΛζ<χΛ(χ1γ z) for x/\z<x, x-^yz. Thus it remains to show

(b) χλ(χ\/β)<χΛζ. We see that χΛ (χΐ Vz)<x. Next x Λ (x1 ν z )< z 

for χΛ(χ1νζ)Λζ1 = (χΛ ζ^)Λ (xly z) = (χλ^)Λ(χλ z3·)1 = o. Thus 

ΧΛΖ = x Λ(χ1νζ). Finally using what we have just established we get, 

χΛ(χ νζ) AfaAy^A (χΛζ)1

= xAiyvzMtf-vy^A (xW)

= (y ν z) Λχ Ay1 A (x^v zl)

= (yv s) Λ(χΛzl)Λy1

= (yy ®)a(A z1)^ x

= (j^A (^Λ z1)a x = ολ x = o.

Hence xa(?Vz) = (xΛy)v(xΛz)· That is, the Boolean semi-group G 

under the divisibility relation is a complemented distributive lattice. 

Therefore G is a Boolean lattice with unit with meet and join as stated.

Conversely, let B be any Boolean lattice with unit e. Then

trivially the triple (Β, Λ, 1) forms a Boolean semi-group and clear the 

zero of the Boolean lattice is the zero of the semi-group, (Β, Λ, 1). 

This completes the proof.

2. Equivalence of Categories :

Let G denote the category whose objects are Boolean lattices with 

unit and whose naps are unitary Boolean lattice homomorphisms. Let 

denote the category whose objects are Boolean semi-groups and whose maps 

are Boolean semi-group homomorphisms. In this section we establish that 
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the categories L end w are equivalent. Employing the correspondence 

developed in Theorem 1 denote by (G) the Boolean lattice associated 

with the Boolean semi-group G. Similarly for any Boolean lattice B

with unit denote the associated Boolean semi-group by We now

observe the following : Let f : G —> H be a Boolean semi-group homo­

morphism. Then f gives to a map fB : $ (G)—(β (H) defined by fg(x) = 

f(x) for any xg (β(0). The mapping has the following properties : 

(1) f^xAy) = f(xy) = f(x)f(y) =fB(x)Afa(y) for any x,y in $(G).

(2) fB(xwy) = fUxW) = (f (xV))1 = ((fW^fiy))1)1 = fB(x)VfB(y).

(3) ^(x1) = fix1) = (f(x))1 for any x in $ (G).

Hence fB is an unitary Boolean lattice homomorphism between the Boolean

lattices (B(G), β(Η). On the other hand let B, C be Boolean lattices 

with unit and let f : B —> C be an unitary Boolean lattice homomorphism.

Then f gives rise to a map fG : (B)—?>^,(C) defined by fg(x) = f(x)

for any x in y (B). fg has the following properties :

(1) fG(xy) = f(xAy) = f(x)Af(y) = fg(x) fg(y)

(2) fG(x!) = f(xl) = f(x))1 = (f0(x))1.

Hence fg is a Boolean semi-group homomorphism.

The main result of this section is the following theorem:

Theorem 2 : The two correspondences B —->V (B) and G—>C(G)

are covariant functors S : end T : ·ό —> which establish the
s 0 ?

equivalence of the categories (p and V, .

Proof : (i) Let A, B, C be eny three Boolean lattices with unit. The

S is clearly well-defined. Also,
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(a) if f£H(A,B) then S(f) = fGe.H(·^ (A),^(B)) = H(S(A),S(B))

(b) if eAG H(A,A) then S(eA) = (eA)Q& H(^(Α),·^(Α)) = e3(Aj

(o) Finally suppose f£H(A,B), g£-H(B,C).

We must show S(g f) = S(g)T(f). How S(gf) = (gf)G end S(g)S(f) = gQfG .

Hence we must show that (εί)β(χ) = (ββίβ)(χ) for eny xg^(A). But

(ef)o(x) “ (sf)(x) = g(f(x)) for any x and (β$ fG)(x) = 0d(fG(x)) = gg(f(x))=

g(f(x)) for any Hence S(gf) = S(g)S(f), that is, 3 is a covariant

functor from

(ii) Let G, H F be any three Boolean semi-groups.

(b)

if fEH(G,H) then T(f) = fB E H(B(G), B(H) = H(T(G),T(H)) 

if eG H(G,G) then T^G H((g(G),(B (G)) =

Finally suppose fEH(G,H), gGH(H,F).

We must show that T(gf) = T(g) T(f). Now T(gf) = (gf)g end T(g)T(f) = 

(g0 fB). But (gf)B(x) = (gf)(x) “ g(f(x)) for any x and (gB fB)(x) = 

gB(f(x) = g(f(x)). Hence T(gf) =T(g)T(f); that is, T is a covariant 

functor from to G .

(iii) Since S and T are covariant functors the composites ST and TS are
covariant functors on Q respectively.

fa ,Grespectively.

ST = 1^ . This will then establish that the categories and

identity functors on

Let I denote the

We show that TS = 1^ and

are

equivalent. To this end we prove,
(1) B =03 (-^, (B)) and (2) G = (18(G)) where B is any Boolean lattice 

with unit and G is eny Boolean semi-group. To show (1) : Put GB =(g>(G) Let the operations in B be denoted by Λ , V , / and let

the zero of B be denoted by o. We went to show Β = Β. B end B have the 
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Thus (TS)(B) =$ (-fy (B))

same elements namely the elements of G. Thus o = o. Also xny = xy 
= xny for any x,y. xVy = (x^y1)1 = (xlAyl)1 = xyy and clearly 

x? = χΐ. Hence Β = B.

To show (2) : Let B = B(G) end G = (B). Let the operations in G 

be denoted by ~ , / and ths zero of G by o. We went to show G = G. 

G and G have the same elements namely the elements of B. How x~ y = 

XΛy = xy for any x,y. Also x^ = x1 for any x. Hence G = G.

= Β = IG (B) for eny Boolean lattice B with 

unit. Also take any unitary Boolean lattice homomorphism f : B—C. 

Then (TS)(f) = T(fG) = (fg)B end I G(ί) = f. But (fG)B has as its 

domain (β (y (B)) = B which is the domain of f end (fG)β(x) = f(x) for 

any x in B. Hence TS = IG . On the other hand, (ST)(G) = ·y. (B (G)) 

= G = Iy(G) for any Boolean semi-group G. Let fEH(G,F) be arbitrary. 

Then IG(f) = f and (ST)(f) = (fB)g. Again (fg)G has as its domain

((8 (G)) = G which is the domain of f end (fB)G(χ) = fg(x) = f(x) for 
any x&G. Hence ST = Iy . Therefore the categories G and y are 

equivalent. This completes the proof.
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