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Abstract

Structure editors have been available for many decades, and for multiple programming

languages. Historically, they have been recommended for teaching new programmers.

Currently, they are recommended by advocates of Model Driven Development. How-

ever, they are not widely used, except for the special case of graphical structure editors

commonly referred to as “block-based editors” such as Scratch. Although structure

editors were first introduced for procedural languages, and they could be used for any

type of language, current structure editors target object-oriented languages, almost

exclusively, and build in many assumptions related to object orientation. The notable

exception, Hazel, targets a functional language, exploits the strong typing typical of

functional languages and emphasizes the use of typed holes.

This thesis introduces ElmSr, a structure editor developed for teaching the Elm

programming language to novice programmers. As with most structure editors, ElmSr

allows the developer to directly edit the Abstract Syntax Tree, without the intermedi-

ary of a compiler. As with Hazel, ElmSr’s AST is typed, and transformations preserve

types. Also typical of tree editors written in functional languages, ElmSr uses a zipper

data structure to encode both the tree and a cursor position, making for efficient tree

edits. Like other structure editors, ElmSr is designed to make common tasks simple

and efficient. In our case, common tasks match the steps students are taught in the
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“Algebraic Thinking” curriculum developed at McMaster University. Some steps are

common to almost all programming, such as arithmetic expression entry and modi-

fication (which has been previously identified as a weak point for structure editors).

Other steps, like definition integration, and support for function calls and control

structures are specific to our curriculum. This aspect of usability was evaluated by

comparing the number of keystrokes necessary for a benchmark task, using ElmSr,

using VS Code following our structured development approach, and using VS Code

solely for text entry. ElmSr was much more efficient than VS Code for structured

editing, and still more efficient than linear code entry.
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Chapter 1

Introduction

A structure or projectional editor is an editor in which an abstract syntax tree (AST)

is edited without the need for a compiler. The presentation of the AST may be in

the form of a text document, and visually may resemble the type of text editor which

most commonly sits at the head of the toolchain, followed by the compiler, assembler,

linker and run-time system. But since the AST is the object being edited, it is possible

to avoid syntax and type errors and only present the user with editing actions which

preserve the AST structure. While this has obvious advantages, structure editors

have not replaced text editors because most prorgrammers still prefer the flexibility

text editors offer, including the ability to transform a working program through mal-

formed stages. Whether this is simply a matter of what they are used to, or whether

it is fundamentally more efficient to take short-cuts through the space of ill-formed

programs is an open question.
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1.1 Purpose

This thesis explores the design of a structure editor, also called a projectional edi-

tor, for the Elm programming language. Elm is a compact language which is close

to a common core for languages in the ML-family, of which the most well-known is

Haskell. Most recent research into structure editors is built around the assumption,

often unstated, that the target language will be object oriented (OO). Since OO pro-

gramming represents the vast majority of programming in many commercial areas

from enterprise computing, with, e.g., Java, web computing, with, e.g., Javascript,

and data science and machine learning, with, e.g., Python, it is easy to make this

assumption. But programs in functional programming languages have different struc-

tures compared to those in OO languages, and functional programmers have different

expectations of their languages, so the advantages and disadvantages of structure

editors may be different for functional languages. In particular, many functional pro-

grammers are strong advocates of very strong typing, and many programmers are

attracted to the shared goal of eliminating as many errors as possible through the use

of strong typing, see [25], and it is hypothesized that functional programmers have

different priorities in program construction tasks [29]. Using strong typing to reduce

the number of errors has the side-effect of reducing the overall number of expressible

programs. This is likely to have deep and subtle impacts on structure editing.

This thesis will lay a foundation for exploring these differences, but identifying

and quantifying such differences is a long-term research program, beyond the scope of

this thesis. Instead, our focus is on creating interface conventions for such structure

edtiors. As a proxy for usability at this stage, we consider the subset of program

editing actions we teach to novices as part of our Algebraic Thinking curriculum,

2
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including those required to enter and modify algebraic expressions, because previous

research by Voelter et al. [45] has identified this as a barrier to adoption of structure

editors.

1.2 Research Questions

In the field of structure editing, there are key questions about usability and efficiency

that require investigation. Particularly, the handling of algebraic expressions and the

speed of code entry present significant challenges compared to traditional text editing.

Consequently, we present two Research Questions (RQs):

RQ1. How can we optimize the usability of structure editors to provide a

more intuitive and familiar experience, specifically when dealing with

algebraic expressions utilizing infix operations?

This research question aims to explore the inherent challenges of structure edi-

tors in handling algebraic expressions, especially infix operations. It looks into

the paradigm shift required by users who are accustomed to text editors when

entering such expressions in a structure editor. The primary goal is to dis-

cover ways to enhance the user experience by making the editing process more

intuitive and natural. Potential sub-questions could be:

• How does the input method for infix operations in a structure editor cur-

rently affect user experience?

• What features can be integrated into structure editors to make infix oper-

ations more user-friendly and familiar to those used to text editors?

3
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• Can a hybrid approach, where typed algebraic expressions are parsed to

build the AST, improve the user experience without compromising the

integrity and advantages of a structure editor?

RQ2. Is it possible for a structure editor to achieve similar or superior

efficiency in program construction as compared to a traditional text

editor, despite inherent structural differences, and could the unique

functionalities of structure editors pave the way for more efficient

program entry methods?

This research question intends to investigate the efficiency trade-offs between

text and structure editors. The question considers the structural differences that

may act as barriers to achieving efficiency in structure editors. However, it also

opens up the possibility that unique functionalities of structure editors could

counterbalance these limitations or even lead to innovative and more efficient

programming practices. Potential sub-questions could include:

• How does the program entry speed in structure editors compare to text

editors, considering various complexity levels of the program?

• What structural constraints in structure editors could hinder efficiency in

program entry, and how could these be mitigated?

• What unique features of structure editors could be exploited to enhance

efficiency in program entry?

Through this study, we aim to uncover insights that could help to refine structure

4
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editing for both novice and experienced programmers, especially functional program-

mers.

1.3 Contributions

In this thesis, we have developed a structure editor for the Elm programming lan-

guage, implemented in Elm itself. This thesis includes a thorough documentation of

the design decisions to aid future developers. Specifically, we have reviewed the core

concepts essential to this design, namely ASTs and Zippers.

Furthermore, we have provided an extensive review of the literature on structure

editors. This includes a comprehensive table categorizing both current and histori-

cally significant structure editors, which serves as a quick reference for understanding

the evolution and variety of editors in this field.

Additionally, we have developed simple benchmarks to assess the performance

of various editors. These benchmarks, that are designed to be applicable to any

functional programming language, have been applied to evaluate the performance of

our structure editor in comparison with a conventional text editor.

1.4 Structure of Thesis

The rest of this thesis is organized as follows: Chapter 2 provides a literature review,

discussing various methodologies for creating structure editors and different types of

such editors. Chapter 3 introduces preliminary concepts essential for understanding

the techincal details discussed in later chapters. Chapter 4, the core of the thesis,

presents ElmSr, our structure editor for the Elm language, detailing design choices

5
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and capabilities. Chapter 5 discusses the tests conducted to evaluate ElmSr against

a competitor text editor. Finally, Chapter 6 concludes the thesis, reviews research

questions, and proposes future research directions.

6
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Chapter 2

Literature Review

In this chapter, we explore the methods for constructing structure editors and the

various categories they fall into, setting the stage for a discussion that positions our

work within these categories.

2.1 Building Structure Editors

To the best of our knowledge, there are four broad ways of creating structure editors

employed in the literature. In this section, we discuss these methods since they are

an important factor in classifying related works in the field of structure editors.

2.1.1 Generating Editors from Language Grammars

In this approach, the focus is specifically on generating structure editors based on the

grammar of the target programming language. Particularly, the formal description of

the language (such as Context-Free Grammars (CFGs)[40]) is used to automatically

produce an editor that offers the syntax and structure of that language visually, often

7
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as blocks or program units. Such units can be utilized by the language user to write

programs. The emphasis in this approach is on the automatic generation of the editor

interface from a given language specification.

2.1.2 Using Language Workbenches

While the emphasis of the previous approach is on the generation of the editor inter-

face (syntax), language workbenches offer a broader range of capabilities for language

design and implementation, and provide tools for defining syntax, semantics, type

systems, transformations, and often editor interfaces for Domain-Specific Languages

(DSLs). Therefore, they are suitable for more complex language engineering tasks

beyond the scope of editor generation alone. Within the scope of this thesis, we are

particularly interested in language workbenches that are structured (such as the Meta

Programming System (MPS) [4],) meaning that they provide functionalities to edit

the AST of the program directly.

2.1.3 Adapting Existing Text Editors

This method involves modifying or extending existing text editors to incorporate

some features of structure editors. The process usually involves writing extensions or

plugins that change the editor’s behavior [3]. These extensions can provide a struc-

ture editing interface, where programming constructs are manipulated and traversed

structurally rather than, or in addition to as text. For example, the extended ed-

itor might provide jumping between components of a case expression. Parsers are

extensively used in such editors, for either parsing the entire program—despite the

8
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potential presence of incomplete expressions—or selectively bypassing these incom-

plete segments. The parser then generates an AST with which the editor can interact

in a structured manner.

This approach is particularly interesting where the features, flexibility, and exten-

sibility of a specific editor like Emacs [2] are desired, but adding structure editing

features is also needed for specific use-cases. However, this approach might not offer

all the benefits of structure editors, especially error prevention while entering expres-

sions.

2.1.4 Development from Scratch

Apart from the above three methods, some structure editors are developed from

scratch, mainly due to the fact that some highly customized features are needed.

This approach, although it provides the greatest flexibility, needs much more effort

compared to the other approaches and generally involves implementing the editor’s

functionality, user interface, and logic. Moreover, the choice of the technology stack

and the software architecture can have significant impact on the performance and

availability of the editor.

2.2 Types of Structure Editors

2.2.1 Strict Structure Editors

The initial class of structure editors was marked by a distinctive approach to program-

ming interfaces, characterized by an emphasis on direct manipulation of programming

9
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constructs and the enforcement of structured program entry methodologies. The pri-

mary goal of many of these early structure editors was centered on the technology

itself, rather than on user-friendliness. That is, the focus was the implementation of

mechanisms to insert various programming constructs like loops and conditional state-

ments as templates. These mechanisms included both menu selection interfaces [20]

and keyboard shortcuts [19] — pressing ‘f’ for inserting a “for loop” template, or ‘=’

for an assignment operation, for instance. These templates often included fillable

holes for later completion by the user.

In many of these editors, the keyboard’s role was usually two-fold. It was em-

ployed for typing literals, such as strings and numbers, and for activating structural

commands via shortcuts. However, the choice and implementation of these shortcuts

sometimes proved to be more complex than intuitive, often increasing the complexity

and requiring users to remember so many shortcuts specific to such editors only. Also,

choosing from many such shortcuts may lead to ambiguity.

A key aspect of these early structure editors was the requirement for users to have

an awareness of the AST’s tree-like structure, particularly in expression entry. For

example, entering an expression like 5 * 2 required inserting the multiplication oper-

ator first, followed by the operands. This method needed an unnecessary engagement

with the program’s syntax tree even for simple structures. In an attempt to ease

this process, some editors adopted a non-structured approach for expression entry

or modification, accepting expressions in a text-like format. However, this approach

often relied on parsers to transform textual input into an AST, which could dilute

the benefits of structure editing (such as error prevention) at the level of expressions.

One of the early examples of structure editors was Emily [20] designed by William

10
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J Hansen. In Emily, a program code started as a single non-terminal symbol, and

developers constructed their programs by selecting syntax rules from a menu (using

a light pen) to replace non-terminals. This approach maintained the tree structure of

the text, enabling manipulation according to structural units. Emily’s design choices,

particularly the menu-driven construction of programs, were early explorations into

how syntax-directed editing could facilitate program creation.

MENTOR [14, 15] is another influential early example in the domain of structure

editors. Initially developed for Pascal, MENTOR integrated concepts of syntax-

directed editing and structure-oriented manipulation, laying the groundwork for the

development of language workbenches. Program entry in MENTOR involved incre-

mental parsing of the program text into a tree structure that could then be ma-

nipulated in a structured manner. At the core of MENTOR was MENTOL, a tree

manipulation language specifically designed for interacting with ASTs that allowed

MENTOR to perform operations directly on the AST. The system evolved over time,

with notable extensions like MENTOR-Ada [16], which inherited MENTOR’s ca-

pabilities and applied them to the Ada programming language. These extensions

continued to focus on representing programs as trees, maintaining the core principle

of structure-oriented editing.

The Cornell Program Synthesizer (CPS) [41], implemented for a subset of PL/I1

in the early 1980s, was designed to facilitate the construction and execution of small

programs, particularly on microcomputers. This tool utilized menu-based interactions

for entering language constructs. However, recognizing the difficulty of structured

program entry, it was designed to combine structure editing with text-based input.

At the expression level, programmers entered code as plain text in a textual mode.

1Programming Language One, see: https://en.wikipedia.org/wiki/PL/I
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Upon exiting this mode, the text was parsed back into structured form, asking users

to address any syntax errors before reverting to structure editing.

The Incremental Programming Environment (IPE) [30], introduced in 1981, is a

part of a more general environment, Gandalf [32]. It notably enabled the definition of

multiple language notations and the capability to partially hide parts of the AST. IPE

applied structure editing at all levels of program construction, including expressions.

Similar to our ElmSr editor, the environment visually highlighted the current position

within the program tree, aiding programmers in navigating and understanding the

program’s structure. The syntax-directed editor in IPE was built from the language

specifications which facilitated direct manipulation of program structure. However,

other development tools such as debugger, translator and the linker/loader, operated

invisible to the user and were automatically invoked to maintain consistency between

the tree representation and the machine representation. Furthermore, IPE’s compiler

utilized the internal tree representation for code generation, avoiding the parsing from

scratch (hence the ‘incremental’ in its name) and syntax analysis.

GNOME (Gandalf NOvice prograMming Environment) [17], introduced in 1984

as another sub-project of the Gandalf project, stands out particularly in the con-

text of educational programming environments. The primary goal was to translate

the experience gained from structure editing research into a practical tool for teach-

ing programming to undergraduates. The structure editor format reduced the need

for constant reference to language manuals and allowed students to focus more on

computer science concepts. The GNOME project was part of a family of ALOE (A

Language Oriented Editor) editors which supported the construction and manipula-

tion of syntactically correct tree structures. Similar to other ALOE editors, GNOME

12
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was built using an editor generator tool called AloeGen from the grammar of the

target language.

Finally, GANDALF [19, 32] encompasses a full set of advantages seen in earlier

sub-systems, including the ability to automatically generate editors from language

specifications. GANDALF introduced its own language designed specifically for spec-

ifying, in the language specification, interactions and views within the editor. It

also offered programmers a uniform method for entering keyboard commands using

Emacs-style keyboard shortcuts. Additionally, GANDALF provided tools for manag-

ing projects that involved multiple programmers and offered integrated version control

functionalities.

2.2.2 Keyboard-Driven Structure Editors

In this section, we explore a class of structure editors designed to provide users with

efficient means of manipulating code structures which is similar to text editors. Unlike

strict structure editors, which often impose rigid constraints on the user’s interactions,

editors in this class prioritize flexibility using a broader interaction capabilities of the

keyboard. Through a combination of intuitive keyboard shortcuts, context-sensitive

commands, and interactive editing capabilities, these editors offer a more user-friendly

and intuitive interface for code editing.

Some early works in this class provided textual editing capabilities and subse-

quently relied on parsing techniques to establish a structural comprehension and

representation of the code. For instance, Barista [27] is a hybrid Java editor and an
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implementation toolkit that supports structure editing within an unrestricted text-

editing environment and facilitates the creation of flexible structure editors [28]. Re-

garding editing capabilities, it provides the implementation facilities for structure

views to project program text into alternate views, such as math equations. The au-

thors highlight the limitations of traditional code editors that represent code as plain

text, making it challenging to embed interactive tools, annotations, and alternative

views within the code itself. To address this issue, Barista adopts an AST represen-

tation of the code internally and offers parsing techniques that treat the structure as

if it were textual using a technique called “linearization” of the tree.

Regarding its framework capabilities, Barista expects user-defined interactions for

each programming construct within the language to be defined by the creator of the

editor (or the language). These interactions can include menu options, drag and

drop functionality, and usable text-editing interactions. The framework follows a

model-view-controller (MVC) architecture, with the model consisting of the modified

AST structures and tokens. The view is a tree of interactive views that mimic the

structure of the model, providing designers with control over layout, appearance,

and interaction techniques. Controllers are implemented using the event-handling

constructs offered by the Citrus programming language [26].

Another example is Grammar Cells [46], an approach for declaratively specifying

textual notations and their interactions in projectional editors. By providing a for-

malism for defining consistent editor behaviors, this approach addresses the challenge

of achieving consistency in editing experience for users. The paper presents a formal

definition of grammar cells and their mapping to low-level editor behaviors.

Integrating structure editing capabilities into existing text editors offers several
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advantages which combines the flexibility and familiarity of text-based interfaces with

the benefits of structure-aware editing. Duece [22] and GopCaml [18] followed this

approach. Deuce offers a structure-aware code editor with direct manipulation capa-

bilities built on top of Sketch-n-Sketch [23], a programming environment for creating

SVG images. Its features include clickable widgets on top of the source code for

structural selection and a user-friendly menu presenting potential transformations

based on selections. Deuce’s design has human-friendly structural interactions while

retaining the freedom and familiarity of traditional text-based editing.

GopCaml introduces GopCaml-mode2, a plugin for GNU Emacs, designed to en-

hance the editing experience for OCaml programmers by providing syntactic editor

support. It addresses the limitations of standard text-based editors, like Emacs, in

accurately capturing the structural complexities of OCaml syntax. Traditional editor

interfaces struggle to effectively handle OCaml’s syntax due to its complex structure.

Existing plugins for OCaml support in editors like Emacs, Vim, and VS Code offer

basic structural editing capabilities but rely solely on lexical analysis, limiting their

ability to accurately represent OCaml syntax and support common code transforma-

tions. GopCaml-mode overcomes these challenges by implementing a zipper-based

structural editing framework using the OCaml compiler infrastructure for AST defi-

nitions and parsing.

The aim of some works might not always align with the fundamental design choice

of creating a structure editor. Some editors addressed specific challenges within their

domain by tailoring their design to accommodate unique requirements. For example,

Forest [47] is a structural code editor that integrates multiple cursors with structural

editing commands that helps developers in performing repetitive edits across their

2https://gitlab.com/gopiandcode/gopcaml-mode
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codebase. By splitting cursors and applying editing commands simultaneously, Forest

enables users to perform edits similar to those achieved with refactoring scripts, but

in a more interactive manner.

Hazelnut [33] and its successor works [34] are probably the most advanced struc-

ture editors that extensively handle keyboard interactions. Hazelnut extends a small

bidirectionally-typed lambda calculus with holes and a cursor, enabling edit actions to

operate over statically meaningful incomplete terms. This approach enables program-

mers to construct terms interactively, with the editor automatically placing terms

inconsistent with expected types inside holes to defer type consistency checks until

the term is completed. The focus of Hazelnut is on providing a principled solution to

the problem of static meaning assignment in structure editors by ensuring that ev-

ery edit state corresponds to a statically meaningful expression. The paper discusses

various interpretations of holes and their connections with gradual typing. Hazelnut

is implemented as a functional reactive program using js of ocaml.

In their “live functional programming with holes” paper [34], the authors further

expand Hazlnut and introduce a live programming environment that provides contin-

uous feedback about a program’s dynamic behavior as it is being edited. Moreover,

[35] introduces the concept of live literals (livelits), which enable users to fill holes in

code directly through user-defined graphical user interfaces embedded into the code.

Livelits provide a graphical representation for expressions that are more naturally

manipulated graphically, such as colors, music, animations, and diagrams.

Another work in the Hazel family is tylr [31] which addresses the challenge of

maintaining hierarchical term structures. The authors propose a novel approach called

tile-based editing, which allows the disassembly of terms into linearly sequenced
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tiles and shards around user selections. This approach maintains term structure while

offering linear selection and modification features, improving the selection and code

restructuring tasks compared to traditional structure editors.

The tile-based editing approach in tylr operates on three levels of structure: terms,

tiles, and shards. Terms follow the abstract syntax of the language, tiles correspond to

groups of matching delimiters, and shards represent individual tokens and delimiters.

The editor assists and guides user interactions through subsystems called the grouter

and the backpack. The grouter aids the reassembly of tiles into terms, while the

backpack guides user movement to ensure the proper reassembly of shards into tiles.

This work was preliminary and had some limitations including the lack of multi-key

input and multi-character tokens. We listed all the relevant papers of the Hazel family

as “Hazel” in Table 2.1.

Beckman et al [7] argue that previous work on generating structure editors from

language grammars relied primarily on menu and mouse-based interactions, which

may not be as efficient or familiar to users accustomed to keyboard entry. Thus, their

Partial Parsing approach addresses the challenge of automatically creating useful

structure editors by introducing modifications to a parser of general-purpose pro-

gramming language grammars to enable keyboard-centric interactions.

The paper discusses the structure of Tree-sitter grammars [9], which serve as a ba-

sis for auto-generating mappings from general-purpose programming language gram-

mars to structure editors. The mappings map non-terminals to block compounds

and terminals to text fields. Partial parsing utilizes autocomplete techniques to dis-

ambiguate language structures, which eliminates the need for a menu of language
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constructs. While the user enters language expressions via keyboard input, the sys-

tem identifies language constructs that may start with the given input and prompts

users to continue typing until only one construct remains or until they explicitly dis-

ambiguate between choices. The authors also mention techniques for minimizing the

results set of partial parse trees to provide relevant options to the user.

The last paper we explore in this section is Javardise [39], which is a structure code

editor designed for programming education. Javardise specifically targets a subset of

the Java language and aims to provide an editing experience that closely resembles

that of a conventional code editor. The editor ensures syntactic validity by disallowing

syntax errors and automating certain elements such as balancing block brackets and

inserting semicolons. Users interact with Javardise by typing elements of the actual

source code in their regular order, but with constraints imposed to prevent syntactic

errors and guide the typing activity.

The editing experience in Javardise is designed to maintain syntactically valid

code at all times, except during transient moments when an identifier or literal is

being written. The appearance of the source code in Javardise resembles that of a

regular code editor, with automatic indentation and the appropriate placement of

tokens. Certain tokens are editable and selectable, while others are not, to ensure the

syntactic correctness of the code.

Javardise is implemented as a custom-made editor without relying on editor gen-

eration frameworks. The editor follows a model-view-controller architecture, where

the abstract structure of the program is represented by an in-memory model and

rendered through widgets in the view.
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2.2.3 Block-based Editors

Block-based editors are coding environments that aim to simplify programming and

make it more intuitive and accessible, particularly for novice programmers and chil-

dren. The fundamental concept behind block-based programming is the use of blocks

as the basic units of code. These blocks are visual, interactable elements that il-

lustrate various programming constructs, such as loops, conditionals, variables, and

functions.

One of the primary advantages of block-based editors is their accessibility and

intuitiveness, especially for individuals without prior programming experience. In

traditional text-based programming environments, learners must understand and re-

member specific syntax rules, which can be a significant barrier to learn. In contrast,

block-based programming abstracts these syntactical complexities. Each block repre-

sents a specific piece of code or a programming concept, with its shape often indicating

how it can be combined with other blocks that uses the human ability to recognize

and organize shapes.

Additionally, block-based editors typically employ a rich use of colors to differ-

entiate between various types of blocks. This color-coding not only makes the pro-

gramming environment more visually engaging, especially for children, but also aids

in understanding different programming structures. For example, loops might be

represented in one color, conditionals in another to provide an immediate visual cue

about the block’s functionality. Figure 2.1, shows the user interface of the Scratch

programming environment which consists of three main parts: a block palette (left),

a coding area (middle) where the blocks can be dropped and arranged, and a stage

area (right) where the programmer can see the output.
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Figure 2.1: User interface of Scratch

The primary mode of interaction in block-based programming environments is

drag-and-drop. Users select blocks and drag them to appropriate positions to con-

struct their programs. This type of interaction aligns well with the cognitive skills

of young learners which makes programming feel more like a game or a puzzle for

them. Moreover, the use of a keyboard in block-based programming environments is

typically limited to specific tasks, such as entering names for variables or inputting

string and numeric values.

The ease of use of block-based editors can come with trade-offs in efficiency. For

simple operations or expressions, the process of dragging and dropping multiple blocks

can become tedious, particularly for more experienced users. A critical consideration

in designing educational programming tools has always been balancing simplicity

and the potential for engagement with more advanced programming tasks or envi-

ronments.

Alice [10, 36] stands out as a pioneering block-based editor designed specifically for
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3D programming which aimed at tackling the challenges of authoring interactive 3D

graphics. With its intuitive drag-and-drop interface and event-based, object-oriented

paradigm, users can integrate objects into their scenes, manipulate their attributes,

and invoke methods.

Scratch [38] is a widely recognized block-based programming environment de-

signed to teach programming concepts to users of all ages, particularly targeting

children between the ages of 8 and 16. The tool adopts a puzzle analogy and uses

blocks as language constructs to facilitate the creation of interactive stories, games,

and animations. Scratch provides a visual environment that enables users to snap

together programming blocks to construct scripts, allowing for the creation of various

interactive media.

While block-based editors like Scratch have proven effective in introducing pro-

gramming concepts to novices, they may become cumbersome for more experienced

users due to their mouse-driven input and low visual information density. Nonethe-

less, Scratch has achieved success in teaching programming fundamentals and, as of

April 2024, it has a rank of 15 in TIOBE3 index, which measures the popularity of

programming languages through search engine data.

Snap! [21] an extended reimplementation (in JavaScript) of Scratch that has fea-

tures such as first-class lists, procedures, sprites, costumes, sounds, and continua-

tions. Snap! aims to provide a more advanced introduction to computer science

suitable for high school or college students. While Scratch has been widely used as

a programming language for children, it possesses limitations such as the absence of

procedures and weak support for data structures. Snap! maintains the core simplicity

and user-friendly nature of Scratch while introducing powerful features to support a

3https://www.tiobe.com/tiobe-index/

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas
https://www.tiobe.com/tiobe-index/


M.Sc. Thesis – N. Osmani; McMaster University – Computing and Software

comprehensive introductory computer science curriculum.

Blockly [1] is a free and open-source software developed by Google and offers

essential tools and components to construct block-based languages and editors. While

primarily designed as a library, Blockly also has characteristics of a block-based editor

itself. The introduction of Blockly paved the way for further research in the field

of block-based editors. Users can interact with and manipulate blocks consistently

as they construct their own programming environments. Blockly is implemented in

JavaScript and has a smooth integration with it which makes it an easy-to-use solution

that runs within web browsers and delivers a user experience similar to Scratch. Its

effectiveness led Scratch to adopt Blockly as its implementation language starting

with version 3.0.

One of Blockly’s important features is its ability to generate code across vari-

ous programming languages, including JavaScript, Python, and PHP. However, this

translation is one-way, meaning that only the blocks can be converted to text code.

As an attempt to make this conversion bidirectional, Droplet [6] was introduced

that can convert blocks to code and vice versa. Droplet is used for the development

of the Pencil Code4 which is an educational programming language and website.

As an attempt to pave the way for creation of block-based editors, Kogi [42] is

introduced as a tool designed to derive block-based environments from context-

free grammars, particularly for domain-specific languages and other programming

interfaces. Kogi aims to integrate the creation process by repurposing existing lan-

guage artifacts which in turn significantly reduces the effort required to construct

block-based environments from scratch. By transforming context-free grammars into

abstract structures, Kogi generates block-based environments based on Blockly. The

4https://pencilcode.net
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effectiveness of Kogi is demonstrated through four case studies that showcase its abil-

ity to create environments for DSLs such as state machines, sound synthesis, simple

programming languages, and questionnaires.

Building upon Kogi’s concept, Verano Merino et al. introduced S/Kogi [44] as an

enhancement aimed at refining and optimizing block-based editors generated from

language grammars. By analyzing input grammars and applying structural changes,

S/Kogi reduces the complexity of the resulting block-based editors while adhering

to established aesthetic guidelines. This refinement process significantly decreases

the number of blocks, which enhances the usability of the editors across languages

of varying complexities. S/Kogi represents a significant advancement in the field of

block-based environment generation and user-friendly development processes.

Finally, the same team of researchers introduced Blocklybench [43] as a work-

bench to facilitate the creation of block-based environments for both programming

languages and semi-structured data languages. Blocklybench provides developers

with a meta-block-based environment to describe specific elements of block-based

environments using block notation. This tool enables developers to express key as-

pects such as layout, color, block connections, and code generators. Developing a

block-based environment with Blocklybench involves several steps, beginning with

the definition of language constructs (blocks), followed by the creation of categories

to organize blocks for end-user accessibility. Finally, developers translate blocks into

executable or data languages through the definition of code generators, which may

involve multiple generators depending on language use cases. While Blocklybench

offers a robust mechanism for developing block-based environments, it faces certain

limitations, particularly in maintaining the link between blocks and code generation.
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Integrating Blocklybench with approaches similar to S/Kogi’s (such as annotating in-

put grammars) could offer solutions to this challenge to enhance the overall efficiency

and flexibility of block-based environments.

2.2.4 Frame-based Editors

Frame-based editors [8] represent another class of structure editors that blend the

advantages of text-based and block-based editors. Block-based editors are great at

reducing syntax errors and facilitate the recognition of code elements, especially for

novice programmers. However, they often lack efficiency in quick manipulation of the

code. On the other hand, text-based editors offer a more fluid editing experience for

advanced users. To combine the best of both worlds, frame-based editors enhance user

interaction with code by presenting each program element as a ‘frame’. A frame, as

shown in Figure 2.2, is a unified, indivisible entity that wraps a particular structure

or statement within the program. These editors use simple graphical elements to

represent concepts that are less effectively conveyed through mere text characters,

such as scope. It should be noted that while program entry is primarily facilitated

through keyboard shortcuts, such as pressing the i key to insert an ‘if’ frame, these

editors do not fully support keyboard interactions.

The design of frame-based editors not only reduces common syntax errors, similar

to block-based editors, but also preserves the textual representation of programming,

which makes it suitable for both novices and advanced users. It also facilitates a

smoother transition for novices advancing to more complex development environ-

ments. The authors in [37] evaluated the use of frame-based editors and suggested
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Figure 2.2: Illustration of a couple of frames in the frame-based editor. The blue
bar is the frame cursor.

that frame-based editing effectively reduces the burden of syntax for novice program-

mers and may improve performance on programming tasks.

2.3 Discussion

Table 2.1 summarizes the related works explored in this chapter. In Section 2.1,

we have explored various methodologies for constructing structure editors and dis-

cussed how each approach influences the functionality and user interaction of these

editors. It is important to note that a combination of these methodologies is possible,

and an implementation might integrate more than one approach to create a desired

editing environment. Moreover, it should be noted that some works, such as Blockly-

Bench [43], are developed from scratch, but their final products can be utilized by

others to create editors from language specifications.

For the implementation of ElmSr, we chose to develop from scratch to maintain

full flexibility over the implementation, particularly of text-based interactions. Our

choice of the Elm programming language facilitated this process due to its straight-

forward type system.
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We also have addressed various types of structure editors. We discussed that

initial strict structure editors often suffered from usability issues. Subsequently, user-

friendly block-based editors emerged and have been particularly effective in teaching

programming to novices. However, this simplicity presents significant drawbacks. On

the one hand, they make expression entry tedious especially in expression-oriented

programs. On the other hand, they can hinder novices from easily transitioning to

more advanced programming environments due to their simple interfaces. In response

to these challenges, frame-based editors were introduced, aiming to merge the advan-

tages of both block-based and text-based systems.

Concurrently, developments in keyboard-driven structure editors tried to overcome

the limitations of strict editors by enhancing keyboard interactions within the typical

operations of structure editors. Our ElmSr editor falls into the category of keyboard-

driven structure editors, as it supports extensive keyboard interactions similar to

those expected in traditional text-based editors.

Table 2.1 also details how each editor supports the input of expressions. Strict

Structure entry mode requires users to adhere to the AST’s tree structure or employ

drag-and-drop for each element of an expression. Seamless structure closely mimics

the behavior of conventional text-based editors, while free-form allows for the free-

form input of expressions which requires subsequent parsing to convert text into an

AST. Additionally, the table lists the target languages for which these editors are

designed.
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Chapter 3

Preliminaries

In this chapter, we introduce the concepts that are essential in understanding the

thesis. We will examine the Elm programming language, delving deep into its archi-

tectural framework and core principles. We will then detail Elm’s type classes and

their role in our editor. The subsequent sections discuss the types of polymorphism

in functional programming languages. We further explore the Algebraic Thinking

approach in teaching problem-solving and computer science concepts. We then in-

troduce two code refactoring techniques that are essential in the algebraic thinking

curriculum. Finally, we discuss the general concept of AST with a focus on zipper

concepts.

3.1 Elm Programming Language

Elm is a functional programming language that aims at designing responsive frontend

web applications [11]. Unlike many mainstream languages, Elm is characterized by

its strong static typing, emphasis on purity, and absence of runtime exceptions. It
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should be emphasized that Elm has a robust type system, which not only assists

developers in writing correct code but also provides human-readable error messages

that guide them towards solutions.

Elm provides developers with a rich set of tools and abstractions for building web

interfaces. An Elm application can be compiled into an optimized JavaScript code,

however the standard tooling1 can wrap this code in an HTML file for ease of use and

deployment.

Elm’s architecture, commonly referred to as The Elm Architecture (TEA), struc-

tures applications in a unique Model-View-Update (MVU) pattern, which combined

with Elm’s emphasis on immutability and functional paradigms ensures consistent

and maintainable application design. The architecture is further enhanced by the

Elm Runtime which orchestrates various interactions. In this section we give an

overview of The Elm Architecture and its components.

Model. In the Elm architecture, the Model represents the state of the Elm appli-

cation. It is a data structure typically realized as a record or custom type that the

developer defines based on what kind of stateful information the application requires.

The Model captures all stateful information, be it user data, UI status, or other ap-

plication data. As an example, the Model in a simple counter application might be

an integer holding the current count (state):

type alias Model = { count : Int }

Elm enforces immutability, meaning once a data structure is created, it cannot

be changed. Instead, any changes must be realized by creating a new copy with the

modifications applied. Hence, updates to application’s state generate a new instance

1elm make
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of the Model.

view. The view function renders the application’s current state into a user interface.

It transforms the Model into a virtual DOM, which is then converted into an actual

webpage DOM by the Elm Runtime. Depending on the specific Elm packages used

for the user interface, the view function can build outputs in HTML, SVG, etc. The

following is the type annotation for the view function:

view : Model -> Html Msg

It takes the current state of the Model and returns HTML that can produce mes-

sages of type Msg.

update. The update function implements the main logic of the application, reacting

to different messages (events). Given the current Model and a message, it determines

how the Model should change. This function potentially yields a new Model (due to

immutability) and can also produce side effects as commands, if necessary.

As can be seen in the following annotation, the update function accepts a message

of type Msg and the current Model, and returns a potentially updated Model and

commands that can produce other messages of type Msg:

update : Msg -> Model -> ( Model , Cmd Msg )

Other than the above three components, Elm’s central orchestrator is the Elm

Runtime which is the environment in which the Elm code runs. It basically manages

interactions, state and rendering, and bridges the gap between the application (the

above functions) and the outside world (such as browser’s DOM). The Elm Runtime

is responsible for listening to events, updating the Model based on messages and

the update function, executing side effects (Cmd), managing subscriptions (Sub), and

rendering the view using the view function.
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subscriptions. The subscriptions function is responsible for setting up event

listeners for various events, like key presses, and mouse movements. When these

events occur, they generate messages that are sent to the update function. Thus, the

subscriptions can be defined as the following which takes the Model and returns a

subscription (Sub) that can produce messages of type Msg.:

subscriptions : Model -> Sub Msg

init. The entry point of an Elm application is the init function. It takes the

Model as the initial state of the application and can send out initial commands that

can produce messages, if necessary.

init : ( Model , Cmd Msg )

Figure 3.1 illustarates the lifecycle of the Elm application. Figure 3.1a shows that

the process starts with the init function which sets the initial state of Model ( 1 )

and can produce the intial list of commands ( 2 ) as side-effects that are executed

outside of the Elm Runtime. Then, subscriptions asks Elm Runtime to set the event

listeners the application should subscribe to ( 3 ). Once the initial state is set and

event listeners are configured, the model is passed to the view function ( 4 ) to render

the user interface. At this point, the application waits for user events.

Figure 3.1b depicts the process of handling user events. When a user performs an

action, such as a key press, a corresponding event is generated and translated it into

a message ( 1 ). The message, along with the current state (Model), is passed to the

update function ( 2 ). The update function, returns a newmodel ( 3 ) and commands

for side effects ( 4 ). After the state transition, the Elm Runtime invokes the view

function to render the new model ( 5 ). Any further user interaction produces new

messages, continuing the above loop.
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Side Effects Elm Runtime subscriptionsupdate view
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(a) Elm application’s initialization sequence: Model setup, initial commands dispatching,
event subscription configuration, and initial view rendering
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Cmd
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Msg Model
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Cmd

Model
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New

Ask Elm Runtime to subscribe

Msg 1
New event!

(b) Processing user events: Message reception by the runtime, state update, and view
re-rendering accordingly

Figure 3.1: The Elm application lifecycle

3.1.1 Type Classes

Type classes in programming languages are a type system construct that supports ad

hoc polymorphism, which is the ability of a value to adopt any one of several types

because it can be evaluated in different ways based on its context. Type classes define

a set of functions that can have different implementations depending on the type of

data they are used on. This allows functions to be written generically, making them

flexible in handling different types.

Haskell, for instance, has a well-known type class system that allows for the cre-

ation of functions that can accept multiple types, and it can determine the appropriate

type at compile time. It means that a programmer can implement a function that
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behaves differently (and appropriately) based on the type of the input.

Elm, on the other hand, has no user-defined type classes. Elm does, however,

have a few built-in type classes such as number, comparable and appendable. These

built-in classes, unlike user-defined type classes, are limited in scope but still play a

vital role in Elm’s type system. It should be noted that Elm doesn’t have type classes

in the same way as languages like Haskell. It is more accurate to say that Elm has a

few built-in constrained types that function in ways similar to type classes in other

languages. It is not possible for an Elm programmer to create their own type classes

or extend the existing ones. Although they are limited, they are crucial in allowing

values to be contextually evaluated which enables Elm to ensure type safety while

offering some degree of type flexibility.

In the following, three built-in type classes of Elm are described:

• number: This can be either an Int or a Float. Elm will determine the precise

type based on the context in which the number is used. In the following example,

the type of x is inferred based on the context in which it is used. When it is

added to an Int, it is considered an Int, and when it is added to a Float, it is

considered a Float:

x = 3

sumInt = x + 2 -- 5 : Int

sumFloat = x + 2.5 -- 5.5 : Float

• comparable: This type class is used for types that can be ordered or compared

using relational operators like <, <=, ==, /=, >=, and >. These operators work

on all types that are part of the comparable type class including Int, Float,

Char, String, Time.Posix, and List comparable types. For example:
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isLess = 2 < 3 -- True

isSame = "Hello" == "World" -- False

• appendable: This type class is used for types that can be appended using

the ++ operator. The types String, List a, and Text are contained in the

appendable type class. For examle:

greeting = "Hello" ++ " World!" -- "Hello World !"

numbers = [1, 2, 3] ++ [4, 5, 6] -- [1, 2, 3, 4, 5, 6]

In our editor’s implementation, we have chosen to adopt a similar strategy, and we

have implemented only the number type class. Rather than implementing a generic

handling of type classes (which Elm does not support for user-defined types), we

have provided specific editor support for built-in number type class, and postponed

the implementation of the other two for future works. This approach aligns with

Elm’s philosophy of simplicity and safety. As demonstrated in Section 4.7, we have

built a supertype solution for numeric types to allow a smooth transition between

integer and float types.

3.2 Polymorphism in functional programming

In this section, we discuss the two forms of polymorphism in functional programming.

Parametric Polymorphism

Parametric polymorphism allows implementing functions that operate uniformly on

any type where the behavior is the same regardless of the type being used. This

enables higher levels of abstraction and code reusability.
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A common use of parametric polymorphism in Elm is the implementation of

generic data structures and higher-order functions like List.map. Here’s an exam-

ple that illustrates the use of parametric polymorphism with a function that doubles

every element in a list, using List.map:

Listing 3.1: Parametric Polymorphism Example

doubleList : List number -> List number

doubleList numbers = List.map (\n -> n * 2) numbers

The List.map function itself is a great example of parametric polymorphism:

List.map : (a -> b)-> List a -> List b

Here, a and b can be any types, making List.map applicable to a wide variety of

situations. It abstracts the pattern of applying a function to every element in a list,

regardless of the specific types involved.

Ad hoc polymorphism

Ad hoc polymorphism allows different implementations of a function depending on

the type of arguments it receives. Essentially, it is a way to provide multiple imple-

mentations of a function under the same name for different types.

Elm does not natively support ad hoc polymorphism in the way that some other

languages like Haskell do. However, in Elm, pattern matching with custom types is

a way to define different behavior for different cases, though, it should be noted that

it is not the same as ad hoc polymorphism.

In the following, such an example in Elm is illustrated where a custom Shape type

with different constructors for different shapes is defined. A function to calculate the

area can be defined specifically for this type, with different implementations for each

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – N. Osmani; McMaster University – Computing and Software

shape:

Listing 3.2: Similar to Ad Hoc Polymorphism Example in Elm

type Shape = Circle Float | Square Float

area : Shape -> Float

area shape =

case shape of

Circle radius -> 3.14 * radius ^ 2

Square side -> side ^ 2

3.3 Algebraic Thinking

The curriculum at the heart of this research is called “Algebraic Thinking” which has

been used for 7 years in the outreach activities at McMaster Univeristy in collabora-

tion with local teachers. It is an approach to teaching computer science, particularly

to K-8 students [13].

This curriculum places the main emphasis on the general concept of functions

before narrowing down to its specific applications like arithmetic. The approach chal-

lenges traditional teaching methods, which usually build on learners’ prior knowledge

of arithmetic to explain programming concepts. Thus, instead of building on con-

cepts like numbers and arithmetic and developing imperative programming, it builds

on notions of shapes and transformations, and develops higher-level algebraic concepts

using functional programming.

By teaching functions first, the curriculum aims to elevate learners to higher levels
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of mathematical abstraction early on. It demonstrates the utility of algebraic think-

ing, highlighting the importance of functions and then mapping arithmetic to this

conceptual understanding of functions.

In practical terms, this teaching approach involves engaging students in creating

graphics and animations using Elm and the GraphicSVG library2. Concepts are often

introduced as “tips” for enhancing their creations, rather than as rigid, standalone

lessons. This tactic motivates students, as they can immediately see the benefits of

applying these new concepts.

As an example, students learn how to define an object with a GraphicSVG group

and create copies of a graphic on a collage plane. As they progress, they are encour-

aged to reuse code instead of duplicating it. They also learn to modify variables to

create variations in their graphics, such as different colors.

3.4 Code Refactoring

Refactoring in programming is the process of modifying existing code to improve its

structure, design, or readability, without altering its external behavior or function-

ality. Several types of refactoring operations are commonly utilized in programming

editors. For example, a simple refactoring operation is rename which is as simple

as altering the name of a code element like a variable, function, or class to make it

more descriptive or accurate. Another more complex is inline refactoring which is

done when a function’s body is as clear as its name, or if it is called just once. It

often makes sense to remove the function and incorporate its body into the original

call location. These refactoring strategies, among others, boost the code’s readability,

2https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/
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maintainability, and in some cases, its performance.

However, in the context of our specific teaching style, Algebraic Thinking, two

types of refactoring operations are particularly interesting:

Extract Parameter: In this operation, a constant or literal value within a func-

tion body is converted into a function parameter. This refactoring operation aligns

with our teaching style by helping students develop concepts by generalizing examples

into abstract patterns as realized by functions. This abstraction, rather than being a

brain teaser, is a practical way of broadening a function’s applicability. An example

of creating a color parameter is shown below:

Before:

myShape = circle 10 |> fill red

After:

myShape color = circle 10 |> fill color

Extract Definition: This operation involves taking a segment of code, assigning

it to a new definition (like a function definition) in the immediate or outer scope,

and replacing the original segment with the new variable. This operation is a clear

demonstration of how complex expressions can be decomposed into simpler, reusable

parts — a crucial concept in our teaching style. By transforming an entire expression

into a definition, students learn to view code not just as a linear sequence of instruc-

tions, but as a collection of discrete, reusable units that can be composed (hence the

original definition of Algebra as taking apart and putting together [13]) to achieve

complex outcomes. An example of such refactoring is shown below which defines 5

as a new definition:

Before:
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let

calculateArea r = pi * r * r

in

calculateArea 5

After:

let

radius = 5

calculateArea r = pi * r * r

in

calculateArea radius

These refactoring operations are supported by tools such as IntelliJ IDEA3, Visual

Studio Code, and Eclipse for widely-used languages like Java, Python, and C++.

However, for less mainstream languages like Elm, the available tooling might be more

limited.

3.5 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a tree representation of the structure of source code

which captures the code’s essence, representing statements, operations, operands, and

their relationships in a condensed form. Within an AST for an expression, each inter-

nal node denotes an operator, and its children symbolize the corresponding operands.

This representation can be generalized to other programming constructs like the if-

then-else statement for which the construct (if-then-else) can be considered as the

3IntelliJ Idea’s support of this refactoring: https://www.jetbrains.com/help/idea/

extract-parameter.html
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+

3 *

5 2

Figure 3.2: An example AST

operator and its components (condition, then branch, else branch) can be regarded

as operands [5]. For instance, consider the arithmetic expression 3 + 5 * 2. Fig-

ure 3.2 shows the AST representing this expression that prioritizes the multiplication

operation due to its precedence.

On the other hand, a parse tree represents the syntactic structure of a source code

based on a specific formal grammar. Each leaf node (terminals) represents a token

from the expression and interior nodes (non-terminals) represent the grammatical

constructs from the grammar that were used to recognize the sequence of tokens.

Unlike a parse tree, which represents every detail and construct in the source

code, an AST abstracts away certain syntactic details and focuses on the semantic

structure of the code. Therefore, ASTs are more suitable for structured editors to

facilitate more intuitive manipulations.

3.6 Zipper

The Zipper data structure, as introduced by Gérard Huet in his seminal paper [24],

provides a method to efficiently navigate and manipulate immutable tree structures.

It is essentially a way to “focus” on a specific part of a tree, enabling operations at

that location without having to reconstruct the whole tree. This method effectively
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turns the tree “inside out”, so that the element under focus is the root of a new tree,

accompanied by its context.

The zipper elegantly solves the challenges of working with immutable data struc-

tures, particularly when changes need to be localized. Without a data structure

like the Zipper, altering an element deep within an immutable tree would require the

reconstruction of significant portions of the tree. This can be a huge problem when

working with large trees. The zipper, however, by retaining the context, allows for

such modifications in a more efficient manner.

Understanding the Zipper data structure is key for this thesis. Therefore, we

will delve deeper into the Zipper’s core concepts, explaining its definitions of tree,

location, and path, all presented in the Elm language4.

The Tree is defined as:

type Tree

= Item String

| Section (List Tree)

where the constructor Item of type String represents a leaf node that contains an

item, and the constructor Section represents an internal node that contains a list of

its child Trees.

A Path represents a way to reach a particular node in the tree and recursively

captures the surroundings of a focused node. It can be defined as:

type Path

= Top

4Note that the original definitions in Huet’s paper were in OCaml. We focus on explaining the
structure rather than the exact translation. For example Item in Tree definition in the original
paper is Item of item, but we simply represented it as String in definitions.
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| Node (List Tree) Path (List Tree)

where Top represents the root of the tree, and Node(l, p, r) is a node in the path

in which l is the list of left siblings (in reverse order), p is the parent’s path, and r is

the list of right siblings (in order).

A Location in the tree is a pair consisting of the current focused subtree and the

path leading to that subtree which can be defined as:

type Location

= Loc Tree Path

For example, the tree in Figure 3.2 is represented as:

treeExample : Tree

treeExample =

Section

[ Item "3"

, Item "+"

, Section

[ Item "5"

, Item "*"

, Item "2"

]

]

and visually as in Figure 3.3.

If we were to focus on the “*” operator within this tree, the location would be:

Loc

(Item "*")
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Section

Item “3” Item “+” Section

Item “5” Item “*” Item “2”

Figure 3.3: AST of Figure 3.2 represented as a Tree in Huet’s paper

(Node

[Item "5"]

(Node

[Item "+", Item "3"]

Top

[])

[Item "2"]

)

In his paper, Huet suggests certain modifications to adapt the Zipper for use

with ASTs. Initially, the tree structures in Huet’s approach are untyped and do

not have specific labels for tree nodes. To facilitate the manipulation of ASTs, it is

recommended to label these tree nodes with proper names in the Path. For instance,

the operands of a binary operator in an expression tree, like +, can be addressed

with “left” and “right” in the Path to distinguish the location of the cursor. We will

describe our interpretation of this adaptation in Section 4.2.
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Chapter 4

ElmSr

In this chapter, we describe ElmSr, the novel structure editor specifically created for

the Elm programming language. We elaborate on our design goals, ElmSr’s high-level

design and choices, and the granular implementation details.

4.1 Design Goals

This section outlines the fundamental design goals for our ElmSr editor, which aims to

make the programming learning experience more efficient and enjoyable for novices.

DG1: User-Friendly Design. The editor should be intuitive and straightfor-

ward to use, specifically designed for children who are novice programmers. Moreover,

if the shortcut keys are needed, they must be defined as intuitive key combinations,

and they should not be overwhelming.

DG2: Error-Free Coding Environment: The editor should guide users to

write correct and valid Elm code by providing different methods of code construction

to support this goal.
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DG3: Algebraic Thinking Curriculum Support: The editor should facil-

itate the implementation of the algebraic thinking curriculum. It should allow for

unique features that align with this teaching style, such as converting constants in a

function’s body to a function parameter, or transforming an entire expression into a

definition. These features support the teaching philosophy of emphasizing functions

over arithmetic and promote code reusability and abstraction.

DG4: Providing Consistent Experience for Arithmetic Expressions: The

editor should provide a uniform user experience for expression construction and edit-

ing, specifically in handling infix expressions, which ensures consistency and minimizes

the need for users to learn complex operations. By simplifying the process, users can

simply input their desired expressions, similar to typing in a traditional text editor.

DG5: Semantic Focus: The editor should support a structure-based focus,

enabling highlighting of code blocks or their components. This functionality can

emphasize semantic connections within the code, aiding the user’s understanding of

program structure and logic.

DG6: Structure Manipulation: The editor should support easy and correct

code modifications. This includes the ability to rename elements, change numbers,

and manipulate code structures, offering a type-sensitive drop-down menu and copy

and paste functionality for code insertions.

DG7: Navigation Consistency: The editor should provide a way to navigate

through the code that aligns with the visual layout of the programming blocks, rather

than strictly following the tree-like structure of the underlying code. This enhances

the connection between the code and its visual representation.
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4.2 Adapted AST and Zipper

In section 3.6, we explored the original concept of the zipper data structure and high-

lighted its utility in efficiently navigating and manipulating immutable tree structures.

In this section, we describe our adjustments to the AST and the zipper to align with

our specific requirements. Our adaptation involves a fully-typed AST and a corre-

sponding recursive zipper path type structure.

4.2.1 Fully-Typed AST

In the ElmSr editor, we have designed a fully-typed AST. This means that each

node within the tree doesn’t just represent a language construct, but also carries

specific type information with it. This approach was particularly feasible due to Elm’s

relatively simple type system, which allowed us to create a fully typed AST that is

easy to understand, manipulate, and maintain. Elm’s simplicity in type handling

greatly facilitated the development of our structure editor.

Listing 4.1 represents an excerpt of the fully-typed AST. Note that, the code

showcased here is just an excerpt and does not encompass the full scope of the ElmSr’s

supported types. The type ElmType represents any valid Elm type within an Elm code

and ElmNum represents valid Elm expressions with a numerical outcome.

Listing 4.1: Typed AST

type ElmType

= ElmNum

| ElmBool

...
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type ElmNum

= NumHole

| NumIf ElmBool ElmNum ElmNum

| NumInfix String ElmNum ElmNum

...

For instance, consider the Elm expression if a then 3 else4. In our AST, this

entire if-then-else statement is encapsulated within a NumIf node that indicates

the numerical outcome of the expression. Yet, each constituent part of the statement

– a, 3, and 4 – stands as a separate node with attached type information, with a being

an ElmBool, and 3 and 4 being ElmNum.

It should be noted that to represent an if-then-else that evaluates to a specific

type, our AST has a similar rule in the corresponding ElmType type definition. For

example, for an if-then-else that evaluates to a boolean type (Bool), such as in the

expression if (5 > 2)then True elseFalse, we have a corresponding rule in ElmBool

type definition (i.e., BoolIf ElmBool ElmBool ElmBool.)

Typed Holes

We utilize the concept of typed holes to enhance the coding experience while main-

taining code correctness consistently. Typed holes are specific locations within the

code where the user needs to input an expression of a designated type. We have

modeled these holes in our AST to support structured code completion. They are

denoted as Type Hole where Type can be any of the Elm types supported by our

editor. For example, NumHole node corresponds to a location in the code where the

user can input an expression of type Num as indicated in Listing 4.1.
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Once the cursor is located at a hole, the user can simply type the desired expres-

sion. To assist the user in filling these holes accurately, ElmSr provides a user-friendly

approach. When a user starts typing within a typed hole, a drop-down menu appears,

offering a selection of options that are compatible with the type of the hole. This

drop-down menu ensures that the user’s input aligns with the type of the hole. As

the user gradually constructs their code, the typed holes ensure that the code is syn-

tactically correct. Of course, the presence of these holes constantly reminds the user

that there are gaps to be filled before considering the code as complete.

Definitions

ElmSr’s AST includes various types of definitions that can be used in an Elm code,

some parts of which are outlined in Listing 4.2. For example, in our AST, DefNumVar

indicates the definition of a numerical value. It consists of a variable name (of type

VarName, an alias for a string) and the corresponding numerical value expressed as

ElmNum. The constructors DefBoolVar and DefListVar are the same as DefNumVar

except that they define a boolean and a list respectively. To define functions returning

numerical results DefNumFunc is used which includes the function name (represented

by VarName), a list of parameters (List ElmParam), and the numerical return value

indicated by ElmNum. Finally, the constructor DefCustomType enables the definition

of custom types. It includes the type constructor name (as TyConstructor), a list of

type variables (List TyVarName), and a list of data constructors (List Constructor)

that define the structure of the custom type.

We omit the detailed path definition for ElmDef, but it should be noted that

ElmDefPath defines various path constructors that help us in tracking the cursor’s
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location within different parts of each definition, including the definition name, value,

and parameters.

Listing 4.2: Definitions

type ElmDef

= DefNumVar VarName ElmNum

| DefBoolVar VarName ElmBool

| DefListVar VarName ElmList

| DefNumFunc VarName (List ElmParam) ElmNum

| DefCustomType TyConstructor (List TyVarName) (List ←↩

Constructor)

...

Module

In ElmSr, the ElmModule type is used to represent a module, which is essentially a list

of definitions as can be seen in Listing 4.3. For the purpose of this thesis, we mainly

focused on defining a single module. However, it is important to note that expanding

our editor to include multiple modules is straightforward.

Furthermore, in our AST, similar to the “Top” constructor in Huet’s zipper path,

we have EMTop that indicates the highest level of the AST.

Listing 4.3: Module

type ElmModule

= Module (List ElmDef)

type ElmModulePath

= EMTop
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The wrapper and type safety

The fully-typed AST defined above enhances code manipulations and minimizes po-

tential type errors by utilizing facilities of the Elm compiler. For example, the Elm

compiler can prevent attempting to enter a String where an Int is expected (accord-

ing to the AST). However, in the design of our typed AST, there might be situations

where the type of a subtree’s head is ambiguous such as in constructs like list ele-

ments, or we have a heterogeneous set of elements that are required to be in sequences

like lists. For example, the list of function arguments might include integers, strings,

and even other functions.

One potential solution could be to embed all possible types into the AST, thus

enforcing strict type safety. However, this approach restricts ElmSr to a finite set of

types. For the editor to be versatile, allowing constructs like nested lists and recursive

types are essential. These recursive constructs inherently lead to an infinite set of

possible types that avoids achieving complete type safety in our editor. In contrast,

languages like Haskell, with their support for existential types are able to address this

issue. But within the constraints of Elm, such features are unavailable.

One way to unify these different types into a consistent format is by using a wrap-

per type as shown in Listing 4.4. Having this type defined, a numerical function appli-

cation can be indicated as NumFunApp String (List Wrapper) where (List Wrapper)

captures the list of arguments to be passed to the function.

Listing 4.4: Wrapper

type Wrapper

= WrapNum ElmNum

| WrapBool ElmBool
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| WrapList ElmList

...

It should be noted that the flexibility offered by the wrapper also raises concerns

regarding type safety. Though the AST aims to be ‘fully-typed’, the wrapper, due

to its generic nature, might lead to situations where explicit type checks could be

bypassed. Given these constraints, the wrapper, however, seems to be a practical

solution. It ensures that from a user’s perspective, the interactions remain consistent

and free from type-unsafe scenarios. Moreover, it introduces a trade-off between type

generality and type specificity.

Zipper’s Location and Path

Modeling the tree is only one aspect of this design. To manipulate and navigate

the fully-typed AST, ElmSr employs an advanced variant of the zipper data struc-

ture. Traditional zipper structures allow efficient navigation and manipulation of

data structures by maintaining a cursor and a list of breadcrumbs. However, they

often lack type safety or the ability to handle diverse data structures. In contrast,

the zipper implemented in ElmSr maintains full type safety and can accommodate

the fully typed AST using Location type and the relevant path types described in

the following.

ElmSr keeps track of the cursor’s location using the zipper structure. As men-

tioned in Section 3.6, this location stores both the cursor’s position and facilitates

the reconstruction of the tree around that cursor. As shown in Listing 4.5, this type

includes a multitude of constructors, one for each node type in the AST, indicating

where the cursor is currently located and carries along a path object. For instance, if
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the cursor points to an ElmBool node, a LocBool will keep track of it, which contains

the ElmBool node itself, and its path within the AST.

Listing 4.5: An excerpt of the Location Type definition

type CaretPosition

= Start

| End

| Oper

type Location

= LocNum ElmNum ElmNumPath CaretPosition

| LocBool ElmBool ElmBoolPath CaretPosition

| ...

| LocMatch ElmMatch ElmMatchPath

| LocList ElmList ElmListPath

| LocItem ElmItem ElmListPath

| LocDef ElmDef ElmDefPath

| LocModule ElmModule ElmModulePath

| LocParam ElmParam ElmDefPath

| LocDataConstr Constructor ElmDataConstrPath ElmDefPath

The zipper’s path, defined with types like ElmNumPath, ElmBoolPath, etc., as shown

in Listing 4.6, assists in reconstructing the complete AST from the current cursor lo-

cation. In the context of the previous example if a then 3 else4, consider a situation

where the cursor is located at a, the boolean condition of the statement. The location

of the cursor would be represented as LocBool a (CondOfNumIf_ parentPath 3 4)

according to LocBool ElmBool ElmBoolPath in the definition of Location, and

CondOfNumIf_ ElmNumPath ElmNum ElmNum in the definition of ElmBoolPath.
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The (CondOfNumIf_ parentPath 3 4) in the cursor location means the cursor’s

parent node is a NumIf node, with 3 and 4 being the then and else parts respectively.

The parentPath in this case represents the path from the NumIf node to the root of

the AST. This path would depend on the overall structure of the code.

Overall, the recursive path structure allows us to navigate from any node in the

AST to the root while maintaining type safety. This is a powerful feature in AST

manipulation as it allows precise navigation and manipulation while preventing type

mismatches.

Listing 4.6: Recursive Path Types

type ElmNumPath

= ThenOfNumIf_ ElmBool ElmNumPath ElmNum

| ElseOfNumIf_ ElmBool ElmNum ElmNumPath

| LeftOfNumInfix_ String ElmNumPath ElmNum

| RightOfNumInfix_ String ElmNum ElmNumPath

| ...

type ElmBoolPath

| CondOfNumIf_ ElmNumPath ElmNum ElmNum

| ...

As another example, imagine a tree representing an arithmetic expression:

(3 * (4 + 5)). If our focus is on the addition operation, the cursor will mark

(4 + 5). In our model, the focus sub-tree is entirely (4 + 5), and the path is cap-

tured as RightOfNumInfix_ "*" (NumegerConst NumSuperTy 3)parentPath in which

parentPath may contain the rest of the path1. Figure 4.1 visualizes how the zipper

1For example, if the expression was the body of a function “func”, the path could be
RightOfNumInfix_ "*" (NumegerConst NumSuperTy 3)(BodyOfNumFun "func" ...)
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changes when the cursor moves over the expression. When required, the original

expression can be reconstructed.

*

3 +

4 5

Cursor’s Location: 
LocNum 
   (NumInfix “*” 
     (NumegerConst NumSuperTy 3)
     (NumInfix “+” 
       (NumegerConst NumSuperTy 4)
       (NumegerConst NumSuperTy 5) 
      )
    ) 

(sub)tree path

( )End

Caret Position

(a) The focus is on the whole expression

*

3 +

4 5

Cursor’s Location: 
LocNum 
  (NumInfix “+” 
     (NumegerConst NumSuperTy 4)
     (NumegerConst NumSuperTy 5) 
  )

(sub)tree path

(RightOfNumInfix_ “*”
    (NumegerConst NumSuperTy 3)
 )( )End

Caret Position

(b) The focus moves on (4+5)

*

3 +

4 5

Cursor’s Location: 
LocNum 
  (NumegerConst NumSuperTy 4) 

(sub)tree path

(LeftOfNumInfix_ “+”
  (RightOfNumInfix_ “*”
    (NumegerConst NumSuperTy 3)
  )
  (NumegerConst NumSuperTy 5)
)
    ( )End

Caret Position

(c) The focus moves on 4

Figure 4.1: AST Zipper Diagram

Our approach provides an intuitive way to manipulate tree structures in our editor,

while also allowing for efficient projection, modifications and reconstructions.
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4.2.2 Modularized Projection

Our adapted zipper modeling approach has allowed for simplification of our projection

logic. By modularizing the rendering process, the task of continous projection of the

tree is divided into more manageable and intuitive subtasks, as described in the

following:

• prettyType Functions: These functions are responsible for rendering repre-

sentations of the given type. Examples include prettyNum for numbers and

prettyBool for boolean values. Each prettyType function provides a visual-

ization of the primary element under focus, and generates the output shape of

that focused part of the tree. prettyType functions either generate the shape

or call the mk* functions.

• mk* Functions: These utility functions are designed for specific constructs in

the programming language. Their role is to standardize the rendering of these

constructs. mkBinary, for instance, would ensure that all binary operations, irre-

spective of their specific operators or operand types, are visualized consistently.

Similarly, mkIf standardizes the rendering of conditional statements.

• prettyWrapType Functions: Supporting the prettyType functions, the

prettyWrapType suite is responsible for rendering the broader context surround-

ing the primary focus. They render the non-focussed parts of the program which

“wrap” the focus, and include sibling nodes and other definitions in the module.

Each function, such as prettyWrapNum, operates by recursively decomposing the

path. During each recursive call, the path is segmented into two parts: the
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immediate outer context and the residual path. The immediate context is uti-

lized for the current rendering operation, while the residual path is passed on

to subsequent recursive calls. This strategy ensures that every layer of the path

is accurately visualized, starting from the immediate context and progressively

expanding outwards.

• prettyLocation Function: An essential component in our rendering mechanism

is the prettyLocation function. This function is the main function in our AST

visualization system, as it continuously renders the program code AST. Based

on the location type, it calls the corresponding prettyType function and then

calls the relevant prettyWrapType function to wrap its output. It actively

projects the whole tree and highlights the location of the cursor. An example

is shown in Figure 4.2 which illustrates how the projection of Listing 4.7 is ren-

dered using the location of the cursor. The cursor is on a2 which is a LocNum type

of location ( 1 ). Listing 4.8 is the path of the cursor which can be described

as follows: At the most granular level, a2 is the right operand of an addition

operation paired with a1 ( 2 ). This specific addition, (a1 + a2), subsequently

acts as the left operand in another summation, complemented by the constant

45 on its right ( 3 ). This combined expression, ((a1+a2)+ 45), outlines the

body of a function "fun1" with two parameters a1 and a2 ( 4 ). Zooming out

to the module’s broader landscape, this function "fun1" is placed between two

definitions. Preceding it (the first list in ModulePath), there is x = 2, and after

it (the second list in ModulePath), there is y = 9 ( 5 ). Our projection function

uses such an interpretation of the location to render the projection, as shown

in Figure 4.2.
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Listing 4.7: Example code

x = 2

fun1 a1 a2 =

((a1 + a2) + 45)

y = 9

Listing 4.8: Cursor’s Path when a2 is highlighted in Listing 4.7

(RightOfNumInfix "+" (NumVar "a1" NumSuperTy)

(LeftOfNumInfix "+"

(BodyOfNumFun "fun1" [NumParam "a1",NumParam "a2"]

(ModulePath [DefNum "x" (NumegerConst NumSuperTy ←↩

2)] [DefNum "y" (NumegerConst NumSuperTy 9)]) ←↩

)

(NumegerConst NumSuperTy 45)))

RightOfNumInfix_ "+" (NumVar "a1" NumSuperTy)

LeftOfNumInfix_ "+”

                                         (NumegerConst NumSuperTy 45)

BodyOfNumFun "fun1" [NumParam "a1", NumParam "a2"]

ModulePath 

[DefNum "x" (NumegerConst NumSuperTy 2)] 

[DefNum "y" (NumegerConst NumSuperTy 9)]

LocNum (NumVar "a2" NumSuperTy)

Cursor’s Location 
corresponds to rule:   

1

2

3

4

5

LocNum ElmNum ElmNumPath CaretPosition

End

Figure 4.2: Example of Rendering Listing 4.7 when the cursor is on a2
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4.2.3 Discussion

During the development of ElmSr, the design of its AST prompted discussions about

the trade-offs between fully-typed AST and the AST with basic types. Opting for a

fully-typed AST ensures robust type safety throughout the editor’s runtime, enhanc-

ing code reliability and preventing type-related errors during code input. This level

of expressiveness allows for precise handling of code fragments which aligns closely

with the semantics of the language and potentially enables optimizations. However,

the complexities of managing expressions and definitions within a fully-typed AST

pose implementation challenges and maintenance overheads.

On the other hand, adopting a basic-typed AST simplifies the structure, mak-

ing it easier to navigate and manipulate for certain use cases that do not require

detailed type information. With fewer specifications, the implementation complex-

ity is reduced, resulting in a more straightforward development process and easier

maintenance. However, the lack of specific type information in a basic-typed AST

necessitates more extensive runtime checks to ensure type safety, potentially intro-

ducing inefficiencies and errors if not handled properly.

4.3 Visual Overview

Figure 4.3 illustrates ElmSr’s graphical interface. The visual layout of our editor

is divided into specific functional areas. On the left is the code pane, where users

can enter and edit code. This pane highlights the current cursor location in yellow

background which provides a clear visual cue for easier navigation. As shown in

the figure, the entered code may include typed holes. Additionally, the code pane
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cursor’s location

code pane

clipboard

hole: can be filled
only by values of
the allowed type

type of the
cursor location

guides for keyboard keys
that can be used at
the cursor’s location

Figure 4.3: ElmSr’s Interface

features a clipboard that displays a list of copied items. Users can paste these items

into type-compatible locations.

In the upper right corner, the editor displays the type of the code block at the

cursor’s current location. Below this is a guide to keyboard bindings applicable at the

current cursor position, offering users a quick reference for using the various keyboard

shortcuts available.

4.4 AST Navigation

In this section, we dive into four core structural operations of our Elm editor: se-

lection, navigation, manipulation, and deletion. Together, they help programmers

interact with code in a meaningful way while maintaining type accuracy.
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4.4.1 Selection

Similar to other structure/projectional editors, ElmSr’s selection mechanism deviates

from traditional text editors, where selection can occur freely across the text. In

ElmSr, the focus is on a semantic selection. Essentially, the cursor focuses on a specific

code structure — like a block or function — or its components. This type of selection

offers a structural view of the code which in turn helps in a deep understanding of

code anatomy. The choice of selecting the structure as a whole or drilling down to its

components provides a flexible and intuitive way for young learners to interact with

code elements. For example, in Figure 4.4e, the entire function body is selected. Using

the arrow keys, the programmer can select different parts of that body expression,

with each part highlighted, as illustrated in Figures 4.4f, 4.4d, and 4.4c.

4.4.2 Navigation

The navigation in ElmSr mimics the visual layout of the code and its blocks. Instead of

navigating according to the underlying tree structure, the editor enables programmers

to move around as if they were looking at the code written on a page. For instance,

hitting the right arrow key moves the cursor to the first child node of the currently

selected subtree. This is illustarted as a transition between state 1 and state 2 in

Figure 4.6. Pressing the up arrow key moves the cursor quickly to the other sibling

node of the selected element (from state 2 to state 3). If there are more than one

siblings, the programmer can keep pressing the up arrow key to jump to the next

siblings, and the down arrow key to jump to the previous sibling. If the expression

is an infix expression, then, the user can keep pressing the right arrow key to move

the caret forward in the expression(which is aligned with the direction of the code).
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(a) state 5 (b) state 8

(c) state 4 (d) state 3

(e) state 1 (f) state 2

(g) state 6 (h) state 7

Figure 4.4: Navigation and Keyboard Interactions in ElmSr Corresponding to
Figure 4.6

Pressing the right arrow again further navigates down the tree, focusing on the first

child of the selected node (from state 3 to state 4). Conversely, pressing the left

arrow key moves the cursor up the tree, returning to the parent of the current node

(from state 4 to state 3). However, if the cursor is on the components of an infix

expression, pressing the left arrow key will move the caret in the left direction on the

infix expression. This design makes it intuitive for users to navigate through their

code and if needed, jump quickly to the neighboring components of each construct.

Figure 4.5 shows how continuously pressing the right arrow key moves the cursor

on an infix expression. The continuous pressing of the left arrow key will return the

cursor back to the initial state.
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(a) Cursor on left child

→
(b) Cursor on infix

operator

→
(c) Cursor on right child

(number editing)

Figure 4.5: Pressing Right Arrow Key Multiple Times on an Infix Expression

DefNumFunc "totalDue"

[NumParam "cost"] *

cost +

0.13 1

state 1
DefNumFunc "totalDue"

[NumParam "cost"] *

cost +

0.13 1

state 2

DefNumFunc "totalDue"

[NumParam "cost"] *

cost +

0.13 1

state 3

or

DefNumFunc "totalDue"

[NumParam "cost"] *

cost +

0.13 1

state 4

DefNumFunc "totalDue"

[NumParam "cost", NumParam ""] *

cost +

NumVar "" 1

state 5

+ P

DefNumFunc "totalDue"

[NumParam "cost"] NumLet

LetDefs [] *

cost +

0.13 1

state 6

l e t . . .
DefNumFunc "totalDue"

[NumParam "cost"] NumLet

LetDefs
[
DefNumVar ""
]

NumVar ""

*

cost +

0.13 1

state 7

+ D

DefNumFunc "totalDue"

[NumParam "cost"] *

cost

state 8

delete

Figure 4.6: AST Navigation and Keyboard Interactions

4.5 AST Adjustment

This section delves into the operations that alter the AST of program code. A de-

tailed discussion on expression construction and editing, particularly regarding infix
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expressions, is provided in Section 4.8.

ElmSr provides a wide range of functionalities for entering and modifying pro-

gramming code. Users can rename variables, adjust values, and perform other tasks

similar to standard text editors. Additionally, the editor facilitates the insertion of

new code elements and structures via a type-sensitive drop-down menu. This allows

programmers to add elements that are appropriate for the current context in the

code, thereby reducing the likelihood of errors. Furthermore, ElmSr supports copy-

and-paste operations through a clipboard which enables users to store code snippets

in the clipboard for later use. The integration of the algebraic thinking curriculum

further introduces AST manipulation operations which we will discuss in this section.

4.5.1 Deletion

When the delete key is pressed, the editor creates a ‘hole’ in the place of the deleted

object as discussed in Section 4.2.1. This hole represents a missing element in the

code and can be filled at a later time, while respecting the original type of the deleted

element. This operation ensures that the type integrity of the program is maintained,

and the overall structure of the program remains sound, even if certain parts of it are

missing.

4.5.2 Undo/Redo

As discussed in Section 4.9.2, the Model component of ElmSr keeps track of the

editing history through undos and redos lists. The undos list maintains an ordered

sequence of locations representing the most recent changes, with the latest change

positioned at the head of the list. Conversely, the redos list contains the reversed
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order of changes to facilitate redo operations. Pressing the + Z reverts the editor

back to the previous state by accessing the head of the undos list, and + + Z

executes a redo operation.

4.5.3 Copy/Paste

ElmSr provides a copy/paste functionality with a clipboard approach. Illustrating

a clipboard in the editor is aimed at providing users with a robust and error-free

method of copying and pasting code elements. To copy the expression at the cursor,

the + C key combination can be used. This action places the copied item in

the clipboard, ready for future pasting. Users have the flexibility to continue copying

additional items. To paste a copied item at a specific location, users can activate the

paste mode by pressing + V . Upon entering paste mode, ElmSr filters and shows

a list of options suitable for the current location, based on the type of the location.

Users can then select the desired item from the list to insert it into the location.

The clipboard functionality is particularly important in structure editors like

ElmSr. Unlike traditional parser-based editors, where code manipulation is typically

revolves around editing sequences of characters, ElmSr operates on a fully typed AST

in which not every code element can be copied and pasted across different parts of

the codebase. Copying and pasting code elements requires consideration of their

compatibility with the target location. In this regard, the clipboard serves as a tool

for managing this process by temporarily storing copied code elements, with color

coding based on type, and providing users with a list of compatible options for past-

ing based on the type of the current location. Moreover, we think that the design

of our clipboard can enhance the visual learning of novice programmers and aid in
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their comprehension of the type (as indicated by color coding) of program blocks.

Figure 4.7 provides an illustration of how the copy/paste functionality appears in

ElmSr.

(a) if-then-else statement
with holes

(b) after pasting into holes
from clipboard

(c) list of items in the
clipboard. Colors indicate

the type of items.

(d) pasting at the condition
of the if-then-else

(e) pasting at the then
branch of the
if-then-else

Figure 4.7: Copy/Paste with Clipboard

4.5.4 Drop-down Menu Generation

The ability to suggest valid type-compatible options while coding is a pivotal feature

of our editor. These suggestions are presented in a drop-down menu that offers the

programmer a range of possible substitutions based on the type context of the location

with the aim of minimizing manual coding and preventing errors.
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The drop-down menu is dynamically populated by scanning the program code to

identify entities that match the type specification of the current location. In addition,

fundamental Elm constructs such as let-in, if-then-else, and case expressions are

included in the available options. Each time the drop-down menu is accessed, a buffer

is displayed which allows users to input some characters related to their desired option.

This buffer then narrows down the list of options based on the entered characters.

Instances of the drop-down menu can be seen in Figure 4.12.

4.5.5 Supporting the Algebraic Thinking Curriculum

The editor’s primary design goal is to support the Algebraic Thinking Curriculum.

Through this, the editor aims to provide functionalities that emphasize this curricu-

lum’s principles, such as converting constants to function parameters (extract pa-

rameter) or abstracting expressions into definitions (extract definition) as discussed

in Section 3.4.

As depicted as the transition between state 4 and state 5 in Figure 4.6, within

a function body, the current cursor’s location can be converted into a function pa-

rameter by pressing + P . Subsequently, the cursor is relocated to the designated

position for entering the new parameter’s name (Figure 4.4a .) Following this, the

user can input the desired name, which replaces the placeholder dot name. The editor

then searches the code to locate instances of the edited function and adds the new

argument to the appropriate calling sites. If the expression subjected to the “extract

parameter” action contains variables that are defined within the function, those vari-

ables are replaced with holes in the expression and it is then moved to the calling

sites as an argument. Otherwise, the expression, as is, will be used as the argument
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passed to the function call.

Furthermore, expressions can be transformed into definitions within the immediate

or outer scope by pressing the + D key combination, as shown in Figure 4.6 by

the transition from state 6 to state 7. This action declares the expression as a

new definition, either at the module level or within the immediately enclosing let-in

construct. Additionally, users can wrap an expression into a let-in construct using the

drop-down menu. To do so, the user needs to select the expression and begin typing

“let in”; the drop-down menu will then offer the option for selection (transition from

state 1 to state 6.)

4.6 Number and Name Editing

This section explores how ElmSr models the editing of numbers and names (e.g.,

string names of variables, functions, etc.) using lists in a functional manner. In a

pure functional language, a list serves as an abstract data type that stores items of

the same type in a given order. A list, among other use-cases, can hold digits in a

number or characters in a name. Efficient navigation within lists, both forward and

backward, is crucial for optimizing the overall system performance. To achieve this,

ElmSr employs the list zipper data structure to model lists effectively.

4.6.1 List Zipper

A list zipper maintains a focused element along with its surrounding context. The

cursor’s focus on a list is modeled as a focused element loc on which the cursor is

and two Elm lists before and after. The before list stores the elements to the left
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of loc arranged in reverse order, and the after list holds the elements to the right in

their original order. Storing elements in reverse order in the before list adheres to

Elm’s way of extracting the first element of a list by decomposing it into the head

(first element) and tail (the rest of elements).

Figure 4.8 shows an example of moving forward and backward on the following

list of integer elements: [1, 2, 3, 4, 5]. The focus is initially on 3 (Figure 4.8a).

Moving the cursor to the left (Figure 4.8b) will relocate the cursor to element 2 which

was the head of before. Note that before is stored in reverse order. In the meantime, 3

(current cursor) is prepended to the after list. As illustrated in Figure 4.8c, a forward

move from the cursor originally on 3 prepends it to the before list and, as the new

cursor, extracts the head of the after list.

(a) Original cursor

(b) Move to the left of the original cursor

(c) Move to the right of the original cursor

Figure 4.8: Demonstration of a list zipper for list [1, 2, 3, 4, 5]

4.6.2 Number Editing

Number editing in ElmSr works similarly to a typical text editor. The editor enters

this mode either by pressing the right arrow key on a number, or just by starting to
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type a number on a hole, or a location that can accept a number as the left operand

of an infix operator (Like in Column 2 of Figure 4.12).

In this mode, as depicted in Figure 4.9, digits are treated as individual integers

forming a list, with caret movement and digit manipulation facilitated by a list zipper.

Our implementation of the number supertype, as discussed in Section 4.7 is em-

ployed in this mode which initially treats the number as an integer. However, pressing

the . key transitions it to the mode of accepting floating-point numbers, allowing

for the sequential addition of digits to the right of the decimal place.

It should be noted that, even while the editor is in number editing mode, users

can still type characters and select from available functions and variables via the

drop-down menu.

0

Figure 4.9: Number editing.

4.6.3 Name Editing

For entering names of variables, functions, and custom types, ElmSr employs a

method similar to number editing which uses the list zipper for efficient manipu-

lation. In particular, the NameEditState keeps track of the characters preceding and

following the caret position, along with a set of existing names within the current

scope:

Listing 4.9: Name Edit State

type NameEditState

= NameEntry (List Char) -- ^ before
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(List Char) -- ^ after

(Set String) -- ^ names in scope

Figure 4.10 illustrates a scenario of editing the name of a function called totalDue.

When the cursor is on a definition, pressing the key, transitions the editor into

the name edit state (Figure 4.10a). When a user selects a name already present

in the current scope (totalCost in this case), the background of the name editing

area changes to red, indicating a potential conflict (Figure 4.10b). On the other

hand, if the chosen name is valid, the background switches to green (Figure 4.10c).

In this case, the user can exit this state by pressing the key to commit the

changes. Furthermore, any modifications made during name editing propagate to

all occurrences of the specific definition throughout the codebase. As Figure 4.10d

shows, the new name totalPayable replaces the old name in the function application

inside the let in construct.

(a) After pressing on a definition (b) Entering a name already in the scope

(c) Entering an acceptable name (d) After pressing key

Figure 4.10: A name editing scenario.
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4.7 Numerical Supertype

Consider an example where the cursor navigates to an integer value deep within

ElmSr’s AST. The value, and all the corresponding nodes above and adjacent, adhere

to integer operations, given the fully typed nature of the AST. When the user decides

to modify the integer to a float (by pressing . in integer editing), the involved nodes

must be transitioned into floats to uphold the correctness of the type system.

To handle cases where an integer may transition into a float, or vice versa, we

introduce a datatype ElmNumType to represent categories of number types. ElmNumType

has been designed with three distinct categories: NumSuperTy, IntConcreteTy, and

FloatConcreteTy. The first one represents an uninstantiated numerical supertype

that acts as a placeholder that could transform into either an integer or a float based

on user interactions. The last two, IntConcreteTy and FloatConcreteTy, denote a

concrete integer type and a concrete float type, representing an explicit integer value

and explicit float value respectively, and offering no further flexibility.

The ElmNumType construct acts as a flexible interface for type transitions which

allows dynamic type modifications within the AST in response to user interactions,

all while preserving type safety. This design choice of a supertype that inherently ac-

commodates both integer and float types aligns with Elm’s immutable data structure

paradigm and eliminates the need for propagating changes throughout the AST.

4.8 Expression Construction

The primary focus of ElmSr is to facilitate seamless editing of expressions and enable

easy, error-free insertion and manipulation of programming constructs, particularly
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infix operators. The aim is to mimic the interactions one would expect from a text-

based (parser-based) editor.

Inserting new expressions into an empty hole works much like a text editor, where

the programmer inputs characters sequentially or navigates within the expression to

modify different parts of it. Users can extend existing expressions by incorporating

infix operators such as addition (+), subtraction (-), division (/), and integer divi-

sion (//). ElmSr employs visual cues to enhance the user’s understanding of the

expression’s context and structure. For instance, subexpressions are automatically

parenthesized after insertion. Furthermore, as the user moves the cursor over expres-

sions, subexpressions are highlighted and a small blue triangle indicating the caret’s

position appears. While highlighting an expression signifies the cursor is on it, ex-

tending that expression, whether by appending or prepending, requires the user to

know the exact caret location, similar to text-based editors. The following represen-

tation of an expression illustrates an example with the cursor on 2, and the caret at

the beginning: 1 + 2 , and the caret at the end of the same subexpression: 1 + 2 .

When intending to append a new expression to the cursor, users must continue

pressing the right arrow key until the caret reaches the end of the expression where

they wish to append. This caret movement is akin to that of text-editors. Once

the caret is in position, users can begin typing the desired operator to extend the

expression. A hole is inserted after the entered operator, prompting the user to input

the right operand. Figure 4.11 illustrates this process.

(a) Caret at the end

→
(b) After pressing +

→
(c) After pressing 1 and 2

Figure 4.11: Appending to expression
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Conversely, in the prepending scenario, users have the flexibility to initiate expres-

sion extension by entering either the operator or the operand first. If starting with the

operator, a hole is inserted before the operator (as the left operand), and the cursor

waits on the operator. The user can then navigate the cursor to the hole by pressing

the left arrow key. This way of extending is similar to many traditional structure

editors requiring the user to enter the operator first (sub-tree’s root) to adhere to the

tree structure. If the user opts to start with the operand first, the drop-down menu

assists the user in proceeding. This operand can be a value allowed at that hole (like

an integer) or an already defined variable. In either case, the user inputs their desired

option in the drop-down buffer, and the drop-down filters accordingly. By selecting

an option, the cursor moves to the operator and awaits user input. Column 1 of

Figure 4.12 depicts a scenario where an already-defined variable a0 is used as the left

operand. In Column 2, the figure demonstrates entering the number 287 as the left

operand. Here, the drop-down menu only displays the option to enter the number.

Besides appending or prepending, ElmSr also allows users to wrap an expression in

a function call, a let-in statement, a case expression, or an if-then-else statement.

Users simply start typing what needs to be entered and then select from the provided

drop-down menu. For example, by typing if and selecting the option in the drop-

down menu (Figure 4.12, column 4), the selected expression becomes the ‘then’ branch

of the inserted if-then-else statement.

To make a subexpression the argument of a function, users need only enter the

name of the function partially, and the drop-down will display matching function

names for selection. The function can be either a user-defined function in the scope

or a basic Elm function available in the scope. For instance, by typing “sqrt” and
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Figure 4.12: Prepending to expression. Different scenarios starting from the top
figure.

selecting the drop-down option (Figure 4.12, column 3), the expression becomes the

argument of the function. If the function requires more than one argument, the

expression is set as the first argument of the function call, and a hole is added in
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place for the remaining arguments.

In addition to numbers, infix operators can be added between the digits of an

already entered number while the editor is in the number edit mode described in

Section 4.6.2. In this case, the two parts of the number are converted into the left

and right operands of the entered operator (Figure 4.13). Moreover, if the operator

is removed, the digits are merged to reconstruct the number.

- delete

Figure 4.13: Number editing mode to infix conversion

4.9 Implementation Details

In this section, we will delve into details of the architecture of ElmSr and the imple-

mentation of its components.

4.9.1 Bootstrapping

Bootstrapping in the context of programming languages or compilers refers to the

process of writing a compiler (or an interpreter) for a language in the same language.

The use of Elm for both the implementation of the editor and the target language

to be edited has many advantages. Elm’s strong type system and inherent functional

nature contribute to the editor’s robustness and correctness. The language’s declar-

ative style and reactive model fit seamlessly with the structure editor’s objectives,

making it an excellent choice for this purpose.

Beyond the technical benefits, this bootstrapping approach also creates a great
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development ecosystem. The editor’s implementation in Elm means that anyone

looking to maintain or extend it only needs proficiency in Elm itself. This single-

language focus simplifies the learning curve for new contributors and facilitates the

editor’s continual growth and improvement.

Essentially, by using Elm to construct an editor for Elm, we’re not only creating a

powerful tool but also reinforcing the capabilities and robustness of the Elm language

itself.

4.9.2 Architecture

The high-level architecture of ElmSr adheres to the Elm Architecture itself, which is

thoroughly explained in Section 3.1. In this section, we delve into the unique features

of ElmSr in terms of the Elm architecture.

Model

The Model represents the state of the entire ElmSr application, providing an up-to-

date snapshot of all the necessary components in our editor. The main component of

our Model is the zipper structure that maintains information regarding the cursor’s

current position within the AST. The state of the keyboard to track keypress events is

also maintained in the Model which is particularly important for an editor like ElmSr,

where edit operations are done through keyboard interactions. Moreover, the Model

also contains fields for managing the screen display, key bind menu which stores the

current state of a hint menu for keyboard shortcuts, and a history of undo and redo

operations which preserves past cursor locations, enabling users to easily revert or

repeat changes.
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View

The view function takes the current model and generates the JavaScript and HTML

to be displayed in the browser. It generates a visual representation of the current

Elm code, including not only the current location of the cursor highlighted, but also

any additional elements such as holes, key bind menu and the drop-down menu, if

needed.

Given the nature of our editor, it is important to note that while the View gener-

ates HTML, the HTML is structured to represent the code’s structure, not its text.

This way, the users are interacting with the structure of the Elm code, not its textual

representation. This is what makes our editor a structure editor. Currently, we opt to

render the code into a conventional Elm code format. However, there is a potential

for more innovative projections that might potentially be easier to understand for

students. Although we haven’t explored these novel visualizations yet, the structure-

based approach of our editor lays the groundwork for these potential enhancements

in the future. Details of editor projections can be found in Section 4.2.2.

Update

The update function is where the application’s logic lives. Every keyboard interaction

triggers a message (using subscriptions) that gets processed by the update function

to modify the Model, which in turn updates the view.

The update function takes the current model and a message, and produces a new

model state. Thus, the update function will handle all the keyboard interactions that

trigger changes in the code structure, or editor’s state.

For example, pressing the down arrow key on a definition moves the cursor to the
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next definition, or if the user wants to perform a refactoring operation, like extract pa-

rameter, this action would be initiated by + P . When this command is received,

the update function will execute the refactoring operation on the current model (cur-

rent location on AST), and produce a new model that reflects these changes (for

the extract parameter case, the location of the cursor is moved to the name of the

newly created parameter and waits for entering the name of the parameter).

Subscriptions

This function monitors essential external events required for ElmSr’s operation. For

example, it tracks window resize events, as well as keydown and keyup events. Each

event captured triggers the generation of a corresponding message, subsequently pro-

cessed by the update function.

4.9.3 Components

Our editor’s implementation is partitioned into distinct modules. By isolating specific

responsibilities within individual modules, we ensure that each component remains

focused, concise, and independent, which enables efficient debugging, testing, and

enhancement. This section offers an overview of each of these modules.

Types.elm

The Types.elm module serves as the central repository for the data types essential

to the AST used in our editor. It categorizes the Elm types into numerical types,

booleans, lists, custom type definitions, and typed holes, as embodied in the ElmType

data type. Additionally, it defines the structure of an Elm module with the ElmModule
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type, which represents a module as a list of various Elm definitions.

More than just a mere type collection, this module also defines the Model type

which holds a comprehensive snapshot of the editor’s current state, reflecting both

the user’s actions and the editor’s responses. Specifically, it retains the current loca-

tion in the cursor, along with the history of changes through undos and redos lists.

Additionally, it maintains flags indicating the up/down state of several essential keys,

such as control, shift, alt, and so on. The information kept in this structure ensures

that the editor has a real-time awareness of the user’s interactions and the evolving

state of the program code.

Cursor.elm

The Cursor.elm module is central to the navigation and manipulation of the editor’s

AST. The module primarily offers a suite of cursor functions designed for the traversal

of the AST. Functions such as cursorUp, cursorDown, cursorLeft, and cursorRight

facilitate movement within the tree with the help of our zipper structure. A unique

aspect of our design is the directionality of tree growth, which is left to right. In

this context, moving “left” corresponds to moving toward the (sub)tree’s root, while

moving “right” directs us toward the leaf nodes. Although conventional tree process-

ing might involve navigation from a node to all its children, the nature of our editor

emphasizes level-to-level traversal, enabling jumps between child nodes as required.

Additionally, this module offers utility functions like addParameter, which trans-

forms an expression into a new parameter for a function, and addDefinition, which

incorporates an expression as a fresh definition within the current context.
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Eval.elm

The Eval.elm module has the primary responsibility of evaluating the definitions

and expressions within the program code module. Its design ensures that users can

instantly view the evaluated value for any given cursor location within the editor. For

example, if the cursor is on the definition e = (3 * (4 + 5)), the evaluation will be

e = 27.

A key component of this module is the “Stack”, which maintains mappings of

variable names to their corresponding values, be it integers, floats, booleans, and lists

of items. This stack operates similarly to a function stack but abstractly. Although

it is inherently recursive due to its nested scopes, this recursiveness is subtly masked

to make its operation straightforward.

This module has a suite of evaluation functions, each tailored to a specific type in

our AST. For example, the function evalNum is invoked when the cursor’s location is

of type Num.

Rename.elm

The Rename.elm module is dedicated to a specific, yet crucial functionality within

our editor: renaming variables and definitions. Whenever there is a need to modify

the name of a definition or a variable, this module steps in to ensure that all uses of

that particular variable within a specific scope are updated accordingly.

To provide a glimpse into its operations, consider the renameVarInNum function as

defined in Listing 4.10 (only first few lines are shown here). It inspects locations of

the Num type to determine if they make use of the old variable name, and if so, it

replaces them with the new name. As can be seen in Listing 4.10, if the examined
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node (ei) is a numeric constant, it remains unchanged. However, if it is a numeric

variable (NumVar) bearing the old name, the function returns a new variable with

the updated name. For binary operations (e.g., NumAdd), the function invokes itself

recursively with the left and right operands to ensure all uses of the oldName are

renamed throughout the depth of the operation.

The module has a collection of renaming functions tailored for different types and

structures, such as booleans, renames in case matches, lists, and path. This ensures

that name changes are propagated accurately throughout the entire program code,

preserving the integrity and correctness of the program.

Listing 4.10: An excerpt of function renameVarInNum

renameVarInNum oldName newName ei =

case ei of

NumegerConst _ _ -> ei

FloatConst _ _-> ei

NumHole -> ei

NumVar name ty -> if name == oldName then

NumVar newName ty

else

ei

NumInfix op left right ->

NumInfix op (renameVarInNum oldName newName left)←↩

(renameVarInNum oldName newName right)
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Overlaps.elm

The Overlaps.elm module is the component of our system that ensures variable

name uniqueness within a given scope. It is designed to produce sets of variable

names already present within the scope, thereby preventing naming collisions when

introducing or renaming elements in the code.

The core utility of this module lies in its overlaps* functions. These functions,

when invoked, return a set of variable names that are currently active within a given

scope. An empty set denotes the absence of any variables in the examined scope.

The functionality of the Overlaps module is closely related to the Cursor module.

When a user intends to alter a name, be it of a definition, function, custom type, or

any other construct, functions from the Overlaps module are called upon from the

Cursor Module. They generate a set of pre-existing names within the scope, providing

an immediate reference to names that should be avoided by the user. The use of this

set is explained in Section 4.6.3.

Overlaps works similar to the Rename module. Its helper functions are recursively

invoked to delve deep into the path, enabling a comprehensive extraction of names

from all nested levels of the scope.

Scope.elm

This module works similarly to the overlaps module, but it prepares the list of all

available options within the scope of the current location. This list is then used to

populate the options of the drop-down menu.
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Chapter 5

Results

In Chapter 4 we explained the ElmSr editor and its internals. In this chapter we

report that, as measured by keystrokes, ElmSr is more efficient than a conventional

text editor at creating a function of moderate complexity and a lengthy expression.

5.1 Experimental Setup

Our experiments focused on comparing the efficiency of ElmSr with VS Code, a

traditional text-based coding environment. The objective is to assess the keystroke

counts required to implement an example code snippet and a long expression in the

Elm programming language using the development approach taught in the algebraic-

thinking curriculum. This is a structured approach, with much in common with

structured approaches to program creation used in every programming language since

the concept was introduced by Dijkstra, see [12]. The important point is that program

editing is never just about typing out the program linearly, because everything we

teach students, particularly code reusability acheived by abstraction in the form of
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Figure 5.1: Test Task 1, Stage 1

function-centric programming, leads to non-linear thinking and editing.

The first coding example is a practical demonstration of the algebraic thinking

curriculum on how to transform a basic expression into a structured code snippet.

The code starts with this initial expression: 2.5*3+1.8*2 that computes the total cost

of purchasing 3 apples and 2 bananas with unit prices of 2.5 and 1.8, respectively.

In the first stage, the expression is wrapped in a let in construct. Subsequently,

it is converted into a function, with the prices of apple and banana declared as its

parameters. Figure 5.1 shows the resulting code in ElmSr.

In the next stage, the function body is further wrapped in another let in construct

and some local bindings are introduced to enhance code clarity. Then, a discount

variable is defined which involves a conditional statement as shown in Figure 5.2.

In the final step, the body expression of the first let in is transformed into a

function that accepts a taxRate parameter and calculates the total cost after applying

taxes. The final code as displayed in ElmSr is depicted in Figure 5.3.

To further analyze the efficiency of code input in ElmSr, we designed a second

test task, as depicted in Figure 5.4. This task involves inputting the expression
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Figure 5.2: Test Task 1, Stage 2

represented by the definition dxdy. While this expression does not correspond to any

real-world application, it is representative of the type of code commonly written by

our learners when engaging with complex graphics. It is important to note that this

test is purely a linear coding exercise and does not involve the extraction of definitions

or parameters.

Figure 5.3: Test Task 1, Final Stage

86

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – N. Osmani; McMaster University – Computing and Software

Figure 5.4: Test Task 2

5.2 Data Collection

The keystrokes necessary to accomplish the tasks in ElmSr were counted, and labelled

according to sub-tasks such as extracting a definition (mk def), extracting a pa-

rameter (mk param), entering if-then-else statement (if-then-else), utilizing let in

constructs (let in), entering literals like names or numbers (name/number), typing

operators (operator), function application (func App), and navigating through the

code (navigation). Each keystroke in each of these categories is recorded for further

analysis.

Duplicating the same examples, using the same structured appraoch, with the

same ordering of steps, in VS Code is challenging due to its lack of native support for

extracting parameters or definitions. We have used Elm Plugin for VS Code which

provides essential features such as error detection and format-on-save functionality

as well as jumping to definitions. However, as of April 2024, it does not support the

advanced editing operations most helpful for our recommended structured approach

to creating programs.

In our experiment, we assumed that the user performing the tasks indicated above,

enters no typos which would result in syntax or type errors whilemanually abstracting

definitions, parameters, etc. For comparison, we recorded the keystroke counts in each

sub-task category using VS Code.
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5.2.1 Considerations

In the following, we list important considerations made during the data collection

process.

• Key combinations such as + D or capital letters are counted as two

keystrokes.

• In VS Code, we employed what we believe to be the most efficient method

available for each step without using the mouse. For instance, we utilized

+ L to select the entire line containing an expression, + to navigate to

the beginning of the line, and used word selections.

• Entering a let in in VS Code involves typing “let” with a space after it and

pressing the return key, triggering auto-completion. In ElmSr, wrapping an

expression in a let in requires typing “let” and pressing the return key. Thus,

the operation requires 5 and 4 keystrokes, in VS Code and ElmSr, respectively.

• In ElmSr, typing the full name of a function or variable is not necessary when

using it, as the drop-down menu always offers suggestions based on context.

However, we observed that this is not always the case for VS Code (with the

Elm plugin), as sometimes names in the scope are not offered in the drop-down

menu.

• In ElmSr, navigating between operands of an infix operator can be done in two

different ways: using the text-like left/right arrow key navigation or the up/-

down arrow keys to jump between operands. We always selected and recorded

the fastest method available.
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• In ElmSr, inserting an if-then-else requires typing “if” and pressing the

return key, after which the necessary keywords and placeholders are automat-

ically inserted. The navigation needed to jump to the holes is recorded in the

navigation category.

• In VS Code, the operation of extracting a definition involves multiple steps

as explained above. Therefore, the keystroke count for each mk def operation

includes selecting the expression, cutting it, navigating to the desired location

for the definition, pasting the expression, and typing an “=”. Additionally, a

mk def operation requires typing the name of the new definition twice (once to

replace the expression and once as the name of the new definition), unless the

dropdown menu provides the second name, in which case only one name entry

is needed. Similarly, extracting a parameter (mk param) involves keystrokes for

selection, cut, navigation to the new parameter location, navigation to paste

at the function call site, and finally pasting. Both operations need only 2

keystrokes in ElmSr.

• ElmSr automatically wraps sub-expressions in parentheses, and hence there

is no need for manual entry of them. In contrast, VS Code requires manual

insertion of only the opening parenthesis (the closing parenthesis is inserted

automatically), if needed, which is recorded as two keystrokes for + 9 .

• For function applications such as round, modBy, and sqrt, we recorded three

keystrokes for the filtering of the dropdown menu and an additional keystroke

for the return key to select the function from the menu. The function logBase

requires five keystrokes in total.
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• In VS Code, a space is required between the function name and the first ar-

gument in function applications when the argument is not parenthesized, as in

round 10.5. However, when the argument is parenthesized, like in round(x), we

do not count the space, as it is not required. Nonetheless, we do count spaces

that enhance code readability. In contrast, ElmSr does not require a navigation

operation for function applications, because the cursor automatically moves to

the placeholder for the first argument after a function is selected from the menu.

5.3 Results

Figure 5.5 displays the total keystroke counts for each category in both ElmSr and

VS Code for the first task. The figure clearly demonstrates that ElmSr generally

requires fewer keystrokes to accomplish the same sub-task. For instance, generating

the structure for the only conditional statement in the task requires only 3 keystrokes

in ElmSr: typing “if” prompts the drop-down menu with the if option highlighted,

and pressing the return key inserts the statement at the cursor’s location. In contrast,

the same operation needs 15 keystrokes in VS Code, including the keywords and

whitespaces. ElmSr falls short only in the navigation category. Given its handling

of the AST, it needs more navigation commands, especially for multi-line constructs.

However, VS Code (dealing with text), allows for more direct cursor movement using

simple arrow key commands to reach the desired location.

Figure 5.6 presents the total number of keystrokes required for the second task. It

is evident that the number of keystrokes necessary for function application and opera-

tor entry in ElmSr is identical to that in VS Code. However, ElmSr sometimes needs
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additional keystrokes for selecting variable names from a dropdown menu. Specifi-

cally, after typing a variable name (e.g., x or y), users must explicitly press return key

to confirm the selection from the menu if the variable concludes a sub-expression. For

instance, when entering the expression x*y, the variable x is automatically highlighted

in the menu and inserted in the location, upon typing ‘x’, followed by the * operator.

However, to enter y, the user must press the return key after typing ‘y’ to finalize its

selection.

Furthermore, as observed in the results from the first task, ElmSr typically requires

more keystrokes for navigation. However, ElmSr does not require the user to manually

insert parentheses as it automatically wraps each sub-expression within parentheses.

Hence, the user must only ensure the cursor is correctly positioned to determine where

a new expression will be inserted. In contrast, VS Code requires the manual insertion

of parentheses, which, for this task, involved 16 additional keystrokes.

As a point of comparison, the keystrokes required for linear program construction

in VS Code are also recorded without the breakdown of sub-tasks. As shown in

Table 5.1 ElmSr requires even fewer keystrokes than the linear construction of the

code in VS Code for both tasks. Note that, dropdown options were utilized in linear

construction when available.

Table 5.1: Total Keystrokes Count Comparison

Task No. ElmSr VS Code (Algebraic Thinking) VS Code (linear)

Task 1 259 409 285
Task 2 75 - 83

To better understand the effort required for tasks as it progresses, we compared

the number of keystrokes at each step and illustrated the time series in Figure 5.7
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Figure 5.5: Total Keystrokes for Task 1

and Figure 5.8. The solid line represents the keystroke counts for ElmSr, while the

dashed line represents those for VS Code. The colors of the markers indicate the

categories. As evident, the effort in ElmSr consistently remains lower throughout

task 1. It should be noted that when either tool does not require any operation for

a corresponding task step in the other tool, we record this as a zero keystroke event,

indicated by the noop category.

As illustrated in Figure 5.8, ElmSr demonstrates comparable effort to VS Code in

entering lengthy expressions involving many infix operators and function applications.

This indicates that despite its structured nature, ElmSr achieves similar efficiency in

inputting complex expressions.
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Figure 5.6: Total Keystrokes for Task 2
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operation differs, additional 0-counts are added so that subsequent operations align.
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94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


Chapter 6

Conclusion and Future Works

In this thesis, we set out to develop a structure editor for the functional programming

language Elm and successfully achieved this goal. Unlike a simple text editor, where

text entry, copy, paste, and delete are the primary functions, a structured editor must

provide a comprehensive suite of actions to facilitate all legal program transforma-

tions, often in multiple steps. This requirement significantly increases the potential

actions available in such an editor. Moreover, while actions like copy-and-paste are

expected to be consistent across different programs for the sake of usability, struc-

tured editors face a lack of conventions or established expectations for many of the

necessary program transformations.

To guide the design, we formulated two research questions and answered as follows:

RQ1. How can we optimize the usability of structure editors to provide a

more intuitive and familiar experience, specifically when dealing with

algebraic expressions utilizing infix operations?

We used the familiarity many users have with expression entry and autocom-

pletion features in text editors to design editing actions that mimic a text-like
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expression entry and a well-implemented autocompletion system. This approach

allowed us to enhance the intuitive feel of the editor and to make structured

editing actions feel as natural and efficient as those in text editors.

RQ2. Is it possible for a structure editor to achieve similar or superior

efficiency in program construction as compared to a traditional text

editor, despite inherent structural differences, and could the unique

functionalities of structure editors pave the way for more efficient

program entry methods?

We developed two simple benchmarks to evaluate the efficiency of our struc-

tured editor compared to a traditional text editor. These benchmarks, which

focused on the number of keystrokes required for various editing tasks, demon-

strated that our structured editor is generally as efficient, if not more so, than

conventional text editors. This efficiency was measured solely through keystroke

counts, as mouse support has not yet been implemented in our editor.

Future developments for ElmSr are planned to extend its capabilities and address

current limitations. Firstly, the existing implementation supports the Number type

class in Elm, which is considerably simpler than Haskell’s equivalent, as Elm only

includes two number types: Int and Float. However, while there is some support

for the Comparable type class to allow number comparisons and usage in conditional

expressions, Elm’s type system encompasses other types as well. Future work should

either expand to include the full range of Elm’s type classes or develop a novel ap-

proach to handling type classes. One potential direction could be the introduction

of user-definable type classes or a different fixed set of type classes. This approach

would shift significant design decisions from the editor to the library. It is important

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.Sc. Thesis – N. Osmani; McMaster University – Computing and Software

to note that Elm originally excluded user-defined type classes to simplify the com-

piler, so introducing them would definitely increase the complexity of the structured

editor. Determining the best way to support this feature and implementing it will be

crucial future tasks. Additionally, there is scope to support more complex constructs

such as higher-order functions.

Regarding experimentation and evaluation, future work should focus on develop-

ing more comprehensive benchmarks and employing a wider range of metrics. Besides

keystroke counts, other measures such as task completion times, or user interface-

related measures, such as eye-tracking data, could provide deeper insights into the

usability and efficiency of the editor.
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