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Abstract

The application of multivariable Mendelian randomisation (MVMR) to analyse time-

varying data with multiple measurements of both an exposure and an outcome is unclear.

The purpose of this thesis is to develop and examine the properties of a potential model

to extend MVMR to handle two measurements of both an outcome and an exposure.

The exposure effect at Time 1 is estimated using univariable Mendelian randomisa-

tion (MR), while the exposure effects at Time 2 are estimated using MVMR by using a

set of single nucleotide polymorphisms (SNPs) exclusive to the first outcome measure-

ment. Simulations examining the properties of the causal effect estimates in the model

under different scenarios were undertaken. The scenarios included different sampling

schemes (1, 2, or 4 samples) for summary statistics.

Confidence intervals were too wide, over-coverage was present when following the

one-sample scheme, while slight under-coverage in both the two-sample and four-sample

schemes was observed. Parameter estimators appeared to be mainly unaffected by in-

creasing instrument strength. Increasing the number of SNPs pertaining to each expo-

sure led to increased biases for the parameters affecting the second outcome measure-

ment. Lastly, parameter estimates maintained acceptable coverage and small biases for

different scenarios of overlapping SNPs.

The inclusion of SNPs pertaining to the first outcome measurement in a time-varying
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MVMR model with two exposure and two outcome measurements allows for the estima-

tion of exposure effects at both time points. However, the apparent drop in performance

when the number of SNPs increases is of concern.
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Chapter 1

Introduction

When measuring two variables, for example Body Mass Index (BMI) and Blood Pressure

(BP), we are often interested in how BMI affects BP. Through observational studies we

may deduce a correlation between BMI and BP. However, to tease apart a potential

causal relationship one may conduct a randomized control trial (RCT). Although these

studies are the gold standard, they are often time-consuming and expensive. Fortunately,

Mendelian randomisation (MR), a method for deducing causal effects from observational

data with the use of genetic variants or single nucleotide polymorphisms (SNPs) as

instrumental variables (IV), can be performed (Davey Smith and Ebrahim, 2003; Lawlor

et al., 2008).

We may also be interested in how the relationship between the two variables changes

over time. Knowing how the relationship changes can help guide policy or intervention

with the goal of modifying the exposure and the outcome. A recent study employed a

specific form of MR called multivariable Mendelian randomisation to analyse the effect

of a time-varying exposure on an outcome (Sanderson et al., 2022). One such exam-

ple is analysing the relationship between adolescent BMI, adult BMI, and adult BP.
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However, in that paper they assumed there was a single measure of the outcome and

did not consider the implications of adding another measurement of the outcome, for

example adolescent BP. In this thesis, we will examine how MR can be used to analyse

the relationship between two measurements of exposure and outcome. As such, this

thesis aims to analyse a model with an exposure and outcome measured at two distinct

time points. It is assumed the first outcome measurement is taken between the two

exposure measurements, whereas the second outcome measurement is taken after the

second exposure measurement.

The thesis is organized in the following manner. Chapter 2 provides the background

in genetics required to understand Mendelian randomisation. The chapter also provides a

literature review and background of Mendelian randomisation, multivariable Mendelian

randomisation and the application of Mendelian randomisation to time-varying data.

Chapter 3 describes a proposed model detailing a time-varying scenario with two mea-

surements of an exposure and an outcome with a proposed methodology to analyse the

model. Chapter 4 includes a description of the simulation studies we performed to eval-

uate the properties of the model and the results of those studies. A discussion as well

as future potential directions of research is provided in Chapter 5.

2
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Chapter 2

Background

Since MR requires a certain background knowledge in genetics, this chapter focuses on

introducing key concepts in genetics as related to MR followed by a brief background

for instrumental variable analysis, on which MR is based, as well as a presentation of

important methods and assumptions in MR as related to the work undertaken in this

thesis.

2.1 Genetics

A chromosome is a molecule of deoxyribonucleic acid (DNA) carrying genetic informa-

tion. Humans are born with 23 pairs of chromosomes. One chromosome from each pair

is a copy inherited from the mother while the other is inherited from the father. The first

22 pairs of chromosomes are autosomes (or non-sex chromosomes). The 23rd is a pair of

sex chromosomes which can either be XX for a female or XY for a male (Davey Smith

and Ebrahim, 2003).

A DNA molecule has a double helix structure composed of two linked strands of

3
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nucleotide bases wound together. Nucleotide bases are the building blocks of DNA. The

four possible bases are adenine (A), cytosine (C), thymine (T), and guanine (G). Within

the double helix structure the strands of nucleotides form complementary sequences

where A pairs with T, and C pairs with G. Therefore, it is only required to know the

sequence of one strand to obtain all the information pertaining to the sequence of the

other strand; they contain the same information. For example, if at a particular location

on the DNA strand, or locus, the genetic sequence is AATGCT then the complementary

strand will read TTACGA (Davey Smith and Ebrahim, 2003).

Individuals possess mutations in their genetic code. A mutation affecting a single

nucleotide at a particular locus for at least 1% of the population is known as a single

nucleotide polymorphism (SNP). Despite many different forms of mutations, SNPs are

the most common. Other mutations concerning single nucleotides at a particular locus

affecting less than 1% of the population are classified as rare variants (Wright, 2005).

SNP variant forms are known as alleles. If there are only two possible variants of a

particular SNP, it is a biallelic SNP. Although SNPs with three or four alleles, they

are very rare and the remainder of the thesis will solely focus on biallelic SNPs. The

prevalent variant in the population is known as the major allele, while the less prevalent

variant is known as the minor allele.

An individual’s genotype at a specific locus is represented by their inherited alleles.

An individual inherits one allele from each parent. If both alleles are the same the in-

dividual is considered homozygous. If they are different the individual is heterozygous.

It is often convenient to represent the genotype by the number of minor alleles, either

0, 1, or 2. Alleles inherited at genetic markers far apart on the same chromosome are

4
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considered independent since correlation in the genome decreases as the distance be-

tween genetic markers increases. The non-random inheritance of alleles caused by SNPs

closely located on the chromosome as a result of the recombination of the segregated

chromosome leads to a correlation in the inheritance of certain alleles known as linkage

disequilibrium (Davey Smith and Ebrahim, 2003).

The principle detailing the distribution of alleles within the population is called

Hardy-Weinburg equilibrium. It states that allele and genotype frequencies will remain

constant within a population in the absence of evolutionary influences. The frequencies

will also remain constant from generation to generation. If the frequency of the minor

allele, b, within the population (minor allele frequency, MAF) is denoted p and the

frequency of the major allele, B, is denoted q (where p+ q = 1), then under the assump-

tion of random mating the expected frequencies of the genotypes for SNPs following the

Hardy-Weinburg equilibrium are p2 for homozygote bb, 2pq for heterzygote Bb (or bB),

and q2 for homozygote BB. By defining G as the number of minor alleles (with possible

values 0, 1, or 2) and with a probability of inheriting a minor allele equivalent to the

MAF p, then the distribution of G is clearly Binomial with parameters (2, p) (Hardy,

1908; Weinberg, 1908).

2.2 Mendelian Randomisation

Mendelian randomisation is based on instrumental variable analysis, a method developed

in econometrics to examine causal relationships from observational data (Thomas and

Conti, 2004). While the term instrumental variable appeared in 1945 (Reiersöl, 1945),

the first recorded use of instrumental variables in 1928 pertained to the analysis of the

effects of tariffs on vegetable and animal oils (Wright, 1928). An instrumental variable

5
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(IV) is a variable strongly associated with an exposure employed to explore a causal

relationship between the exposure and outcome (Figure 2.1) (Lawlor et al., 2008). An

exposure is a potential causal risk factor for an outcome, and an outcome is a factor or

trait that is thought to be affected by the exposure (Burgess et al., 2023).

Exposure Outome

Confounder

(a) Exposure-outcome relationship
without instrumental variable

Exposure Outcome

Confounder

Instrumental Variable

(b) Exposure-outcome relationship with
instrumental variable

Figure 2.1: Examining the relationship between exposure and outcome without (a) vs
with (b) instrumental variable

MR is the exploration of the causal effect of an exposure on an outcome using ob-

servational data from epidemiological studies via instrumental variable analysis using

genetic instruments (Wehby et al., 2008). These genetic instruments are genetic vari-

ants or SNPs found in the population (Thomas and Conti, 2004). The first study

employing the concept of Mendelian randomisation used the apolipoprotein E (ApoE)

gene variants to investigate the effect of serum cholesterol levels on cancer (Katan, 2004).

Subsequently, MR has been widely used as a method to overcome shortcomings in obser-

vational epidemiology. MR has often been likened to a randomised control trial (RCT).

Suppose there is an RCT conducted to explore the effect of a treatment on an outcome.

Participants are randomly assigned to two or more treatment groups. Randomisation

6
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helps balance the distribution of unobserved confounders between groups (Hingorani

and Humphries, 2005; Smith and Ebrahim, 2005; Nitsch et al., 2006). The treatment

groups are then subjected to different levels of exposure potentially resulting in different

levels of outcome, if there is a causal relationship between the exposure and the outcome.

The RCT allows for attribution of causal effect to the treatment since confounders are

equal in distribution between groups. Genetic variants within a population are randomly

distributed, separating the population into three distinct groups corresponding to the

number of minor alleles. If the genetic variant selected is strongly associated with the

outcome then we expect that the levels of exposure will differ across the three groups.

The differing levels of exposure result in three different levels of outcome allowing for the

estimation of the effect of the exposure on the outcome (Figure 2.2). Akin to a natural

experiment, it is expected for confounders to be equal in distribution between groups

(indicated by the number of minor alleles) through random mating and the random

inheritance of alleles within a population provided that the genetic instruments selected

are not related to any confounders.

Although the RCT analogy is useful to understanding the basis for Mendelian ran-

domisation, there is a key difference. The level of exposure is usually fixed in an RCT,

whereas different individuals may have different levels of exposure within a group cate-

gorised by minor allele frequency in MR. Therefore, it is important to select valid IVs to

help differentiate the levels of exposure between groups in MR. Genetic variants strongly

associated with the exposure of interest allow for clearer separation of groups, whereas

weak instruments only slightly separate exposure groups. Weak instruments can also be

characterized by large p-values of an F -test for regression for the instrument-exposure

7
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Outcome level 2Outcome level 1 Outcome level 3

Exposure level 1Exposure level 0 Exposure level 2

1 Minor allele0 Minor alleles 2 Minor alleles

Randomisation of Alleles

Mendelian Randomisation

(a) Mendelian randomisation

Outcome level 2Outcome level 1 Outcome level 3

Treatment level 2Treatment level 1 Treatment level 3

Randomisation

Randomised Control Trial

(b) Randomised control trial

Figure 2.2: A comparison of Mendelian randomisation (MR) and Randomised control
trial (RCT).
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association. Although weak instruments are valid it is preferred to choose strong in-

struments as they help maximize the separation between groups reducing biases due to

possible confounders (Burgess and Thompson, 2011).

To detect a causal effect of the exposure on the outcome, the IV (or set of IVs) must

satisfy the three following core assumptions:

Assumption 1: The IV is associated with the exposure of interest.

Assumption 2: The IV is not associated with any confounders in the exposure-

outcome relationship.

Assumption 3: The IV does not directly affect the outcome (Didelez and Sheehan,

2007; Lawlor et al., 2008).

Assumptions 1–3 are represented graphically in Figure 2.3 with G denoting the IV,

X denoting the exposure, Y denoting the outcome, and U denoting unobserved con-

founders.

G X Y

U

(a) IV Assumption 1

G X Y

U

(b) IV Assumption 2

G X Y

U

(c) IV Assumption 3

Figure 2.3: Graphical representation of the IV assumptions with G denoting the IV, X
denoting the exposure, Y denoting the outcome, U denoting unobserved confounders.

A dashed arrow represents desired variable relationships whereas a dotted arrow
represents undesired variable relationships under core instrumental variable (IV)

assumptions.

Assumption 1 can be verified empirically using the F -statistic for simple linear re-

gression (Equation 2.1) of the SNP-exposure association to examine the association

9
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strength between an SNP and exposure. IVs violating this assumption are known as

weak instruments (Staiger and Stock, 1994).

F =

∑n
i=1 (x̂i − x̄)2∑n

i=1(xi−x̂i)
2

n−2

∼ F1,n−2 (2.1)

However, formal tests to confirm Assumption 2 do not exist. In practice, the as-

sumption is typically verified via the use of sensitivity analyses (Glymour et al., 2012).

Instrumental variable assumptions may be violated through a variety of phenomena

pertaining to biological mechanisms and non-Mendelian inheritance. The biological

mechanism pleiotropy, whereby an IV is associated with the outcome through a pathway

other than the exposure of interest, violates Assumption 3 (Davey Smith and Hemani,

2014). This type of violation is specifically called horizontal-pleiotropy and methods

such as MR-EGGER and MR-Lasso have been developed to identify and adjust for its

effects (Bowden et al., 2015; Rees et al., 2019). Linkage disequilibrium may result in

the violation of Assumptions 2 or 3 as chosen IVs may be correlated to genetic variants

associated with alternate exposures (Hernán and Robins, 2006).

Deriving a point estimator of the causal effect of the exposure on the outcome often

requires an additional assumption. All relationships between IV, exposure, outcome,

and confounders must be linear with the absence of statistical interactions (Didelez and

Sheehan, 2005).

Denote a single IV by G, the continuous exposure by X, and the continuous outcome

by Y . Let θX be the effect of G on X, θY be the effect of G on Y , θ0k with k indexing

the exposure or outcome, βX the effect of X on Y , and ε random noise such that:

X = θXG+ θ0X + εθX

10
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Y = βXX + εY

= βX (θXG+ θ0X + εθX ) + εY

= βXθXG+ βXθ0X + βXεθX + εY ,

we can then redefine the slope, intercept and error terms to define Y as:

Y = θYG+ θ0Y + εθY ,

such that

βXθXG = θYG

βXθX = θY

βX =
θY
θX
.

Then the estimator for the causal effect of X on Y (Didelez et al., 2010), βX , is given

by

β̂X =
θ̂Y

θ̂X
, (2.2)

otherwise known as the Wald ratio (Wald, 1940). An approximation of the asymptotic

standard error for the above ratio estimator can be obtained using the delta method:

se
(
β̂X

)
'

√√√√√se
(
θ̂Y

)2
θ̂2X

+
θ̂2Y se

(
θ̂X

)2
θ̂4X

+
θ̂Y se

(
θ̂Y

)
se
(
θ̂X

)
ρ

θ̂3X
, (2.3)

where ρ is the correlation between θ̂Y and θ̂X (Thomas et al., 2007; Burgess et al., 2017).

However, in practice it is common to follow the NO Measurement Error (NOME)

11
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assumption, Var (θX) ≈ 0. Under the NOME assumption, Equation 2.3 can be approx-

imated by:

se
(
β̂X

)
'

√√√√√se
(
θ̂Y

)2
θ̂2X

=

√√√√ 1

θ̂2Xse
(
θ̂Y

)−2 .
(2.4)

(Bowden et al., 2016)

Although the Wald ratio estimate is suitable for a single instrument, in practice it

is better to combine the information from multiple instruments. This can be done by

employing the two-stage least squares method (TSLS). Define a collection of L IVs (or

SNPs) as G, and then the estimate of the causal effect can be found in the following

manner. In the first stage, regress the values of X on the instruments in G to then

obtain fitted values of X
(
X̂
)

from the regression equation. Then for the second stage,

regress the values of Y on X̂; the obtained regression slope in the second stage is the

causal effect estimate of interest (Angrist et al., 2000). The estimate provided by the

TSLS method is exactly equivalent to the Wald ratio estimate when a single instrument

is used (Burgess et al., 2017).

TSLS is a method suitable for individual-level data. Such data consist of the SNP, the

exposure, and the outcome for each individual. However, with the advent of Genome-

Wide Association Studies (GWAS), many studies publish readily available summary-

level data of the estimated associations between the lth genetic variant gl and X
(
θ̂Xl

)
as well as Y

(
θ̂Yl

)
, including their standard errors. When there are multiple uncorrelated

genetic variants (L > 1), the estimators for each genetic variant can be combined using

the inverse-variance weighted (IVW) method where squared standard errors are used in

12
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place of the variances for practical reasons:

β̂XIV W
=

∑L
l=1 β̂Xl

se
(
β̂Xl

)−2
∑L

l=1 se
(
β̂Xl

)−2 =

∑L
l=1 θ̂Yl θ̂Xl

se
(
θ̂Yl

)−2
∑L

l=1 θ̂
2
Xl
se
(
θ̂Yl

)−2 (2.5)

with standard error

se
(
β̂XIV W

)
=

√√√√ 1∑L
l=1 se

(
β̂Xl

)−2 =

√√√√ 1∑L
l=1 θ̂

2
Xl
se
(
θ̂Yl

)−2 (2.6)

(Burgess et al., 2013).

The method provides greater weight to instruments resulting in estimates with

smaller standard errors. When there is a single genetic variant (L = 1), the estimate

β̂XIV W
is equivalent to Equation 2.2.

The IVW estimate β̂XIV W
may equivalently be obtained by performing weighted

least squares (WLS) regression without an intercept and with weights V ar
(
θ̂Yl

)−1
(or

se
(
θ̂Yl

)−2
in practice) using the following model:

θ̂Yl = βX θ̂Xl
+ εl, εl ∼ N

(
0, V ar

(
θ̂Yl

))
(2.7)

(Burgess et al., 2016).

Adding an overdispersion parameter φ to the distribution of the error in Equation

2.7 leads to a model known as a variable-effects model:

θ̂Yl = βX θ̂Xl
+ εl, εl ∼ N

(
0, φ2V ar

(
θ̂Yl

))
.

13
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The IVW estimator for the variable-effects model is equivalent to Equation 2.5:

β̂XIV W
=

∑L
l=1 θ̂Yl θ̂Xl

φ−2se
(
θ̂Yl

)−2
∑L

l=1 θ̂
2
Xl
φ−2se

(
θ̂Yl

)−2 =
φ−2

∑L
l=1 θ̂Yl θ̂Xl

se
(
θ̂Yl

)−2
φ−2

∑L
l=1 θ̂

2
Xl
se
(
θ̂Yl

)−2
=

∑L
l=1 β̂Xl

se
(
β̂Xl

)−2
∑L

l=1 se
(
β̂Xl

)−2 ;

however, the standard error of the estimator is now given by:

se
(
β̂XIV W

)
=

√√√√ 1∑L
l=1 θ̂

2
Xl
φ−2se

(
θ̂Yl

)−2 =

√√√√ φ2∑L
l=1 θ̂

2
Xl
se
(
θ̂Yl

)−2
=

φ√∑L
l=1 θ̂

2
Xl
se
(
θ̂Yl

)−2 ;

where in practice φ̂ = max (1, RSE). The abbreviation RSE stands for Residual Stan-

dard Error for the fitted model using Equation 2.7. When fixing φ = 1 the variable-

effects model becomes equivalent to the model in Equation 2.7, otherwise known as the

fixed-effects model. Although both provide the same point estimate for given data, the

variable-effects model allows for larger standard errors (Thompson and Sharp, 1999;

Bowden et al., 2017).

Summary-level data has also contributed to the rise of two-sample MR, whereby the

summary associations between the SNP and the exposure, and that of the SNP and

the outcome are obtained from two separate and partial or non-overlapping samples

drawn from the same population. Two-sample MR greatly increased the scope and

practicality of MR by allowing the combination of results from different studies resulting

in increased sample sizes and statistical power. Additionally, two-sample MR requires
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the harmonization of data between studies. Harmonization is the process by which

instrumental SNPs are properly paired between studies, ensuring the effect estimates

correspond to the same alleles for the exposure and outcome (Hartwig et al., 2017).

Following data harmonization, two-sample MR can be implemented via the IVW method

or its WLS equivalent using the provided summary associations and their standard

errors.

2.3 Multivariable Mendelian Randomisation

Cases arise where it is of interest to examine the effect of multiple exposures on a single

outcome, or when it is not feasible to obtain SNPs only associated with the exposure of

interest resulting in pleiotropy and violating MR Assumptions 2 or 3.

These cases can be handled by multivariable MR (MVMR). The term multivariable

refers to the inclusion of at least two exposures with a single outcome. Furthermore,

exposures can be correlated or exert direct effects on one another. MVMR requires a

slight modification to IV Assumption 1 to account for multiple exposures:

Assumption 1: The IV is associated with one or more exposures

(Burgess and Thompson, 2015).

In an MVMR setting using two-sample summary statistics, Assumption 1 can be

assessed with the conditional F -statistic for the exposure-SNP associations. The condi-

tional F -statistic (Equation 2.8) works by assessing instrument strength for an exposure

conditional on the other exposures included in the model. Without loss of generality, the

conditional F -statistic for an exposure X1 conditional on the rest of the K−1 exposures

15

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Pero; McMaster University – Mathematics and Statistics

in a model with L SNPs (where SNPs are indexed by l) is given by:

FX1|X−1 =

∑L
l=1

(
1

σ2
X1,l

)(
θ̂X1l
− δ̂1Θ̂−X1,l

)
L− (K − 1)

∼
χ2
(L−(K−1))

L− (K − 1)
, (2.8)

where, δ̂1 is a vector of size K − 1 obtained by performing regression using the model

(for l = 1, . . . , L):

θ̂X1l
= δ1Θ̂−X1,l

+ εl

The term Θ̂ is the K by L matrix of exposure-SNP summary association estimates

between each SNP and exposure:

Θ̂ =


θ̂X11 . . . θ̂X1L

...
. . .

...

θ̂XK1
. . . θ̂XKL

 .

The term Θ̂−X1 is the matrix Θ̂ without its first row, and Θ̂−X1,l
is lth column of the

matrix Θ̂−X1 . Lastly, σ2
X1,l

is obtained from the equation:

σ2
X1,l

=

[
−1 δ̂2 . . . δ̂K

]
Σl



−1

δ̂2
...

δ̂K


,

where Σl is the covariance matrix for the estimated exposure-SNP associations for a
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given SNP gl:

Σl =


σ11,l . . . σ1K,l

...
. . .

...

σK1,l . . . σKK,l

 .
Larger F values in Equation 2.8 denote strong instruments (Sanderson and Wind-

meijer, 2016; Sanderson et al., 2021). It is important to note the IV does not have to be

associated with all of the exposures included within a model. However, the number of

IVs used in the analysis must be at least as large as the number of exposures to ensure

linear independence in exposure-SNP association or the predicted exposure values to

disentangle the effect of the multiple exposures on the outcome (Sanderson et al., 2018).

Implementation of MVMR is similar to MR. For a model with K exposures and

L SNPs, the summary-level data for the exposure-SNP associations θ̂Xkl
are obtained

by regressing the kth exposure on the lth SNP. Similarly, the outcome-SNP associations

θ̂Yl are obtained by regressing the outcome on each SNP. In a similar fashion to the

univariable MR case, summary associations can be derived from a single sample or by

using two non-overlapping samples: one for the exposures and one for the outcome. The

IVW method is then performed using a WLS framework with the following model and

weights φ−2V ar
(
θ̂Yl

)−1
(or φ̂−2se

(
θ̂Yl

)−2
in practice):

θ̂Yl = β1θ̂X1l
+ β2θ̂X2l

+ ...+ βK θ̂XKl
+ εl, εl ∼ N

(
0, φ2V ar

(
θ̂Yl

))
(2.9)

(Burgess et al., 2015).

In an MVMR setting, the estimates represent the direct effects of the exposures

on the outcome, whereas performing separate MR estimates for each exposure would

provide a total effect of the exposure on the outcome including any correlations between
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exposures in affecting the provided causal estimates (Sanderson et al., 2018).

While MVMR is used to perform Mendelian randomisation in the presence of multiple

exposures, the exposures need not be distinct. There may be certain scenarios where

a single exposure can vary over time and its relationship with the outcome differs at

different time points. Performing Mendelian randomisation with repeated measures of

an exposure at different time points is called time-varying MR and is discussed in the

following section.

2.4 Time-Varying Mendelian Randomisation

Estimates provided by MR consider effects from exposures acting over the course of a

lifetime (Davey Smith and Ebrahim, 2003), however, the effects of an exposure on an

outcome may not be identical at each time point (Kivimäki et al., 2007). Furthermore,

if the SNP-exposure association varies over time then a single measurement of exposure

and outcome may not provide a reliable estimate of the exposure’s effect on the out-

come (Labrecque and Swanson, 2018). Therefore, it is of importance to measure such

exposures at multiple time points to help better understand their relationship with the

outcome. When dealing with time-varying exposures, meaning an exposure measured

at different time points, the interpretation of MR estimates is not the effect of the expo-

sure at a specific point; it is the effect of changing the latent genetic liability, meaning

the unmeasured effects of the SNPs associated with the exposure up until the time the

outcome occurs. In other words, it is the effect on the outcome such that the genetic

liability for the exposure differs enough for a unit increase in the exposure (Morris et al.,

2022; Sanderson et al., 2022).

Recent studies suggested using structural mean models for MR to deal with time
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varying exposures, a semi-parametric method originally developed for use in randomised

control trials with censoring (Burgess et al., 2017). Suppose there is a potential outcome

Y measured at time point m for exposure X. Denote the potential outcome if the

entire population had the exposure as Y Xm and the potential outcome if none of the

population had the exposure as Y X′m . Then the average point effect of the exposure

can be calculated as the difference between the mean potential outcome of receiving the

exposure compared to not receiving the exposure:

E
(
Y Xm

)
− E

(
Y X′m

)
.

In order to identify the causal estimator, the IV assumptions must hold for the

measured time, that is the instrument cannot affect the exposure at other time periods

or the outcome directly.

The above expression can be applied when there is a single measurement of the ex-

posure. For multiple measurements, the average period or lifetime effect of the exposure

for a period m − t to m by calculating the difference between the mean outcome had

the entire population received the exposure at each measured time point and the mean

outcome had the entire population not received the exposure at each measured time

point:

E
(
Y Xm−t,...,m−1,m

)
− E

(
Y X′m−t,...,m−1,m

)
.

For this case, identifying the causal estimator requires the measurement of all rele-

vant exposure time points and at least as many SNPs as the number of time points t.

Furthermore, there must be at least one SNP such that the SNP-exposure association

differs between time points. Untangling exposure effects at different time points would

not be possible without such a SNP (Shi et al., 2021, 2022).
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The use of MVMR has also been considered. A study examining the effects of

adiposity on disease risk using measures of adiposity levels early and later in life used

MVMR to separate the effects of adiposity at both life stages (Richardson et al., 2020).

Further work examining the use of MVMR with time-varying exposures and a single

outcome showed the viability of the method for estimating causal effects over the course

of an individual’s life. The authors considered a model with an exposure measured at two

different time points and a single outcome all affected by a confounder. The exposure

at the earlier time point affected the exposure at the later time point. There were three

collections of SNPs used as instrument variables: SNPs exclusively associated with the

exposure at the earlier time point, SNPs exclusively associated with the exposure at the

later time point, and SNPs associated with the exposure at both time points. Three

simulations were conducted with SNP selection. The chosen selection criterion was a

p-value smaller than 5 × 10−8 using an F -test for significance of regression for each

SNP-exposure association.

The first simulation compared the estimation of the effects of exposures on the out-

come when the genetic effects of the SNPs were identical for the exposure at each time

point as opposed to differing genetic effects of the SNPs for each time point. Using the

IVW MVMR method for estimation, they found having differing genetic effects for each

exposure resulted in consistent estimators of the causal effect of the exposure on the

outcome when the genetic liability of exposure changes such that the exposure changes

by a unit. However, when genetic effects were identical at each time point the causal

effect estimates were higher in absolute bias as a result of weak instruments evidenced

by small conditional F -statistic values.
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The second simulation considered a model identical to the first with a slight modifica-

tion; the outcome affects the exposure at a later time point and a set of SNPs associated

with the outcome were added which may have been selected as instruments for the effect

estimates. The effect estimates were calculated using the IVW MVMR method following

SNP selection with and without the use of Steiger filtering (a method used to determine

SNPs explaining more variance in the exposure than the outcome), filtering out SNPs

not meeting this criterion (Hemani et al., 2017). They found direct causal effect esti-

mators were biased without the use of Steiger filtering even if the SNPs were strong

instruments since the exposure at time point 2 was affected by both the exposure at the

earlier time point and the outcome, becoming a collider (Paternoster et al., 2017). A

collider is defined as a variable which is directly affected by two other variables (Pearce

and Lawlor, 2016). Conditioning on the exposure at time point 2 resulted in collider bias

for all estimators. Collider bias arises from the potential violation of IV assumptions

due to the presence of a collider which may create an association between SNPs and the

outcome other than through the exposure. However, the collider bias was avoided when

Steiger filtering was used by eliminating the use of SNPs affecting the exposure at time

point 2 via the outcome (Sanderson et al., 2018).

The final simulation considered a model with the exposure measured at three dif-

ferent time points, whereby earlier exposures affect later exposures, one outcome, an

unobserved confounder affecting all measures of the exposure and the outcome, and

three different sets of SNPs; two distinct sets affecting all three exposure time points,

and a third only affecting the exposure at the third time point. They then estimated

the direct effects of the exposure at time points 1 and 2 on the outcome ignoring the

exposure at time point 3 and the set of SNPs exclusively affecting it for the two following
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scenarios: the SNPs were not correlated with the exposure at time point 3; and the dis-

tinct groups of SNPs had a correlation with the exposure at time point 3. They found

some of the effects from the excluded exposure at time point 3 were included in the

effect estimates from the exposures at time points 1 and 2 when there is a correlation.

However, this was not the case when there was no correlation between the SNPs and

the exposure at time point 3.

The authors then used IVW MVMR to assess the effect of BMI during childhood and

adulthood on smoking behaviour (defined as cigarettes per day, smoking cessation, and

smoking initiation) and on circulating levels of C-reactive protein (CRP). They found

only adult BMI significantly affected circulating levels of CRP. They also concluded

childhood BMI was not a predictor for smoking behaviour later in life. However, the

authors note they did not further examine their results by exploring biases related to

pleitropy, colliders or SNP selection (Sanderson et al., 2022).
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Chapter 3

Extending the Time-Varying Model

for Two Time Points of the

Exposure and Outcome

The previous chapter discussed methods to analyse changing exposure-outcome relation-

ships with the introduction of time-varying exposures measured at multiple time points.

However, the implications of introducing additional measurements of outcomes are not

yet clear. Returning to the introductory example of using BMI as an exposure and BP

as an outcome, if these were both measured at two time points, would there be an ad-

ditional benefit to this increased information? How should such data be handled? The

inclusion of additional measurements of outcome was an area of future research outlined

by the authors in the paper discussing the viability of MVMR in a time-varying exposure

setting (Sanderson et al., 2022). As such, we will consider a model with two distinct

time points including two measurements of an exposure and two measurements of an

outcome.
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First, a preliminary model is described with the following variables. The continuous

exposure X is measured at time point 1 (X1) and at time point 2 (X2). The continuous

outcome Y is also measured twice. The first measurement Y1 is measured at any time

following the measurement of X1 but before X2. The second measurement of Y , denoted

Y2, is measured at the same time as or after X2. U is an unobserved confounder affecting

the exposure and outcome at both time points.

The effects of the exposures and earlier outcomes on later outcomes are as follows:

• β1: the effect of X1 on Y1,

• β12: the effect of X1 on Y2,

• β2: the effect of X2 on Y2,

• γ: the effect of Y1 on Y2,

• ω: the effect of X1 on X2.

We assume exposures or outcomes happening at time point 2 cannot affect those hap-

pening at time point 1; an event happening at future times cannot affect the present.

Furthermore, it is assumed an outcome cannot affect an exposure, although this may be

a reasonable occurrence in practice.

The collections of SNPs included in the model are G1 (the IVs for X1) and G2 (the

IVs for X2). SNPs that affect more than one exposure/outcome are not considered. The

model is represented graphically in Figure 3.4.

It is proposed to consider each time point in the model separately. At time point

1, the only relevant variables of the model are the SNPs G1, the exposure X1, and
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G1

G2

X1

X2

Y1

Y2

U

β1

β12

β2

ω γ

Figure 3.4: Preliminary model with a single time varying exposure X and outcome Y
measured at two different time points 1 and 2. X1 and X2 as well as Y1 do not share

any SNPs.
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the outcome Y1. The estimation of β1 can be completed via univariable MR using the

following WLS model and weights φ̂−21 se
(
θ̂Y1l

)−2
:

θ̂Y1l = β1θ̂X1l
+ εY1l , εY1l ∼ N

(
0, φ2

1V ar
(
θ̂Y1l

))
, (3.10)

where φ̂1 = max(1, RSE) and RSE is for the fitted model in Equation 3.10.

At time point 2, all variables in the model are relevant for estimation. The parameters

of interest are β12, β2, and γ, which can be estimated using WLS for MVMR with the

following model with weights φ̂−22 se
(
θ̂Y2l

)−2
and all SNPs in G1 and G2:

θ̂Y2l = β12θ̂X1l
+ β2θ̂X2l

+ γθ̂Y1l + εY2l , εY2l ∼ N
(

0, φ2
2V ar

(
θ̂Y2l

))
, (3.11)

where φ̂2 = max (1, RSE) and RSE is for the fitted model in Equation 3.11.

Note, that both Equation 3.10 and Equation 3.11 are based on the variable-effects

model. The variable-effects model was chosen as it allows for more conservative standard

error compared to the fixed-effects model. It will now be shown that the preliminary

model in Figure 3.4 is inadequate to estimate the desired exposure-outcome effects.

Let us define the exposures (X1, X2) and outcomes (Y1, Y2) in terms of each of the

L SNPs gl with intercept θ0k where k is one of the exposure or outcome at time points

1 or 2:

X1 =
L∑
l=1

θX1l
gl + θ0X1

+ εθX1
, (3.12)

X2 =
L∑
l=1

θX2l
gl + θ0X2

+ εθX2
, (3.13)
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Y1 =
L∑
l=1

θY1lgl + θ0Y1 + εθY1 , (3.14)

Y2 =
L∑
l=1

θY2lgl + θ0Y2 + εθY2 . (3.15)

Let us define the outcome Y1 in terms of the exposure X1

Y1 = β1X1 + εY1 . (3.16)

Let us define the outcome Y2 in terms of the exposures (X1, X2) and earlier outcome

(Y1),

Y2 = β12X1 + β2X2 + γY1 + εY2

= β12X1 + β2X2 + γ(β1X1 + εY1) + εY2 .

(3.17)

Then by substituting Equations 3.12, 3.13 into Equation 3.17, we obtain:

Y2 = β12

(
L∑
l=1

θX1l
gl + θ0X1

+ εθX1

)
+ β2

(
L∑
l=1

θX2l
gl + θ0X2

+ εθX2

)
+

γ

(
β1

(
L∑
l=1

θX1l
gl + θ0X1

+ εθX1

)
+ εY1

)
+ εY2

= β12

L∑
l=1

θX1l
gl + β2

L∑
l=1

θX2l
gl + γβ1

L∑
l=1

θX1l
gl + β12θ0X1

+

β2θ0X2
+ γβ1θ0X1

+ β12εθX1
+ β2εθX2

+ γβ1εθX1
+ γεY1 + εY2 .

(3.18)

Using Equations 3.15 and 3.18, the following equality is apparent:
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L∑
l=1

θY2lgl = β12

L∑
l=1

θX1l
gl + β2

L∑
l=1

θX2l
gl + γβ1

L∑
l=1

θX1l
gl

= (β12 + γβ1)
L∑
l=1

θX1l
gl + β2

L∑
l=1

θX2l
gl,

(3.19)

demonstrating an identifiability issue when trying to analyse the preliminary model

at time point 2 as the collection of SNPs in G1 represents the total effect of X1 on Y2,

which includes the effect of X1 via Y1. Thus, there is a lack of information making it

difficult to estimate β12 and γ. It is important to note that this issue does not arise

when γ = 0, since indirect effects of X1 on Y2 via Y1 are not present. This is evidenced

by substituting γ = 0 into Equation 3.19, where the only parameters left to estimate

are β12 and β2. Nevertheless, the following model is proposed: with the inclusion of G3,

which is a set of SNPs directly affecting the time point 1 outcome measurement Y1, the

MVMR estimation at time point 2 will avoid the identifiability issue allowing for the

estimation of β12 and γ (Figure 3.5).

Typically in MR (MVMR included) it is only required to use SNPs for the exposures.

However, in a time-varying setting, the first outcome Y1 will be considered an exposure

for Y2 at time point 2. Considering Y1 as an exposure provides a theoretical justification

for the necessity of the SNPs G3 to estimate the separate direct causal effects of X1 and

Y1 on Y2.

By using a collection of SNPs G3 exclusive to Y1, we can keep the outcome Y2 in

terms of X1, X2, and Y1 explicitly (referring to the first equality of Equation 3.17). Then
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by substituting Equations 3.12, 3.13, 3.14 into Equation 3.17, we obtain:

Y2 = β12

(
L∑
l=1

θX1l
gl + θ0X1

+ εθX1

)
+ β2

(
L∑
l=1

θX2l
gl + θ0X2

+ εθX2

)
+

γ

(
L∑
l=1

θY1lgl + θ0Y1 + εθY1

)
+ εY2

= β12

L∑
l=1

θX1l
gl + β2

L∑
l=1

θX2l
gl + γ

L∑
l=1

θY1lgl + β12θ0X1
+

β2θ0X2
+ γθ0Y1 + β12εθX1

+ β2εθX2
+ γεθY1 + εY2 .

(3.20)

Using Equations 3.15 and 3.20, we obtain the following equality:

L∑
l=1

θY2lgl = β12

L∑
l=1

θX1l
gl + β2

L∑
l=1

θX2l
gl + γ

L∑
l=1

θY1lgl. (3.21)

The equality in Equation 3.21 thus demonstrates estimates for the direct effects of X1

on Y2 (β12) and Y1 on Y2 (γ) can be estimated when G3 is included in the model.

Now that the proposed model and method of analysis have been introduced, the

following chapter will detail a range of simulations to examine the properties of the

model.
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G1

G2

X1

X2

Y1

Y2

UG3

β1

β12

β2

ω γ

Figure 3.5: Proposed model with a single time varying exposure X and outcome Y
measured at two different time points 1 and 2. Exposures X1 and X2 as well as

outcome Y1 do not share any SNPs with the addition of SNPs G3.
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Chapter 4

Simulations and Results

This chapter contains several simulations geared towards exploring the properties of

the model introduced in Chapter 3 under varying conditions. The first simulation aims

to demonstrate the identifiability issue with the initial model described in Chapter 3.

The second simulation aims to compare parameter estimation of the model from Fig-

ure 3.5 under different sampling conditions. The rest of the simulations examine the

performance of the estimators when modifying the strength of the SNP effects on the

exposures, the number of SNPs corresponding to X1, X2, and Y1, as well as different

scenarios of shared (or overlapping) SNPs between X2 and Y1. All simulations follow

the same general framework. A total of L = 30 SNPs for the first simulation and

L = 45 SNPs for all subsequent simulations, unless otherwise specified (where gklj is

the lth SNP within the set of SNPs Gk for the jth individual), were generated inde-

pendently from a Binomial(2, pkl). Each MAF pkl was generated independently from a

Beta(1, 8) × 0.45 + 0.05 in order to keep the range of the MAFs between 0.05 and 0.5,

while allowing for smaller MAFs to be generated with higher probability. The 45 SNPs

were equally divided into the three non-overlapping sets G1, G2, and G3. The exposures
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for the jth individual (where j = 1, ..., n) were constructed as follows:

X1j =
15∑
l=1

α1lg1lj + κ1Uj + εX1j, (4.22)

X2j =
15∑
l=1

α2lg2lj + ωX1j + κ2Uj + εX2j, (4.23)

where each αkl
iid∼ N(0, 1) without the interval (−0.3, 0.3). The interval was omitted

from the standard normal distribution to avoid weak instruments. The other random

variables for the jth individual were distributed as follows:

• εX1j
iid∼ N(0, 1)

• εX2j
iid∼ N(0, 1)

• Uj
iid∼ N(0, 1),

and the values of κ1, κ2, and ω were arbitrarily chosen as 0.4, 0.3, and 0.1 respectively.

The outcomes for the jth individual were then constructed from the exposures as

follows:

Y1j =
15∑
l=1

α3lg3lj + β1X1j + κ3Uj + εY1j, (4.24)

Y2j = β12X1j + β2X2j + γY1j + κ4Uj + εY2j, (4.25)

where each εY1j, εY2j,
iid∼ N(0, 1), while κ3 and κ4 were arbitrarily set as 0.3 and 0.5

respectively. Lastly, the values of the parameters of interest were β1 = 0.2, β12 = 0.4,

β2 = 0.3, and γ = 0.2.

The exposure and outcome data were generated for n = {20000, 40000} individuals
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(to be specified in each simulation). The simulation was repeated N = 1000 times for

each case. Simulations and computations were completed using R 4.3.2 with the aid

of the MendelianRandomization package (R Core Team, 2023; Yavorska and Staley,

2023). Implementation of the methods described in Chapter 3 pertaining to the model

in Figure 3.5 is a two-step process given the availability of summary statistics and their

standard errors for the desired SNPs in G1, G2, and G3. First, univariable MR is used

to estimate the effect on Y1 using the SNPs in G1 and is performed by formatting the

summary statistics data with the mr input function, then passing it through the function

mr ivw which will provide an estimate for β1. Second, MVMR is used to estimate the

effects on Y2 using all SNPs by formatting the summary statistics data with mr mvinput

and passing it through the function mr mvivw to obtain an estimate of β12, β2, and γ

(Yavorska and Staley, 2023).

4.1 Simulation 1 - Causal effect estimates without

SNPs G3

The purpose of this simulation is to demonstrate the identifiability issue in the estima-

tion of causal effects β12 and γ in the time-varying model with exposure and outcome

measurements at two time points when the set of SNPs G3 is empty.

A total of L = 30 SNPs (where gklj is the lth SNP within the set of SNPs Gk for the

jth individual) were generated independently from a Binomial(2, pkl). There were only 30

SNPs since G3 is empty. The 30 SNPs were equally divided into the two non-overlapping

sets G1 and G2.

Since G3 is empty, the outcome Y1 for the jth individual was then constructed from
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the exposure at time point 1 as follows:

Y1j = β1X1j + κ3Uj + εY1j,

where each εY1j
iid∼ N(0, 1), while the effect of the confounder U was still arbitrarily set

as u3 = 0.3 and β1 = 0.2.

The exposure and outcome data were generated for n = 20000 individuals. The data

were subsequently split into two equal non-overlapping samples whereby one sample was

used to obtain summary statistics for the exposures (θX1 and θX2) and the other was

used to obtain the summary statistics of the outcomes (θY1 and θY2). Summary statistics

were obtained by regressing each of the exposures and outcomes individually on each of

the SNPs. The summary statistics were then used to compute the estimates of β1, β12,

β2, and γ by performing weighted least squares with the models in Equations 3.10 and

3.11, where only the SNPs pertaining to G1 are used in Equation 3.10, and all SNPs

were used in Equation 3.11.

The standard errors for the estimators were then calculated using the following for-

mula:

se(β̂c) =
φ̂√∑

l θ̂
2
Xdl
se(θ̂Yf l)

−2
,

where β̂c was taken to mean the estimate of either β1, β12, β2, and γ, with the appropriate

summary associations for exposure θ̂Xdl (where Xd is one of X1, X2, or Y1) and outcome

θ̂Yf l (where Yf is one of Y1 or Y2) for the lth SNP. When β̂c is taken as β̂1, l ranges from

1 to the number of SNPs in G1. For all other options of β̂c, l ranges from 1 to L, the

total number of SNPs.

Table 4.1 provides the mean estimate of parameter values across all simulation runs,
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Table 4.1: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage when G3 is empty

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

β1 0.2000 0.1993 -0.0007 -0.3654 0.0073 0.0074 0.9630
β12 0.4000 0.2955 -0.1045 -26.1234 0.0472 0.0469 0.4140
β2 0.3000 0.2991 -0.0009 -0.3133 0.0083 0.0073 0.9260
γ 0.2000 0.7151 0.5151 257.5310 0.2349 0.2320 0.4180

the bias of the estimators, their relative bias, the mean standard error across all simu-

lation runs as well as the coverage probability for a 95% confidence interval calculated

using a t distribution with df = 14 for β1 and df = 27 for β12, β2, and γ. Relative bias

(or rel. bias) for each parameter was calculated as

bias(%) =
β̂c − βc
βc

× 100%.

Boxplots illustrating parameter estimates for each simulation run are provided in

Figure 4.6. Although the estimators for both β1 and β2 appear unbiased and achieve

good coverage probability, the estimators for β12 and γ are quite poor in terms of bias and

coverage (Table 4.1). Furthermore, the variability of the estimates of β12 and especially

γ is greater than that of β1 and β2, as evidenced by the interquartile range (IQR) for

each boxplot in Figure 4.6. The IQRs for each parameter estimates are as follows: 0.3166

for γ; 0.0645 for β12; 0.0101 for β1; and 0.0111 for β2. We suspect the poor performance

of the estimators is caused by the identifiability issue outlined in Chapter 3; hence the

proposed addition of SNPs G3 affecting Y1.
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Figure 4.6: Boxplots of parameter estimates for an empty set of SNPs G3. True
parameter values are indicated by the red lines in each plot.
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4.2 Simulation 2 - Causal effect estimates with SNPs

G3 for different sampling schemes

The purpose of this simulation was to demonstrate the estimation of causal effects with

the inclusion of SNPsG3 and under three sampling schemes. The three different sampling

schemes are the one-, two-, and four-sample schemes. The one-sample scheme involves

obtaining all summary statistics for X1, X2, Y1, and Y2 from a single sample. This

sampling scheme is representative of all summary statistics coming from a single study.

The two-sample scheme involves obtaining the summary statistics for the exposures X1

and X2 from one sample and the summary statistics for the outcomes Y1 and Y2 from

a separate non-overlapping sample. This scheme is comparable to obtaining summary

statistics for the exposures and outcomes from two separate studies. Lastly, the four-

sample scheme involves obtaining the summary statistics for each of X1, X2, Y1, and

Y2 from separate samples. This scenario is similar to obtaining the summary statistics

from four separate studies. Together, the three schemes capture one middle ground and

two extreme scenarios for sampling.

The simulation followed the general simulation framework outlined at the beginning

of the chapter. The exposure and outcome data were generated for n = 40000 individ-

uals. The individuals were subsequently split into four equal non-overlapping samples

containing 10000 individuals called Samples A, B, C, and D. Summary statistics were

then obtained using the three sampling schemes outlined above. For the one-sample

scheme, only Sample A was used. In the two-sample scheme summary statistics for

the exposure were found using Sample A and those for the outcome were found using

Sample B. Lastly all Samples A–D were used for X1, X2, Y1, and Y2 summary statistics

37

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Pero; McMaster University – Mathematics and Statistics

respectively, in the four-sample scheme. Parameter estimates and standard errors were

obtained in the same manner as Simulation 1.

Table 4.2: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage by number of samples

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

sample(s)

β1 0.2000 0.2010 0.0010 0.5042 0.0193 0.0209 0.9710 1
β12 0.4000 0.3999 -0.0001 -0.0244 0.0027 0.0109 1.0000
β2 0.3000 0.3000 0.0000 0.0070 0.0022 0.0092 1.0000
γ 0.2000 0.2001 0.0001 0.0444 0.0021 0.0088 1.0000
β1 0.2000 0.1998 -0.0002 -0.1148 0.0201 0.0213 0.9660 2
β12 0.4000 0.3955 -0.0045 -1.1350 0.0151 0.0131 0.8970
β2 0.3000 0.2972 -0.0028 -0.9390 0.0126 0.0110 0.9020
γ 0.2000 0.2010 0.0010 0.5224 0.0109 0.0106 0.9410
β1 0.2000 0.1979 -0.0021 -1.0508 0.0202 0.0212 0.9680 4
β12 0.4000 0.3964 -0.0036 -0.9062 0.0167 0.0143 0.9040
β2 0.3000 0.2961 -0.0039 -1.3034 0.0132 0.0120 0.9110
γ 0.2000 0.1985 -0.0015 -0.7655 0.0126 0.0115 0.9230

Firstly, comparing the estimators before and after the inclusion of SNPs G3 (Table 4.2

and Figure 4.7), we notice improved performance as characterized by smaller biases and

higher coverage for the estimators of β12, γ using t distribution 95% confidence intervals

with 42 degrees of freedom. The intervals for β2 used the same degrees of freedom

whereas the confidence intervals for β1 were calculated using 14 degrees of freedom.

Comparing the different sampling schemes we notice the estimator for β1 provides

similar estimates across all three sampling schemes with over-coverage. The story is

different for β12, β2, and γ all of which increase in variability as the number of samples

increases. A possible explanation for this pattern is the fact that there is less error within

a sample which is using the same individuals for all summary statistics as opposed to

obtaining the summary statistics from different samples. We also note the standard
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Figure 4.7: Boxplots of parameter estimates for different numbers of samples. True
parameter values are indicated by the red lines in each plot.
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errors of the estimators are larger on average than their standard deviations within the

one-sample scheme.

4.3 Simulation 3 - Causal effect estimates with SNPs

G3 for different magnitudes of SNP effects

The purpose of this simulation was to examine the causal effect estimates under differ-

ent SNP effects α. The αkl’s from Equations 4.22, 4.23, 4.24, and 4.25 were generated

independently from N(0, 1) with different and subsequently larger rejection intervals,

leading to larger SNP effect magnitudes achieved via an accept-reject algorithm only ac-

cepting values outside the rejection intervals which were |αkl| > {0, 0.3, 0.6, 0.9, 1.2, 1.5}.

Following the same procedures as the general simulation framework, the rest of the data

was generated and estimates were obtained with the exception of only using n = 20000

individuals with the two-sample scheme employed to obtain summary statistics.

It appears as though increasing the minimum generated absolute instrument strength

did not significantly influence the performance of the estimators (Figure 4.8). Aside from

an initial decrease in variability for the estimates of β2, the other estimates, namely β1,

β12, and γ, generally remained unchanged regardless of instrument strength.

4.4 Simulation 4 - Causal effect estimates with SNPs

G3 for different numbers of SNPs

Mendelian randomisation is often conducted with large numbers of SNPs as such this

simulation sought to examine the causal effect estimates under different numbers of
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Table 4.3: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage for different minimum absolute instrument strengths

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

|αkl| >

β1 0.2000 0.1992 -0.0008 -0.3918 0.0121 0.0125 0.9620 0
β12 0.4000 0.3982 -0.0018 -0.4428 0.0098 0.0084 0.9100
β2 0.3000 0.2965 -0.0035 -1.1654 0.0162 0.0151 0.9250
γ 0.2000 0.2013 0.0013 0.6721 0.0088 0.0090 0.9470
β1 0.2000 0.2001 0.0001 0.0408 0.0120 0.0129 0.9750 0.3
β12 0.4000 0.3981 -0.0019 -0.4808 0.0103 0.0087 0.9060
β2 0.3000 0.2978 -0.0022 -0.7221 0.0097 0.0089 0.9210
γ 0.2000 0.2011 0.0011 0.5632 0.0085 0.0085 0.9500
β1 0.2000 0.1995 -0.0005 -0.2668 0.0129 0.0129 0.9670 0.6
β12 0.4000 0.3979 -0.0021 -0.5349 0.0101 0.0087 0.9010
β2 0.3000 0.2983 -0.0017 -0.5770 0.0088 0.0076 0.9010
γ 0.2000 0.2009 0.0009 0.4462 0.0083 0.0082 0.9500
β1 0.2000 0.1994 -0.0006 -0.3066 0.0137 0.0136 0.9640 0.9
β12 0.4000 0.3979 -0.0021 -0.5215 0.0103 0.0087 0.8950
β2 0.3000 0.2986 -0.0014 -0.4816 0.0087 0.0076 0.9170
γ 0.2000 0.2009 0.0009 0.4707 0.0076 0.0075 0.9430
β1 0.2000 0.1993 -0.0007 -0.3527 0.0119 0.0126 0.9760 1.2
β12 0.4000 0.3972 -0.0028 -0.6954 0.0108 0.0085 0.8580
β2 0.3000 0.2986 -0.0014 -0.4613 0.0081 0.0069 0.8980
γ 0.2000 0.2008 0.0008 0.4197 0.0080 0.0078 0.9460
β1 0.2000 0.1996 -0.0004 -0.2230 0.0111 0.0117 0.9710 1.5
β12 0.4000 0.3983 -0.0017 -0.4227 0.0094 0.0081 0.9070
β2 0.3000 0.2990 -0.0010 -0.3442 0.0082 0.0072 0.9130
γ 0.2000 0.2009 0.0009 0.4290 0.0082 0.0080 0.9470
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Figure 4.8: Boxplots of parameter estimates for different minimum absolute SNP
effects. True parameter values are indicated by the red lines in each plot.
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SNPs. The simulation followed the general simulation framework under the two-sample

scheme introduced in Simulation 2. Exposures and outcomes were generated for n =

20000 individuals and the number of SNPs in G1, G2, and G3 was either 5, 25, 50, 75, or

100, under the restriction each set of SNPs had an equal amount. The simulation was

repeated N = 1000 for each SNP count.

Table 4.4: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage for different numbers of SNPs per set Gk

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

SNPs
per Gk

β1 0.2000 0.1990 -0.0010 -0.5197 0.0163 0.0177 0.9950 5
β12 0.4000 0.3992 -0.0008 -0.2082 0.0116 0.0101 0.9300
β2 0.3000 0.2992 -0.0008 -0.2765 0.0113 0.0104 0.9520
γ 0.2000 0.2003 0.0003 0.1531 0.0084 0.0079 0.9510
β1 0.2000 0.1990 -0.0010 -0.4998 0.0128 0.0135 0.9620 25
β12 0.4000 0.3964 -0.0036 -0.8936 0.0101 0.0084 0.8650
β2 0.3000 0.2980 -0.0020 -0.6649 0.0097 0.0086 0.9150
γ 0.2000 0.2015 0.0015 0.7507 0.0072 0.0073 0.9520
β1 0.2000 0.1986 -0.0014 -0.6763 0.0115 0.0112 0.9490 50
β12 0.4000 0.3930 -0.0070 -1.7407 0.0098 0.0078 0.7870
β2 0.3000 0.2957 -0.0043 -1.4338 0.0090 0.0079 0.8800
γ 0.2000 0.2027 0.0027 1.3559 0.0079 0.0077 0.9350
β1 0.2000 0.1985 -0.0015 -0.7420 0.0125 0.0124 0.9470 75
β12 0.4000 0.3901 -0.0099 -2.4855 0.0097 0.0079 0.7100
β2 0.3000 0.2934 -0.0066 -2.2048 0.0082 0.0072 0.8100
γ 0.2000 0.2033 0.0033 1.6554 0.0071 0.0068 0.9140
β1 0.2000 0.1980 -0.0020 -0.9799 0.0130 0.0123 0.9340 100
β12 0.4000 0.3872 -0.0128 -3.2113 0.0093 0.0077 0.6000
β2 0.3000 0.2910 -0.0090 -2.9997 0.0085 0.0072 0.7130
γ 0.2000 0.2039 0.0039 1.9285 0.0066 0.0066 0.9050

The estimator for β1 yielded similar estimates throughout the increase in the number

of SNPs, with decent coverage probability. On the other hand, the estimators of effects

on Y2 (β12, β2, and γ) began performing worse as the number of SNPs increased as
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characterized by increases in bias and reductions in coverage (Table 4.4). The trend

is also evident in Figure 4.9. The exact cause for this drop in performance is unclear.

However, it may impact practical applications of the model because it is often preferred

to use a large number of SNPs in the estimation when conducting univariable Mendelian

randomisation.

4.5 Simulation 5 - Causal effect estimates with SNPs

G3 and G23

The purpose of this simulation was to examine the causal effect estimates under different

overlapping SNP conditions. It is important to note the only overlapping SNPs consid-

ered are those in the set G23. These SNPs affect the exposure X2 and the outcome Y1.

Any SNPs affecting Y1 and X1 would be invalid SNPs for the estimation of β1 and as

such were not considered.

Two different scenarios of overlap were considered. The first scenario considered

changing the proportion of shared SNPs between X2 and Y1 by increasing the number

of SNPs in G23 whilst keeping the number of SNPs affecting X2 and Y1 constant. The

considered proportions were 0, 0.2, 0.4, 0.6, 0.8, and 1. The exact combinations of SNPs

can be seen in Table 4.5. The second scenario once again dealt with changing shared

SNPs of X2 and Y1. However, the number of SNPs in G2, G3, and G23 were modified

while keeping the total number of SNPs fixed at 45 (see Table 4.6 for exact combinations

where the number of SNPs in Gi is denoted by Li).

In the first scenario, altering the proportion of SNPs shared between X2 and Y1 while

keeping the same number of SNPs affecting both did not appear to affect the estimation
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Figure 4.9: Boxplots of parameter estimates for different numbers of SNPs in each Gk.
True parameter values are indicated by the red lines in each plot.
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Table 4.5: SNP combinations for Scenario 1 - modifying the proportion of overlap

L1 L2 L3 L23

1 15 15 15 0
2 15 12 12 3
3 15 9 9 6
4 15 6 6 9
5 15 3 3 12
6 15 0 0 15

Table 4.6: SNP combinations for Scenario 2 - modifying the proportion of overlap with
fixed total SNPs

L1 L2 L3 L23

1 15 15 15 0
2 15 12 12 6
3 15 9 9 12
4 15 6 6 18
5 15 3 3 24
6 15 0 0 30

for either time point (as seen in Figure 4.10 and Table 4.7). All estimators yielded

good coverage probabilities and small biases with slight over-coverage for β1 possibly

stemming from the estimator’s higher mean standard error across the simulation runs

(see Table 4.7).

Within the second scenario, altering the proportion of SNPs shared between X2 and

Y1 while keeping the total number of SNPs in the model constant provided very similar

results to the first scenario. Boxplots between numbered of shared SNPs between X2

and Y1 in Figure 4.11 appear almost unchanged. Small biases were present and there

was slight under-coverage for β12 and β2 (see Table 4.8). These two scenarios provide

evidence the model is capable of handling the presence of overlapping SNPs within G23.
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Table 4.7: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage for different proportions of overlap G23

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

overlap
prop.

β1 0.2000 0.1992 -0.0008 -0.4110 0.0146 0.0151 0.9690 0
β12 0.4000 0.3974 -0.0026 -0.6433 0.0107 0.0092 0.9030
β2 0.3000 0.2985 -0.0015 -0.4876 0.0086 0.0078 0.9250
γ 0.2000 0.2007 0.0007 0.3557 0.0078 0.0075 0.9370
β1 0.2000 0.1993 -0.0007 -0.3560 0.0146 0.0153 0.9690 0.2
β12 0.4000 0.3978 -0.0022 -0.5484 0.0107 0.0092 0.9020
β2 0.3000 0.2979 -0.0021 -0.6934 0.0094 0.0083 0.9100
γ 0.2000 0.2002 0.0002 0.1068 0.0072 0.0073 0.9550
β1 0.2000 0.1996 -0.0004 -0.2191 0.0149 0.0153 0.9750 0.4
β12 0.4000 0.3980 -0.0020 -0.4937 0.0101 0.0089 0.9200
β2 0.3000 0.2978 -0.0022 -0.7178 0.0104 0.0096 0.9350
γ 0.2000 0.2001 0.0001 0.0647 0.0072 0.0072 0.9580
β1 0.2000 0.1996 -0.0004 -0.2107 0.0155 0.0163 0.9680 0.6
β12 0.4000 0.3984 -0.0016 -0.3971 0.0103 0.0090 0.9080
β2 0.3000 0.2978 -0.0022 -0.7498 0.0094 0.0088 0.9230
γ 0.2000 0.2003 0.0003 0.1512 0.0064 0.0066 0.9540
β1 0.2000 0.1996 -0.0004 -0.1875 0.0143 0.0156 0.9760 0.8
β12 0.4000 0.3984 -0.0016 -0.4094 0.0103 0.0088 0.9030
β2 0.3000 0.2987 -0.0013 -0.4386 0.0104 0.0095 0.9260
γ 0.2000 0.2002 0.0002 0.1081 0.0068 0.0068 0.9540
β1 0.2000 0.2001 0.0001 0.0665 0.0121 0.0127 0.9800 1
β12 0.4000 0.3985 -0.0015 -0.3720 0.0105 0.0089 0.9100
β2 0.3000 0.2985 -0.0015 -0.4942 0.0098 0.0088 0.9310
γ 0.2000 0.2012 0.0012 0.6165 0.0090 0.0092 0.9610
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Figure 4.10: Boxplots of parameter estimates for different proportions of overlap. True
parameter values are indicated by the red lines in each plot.
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Table 4.8: Mean estimates, standard deviations, and mean standard errors with
estimator bias and coverage for differing overlap with fixed SNP total

true
value

mean
estimate

bias rel.
bias (%)

std.
dev.

mean std.
error

coverage
probability
(N = 1000)

SNPs
in G23

β1 0.2000 0.1992 -0.0008 -0.4110 0.0146 0.0151 0.9690 0
β12 0.4000 0.3974 -0.0026 -0.6433 0.0107 0.0092 0.9030
β2 0.3000 0.2985 -0.0015 -0.4876 0.0086 0.0078 0.9250
γ 0.2000 0.2007 0.0007 0.3557 0.0078 0.0075 0.9370
β1 0.2000 0.1993 -0.0007 -0.3507 0.0151 0.0158 0.9730 6
β12 0.4000 0.3977 -0.0023 -0.5782 0.0107 0.0092 0.8930
β2 0.3000 0.2978 -0.0022 -0.7456 0.0093 0.0082 0.9110
γ 0.2000 0.2001 0.0001 0.0571 0.0071 0.0071 0.9530
β1 0.2000 0.1997 -0.0003 -0.1563 0.0162 0.0170 0.9760 12
β12 0.4000 0.3976 -0.0024 -0.5970 0.0103 0.0092 0.9160
β2 0.3000 0.2980 -0.0020 -0.6593 0.0092 0.0083 0.9220
γ 0.2000 0.2003 0.0003 0.1646 0.0062 0.0064 0.9570
β1 0.2000 0.1997 -0.0003 -0.1302 0.0166 0.0177 0.9750 18
β12 0.4000 0.3978 -0.0022 -0.5542 0.0108 0.0095 0.9080
β2 0.3000 0.2978 -0.0022 -0.7260 0.0084 0.0073 0.9120
γ 0.2000 0.2004 0.0004 0.1879 0.0062 0.0063 0.9530
β1 0.2000 0.1998 -0.0002 -0.1138 0.0161 0.0175 0.9760 24
β12 0.4000 0.3976 -0.0024 -0.6002 0.0110 0.0096 0.9070
β2 0.3000 0.2986 -0.0014 -0.4751 0.0083 0.0071 0.9040
γ 0.2000 0.2003 0.0003 0.1604 0.0064 0.0064 0.9520
β1 0.2000 0.2001 0.0001 0.0264 0.0150 0.0159 0.9690 30
β12 0.4000 0.3975 -0.0025 -0.6249 0.0113 0.0100 0.9170
β2 0.3000 0.2982 -0.0018 -0.6024 0.0080 0.0068 0.8980
γ 0.2000 0.2009 0.0009 0.4675 0.0077 0.0075 0.9550

49

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – A. Pero; McMaster University – Mathematics and Statistics

Figure 4.11: Boxplots of parameter estimates for different levels of overlap with fixed
SNP total. True parameter values are indicated by the red lines in each plot.
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Chapter 5

Conclusion

In this thesis, we explored extending an MVMR framework for a time-varying exposure

and outcome measured at two distinct time points. While MVMR is multivariable

with respect to the number of exposures (or the number of exposure measurements in

this particular scenario), the addition of a second outcome measurement resulted in an

identifiability issue which was due to the lack of unique instrumental variables pertaining

to the first outcome measurement (Y1). MVMR was unable to properly estimate and

attribute the direct effects of the exposure at time point 1 (X1) and the outcome at time

point 1 (Y1) on the outcome at time point 2 (Y2). However, treating Y1 as an exposure

for time point 2 in a time-varying model with an exposure and outcome measured at two

time points and having exclusive SNPs as instruments for the exposure at time point

1, X1, can be used to estimate the variable effects at both time points. Treating the

outcome at time point 1 as an exposure requires using valid SNPs for Y1.

Simulations have shown the estimators perform well under different forms of sampling

for the summary-level data. Bias and coverage were similar between the two-sample and

four-sample schemes whereas overcoverage was present under the one-sample scheme.
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The two-sample and four-sample schemes for summary data may be the more practical

scenarios for application since these are comparable to the exposures being measured

from one study, the outcomes from another, or all measures coming from four different

studies. Under the one-sample scheme, if there was access to the individual-level data

then effect estimates can be found via TSLS, a method not explored in this thesis.

Furthermore, the one-sample scheme provided the lowest estimator bias and coverage

with much smaller standard errors for the estimations at time point 2.

Simulations exploring increasing numbers of SNPs per set Gk demonstrated increases

in absolute biases and decreases in coverage for the estimators at time point 2. Although

the estimator for time point 1 followed the same pattern, the rate of increase in bias

and decrease in coverage was much smaller compared to those of time point 2. This is

a major drawback of the model as MR studies may often make use of a large number of

SNPs. The reason for this drop in performance for parameter estimators at time point

2, as the number of SNPs increases, is unclear.

Simulations exploring different minimum SNP effect strengths and different types

of SNP combinations for the SNP sets for different conditions of overlap demonstrated

these parameters did not greatly affect estimators and the model can handle overlap and

different instrument strengths.

Although the model introduces an MVMR framework for dealing with a time-varying

exposure and outcome measured at two time points did perform well under certain

conditions, the framework is not without its drawbacks. Most notably, there must be

a unique set of instruments for X1 not associated with X2 or Y1. This method thus

relies on the association between the exposure and SNPs changing over time allowing

for unique SNPs. Furthermore, if one were to attempt to expand this framework to
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further include more time points for the exposure and outcome then more sets of unique

SNPs may be required for the estimation of the effects at the additional time points.

Additionally, this model assumed the outcome cannot affect the exposure. However, in

biology, it is possible for feedback loops such that the level of the outcome can affect

the level of the exposure. Estimation using this framework under this type of scenario

remains to be explored.

Lastly, the estimation is clearly worse as the number of SNPs used increases. Further

work should explore why this is the case, and to try and explain the validity of the

framework for larger numbers of SNPs which are more representative of real data MR

studies.
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