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Abstract

We study minimizers of the Landau-de Gennes energy in the exterior region around a smooth 2-

manifold in R3 with a constant external magnetic field present. Uniaxial boundary data and a strong

tangential anchoring are imposed on the surface of the manifold and we consider the large particle

limit in a regime where the magnetic field is relatively weak. Before studying the general manifold,

we analyze a more simple case in which the manifold is spherical. After deriving a lower bound for

the energy in this limiting regime, we prove that a director field on the boundary which maximizes

its vertical component yields a minimal lower bound. We then construct a recovery sequence to

show that this lower bound is in fact the optimal energy bound. These steps are later repeated in

more generality for a larger class of smooth manifolds.
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1 Introduction

Liquid crystals are a type of matter which possesses properties of both a crystalline solid and an

isotropic fluid. That is, depending on the phase of the liquid crystal it can have varying degrees of

ordering within its fluid-like composition. Typically, liquid crystal is a collection of rod-like molecules

occupying some space and so we describe its physical properties in terms of the orientations and

positions of such molecules. Depending on this structure at a molecular level, we can classify the

phase of the liquid crystal into three categories: nematic, smectic, and cholesteric [4]. In this paper,

we are concerned with the nematic phase, in which the molecules are free to flow, similar to a liquid,

but still have a preferred direction of alignment on small regions.

Figure 1: Sample of uniaxial nematic liquid crystal.

Although there are several models which can be used to study nematic liquid crystals, we focus

on the Landau-de Gennes model in which the liquid crystal is described by a symmetric, traceless,

3×3 matrix, called a Q−tensor. Since the head and tail of the rod-like molecules that comprise the

nematic liquid crystal are often indistinguishable, this model is preferred as Q−tensors allow us to

describe the orientation of such molecules with respect to RP 2, rather than S2. Another benefit of

using the Landau-de Gennes model is that it allows for a finer description of defect cores, due to

their structures having finite energy [5]. For a nematic liquid crystal, there are two main orientation

states that occur: uniaxial and biaxial. In a uniaxial state the molecules align locally about one axis,

while in a biaxial state there is no axis of rotational symmetry for the molecular alignment, but three

mutually orthogonal axes of reflective symmetry. Although the Landau-de Gennes framework can
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be more challenging than other models of nematic liquid crystals, it has the ability to characterize

these two different states using Q−tensors, which is a very desirable property for a liquid crystal

model.

In this paper, we consider the case of liquid crystal outside of a colloid, which we describe by the

3-dimensional exterior region of a smooth 2-manifold M. We are interested in the energy of this

system when we impose a planar anchoring of the molecules at the surface of the manifold, i.e. we

impose a Dirichlet boundary condition in which the boundary data is uniaxial and the principal

eigenvector of the Q−tensor matrix is tangent to the surface of the manifold. More specifically,

we are interested in the observable effects that occur when a magnetic field is introduced. We will

study the energy of this system in what is called the large particle limit, using a method similar to

Γ−convergence, but not quite as strong as we will only consider sequences of minimizers.

Previous results in the case of normal anchoring were obtained in [1–3]. This work is inspired by

their approaches, although significant modifications have been made and new ideas introduced.

We will first study a much simpler case where the manifold M is the sphere S2. This will give us a

sense of the steps needed for the more general case and some ideas will carry over quite nicely. We

will then move on to the case of the general manifold, where some strategies used in the spherical

case will break down since we can no longer make use of the symmetries of the sphere and the simple

structure of its defect locations. Therefore, we must introduce new methods to get around these

difficulties. However, before we can do this, we will introduce the notations and definitions to be

used throughout this thesis as well as a more rigorous framework and description of our problem.

2
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2 Preliminaries

2.1 Points, Sets, and Coordinate Systems

We will be working with regions in R3 = R × R × R, where points x ∈ R3 are written as x =

(x1, x2, x3). We will denote the standard basis vectors of R3 by e1, e2, and e3. This space is

equipped with the standard Euclidean norm

|x| :=
√
x2
1 + x2

2 + x2
3 .

Let U ⊂ R3, then we denote the closure and the boundary of U by U and ∂U respectively. We will

also work with smooth, compact, oriented 2-manifolds, M, equipped with the distance function,

distM : M × M → [0,∞), which gives the geodesic distance between any two points on M. We

denote the unit normal vector field on M which points into Ω by ν : M → S2. Let κ1 and κ2 denote

the principal curvatures of M, then we define κ = max{|κ1|, |κ2|}. This gives the inequalities

∣∣∣∣ ∂ν∂ωi

∣∣∣∣ ≤ κ and |∇ων| =

√∣∣∣∣ ∂ν∂ω1

∣∣∣∣2 + ∣∣∣∣ ∂ν∂ω2

∣∣∣∣2 ≤
√
2κ ,

for i = 1, 2 and where ω1, ω2 denote the two parameters of the local coordinate system on M and ∇ω

denotes the gradient with respect to that coordinate system. Let B(x, r) be the open ball around

the point x ∈ R3 of radius r > 0,

B(x, r) := {y ∈ R3 : |x− y| < r} .

For convenience, we will use the same notation for an open ball in M, but it will be made clear by

context. We denote the open ball in M around ω ∈ M of radius r > 0 by

B(ω, r) = {p ∈ ω : distM(p, ω) < r} .

Let S2 be the unit sphere S2 = {x ∈ R3 : |x| = 1}, then we define the upper and lower half spheres

by

S2+ := {x ∈ S2 : x3 > 0} and S2− := {x ∈ S2 : x3 < 0} .

3
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Let U ⊂ M be a measurable subset, then we define the cone of length ρ by

Cρ(U) := {ω + rν(ω) : ω ∈ U and r ∈ (0, ρ)}. (2.1)

We often find it convenient to use spherical coordinates, (r, θ, ϕ), where r denotes the distance from

x to the origin, θ denotes the angle in the counterclockwise direction from the positive x1 axis to

the projection of x onto the {x3 = 0} plane, and ϕ denotes the angle between x and e3. We take

the standard basis vectors for spherical coordinates:

er = (cos θ sinϕ, sin θ sinϕ, cosϕ), eθ = (− sin θ, cos θ, 0),

and eϕ = (cos θ cosϕ, sin θ cosϕ,− sinϕ).

In the spherical case we will often simplify 3 dimensional problems to 2 dimensional problems, where

we consider sets of the form K ⊂ {(r, ϕ) : 1 < r < ∞, 0 ≤ ϕ ≤ π}. To return to the 3 dimensional

framework, we define K ′ as follows,

K ′ := {(r, θ, ϕ) : (r, ϕ) ∈ K, 0 ≤ θ < 2π}. (2.2)

In the case of a general manifold M we will use the coordinate system (r, ω) to parameterize the

exterior region of M up to some distance r0. For a general manifold, we will choose

r0 =
1

2κ
, (2.3)

to guarantee that this parameterization is well defined, but this is not necessary when the domain

inside of M is convex, like in the spherical case. For any point x in this exterior region Cr0(M), we

choose ω to be the closest point on M to x and we choose r to be the distance from x to ω.

For any set U ⊂ R3, we will denote the Lebesgue measure of the set by |U | and it will also be

understood that if V ⊂ M, then |V | is the measure of V with respect to the surface measure on M.

Finally, dx will denote integration with respect to the Lebesgue measure on R3 and dω will denote

integration with respect to the surface measure of M.

4
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2.2 Q−Tensors Valued Functions

The Landau-de Gennes model uses Q−tensors to describe the liquid crystal, so we must first develop

the notation and structure on this class of matrices. Let M3(R) be the space of 3×3 matrices, then

we define the trace and transpose operations respectively by

tr(Q) =

3∑
i=1

Qii and QT = (Qij)
T = (Qji)

for any matrix Q ∈ M3(R). We then define the inner product for any two matrices Q1, Q2 ∈ M3(R),

⟨Q1, Q2⟩ = tr(QT
1 Q2) ,

and this induces the norm

|Q| = (⟨Q,Q⟩)1/2, Q ∈ M3(R) .

We will be focused on the class of symmetric, traceless 3×3 matrices, which we denote by

Sym0 := {Q ∈ M3(R) : Q = QT , tr(Q) = 0} .

On this class of matrices, the norm reduces to

|Q| =

 3∑
i,j=1

Q2
ij

1/2

,

and (Sym0, | · |) defines a Banach space.

Let Ck(U ; Sym0) denote the set of k−times continuously differentiable functions from U ⊂ R3 to

Sym0, for k ≥ 0. A Q−tensor valued function Q(x) is k−times continuously differentiable if each of

its component functions Qij(x) are themselves k−times continuously differentiable in all variables.

If Q : U → Sym0 is differentiable, then the gradient is defined as ∇Q = (∇Qij) and the norm of

∇Q is given by

|∇Q| =

 3∑
i,j,k=1

(
∂Qij

∂xk

)2
1/2

.

5
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In spherical coordinates, |∇Q|2 evaluates to

|∇Q|2 =

∣∣∣∣∂Q∂r
∣∣∣∣2 + 1

r2

∣∣∣∣∂Q∂ϕ
∣∣∣∣2 + 1

r2 sin2 ϕ

∣∣∣∣∂Q∂θ
∣∣∣∣2 . (2.4)

While for a general manifold, using the local coordinate system (ω1, ω2) we have

|∇Q|2 =

∣∣∣∣∂Q∂r
∣∣∣∣2 + 1

(1 + r|κ1|)2

∣∣∣∣ ∂Q∂ω1

∣∣∣∣2 + 1

(1 + r|κ2|)2

∣∣∣∣ ∂Q∂ω2

∣∣∣∣2 . (2.5)

The usual definitions for Lp spaces extend to the class of Q−tensor valued functions in that for

1 ≤ p ≤ ∞, Q ∈ Lp(U ; Sym0) if each Qij ∈ Lp(U ;R) for i, j = 1, 2, 3. It then follows that the

Sobolev spaces are defined by

W k,p(U ; Sym0) := {Q ∈ Lp(U ; Sym0) : D
αQij ∈ Lp(U ;R) ∀ i, j = 1, 2, 3, and ∀ |α| ≤ k}

where α = (α1, α2, α3) is a multi-index such that |α| = α1 + α2 + α3 and DαQij is a the derivative

of Qij in the weak sense. We will mainly focus on H1(U ; Sym0) = W 1,2(U ; Sym0) and in this space,

the H1 norm is given by,

||Q||H1(U) =

(∫
U

(|Q|2 + |∇Q|2) dx
)1/2

.

This is a very special space as it is also a Hilbert space with the inner product

⟨Q1, Q2⟩H1 =

∫
U

Q1 ·Q2 +∇Q1 · ∇Q2 dx .

2.3 Landau-de Gennes Theory

Let Ωµ ⊂ R3 denote the exterior region of a colloidal particle of size µ > 0, then the Landau-de

Gennes model with a magnetic field on Ωµ is described by the following energy functional:

E(Q) =

∫
Ωµ

L

2
|∇Q|2 + f(Q) + h2g(Q) dx ,

6
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where L > 0 is a material-dependent elastic constant and h is the magnetic field strength. After

non-dimensionalization, this becomes

Eξ,η(Q) =

∫
Ω

1

2
|∇Q|2 + 1

ξ2
f(Q) +

1

η2
g(Q) dx ,

for two coupled parameters ξ, η > 0, as done in [3]. Through this non-dimensionalization, we have

the relations

ξ ∼ µ−1 and η ∼ ξ

h
, (2.6)

where µ is some natural length-scale of Ωµ and now Ω is the re-scaled domain with natural length

scale 1. Let U ⊂ Ω, then we define the energy on U by

Eξ,η(Q;U) =

∫
U

1

2
|∇Q|2 + 1

ξ2
f(Q) +

1

η2
g(Q) dx .

The functions f and g in the energy functional are defined as

f(Q) = −a

2
|Q|2 − b

3
tr(Q3) +

c

4
|Q|4 + C and g(Q) =

√
2

3
− Q33

|Q|
, (2.7)

where we choose a = 1, b = 3, c = 3 and C = 2
9 . This choice of constants ensures that f(Q) ≥ 0 for

all Q ∈ Sym0 and f(Q) = 0 exactly when Q = n⊗ n− 1
3I. We define the set of uniaxial Q−tensors

such that it is precisely the set where f achieves its minimum, i.e.

N :=
{
Q ∈ Sym0 : Q = n⊗ n− 1

3
I for some n ∈ S2

}
.

The bulk energy of the system is given by

∫
Ω

1

ξ2
f(Q) dx ,

and this term penalizes biaxiality in the sense that f(Q) ≥ C(dist(Q,N ))2 for all Q ∈ Sym0 and for

some constant C > 0. The term ∫
Ω

1

η2
g(Q) dx

7



M.Sc. Thesis - Dean Louizos McMaster University - Mathematics

is the symmetry breaking term, in that rotations R ∈ SO(3) which satisfy g(RTQR) = g(Q) must

have e3 as an eigenvector, whereas f(RTQR) = f(Q) for all R ∈ SO(3). We also note that g(Q) = 0

exactly when Q = sQ∞, for any s ∈ (0,∞) and

Q∞ := e3 ⊗ e3 −
1

3
I .

This is because g(Q) is scale invariant and favours alignment with the vertical magnetic field. We

note that f(Q) + g(Q) = 0 if and only if Q = Q∞. It will often be useful to obtain upper bounds

on f and g when estimating the energy of the system and we can easily see that,

f(Q) ≤ 1

2
|Q|2 + |Q|3 + 3

4
|Q|4 + 2

9

since |tr(Q3)| = |⟨Q2, Q⟩| ≤ |Q|3. Therefore if |Q| is bounded on some set, then so is f(Q). It also

holds that

g(Q) ≤
√

2

3
+ 1 ,

for any Q ∈ Sym0. We also note that if Q ∈ N , then g(Q) simplifies to

g(Q) =

√
3

2
(1− n2

3),

where Q = n⊗n− 1
3I. When Q is uniaxial, we will frequently use the notation g(n) to denote g(Q).

For any Q ∈ Sym0, we can decompose it into the form

Q = s

(
n⊗ n− 1

3
I + t

(
m⊗m− 1

3
I

))
,

where n ⊥ m, s ∈ [0,∞) and t ∈ [0, 1]. The choice of s and t come from the eigenvalues of Q in that

λ1 = s and λ2 = st are the two leading eigenvalues of Q. Provided that t ̸= 1 and Q ̸= 0, we can

choose n and m uniquely up to their sign since

n⊗ n = (−n)⊗ (−n) . (2.8)

8
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We define the set where the decomposition is not unique by

B := {Q ∈ Sym0 : Q = 0 or λ1(Q) = λ2(Q)} . (2.9)

Away from B, we can define the function n : Sym0 \ B → RP 2 by taking n(Q) = [n] for n from the

decomposition and [n] = {n,−n} being the equivalence class for n in S2. We then use this to define

the projection of Q ∈ Sym0 \ B onto N . Let P : Sym0 \ B → N be

P (Q) = n(Q)⊗ n(Q)− 1

3
I , (2.10)

where we note that this is well defined by (2.8).

9
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3 Mathematical Framework

We consider the non-dimensionalized Landau-de Gennes framework with a colloid described by a

smooth, compact, oriented 2-manifold M and we define Ω to be the region of R3 exterior to M. Let

Md = {ω ∈ M : ν(ω) = ±e3} , (3.1)

then we also impose thatMd consist of finitely many isolated points and finitely many smooth curves

of finite length. This assumption greatly simplifies the construction in Section 6 as it excludes very

badly behaved sets and sets of positive measure. For any Q ∈ Q∞ +H1(Ω; Sym0), the energy in Ω

is given by

Eξ,η(Q) =

∫
Ω

1

2
|∇Q|2 + 1

ξ2
f(Q) +

1

η2
g(Q) dx ,

so we want to consider minimizers of this energy which have a tangential boundary constraint on

M. We define the class of admissible boundary conditions

Ab = {Qb : M → N where Qb is C1 except at finitely many points and n(Qb) · ν = 0 a.e.} ,

then we search for minimizers Qξ,η of Eξ,η subject to a fixed boundary condition Qξ,η = Qb ∈ Ab

on M. The full potential, f(Q)+h2g(Q) is minimized exactly when Q = Q∞ and the potential can

be estimated from below by

f(Q) + h2g(Q) ≥ Ch|Q−Q∞|2 ,

for some constant Ch > 0 which depends only on h. The coercivity of this estimate guarantees the

existence of a minimizer in the affine space Q∞ +H1(Ω; Sym0).

We are interested in the large particle limit, which corresponds to very small values of ξ > 0 as

ξ ∼ µ−1 from (2.6). More specifically, we are interested in the regime where we take both ξ, η → 0

in such a way that,

η

ξ
→ ∞.

We have that f(Qb) = 0 for Qb ∈ Ab, but g(Qb) ̸= 0 unless Qb = Q∞. Because of this, a transition

takes place in a boundary layer around M and this transition turns out to be governed by the

10
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one-dimensional energy

Fλ(Q) =

∫ ∞

0

1

2

∣∣∣∣dQdr
∣∣∣∣2 + λ2f(Q) + g(Q) dr, (3.2)

defined for Q ∈ Q∞+H1((0,∞),Sym0). However, we are mostly interested in the case where λ = ∞

when

F∞(Q) =


∫ ∞

0

1

2

∣∣∣∣dQdr
∣∣∣∣2 + g(Q) dr, Q is uniaxial a.e.,

+∞, otherwise.

(3.3)

We can subsequently define the minimal value of Fλ for a given boundary condition, Q0 ∈ Sym0 by

Dλ(Q0) = inf{Fλ(Q) : Q ∈ Q∞ +H1((0,∞),Sym0) and Q(0) = Q0} . (3.4)

This minimal energy will be very important in characterizing the energy around M in the large

particle limit.

11
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4 Model Case: The Sphere

Disclaimer: The following work comes from [7] where some minor modification have been made

to better fit the notation and style of this thesis.

We begin with a much simpler case where the manifold M is the unit sphere, S2. Many of the ideas

that will be used for the general manifold will carry over from this easier case. This section will be

split into three parts, in which we will prove the following theorems.

Theorem 4.1 (Lower bound). Let Qξ,η minimize Eξ,η with Qξ,η = Qb ∈ Ab on S2. If

η

ξ
→ ∞ as ξ, η → 0,

then for any measurable set U ⊂ S2,

lim inf
ξ,η→0

ηEξ,η(Qξ,η; C∞(U)) ≥
∫
U

D∞(Qb(ω)) dω.

The lower bound in Theorem 4.1 follows from an elementary rescaling and the properties of λ 7→ Dλ

as in [1] with only minor modifications. Note that this lower bound is valid for any admissible Qb. So

a natural question is for which choice of Qb does the energy density D∞(Qb(ω)) attain its minimum.

It is in Section 4.2 that we will show Q∗
b = eϕ ⊗ eϕ − 1

3I is the boundary condition which yields the

minimal energy of D∞. Next, using this definition of Q∗
b , we can construct an upper bound that

matches the lower bound in Theorem 4.1.

Theorem 4.2 (Recovery sequence). If

η

ξ
→ ∞ as ξ, η → 0 ,

then there exists Qξ,η with Qξ,η|S2 ∈ Ab such that

lim sup
ξ,η→0

ηEξ,η(Qξ,η) ≤
∫
U

D∞(Q∗
b(ω)) dω.

We note that although this result is analogue to [1], the construction necessary to obtain Theorem 4.2

is very different. The main difference is that the singular structure appearing for Qb = Q∗
b is no

12
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longer a line defect (with isotropic or biaxial core), but two half-point defects (so called boojums).

Those defects are located at opposite poles and can be constructed to be uniaxial everywhere. To

realize this recovery sequence, it is necessary that all constructions be done within the uniaxial

manifold. In particular, the interpolations between point defects and the optimal profile achieving

the minimal energy density D∞(Q∗
b) have to take place in the phase rather than a direct linear

interpolation of the Q−tensor components.

4.1 Lower Bound for S2

In this section we prove Theorem 4.1. The proof is very similar to [1] where the case Qb = er⊗er− 1
3I

was considered. For the convenience of the reader we recall the main steps here:

we first change to spherical coordinates by x = rω, (r, ω) ∈ (1,∞)× S2, then define

Q̃(r̃, ω) := Qξ,η(1 + ηr̃, ω),

where r = 1 + ηr̃. Applying this change of variables, we have

ηEξ,η(Qξ,η; C∞(U)) = η

∫
U

∫ ∞

1

[
1

2
|∇Qξ,η|2 +

1

ξ2
f(Qξ,η) +

1

η2
g(Qξ,η)

]
r2 dr dω

≥
∫
U

∫ ∞

0

1
2

∣∣∣∣∣∂Q̃∂r̃
∣∣∣∣∣
2

+
η2

ξ2
f(Q̃) + g(Q̃)

 dr̃ dω . (4.1)

Then using the definitions (3.3) and (3.4), we see that

ηEξ,η(Qξ,η; C∞(U)) ≥
∫
U

F η
ξ
(Q̃(·, ω)) dω ≥

∫
U

D η
ξ
(Qb(ω)) dω .

We now use Lemma 2.2 from [1] which states that for any Q0 ∈ Sym0 and λ ∈ (0,∞],

Dλ(Q0) = lim
µ→λ

Dµ(Q0).

This result along with Fatou’s lemma gives the desired lower bound

lim inf
ξ,η→0

ηEξ,η(Qξ,η; C∞(U)) ≥
∫
U

D∞(Qb(ω)) dω .

13
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4.2 Optimal Boundary Condition

The goal of this section is to prove that D∞(Qb) is minimized when we choose Qb = eϕ ⊗ eϕ − 1
3I.

Intuitively this is expected as (∓)eϕ is the unit tangent vector closest to (±)e3 at each point on

S2 \ {±e3}.

Proposition 4.3. Let ω ∈ S2 be fixed, define Qϕ = eϕ⊗ eϕ− 1
3I and Qv = v⊗ v− 1

3I, where v ∈ S2

with v · ω = 0, then

D∞(Qϕ) ≤ D∞(Qv)

with equality if and only if v = ±eϕ.

Due to the symmetry of the problem, it will suffice to prove this for ω ∈ S2 with 0 ≤ ω3 < 1,

although the case where ω3 = 0 is trivial as Qϕ = Q∞, so D∞(Qϕ) is attained by the constant map.

It will also make sense to only consider vectors v ∈ S2 such that v1 < 0, v2 = 0 and 0 ≤ v3 < 1.

This will be explained further in the proof of Proposition 4.3, but for now we consider the following

related lemma which deals with the quantity G∞ defined to be,

G∞(n) :=

∫ ∞

0

∣∣∣∣∂n∂t
∣∣∣∣2 + g(n) dt ,

recalling that g(n) =
√

3
2 (1− n2

3) = g(Q) for Q = n⊗ n− 1
3I.

This lemma is a reformulation of [1, Lemma 3.4] and provides an explicit description of the minimizers

of G∞ among functions n ∈ H1((0,∞);R3) + e3 with |n| = 1 and a given initial condition.

Lemma 4.4. Let v ∈ S2 with v1 < 0, v2 = 0 and 0 ≤ v3 < 1, then if n∗ minimizes G∞ with

n∗(0, φ) = v, n∗ is of the form, n∗ = (−
√

1− (n∗
3)

2, 0, n∗
3), where

n∗
3(t, φ) =

A(φ)− e−
4√24t

A(φ) + e−
4√24t

, and A(φ) =
1 + cosφ

1− cosφ
, (4.2)

with φ being the angle between v and e3. Further, there exists a constant C > 0 independent of φ

such that ∣∣∣∣∂n∗

∂t

∣∣∣∣2 , ∣∣∣∣∂n∗

∂φ

∣∣∣∣2 , |n∗
1|2 ≤ Ce−

4√24t. (4.3)

Using this Lemma, we can now proceed with the proof of Proposition 4.3.

Proof of Proposition 4.3. We begin by treating the case ω = ±e3, in which case the rotational

14
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symmetry of the problem implies that all unit tangent vectors v have equal energy D∞(Qv).

Next, we consider ω ∈ S2 with ω3 = 0, then Qϕ = Q∞, so

D∞(Qϕ) = 0 ≤ D∞(Qv).

We then use the symmetry of the setup to reduce the problem to the case where 0 < ω3 < 1, v1 < 0,

v2 = 0 and 0 ≤ v3 < 1. First, since Qv = Q−v for any v ∈ S2, it holds D∞(Qv) = D∞(Q−v). If

D∞(Qϕ) ≤ D∞(Qv) at ω, the same holds at −ω, so we can impose without loss of generality that

v3 ≥ 0. Now let v = (v1, v2, v3). Then there exists θ0 and a rotation about the x3-axis Rθ0 such that

for u = Rθ0v, we have u1 < 0 and u2 = 0. If n minimizes G∞ subject to n(0) = u, then ñ = R−θ0n

minimizes G∞ subject to ñ(0) = v and

D∞(Qv) = G∞(ñ) = G∞(n).

In this setup, D∞(Qv) = G∞(n∗(·, φ)) where n∗ is as defined in Lemma 4.4, so we can compute

D∞(Qv) explicitly.

D∞(Qv) =

∫ ∞

0

∣∣∣∣∂n∗

∂t

∣∣∣∣2 + g(n∗) dt =

∫ ∞

0

2

∣∣∣∣∂n∗

∂t

∣∣∣∣√g(n∗) dt ,

where n∗ was chosen specifically to satisfy this equality. By a direct computation, we get that

D∞(Qv) =
4
√
24

∫ ∞

0

∣∣∣∣∂n∗
3

∂t

∣∣∣∣ dt =
4
√
24(1− v3) .

We note that if v · ω = 0, then v3 is maximized for v = −eϕ, and thus D∞(Qv) is minimized by

Qϕ.

Using Lemma 4.4, we define Q∗
b = Qϕ on S2 \ {±e3}. This gives the following corollary.

Corollary 4.5. Let Qξ,η minimize Eξ,η with Qξ,η = Qb ∈ Ab on S2. If

η

ξ
→ ∞ as ξ, η → 0 ,

15
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then for any measurable set U ⊂ S2,

lim inf
ξ,η→0

ηEξ,η(Qξ,η; C∞(U)) ≥
∫
U

D∞(Q∗
b(ω)) dω .

4.3 Upper Bound for S2

In this section we prove the upper bound in Theorem 4.2 by constructing a sequence of competitors.

Theorem 4.2 thus follows immediately from Proposition 4.6.

Proposition 4.6. If Qξ,η minimizes Eξ,η with boundary condition Qξ,η = Q∗
b on S2 and

η

ξ
→ ∞ as ξ, η → 0,

then,

lim sup
ξ,η→0

ηEξ,η(Qξ,η) ≤
∫
S2
D∞(Q∗

b(ω)) dω.

To do this, we will construct a sequence of maps which are uniaxial a.e., equivariant and symmetric

with respect to {x3 = 0}.

Proof of Proposition 4.6. To simplify the construction, we will construct the recovery sequence on

Ω+
0 := {(r, ϕ) : 1 < r < ∞, 0 < ϕ < π

2 } and then extend it to Ω via a rotation and a subsequent

reflection, yielding an equivariant map. For the construction we partition Ω+
0 into smaller regions

Ωk, k = 1, ..., 4 (see Figure 2). Since the recovery sequence will consist of uniaxial maps, it is enough

to define a continuous and piecewise smooth map n̂ : Ω+
0 → S2 and then take

Q̂ξ(r, ϕ) =


n̂(r, ϕ)⊗ n̂(r, ϕ)− 1

3I, 0 < ϕ < π
2 ,

(T ◦ n̂(r, π − ϕ))⊗ (T ◦ n̂(r, π − ϕ))− 1
3I,

π
2 < ϕ < π,

where T : S2 → S2 is the reflection T (x1, x2, x3) = (x1, x2,−x3). The competitor sequence is then

Qξ,η(r, θ, ϕ) = RT
θ Q̂ξ(r, ϕ)Rθ. Note that we will use the notation, Ω′

k := {(r, θ, ϕ) : (r, ϕ) ∈ Ωk, 0 ≤

θ < 2π}, for k = 1, . . . , 4 to allow us to define the maps on Ω+
0 , but consider the energy on the entire

upper space Ω+.

16
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2η
2η

Ω1

Ω2

Ω3

Ω4

Figure 2: Subdivision of Ω+
0 for the proof of Proposition 4.6

Energy in Ω1: We begin by defining

Ω1 :=
{
(r, ϕ) : 1 < r < ∞, 2η < ϕ <

π

2

}
,

and take n̂(r, ϕ) = n∗
(

r−1
η , π

2 − ϕ
)
where n∗ is given as in Lemma 4.4. Note that the use of π

2 − ϕ

is due to the fact that ϕ is representing the point on the sphere instead of the angle between the

tangent vector and e3. Expressing the energy in spherical coordinates (r, θ, ϕ) and using equivariance

for the θ−derivative

ηEξ,η(Qξ,η; Ω
′
1) = 2πη

∫ π
2

2η

∫ ∞

1

r2 sinϕ

∣∣∣∣∂n̂∂r
∣∣∣∣2 + sinϕ

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 + |n̂1|2

sinϕ
+

r2 sinϕ

η2
g(n̂) drdϕ .

Then by the change of variables r = 1 + ηt, we obtain:

ηEξ,η(Qξ,η; Ω
′
1) = 2π

∫ π
2

2η

∫ ∞

0

(1 + ηt)2 sinϕ

∣∣∣∣∂n∂t
∣∣∣∣2 + η2 sinϕ

∣∣∣∣∂n∂ϕ
∣∣∣∣2 + η2|n1|2

sinϕ

+ (1 + ηt)2 sinϕ g(n) dtdϕ.

We divide this integral into two parts:

ηEξ,η(Qξ,η; Ω
′
1) = 2π

∫ π
2

2η

(∫ ∞

0

[∣∣∣∣∂n∂t
∣∣∣∣2 + g(n)

]
dt

)
sinϕ dϕ+Aξ (4.4)

17
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where,

Aξ = 2π

∫ π
2

2η

∫ ∞

0

[
(2ηt+ η2t2) sinϕ

∣∣∣∣∂n∂t
∣∣∣∣2 + η2 sinϕ

∣∣∣∣∂n∂ϕ
∣∣∣∣2 + η2|n1|2

sinϕ

+ (2ηt+ η2t2) sinϕ g(n)

]
dtdϕ.

We identify the first term in (4.4) as D∞, while we will show that the second term Aξ vanishes in

the limit. For this second part, we note that since 2η < ϕ < π
2 , we still have 0 < π

2 − ϕ < π
2 so we

can use the bounds from (4.3) to get,

Aξ ≤ 2π

∫ π
2

2η

∫ ∞

0

[
(2ηt+ η2t2)Ce−

4√24t + Cη2e−
4√24t+

Cη2e−
4√24t

sin 2η

+(2ηt+ η2t2)

√
3

2
Ce−

4√24t

]
dtdϕ.

Then by straightforward computations, we get,

Aξ ≤ 2π
(π
2
− 2η

)(
Cη + Cη2 +

Cη2

sin 2η

)

for some constants C > 0, which tends to 0 as η → 0. Now from (4.4) and using Lemma 4.4,

ηEξ,η(Qξ,η; Ω
′
1) = 2π

∫ π
2

2η

D∞(Q∗
b(0, ϕ)) sinϕ dϕ+Aξ ≤

∫
S2+

D∞(Q∗
b(ω)) dω +Aξ,

therefore when taking ξ, η → 0, we are left with

lim sup
ξ,η→0

ηEξ,η(Qξ,η; Ω
′
1) ≤

∫
S2+

D∞(Q∗
b(ω)) dω.

Energy in Ω2: Next consider the region Ω2 (see also Figure 2) defined to be

Ω2 := {(r, ϕ) : 1 + 2η < r < ∞, 0 < ϕ < 2η}.

Because of equivariance, we want to take n̂ = e3 on the x3−axis. Furthermore, at ϕ = 2η we need n̂

to be consistent with the construction from the previous region Ω1. Let Φ denote the angle between

18
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e3 and our construction n̂ on Ω2, then we define Φ as follows,

Φ(r, ϕ) =
ϕ

2η
cos−1(n̂3(r, 2η)),

where n̂3(r, 2η) is defined by continuous extension onto ∂Ω1. To preserve uniaxiality, we define n̂ by

an interpolation of its angle with e3, taking n̂ = (− sinΦ, 0, cosΦ) on Ω2. We note that

∣∣∣∣∂n̂∂r
∣∣∣∣2 =

∣∣∣∣∂Φ∂r
∣∣∣∣2 and

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 =

∣∣∣∣∂Φ∂ϕ
∣∣∣∣2 ,

so we can write the energy in this region as

ηEξ,η(Qξ,η; Ω
′
2) = 2πη

∫ 2η

0

∫ ∞

1+2η

r2 sinϕ

∣∣∣∣∂Φ∂r
∣∣∣∣2 + sinϕ

∣∣∣∣∂Φ∂ϕ
∣∣∣∣2 + sin2 Φ

sinϕ
+

r2 sinϕ

η2
sin2 Φ drdϕ.

By the change of variables, r = 1 + ηt, and by letting Φ̂(t, ϕ) = Φ(1 + ηt, ϕ), we have

ηEξ,η(Qξ,η; Ω
′
2) ≤ 2π

∫ 2η

0

∫ ∞

2

(1 + ηt)2

∣∣∣∣∣∂Φ̂∂t
∣∣∣∣∣
2

+ η2

∣∣∣∣∣∂Φ̂∂ϕ
∣∣∣∣∣
2

+
η2Φ̂2

sinϕ
+ (1 + ηt)2Φ̂2 sinϕ dtdϕ.

We note that the t−derivative term is bounded by Ce−
4√24t since,

∣∣∣∣∣∂Φ̂∂t
∣∣∣∣∣
2

≤
∣∣∣∣ ∂∂t Φ̂(t, 2η)

∣∣∣∣2 =

∣∣∣∣∂n∂t (t, 2η)
∣∣∣∣2 ≤ Ce−

4√24t.

by (4.3) of Lemma 4.4. We get a similar bound on the ϕ−derivative,

∣∣∣∣∣∂Φ̂∂ϕ
∣∣∣∣∣
2

=
1

4η2
∣∣cos−1(n3(t, 2η))

∣∣2 =
1

4η2

∣∣∣Φ̂(t, 2η)∣∣∣2
and using that α ≤ 2 sinα for 0 < α < π

2 we get,

∣∣∣∣∣∂Φ̂∂ϕ
∣∣∣∣∣
2

≤ 1

4η2

∣∣∣2 sin(Φ̂(t, 2η))∣∣∣2 =
1

η2
|n1(t, 2η)|2 ≤ Ce−

4√24t

η2
. (4.5)

Using

η2(Φ̂(t, ϕ))2

sinϕ
=

ϕ2(cos−1(n3(t, 2η))
2

4 sinϕ
≤

ϕ
(
Φ̂(t, 2η)

)2
4

≤ C|n1(t, 2η)|2,
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we have the following bound on the energy,

ηEξ,η(Qξ,η; Ω
′
2) ≤ 2π

∫ 2η

0

∫ ∞

2

Ce−
4√24t((1 + ηt)2 + 1) + C|n1(t, 2η)|2 + (1 + ηt2)|n1(t, 2η)|2 dtdϕ

≤ 2π

∫ 2η

0

∫ ∞

2

Ce−
4√24t((1 + ηt)2 + 1) dtdϕ ≤ 4πηC,

for some constant C > 0. Therefore the energy contribution from Ω2 is negligible in the limit

ξ, η → 0.

Energy in Ω3: In this region, we must define Qξ,η to have a point singularity at the pole of the

sphere, due to the discontinuity in the boundary condition at this point, however the energy will

still be bounded since point singularities in 3D have finite energy. With the additional η−prefactor

in our energy, the energy contribution from Ω3 will therefore be negligible as well. Let

Ω3 := {(r, ϕ) : 1 < r < 1 + η, 0 < ϕ < η}.

On a flat domain, it would be possible to define n̂ to be the “standard” point singularity at (0, 0),

m(s, τ) :=

(
−τ√
τ2 + s2

, 0,
s√

τ2 + s2

)
. (4.6)

Because our domain is curved, we have to slightly adapt this profile in order to match the boundary

conditions. Thus,

n̂(r, ϕ) = Rϕm

(
r − 1

η
,
ϕ

η

)
, where Rϕ =


cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 . (4.7)

so we have r = 1 + ηs and ϕ = ητ , thus if (r, ϕ) ∈ Ω3, then (s, τ) ∈ (0, 1)× (0, 1). We first consider

the r−derivative term, ∣∣∣∣∂n̂∂r
∣∣∣∣2 =

1

η2

∣∣∣∣∂m∂s
∣∣∣∣2 =

1

η2

(
τ2

|(s, τ)|4

)
(4.8)

by a direct computation. Here |(s, τ)| denotes the standard Euclidean 2-norm. The derivative in ϕ

is more complicated, due to the rotation in the definition of n̂. But again by a direct computation
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we can show that,

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 = |m|2 + 1

η2

∣∣∣∣∂m∂τ
∣∣∣∣+ 2

η

(
m3

∂m1

∂τ
−m1

∂m3

∂τ

)
≤ 1 +

1

η2

∣∣∣∣∂m∂τ
∣∣∣∣2 .

After computing the τ−derivative explicitly, we have

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 ≤ 1 +

1

η2

(
s2

|(s, τ)|4

)
. (4.9)

Next we have n̂1 = m1 cosϕ + m3 sinϕ and we notice that since |m| = 1, it follows that |n̂1|2

and g(Qξ,η) are bounded by a constant. However in order to get the required estimate for the

θ−derivative, we need a more exact bound on |n̂1|. By definition of n̂1 and since 1
2ϕ ≤ sinϕ,

|n̂1|2

sinϕ
≤ 2(m1 cosϕ+m3 sinϕ)

2

ϕ
=

2(m2
1 cos

2 ϕ+ 2m1m3 sinϕ cosϕ+m2
3 sin

2 ϕ)

ϕ
.

Then using sinϕ ≤ ϕ and substituting ϕ = ητ , it holds,

|n̂1|2

sinϕ
≤ 2m2

1

ητ
+ 6 =

C

η

(
τ

|(s, τ)|2

)
+ 6.

for some constant C > 0. Now we are ready to compute the energy in this region. Altogether, we

observe that the energy in Ω′
3 is estimated as follows.

ηEξ,η(Qξ,η; Ω
′
3) = 2πη

∫ η

0

∫ 1+η

1

r2 sinϕ

∣∣∣∣∂n̂∂r
∣∣∣∣2 + sinϕ

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 + |n̂1|2

sinϕ
+

r2 sinϕ

η2
g(Qξ,η) drdϕ

≤ 2πη

∫ 1

0

∫ 1

0

C sin(ητ)

(
τ2

|(s, τ)|4
+

s2

|(s, τ)|4

)
+ η2 +

Cητ

|(s, τ)|2
+ Cη dsdτ

≤ 2πη

∫ 1

0

∫ 1

0

Cη

(
τ3

|(s, τ)|4
+

s2τ

|(s, τ)|4
+

τ

|(s, τ)|2

)
+ Cη dsdτ

≤ 2πCη2. (4.10)

Taking the limit ξ, η → 0, the energy contribution of Ω′
3 vanishes.

Energy in Ω4: Finally we consider Ω4 where we will define n̂ by a Lipschitz extension. Let

Ω4 := {(r, ϕ) : 1 < r < 1 + 2η, 0 < ϕ < 2η} \ Ω3,
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then we will first define a function Φ on Ω4 and then let n̂ = (sinΦ, 0, cosΦ). The boundary ∂Ω4

can be split into 6 pieces as shown in Figure 3.

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

Ω4

Figure 3: Boundary components of Ω4 for Proposition 4.6

On ℓ1 we choose Φ so that n̂ = eϕ as required by the boundary condition, then on ℓ2 and ℓ3, we

define n̂ so that it is consistent with the construction on Ω3. On ℓ4 we let Φ = 0 so that n̂ = e3 and

on ℓ5 and ℓ6 we define n̂ to be consistent with Ω2 and Ω1 respectively. We will then show that Φ,

being the angle between n̂ and e3, is Lipschitz on ∂Ω4 with Lipschitz constant proportional to η−1

so we can extend Φ to all of Ω4 with the same Lipschitz constant using the Kirszbraun Theorem,

see Theorem 2.10.43 from [9]. To show Φ has this Lipschitz constant, we consider the derivatives

along each component of the boundary.

First on ℓ1, Q
∗
b is Lipschitz with constant 2, so Φ is also Lipschitz with a constant that has no

dependence on η. Next on ℓ2 and ℓ3, we consider the derivatives,

∣∣∣∣∂n̂∂r
∣∣∣∣2 =

C

η2

(
τ2

|(s, τ)|4

)
≤ C

η2
and

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 = 1 +

1

η2

(
s2

|(s, τ)|4

)
≤ C

η2

using (4.8) and (4.9) since τ = 1 and s = 1 on ℓ2 and ℓ3 respectively. On ℓ4, Φ is constant, so it has

Lipschitz constant 0. For ℓ5, we have

∣∣∣∣∂n̂∂ϕ
∣∣∣∣2 ≤ Ce−

4√24t

η2
≤ C

η2

by (4.5) and using that t = 2 here. Finally, on ℓ6,

∣∣∣∣∂n̂∂r
∣∣∣∣2 =

1

η2

∣∣∣∣∂n∂t
∣∣∣∣2 ≤ Ce−

4√24t

η2
≤ C

η2
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since 0 < t < 2 on this region. So Φ is Lipschitz with constant Cη−1 on ∂Ω4 and evoking Kirszbraun

Theorem there exists a Lipschitz extension Φ to all of Ω4 with the same Lipschitz constant. Thus each

derivative of Φ on Ω4 is bounded by Cη−1. Using the Lipschitz constant, we get that |Φ(ϕ)−Φ(0)| ≤

Cη−1|ϕ| and therefore,

ηEξ,η(Qξ,η; Ω
′
4) ≤ 2πη

∫ 2η

0

∫ 1+2η

γ

Cr2 sinϕ

η2
+

C sinϕ

η2
+

2ϕ

η2
+

√
3

2

r2ϕ3

η2
drdϕ

≤ 2πη

∫ 2η

0

∫ 1+2η

γ

C(1 + 2η)2

η
+

C

η
+

4

η
+ C(1 + 2η)2η drdϕ

≤ 2πη(4η2)

[
C(1 + 2η)2

η
+

C

η
+

4

η
+ C(1 + 2η)2η

]
.

Thus when we take ξ, η → 0, the whole energy will vanish on this region.

Conclusion: Now that we have analyzed the energy on each region, we are ready to put the regions

together and get a bound on the energy in all of Ω. We have that

ηEξ,η(Qξ,η) ≤ ηEξ,η(Qξ,η) = 2ηEξ,η(Qξ,η; Ω+) = 2

4∑
k=1

ηEξ,η(Qξ,η; Ω
′
k)

by symmetry of the construction. So applying our results from each region, we can see that

lim sup
ξ,η→0

ηEξ,η(Qξ,η) ≤ 2

4∑
k=1

lim sup
ξ,η→0

ηEξ,η(Qξ,η; Ω
′
k)

≤ 2

∫
S2+

D∞(Qb(ω)) dω =

∫
S2
D∞(Qb(ω)) dω.
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5 Lower Bound for M

We now move on to the more general case where we consider a smooth, compact, oriented 2-manifold

without boundary, denoted by M. Note that Md as defined in (3.1) does not consist of just points

anymore but can also contain lines. This will make the construction of the upper bound much more

delicate. In this section, we prove the corresponding lower bound for such a manifold.

Theorem 5.1. Let Qξ,η minimize Eξ,η with Qξ,η = Qb ∈ Ab on M. If,

η

ξ
→ ∞ as ξ, η → 0 ,

then for any measurable set U ⊂ M,

lim inf
ξ,η→0

ηEξ,η(Qξ,η; Cr0(U)) ≥
∫
U

D∞(Qb(ω)) dω .

Although this theorem is very similar to Theorem 4.1, the proof strategy is very different. This is

due to the fact that we are now on a finite length scale of r0 as opposed to the infinite length of

the cone from a sphere. We are unable to define the cone of infinite length everywhere on M as the

region enclosed by the manifold, need not be convex.

5.1 Regularity of Minimizers

In order to obtain the lower bound from Theorem 5.1, we first need some regularity for the minimizers

Qξ,η. This can be done by using the Euler-Lagrange equations which minimizers must satisfy.

However, the Euler-Lagrange equations will have terms involving g, but since g is not smooth at

Q = 0, we will not be able to obtain very good regularity estimates on the minimizers. Therefore we

modify the energy slightly so that we are able to apply standard elliptic estimates. Since the only

singularity of g occurs at Q = 0, we want to “cut” out this point. So fix a number 0 < q0 <
√

2
3 and

take a smooth scalar cut-off function φ : Sym0 → [0, 1] with φ(Q) = 1 for |Q| ≥ q0 and φ(Q) = 0

for |Q| < q0
2 . Then we define the modified energy Ẽξ,η to be

Ẽξ,η(Q) =

∫
Ω

1

2
|∇Q|2 + 1

ξ2
f(Q) +

1

η2
φ(Q)g(Q) dx .
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For the remainder of this section we focus on results for the modified energy Ẽξ,η. Note that it is

sufficient to show the lower bound from Theorem 5.1 for Ẽξ,η replacing Eξ,η as Eξ,η(Q) ≥ Ẽξ,η(Q)

since φ ≤ 1 and g(Q) ≥ 0. We begin by proving a Lipschitz bound for the minimizers of Ẽξ,η.

Let Mb denote the set of points on M where the boundary condition Qb is discontinuous and let

Q̃ξ,η minimize Ẽξ,η, then we want to find a Lipschitz bound for Q̃ξ,η away from Mb. We define the

δ−neighbourhood around Mb,

Mδ
b := {ω ∈ M : distM(ω,Mb) < δ} ,

and then recall the definition of the cone,

Cr0(M\Mδ
b) := {ω + rν(ω) : ω ∈ M \Mδ

b and r ∈ (0, r0)} .

On this region, we are able to show that |∇Q̃ξ,η| is bounded as follows.

Lemma 5.2. Let Q̃ξ,η minimize Ẽξ,η with Q̃ξ,η = Qb on M, then for δ > 0 sufficiently small,

|∇Q̃ξ,η(x)| ≤
Cδ

ξ
for all x ∈ Cr0(M\Mδ

b) ,

for some constant Cδ > 0.

Proof. From the minimality of Q̃ξ,η, we obtain the Euler-Lagrange equation


−∆Q̃ξ,η = Fξ(Q̃ξ,η) , on Ω ,

Q̃ξ,η = Qb , on M ,

(5.1)

where we define

Fξ(Q) := − 1

ξ2
Df(Q)− 1

η2
D(φg)(Q)− 1

ξ2
|Q|2I − 1

3η2
tr(D(φg)(Q))I .

We note that thanks to the introduction of φ to the energy, Fξ is a sum of smooth functions and

therefore is itself smooth. Since M is also smooth, Q̃ξ,η is smooth on Ω, however |∇Q̃ξ,η| will blow

up as we approach points in Mb. To get around this issue we define Qb to be the harmonic extension
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of Qb which vanishes at infinity, i.e.


−∆Qb = 0 , on Ω ,

Qb = Qb , on M ,

so that we also have,


−∆(Q̃ξ,η −Qb) = Fξ(Q̃ξ,η) , on Ω ,

Q̃ξ,η −Qb = 0 , on M .

Now we want to apply Lemma A.2. from [6] and we remark that although the result is stated for

smooth bounded regions, it still applies more generally to smooth regions with compact boundary.

Using this lemma we get the bound,

||∇(Q̃ξ,η −Qb)||2L∞(Ω) ≤ C||Fξ(Q̃ξ,η)||L∞(Ω)||Q̃ξ,η −Qb||L∞(Ω) , (5.2)

and we bound each norm separately. We note that |Q̃ξ,η|2 ≤ 2
3 and define B := {Q ∈ Sym0 : |Q|2 ≤

2
3}, so that

||Fξ(Q̃ξ,η)||L∞(Ω) ≤
1

ξ2

(
||Df ||L∞(B) + 2

)
+

2

η2
||D(φg)||L∞(B)+ ≤ C

( 1

ξ2
+

1

η2

)
.

Now since ξ → 0 faster than η → 0, we can see that for sufficiently small ξ, we get the bound

||Fξ(Q̃ξ,η)||L∞(Ω) ≤ Cξ−2. Furthermore, since Qb is harmonic and vanishes at infinity, it is bounded

on Ω, so ||Q̃ξ,η −Qb||L∞(Ω) ≤ C and therefore,

||∇(Q̃ξ,η −Qb)||L∞(Ω) ≤
C

ξ
.

Now using that Cr0(M\Mδ
b) ⊂ Ω, we can see that

||∇Q̃ξ,η||L∞(Cr0
(M\Mδ

b))
≤ ||∇(Q̃ξ,η −Qb)||L∞(Ω) + ||∇Qb||L∞(Cr0 (M\Mδ

b))

≤ C

ξ
+ ||∇Qb||L∞(Cr0

(M\Mδ
b))

,

so it remains to bound |∇Qb|. However, the region Cr0(M\Mδ
b) is compact and Qb is C1 on this
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region, therefore ||∇Qb||L∞(Cr0
(M\Mδ

b))
≤ Cδ, for some Cδ > 0. So for sufficiently small ξ, we have

||∇Q̃ξ,η||L∞(Cr0 (M\Mδ
b))

≤ C

ξ
+ Cδ ≤ Cδ

ξ
.

Now that we have an estimate on the regularity away from the defects, we wish to find the regions

where minimizers are far from being uniaxial. That is, we want to better understand the set

Kε := {x ∈ Ω : dist(Q̃ξ,η(x),N ) ≥ ε}

for some ε > 0. More precisely we will show that Kε ∩ Cr0/2(M \ Mδ
b) is negligible in the limit

ξ, η → 0. To do this, we first show that we can cover this set by a union of small balls. The

necessary number of balls cannot be bounded uniformly in ξ, but we can control the speed at which

the number goes to infinity as in [2, Lemma 4.6].

Lemma 5.3. For ε > 0 sufficiently small, there exists a number I ∈ N and finitely many points

xi ∈ Kε ∩ Cr0/2(M\Mδ
b) for i = 1, . . . , I such that

Kε ∩ Cr0/2(M\Mδ
b) ⊂

I⋃
i=1

B
(
xi,

εξ

L

)
⊂ Kε/2 ∩ Cr0(M\Mδ/2

b ) ,

where L = 2Cδ/2 for Cδ/2 from Lemma 5.2. Moreover,

I ≤
C3

δ/2

Cε3ηξf
ε/2
min

,

for some constant C > 0 and for f
ε/2
min = min{f(Q) : dist(Q,N ) ≥ ε/2}.

Proof. We begin by choosing any x0 ∈ Kε ∩ Cr0/2(M\Mδ
b) and we claim that

B
(
x0,

εξ

L

)
⊂ Kε/2 ∩ Cr0(M\Mδ/2

b ) .
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For x ∈ B(x0,
εξ
L ) it holds that

dist(Q̃ξ,η(x),N ) ≥ dist(Q̃ξ,η(x0),N )− dist(Q̃ξ,η(x), Q̃ξ,η(x0))

≥ ε− dist(x, x0)||∇Q̃ξ,η||L∞(Cr0
(M\Mδ/2

b ))
≥ ε−

( εξ

2Cδ/2

)Cδ/2

ξ
=

ε

2
,

thus x ∈ Kε/2. Now since Qb is uniaxial on M, but Q̃ξ,η(x) is bounded away from being uniaxial,

it must be that x0 is sufficiently far from M that B(x0,
εξ
L ) does not intersect M. Using this fact,

we can choose ξ sufficiently small such that B(x0,
εξ
L ) ⊂ Cr0(M \ Mδ/2

b ). Clearly we can take the

radius of these balls to be a factor 1
3 smaller and maintain the same inclusions. Now using that

Kε∩Cr0/2(M\Mδ
b) is totally bounded, we can choose finitely many points xi ∈ Kε∩Cr0/2(M\Mδ

b)

for i = 1, . . . , N such that

Kε ∩ Cr0/2(M\Mδ
b) ⊂

N⋃
i=1

B
(
xi,

εξ

3L

)
⊂ Kε/2 ∩ Cr0(M\Mδ/2

b ) .

However we do not have any control on the size of N as ξ, η → 0. Using Vitali’s finite covering

lemma, there exists I ≤ N such that for k = 1, ..., I, we can choose xik ∈ {x1, . . . , xN} such that

B(xik ,
εξ
3L ) ∩B(xij ,

εξ
3L ) = ∅ for all k ̸= j and

Kε ∩ Cr0/2(M\Mδ
b) ⊂

I⋃
k=1

B
(
xik ,

εξ

L

)
⊂ Kε/2 ∩ Cr0(M\Mδ/2

b ) .

It remains to prove the bound on I. First recall that f(Q) ≥ C(dist(Q,N ))2, so fminε/2 ≥ Cε2.

Next we have that

C ≥ ηẼξ,η(Q̃ξ,η) ≥ η

ξ2

∫
Kε/2∩Cr0 (M\Mδ/2

b )

f(Q) dx ≥ ηf
ε/2
min

ξ2
|Kε/2 ∩ Cr0(M\Mδ/2

b )|

≥ ηf
ε/2
min

ξ2

∣∣∣B(xik ,
εξ

3L

)∣∣∣ I .
This implies that

I ≤
C3

δ/2

Cε3ηξf
ε/2
min

.
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Finally we want to be able to exclude any points ω ∈ M \ Mδ
b such that the set {ω + rν(ω) :

r ∈ (0, r0/2)} intersects Kε. We will show that we are able to exclude such ω because in the limit

ξ, η → 0, this collection of points is of measure zero. To do this, we first define the projection of a

subset U ⊂ Cr0(M) onto M by

proj(U) := {ω ∈ M : ω + rν(ω) ∈ U for some r ∈ (0, r0)} ,

then we consider the following proposition.

Proposition 5.4. Let ε, δ > 0, with Kε and Cr0/2(M\Mδ
b) defined as above. Then

lim sup
ξ,η→0

|proj(Kε ∩ Cr0/2(M\Mδ
b))| = 0 .

Proof. Using Lemma 5.3, we choose I many points xi ∈ Kε ∩ Cr0(M\Mδ
b) such that the union of

the balls of radius εξ
L centred at these points, cover the set Kε ∩ Cr0/2(M\Mδ

b). Therefore,

proj(Kε ∩ Cr0/2(M\Mδ
b)) ⊂ proj

( I⋃
i=1

B
(
xi,

εξ

L

))
,

so it suffices to prove the area of the projection of the cover goes to zero in the limit. We note that

for each xi using the same reasoning as in the proof of Lemma 5.3, B(xi,
3εξ
2L ) ⊂ Kε/4∩Cr0(M\Mδ

b),

so the projection onto M is well-defined for balls of this radius. We now consider the volume integral

∣∣∣B(xi,
3εξ

2L

)∣∣∣ = ∫
B(xi,

3εξ
2L )

1 dx =

∫
proj(B(xi,

3εξ
2L )

∫ h2(ω)

h1(ω)

(1 + rκ1)(1 + rκ2) drdω

where,

h1(ω) = inf
{
r : ω + rν(ω) ∈ B

(
xi,

3εξ

2L

)}
and

h2(ω) = sup
{
r : ω + rν(ω) ∈ B

(
xi,

3εξ

2L

)}
.

So if ω ∈ proj(B(xi,
εξ
L )), then h2(ω)− h1(ω) ≥ εξ

L . Therefore,

∣∣∣B(xi,
3εξ

2L

)∣∣∣ ≥ ∫
proj(B(xi,

εξ
L ))

∫ h2(ω)

h1(ω)

(1− r0κ)
2 drdω ≥ 1

4

∣∣∣proj(B(xi,
εξ

L

))∣∣∣(εξ
L

)
.
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We can bound the area of the projection as follows,

∣∣∣proj(B(xi,
εξ

L

))∣∣∣ ≤ Cε2ξ2

C2
δ/2

.

Finally, using Lemma 5.3 we have that,

∣∣∣proj( I⋃
i=1

B
(
xi,

εξ

L

))∣∣∣ ≤ I ·
∣∣∣proj(B(xi,

εξ

L

))∣∣∣ ≤ Cδ/2

Cεf
ε/2
min

( ξ
η

)
→ 0

since ξ
η → 0 as ξ, η → 0, by assumption.

We define Mδ,ε
b := proj(Kε ∩Cr0/2(M\Mδ

b))∪Mδ
b so that from now on we can consider the energy

in the region Cr0/2(M\Mδ,ε
b ). If x ∈ Cr0/2(M\Mδ,ε

b ) then we have shown that dist(Q̃ξ,η(x),N ) < ε

and |∇Q̃ξ,η(x)| ≤ Cδξ
−1.

5.2 Computing the Lower Bound

This section is dedicated to proving Theorem 5.1, but as previously stated, it suffices to prove the

lower bound for Ẽξ,η. We would like to follow a similar approach as in the spherical case, where we

considered the energy along a ray of infinite length. However, since M need not be convex, we must

adapt the method to work on rays of finite length. To do this, we first define the energy along a

half-ray from ω ∈ M as,

Ẽξ,η(Q,ω) =

∫ r0/2

0

(1
2

∣∣∣∂Q
∂r

∣∣∣2 + 1

ξ2
f(Q) +

1

η2
(φg)(Q)

)
(1 + rκ1(ω))(1 + rκ2(ω)) dr . (5.3)

where the term half-ray denotes a length of r0/2 as opposed to r0. We note that,

|∇Q̃ξ,η|2 =

∣∣∣∣∣∂Q̃ξ,η

∂r

∣∣∣∣∣
2

+
1

(1 + r|κ1|)2

∣∣∣∣∣∂Q̃ξ,η

∂ω1

∣∣∣∣∣
2

+
1

(1 + r|κ2|)2

∣∣∣∣∣∂Q̃ξ,η

∂ω2

∣∣∣∣∣
2

≥

∣∣∣∣∣∂Q̃ξ,η

∂r

∣∣∣∣∣
2

,

so this combined with (5.3) gives the inequality,

ηẼξ,η(Q̃ξ,η; C(U)) ≥
∫
U

ηẼξ,η(Q̃ξ,η(·, ω), ω) dω .

For each ω ∈ U there are two possibilities. It could be that ηẼξ,η(Q̃ξ,η(·, ω), ω) ≥ D∞(Qb(ω)), for all

η, ξ > 0 sufficiently small, in which case there is nothing left to prove. The other possibility is that
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there always exist η, ξ > 0 very small such that ηẼξ,η(Q̃ξ,η(·, ω), ω) < D∞(Qb(ω)). As preparation

for the estimates in this case, we provide some useful definitions. Define Lg to be

Lg := sup

{
|g(Q1)− g(Q2)|

|Q1 −Q2|
: Qj ∈ Sym0 with q0 ≤ |Qj | ≤ 1 , j = 1, 2}

}
, (5.4)

i.e. Lg is the Lipschitz constant of g on the set {Q ∈ Sym0 : q0 ≤ |Q| ≤ 1}. In particular,

small neighbourhoods of N are contained in this set and φg = g there as well. We then choose

α :=
√

8
3 (1 + Lg) + 4 and for ε > 0 we define the sets

Aε := {Q ∈ Sym0 : |Q−Q∞|2 < αε, dist(Q,N ) < ε} ,

and

Bε := {Q ∈ Sym0 : |Q−Q∞|2 ≥ αε, dist(Q,N ) < ε} .

The definition of these sets and the inspiration for the following lemma come from [2, Lemma 5.3].

Lemma 5.5. Let ε, δ > 0 be sufficiently small, let ω ∈ M \Mδ,ε
b and ξ, η > 0. Assume that

η Ẽξ,η(Q̃ξ,η(·, ω), ω) < D∞(Qb(ω)) .

Then, for Iε := {r ∈ (0, r0/2) : |Q̃ξ,η(r, ω)−Q∞|2 < αε} it holds

|Iε| ≥ r0
2

− c
η

ε

for some constant c > 0.

Proof. We begin by recognizing that since ω ∈ M\Mδ,ε
b , we have that dist(Q̃ξ,η(r, ω),N ) < ε for all

r ∈ (0, r0/2), so this ensures that Q̃ξ,η(r, ω) ∈ Aε ∪Bε and that Iε is exactly the set of r ∈ (0, r0/2)

where Q̃ξ,η(r, ω) ∈ Aε. If we define Jε := {r ∈ (0, r0/2) : Q̃ξ,η(r, ω) ∈ Bε}, then,

|Iε| = r0
2

− |Jε| ,
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so we require an upper bound on |Jε|. We can see that

D∞(Qb(ω)) ≥ η Ẽξ,η(Q̃ξ,η(·, ω)) ≥ 1

η

∫
Jε

g(Q̃ξ,η)(1− r0κ)
2 dr ≥ 1

4η
|Jε|gεmin ,

where gεmin = min{g(Q) : Q ∈ Bε}. This implies that

|Jε| ≤ 4ηD∞(Qb(ω))

gεmin

.

It remains to show that gεmin is bounded below independent of ξ or η. Note that for ε sufficiently

small, Bε is contained in {Q ∈ Sym0 : q0 ≤ |Q| ≤ 1}, so we can use Lipschitz continuity of g with

the Lipschitz constant Lg. Let Q ∈ Bε and recall from (2.10) that P (Q) is the projection of Q onto

N . Then it holds that

g(P (Q))− g(Q) ≤ Lg|P (Q)−Q| = Lg dist(Q,N ) < Lgε ,

from which

g(Q) > g(P (Q))− Lgε .

Since P (Q) is uniaxial and |P (Q)−Q∞|2 = 2(1− (n3(Q))2), we can write g(P (Q)) as

g(P (Q)) =

√
3

8
|P (Q)−Q∞|2 ≥

√
3

8
(|Q−Q∞| − |P (Q)−Q|)2

≥
√

3

8
(|Q−Q∞|2 − 2|Q−Q∞|dist(Q,N )) ≥

√
3

8
(αε− 2ε|Q−Q∞|) .

Next we have |Q−Q∞| ≤ dist(Q,N ) + diam(N ) ≤ ε+ 2
√

2
3 ≤ 2, so

g(P (Q)) ≥
√

3

8
(α− 4)ε = (1 + Lg)ε and g(Q) ≥ (1 + Lg)ε− Lgε = ε .

Therefore gεmin ≥ ε, so we obtain the bounds

|Jε| ≤ 4ηD∞(Qb(ω))
(η
ε

)
and |Iε| ≥ r0

2
− 4ηD∞(Qb(ω))

(η
ε

)
.
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With Lemma 5.5 in hand, we are now ready to prove the lower bound.

Proof of Theorem 5.1. We begin by restricting our attention to Cr0/2(M\Mδ,ε
b ), so that

ηẼξ,η(Q̃ξ,η) ≥ η

∫
M\Mδ,ε

b

Ẽξ,η(Q̃ξ,η(·, ω), ω) dω

= η

(∫
Mδ,ε

1

Ẽξ,η(Q̃ξ,η(·, ω), ω) dω +

∫
Mδ,ε

2

Ẽξ,η(Q̃ξ,η(·, ω), ω) dω

)
,

where

Mδ,ε
1 :=

{
ω ∈ M \Mδ,ε

b : lim inf
ξ,η→0

ηẼξ,η(Q̃ξ,η(·, ω)) ≥ D∞(Qb(ω))
}
,

and Mδ,ε
2 := (M \ Mδ,ε

b ) \ Mδ,ε
1 . Let ω ∈ Mδ,ε

2 . Then, using Lemma 5.5, we can choose rεω ∈ Iε

such that rεω ≤ c(ηε ). Thus, we have that

ηẼξ,η(Q̃ξ,η(·, ω), ω) ≥
∫ rεω

0

η

2

∣∣∣∂Q̃ξ,η

∂r

∣∣∣2 + 1

η
g(Q̃ξ,η) dr .

Then using Lemma 17 in [8] we have the bound

∫ rεω

0

η

2

∣∣∣∂Q̃ξ,η

∂r

∣∣∣2 dr ≥
∫ rεω

0

η

2
(γ(Q̃ξ,η))

2
∣∣∣∂P (Q̃ξ,η)

∂r

∣∣∣2 dr ,
where γ : Sym0 → R is defined by γ(Q) = λ1(Q) − λ2(Q), for λ1, λ2, the two leading eigenvalues

of Q. Note that although in [8], the lemma is stated for |∇Q| instead of the radial derivative, it is

shown in the proof that the same inequality holds for a single derivative too, so we can apply this

lemma without any difficulties. We can then use Lemma 13 from [8] which gives a Lipschitz bound

for γ away from B = {Q ∈ Sym0 : Q = 0 or λ1(Q) = λ2(Q)} defined in (2.9). So we have

γ(P (Q̃ξ,η))− γ(Q̃ξ,η) ≤ 2|P (Q̃ξ,η)− Q̃ξ,η| = 2dist(Q̃ξ,η,N ) ≤ 2ε ,

but since γ(P (Q̃ξ,η)) = 1, this implies that, γ(Q̃ξ,η) ≥ 1− 2ε. Therefore,

∫ rεω

0

η

2

∣∣∣∂Q̃ξ,η

∂r

∣∣∣2 dr ≥
∫ rεω

0

η

2
(1− 2ε)2

∣∣∣∂P (Q̃ξ,η)

∂r

∣∣∣2 dr =

∫ rεω

0

η(1− 2ε)2
∣∣∣∂n(Q̃ξ,η)

∂r

∣∣∣2 dr .
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Next we can see that

∫ rεω

0

1

η
g(Q̃ξ,η) dr ≥

∫ rεω

0

1

η
g(P (Q̃ξ,η)) dr −

∫ rεω

0

1

η
|g(Q̃ξ,η)− g(P (Q̃ξ,η))| dr .

We then use that g is Lipschitz as well as the Cauchy Schwartz inequality to get,

∫ rεω

0

1

η
|g(Q̃ξ,η)− g(P (Q̃ξ,η))| dr ≤

∫ rεω

0

Lg

η
dist(Q̃ξ,η,N ) dr ≤ Lg

η

(
|rεω|

∫ rεω

0

dist2(Q̃ξ,η,N ) dr

)1/2

.

Note that f(Q) ≥ Cdist2(Q,N ) for all Q ∈ Sym0 and some constant C > 0, so

∫ rεω

0

dist2(Q̃ξ,η,N ) dr ≤ Cξ2

η

∫ rεω

0

η

ξ2
f(Q̃ξ,η) dr ≤ Cξ2

η
D∞(Qb(ω)) .

Since furthermore rεω ≲ η
ε , we get that

∫ rεω

0

1

η
|g(Q̃ξ,η)− g(P (Q̃ξ,η))| dr ≤ Cξ

Lgηε1/2
(D∞(Qb(ω))

1/2 → 0 ,

as ξ, η → 0. So we have that

ηẼξ,η(Q̃ξ,η(·, ω), ω) ≥
∫ rεω

0

η(1− 2ε)2
∣∣∣∂n(Q̃ξ,η)

∂r

∣∣∣2 + 1

η
g(P (Q̃ξ,η)) dr −O

( ξ
η

)
≥ 2(1− 2ε)2

∫ rεω

0

∣∣∣∂n(Q̃ξ,η)

∂r

∣∣∣√g(P (Q̃ξ,η)) dr −O
( ξ
η

)
.

Since |n(Q̃ξ,η)| = 1 it follows that

∣∣∣∂n(Q̃ξ,η)

∂r

∣∣∣ ≥ 1√
1− (n3(Q̃ξ,η))2

∣∣∣∂n3(Q̃ξ,η)

∂r

∣∣∣ and g(P (Q̃ξ,η)) =

√
3

2
(1− (n3(Q̃ξ,η))

2) .

Therefore,

ηẼξ,η(Q̃ξ,η(·, ω), ω) ≥ 2(1− 2ε)2
∫ rεω

0

4

√
3

2

∣∣∣∂n3(Q̃ξ,η)

∂r

∣∣∣ dr −O
( ξ
η

)
≥ 4

√
24(1− 2ε)2

∣∣∣∣∣
∫ rεω

0

∂n3(Q̃ξ,η)

∂r
dr

∣∣∣∣∣−O
( ξ
η

)
≥ 4

√
24(1− 2ε)2

(
|n3(Q̃ξ,η(r

ε
ω, ω))| − |n3(Q̃ξ,η(0, ω))|

)
−O

( ξ
η

)
.
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Next we can see that

|Q∞ − P (Q̃ξ(r
ε
ω, ω))| ≤ |Q∞ − Q̃ξ,η(r

ε
ω, ω)|+ |Q̃ξ,η(r

ε
ω, ω)− P (Q̃ξ,η(r

ε
ω, ω))| ≤

√
αε+ ε .

So looking only at the difference between the bottom right entries, and using that ε ≤
√
αε for small

ε > 0,

|Q∞,33 − P (Q̃ξ(r
ε
ω, ω))33| ≤ C

√
αε ,

for some C > 0. We can remove the absolute value, maintaining the same inequality and write the

left hand side explicitly as,

1− (n3(Q̃ξ,η(r
ε
ω, ω)))

2 ≤ C
√
αε .

Rearranging this inequality yields

|n3(Q̃ξ,η(r
ε
ω, ω))| ≥

√
1− C

√
αε .

Thus we have,

ηẼξ,η(Q̃ξ,η(·, ω), ω) ≥ 4
√
24(1− 2ε)2

(√
1− C

√
αε− |n3(Qb(ω))|

)
−O

( ξ
η

)
.

In the limit ξ, η → 0 it holds that

lim inf
ξ,η→0

∫
Mδ,ε

2

ηẼξ,η(Q̃ξ,η(·, ω), ω) dω ≥
∫
Mδ

2

4
√
24(1− 2ε)2

(√
1− C

√
αε− |n3(Qb(ω))|

)
dω .

Now taking ε → 0 we have

lim inf
ε→0

(
lim inf
ξ,η→0

∫
Mδ,ε

2

ηẼξ,η(Q̃ξ,η(·, ω), ω) dω

)
≥
∫
Mδ

2

4
√
24(1−|n3(Qb(ω))|) dω =

∫
Mδ

2

D∞(Qb(ω)) dω .

Finally we can combine the integrals on Mδ
1 and Mδ

2 to recover,

lim inf
ε→0

(
lim inf
ξ,η→0

ηẼξ,η(Q̃ξ,η)

)
≥
∫
Mδ

d

D∞(Qb(ω)) dω .
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Then take δ → 0 to obtain

lim inf
δ→0

(
lim inf
ε→0

(
lim inf
ξ,η→0

ηẼξ,η(Q̃ξ,η)

))
≥
∫
M

D∞(Qb(ω)) dω .

To show this lower bound for a measurable subset U ⊂ M, it is enough that χU∩(M\Mδ,ε
b ) →

χU∩(M\Mδ
d)

pointwise a.e. as ξ, η → 0 and χU∩(M\Mδ
d)

→ χU pointwise a.e. as δ → 0. Using this

along with Fatou’s lemma, we obtain the lower bound on the cone Cr0(U).

Similarly to what was done in the spherical case, we now want to find a smaller lower bound by

choosing Q∗
b to minimize D∞ at a.e. point on M. To do this, we generalize eϕ to the manifold M

by choosing a tangent vector with the property that it maximizes the x3−component. This can be

done by projecting (±)e3 onto the tangent space and re-normalizing it, however this method fails

when ν = ±e3. Recall from (3.1) that Md ⊂ M is the set where ν = ±e3 and that |Md| = 0 by

assumption, then we define

v∗(ω) =
e3 − ν3(ω)ν(ω)

|e3 − ν3(ω)ν(ω)|
, for ω ∈ M \Md .

Let Q∗
b = v∗ ⊗ v∗ − 1

3I, then we have the following lemma.

Proposition 5.6. Let ω ∈ M\Md and let u ∈ S2 with u · ν(ω) = 0. Define Qu = u⊗ u− 1
3I, then

D∞(Qu) ≥ D∞(Q∗
b) .

Proof. In the proof of Proposition 4.3 we see that if u3 ≥ 0, then

D∞(Qu) =
4
√
24(1− u3) ,

and we also see that D∞(Qu) = D∞(Q−u). Therefore, for any u ∈ TωM with |u| = 1,

D∞(Qu) =
4
√
24(1− |u3|)

so this quantity is minimized when |u3| is maximized. Thus, among unit vectors u ∈ TωM, the

maximum of |u3| occurs precisely when u = v∗.
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Using the fact that Md is of measure zero, we immediately get the following corollary by combining

Theorem 5.1 and Proposition 5.6.

Corollary 5.7. Let Qξ,η minimize Eξ,η with the boundary condition that Qξ,η = Qb ∈ Ab on M. If

η

ξ
→ ∞ as ξ, η → 0 ,

then for any measurable subset U ⊂ M,

lim inf
ξ,η→0

ηEξ,η(Qξ,η; Cr0(U)) ≥
∫
U

D∞(Q∗
b(ω)) dω .
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6 The Upper Bound

In this section we prove the following theorem.

Theorem 6.1. There exists a sequence of maps Qδ
ξ,η ∈ Q∞ +H1(Ω; Sym0) with Qδ

ξ,η|M ∈ Ab such

that if

η

ξ
→ ∞ as ξ, η → 0 ,

then

lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η) ≤

∫
M

D∞(Q∗
b(ω)) dω .

The proof of this theorem consists of the construction of such a sequence of maps, which in the limit

ξ, η → 0, attain the minimal lower bound from Theorem 5.1. This is more difficult for a general

manifold as the construction need not be equivariant and there are many more cases for the possible

defects that can occur.

Proof. We define our competitor sequence to be Qδ
ξ,η = nδ

ξ ⊗nδ
ξ − 1

3I, where we will define nδ
ξ on all

of Ω as needed throughout the proof. However, to improve readability, for the rest of the proof we

will drop the δ, ξ from nδ
ξ. We begin by defining Qδ

ξ,η sufficiently far from the manifold by,

Qδ
ξ,η = Q∞ on Ω \ C2Hη(M)

for some parameter H > 1 independent of ξ. Now let

M+ = {ω ∈ M : ν3(ω) > 0}, M0 = {ω ∈ M : ν3(ω) = 0}, and M− = {ω ∈ M : ν3(ω) < 0} ,

then we also define

Qδ
ξ,η = Q∞ on C2Hη(M0) .

So it remains to define Qδ
ξ,η on C2Hη(M+∪M−). We will detail how to construct Qδ

ξ,η on C2Hη(M+)

and note that the exact same method can be applied to C2Hη(M−) by simply replacing n3 by −n3

whenever necessary. However this will have no effect on the estimates for the energy. To begin the

construction on C2Hη(M+), we first define the boundary condition Qδ
b = v⊗ v− 1

3I on M+. These

boundary values depend on a parameter δ > 0, but have no dependence on η or ξ. In the past we

have used the notation Md to denote the set of points ω ∈ M where ν(ω) = ±e3, but since we are
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only considering M+, we redefine Md as

Md := {ω ∈ M+ : ν(ω) = e3} .

Next we take a δ−neighbourhood of Md, denoted by

Mδ
d := {ω ∈ M+ : distM(ω,Md) < δ} .

Outside of Mδ
d, we will set Qδ

b = Q∗
b , the optimal boundary condition by taking v = v∗. Md can

be decomposed into finitely many connected sets Ri for i = 1, . . . , I which are all disjoint from one

another and by assumption, each Ri is either an isolated point or a curve of finite length. We can

then define the δ−neighbourhood of each Ri in the usual way, by

Rδ
i := {ω ∈ M+ : distM(ω,Ri) < δ} ,

so this gives us the decomposition of Mδ
d,

Mδ
d =

I⋃
i=1

Rδ
i .

This decomposition allows us to define Qδ
b = v ⊗ v − 1

3I on Mδ
d by detailing how to choose v on a

general Rδ
i . For δ > 0 sufficiently small, (∂Rδ

i )∩Md = ∅, so we can define v∗ on this boundary and

we note that v∗ is continuous on ∂Rδ
i . Due to the continuity of v∗, there exists zi ∈ Z such that,

deg(v∗; ∂Rδ
i ) = zi .

If zi = 0, then we do not need to define any point defects, otherwise choose |zi|−many points, pij for

j = 1 . . . , |zi|, in Rδ
i . Then for fixed δ > 0, there exist qi ∈ N such that

distM

(
B

(
pij ,

δ

qi

)
, ∂Rδ

i

)
> 0 and distM

(
B

(
pij ,

δ

qi

)
, B

(
pik,

δ

qi

))
> 0 ,

for all j, k = 1, . . . , |zi|. Note that since there are finitely many points pji the distance between

each ball as well as the distance from a ball to the boundary are both bounded below by a positive

39



M.Sc. Thesis - Dean Louizos McMaster University - Mathematics

constant which depends on δ.

δ′i

pi1

pi2

Figure 4: Top view of Rδ
i with point defects for zi = −2 and v on the boundary (blue).

For simplicity we let δ′i = δ/qi moving forwards. On each ball B(pij , δ
′
i) we define a point defect of

degree sgn(zi) as follows. Let m̃ : B(0, 1) ⊂ R2 → R3 be

m̃(v) = (v1, sgn(zi)v2, 0) ,

so m̃ could be either a +1 defect or a −1 defect. We then move m̃ to the manifold M via ω =

exppi
j
(δ′iv), so we can define m : B(pij , δ

′
i) → R3 by

m(ω) = m̃

(
1

δ′i
exp−1

pi
j
(ω)

)
.

We note that m(ω) is not necessarily in TωM unless ν(ω) = e3, so to fix this, we project m onto

the tangent space and re-scale to unit length by defining û : B(pij , δ
′
i) → S2 to be

û(ω) =
m(ω)− (m(ω) · ν(ω))ν(ω)
|m(ω)− (m(ω) · ν(ω))ν(ω)|

. (6.1)

Now on B(pij , δ
′
i) we let v = û, so

deg(v;B(pij , δ
′
i)) = sgn(zi) .
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We also let v = v∗ on ∂Rδ
i and therefore, by construction,

deg

v; ∂

Rδ
i \

|zi|⋃
j=1

B(pij , δ
′
i)

 = 0 .

Using Theorem 1.8 from [10, p.126], there exists a continuous extension v0 : Rδ
i \
⋃|zi|

j=1 B(pij , δ
′) → S2

which agrees with v on the boundary. Let ε > 0 be small, then by Theorem 10.16 from [11] there

exists a C1 function vε : R2δ
i \

⋃|zi|
j=1 B(pij , δ

′
i/2) → R3 such that

|v0(ω)− vε(ω)| < ε, for ω ∈ Rδ
i \

|zi|⋃
j=1

B(pij , δ
′
i)

and vε agrees with v∗ on R2δ
i \ Rδ

i as well as û on
⋃|zi|

j=1(B(pij , δ
′
i) \B(pij , δ

′
i/2)). This definition

ensures that the derivative of vε also agrees with v∗ and u on their respective boundaries, so this is

in fact a C1 extension. Since vε ∈ R3, and need not be tangent to M, we again need to project into

the tangent space of M and re-normalize the vector field, so we define

v(ω) =
vε(ω)− (vε(ω) · ν(ω))ν(ω)
|vε(ω)− (vε(ω) · ν(ω))ν(ω)|

, for ω ∈ Rδ
i \

|zi|⋃
j=1

B(pij , δ
′) .

Now that v has been chosen on all of M+ we can proceed to define n and hence Qδ
ξ,η on C2Hη(M+).

In order to do this we define the following sub-regions:

Ω1

Ω2

Ω1

Ω2

Ω3

Ω4
Ω5Ω5

M+

δ′δ

Hη
η

Figure 5: A cross-section of the sub-regions of C2Hη(M+) around a point defect of degree +1 with
negative mean curvature.

Recall that Qδ
ξ,η = n⊗ n− 1

3I so we want to define n on C2Hη(M+), such that n(0, ω) = v(ω). The
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first sub-region we consider is the set where we expect the energy to concentrate, i.e. a boundary layer

of thickness Hη, away from potential defects. In this layer we would like to take the director n to

have the same energy as the optimal profile n∗ from Lemma 4.4, but since the transition for n∗ takes

place over an infinite length, the optimal profile needs to be modified similar to [2, Proposition 6.8]

to fit into a finite length while preserving the energy bound. Therefore, we introduce two layers:

Ω1 := CHη(M+ \Mδ
d) ,

in which we take the optimal profile, and a corresponding outer region

Ω2 := C2Hη(M+ \Mδ
d) \ Ω1 ,

in which we interpolate to make the transition to Q∞. This transition has asymptotically negligible

energetic cost. Next, we have the sub-region where point defects occur, given by

Ω3 := Cη

 I⋃
i=1

|zi|⋃
j=1

B(pij , δ
′
i)

 .

In these sub-regions we define n to be defects of degree +1 or −1 depending on sgn(zi) for each

region Ri. Next we consider

Ω4 := C2Hη

 I⋃
i=1

|zi|⋃
j=1

B(pij , δ
′
i)

 \ Ω3 ,

where we again define n by an interpolation to e3. This allows us to extend n from Ω3 to the exterior

region while having no energetic cost in the limit. Finally, we let

Ω5 := C2Hη(Mδ
d) \ Ω3 ∪ Ω4 .

Here we define n via a Lipschitz extension from the boundary of the region. Note that in the

spherical case, the analogues of Ω4 and Ω5 were combined and we were able to do a Lipschitz

extension on their union, however on the general manifold, we lose equivariance and we have more

complicated geometry, so this extra region makes it much easier to control the energy. However, as

in the spherical case, we will still see that the energy in all regions but Ω1 will be negligible in the
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limit ξ, η → 0.

Energy in Ω1: Recall Ω1 = CHη(M+ \Mδ
d) on which we define

n(r, ω) = Rωn
∗
( r
η
, φ(ω)

)
,

where φ(ω) = cos−1(v3(ω)), Rω is the rotation matrix given by

Rω =


ν1√
1−ν2

3

−ν2√
1−ν2

3

0

ν2√
1−ν2

3

ν1√
1−ν2

3

0

0 0 1

 ,

and n∗ is the minimizing energy profile from Lemma 4.4 given by

n∗(r, φ) =
(
−
√

1− (n∗
3(r, φ))

2, 0, n∗
3(r, φ)

)
.

Here,

n∗
3(r, φ) =

A(φ)− e−
4√24r

A(φ) + e−
4√24r

and A(φ) =
1 + cosφ

1− cosφ
.

for φ being the angle between v(ω) and e3. Since n∗ stays in the x1x3−plane, we use Rω to rotate

n∗ so that Qδ
ξ,η(0, ω) = Q∗

b(ω) for all ω ∈ M+ \Mδ
d. In defining n this way, we ensure that

G∞(n(·, ω)) = G∞(n∗(·, φ(ω))) = D∞(Q∗
b(ω)) .

After defining Qδ
ξ,η on Ω1, we now show the required energy bounds on this region. First note that

ηEξ,η(Q
δ
ξ,η; Ω1) =

∫
M+\Mδ

d

∫ Hη

0

η

(
1

2
|∇Qδ

ξ,η|2 +
1

η2
g(Qδ

ξ,η)

) 2∏
i=1

(1 + rκi) drdω

=

∫
M+\Mδ

d

∫ Hη

0

η

(
|∇n|2 + 1

η2
g(n)

) 2∏
i=1

(1 + rκi) drdω .

We can estimate |∇n|2 as

|∇n|2 =

∣∣∣∣∂n∂r
∣∣∣∣2 + 1

(1 + r|κ1|)2

∣∣∣∣ ∂n∂ω1

∣∣∣∣2 + 1

(1 + r|κ2|)2

∣∣∣∣ ∂n∂ω2

∣∣∣∣2 ≤
∣∣∣∣∂n∂r

∣∣∣∣2 + |∇ωn|2 .
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So we split the energy into two parts: the first one which turns into D∞ and a second one that

contains the tangential derivatives and vanishes asymptotically. More precisely, we write

ηEξ,η(Q
δ
ξ,η; Ω1) ≤

∫
M+\Mδ

d

∫ Hη

0

η

(∣∣∣∂n
∂r

∣∣∣2 + 1

η2
g(n)

) 2∏
i=1

(1 + rκi) drdω

+

∫
M+\Mδ

d

∫ Hη

0

η|∇ωn|2
2∏

i=1

(1 + rκi) drdω . (6.2)

The change of variables r̃ = r
η in the first integral gives

∫
M+\Mδ

d

∫ Hη

0

η

(∣∣∣∂n
∂r

∣∣∣2 + 1

η2
g(n)

) 2∏
i=1

(1 + rκi) drdω

=

∫
M+\Mδ

d

∫ H

0

(∣∣∣∂n∗

∂r̃

∣∣∣2 + g(n∗)

) 2∏
i=1

(1 + ηr̃κi) dr̃dω .

Since 1 + ηr̃κi → 1 pointwise as ξ, η → 0, it holds

lim sup
ξ,η→0

∫
M+\Mδ

d

∫ Hη

0

η

(∣∣∣∂n
∂r

∣∣∣2 + 1

η2
g(n)

) 2∏
i=1

(1 + rκi) drdω

≤
∫
M+\Mδ

d

∫ ∞

0

(∣∣∣∂n∗

∂r̃

∣∣∣2 + g(n∗)

)
dr̃dω

=

∫
M+\Mδ

d

D∞(Q∗
b(ω)) dω .

For the second integral from (6.2), it suffices to bound |∇ωn| by a constant which is independent of

η, since

∫
M+\Mδ

d

∫ Hη

0

η|∇ωn|2
2∏

i=1

(1 + rκi) drdω ≤
∫
M+\Mδ

d

∫ Hη

0

Cη|∇ωn|2 drdω .

We have that n(r, ω) = Rωn
∗(r, φ(ω)), so by product rule and chain rule

∂n

∂ωi
=
(∂Rω

∂ωi

)
n∗ +Rω

(∂n∗

∂φ

)( ∂φ

∂ωi

)
,
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for i = 1, 2. Therefore,

∣∣∣∣ ∂n∂ωi

∣∣∣∣2 ≤
∣∣∣∣(∂Rω

∂ωi

)
n∗
∣∣∣∣2 + 2

∣∣∣∣(∂Rω

∂ωi

)
n∗
∣∣∣∣ ∣∣∣∣Rω

(∂n∗

∂φ

)( ∂φ

∂ωi

)∣∣∣∣+ ∣∣∣∣Rω

(∂n∗

∂φ

)( ∂φ

∂ωi

)∣∣∣∣2
≤
∣∣∣∣∂Rω

∂ωi

∣∣∣∣2 + 2

∣∣∣∣∂Rω

∂ωi

∣∣∣∣ ∣∣∣∣∂n∗

∂φ

∣∣∣∣ ∣∣∣∣ ∂φ∂ωi

∣∣∣∣+ ∣∣∣∣∂n∗

∂φ

∣∣∣∣2 ∣∣∣∣ ∂φ∂ωi

∣∣∣∣2 .

Hence we can bound |∇ωn|2 as follows

|∇ωn|2 ≤ |∇ωRω|2 + 4|∇ωRω|
∣∣∣∣∂n∗

∂φ

∣∣∣∣ |∇ωφ|+
∣∣∣∣∂n∗

∂φ

∣∣∣∣2 |∇ωφ|2 .

From Lemma 4.4, ∣∣∣∣∂n∗

∂φ

∣∣∣∣2 ≤ Ce−
4√24 r

η ≤ C .

For the gradient of the rotation matrix we find

∣∣∣∣∂Rω

∂ωi

∣∣∣∣ ≤

∣∣∣∣∣ ∂

∂ωi

(
1√

1− ν23

)∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣


ν1 −ν2 0

ν2 ν1 0

0 0
√

1− ν23


∣∣∣∣∣∣∣∣∣∣

+

(
1√

1− ν23

)∣∣∣∣∣∣∣∣∣∣
∂

∂ωi


ν1 −ν2 0

ν2 ν1 0

0 0
√
1− ν23


∣∣∣∣∣∣∣∣∣∣
,

so by a direct computation it follows that

∣∣∣∣∂Rω

∂ωi

∣∣∣∣ ≤
∣∣∣∣∂ν3∂ωi

∣∣∣∣
∣∣∣∣∣ ν3√

1− ν23
3

∣∣∣∣∣
√
3(1− ν23) +

(
1√

1− ν23

) √
2√

1− ν23

∣∣∣∣ ∂ν∂ωi

∣∣∣∣ ≤
∣∣∣∣ ∂ν∂ωi

∣∣∣∣ ( C

1− ν23

)
,

for some constant C > 0. We can choose 0 < Cδ < 1 such that ν23 ≤ Cδ on M\Mδ
d, since this is a

compact set and ν3 ̸= 1 on that region. Thus,

|∇ωRω|2 ≤ |∇ων|2
(

C

(1− ν23)
2

)
≤ Cκ2

(1− Cδ)2
.
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Next, using the fact that cos(φ(ω)) = v3(ω), we have

∂φ

∂ωi
=

(
−1

sinφ

)
∂v3
∂ωi

=

(
−1√
1− v23

)
∂v3
∂ωi

.

In Lemma 3.4 of [1], it is shown that if |n| = 1, then

|ṅ3|2

1− n2
3

≤ |ṅ|2 , (6.3)

so we apply this lemma to obtain the estimate

∣∣∣∣ ∂φ∂ωi

∣∣∣∣2 ≤ 1

1− v23

∣∣∣∣∂v3∂ωi

∣∣∣∣2 ≤
∣∣∣∣ ∂v∂ωi

∣∣∣∣2 .

Therefore

|∇ωφ|2 ≤ |∇ωv|2 ≤ C

since v = v∗ in this region and v∗ is smooth on M+ \Md. Finally we can bound |∇ωn|2 by

|∇ωn|2 ≤ Cκ2

(1− Cδ)2
+

Cκ2

√
1− Cδ

3 +
Cκ2

1− Cδ
=: Cδ,κ , (6.4)

so the second integral from (6.2) has the bound

∫
M+\Mδ

d

∫ Hη

0

η|∇ωn|2
2∏

i=1

(1 + rκi) drdω ≤ Cη

∫
M+\Mδ

d

∫ Hη

0

Cδ,κ drdω

≤ CHη2|M+ \Mδ
d|Cδ,κ

which vanishes in the limit as ξ, η → 0. Therefore we obtain the upper bound

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω1)

)
≤
∫
M+\Md

D∞(Q∗
b(ω)) dω .

Energy in Ω2: Next we consider the outer layer Ω2 = C2Hη(M+ \Mδ
d) \ Ω1 where we define n by

interpolating the angle between n and e3 from cos−1(n∗
3(H,φ(ω)) to 0 as r goes from Hη to 2Hη.

Let Rω be the rotation matrix from Ω1, then we define

n(r, ω) = Rω(− sinΦ(r, ω), 0, cosΦ(r, ω))
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where

Φ(r, ω) =
(
2− r

Hη

)
Φ0(ω)

for Φ0(ω) = cos−1(n∗
3(H,φ(ω))). By choosing Φ and Φ0 in this way, n(Hη, ω) = Rωn

∗(H,φ(ω)) and

n(2Hη, ω) = e3, so it is a continuous extension from Ω1 to the exterior of C2Hη(M). The energy in

this region is given by

ηEξ,η(Q
δ
ξ,η; Ω2) =

∫
M+\Mδ

d

∫ 2Hη

Hη

(
η|∇n|2 + 1

η
g(n)

) 2∏
i=1

(1 + rκi) drdω .

We obtain estimates on |∇n|2 by considering the radial and tangential derivatives separately:

∣∣∣∣∂n∂r
∣∣∣∣2 =

∣∣∣∣∂Φ∂r
∣∣∣∣2 =

1

H2η2
|Φ0|2 ≤ C

H2η2
.

Using product rule and chain rule, we have

∂n

∂ωi
=
(∂Rω

∂ωi

)
(− sinΦ(r, ω), 0, cosΦ(r, ω)) +Rω

( ∂Φ

∂ωi

)
(− cosΦ(r, ω), 0,− sinΦ(r, ω)) ,

for i = 1, 2. So, ∣∣∣∣ ∂n∂ωi

∣∣∣∣ ≤ ∣∣∣∣∂Rω

∂ωi

∣∣∣∣+ ∣∣∣∣ ∂Φ∂ωi

∣∣∣∣ ,
and

|∇ωn|2 ≤ |∇ωRω|2 + 4|∇ωRω||∇ωΦ|+ |∇ωΦ|2 .

We already have an estimate for |∇ωRω|2 from Ω1, namely |∇ωRω|2 ≤ Cδ,κ, so it suffices to estimate

|∇ωΦ|2 appropriately.

∣∣∣∣ ∂Φ∂ωi

∣∣∣∣2 =

(
2− r

Hη

)2 ∣∣∣∣∂Φ0

∂ωi

∣∣∣∣2 ≤
∣∣∣∣∂Φ0

∂ωi

∣∣∣∣2 =
1

1− n2
3

∣∣∣∣∂n3

∂ωi
(Hη, ·)

∣∣∣∣2 ,

for i = 1, 2. Again using (6.3) and the estimates from Ω1,

∣∣∣∣ ∂Φ∂ωi

∣∣∣∣2 ≤
∣∣∣∣ ∂n∂ωi

(Hη, ·)
∣∣∣∣2 =

∣∣∣∇ω

(
Rωn

∗(H,φ(·))
)∣∣∣2 ≤ Cδ,κ ,

therefore |∇ωΦ|2 ≤ 2Cδ,κ. Using this we have, |∇ωn|2 ≤ C̃δ,κ for some constant C̃δ,κ > 0 which
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depends on δ and κ. Next,

g(n) =

√
3

2
(1− n2

3) =

√
3

2
(1− cos2 Φ) =

√
3

2
sin2 Φ .

But sin2 Φ is largest when r = Hη, thus sin2 Φ ≤ sin2 Φ0. By definition of Φ0,

sinΦ0(ω) =
√
1− (n∗

3(H,ω))2 = |n∗
1(H,ω)| .

Then using Lemma 4.4,

g(n) ≤ Ce−
4√24H .

We can combine all of these estimates to show that

ηEξ,η(Q
δ
ξ,η; Ω2) ≤

∫
M+\Mδ

d

∫ 2Hη

Hη

η

(
C

H2η2
+ Cδ,κ +

C

η2
e−

4√24H

)
drdω

≤
∫
M+\Mδ

d

∫ 2H

H

(
C

H2
+ Cδ,κη

2 + Ce−
4√24H

)
dr̃dω

= H|M+ \Mδ
d|
( C

H2
+ Cδ,κη

2 + Ce−
4√24H

)
.

We then take the following limits,

lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω2) ≤ |M+ \Mδ

d|
(C
H

+ CHe−
4√24H

)
.

Next, taking δ → 0, we have,

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω2)

)
≤ |M+ \Md|

(C
H

+ CHe−
4√24H

)
.

Finally we take H → ∞ to see that the energy in this region vanishes.

lim sup
H→∞

(
lim sup

δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω2)

))
= 0 .

48



M.Sc. Thesis - Dean Louizos McMaster University - Mathematics

Energy in Ω3: Recall that Ω3 is the region around point defects of Qδ
b ,

Ω3 := Cη

 I⋃
i=1

|zi|⋃
j=1

B(pij , δ
′
i)

 .

We estimate the energy around an arbitrary point defect, p = pij for some i ∈ {1, . . . , I} and

j ∈ {1, . . . , |zi|} and we drop the indices i, j on all related quantities to improve readability. We

consider the region Cη(B(p, δ′)). First define u : B(p, δ′) → R3 by

u(ω) = distM(ω, p)û(ω) ,

where û is given as in (6.1). Then we define the vector field n : (0, η)×B(p, δ′) → S2 by

n(r, ω) =
u(ω) + rν(ω)

|u(ω) + rν(ω)|
.

Now that we have defined n, we estimate its energy

ηEξ,η(Q
δ
ξ,η; Cη(B(p, δ′))) =

∫
B(p,δ′)

∫ η

0

(
η|∇n|2 + 1

η
g(n)

) 2∏
i=1

(1 + rκi) drdω .

We can compute the radial derivative of n to be

∂n

∂r
=

ν|u+ rν|2 − (u+ rν)[(u+ rν) · ν)]
|u+ rν|3

.

So we can estimate its norm from above by

∣∣∣∣∂n∂r
∣∣∣∣ ≤ |u+ rν|2 + |u+ rν||(u+ rν) · ν|

|u+ rν|3
≤ 2

|u+ rν|
.

Using that u ⊥ ν, we can write |u+ rν| =
√

|u|2 + |rν|2 =
√
|u|2 + r2, so

∣∣∣∣∂n∂r
∣∣∣∣2 ≤ C

|u|2 + r2
=

1

η2

(
C

|v|2 + h2

)
, (6.5)

since r = ηh and | exp−1
p (ω)| = δ′|v| by definition and since η < δ′. Next we consider the tangential
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derivatives of n. Let k = 1, 2, then

∂n

∂ωk
=

( ∂u
∂ωk

+ r ∂ν
∂ωk

)|u+ rν|2 − (u+ rν)[(u+ rν) · ( ∂u
∂ωk

+ r ∂ν
∂ωk

)]

|u+ rν|3

so we can estimate the norm by

∣∣∣∣ ∂n∂ωk

∣∣∣∣ ≤ C| ∂u
∂ωk

+ r ∂ν
∂ωk

|
|u+ rν|

≤ C

(
| ∂u
∂ωk

|+ | ∂ν
∂ωk

|√
(δ′)2|v|2 + η2h2

)
. (6.6)

Since |∇ων| ≤
√
2κ, it suffices to bound | ∂u

∂ωk
|.

∂u

∂ωk
=

(
∂

∂ωk
distM(ω, p)

)
û(ω) + distM(ω, p)

(
∂û

∂ωk

)
.

Therefore,

∣∣∣∣ ∂u∂ωk

∣∣∣∣ ≤ ∣∣∣∣ ∂

∂ωk
distM(ω, p)

∣∣∣∣+ δ′|v|
∣∣∣∣ ∂û∂ωk

∣∣∣∣ ≤ C + δ′|v|
∣∣∣∣ ∂û∂ωk

∣∣∣∣
Next, using the definition of û from (6.1),

∂û

∂ωk
=

(
∂

∂ωk
(m− (m · ν)ν)

)
|m− (m · ν)ν|

−
(m− (m · ν)ν)

(
(m− (m · ν)ν) ·

(
∂

∂ωk
(m− (m · ν)ν)

))
|m− (m · ν)ν|2

,

so,

∣∣∣∣ ∂û∂ωk

∣∣∣∣ ≤ 2| ∂
∂ωk

(m− (m · ν)ν)|
|m− (m · ν)ν|

≤
C(| ∂m∂ωk

|+ | ∂ν
∂ωk

|)
|m| − |m · ν|

=
C(| ∂m∂ωk

|+
√
2κ)

|m|(1− | cos θ|)
,

where θ is the angle between m and ν. Since ν is close to ±e3 and m · e3 = 0, there exists a constant

C > 0 such that 1− | cos θ| ≥ C for all ω ∈ B(p, δ′). Together with |m| = |v| this implies

∣∣∣∣ ∂û∂ωk

∣∣∣∣ ≤ C|v|−1
(
|∇ωm|+

√
2κ
)
.

Computing ∇ωm, we have

∇ωm = ∇vm̃ · ∇ω((δ
′)−1 exp−1

p (ω)) ,
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therefore |∇ωm| ≤ C(δ′)−1 and

∣∣∣∣ ∂u∂ωk

∣∣∣∣ ≤ C + δ′|v|
(

C

δ′|v|

)
≤ C . (6.7)

So, putting together (6.6) and (6.7), we can see that,

|∇ωn|2 ≤ C

(δ′)2|v|2 + η2h2
≤ C

η2

(
1

|v|2 + h2

)
. (6.8)

Finally, we note that g(n) ≤ C for some C > 0, thus the energy can be estimated by

ηEξ,η(Q
δ
ξ,η; Cη(B(p, δ′))) ≤

∫
B(0,1)

∫ 1

0

(
(δ′)2

(|v|2 + h2)
+ C(δ′)2

)
|D expp | dh dv .

The exponential map is C1 near 0, so its Jacobian |D expp | is bounded. Thus we integrate to obtain

the estimate

ηEξ,η(Q
δ
ξ,η; Cη(B(p, δ′))) ≤ C(δ′)2 ,

and

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Cη(B(p, δ′)))

)
= 0 .

This holds for each point pij , therefore,

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω3)

)
= 0 .

Energy in Ω4: On this region, we do an interpolation of the angle between n and e3, to continuously

extend n from Ω3 to the exterior region. First, choose any pij as we did in Ω3, then define

Ωi,j
4 = C2Hη(B(pij , δ

′
i)) \ Cη(B(pij , δ

′
i))

so that Ω4 =
⋃I

i=1

⋃|zi|
j=1 Ω

i,j
4 . Again we will let p = pij and drop the indices i, j wherever needed to

improve readability. Now define v : B(p, δ′) → S2 by

v(ω) =
u(ω) + ην(ω)

|u(ω) + ην(ω)|
,
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and the interpolation Φ : (η, 2Hη)×B(p, δ′) → [0, π] by,

Φ(r, ω) =

(
1− r − η

2Hη − η

)
Φ0(ω) ,

where Φ0(ω) = cos−1(v3(ω)). Finally we let

n(r, ω) =

(
v1(ω) sinΦ(r, ω)√

1− (v3(ω))2
,
v2(ω) sinΦ(r, ω)√

1− (v3(ω))2
, cosΦ(r, ω)

)
,

so that n(η, ω) = v(ω) and n(2Hη, ω) = e3. The energy in Ωi,j
4 can be estimated by

ηEξ,η(Q
δ
ξ,η; Ω

i,j
4 ) ≤

∫
B(p,δ′)

∫ 2Hη

η

(
η

∣∣∣∣∂n∂r
∣∣∣∣2 + η|∇ωn|2 +

1

η
g(n)

)
2∏

m=1

(1 + rκm) drdω .

It is easy to see that,

∣∣∣∣∂n∂r
∣∣∣∣2 =

∣∣∣∣∂Φ∂r
∣∣∣∣2 =

1

(2Hη − η)2
|Φ0|2 ≤ C

(2H − 1)2η2
≤ C

η2
(6.9)

since Φ0 is bounded and H > 0 is large. By a straightforward calculation, we also see that

∣∣∣∣ ∂n∂ωk

∣∣∣∣2 =
sin2 Φ

1− v23

(∣∣∣∣ ∂v1∂ωk

∣∣∣∣2 + ∣∣∣∣ ∂v1∂ωk

∣∣∣∣2
)

+

∣∣∣∣ ∂Φ∂ωk

∣∣∣∣2 − v23 sin
2 Φ

(1− v23)
2

∣∣∣∣ ∂v3∂ωk

∣∣∣∣2 ,

but using that sinΦ ≤
√
1− v23, we can further estimate the gradient by

|∇ωn|2 ≤ |∇ωv|2 + |∇ωΦ|2 . (6.10)

Next we consider the tangential derivatives of Φ and we see that they are bounded by the derivatives

of Φ0 as follows, ∣∣∣∣ ∂Φ∂ωk

∣∣∣∣2 =

(
1− r − η

2Hη − η

)2 ∣∣∣∣∂Φ0

∂ωk

∣∣∣∣2 ≤
∣∣∣∣∂Φ0

∂ωk

∣∣∣∣2 ,

for k = 1, 2. Using the definition of Φ0,

∣∣∣∣∂Φ0

∂ωk

∣∣∣∣2 =
1

1− v23

∣∣∣∣ ∂v3∂ωk

∣∣∣∣2 ≤
∣∣∣∣ ∂v∂ωk

∣∣∣∣2 ,

where the last inequality comes (6.3). From here it follows that |∇ωΦ|2 ≤ |∇ωv|2, so that combining
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with (6.8) we obtain the estimate

|∇ωn|2 ≤ 2|∇ωv|2 ≤ C

(
1

(δ′)2|v|2 + η2

)
≤ C

η2
. (6.11)

With these estimates in hand, we bound the energy in this region by

ηEξ,η(Q
δ
ξ,η; Ω

i,j
4 ) ≤

∫
B(p,δ′)

∫ 2Hη

η

C

η
drdω = C(2H − 1)|B(p, δ′)| .

Therefore, taking ξ, η → 0 followed by δ → 0, we can see that

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω

i,j
4 )

)
= 0 .

Energy in Ω5: The last region we need to consider is

Ω5 = C2Hη(Mδ
d) \ Ω3 ∪ Ω4 .

We do the construction generally for a region Rδ
i for some i = 1, . . . , I. Recall that Qδ

b = v⊗ v− 1
3I

and that v as given in (6) is C1 away from the point defects pij , so there exists a constant Cδ > 0

which depends only on δ > 0 such that

|∇ωv|2 ≤ Cδ, for ω ∈ Rδ
i \

|zi|⋃
j=1

B(pij , δ
′
i)

To simplify notation, we define

Ωi
5 := C2Hη

Rδ
i \

|zi|⋃
j=1

B(pij , δ
′
i),

 so that Ω5 =

I⋃
i=1

Ωi
5 .

On Ωi
5, we want to do a Lipschitz extension of Qδ

ξ,η based on a Lipschitz extension of the angle Φ̂

between n and e3. To define Φ̂ on ∂Ωi
5, we note that there exists a continuous extension of n from

each of the neighbouring regions Ωj for j = 1, . . . , 4 on ∂Ωi
5. We also take n = v on the surface of

the manifold M. Then, define Φ̂ : ∂Ωi
5 → [0, π] by

Φ̂(r, ω) = cos−1(n3(r, ω)) .

53



M.Sc. Thesis - Dean Louizos McMaster University - Mathematics

Note that by taking the gradient of Φ̂ and then applying the inequality from (6.3),

|∇Φ̂|2 =
1

1− n2
3

|∇n3|2 ≤ C|∇n|2 ≤ C

∣∣∣∣∂n∂r
∣∣∣∣2 + C|∇ωn|2 ,

for some C > 0, so the Lipschitz constant of Φ̂ will be proportional to the maximum of the sum of

radial and tangential derivatives of n on ∂Ωi
5. On ∂Ω1, we can see that

∣∣∣∣∂n∂r
∣∣∣∣ ≤ 1

η2

∣∣∣∣∂n∗

∂r̃

∣∣∣∣2 ≤ Ce−
4√24r̃

η2
≤ C

η2
and |∇ωn|2 ≤ Cδ,κ ,

using (4.3) and (6.4). Then on ∂Ω2, we were able to estimate the derivatives by

∣∣∣∣∂n∂r
∣∣∣∣ ≤ C

H2η2
≤ C

η2
and |∇ωn|2 ≤ C̃δ,κ .

Looking at ∂Ω3 and using both (6.5) and (6.8),

∣∣∣∣∂n∂r
∣∣∣∣2 ≤ C

η2

(
1

1 + h2

)
≤ C

η2
and |∇ωn|2 ≤ C

(δ′)2|v|2 + η2h2
≤ C

(δ′)2
≤ Cδ .

On ∂Ω4, we also saw from (6.9) and (6.11) that

∣∣∣∣∂n∂r
∣∣∣∣2 ≤ C

η2
and |∇ωn|2 ≤ C

(δ′)2|v|2 + η2
≤ C

(δ′)2
≤ Cδ ,

so it remains to bound the gradient on the intersection of the boundary of Ωi
5 with M and the

boundary with the exterior region where Qδ
ξ,η = Q∞. On M it holds that n = v, so |∇ωn| =

|∇ωv| ≤ C̃δ,κ. Finally in the exterior region, Qδ
ξ,η = Q∞, so along this boundary, Φ̂ is constant,

thus the Lipschitz constant here is zero. We can see that this means Φ̂ is Lipschitz on ∂Ωi
5, with a

Lipschitz constant

Lη,δ ≤

√
C

η2
+ Cδ

for some constant Cδ which depends on δ > 0 but not on η. So just as we have done in the spherical

case, applying Theorem 2.10.43 from [9], we can extend Φ̂ to all of Ωi
5 and Φ̂ remains Lipschitz on

this region, with the same Lipschitz constant Lη,δ. We can now define n on Ωi
5 by

n(r, ω) =

(
v1(ω) sin Φ̂(r, ω)√

1− (v3(ω))2
,
v2(ω) sin Φ̂(r, ω)√

1− (v3(ω))2
, cos Φ̂(r, ω)

)
.
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We note that n in this region is of a very similar form to n on Ω4, so we can use the same computations

to see that using (6.9), ∣∣∣∣∂n∂r
∣∣∣∣2 =

∣∣∣∣∣∂Φ̂∂r
∣∣∣∣∣
2

≤ |∇Φ̂|2 ≤ L2
η,δ ≤ C

η2
+ Cδ .

Next for the tangential derivatives we use (6.11) to get the estimate,

|∇ωn|2 ≤ |∇ωv|2 + |∇ωΦ̂|2 ≤ C

η2
+ Cδ .

Now again using that g is bounded, we estimate the energy in this region by

ηEξ,η(Q
δ
ξ,η; Ω

i
5) ≤

∫
Ωi

5

(
η|∇n|2 + 1

η
g(n)

)
dx ≤

∫
Ωi

5

C

η
+ ηCδ dx ≤ CH|Rδ

i |(C + η2Cδ) .

Therefore,

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω

i
5)

)
= 0 ,

so the energy in all of Ω5 is negligible, i.e.

lim sup
δ→0

(
lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η; Ω5)

)
= 0 .

Conclusion: Now we are able to put all of the regions together as follows,

ηEξ,η(Q
δ
ξ,η; C2Hη(M+)) =

5∑
k=1

ηEξ,η(Q
δ
ξ,η; Ωk) ,

therefore,

lim sup
H→∞

(
lim sup

δ→0

(
lim sup
ξ,η→0

5∑
k=1

ηEξ,η(Q
δ
ξ,η; Ωk)

))
≤
∫
M+

D∞(Q∗
b(ω)) dω .

The same construction for Qδ
ξ,η works on C2Hη(M−), so we get the same upper bound. Then using

that D∞(Q∗
b(ω)) = 0 for ω ∈ M0, we have,

lim sup
ξ,η→0

ηEξ,η(Q
δ
ξ,η) ≤

∫
M

D∞(Q∗
b(ω)) dω .
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7 Open Questions

A next step would be to obtain the results for the lower and upper bounds for a more general class

of manifolds by removing the restrictions on Md = {ω ∈ M : ν(ω) = ±e3}. Since Md is a level set

of ν, it is made up of finitely many connected sets, but these sets need not be only isolated points

and curves of finite length. In fact the sets could even have positive measure, but this provides

additional complications which were not addressed in this thesis.

Another question which may be of interest is given a manifold M what is its optimal orientation

in terms of minimizing the energy of the system. Using the energy estimates from this thesis, we

can quantify the limiting energy, given a manifold M and we expect to obtain a new minimization

problem from this which can be further analyzed.

Something worth noting is that in the spherical case, for the lower bound, the boundary data did not

need to be C1 except at finitely many points. For the general manifold, we needed this assumption

due to the finite length scale we were examining. However, it may be possible using a different

approach to drop this assumption on the regularity of boundary data.

Finally, we dealt exclusively with the case of

η

ξ
→ λ = ∞

but another interesting case is when λ ∈ [0,∞). The difficulty here is that minimizers of Fλ need

not be uniaxial a.e., so it is much more difficult to construct a recovery sequence. As well, many of

the strategies we used for the lower bound on the general manifold heavily relied upon λ = ∞ and

would break down in the case where λ is finite.
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