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Abstract

After providing a detailed literature review of the change-point detection methods,

this work delves into presenting a probabilistic method for analyzing linear process

data with dependent innovations, focusing on detecting change-points in the mean and

estimating its spectral density. We develop a test for identifying change-points in the

mean of the data, aiming to detect shifts in the underlying distribution. Additionally,

we propose a consistent estimator for the spectral density of the data, contingent upon

fundamental assumptions, notably the long-run variance. By leveraging probabilistic

techniques, our approach provides reliable tools for understanding temporal changes

in linear process data. Through theoretical analysis and empirical evaluation, we

demonstrate the efficacy and consistency of our proposed methods, offering valuable

insights for practitioners in various fields dealing with time series data analysis.

iii



Acknowledgements

I am immensely grateful to my advisor, Professor N. Balakrishnan, for his unwavering

support, invaluable guidance and granting me the freedom to pursue my own ideas.

Under his mentorship, I have been fortunate to engage in several projects even be-

fore joining McMaster University, which I believe, have provided me with invaluable

research experience and will continue to prove beneficial to me in my research career.

His mentorship, immense knowledge and mathematical skills have always motivated

me, and I owe a great deal of my achievements to his guidance.

Additionally, I extend my heartfelt thanks to Professor Shui Feng for his con-

stant inspiration and motivational encouragement. His insights have been a source of

inspiration, pushing me to strive for excellence in my work.

I would also like to express my gratitude to Professor Noah Forman for his guid-

ance and assistance in navigating the complexities of the book on Convergence of

Probability Measures. His expertise and patience have been instrumental in helping

me comprehend and complete this challenging work.

And finally I would like to thank Professor Katherine Davies for her fine reading

of the thesis and her valuable suggestions in improving the readability of the thesis

to a great extent.

Without the support and mentorship of Professors Balakrishnan, Feng, Forman

iv



and Davies, I would not have been able to achieve what I have. Their guidance and

encouragement have been invaluable assets throughout my academic journey.

v



Table of Contents

Abstract iii

Acknowledgements iv

Notation x

Declaration of Academic Achievement xi

1 Introduction 1

2 Preliminaries 5

2.1 Some notions on modes of convergence . . . . . . . . . . . . . . . . . 5

2.2 Some common metric spaces . . . . . . . . . . . . . . . . . . . . . . . 10

3 Literature review 12

3.1 Change in parameters of VAR . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Methods to detect changes in the mean or distribution . . . . . . . . 16

4 Theoretical results 22

4.1 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vi



5 Empirical results 49

6 Concluding remarks 59

vii



List of Figures

5.1 Data for the bi-variate with T = 8000 and change of mean being

(0.2,0.5) at time T/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Data for the bi-variate with T = 8000 and change of mean being

(0.2,0.5) at time T/5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Conditional distribution of the change-point: T = 8000, Mean change

= (0.2,0.5), x-axis represents the time index and y-axis represents the

frequency of the estimates of the change-points. . . . . . . . . . . . . 56

5.4 Conditional distribution of the change-point estimates: T = 8000,

Mean change = (0.5,1.2), x-axis represents the time index and y-axis

represents the frequency of the estimates of the change-points. . . . . 57

5.5 Performance of the estimator arg maxt∈[0,1]
1
T
S̃T (t)Σ̂−1

T S̃T (t) based on

one simulation for each of the cases with T = 8000. . . . . . . . . . . 58

viii



List of Tables

5.1 Performance evaluation of the estimator on the bi-variate data, T =

8000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Performance evaluation of the estimator on the bi-variate data, T =

16000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Performance evaluation of the estimator on the five-variate data, T =

8000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Performance evaluation of the estimator on the five-variate dataset, T

= 16000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



Notation

‖x‖p The Lp norm of the vector x

‖A‖ The matrix norm of the matrix A

P (.) The probability measure function

N The set of natural numbers

R The set of real numbers

I(.) The indicator function

bxc The greatest integer less than or equal to x

x



Declaration of Academic

Achievement

I declare that the contents of this thesis are my own.

xi



Chapter 1

Introduction

A structural break refers to a sudden and significant change in the underlying data-

generating process of a time series. This change can manifest in various parameters

of the model, such as the mean, variance, or autoregressive coefficients and a change-

point refers to a specific time point within a time series where a structural break

occurs. For example, consider a temperature dataset spanning several decades. Sup-

pose the data exhibits a stable pattern with gradual temperature increases over time,

representing a consistent warming trend. However, in recent years, there has been a

sudden and persistent drop in temperatures, leading to colder conditions. The time

point where this abrupt change occurs marks the change-point, indicating a struc-

tural break in the temperature trend. Detecting structural breaks has captivated

researchers’ interest since Pagetest [13] proposed a test for it as early as in 1955.

Identifying changes in the mean of a multivariate data is a fundamental problem of

interest in various disciplines such as signal processing, finance, environmental mon-

itoring, and healthcare. Change-point detection methods are pivotal in pinpointing

abrupt shifts or structural breaks in the underlying distribution of multivariate data
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over time or space. These methods are indispensable for comprehending and analyz-

ing dynamic systems, detecting anomalies, and making well-informed decisions based

on evolving data patterns. Various change-point detection methods have been dis-

cussed briefly in Kolz [14], where an overview is presented of various techniques used

by researchers in developing methods for change-point detection.

Multivariate change-point detection presents unique challenges compared to the

univariate scenario due to the interdependence among the observed variables. In

the case of multivariate data, changes in one variable may correlate with changes in

others, necessitating sophisticated techniques to accurately detect shifts in the mean

across multiple dimensions. A time series {Xt} is called a linear process if it can be

expressed as:

Xt = µ+
∞∑

j=−∞

ψjεt−j,

, where µ is the mean of Xt, {ψj} are the coefficients with
∑∞

j=−∞ |ψj| < ∞, and

{εt} is white noise with zero mean and constant variance. In certain types of data, it

will be feasible to model data with some level of dependence among its coordinates.

This allows for the introduction of dependence in the innovations. In our case, we

specifically consider linear process data with m-dependent {εt}’s. A sequence of

random variables {Xt}t∈Z is said to be m-dependent if for any two sets of indices I

and J such that the minimum distance between elements of I and elements of J is

greater than m, the sets of random variables {Xi : i ∈ I} and {Xj : j ∈ J} are

independent. Formally,

{Xi : i ∈ I} ⊥⊥ {Xj : j ∈ J} whenever min
i∈I,j∈J

|i− j| > m

2
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Here, ⊥⊥ denotes the independence of the two sets of random variables. To conduct

a change-point analysis, we first need to perform hypothesis testing to determine

whether a change-point exists at all. This typically involves a statistic dependent on

N , the length of the data, whose distribution for finite N is unknown. Hence, we

consider data with a large length (N →∞), yielding a suitable statistic with known

critical values from Kiefer [8]. Moreover, Zeileis [18] stated that if a time series is

observed for a long enough period of time, there would be some economic or political

or climatic factors that would cause the structure of the series to change at some

points. This also entails estimating the long-run covariance matrix of the data, which

leads to the estimation of the spectral density of the data.

Let {Xt} be a stationary time series with mean µ. The spectral density function

f(λ) at frequency λ is defined as the Fourier transform of the autocovariance function

Γ(h). For a discrete-time stationary process, the spectral density is given by:

f(λ) =
1

2π

∞∑
h=−∞

Γ(h)e−ihλ, −π ≤ λ ≤ π.

Estimating spectral density has been studied extensively for univariate linear process

data with independent innovations, as can be seen in Brockwell [3]. Here, we aim

to derive a consistent estimator of the spectral density for such data, especially to

estimate the long-run covariance matrix of the data. This, in turn, facilitates us

to provide an estimator for the change-point under the assumption that there is a

change-point. As usual, we consider a d dimensional time series Xt = (X1
t , . . . , X

d
t ),

and t ∈ {1, . . . , N} corresponding to the time-points of observations. In our case, we

3
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have:

H0 : E[X1] = . . . = E[XN ]

vs

Ha : ∃ T ∗ such that E[X1] = . . . = E[XT ∗ ] 6= E[XT ∗+1] . . . = E[XN ].

This is the scenario when we have a single change-point in our data. There have

been many works in the literature discussing various types of change-point detection

methods in multivariate data. Some of them include Amiri [1], Viviani [17], Meier

[12], and Zeileis [18], etc. In the next chapter, we present a short review of some of

the existing methods in this direction.

4
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Chapter 2

Preliminaries

This chapter presents some preliminary details that are required mainly in Chap-

ter 3 and 4, where we discuss some background literature and theoretical results,

respectively.

2.1 Some notions on modes of convergence

1. Almost Sure Convergence (a.s.): Let (Xn) and X be (S, ρ)-valued random

variables defined on the same probability space. Then, we say that Xn converges

almost surely to X, denoted by Xn
a.s.−−→ X, if

P
(

lim
n→∞

Xn = X
)

= 1

or, if for all ε > 0,

lim
n→∞

P(sup
m>n

ρ(Xn, X) < ε) = 1.

5
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2. Convergence in Probability: Let (Xn) and X be (S, ρ)-valued random vari-

ables. Then, we say that Xn converges to X in probability, denoted by Xn
P−→ X,

if for all ε > 0,

lim
n→∞

P(ρ(Xn, X) > ε) = 0.

3. Convergence in pth Moment: Let (Xn) and X be (S, ρ)-valued random

variables. Then, we say that Xn converges to X in pth moment, denoted by

Xn
Lp−→ X, if

lim
n→∞

E[ρ(Xn, X)p] = 0

for some p > 0.

4. Weak Convergence of Random Variables: Let (Xn) andX be (S, ρ)-valued

random variables. Then, we say that Xn weakly converges to X, denoted by

Xn
w−→ X, if for all bounded and continuous functions f : R→ R, we have

lim
n→∞

∫ ∞
−∞

f(x)dPXn(x) =

∫ ∞
−∞

f(x)dPX(x),

where PY (.) is the probability measure corresponding to the random variable

Y .

It is well-known that the following implications hold among the above concepts:

• Convergence in Probability ⇒ Weak convergence.

• Almost Sure Convergence ⇒ Convergence in Probability

• Convergence in pth Moment ⇒ Convergence in Probability

6
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Definition 2.1. [Mahalanobis distance] Given a vector x and a multivariate distri-

bution with mean vector µ and covariance matrix Σ, the Mahalanobis distance DM

of x from the mean µ is defined as:

DM(x) =
√

(x− µ)TΣ−1(x− µ).

Lemma 2.2. [Cramér-Wold Device] Let X1, X2, . . . be a sequence of d-dimensional

random vectors, each defined on the same probability space (Ω,F , P ). The Cramér-

Wold theorem states that if for every a ∈ Rd, the sequence of scalar products aTXn

converges in distribution to a scalar random variable Y , then the random vector Xn

converges in distribution to a random vector X such that aTX has the same distribu-

tion as Y for all a ∈ Rd.

Lemma 2.3. [Portmanteau’s Theorem] Billingsley [2] Let (Xn) and X be (S, ρ)-

valued random variables. Then, the following statements are equivalent:

1. Xn weakly converges to X;

2.

lim sup
n→∞

P(Xn ∈ F ) ≤ P(X ∈ F ), for all closed sets F ;

3.

lim inf
n→∞

P(Xn ∈ G) ≥ P(X ∈ G), for all open sets G;

4.

lim
n→∞

P(Xn ∈ B) = P(X ∈ B), for all Borel sets B such that P(X ∈ ∂B) = 0,

7
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where ∂B is the boundary of the set B ⊆ S.

Lemma 2.4. [Continuous Mapping Theorem] Billingsley [2] Let (Xn) be a sequence

of (S, ρ)-valued random variables converging weakly (in distribution) to a random

variable X, and g : S → R be a function, with measure of set of discontinuities zero.

Then, the sequence (g(Xn)) converges weakly (in distribution) to g(X).

Lemma 2.5. Suppose Xn, X and Yn’s are all (S, ρ) valued random variables. If

(Xn) converges weakly (in distribution) to X and ρ(Xn, Yn)
P−→ 0, then (Yn) converges

weakly (in distribution) to Y.

Definition 2.6. [Uniformly tight] Billingsley [2] Suppose Xn’s are all (S, ρ) valued

random variables. (Xn) is said to be uniformly tight if, for every ε > 0, there exists

a compact set Kε ⊆ S such that P (Xn ∈ Kε) > 1− ε for all n.

Lemma 2.7. [Prokhorov’s Theorem] Billingsley [2] Let (Xn) be a sequence of a (S, ρ)-

valued random variables, where S is complete and separable space, defined on a prob-

ability space (Ω,F , P ). Then, (Xn) contains a subsequence that converges weakly if

and only if (Xn) is uniformly tight.

In particular, for Rd-valued sequence of random variables (Xn)’s, (Xn) contains a

subsequence that converges weakly if and only if (Xn)i (i-th coordinate of the sequence)

is uniformly tight ∀1 ≤ i ≤ d.

Lemma 2.8. [Minkowski’s Inequality] Let p ≥ 1 and X and Y be any p-integrable

random variables. Then, we have

(E[|X + Y |p])1/p ≤ (E[||X||p])1/p + (E[||Y ||p])1/p .

8
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Definition 2.9. [Brownian Motion] Billingsley [2] A Brownian motion W (t) on

the interval [0, 1] is a stochastic process satisfying the following properties:

1. W (0) = 0 almost surely;

2. For any 0 ≤ s < t ≤ 1, the increment W (t)−W (s) is normally distributed with

mean 0 and variance t− s;

3. The increments of W (t) are independent;

4. W (t) has continuous sample paths.

Definition 2.10. [Brownian Bridge] Billingsley [2] A Brownian bridge W 0(t) on

the interval [0, 1] is a stochastic process defined as the conditional distribution of

a Brownian motion W (t) given that W (0) = W (1) = 0. In other words, it is a

Brownian motion conditioned to start and end at 0. The Brownian bridge W 0(t) can

be represented as:

W 0(t) = W (t)− tW (1),

where W (t) is the standard Brownian motion.

Definition 2.11. [Ergodic Sequence] Durrett [4] Let (Ω,F , P ) be a probability space,

and φ be a map that preserves P , meaning that P (φ−1(A)) = P (A) for all A ∈ F .

Define Xn(ω) = X(φn(ω)), where X is a random variable.

A set A ∈ F is said to be invariant if φ−1(A) = A. Let I be the collection of

invariant events.

A measure-preserving transformation on (Ω,F , P ) is said to be ergodic if I is

trivial, i.e., for every A ∈ I, P (A) ∈ {0, 1}.

9
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Lemma 2.12. [Ergodic Theorem] Durrett [4] Let (Ω,F , P ) be a probability space,

and φ : Ω → Ω be a measure-preserving map. Suppose X : Ω → R is an integrable

random variable. The ergodic theorem states that for almost every ω ∈ Ω,

lim
N→∞

1

N

N∑
n=1

X(φn(ω)) = E[X|I](ω).

Proposition 2.13. Stout [15] Let {Xi, i ≥ 1} be the coordinate representation of a

stationary sequence. There exists a measure-preserving transformation φ on (R∞, C∞, P )

such that X1(ω) = X1(ω), X2(ω) = X(φ(ω)), . . ., Xn(ω) = X(φn(ω)), . . . for all

ω ∈ R∞.

Proposition 2.14. [The pointwise ergodic theorem for stationary sequences] Stout

[15] Let {Xi, i ≥ 1} be stationary with E|X1| <∞. Then
∑n

i=1Xi/n→ E[X1|I] a.s.

If in addition Xi, i ≥ 1 is ergodic,
∑n

i=1Xi/n→ E[X1] a.s.

Proposition 2.15. Stout [15] Let {Xi, i ≥ 1} be stationary ergodic and φ : R∞ → R

be measurable. Let Yi = φ(Xi, Xi+1, . . .),∀i ≥ 1. Then Yi, i ≥ 1 is stationary ergodic.

Lemma 2.16. Stout [15] Let {Xi, i ≥ 1} be independent identically distributed. Then

{Xi, i ≥ 1} is stationary ergodic.

2.2 Some common metric spaces

1. Space of continuous functions C [0, T]: This is the space of all of continuous

functions on the interval [0, T ] with the Borel-sigma algebra generated by the

metric

d(f, g) = sup
t∈[0,T ]

|f(t)− g(t)|,

10
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where f, g ∈ C[0, T ].

2. Space of cadlag functions D[0, T]: This is the space of right-continuous,

with left-hand limit functions; that is,

(i) For 0 ≤ t ≤ T , f(t+) = lims↓t f(s) exists and f(t+) = f(t);

(ii) For 0 ≤ t ≤ T , f(t−) = lims↑t f(s) exists.

For f, g ∈ D[0, T ], the metric d0(f, g) is defined to be the infimum of those pos-

itive ε for which there exists λ, which is strictly increasing, continuous mapping

from [0, T ] onto itself with λ(0) = 0 and λ(T ) = T , such that

sup
t
|λ(t)− t| ≤ ε

and

sup
t
|f(t)− g(λ(t))| ≤ ε.

These metrics can be extended to C[0,∞] and D[0,∞] by defining

d̂(f, g) =
∞∑
n=1

1

2n
dn(f, g),

where dn(f, g) is the metric when f and g are restricted to the interval [0, n].

11

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Chapter 3

Literature review

In this chapter, we present a short literature review for categorizing the different

methods available in the literature based on whether the structural break is due

to changes in parameters of the linear regression models or Vector Autoregression

(VAR) models, owing to changes in the mean, covariance or distribution function.

The latter is further classified based on the approach employed cumulative sums,

distance measures and some combination of these approaches.

3.1 Change in parameters of VAR

A Vector Autoregressive (VAR) model is a multivariate time series model used to

describe the joint dynamics of multiple time series variables. In a VAR model, each

variable is regressed on its own lagged values and the lagged values of all other vari-

ables in the system. Mathematically, a VAR model of order p for k variables is

represented as:

12



M.Sc. Thesis – R J Samanta; McMaster University – Mathematics and Statistics

Xt = A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + εt

where:

• Xt is a k-dimensional vector of variables at time t.

• A1, A2, . . . , Ap are coefficient matrices capturing the lagged relationships be-

tween variables.

• εt is a k-dimensional vector of error terms.

Malo [10] proposed a distribution-free method which employs an energy distance for-

mula such as µα(A,B) in (3.1.2) and (3.1.3), based on the Euclidean norm to decipher

whether a change-point exists or not in a linear regression model with one dependent

variable and several covariates. For a multiple linear regression model with Yt as

the dependent variable, Xt as the regressor, εt as the residuals and βi as the coef-

ficient values for each phase between the change-points, the model is described as

Yt = X
′
tβi + εt, where t = τi−1 + 1, . . . , τi, for i = 1, 2, . . . , k + 1. Here, k denotes the

number of change-points and τi, for 1 6 i 6 k, represents the location of those points.

The unknown regression coefficients are estimated under regularized conditions. If

E1, . . . , Ek+1 are the residuals obtained from the above regression in the k+1 regimes

and the corresponding distribution functions are F1, . . . , Fk+1, then the null hypoth-

esis to be tested is H0 : F1 = . . . = Fk+1, against the alternative that at least one of

the F ′i s is not equal to the others. The test statistic is defined as

Fα(E1, . . . , Ek+1) =
Sα(E1, . . . , Ek+1)/k

Wα(E1, . . . , Ek+1)/(N − k − 1)
, (3.1.1)

13
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where α is a parameter that can be chosen. The numerator of (3.1.1) is equal to

Sα(E1, . . . , Ek+1) = Tα(E1, . . . , Ek+1)−Wα(E1, . . . , Ek+1),

where

Tα(E1, . . . , Ek+1) =
N

2
µα(E,E) (3.1.2)

and

Wα(E1, . . . , Ek+1) =
k+1∑
j=1

(nj
2

)
µα(Ej, Ej), (3.1.3)

where µα(A,B) = 1
n1n2

∑n1
i=1

∑n2
j=1 |ai − bj|α for ai’s ∈ A and bj’s ∈ B. To perform

this test, random permutations are done. This test can be performed with slight

modifications for the case of known and unknown change-points. The optimization is

done mainly through dynamic programming by minimizing energy distances between

residuals in each regime. This algorithm can be performed in software R using the

package changedetection. To access the performance of this method, the statistic

R =

min(k,k̂)∑
i=1

|τi − τ̂i|+ r
∣∣∣k − k̂∣∣∣ , (3.1.4)

where, τi’s and τ̂i are the actual and estimated change-points, respectively and sim-

ilarly k and k̂ are the actual and estimated number of change-points respectively.

Further, r is a penalty term associated with the change-point location error. The

smaller the value of R, the better the method.

14
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Gao [5] used a two-stage procedure to estimate the number and location of change-

points in a piecewise stationary multivariate time series with a VAR setup. In the

first step, assuming k change-points and k + 1 phases subsequently, the piecewise

VAR model for a p dimensional Xt for lag m is given by

Xt = BjX
′

t−1 + εt, (3.1.5)

where j = 1, . . . , k+1 represents the different regimes between the change-points, Bj is

the p×pm matrix of coefficients for each phase and X
′
t−1 = [Xt−1, Xt−2, . . . , Xt−m]> is

a pm×1 vector. Change-points are estimated separately for each of the p components

and are combined together thereafter. The change-points are estimated using

φi,q =


Bj+1
i. −B

j
i., q = τ ij ,

0, otherwise,

(3.1.6)

where τ ij represents change-points, i = 1, . . . , p, q = 2, . . . , N, and φi,q is a 1 × pm

vector. When φi,q has at least one non-zero entry, then there is a change in the

parameter Bi, which is estimated as

φ̂i = arg min
φi

(
||X0

i −X
′

iφ||2 + λN

N∑
q=m+1

||φi,q||2
)
. (3.1.7)

These change-point estimates obtained as above are based on non-zero values of φi,q

and are denoted by Ai. The values of change-points thus obtained are subjected to

the second step of further selection and estimation. In the selection stage, for the

true change-point, τj for j = 1, . . . , k, the change-points selected in the previous step

15
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for each of the components are grouped based on their proximity to the original one

using the LASSO penalty function. Then, using the backward elimination algorithm,

the most insignificant change-point (the one for which the value of the argument

in (3.1.7) is lesser than a chosen cut off) is eliminated. Using the LASSO (Least

Absolute Shrinkage and Selection Operator) and OLS (Ordinary Least Squares), the

coefficients are estimated for the selected predictors.

3.2 Methods to detect changes in the mean or dis-

tribution

Based on cumulative sums

Let p be the number of entities (e.g., individuals, firms, countries) and N be the

number of time periods. A typical panel dataset can be expressed as:

{Xt,i : i = 1, 2, . . . , p; t = 1, 2, . . . , N}.

For a single change in mean in a panel data, Horvath [7] considered the independent

data model for each of the p variables,

Xt,i = µ+ δ I(t > t0) + et,i, (3.2.1)

16
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where t = 1, . . . , N , i = 1, . . . , p and t0 is the suspected change-point location. The

innovations, et,i’s follow a linear process with independent residuals. Then, the max-

imum of the absolute value of

C̄p,N(x) =
1

p1/2

p∑
i=1

(
1

σ2
i

Z2
N,i(x)− bNxc (N − bNxc)

N2

)
,

where ZN,i(x) =
1

N1/2

(
SN,i(x)− bNxc

N
SN,i(1)

)
,

SN,i(x) =

bNxc∑
t=1

Xt,N

(3.2.2)

is calculated, where 0 6 x < 1. The change-point location is at

t̂0 = arg max
16t6N−1

(
p∑
i=1

Z2
N,i(t/N)

t(N − t)

)
. (3.2.3)

Based on distance measures

Matteson [11] proposed using Euclidean distance for calculating a multivariate dis-

tance measure and the bisection method to estimate the number and location of

change-points. This non-parametric method of change-point detection is named

E-Divisive. An empirical measure of energy distance based on Euclidean distance

Szekely [16] is considered for independent and identically distributed samples from

random variables X and Y (dimensions of X and Y need not be equal) as follows:

17
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ε̂(Xa, Yb;α) =
2

ab

a∑
i=1

b∑
j=1

|Xi − Yj|α

−
(
a

2

)−1 ∑
16i<k6<a

|Xi −Xk|α −
(
b

2

)−1 ∑
16j<k6<b

|Yj − Yk|α . (3.2.4)

The scaled version of (3.2.4) is given by

Q̂(Xa, Yb;α) =
ab

a+ b
ε̂(Xa, Yb;α). (3.2.5)

To estimate one breakpoint τ̂ , arg max of Q̂(Xτ , Yτ (k);α) over τ is calculated. For

several unknown change-points, say k, there are k + 1 segments generated. For each

segment, the procedure for estimating a single change-point is applied iteratively,

which is referred to as the bisection method. A stopping criterion for the above test

is based on a permutation test with the null hypothesis that there are no new change-

points, where the observations within each segment are resampled to build a new

series and the same change-point estimation method is applied as above. We fix a

number r and this process is to be r times and the value of (3.2.5), denoted by q̂k, is

also calculated for every permutation. For R number of permutations and significance

level lying in (0, 1), the approximate p-value is defined as
number of r such that q̂

(r)
k >q̂k

R+1
. The

change-point τk is significant, given the previously estimated ones, if the approximate

p-value obtained is less than the significance level, and then starts the search for the

next break.

Hlavka [6] employed the concept of characteristic function as a distance measure
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to detect change-points. Consider Xt and Yt that are both p dimensional and sta-

tionary. The null hypothesis in this study is that the distribution of both two sets

of variables is the same and the alternative hypothesis is defined in both online and

retrospective ways. Online setup is done sequentially where after each new obser-

vation, the detection criterion is calculated, where in retrospective setup, we have

all the observations available. Considering pairwise detection in a multivariate setup

(considering Xt’s and Yt’s pairwise), the detection criteria are given by

Dt,W (φ̂X,t, φ̂Y,t) =

∫ ∣∣∣φ̂X,t(u)− φ̂Y,t(u)
∣∣∣2W (u) du, t = 1 , 2 , . . . , (3.2.6)

where

φ̂X,t(u) =
1

t

t∑
τ=1

eiu
>Xτ (3.2.7)

is the empirical characteristic function from Xt. When observations arrive sequen-

tially, the above criterion is calculated every time until the null hypothesis is rejected.

Rejection is based on the computation of a threshold value as discussed in Hlavka [6].

The test criterion is modified in the retrospective setting as

Dt,W,N =

∫ ∫ ∣∣∣φ̂X,Y,t(u1, u2)− φ̂(0)
X,Y,t(u1, u2)

∣∣∣2W (u1, u2) du1 du2, t = 1 , 2 , . . . ,

(3.2.8)
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where

φ̂X,Y,t(u1, u2) =
1

t

t∑
τ=1

ei(u
>
1 Xτ+u>2 Yτ ),

φ̂
(0)
X,Y,t(u1, u2) =

1

N − t

N∑
τ=t+1

ei(u
>
1 Xτ+u>2 Yτ )

(3.2.9)

are the empirical characteristic functions for the first t and the remaining obser-

vations, respectively. W (.) denotes the weight function which is chosen to ensure

computational simplicity.

Kuncheva [9] proposed a change-point detection method to overcome the draw-

backs of the log-likelihood based Kullback-Leibler divergence (KL Divergence) and

Hotelling’s T 2 test and introduced semi-parametric log-likelihood (SPLL) detection

criteria. Here, a Gaussian mixture of p components is considered with distribution

P1(x) which is

P1(x) =

p∑
i=1

P (i) p1(x|i). (3.2.10)

Here, P (i) is the mixing coefficient and the second term in the RHS is replaced with

Gaussian probability density function. Consider two consecutive time windows, TW1

and TW2 and let them be sampled from distributions P1(x) and P2(x) with M1 and

M2 observations each. The idea is to check for distributional change between the two.

Then, the traditional likelihood is replaced by

L̄L = −1

2

∑
X∈TW2

(X − µi)>Σ−1
i (X − µi)× log

{
1

(2π)N/2det(Σi)1/2

}
. (3.2.11)

The distribution of P1 is estimated by using k means clustering. Here, Σi is assumed
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to be the same across all the p components. L̄L in (3.2.11) is proportional to negative

squared Mahalanobis distances between the observations and its closest mean (µi that

minimizes (3.2.11)). If P2(x) is the actual distribution for TW2, then L(TW2|P2) = 1

and the likelihood ratio is given by LLR = − logL(TW2|P1). The proposed SPLL is

given by

SPLL = − L̄L
M2

(3.2.12)

and it follows a chi-square distribution with p (number of dimensions) degrees of

freedom. If TW2 belongs to a distribution other than P1(x), the mean will deviate

from p. While Hotelling’s T 2 test is parametric and the test based on KL Divergence

is a non-parametric criterion, the proposed method takes the semi-parametric (having

both parametric and non-parametric components) approach to obtain change-points.
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Chapter 4

Theoretical results

In this chapter, we establish the multivariate version of Theorem 21.1 of Billingsley

[2] for the case when Xt = g(ξ(t), ξ(t− 1), . . .) is a d-dimensional sequence of random

variables, with g being measurable and ε’s being m-dependent sequence of random

variables, that satisfies the assumptions in Theorem 21.1 of Billingsley [2]. The fol-

lowing theorem helps us to perform hypothesis testing under the assumption that H0

is true, following which we also provide a consistent estimator of the change-point

under Ha.

4.1 Theorems

Theorem 4.1. Consider a sequence {ξ(t)}t∈Z of identically distributed, m-dependent,

d-dimensional random variables with E[||ξ(t)||2] < ∞. Let {Xt}t∈Z be a strictly sta-

tionary sequence of d-dimensional random variables defined as Xt = g(ξ(t), ξ(t −

1), . . .), where g is a measurable function. Denote Xtl = g(ξ(t), . . . , ξ(t− l)). Assume

22
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E[ξ(t)] = 0 and E[||Xt||2] <∞ for all t ∈ Z. Assume further that

∑
l≥1

(
E
[
||X0 −X0l||2

])1/2
<∞.

Then,

Σ =
∑
j∈Z

Cov(X0, Xj)

converges absolutely componentwise and if Σ is positive-definite, then

1√
N

[Nt]∑
i=1

Xi
D[0,1]−−−→ WΣ(t).

Proof. Let us denote

SN(t) =
1√
N

[Nt]∑
i=1

Xi.

For a fixed V 6= 0, we denote Yi = V TXi = V Tg(ξ(i), ξ(i− 1), . . .) and Yil = V TXil =

V Tg(ξ(i), . . . , ξ(i− l)), where Xil = g(ξ(i), . . . , ξ(i− l)). Next, we have by the as-

sumption above, that

∑
l≥1

(
E
[
(Yi − Yil)2

])1/2
=
∑
l≥1

(
E
[
(V T (Xi −Xil))

2
])1/2

= ||V ||∞
∑
l≥1

(
E
[
||Xi −Xil||2

])1/2
<∞

and E[V TXi] = 0. Hence Yi satisfies the assumptions in Theorem 21.1 in Billingsley
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[2]. Hence for 0 ≤ s ≤ t ≤ 1,

SN(s, t) =
1√
N

[Nt]∑
i=[Ns]+1

Yi
D−→ N(0, σ2

Y (t− s)),

where σ2
Y =

∑
j∈Z E[Y0Yj] =

∑
j∈Z V

TCov(X0, Xj)V. (We have assumed that the

matrix inside is positive definite, which implies that σY (t− s) > 0 for V 6= 0.) Since

we can choose V arbitrarily and by using similar arguments, we will have the same

result. Hence by Cramer-Wald device 2.2, we have

1√
N

[Nt]∑
i=[Ns]+1

Xi
D−→ WΣ(t− s),

where Σ =
∑

j∈ZCov(X0, Xj) and WΣ is Wiener process with Σ being the covariance

matrix. For a fixed 0 < s < t, we consider the random variables

ŜN(s, t) =
1√
N

 [Nt]∑
i=[Ns]+1

Xi([Ns]+1−i)


and

SN,m(s) =
1√
N

[Ns]−m∑
i=1

Xi


for some large N . Therefore, ŜN(s, t) and ŜN,m(s) are independent random variables.
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Now, upon using Markov inequality and Lemma 2.8, we get

P
(
||ŜN(s, t)− SN(s, t)|| > δ

)
≤ 1

δ2
E
[
||ŜN(s, t)− SN(s, t)||2

]
≤ 1

Nδ2

 [Nt]∑
i=[Ns]+1

(
E
[
||Xi([Ns]+1−i) −Xi||2

])1/2

2

≤ 1

Nδ2

 [Nt]∑
i=[Ns]+1

(
E
[
||X1([Ns]+1−i) −X1||2

])1/2

2

≤ 1

Nδ2

(∑
l≥0

(
E
[
||X1l −X1||2

])1/2

)2

N−→∞−−−−→ 0,

P (||SN(t)− SN,m(t)|| > δ) ≤ 1

Nδ2
E
[
||SN(t)− SN,m(t)||2

]
≤ 1

Nδ2
E

∣∣∣∣∣∣
∣∣∣∣∣∣

[Ns]∑
i=[Ns]−m+1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1

Nδ2

 []Ns]∑
i=[Ns]−m+1

E
(
||Xi||2

)1/2

2

=
m2

Nδ2
E
(
||Xi||2

) N−→∞−−−−→ 0.

Hence, we have ||SN(s)−SN.m(t)|| P−→ 0 and ||ŜN(s, t)−SN(s, t)|| P−→ 0. Then Lemma

2.5 implies that

SN,m(s) =
1√
N

[Ns]∑
i=1

Xi
D−→ N(0,Σs)
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and finally by Continuous Mapping Theorem 2.4, it follows that

 1√
N

[Ns]∑
i=1

Xi,
1√
N

[Nt]∑
i=1

Xi

 D−→ (WΣ(s),WΣ(t)) .

Similarly, we can show that the convergence in distribution takes place for any finite

dimensional (t1, . . . , tk) ∈ [0, 1], and tightness will follow when we choose V = ei’s

where ei is the vector with 1 in the i-th position and zeros in all other places. This

yields that the coordinates form a uniformly tight sequence of random variables and

by Lemma 2.7, it finally gives the uniform tightness of {Xi}i≥1. Hence, we have

1√
N

[Nt]∑
i=1

Xi
D[0,1]−−−→ WΣ(t).

Then by Theorem 4.1 and Definiton 2.11, it follows that

1√
N

 [Nt]∑
i=1

Xi − t
N∑
i=1

Xi

 D[0,1]−−−→ W 0
Σ(t),

where W 0
Σ(t) is Brownian bridge with Cov(W 0

Σ(s),W 0
Σ(t)) = (min {s, t}−st)Σ. Hence

for a fixed t, we have

(S̃N(t))T Σ̂−1
N (S̃N(t))

D[0,1]−−−→
d∑
i=1

(W 0
i (t))2,

where

S̃N(t) =
1√
N

 [Nt]∑
i=1

Xi − t
N∑
i=1

Xi


26
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and W 0
i (t)’s are standard one-dimensional Brownian-bridges in [0, 1] and Σ̂N

P−→ Σ,

for which we will find such estimators in Theorem 4.6.

Let f ∈ D[0, 1] and consider Nε(f) = {g ∈ D[0, 1] : d0(f, g) < ε} and for

∀g ∈ Nε(f). By Definition 2.6, there exists a continuous strictly increasing func-

tion λ : [0, 1] −→ [0, 1] such that λ(0) = 0 and λ(1) = 1 and supt∈[0,1] |f(t)− g(λ(t))| <

3/2ε and this implies that | supt∈[0,1] f(t) − supt∈[0,1] g(t)| ≤ 3/2ε. It is clear that

(S̃N(t))T Σ̂−1
N (S̃N(t)) ∈ D[0, 1]. Hence, the function supt∈[0,1](.) is a continuous func-

tional on D[0, 1] and so applying Lemma 2.4, we have

sup
t∈[0,1]

(SN(t))T Σ̂−1
N (SN(t))

D−→ sup
t∈[0,1]

d∑
i=1

(W 0
i (t))2.

Here, we consider the linear process defined by

Xt =
∑
k≥0

Ckξ(t− k), (4.1.1)

where {ξ(t)}t∈Z represents m-dependent identically distributed random variables. To

satisfy the conditions stated in Theorem 4.1, we need

∑
l≥1

E


∣∣∣∣∣
∣∣∣∣∣∑
m>l

Cmξ(−m)

∣∣∣∣∣
∣∣∣∣∣
2


1/2

<∞.
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Again, using Lemma 2.8, we have

∑
l≥1

E


∣∣∣∣∣
∣∣∣∣∣∑
m>l

Cmξ(−m)

∣∣∣∣∣
∣∣∣∣∣
2


1/2

≤
∑
l≥1

∑
m>l

||Cm||E
{
||ξ(−m)||2

}1/2
.

Given that {ξ(t)}−∞<t<∞ are identically distributed and E {||ξ(0)||2}1/2
<∞, if

∑
l≥1

∑
m>l

||Cm|| <∞,

then the condition in Theorem 4.1, namely,
∑

l≥1 E {||X0 −X0l||2}1/2
< ∞, is satis-

fied. This condition can be further extended to a condition based on the entries of

the matrices Ci’s in the following manner:

∑
l≥1

∑
m>l

||Cm|| ≤
∑
l≥1

∑
m>l

(
d∑
i=1

d∑
j=1

|(Cm)ij|2
)1/2

≤
∑
l≥1

∑
m>l

(
d∑
i=1

d∑
j=1

|(Cm)ij|

)

≤
d∑
i=1

d∑
j=1

(∑
l≥1

∑
m>l

|(Cm)ij|

)
.

Consequently, if we assume that the sum of the entries of the matrices Ci converges

absolutely, i.e., specifically
∑

l≥1

∑
m>l |(Cm)ij| < ∞ for all 1 ≤ i, j ≤ d, then the

aforementioned condition gets satisfied. Thus, it is evident that under H0, the Xi’s

constitute a strictly stationary sequence of random variables, as required in Theorem
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4.1. In the next theorem, we prove that under Ha and certain assumptions, the power

of the test is asymptotically 1 and we give a consistent estimator for the change-point.

Theorem 4.2. Suppose T ∗ = [k∗n], for some k∗ ∈ (0, 1). Let {Xt}t∈Z be a strictly

stationary and ergodic sequence with E[X0] = 0 and E[||X0||2] < ∞. Also, consider

another strictly stationary and ergodic sequence {X∗t }t∈Z with E[X∗0 ] 6= E[X0] and

E[||X∗0 ||2] <∞. Define Yt = Xt for all t ∈ [0, T ∗] and Yt = X∗t , for all t ∈ [T ∗, n]. In

other words, T ∗ represents the change-point in the mean of the data {Yt}t∈Z. Then,

both

arg max
t∈[0,1]

∣∣∣∣∣∣S̃n(t)
∣∣∣∣∣∣

and

arg max
t∈[0,1]

1

n
S̃n(t)Σ̂−1

n S̃n(t)

are consistent estimators of the point k∗ ∈ (0, 1), where S̃n(t) = 1√
n

(∑[nt]
i=1 Yi − t

∑n
i=1 Yi

)
.

Remark 4.3. The above theorem provides us a consistent estimator of k∗ and hence

the estimate for the change-point will be [k∗n], where n is the length of the data.

Remark 4.4. The assumption of ergodicity in the above theorem is quite reasonable

from the fact that Xt’s and X∗t ’s are both of the form 4.1.1, which is a measurable

function of ξ(t)’s. And, if the observations come from the model 5.0.1 which we have

used to simulate results in Chapter 5, ξ(t)’s are again measurable functions of Z(t)’s

which are independent and identically distributed and hence stationary ergodic by

Lemma 2.16 and hence it follows by Proposition 2.15.
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Proof. By Proposition 2.14, we have for a strictly stationary ergodic sequence,

n∑
i=1

Xi

n

a.s−→ E[X1].

This implies, by using Definiton 2.1 that for a fixed T0 ∈ [0, k∗/2] and given δ > 0,

ε̂ = k∗ε > 0, there exists n0 ∈ N such that

P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

nT0

[nT0]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < k∗ε,∀n ≥ [T0n0]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

nT

[nT ]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < k∗ε,∀n ≥ n0,∀T ∈ [T0, k

∗]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nT ]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε̂,∀n ≥ n0,∀T ∈ [T0, k

∗]

 ≥ 1− δ.

In particular, we have

P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nk∗]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε̂,∀n ≥ n0

 ≥ 1− δ.
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Hence using the previous observations, we get that

P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nk∗]∑
k=[nT ]+1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂,∀n ≥ n0, ∀T ∈ [T0, k

∗]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nk∗]∑
k=[nT ]+1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂,∀n ≥ n0, ∀T ∈ [T0, k

∗]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nk∗]−[nT ]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂,∀n ≥ n0,∀T ∈ [T0, k

∗]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nT
′
]∑

k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂,∀n ≥ n0,∀T

′ ∈ [0, k∗/2]

 ≥ 1− δ

=⇒ P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nT ]∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂,∀n ≥ n0,∀T ∈ [0, k∗]

 ≥ 1− δ

=⇒ lim
n→∞

P

 sup
T∈[0,k∗]

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n
bnT c∑
k=1

Xi

∣∣∣∣∣∣
∣∣∣∣∣∣ < 2ε̂

 = 1

and similarly by the assumption that there is another strictly stationary and ergodic

sequence of random variables {X∗i }i≥0 with E[X∗i ] = E[X∗0 ],∀i ∈ Z and X∗i = Yi,∀i ≥

[nk∗].

lim
n−→∞P

 sup
T∈[0,k∗]

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

[nt]∑
k=[nk∗]+1

X∗i − (t− k∗)E[X∗0 ]

∣∣∣∣∣∣
∣∣∣∣∣∣ > 2ε̂

 = 0.

We thus obtain

P

(
sup
t∈[0,1]

∣∣∣∣∣∣∣∣ 1√
n
S̃n(t)− g(t)

∣∣∣∣∣∣∣∣ > ε

)
n−→∞−−−−→ 0,
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where

S̃n(t) =
1√
n

 [nt]∑
i=1

Yi − t
n∑
i=1

Yi


and

g(t) =


t(1− k∗)(E[X0]− E[X∗0 ]), if t ∈ [0, k∗]

k∗(1− t)(E[X0]− E[X∗0 ]), if t ∈ [k∗, 1].

Therefore supt∈[0,1]

∣∣∣ 1√
n
S̃n(t)− g(t)

∣∣∣ N−→∞−−−−→
P

0. Hence, for a given ε > 0, ∃ δ > 0, N0 ∈

N such that

P

(
sup
t∈[0,1]

∣∣∣∣∣∣∣∣ 1√
n
S̃n(t)− g(t)

∣∣∣∣∣∣∣∣ < δ

)
> 1− ε,∀n ≥ N0.

Hence, ∀n ≥ N0 with probability at least 1− ε,

√
(k∗)2 − 2δ < arg max

t∈[0,k∗]

∣∣∣∣∣∣∣∣ 1√
n
S̃n(t)

∣∣∣∣∣∣∣∣2 ≤ k∗

and similarly,

k∗ ≤ arg max
t∈[0,k∗]

∣∣∣∣∣∣∣∣ 1√
n
S̃n(t)

∣∣∣∣∣∣∣∣2 <√(k∗)2 + 2δ.

Thus, for n ≥ N0, we have an injective function ∆̂(δ) dependent only on k∗ such that

P

(∣∣∣∣∣arg max
t∈[0,k∗]

∣∣∣∣∣∣∣∣ 1√
n
S̃n(t)

∣∣∣∣∣∣∣∣2 − k∗
∣∣∣∣∣ < ∆̂(δ)

)
> 1− ε,

and hence

arg max
t∈[0,1]

∣∣∣∣∣∣S̃n(t)
∣∣∣∣∣∣

and similarly

arg max
t∈[0,1]

1

n
S̃n(t)Σ̂−1

n S̃n(t)
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are consistent estimators of k∗ ∈ [0, 1] using Definition 2.1.

For a sequence {X1, . . . , XN}, where Xt is a stationary time series with E[Xt] = µ

and covariance matrices E[Xt+hX
T
t ]−µµT = Γ(h) have absolutely summable compo-

nents. Under this condition, Xt has a continuous spectral density given by

f(λ) =
1

2π

∞∑
h=−∞

Γ(h)e−ihλ, −π ≤ λ ≤ π.

For ωj = 2πj
N

, where −[(N − 1)/2] ≤ j ≤ [N/2], the discrete Fourier transform of

{X1, . . . , XN} is defined by

WN(ωj) =
1√
N

N∑
n=1

Xne
inωj

and let IN(ωj) denote the periodogram of {X1, . . . , XN}, defined by IN(ωj) = W (ωj)W (ωj)
∗.

The periodogram is a commonly used tool in signal processing and spectral analysis

to estimate the spectral density of a time series. Given a stationary time series {Xt},

the periodogram IN(ωj) at frequency ωj = 2πj/N is defined as

IN(ωj) =
1

N

(
N∑
n=1

Xne
inωj

)(
N∑
n=1

Xne
inωj

)∗
,

where N is the length of the time series. The definition of IN(ω) is then extended to

ω ∈ [−π, π] by the following relation

IN(ω) =


IN(g(N,ω)), if ω ≥ 0,

I∗N(g(N,−ω)), if ω < 0,
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where g(N,ω), where ω ∈ [0, π], is the nearest multiple of 2π/N to ω.

In the following theorem, we estimate the spectral density f(ω), where ω ∈ [−π, π].

We consider an estimator for f(ω), as f̂(ωj) = (2π)−1
∑
|k|≤hN KN(k)IN(ωj+k), where

{hN} is a sequence of positive integers and {KN(.)} is a sequence of weight functions.

We also impose the following conditions on {hN} and {KN(.)} :

hN −→∞ and hN/
√
N −→ 0 as N −→∞,

KN(k) = KN(−k), KN(k) ≥ 0, for all k∑
|k|≤hN

KN(k) = 1

and
∑
|k|≤hN

K2
N(k)

N−→∞−−−−→ 0. (4.1.2)

Remark 4.5. The above assumptions are satisfied by the Simple moving average

kernel

WN(k) =
1

(2hN + 1)
.I{|k|≤hN}, (4.1.3)

where hN is the chosen sequence of bandwidth.

Theorem 4.6. Under the assumptions on Xt based on Theorem 4.1 and the weight

functions KN(k) or under H0, f̂(ω) = (2π)−1
∑
|k|≤hN KN(k)IN(g(N,ω) + ωk) is a

consistent estimator of f(ω), for −π ≤ ω ≤ π. Consequently, there exists a consistent

estimator Σ̂N for Σ.

Proof. To prove this, we follow similar steps as in Section 10.3 in Brockwell [3] where

they prove the univariate version for linear processes with independent innovations.
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We similarly define the discrete Fourier transform of {ξ(1), . . . , ξ(N)} as

WN,ξ(λ) =
1√
N

N∑
n=1

ξ(n)einλ.

For ωj = 2πj
N

, where −[(N − 1)/2] ≤ j ≤ [N/2], IN,ξ(ωj) denotes the periodogram of

{ξ(1), . . . , ξ(N)}, defined by IN,ξ(ωj) = WN,ξ(ωj)WN,ξ(ωj)
∗. Thus,

(IN,ξ(ωj))pq =
1

N

(
N∑
n=1

ξp(n)einωj

)∗( N∑
n=1

ξq(n)einωj

)
.

E
[
(IN,ξ(ωj))pq (IN,ξ(ωk))rs

]
=

1

N2

N∑
s,t,u,v=1

E
[
ξp(s)ξq(t)ξr(u)ξs(v)ei(t−s)ωjei(v−u)ωk

]

The last sum can be decomposed into four types of sums (since under H0, we have

assumed that E [ξ(t)] = 0) as follows:

=
∑∑∑∑

E [ξp(s)ξq(t)ξr(u)ξs(v)] ei(t−s)ωjei(v−u)ωk (i)

+
∑∑∑∑

E [ξp(s)ξq(t)]E[ξr(u)ξs(v)] ei(t−s)ωjei(v−u)ωk (ii)

+
∑∑∑∑

E [ξp(s)ξq(u)]E[ξr(t)ξs(v)] ei(t−s)ωjei(v−u)ωk (iii)

+
∑∑∑∑

E [ξp(s)ξq(v)]E[ξr(t)ξs(v)] ei(t−s)ωjei(v−u)ωk (iv).

For the type-i sum, since the ξ(i)’s are m-dependent random variables, it should be
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of O(N). For the type-iii sum, we consider the following expressions,

N−m∑
t=m+1

m∑
α=−m

E [ξp(t)ξq(t+ α)] eiωjteiωk(t+α)

=
N−m∑
t=m+1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

=
N∑
t=1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

−
m∑
t=1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

−
N∑

t=N−m+1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

=

(
N∑
t=1

ei(ωj+ωk)t

)(
m∑

α=−m

E [ξp(t)ξq(t+ α)] eiωkα

)

−
m∑
t=1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

−
N∑

t=N−m+1

m∑
α=−m

E [ξp(t)ξq(t+ α)] ei(ωj+ωk)teiωkα

=

(
N∑
t=1

ei(ωj+ωk)t

)(
m∑

α=−m

E [ξp(t)ξq(t+ α)] eiωkα

)
+O(1).

In the third equality of the above expression, we have used the fact that ξ(n)′s is a

stationary sequence of random variables and so we can decompose it into products

which do not depend on t. And the remaining part of the expression in the third

equality is of O(1) since there are m terms, where m is merely a constant and hence

again by stationary property of ξ(n)′s, we have the rest to be of constant order. This
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means the following:

If ωj = ωk = 0, or ωj = ωk = π, then = O(N);

Otherwise, then = O(1).

Therefore, the following is true for type-iii sum:

If ωj = ωk = 0, or ωj = ωk = π, then = O(N2);

Otherwise, then = O(1).

Similar arguments will work for the type-iv sum as well and will give the same result.

We thus have

Cov ((IN,ξ(ωj))pq, (IN,ξ(ωk))rs)

= E
(

(IN,ξ(ωj))pq (IN,ξ(ωk))rs

)
− E (IN,ξ(ωj))pq E (IN,ξ(ωj))pq

= E
(

(IN,ξ(ωj))pq (IN,ξ(ωk))rs

)
− 1

N2

N∑
s,t,u,v=1

E [ξp(s)ξq(t)]E[ξr(u)ξs(v)] ei(t−s)ωjei(v−u)ωk .

Hence combining the above orders, we get

Cov ((IN,ξ(ωj))pq, (IN,ξ(ωk))rs) =


O
(

1
N

)
, if 0 < ωj 6= ωk < π,

O(1), if 0 ≤ ωj = ωk ≤ π.

(4.1.4)
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Likewise, the discrete Fourier transform of {X1, . . . , XN} is defined as

WN,X(λ) =
1√
N

N∑
n=1

Xne
inλ

=
1√
N

N∑
n=1

einλ

{∑
k≥0

Ckξ(N − k)

}

=
∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ +
1√
N

∑
k≥0

Cke
ikλRk,N(λ),

where

(Rk,N(λ))p = E

[
−

N∑
n=1

ξp(n)einλ −
N−k∑

n=−k+1

ξp(n)einλ

]
.

Let (IN,X(λ)) denote the periodogram of {X1, . . . , XN}, defined by
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IN,X(λ) = WN,X(λ)WN,X(λ)∗. Thus

IN,X(λ) =
1

N

(
N∑
n=1

Xne
inλ

)(
N∑
n=1

Xne
inλ

)∗

=

(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ +
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)

×

(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ +
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗

=

(∑
k≥0

Cke
ikλ

)
IN,ξ(λ)

(∑
k≥0

Cke
ikλ

)∗

+

(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗

+

(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ

)∗

+

(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ

)(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗

=

(∑
k≥0

Cke
ikλ

)
IN,ξ(λ)

(∑
k≥0

Cke
ikλ

)∗
+RN(λ), (4.1.5)

where

RN(λ) =

(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗

+

(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ

)∗

+

(∑
k≥0

Cke
ikλ 1√

N

N∑
n=1

ξ(n)einλ

)(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗
.
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By using Lemma 2.8,

max
λ

1√
2πN

E

(( ∞∑
j=−∞

Cje
ijλRj,N(λ)

)∗( ∞∑
j=−∞

Cje
ijλRj,N(λ)

))2
1/4

≤ 1√
2πN

max
λ

∞∑
j=−∞

E
[∣∣∣∣(CjeijλRj,N(λ))

∣∣∣∣4]1/4

≤ 1√
2πN

max
λ

∞∑
j=−∞

||Cj||E
[
||(Rj,N(λ))||4

]1/4
and

E
[
||Rk,N(λ)||4

]
= E

(∑
m,n∈I

ξp (m) ξp (n) ei(m−n)λ

)2
 = O

(
min(|k|2, |N |2)

)
,

where I = {1, . . . , N}∆{−k + 1, . . . , N − k}. Therefore by the assumption that

∑
l≥1

∑
m>l

||Cm|| <∞,

we have

max
λ

E

(( 1√
2πN

∞∑
j=−∞

Cje
ijλRj,N(λ)

)∗(
1√

2πN

∞∑
j=−∞

Cje
ijλRj,N(λ)

))2


≤ O

(
1

N2

)
. (4.1.6)
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and

E
[∣∣C(eiωk)WN,ξ(ωk)r

∗
N(ωk)

∣∣2
ij

]
= E

[∣∣C(eiωk)WN,ξ(ωk)
∣∣2
i
|r∗N(ωk)|2j

]
≤ E

[∣∣C(eiωk)WN,ξ(ωk)
∣∣4
i

]1/2

E
[
|rN(ωk)|4j

]1/2

≤
∣∣∣∣C(eiωk)

∣∣∣∣2 E [|WN,ξ(ωk)|4i
]1/2 E [|rN(ωk)|4j

]1/2

,

where rN(ωk) = 1√
N

∑∞
j=−∞Cje

ijωkRj,N(ωk) for ωk = 2πk
N
∈ [0, π]. As we already have

seen that

Cov ((IN(ωk))pq, (IN(ωk))rs)

= E
[(

(WN,ξ(ωk))p(WN,ξ(ωk))q

)(
(WN,ξ(ωk))r(WN,ξ(ωk))s

)]
− E

[(
(WN,ξ(ωk))p(WN,ξ(ωk))q

)]
E
[(

(WN,ξ(ωk))r(WN,ξ(ωk))s

)]
= O

(
1

N

)
+O(1)

and

E
[(

(WN,ξ(ωk))p(WN,ξ(ωk))q

)]
E
[(

(WN,ξ(ωk))r(WN,ξ(ωk))s

)]
= O(1)

since the sequence {ξ (n)}−∞<n<∞ are m-dependent random variables, we have

E
[(

(WN,ξ(ωk))p(WN,ξ(ωk))q

)]
=

1

2πN

N∑
j,k=1

E [ξp (j) ξq (k)] ei(j−k)ωk = O (1) .
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Hence,

E
[(
Wp(ωk)Wq(ωk)

)(
Wr(ωk)Ws(ωk)

)]
= O

(
1

N

)
+O(1),

which implies that

max
ωk∈[0,π]

E
[
|W (ωk)|4i

]
= O

(
1

N

)
+O(1),

max
ωk∈[0,π]

E
[∣∣C(eiωk)W (ωk)r

∗
N(ωk)

∣∣2
ij

]
≤
∣∣∣∣C(eiωk)

∣∣∣∣2(O( 1

N

)
+O (1)

)1/2(
O

(
1

N2

))1/2

= O

(
1

N

)
, (4.1.7)

and

max
λ

E

∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)(
1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∗∣∣∣∣∣
2

ij

= max
λ

E

∣∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)
i

(
1√
N

∑
k≥0

CkeikλRk,N(λ)

)
j

∣∣∣∣∣∣
2

= max
λ

E

∣∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)
i

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)
j

∣∣∣∣∣∣
2

≤ max
λ

E

∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∣∣∣∣∣
2 ∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∣∣∣∣∣
2

≤ max
λ

E

∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∣∣∣∣∣
4

E

∣∣∣∣∣
(

1√
N

∑
k≥0

Cke
ikλRk,N(λ)

)∣∣∣∣∣
4
1/2

= O

(
1

N2

)
. (4.1.8)
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This is true from the observation obtained in (4.1.6). Finally by Lemma 2.8, we have

max
ωk∈[0,π]

(
E
[
|RN(ωk)|2ij

])1/2

≤ max
ωk∈[0,π]

E

[( 1√
N

∑
k≥0

Cke
ijωkRj,N(ωk)

)(
1√
N

∑
k≥0

Cke
ijωkRj,N(ωk)

)∗]2

ij

1/2

+ max
ωk∈[0,π]

E

[(∑
k≥0

Cke
ijωkRj,N(ωk)

)(∑
k≥0

Cke
ikωk

1√
N

N∑
n=1

ξ(n)einωk

)∗]2

ij

1/2

+ max
ωk∈[0,π]

E

[(∑
k≥0

Cke
ikωk

1√
N

N∑
n=1

ξ(n)einωk

)(∑
k≥0

Cke
ijωkRj,N(ωk)

)∗]2

ij

1/2

≤ O

(
1√
N

)
.

Hence,

max
ωk∈[0,π]

E
[
|RN(ωk)|2ij

]
≤ O

(
1

N

)
. (4.1.9)

Therefore from (4.1.5), we have

(IN,X(ωk))ij =
(
C(eiωk)IN,Z(ωk)C(eiωk)∗

)
ij

+ (RN(ωk))ij

=
∑

1≤m,n≤d

[(
C(eiωk)

)
im

(IN,Z(ωk))mn
(
C(eiωk)

)
nj

]
+ (RN(ωk))ij.
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which implies that

Cov ((IN,X(ωj))pq, (IN,X(ωk))rs)

= Cov

( ∑
1≤m,n≤d

(
C(eiωj)

)
pm

(IN,ξ(ωj))mn
(
C(eiωj)

)
nq
,

∑
1≤m,n≤d

(
C(eiωk)

)
rm

(IN,ξ(ωk))mn
(
C(eiωk)

)
ns

)

+ Cov

( ∑
1≤m,n≤d

(
C(eiωj)

)
pm

(IN,ξ(ωj))mn
(
C(eiωj)

)
nq
, (RN(ωk))rs

)

+ Cov

(
(RN(ωj))pq,

∑
1≤m,n≤d

(
C(eiωk)

)
rm

(IN,ξ(ωk))mn
(
C(eiωk)

)
ns

)

+ Cov ((RN(ωj))pq, (RN(ωk))rs) .

Hence from the relations in (4.1.4), (4.1.6), (4.1.7), (4.1.8), (4.1.9) and using Cov( . , . )

function and Cauchy-Schwarz inequality, we obtain

Cov ((IN,X(ωj))pq, (IN,X(ωk))rs) =


O
(

1√
N

)
+O(1), if 0 ≤ ωj = ωk ≤ π

O
(

1√
N

)
, if otherwise.

By the assumptions on hN based on (4.1.2) that

hN√
N

N−→∞−−−−→ 0,
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we have

max
|k|≤hN

|g(N,ω) + ωk − ω|
N↪→∞−−−−→ 0.

This implies that, by continuity of fij(.) on the compact set [0, π], and hence by

uniform continuity, we have

max
|k|≤hN

|fij (g(N,ω) + ωk)− fij (ω)| N↪→∞−−−−→ 0.

As

∣∣Ef̂ij(ω)− fij(ω)
∣∣ =

∣∣∣∣ ∑
|k|≤hN

KN(k)
[
(2π)−1E

(
IN,X (g(N,ω) + ωk)ij

)
− fij (g(N,ω) + ωk) + fij (g(N,ω) + ωk)− fij (ω)

]∣∣∣∣,
by Proposition 10.3.1 in Brockwell [3], for stationary sequence Xt’s, we have

max
|k|≤hN

∣∣(2π)−1E
(
IN,X (g(N,ω) + ωk)ij

)
− fij (g(N,ω) + ωk)

∣∣ N−→∞−−−−→ 0.
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Therefore, we have Ef̂(ω)
N−→∞−−−−→ f(ω). Hence for ω ∈ (0, π),

Var
(
f̂pq(ω)

)
= (2π)−2

∑
|j|≤hN

K2
N(j)

(
(2π)2Var

(
(IN,X(g(N,ω) + ωj))pq

))
+ (2π)−2

∑
|j|≤hN

∑
|k|≤hN ,k 6=j

KN(j)KN(k)

×
(

(2π)2Cov
(

(IN,X(g(N,ω) + ωj))pq , 0 (IN,X(g(N,ω) + ωk))pq

))

=

 ∑
|j|≤hN

K2
N(j)

O (1) + (2hN + 1)

 ∑
|j|≤hN

K2
N(j)

O

(
1√
N

)

=

 ∑
|j|≤hN

K2
N(j)

O (1) + o

 ∑
|j|≤hN

K2
N(j)

 .

This implies that

Var
(
f̂pq(ω)

)
N−→∞−−−−→ 0, when 0 < ω < π.

For ω = 0, we have

f̂(0) = (2π)−1
∑
|k|≤hN

KN(k)IN(ωk)

= (2π)−1
∑

0≤k≤hN

KN(k)IN(ωk) + (2π)−1
∑

−hN≤k<0

KN(k)IN(ωk)

and let us denote the sums as f̂1(0) and f̂2(0), respectively. Hence,
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Var
(
f̂1pq(0)

)
= (2π)−2

∑
0≤j≤hN

K2
N(j)

(
(2π)2Var

(
(IN,X(ωj))pq

))
+ (2π)−2

∑
0≤j≤hN

∑
0≤k≤hN ,k 6=j

KN(j)KN(k)
(

(2π)2Cov
(

(IN,X(ωj))pq , (IN,X(ωk))pq

))

≤

 ∑
|j|≤hN

K2
N(j)

O (1) + (2hN + 1)

 ∑
|j|≤hN

K2
N(j)

O

(
1√
N

)

=

 ∑
|j|≤hN

K2
N(j)

O (1) + o

 ∑
|j|≤hN

K2
N(j)

 N−→∞−−−−→ 0

and similarly, Var
(
f̂2pq(0)

)
N−→∞−−−−→ 0. Since f̂pq(0) = f̂1pq(0) + f̂2pq(0),

Var(f̂pq(0)) ≤ Var(f̂1pq(0)) + Var(f̂2pq(0)) + 2
√

Var(f̂1pq(0))Var(f̂2pq(0))

by Cauchy-Schwarz inequality. Therefore,

Varf̂pq(0)
N−→∞−−−−→ 0,

and hence,

E
∣∣∣f̂pq(0)− fpq(0)

∣∣∣2 = Varf̂pq(0) +
∣∣∣Ef̂pq(0)− fpq(0)

∣∣∣2 N−→∞−−−−→ 0,

as required. This implies that ˆf(0) is a consistent estimator of f(0). Hence, proved.

Theorem 4.2 provides a consistent estimator for the change-point when there is

a single change-point. This can be extended to multiple change-points case, say, the
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number of change-points is k, by assuming that the distance between any two change-

points is at least
[
N
k

]
. We can then apply the result in Theorem 4.2 for the data from

(i− 1)
[
N
k

]
to i

[
N
k

]
, for i ∈

{
1, . . . ,

[
N
k

]}
.
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Chapter 5

Empirical results

In this chapter, we use T to represent the length of a given data. The empirical results

were obtained by utilizing the critical values as detailed in the paper by Kiefer [8] and

using Simple moving average kernel with bandwidth hT = T 1/4, which satisfies the as-

sumptions 4.1.2. For the task of single change-point detection, the proposed method

was applied to datasets spanning different time lengths, namely, 8000, and 16000,

across a spectrum of m-dependence levels including 10 and 20. As expected, given

the consistent nature of our estimator and its convergence to the requisite statistic

discussed in Kiefer [8] for large T , we observe an improvement in the performance of

the method with increasing T . Moreover, since the assumed constant-order depen-

dence of ξ(n)′s suggests a relationship, where O(m) << O(T 1/4) as obtained in the

proof of Theorem 4.6, the selection of m becomes crucial in optimizing the method’s

efficacy relative to the dataset size T . Additionally, it is worth noting that the perfor-

mance of the method may be influenced by the location of the actual change-point,

given the utilization of the convergence of the average of X ′ts as T tends to infinity

in the proof of Theorem 4.2. Another potential factor impacting method efficacy is
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the magnitude of the change itself, which warrants consideration in our evaluation.

For generating the data which follows the assumptions in Theorem 4.1, we gener-

ated a sequence of independent and identically distributed random variables {Z(t)}t∈Z,

and then generated ξ(t) = f̃(Z(t − m), . . . , Z(t + m)),∀ t ∈ Z, with some suitable

function f̃(.). Hence, the data we used for analysis are as follows:

Xt =
∑
k≥0

Ckf̃(Z(t− k −m), . . . , Z(t), . . . , Z(t− k +m)), (5.0.1)

where m is the dependence parameter of the ξ(t)’s. This is a specific model which

generates such data and we have used this to obtain our simulation results.

For each combination in the tables, we have used 30 runs and took the average

of the deviations of the estimates of the change-points from the actual change-point,

absolute value of deviations and square of the deviations to estimate E
[
T ∗ − T̂

]
(deviation), E

∣∣∣T ∗ − T̂ ∣∣∣ (abs deviation) and E
∣∣∣T ∗ − T̂ ∣∣∣2 (sqd deviation), where T̂ and

T ∗ are the estimated and actual change-points, respectively. While using the model

in (5.0.1), we used normal distribution with mean 0 and covariance matrix

 1 0.5

0.5 1


and 

1 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1


,
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for generating {Z(t)}t∈Z for the bi-variate and five-variate data cases, respectively,

and observed the performance of the method based on two magnitude of change

in the mean (0.5, 0.2) and (0.5, 1.2) for the bi-variate case and (0.5, 0.2, 0.2, 0.5, 0.2)

and (0.5, 1.2, 0.5, 0.5, 0.5) for the five-variate case. The Figures 5.1 and 5.2 show the

simulated bi-variate data with the actual change-point at T/2 and T/5, respectively.

It is clear from the Figures that it is difficult to identify the change-points, mainly

because of the spread of the data.

Figure 5.1: Data for the bi-variate with T = 8000 and change of mean being
(0.2,0.5) at time T/2.

For each simulation, we perform the hypothesis testing, based on the results ob-

tained in Theorem 4.1 at a significance level of 0.05 and on an average, we couldn’t

reject the null hypothesis 1 or 2 out of 30 simulations for each case. And once

the null hypothesis gets rejected, we estimate the change-point based on the data

simulated. We discuss some of the important observations from the Tables 5.1-5.4.
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Figure 5.2: Data for the bi-variate with T = 8000 and change of mean being
(0.2,0.5) at time T/5.

For change of (0.5, 0.2) with m-dependence of 20, we see that performance of the

estimator, arg maxt∈[0,1]
1
T
S̃T (t)Σ̂−1

T S̃T (t) in Theorem 4.2 decreases when the actual

change-point is at T/5; for example, the mean absolute deviation for 8000 length

data increase to 1143 from 752.7, which is for the case when the location is T/2. But,

when the change is increased to (0.5, 1.2), there is not much of a change in the perfor-

mance in terms of the mean absolute deviation and in both the cases, they perform

well. This is mainly because of the increase in the magnitude of change in mean; the

estimation is not affected to a large extent due to the change in location in the actual

change-point. For the m-dependence 10, the performance of the estimator is good for

all the cases, except for the case when the location of the change-point is T/5 and

change in mean of (0.5, 0.2), but the decline of the performance is not as bad as that

of the case of m-dependence 20. This is mainly due to the choice of m. Similarly, the

estimation is good enough for the change in mean being (0.5, 1.2) and the variation
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in performance is also low. We see similar observations for the datasets of length

16000, but the change in the performance is not that drastic for the m-dependence

of 20 when the location of the change-point is changed from T/2 to T/5. We also

present some more simulation results based on m-dependence of 30. For this case, we

see that the performance of the estimator for the case when the change in mean is

(0.5, 1.2) is still very good, especially for dataset of length 16000. So, we can expect

to obtain an increase in the accuracy of the method by allowing larger dependence

based on the chosen value of T and the amount of change. Similar observations are

seen in case of five-variate case when we alter the m-dependence, change in location

of change-point and magnitude of change in the mean.

To show a graphical view of the results in Tables 5.1-5.4, we present Figures 5.3 and

5.4 to show the distribution of the estimated change-points once the null hypothesis

is rejected. We also show the Figure 5.5 for the combinations in Table 5.1. The plots

clearly demonstrate the improvement in performance when the magnitude of change

is increased and m-dependence is decreased. Similar plots can also be obtained for

other tables as well.
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Table 5.1: Performance evaluation of the estimator on the bi-variate data, T = 8000

change m-dependence location deviation abs deviation sqd-deviation

0.5, 0.2 10 T/2 8.3 154.1 238.5
10 T/5 -714.7 728.9 813.02
20 T/2 87.5 564.5 857.1
20 T/5 -1021.1 1143 1356.9
30 T/2 -85.33 752.7 1097

0.5, 1.2 10 T/2 -3.6 25.4 38.6
10 T/5 -74.5 99.1 216.3
20 T/2 45.8 144.2 214.5
20 T/5 -226.3 280.8 358.6
30 T/2 -95.5 352.6 551.2

Table 5.2: Performance evaluation of the estimator on the bi-variate data, T =
16000.

change m-dependence location deviation abs deviation sqd-deviation

0.5, 0.2 10 T/2 6.1 99.6 178.2
10 T/5 -415 522.6 687
20 T/2 44.3 315 459.3
20 T/5 -452 745 854
30 T/2 96 311.2 425

0.5, 1.2 10 T/2 7 12 29
10 T/5 -52 75 124
20 T/2 18.3 67.8 110.2
20 T/5 -204 213 336
30 T/2 55 157 248
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Table 5.3: Performance evaluation of the estimator on the five-variate data, T =
8000.

change m-dependence location deviation abs deviation sqd-deviation

0.5, 0.2, 0.2, 0.5, 0.2 10 T/2 11.2 179.1 275.6
10 T/5 -686.6 755.0 863.7
20 T/2 93.6 573.4 848.8
20 T/5 -913.4 1054.5 1594.8
30 T/2 -63.4 662.7 902.0

0.5, 1.2, 0.5, 0.5, 0.5 10 T/2 -6.8 20.4 32.3
10 T/5 -69.8 107.1 196.3
20 T/2 53.1 137.3 250.5
20 T/5 -241.8 312.8 375.4
30 T/2 -88.3 322.9 560.6

Table 5.4: Performance evaluation of the estimator on the five-variate dataset, T =
16000.

change m-dependence location deviation abs deviation sqd-deviation

0.5, 0.2, 0.2, 0.5, 0.2 10 T/2 9.7 105.8 208.1
10 T/5 -408.2 568.7 679.2
20 T/2 52.9 332.8 478.1
20 T/5 -405.4 713.2 874.9
30 T/2 121.7 351.7 471.6

0.5, 1.2, 0.5, 0.5, 0.5 10 T/2 6.7 16.2 27.3
10 T/5 -46.8 87.3 138.7
20 T/2 26.9 77.9 115.3
20 T/5 -287.1 296.7 425.9
30 T/2 61.2 146.9 255.5

55

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – R J Samanta; McMaster University – Mathematics and Statistics

Figure 5.3: Conditional distribution of the change-point: T = 8000, Mean change =
(0.2,0.5), x-axis represents the time index and y-axis represents the frequency of the

estimates of the change-points.
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Figure 5.4: Conditional distribution of the change-point estimates: T = 8000, Mean
change = (0.5,1.2), x-axis represents the time index and y-axis represents the

frequency of the estimates of the change-points.
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Figure 5.5: Performance of the estimator arg maxt∈[0,1]
1
T
S̃T (t)Σ̂−1

T S̃T (t) based on one
simulation for each of the cases with T = 8000.

58

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Chapter 6

Concluding remarks

In this work, we have provided an overview of the significance and challenges as-

sociated with multivariate change-point detection methods. The review of existing

methods has highlighted the different approaches employed by researchers across dif-

ferent disciplines, including signal processing, finance, environmental monitoring, and

healthcare. From Malo’s work on detecting structural breaks in multivariate time se-

ries data to Kucheva’s contributions in statistical modeling, a wide array of method-

ologies has been discussed, each with its own strengths and limitations. After that

we move to the development of the theoretical results, where we first present The-

orem 4.1. The assumptions made in this theorem are mainly the assumptions that

are made to perform hypothesis testing on whether there is actually a shift in the

mean or not. For this, we use the statistic in Theorem 4.1, to perform the hypothesis

testing. It is also worth mentioning that to be able to calculate the statistic, we found

a consistent estimator Σ̂N for Σ in Theorem 4.6. Once the testing is done and the

null hypothesis gets rejected, we use Theorem 4.2 to get the consistent estimator of

the change-point under certain assumptions like ergodicity, mentioned in the theorem.
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These assumptions are justified by Remark 4.4, where we discuss why this assumption

fits the with the model 5.0.1 with which we generate the empirical results in Chapter

5. The results points out some observations such as the effect of increase in length

of the data, value of m in the m-dependence, location of the actual change-point and

magnitude of the shift on the performance of the estimator. Although the method

doesn’t include any assumption on the dependence structure within the components,

a potential limitation of the proposed method is that the Σ matrix mentioned in

Theorem 4.1 may not always be positive-definite. This might pose some issue while

performing the hypothesis testing as well as estimation of the change-point.

Despite the progress made in this field, there are still problems that are of interest

for further exploration and development. Future research could focus on refining

existing methods to handle more complex data structures, such as high-dimensional

datasets or those with non-linear dependencies. An immediate question which may

arise is finding the change-points based on change in distribution of innovations which

in turn causes change in distribution of the data. Mattenson [11] has explored a

method to detect change-points based on change in distribution of data assuming that

the observations are independent, but using the linear process model with change in

distribution of the innovations might be an alternative way of looking into the problem

involving dependence structure of data.

Ultimately, the continued advancement of multivariate change-point detection

methods holds great promise for improving our understanding of dynamic systems

and in facilitating informed decision-making in a wide range of applications. Thus,

this area of research provides great opportunities for researchers to push the bound-

aries of knowledge in this direction.
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