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Lay Abstract

Millimeter wave radars have been widely used in both civilian and military applica-

tions. In this thesis, we begin by improving the target localization accuracy. Then,

we build a real-world robotic rotating radar system. Next, we propose an efficient

imaging approach and apply it on the built system for indoor environment detection.

Last, an autofocusing algorithm for rotating radar imaging is given to improve the

quality of the obtained images.
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Abstract

Millimeter wave radars have been widely used in military reconnaissance and remote

sensing, since they can acquire data in all-weather and all-day conditions. However,

they still face several challenges, such as array shape limitations, high computation

complexity and array manifold errors. In this thesis, we propose three new algorithms

to address these challenges and achieve better performance.

First, we consider the problem of localizing multiple targets with a trapezoid

virtual antenna array. The goal is to estimate both the number and the 3-D locations

of the targets. The proposed algorithm consists of two steps: 1) estimating the

number of targets and their ranges by extending Barone’s method to handle data

from multiple antennas and 2) estimating the angle of arrival of each target by a

Least-Square algorithm.

Second, we propose an efficient imaging method based on robust sparse array

synthesis. It first performs range-dimension matched filtering, followed by azimuth-

dimension matched filtering using a selected sparse aperture and filtering weights.

The aperture and weights are computed offline in advance to ensure robustness to

array manifold errors caused by the imperfect radar rotation. We introduce robust

constraints on the mainlobe and sidelobe levels of the filter design. The resulting

robust SAS problem is a nonconvex optimization problem with quadratic constraints.
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We devise an algorithm based on feasible point pursuit and successive convex approx-

imation to solve the optimization problem.

Third, due to the unforeseen disturbance and imperfect measurement, radars may

not be at their ideal locations for Synthetic Aperture Radar (SAR) imaging. We

consider two error models of radar movement in Rotating SAR (ROSAR) systems.

To overcome the blurring induced by location deviations of virtual phase centers, we

employ an autofocusing algorithm, named Minimum Entropy Algorithm, to improve

the image sharpness. The corresponding optimization problem is solved by gradient

descent and interior-point methods.

To validate the effectiveness of the proposed algorithms in practice, we built a

real-world radar localization system and a robotic ROSAR system. Experimental

results show that the systems can localize the targets with higher accuracy and gen-

erate sharper SAR images compared with a 2D-FFT based algorithm and the Back

Projection Algorithm, respectively.
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Chapter 1

Introduction

1.1 Motivation

When the wavelength of an electromagnetic wave falls between 1mm and 10mm, it

is called a millimeter wave [18]. mmWave radios have been widely used in communi-

cations, localization, and microwave imaging, taking advantage of its properties that

arise from its short wavelength. For instance, the short wavelength directly implies

short-length antennas for efficient mmWave transmissions. This allows multiple an-

tennas to be integrated into a small area, and many advanced techniques, such as

MIMO and beamforming, can be realized even on small IoT devices. The frequency

range of the mmWave is from 30GHz to 300GHz. Such a large bandwidth can provide

higher transmission speeds in 5G communications and better range resolutions in tar-

get detection and localization. Together with the high Doppler sensitivity to track

slow-moving targets, one of the most important mmWave applications – mmWave

radars – provide excellent performance in determining targets’ locations, speed and

directions.
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mmWave technologies reveal target characteristics in a unique way. Unlike visible

light, which senses color information, or infrared, which senses temperature informa-

tion, mmWave senses the target backscatter coefficient, which is closely related to

the target’s conductivity and geometry. High-conductivity materials, such as met-

als, have high backscatter coefficients, and vice versa. Additionally, mmWave has

the advantages of both visible light and low-frequency radio signals. For example, its

propagation mainly follows a line-of-sight path, its amplitude fades significantly when

bouncing more than once, the beamwidth can be made very thin, and the signal can

penetrate thin materials. All of these features enable highly accurate target detection

and sensing through mmWave radars.

mmWave radars typically can be employed in two remote sensing tasks: multi-

target localization and environment imaging, in which the MIMO technique are usu-

ally employed in different ways. To locate targets in an unknown space, the task

is divided into two main steps: target number estimation and target location esti-

mation. After the number of targets is determined, the signal reflected from each

target is extracted from the received signals among different antennas. The target

range, speed, and direction are then estimated by analyzing the extracted signals.

Many modern radars use Frequency Modulated Continuous Waveform (FMCW) as

the transmit signal. This waveform tends to result in more precise and reliable range

estimation than other pulse signals through directly measuring the time-of-flight in

time domain, but must occupy a wide range of frequencies. However, this is not a

problem when utilizing mmWave, which has a spectrum of hundreds of gigahertz.

The second task is to image an environment, which results in a picture showing the

scanned area. Although mmWave radars have small antennas and can be equipped

2
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with multiple physical antennas to determine the direction of incoming signals, their

apertures are still very small, which limits the angular resolution of the radar sys-

tem [61]. The smaller the aperture, the lower the angular resolution, which means the

radar cannot capture the target details, such as shapes. Our radar localization results

show that each target is represented by only one or a few points, which cannot reflect

its actual shape or the backscatter coefficient of each part. Radars with uniform lin-

ear arrays use more antennas to achieve finer resolution, but this increases the circuit

complexity and cost. Since the middle of 20th century, Synthetic Aperture Radar

(SAR) [67] has become an alternative that uses fewer physical antennas. It moves the

radar continuously while transmitting and receiving signals, creating a large virtual

antenna array by emitting signals from different positions. This is another way to

implement MIMO. As long as the surrounding environment is static, this method

can provide an even higher cross-range resolution that allows distinguishing targets

by their shapes. SAR has several working modes, such as “stripmap”, “spotlight”

and “scan” [47], which are suitable for different application purposes. The Rotating

SAR (ROSAR) mode mounts a radar on the edge of a rotationary platform. Through

platform rotation, a 360° view of the surrounding environment is obtained. This is

difficult to achieve with the aforementioned modes, which may require several radars

facing different directions. In indoor environments, ROSAR can be used for mapping

and localization in the case of fire emergencies or situations where other sensors fail

due to high heat and low visibility.

Synthesizing a large virtual aperture is a great way to obtain high cross-range

resolutions. It not only saves the cost of building a large array, but also enables the

3
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creation of an array manifold that meets different purposes. However, it may intro-

duce manifold errors because the precise control of radar movements is often difficult

to achieve. In actual usage, phase centers may deviate from their ideal locations due

to unforeseen disturbances, and these deviations are not easy to measure. Continuing

to use the presumed or ideal phase center locations will result in a blurry SAR image.

Therefore, it is necessary to take extra steps to correct the errors and obtain a sharper

image, which is a process called autofocusing.

Although mmWave radar is an excellent choice for target localization and imaging,

several issues are still under explored.

� Issue 1: For mmWave radar target localization, algorithms estimating the num-

ber of targets, such as Constant False Alarm Rate (CFAR) detection, must

be well-tuned for each scenario. To obtain the precise locations of targets,

mmWave radars must capture a sufficiently large number of data samples. The

time complexity of super-resolution methods for Angle of Arrival estimation,

such as the MUSIC algorithm, is very high since they rely on a grid search in

pseudo-spectrum. FFT-based algorithms are fast but require a regular array

shape, such as linear or rectangular.

� Issue 2: Due to the highly nonlinear moving track of ROSAR, low-complexity

imaging algorithms such as Range Migration Algorithm (RMA) [12] cannot be

applied, as they assume linear and uniform array manifolds. Therefore, Back-

Projection Algorithm (BPA) [17, 73] is typically employed. However, BPA

suffers from heavy computational complexity, since the complexity is propor-

tional to the number of the imaging area grids, the number of phase centers,

and the number of the sampled radar data.

4
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� Issue 3: Due to the unforeseen disturbances, precise and reliable control of the

radar movements in the ROSAR systems is hard to achieve, which leads to the

array geometry mismatch and blurred images. However, at this time, there is

no ROSAR approach that is both robust and efficient.

� Issue 4: One way to handle the blurry images caused by array geometry mis-

match is to estimate the mismatch followed by imaging with corrected phase

center locations. However, there is currently no such approach designed specif-

ically for ROSAR to improve the image quality for large imaging areas.

In this thesis, we aim to resolve the above issues and validate the proposed algorithms

in a real-world testbed.

1.2 Contributions

The main contributions of this thesis are summarized as follows.

First, we propose a novel multi-target localization approach, which directly re-

solves the Issue 1. Such approach can be applied to FMCW radars with irregular

antenna placement, e.g., trapezoid virtual antenna arrays. It starts with separating

the received signals from multiple targets by exploiting the signal structure. Then,

the signals from all antennas are cast into a special form by extending Barone’s

method [7]. Next, a Least-Square algorithm is used to estimate the AoA of each

target. Simulation results and testbed experiments demonstrate that the proposed

method outperforms the 2D-FFT algorithm in both ranging and localization. In high

signal-to-noise ratio regimes, it achieves more accurate AoA estimations than both
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2D-FFT and MUSIC algorithms. Furthermore, the proposed method has low compu-

tational complexity and achieves good performance with as few as 100 samples when

the SNR is at 30 dB.

Second, we design and implement a real-world robotic ROSAR system, which

is used as a testbed for imaging algorithm evaluation. To understand the design

requirements, we analyze the array patterns of ULA and UCA in both far- and near-

field scenarios. Note that UCA is a special case of ROSAR when the rotation speed is

constant and there is no linear motion. A measurement study is conducted to quantify

the extent of rotation and movement errors of the radar and the rover, which will

give rise to array geometry mismatch and image blur.

Third, to address the 2nd and the 3rd issues, we propose a new sparse array

synthesis technique to reduce the computation complexity of BPA. A key novelty

of our design lies in the consideration of array geometry mismatch. To solve for

the sparse complex weights of the virtual array elements, we formulate a robust

constrained optimization problem and devise an algorithm based on feasible point

pursuit [46] and successive convex approximation [9]. Compared with conventional

methods such as BPA, the proposed method is optimal subject to sidelobe constraints

and robust to a certain level of array manifold error. Besides, thanks to the symmetry

of the circular array, the algorithm only needs to be executed in an offline manner for

one azimuth direction per range bin in the radar coverage area, and the results can be

used for range bins in any direction. The resulting sparse weights effectively reduce

the number of received signals needed in BPA. To further reduce the complexity of the

proposed algorithm, we perform range-dimension matched filtering by employing Fast

Fourier Transform. For a specific target in space, only the signals from the appropriate

6
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range bins at each phase center are considered. The sparse array design constitutes

an important step toward realizing ROSAR on mobile devices with limited in space,

battery power and computation capacity. Simulation results and testbed experiments

show that the proposed algorithm can reduce 90% of the total computation time and

generate images with the quality comparable to that of BPA.

Fourth, we introduce an autofocusing technique to improve the ROSAR image

quality (Issue 4) and to mitigate the imperfect control and measurement of radar

locations. Based on the measurement study in Contribution 2, we consider two error

models for stationary and moving ROSAR systems. In the first model, the errors are

caused by unstable radar rotation, resulting in deviations of each virtual phase center

from its intended position. In the second model, the errors arise from the deviation of

the rover speed and the moving direction. If we use the ideal locations of the virtual

phase centers for imaging, the final SAR image may blur. To address this issue,

we employ the Minimum Entropy Algorithm to obtain a sharper image. Simulation

results demonstrate the effectiveness of the autofocusing algorithm for ROSAR.

1.3 Organization

The rest of this thesis is organized as follows:

� Chapter 2: We present the background on mmWave radars and the related

works on multiple-target localization and ROSAR.

� Chapter 3: We describe a new multiple-target localization algorithm using

mmWave radars with trapezoid virtual antenna arrays.

� Chapter 4: We present the design and implementation of a real-world robotic

7
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ROSAR system and quantify its performance through measurement studies.

� Chapter 5: A robust efficient sparse array synthesis for ROSAR is presented

and evaluated.

� Chapter 6: A MEA-based autofocusing algorithm for ROSAR imaging is de-

scribed together with simulation results.

� Chapter 7: We conclude the thesis and propose several directions for future

works.

8



Chapter 2

Background

2.1 Commercial Off-The-Shelf mmWave Radar Hard-

ware

Radar technologies have evolved significantly over the past century. Depending on

the application scenario, radars have been used for detection and search, targeting

(fire-control), navigation, mapping, and more. Radars can also be categorized by

the antenna placement (monostatic, bistatic, or multistatic), the signal waveform,

the signal wavelength, the antenna scanning type, etc. This thesis focuses on the

civil applications of millimeter-wave (mmWave) monostatic radars. Several technol-

ogy companies have developed commercial off-the-shelf (COTS) mmWave radars in

this category, such as Texas Instruments (TI), Infineon, Qualcomm, IMEC, etc. Ta-

ble 2.1 summarizes their main products and specifications. Most mmWave radars

have integrated multiple antennas for transmission and reception, which facilitate the

determination of target directions.

9
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Table 2.1: COTS mmWave Radars

Provider Name Application Frequency # of

TX

# of

RX

Taxes

Instruments

IWR1443

Industrial,

short-range detection

76-81 GHz

3

4

IWR1642 2

IWR1843

3IWR6843 60-64 GHz

IWR6443

Infineon

BGT24MTR12

Tracking, angle and

direction of

movement detection

24-24.25 GHz
1

2
BGT24LTR22 2

BGT24MTR11 24-26 GHz

1 1BGT24MR2
24-24.25 GHz

BGT24LTR11N16

Qualcomm
QTM527 5G communication &

detection

24.25-27.5,

26.5-29.5

GHz, 27.5-

28.35 GHz,

37-40GHz

2 2

QTM052 26.5-29.5

GHz, 27.5-

28.35 GHz,

37-40 GHz

IMEC

60GHz radar Contactless health

tracking

60-66 GHz 1 1
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79GHz radar Autonomous driving 79-81 GHz 2 2

140GHz radar Gesture recognition 140-150 GHz 1 1

Silicon

24 GHz radar

Transceiver

angle and direction

detection

23.2-26.3

GHz

2

4

120 GHz

Transceiver

TRX 120 001

High-accuracy

distance and speed

measurement

119.1-125.9

GHz
4

120 GHz

Transceiver

TRX 120 002

119.1-125.4

GHz

Calterah
CAL60S344-AE In-car 59-64 GHz

4 4
CAL77S344-AE In-car 76-81 GHz

Arbe
Lynx Surround imaging

radar

15.2-18.2

GHz

24 12

Phoenix Perception radar 76-81 GHz 48 48

INRAS Radarbook2 Range & Doppler lab-

oratories

10 GHz, 24

GHz, 77 GHz

8 16

Pharrowtech PTM1060 Beamforming

transceiver solu-

tion

57-71 GHz 32 32
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Chirp Signal 

Generator

IF Signal ADC

Storage
IF Signal ADC

IF Signal ADC

IF Signal ADC

TX2

TX1

TX3

RX1

RX2

RX3

RX4 mixer

DSP

MCU

Hardware

Accelerator

Figure 2.1: MIMO Radar System Architecture

Chirp Signal

Generator

IF Signal ADC

mixer

TX

RX Storage

IF Signal ADC
90°

(Q-Channel)

(I-Channel)

Figure 2.2: The Principle of a Mixer
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(a) Chirp Signal

(b) IF Signal (fIF = τK)

Figure 2.3: Chirp Signal & Dechirp
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2.2 Radar Signal Model and Processing

A MIMO FMCW radar example is shown in Figure 2.1. To maintain orthogonality

in transmission channels, three transmit antennas operate in the time division mul-

tiplexing (TDM) mode. They take turns emitting the same signal waveform from

a chirp signal generator during their designated time slots. Four receiver antennas

capture the reflected signal, which is fed into mixers with the transmitted chirp signal

to generate Intermediate Frequency (IF) signals. After being sampled by ADCs, the

IF signal is stored for further processing. In addition, COTS radars usually equip

with Micro Controller Unit (MCU), Digital Signal Processor (DSP) and hardware ac-

celerator modules for on-board signal processing. Some advanced radars can produce

complex IF signals (See Fig. 2.2), where the received signal is mixed with the original

transmitted signal as well as the transmitted signal with an extra 90◦ phase, respec-

tively. The resulted signals are put in the I-Channel and Q-Channel for sampling,

which represent the real part and imaginary part of the IF signals.

Consider a chirp signal (shown in Figure 2.3a) transmitted by an antenna repre-

sented as

x(t) = ej2π(fct+
1
2
Kt2), (2.2.1)

where fc is the carrier frequency; B is the bandwidth; Tc is the duration of one chirp

signal, and K is the slope of the chirp. After being reflected from a target, the signal

received by an antenna is given by

y(t) = αej2π[fc(t−τ)+
1
2
K(t−τ)2] + v(t), (2.2.2)

14
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where α is the magnitude of the received signal; τ = 2R
c

is the round-trip delay, R

is the distance between the target and the radar, v(t) is the noise term. After being

processed by the matched filter in a mixer, the output is the IF signal given by

yIF(t) = y(t)∗ · x(t)

= αej2π[τKt+(fcτ−
1
2
Kτ2)] + vIF(t)

≈ αej2π(τKt+fcτ) + vIF(t), (2.2.3)

where vIF(t) = v(t)∗ · x(t). The principle of a mixer is shown in Fig. 2.3b. The IF

signal must be sampled before further processing. Let the sampling frequency, the

total number of samples, sampling interval, sampling start time in one chirp be Fs,

M , ts (ts = 1/Fs), TStart, respectively. The sampled IF signal is given by

yIF(m) = αej2π[τK(mts+TStart)+fcτ ] + vIF(m), (2.2.4)

where m is the sampling index, 0 ≤ m ≤M−1. Collecting all sampled data, we have

yIF = [yIF(0), yIF(1), . . . , yIF(M − 1)] . (2.2.5)

For simplicity, we omit the noise term. To measure the range R of a target, take FFT

to yIF, we have

Y1D(l) =
M−1∑
m=0

yIF(m)e−j2π
l
L
m

= αej2π(τKTStart+fcτ)

M−1∑
m=0

ej2π(τKts−
l
L)m, (2.2.6)
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Figure 2.4: Multiple Antenna Direction Estimation

where l = 0, 1, . . . , L − 1 and L is the number of FFT points. Y1D reaches the

maximum magnitude for

l⋆ = round

(
2RKtsL

c

)
, (2.2.7)

and the estimated range is given by

R̃ =
l⋆c

2KtsL
. (2.2.8)

For the FFT-based estimation [5], the range resolution and the maximum range are

given by

R∆ =
c

2B
, Rmax =

Fsc

4K
. (2.2.9)

2.2.1 Array Processing

To estimate the direction θ of a target (also called angle-of-arrival or AoA), we must

deploy multiple antennas to construct an array. In Fig. 2.4, there are N antennas

placed in a line with the same interval d. When the target is in the far field of

a radar, we can assume that the wavefront of the reflected signals is planar and
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perpendicular to the propagation direction. Due to the closeness between neighboring

antennas, their received signals differ by a phase (less than π). Let the distance

between neighbouring antennas be d. The range difference is d cos θ. Thus, the IF

signal received at the n-th antenna can be represented as

yIF,n(m) = αej2π[(τ+ndcos θ/c)K(mts+TStart)+fc(τ+nd cos θ/c)]

≈ αej2π[τK(mts+TStart)+fcτ ]ej2π·nd cos θ/λ, (2.2.10)

where λ = fc/c is the carrier wavelength. Since nd cos θ/c≪ τ , nd cos θ/c has almost

no impact on the IF signal frequency or the extra phase term and can be omitted.

The received signals from all the antennas are given by

yIF = [yIF,0(m), yIF,1(m), . . . , yIF,N−1(m)] . (2.2.11)

By taking the FFT of yIF, we have

Y1D,n(l) =
N−1∑
n=0

yIF,n(m)e−j2π
l
L
n

= αej2π[τK(mts+TStart)+fcτ ]

M−1∑
m=0

e−j2π(
d cos θ

λ
− l

L)n. (2.2.12)

Y1D,n(l) reaches its maximum magnitude when

l⋆ = round

(
dL cos θ

λ

)
, (2.2.13)
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and the estimated target direction is given by

θ̃ = arccos
l⋆λ

dL
. (2.2.14)

For FFT-based estimation [55], the best angle resolution, which appears at the array

boresight direction, is given by

θ∆ =
2

N
(2.2.15)

2.3 Radar Imaging

Radar imaging is another important application of radars. It aims to create a 2D

map of an area with high resolution. The high map resolution depends on a large

radar aperture size, which also enables us to obtain more target details, such as the

shape and the backscatter coefficients of different parts. There are various methods to

realize large apertures for different imaging purposes. For example, synthetic aperture

radar (SAR) is used to image a static area by mounting a radar on a moving platform,

such as a plane or a rover [48]. The movement of the platform creates a large virtual

antenna array that enhances the resolution. Conversely, inverse synthetic aperture

radar (ISAR) can image moving targets from a stationary radar [44]. The large

aperture is constructed by collecting reflected signals from different target locations.

ISAR is commonly used for detecting and identifying aircraft and satellites. Recently,

several new methods have been proposed, such as mono-pulse radar 3-D imaging [70],

4D imaging radar [78] and so on.

In SAR, there are different working modes that are used to image areas. The

simplest mode is the “stripmap” mode [52], where the radar is fixed on a vehicle and
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the antenna facing is usually perpendicular to the moving path. This mode senses a

strip of the environment as the vehicle moves. The “spotlight” [8] mode adjusts the

antenna bore-sight direction in real time to focus on a specific area. This mode can

achieve a higher resolution for that area. The “scan” mode [47] has more complex

antenna bore-sight adjustments, as it aims to cover a wider area than the “stripmap”

mode, but at the cost of lower resolution.

With different working modes, many SAR imaging algorithms have also been

proposed. They can be divided into two categories: (1) frequency domain-based al-

gorithms, such as the Range-Doppler Algorithm (RDA), Chirp Scaling Algorithm

[53] and Omega-K [79]; and (2) time domain-based algorithms, such as the Back-

Projection Algorithm [17, 73]. The choice of algorithms depend on the working mode

and the signal model of the SAR system. Frequency domain-based algorithms are

popular and efficient, as they can use the fast Fourier Transform to speed up the

computation. However, they assume that the radar moves linearly and transmits/re-

ceives signals at a constant rate. When these requirements are not satisfied, time

domain-based algorithms are often employed, e.g., BPA.
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Figure 2.5: Back Projection Algorithm

The most prominent advantage of BPA is that it does not impose any restriction

on the array shape (or equivalent radar movement trajectories). Consider the radar

imaging system shown in Fig. 2.5. In the figure, the red dots represent N virtual

phase centers, the yellow dot represents the target, and the blue dot represents a pixel

in 2D space. Let (xt, yt), (x, y), (xn, yn), n = 0, 1, . . . , N − 1 denote the coordinates

of the target, a pixel and the n-th phase center, respectively. All (xn, yn)’s are known

a priori. The sampled IF signal received at the n-th phase center is given by

yIF,n =



αne
j2π[τnK(0·ts+TStart)+fcτn]

αne
j2π[τnK(1·ts+TStart)+fcτn]

...

αne
j2π[τnK((M−1)·ts+TStart)+fcτn]


+ vIF, (2.3.1)

where τn = 2Rt,n/c; Rt,n =
√

(xn − xt)2 + (yn − yt)2; vIF = [vIF(0), vIF(1), . . . , vIF(M − 1)]T .
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Collecting data from all the phase centers, we have

YIF = [yIF,0,yIF,1, . . . ,yIF,N−1] . (2.3.2)

In BPA, to image a pixel at (x, y), we construct a matrix W of size M × N , where

the element at the intersection of the i-th row and j-th column is

W(i,j) = e−j2π[τ̃nK((M−1)·ts+TStart)+fcτ̃n], (2.3.3)

where τ̃n =
√

(xn − x)2 + (yn − y)2. Then, the intensity of the pixel is

I(x, y) = 1T · (W ⊙YIF) · 1, (2.3.4)

where ⊙ denotes the Hadamard product. From the above formula, we can find that

if (x, y) is the same as (xt, yt), all the phase terms in YIF can be perfectly cancelled

and the intensity reaches its maximum value.
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Chapter 3

Multiple-Target Localization by

Millimeter-Wave Radars with

Trapezoid Virtual Antenna Arrays

3.1 Introduction

In Section 2.2.1, we have explored the use of array processing in determining the AoA

of a signal. In fact, array processing can also be applied to determine target number

and locations, improve SNR [26], track multiple targets [64], image the areas of in-

terest and so on. In this chapter, we only focus on the target number and location

estimations, and with very few exceptions, their estimations are performed in two

separate steps in existing work. To estimate the number of targets, a variety of meth-

ods have been devised, including those using Akaike Information Criterion (AIC) [1],

energy detection [21], minimum decription length [66], machine learning models [38],

etc. Once the number of targets is known, targets are separated according to their
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ranges and angles. To estimate the angle of arrivals of known number of targets,

multi-antenna systems, such as uniform linear array [40] and uniform rectangular

array (URA), are used and many algorithms have been proposed, including Estima-

tion of Signal Parameters via Rotational Invariant Techniques (ESPRIT) [23, 33],

MUltiple SIgnal Classification (MUSIC) [57], Capon algorithm [14, 68], PARAllel

FACtor analysis (PARAFAC) based algorithm [77], matrix pencil method [31] and

its enhancement [30, 15].

In addition to the above general array processing approaches, custom algorithms

have been designed to localize multiple targets using mmWave radars. In [32], the

authors apply 1D-FFT, constant false alarm rate detection and peak grouping to

the data matrix extracted from a radar to estimate the number of targets and their

ranges. An angle-FFT is then applied to estimate the angles of remaining peaks, each

corresponding to one target. Due to its usage of FFTs in range and angle domains,

we call this approach “2D-FFT”. In [41], a modified 3D MUSIC algorithm was de-

veloped for 3D target localization. Instead of choosing the largest few eigenvalues as

the number of targets, the authors adopt the Minimum Description Length (MDL)

criterion [65, 29]. The polar coordinates of all targets are estimated from the radar

3D MUSIC pseudo-spectrum jointly.

These approaches suffer from several limitations. In the FFT-based algorithm

in [32], the number of sampled data from each received antenna has to be sufficiently

large making the detection and localization of moving targets difficult. Moreover, the

CFAR threshold needs to be carefully tuned for different target environments [56].

1-D angular FFT assumes linear antenna arrays. Furthermore, the time complexity

of super-resolution methods for AoA estimation such the MUSIC algorithm is very
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high since they rely on a grid search in the pseudo-spectrum, which diminishes their

applicability in real-time applications.

In this chapter, we introduce a new approach for multi-target localization using

mmWave radars with trapezoid virtual antenna arrays. Trapezoid antenna arrays

become increasingly common in COTS radar boards, e.g., IWR1443/1843/6843 from

Taxes Instruments [54], CAL77S244 from Calterah Semiconductor Technology [63],

to name a few in indoor and vehicular applications. In the proposed method, we

first separate received signals from multiple targets by exploiting the received signal

structure. We then cast the received signals on each antenna of FMCW radars into

the form of complex moments in Barone’s method [7] and extend this method to

handle data from multiple antennas. Next, a Least-Square algorithm is employed to

estimate the AoAs of each target. Simulation results and testbed experiments show

that the proposed method not only outperforms the 2D-FFT algorithm in ranging

and localization, but also achieves more accurate AoA estimations than both 2D-FFT

and MUSIC algorithms in the high SNR regimes. In addition, the proposed method

reaches this improved performance with as few as 100 samples when the SNR is 30dB.

The rest of the chapter is organized as follows. Section 3.2 derives the radar

system model for a trapezoid virtual antenna array; Section 3.3 presents the proposed

approach to extend Barone’s method and apply Least Square algorithm in radar signal

processing; Section 3.4 compares the MATLAB simulation results by using 2D-FFT,

MUSIC and the proposed method. Section 3.5 shows the evaluation of the proposed

algorithm on a testbed followed by a conclusion in Section 3.6.
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3.2 Radar Model for Multiple Targets

In this section, we present the antenna geometry of the radar we use and the mathe-

matical representations of transmitted and received signals.

3.2.1 System Model

For concreteness of the discussion, we consider a specific radar geometry (see Figure

3.1a), where the distance between neighboring transmit antennas is λ, the carrier

wavelength, and the middle transmit antenna is λ/2 higher than its two neighbors.

The distance between neighboring receiver antennas is also λ/2. In order to sepa-

rate transmitted signals, we let three transmit antennas take turns to transmit the

same chirp signals, in the order of TX1, TX3, and TX2. Then, the reflected signals

obtained on all the receiver antennas from the same target exhibit phase shifts from

one another, caused by the distance differences between the target and each antenna.

Equivalently, we can represent the system with M = 1 virtual transmit antenna lo-

cated at TX1 and N = 12 virtual receiver antennas, among which RX1∼4 are located

at their original positions, and two replications of the virtual antenna array are lo-

cated at the left side and on top of original 4 antennas, respectively (see Figure 3.1b).

Thus, we call it “trapezoid virtual antenna array”. The 8 virtual antennas in the

bottom row are also called azimuth receiver antennas. This transformation greatly

simplifies subsequent analysis.

Consider T targets located at (Ri, θi, ϕi) or (xi, yi, zi), i = 1, 2, 3, . . . , T (shown

in Figure 3.2). Based on the above trapezoid array, the two phase shifts ωx,i and ωz,i
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(a) Antenna Placement and Spacing (b) Trapezoid Virtual Antenna Array

Figure 3.1: Antenna Geometry
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Figure 3.2: Radar and Target Geometry
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can be derived by azimuth and elevation angles between the radar and the target as:

ωx,i = π sin θi cosϕi, (3.2.1)

ωz,i = π sinϕi. (3.2.2)

In fact, the phase shifts can be represented using the steering vectors for the real trans-

mit antennas and receiver antennas, denoted by ai (ωx,i, ωz,i) =

[
1, ej4ωx,i , ej(2ωx,i−ωz,i)

]T
,

bi (ωx,i) =

[
1, ejωx,i , ej2ωx,i , ej3ωx,i

]T
. Then, the equivalent steering vector for all 12

virtual receiver antennas is given by,

hi = ai (ωx,i, ωz,i)
⊗

bi (ωx,i)

= [1, ejωx,i , ej2ωx,i , ej3ωx,i , ej4ωx,i , ej5ωx,i , ej6ωx,i , ej7ωx,i ,

ej(2ωx,i−ωz,i), ej(2ωx,i−ωz,i)ejωx,i , ej(2ωx,i−ωz,i)ej2ωx,i ,

ej(2ωx,i−ωz,i)ej3ωx,i ]T , (3.2.3)

where
⊗

denotes the Kronecker product. Now, let α = [α1, α2, . . . , αT ], ωx =

[ωx,1, ωx,2, . . . , ωx,T ], ωz = [ωz,1, ωz,2, . . . , ωz,T ], τ = [τ1, τ2, . . . , τT ]. We can write the

received signal by all virtual antennas from all T targets as:

y (t;α,ωx,ωz, τ ) =
T∑
i=1

αihix (t− τi) + v (t) , (3.2.4)

where v (t) is a vector of Gaussian white noise at receiver side and each element in v (t)

follows v (t) ∼ N (0, σ2). Let A = diag ([α1, α2, . . . , αT ]), H = [h1,h2,h3, . . . ,hT ],

x (t; τ ) =

[
x (t− τ1) , x (t− τ2) , · · · , x (t− τT )

]T
. The system model of the trapezoid
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virtual antenna array in matrix representation is given by,

y (t;α,ωx,ωz, τ ) = HAx (t; τ ) + v (t) . (3.2.5)

3.2.2 IF Signals

From the system model, we can analyze the waveform of the received signals for

FMCW radars. Assume that the chirp signal emitted by a TX antenna is x (t) =

ej2π(fct+
1
2
Kt2). The received signals in a vector form at the 12 virtual antennas are

y (t;α,ωx,ωz, τ ) =
T∑
i=1

αihie
j2π[fc(t−τi)+ 1

2
K(t−τi)2] + v (t) . (3.2.6)

After being processed by a matched filter, the resulting intermediate frequency (IF)

signal is

yIF (t;α,ωx,ωz, τ ) = y (t;α,ωx,ωz, τ )
∗ · x (t)

=
T∑
i=1

αih
∗
i e
j2π[τiKt+(fcτi− 1

2
Kτ2i )] + vIF (t) ,

where vIF (t) = v (t)∗ · x (t). Let xIF (t; τi) = ej2π[τiKt+(fcτi−
1
2
Kτ2i )] and xIF (t; τ ) =[

xIF (t; τ1) , xIF (t; τ2) , · · · , xIF (t; τT )
]
. We can write the output IF signals for all 12

virtual antennas in a matrix form as

yIF (t;α,ωx,ωz, τ ) = H∗AxIF (t; τ ) + vIF (t) . (3.2.7)
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3.2.3 Sampling

Define xIF,SAMP (n; τi) = ej2π[τiK(nts+TStart)+(fcτi− 1
2
Kτ2i )], n = 0, 1, 2, . . . , NSAMP − 1

and let

xIF,SAMP (n; τ ) =



xIF,SAMP (n; τ1)

xIF,SAMP (n; τ2)

...

xIF,SAMP (n; τT )


. (3.2.8)

The n-th sampled data for all 12 virtual antennas can be written as

yIF,SAMP (n;α,ωx,ωz, τ ) = H∗AxIF,SAMP (n; τ ) + vIF (n) . (3.2.9)

Next, let

XIF (τ ) =

[
xIF,SAMP (0; τ ) , . . . ,xIF,SAMP (NSAMP − 1; τ )

]

=



xIF,SAMP (0; τ1) , . . . , xIF,SAMP (NSAMP − 1; τ1)

xIF,SAMP (0; τ2) , . . . , xIF,SAMP (NSAMP − 1; τ2)

...

xIF,SAMP (0; τT ) , . . . , xIF,SAMP (NSAMP − 1; τT )


.

We can then write the sampled radar matrix YIF of size 12×NSAMP as

YIF (α,ωx,ωz, τ ) = H∗AXIF (τ ) +VIF. (3.2.10)

Now, our problem can be stated as estimating T , ωx, ωz, τ based on the sampled

radar matrix YIF.
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3.3 Approach

In this section, we present the proposed algorithm and analyze its property.

3.3.1 An overview of Barone’s method

Before delving into the proposed method, we first review how Barone’s method

works[7] and its connection to multi-target localization. The problem that Barone’s

method solves is to estimate parameters from a sequence data y of length NSAMP,

where y = {y0, y1, y2, . . . , yNSAMP−1} and yn satisfies

yn = sn + vn, (3.3.1)

for n = 0, 1, 2, . . . , NSAMP − 1. In (3.3.1), sn is a complex moment satisfying the

following form: sn =
∑T

i=0 ciξ
n
i , where ci and ξi are complex numbers, T is a non-

negative integer. vn is the complex addictive Gaussian white noise with zero mean

and known variance σ2. To estimate T , ci’s and ξi’s from y, we summarize Barone’s

method into the following five steps:

Step 1: Build R independent pseudo replications of the original data sequence, as

y(r)n = yn + v(r)n , n = 0, 1, . . . , NSAMP − 1; r = 1, . . . , R. (3.3.2)

where, {v(r)n } ∼ N(0, σ
′2
). Compute Padé poles and corresponding residuals based on

the replicated data by Padé approximants [27]. The result is R · NSAMP/2 pairs of

(ξ
(r)
i , c

(r)
i ).

Step 2: On a proper lattice L on the complex plane, calculate the complex measure
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ŜNSAMP,R (z, σ̃2) based on (ξ
(r)
i , c

(r)
i )s on those lattice points. Find all the local maxima

of |ŜNSAMP,R (z, σ̃2) |.

Step 3: Count the number of Padé poles in the neighborhood of each local maxima.

Step 4: Select those local maxima whose number of associated Padé poles meet

the prescribed threshold. The number of those local maxima is the estimated T̂ .

Step 5: For each of those local maxima, take the average of its corresponding c
(r)
i

and ξ
(r)
i in its neighbor area. The results are the estimated ξ̂i, ĉi.

Though Barone’s method was originally developed as a mathematical tool in ap-

proximation theory, we find that the received signals from multiple targets in radar

systems can be expressed in a form that the method can be applied. In particular,

the received signal is the sum of reflected signals from unknown number of targets.

Each summand of the nth sample of the reflected signal contains a target-dependent

constant and a target-dependent term that changes over time. Lastly, the received

signal also contains a noise term. Thus, by representing the received radar signal in

the form (3.3.1), we can apply Barone’s method to estimate the target parameters.

3.3.2 Transformation for individual antenna

In order to apply Barone’s method, we need to transform the radar data matrix YIF

to a suitable form as we discussed above. Define

ck,i = αie
−j(k−1)ωx,iej2π(τiKTStart+fcτi−

1
2
Kτ2i ), (3.3.3)

for k = 1, 2, 3, . . . , 8, and

ck,i = αie
j(ωz,i−2ωx,i)e−j(k−9)ωx,iej2π(τiKTStart+fcτi−

1
2
Kτ2i ), (3.3.4)
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for k = 9, 10, 11, 12, and i = 1, 2, 3, . . . , T . Let

ξi = ej2πτiKts . (3.3.5)

We construct a Vandermonde matrix:

V = V ander (ξ1, ξ2, . . . , ξT )

=



ξ01 ξ11

ξ02 ξ12

· · · ξ
(NSAMP−1)
1

· · · ξ
(NSAMP−1)
2

...
...

ξ0T ξ1T

. . .
...

· · · ξ
(NSAMP−1)
T


. (3.3.6)

Now, we can write the system model (3.2.10) as

YIF = S+VIF

= C ·V +VIF, (3.3.7)

where the element in the k-th row and i-th column of the matrix C is ck,i. The size

of C and V is 12× T and T ×NSAMP, respectively. For the element in the k-th row

and n-th column of S, we have sk,n =
∑T

i=1 ck,iξ
n
i , where k = 1, 2, 3, . . . , 12. And this

form is exactly the same as that mentioned by Barone.

To further analyze the sampling data from each virtual antenna, we write the

sampling data from each virtual antenna as a column vector. Take the transpose to
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both sides of (3.3.7), we have

YT
IF = [yIF,1,yIF,2,yIF,3, . . . ,yIF,12]

= VTCT +VT
IF. (3.3.8)

The sampled data of the k-th virtual antenna yIF,k is

yIF,k = sk + vk

=



sk,0

sk,1
...

sk,NSAMP−1


+



vk,1

vk,2
...

vk,NSAMP−1


, (3.3.9)

Now if we directly apply Barone’s method to yIF,k and get the estimated parameters

for the k-th virtual antenna. The results can be represented by

� Number of Targets: T̂k;

� Residuals: ûk =
{
ĉk,1, ĉk,2, . . . , ĉk,T̂k

}
;

� Padé Poles: ξ̂k =
{
ξ̂k,1, ξ̂k,2, . . . , ξ̂k,T̂k

}
.

Repeating the above operation to the sampled data of all 12 virtual antennas, i.e.,

yIF,1,yIF,2, . . . ,yIF,12, we have

T̂ =
[
T̂1, T̂2, . . . , T̂12

]
, (3.3.10)

Û = {û1, û2, . . . , û12} , (3.3.11)

Ξ̂ =
{
ξ̂1, ξ̂2, . . . , ξ̂12

}
. (3.3.12)
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Input YIF

Compute T̂ and τ̂

Compute ω̂x and ω̂z

Compute the coordinates of each target

Output (x̂i, ŷi, ẑi), i = 1, 2, 3, . . . , T̂

Figure 3.3: The diagram of the proposed algorithm

However, due to the existence of random noise, T̂1, T̂2, . . . , T̂12 may not be the same,

and the locations of elements in Ξ̂ do not coincide on the complex plane. One naive

approach is to take the average of the estimated number of targets from each antenna

and then perform clustering over the estimated locations. However, such a method

fails to take advantage of the correlated nature of measurements at different antennas.

Next, we propose a new algorithm that extends Barone’s method and performs joint

estimations of the number of targets and key parameters.

3.3.3 Multi-target Localization Algorithm

In the algorithm, we first extend Barone’s method to multi-antenna case for estimating

the number of targets and their ranges. Next, we employ a Least Square algorithm

to extract all the angle information. Finally, their coordinates are calculated. Figure

3.3 shows the steps of the proposed algorithm.

Step 1: Compute T̂ and τ̂ .

Recall the formation of the replication data in Equation (3.3.2), which can be
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further expressed as:

y(r)n =
T∑
i=0

ciξ
n
i + vn + v(r)n . (3.3.13)

Clearly, for each replicated data, adding more Gaussian white noise does not change

the Padé pole ξi’s and the magnitude of residual ci’s. From Equation (3.3.9), the n-th

sampled data can be expressed as

yn,k =
T∑
i=1

ck,iξ
n
i + vk,n. (3.3.14)

The key insight is, for different antennas (indexed by k), the only difference lies in

the phase of ck,i, while the ξi and the magnitude of the ck,i are the same among all

antennas. Therefore, we can view these 12 sequences of sampled radar data (one from

each antenna) as 12 replications of a data sequence whose element corresponds to

yn =
T∑
i=1

ciξ
n
i . (3.3.15)

There is no noise component in this sequence. Instead, receiver side noise vk,n can

be seen as manually added noise (i.e., v
(r)
k in Equation (3.3.2) for each replication.

From [7], when the replication data only differs in the manually added noise, the

Padé poles and the residuals remain the same. Therefore, the positions of all the ξi’s

do not change using the sampled radar data. Furthermore, the number of targets is

determined by the number of local maxima that has enough estimated Padé poles

in its neighbor area on the complex plane, which depends on the magnitude of cor-

responding residuals |ci|. Though ck,i’s differ in phase for different antennas, their

magnitude are the same. Thus, the distribution of estimated Padé poles ξ
(r)
i remains
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the same. In other words, the estimated number of targets is not affected by the

phase shift among antennas. Here, ci is a placeholder and we will not compute its

precise value.

Usually, people make tens of replicated data. If we only use 12 sequences of

sampled radar data, the detection results may not be ideal. Thus, we can reuse some

results we have already obtained to avoid making new pseudo data. We have got the

T̂, estimated Padé poles set Û and corresponding residuals set Ξ̂ from 12 sequences

of sampled radar data. By using these parameters, we can still continue to use Step

2 to Step 5 in Section 3.3.1 to get the final estimated T̂ and ξ̂.

For each element in ξ̂, we can compute an estimated τ̂i from Equation (3.3.5) as

τ̂i =
1

2πKts
∠ξ̂i. (3.3.16)

The distance from radar to target i is computed by R̂i =
cτ̂i
2
.

Now, we summarize the detailed Step 1 as:

Algorithm 1 Compute T̂ and τ̂

Input YIF;
T̂ = ∅, Û = ∅, Ξ̂ = ∅, T̂ = 0, τ̂ = ∅;
for k ← 1 to 12 do

Apply Barone’s method to yIF,k, get T̂k, ûk, ξ̂k;

T̂ = [T̂, T̂k], Û = Û ∪ ûk, Ξ̂ = Ξ̂ ∪ ξ̂k;
end for
Continue Step 2∼5 in Section 3.3.1 based on T̂, Û and Ξ̂, get T̂ and ξ̂;
for i ← 1 to T̂ do

Compute τ̂i by (3.3.16);
τ̂ = τ̂ ∪ τ̂i;

end for

Remark 1 Since ∠ξ̂i ∈ (0, 2π], the maximum τ̂i is
1
Kts

, and the maximum estimated
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range of the target that can be uniquely determined satisfies R̂max = c
2Kts

.

Step 2: Compute ω̂x and ω̂z.

From the estimated Padé poles ξ̂, we construct a Vandermonde matrix

V̂ = V ander
(
ξ̂1, ξ̂2, . . . , ξ̂T̂

)

=



ξ̂01 ξ̂11

ξ̂02 ξ̂12

· · · ξ̂
(NSAMP−1)
1

· · · ξ̂
(NSAMP−1)
2

...
...

ξ̂0
T̂

ξ̂1
T̂

. . .
...

· · · ξ̂
(NSAMP−1)

T̂


. (3.3.17)

Let ĉ[k] be the k-th column of ĈT , k = 1, 2, 3, ..., 12. We have yIF,k = V̂T ĉ[k] +

vIF. Due to the separability of the parameters of each target and simple com-

putation, we usually employ the Least Square algorithm to resolve the remaining

parameters. The closed-form solution to the Least Square optimization problem

minĉ[k]

∥∥∥yIF,k − V̂T ĉ[k]
∥∥∥ is given by ĉ[k] =

(
V̂V̂T

)−1

V̂yIF,k. Repeating using the

above solution for all k = 1, 2, 3, ..., 12, we can get the estimated ĈT . Let ĉi and ci

be the i-th column of Ĉ (or the i-th row of ĈT ) and C, respectively. The vector

ci is determined by the remaining parameters αi, ωx,i, ωz,i of target i, which can be

estimated by solving another Least Square optimization problem:

min
αi,ωx,i,ωz,i

f (αi, ωx,i, ωz,i), (3.3.18)

where f (αi, ωx,i, ωz,i) = ∥ĉi − ci∥2. The solution to the optimization problem can

be transformed to the formula that we can get the value of estimated parameters
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directly:

l̂ = arglmax
∣∣∣∣∣∣B̃1:8 [l]

∣∣∣+ ∣∣∣B̃9:12 [l]
∣∣∣∣∣∣, (3.3.19)

where

B̃1:8 [l] =

NDFT−1∑
n=0

d̂1:8
i [n] e−jωx,i[l]n, (3.3.20)

B̃9:12 [l] =

NDFT−1∑
n=0

d̂9:12
i [n] e−jωx,i[l]n, (3.3.21)

in which, d̂1:8
i =

ĉ1:8Hi

0

 and d̂9:12
i =

ĉ9:12Hi

0

. The detailed transformation steps

have been included in the Appendix A.

Let ωx,i [l] =
2πl
NDFT

, where NDFT is the length of d̂1:8
i and d̂9:12

i , 0 ≤ l ≤ NDFT − 1.

l̂ can be determined by finding the maximum value within [0, NDFT − 1]. Then, the

phase shift between azimuth receiver antennas for target i can be obtained as

ω̂x,i =
2πl̂

NDFT

. (3.3.22)

Replacing ω̂x,i in the definitions of B1:8 and B9:12 (in Equations (A.0.3), (A.0.4)

in Appendix A enables us to obtain the phases of B̂1:8 and B̂9:12:

ϕ̂B1:8 = ∠B̂1:8, ϕ̂B9:12 = ∠B̂9:12. (3.3.23)

Finally, if we substitute ω̂x,i, ϕ̂B1:8 , ϕ̂B9:12 into Equation (A.0.5), we get

ω̂z,i = 2ω̂x,i + ϕ̂B1:8 − ϕ̂B9:12 . (3.3.24)
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Now, we summarize the details of Step 2 as:

Algorithm 2 Compute ω̂x and ω̂z

Input T̂ and ξ̂;
ω̂x = ∅, ω̂z = ∅;
Construct Vandermonde matrix V̂ based on ξ̂ by (3.3.17);

Calculate Ĉ based on YIF and V̂;
for i ← 1 to T̂ do

Take DFT to ĉ1:8Hi and ĉ9:12Hi , find the index l̂ by (3.3.19);
Calculate ω̂x,i by (3.3.22);

Calculate ϕ̂B1:8 and ϕ̂B9:12 by (3.3.23);
Calculate ω̂z,i by (3.3.24);
ω̂x = ω̂x ∪ ω̂x,i, ω̂z = ω̂z ∪ ω̂z,i;

end for

Step 3: Compute the coordinates of each target

For target i, we can determine its location P̂i = [x̂i, ŷi, ẑi] from R̂i, ω̂x,i and ω̂z,i

as

x̂i = R̂i cos ϕ̂i sin θ̂i = R̂i
ω̂x,i
π
, (3.3.25)

ẑi = R̂i sin ϕ̂i = R̂i
ω̂z,i
π
, (3.3.26)

ŷi =

√
R̂2
i − x̂2i − ẑ2i . (3.3.27)

Besides that, according to Equation (3.2.1) and (3.2.2), the azimuth angle and eleva-

tion angle of target i can be computed as

ϕ̂i = arcsin
ω̂z,i
π
, θ̂i = arcsin

ω̂x,i

π cos ϕ̂i
. (3.3.28)

Remark 2 The complexity of the proposed algorithm can be analyzed as follows.

Step 1 of Barone’s method is O(RN3
SAMP), followed by O(l2 (RNSAMP/2 + 1)) in Step

2 where l is the number of points along the lattice edge. Let the number of local
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maxima be T
′
. The complexity of Step 3 & 4 is O(T

′
(RNSAMP/2 + 1)) and that

of Step 5 is O(T̂ ). Thus, the overall complexity of Barone’s method is O(RN3
SAMP +

l2 (RNSAMP/2 + 1)+T
′
(RNSAMP/2 + 1)+ T̂ ). We apply his method for the data from

12 antennas and apply Step 2∼5 for an extra time. We can now deduce that the com-

plexity of Algorithm 1 is O(12RN3
SAMP+13l2 (RNSAMP/2 + 1)+13T

′
(RNSAMP/2 + 1)+

13T̂ ). The complexity of Algorithm 2 is dominated by calculating Ĉ and l̂, which is

O(T̂ 2NSAMP + T̂ 3) and O(NDFT logNDFT), respectively. Thus, the overall complexity

of Algorithm 2 is O(T̂ 2NSAMP + T̂ 3 + T̂NDFT logNDFT).

3.4 Simulation Study

In this section, we conduct simulations to evaluate the performance of the proposed

algorithm.

3.4.1 Simulation Settings

We have implemented the proposed algorithm in MATLAB on a PC equipped with

an Intel Core 8700 CPU and 16GB RAM. The simulation settings for the radar

are as follows: (1) The start frequency and end frequency are 77GHz and 81GHz,

respectively; (2) The three transmit antennas take turns in sending chirp signals of

58us length in the order of TX1, TX3 and TX2; (3) The IF signals at the 12 virtual

receiver antennas are sampled between 7us and 57us after a chirp has been sent. The

total sampling number is 225.

For the targets and the environment, we vary the Signal-to-Noise Ratio (SNR)

from 0dB to 30dB in 5dB increments with complex addictive Gaussian white noise.
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Under each SNR situation, 10000 Monte-Carlo experiments are repeated with ran-

domly generated T targets with ranges between 0.05m and 9m, azimuth angles be-

tween -28° and 28°, and elevation angles between -14° and 14°.

Two metrics are used to evaluate the performance of the different algorithms that

we consider: the average number of detected targets under different SNRs, and target

location estimation errors. To calculate the location errors, we need to first associate

each estimated target with an actual target. Let Pi = [xi, yi, zi], i = 1, 2, 3, . . . , T ,

be the actual locations of T target, and P̂j = [x̂j, ŷj, ẑj], i = 1, 2, 3, . . . , T̂ , be

the estimated locations, where T̂ is the estimated number of targets. We perform

target association using the Kuhn-Munkres (KM) algorithm by solving the following

bipartite matching problem:

min
i,j

1

T̃

T∑
i=1

T̂∑
j=1

Sijxij

s.t.



Sij = ∥Pi−P̂j∥

xij ∈ {0, 1}∑T
i=1 xij ≤ 1∑T̂
j=1 xij ≤ 1∑T

i=1

∑T̂
j=1 xij = T̃

, (3.4.1)

where T̃ = min(T, T̂ ). We denote the resulting pairs by ⟨Pt, P̂t⟩, t = 1, 2, 3, . . . , T̃ .

Finally, the location estimation error is then computed as,

D =
1

T̃

T̃∑
t=1

∥Pt − P̂t∥
∥Pt∥

. (3.4.2)
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With T̃ pairs of associated targets, the MAE of all polar coordinate parameters (i.e.,

R, θ, ϕ) are given by,

MAER =
1

T̃

T̃∑
t=1

∣∣∣Rt − R̂t

∣∣∣ , (3.4.3)

MAEθ =
1

T̃

T̃∑
t=1

∣∣∣θt − θ̂t∣∣∣ , (3.4.4)

MAEϕ =
1

T̃

T̃∑
t=1

∣∣∣ϕt − ϕ̂t∣∣∣ . (3.4.5)

3.4.2 Baseline Algorithms

For comparison purposes, we have also implemented three baseline algorithms: 2D-

FFT, 2D-MUSIC and 3D-MUSIC. In the 2D-FFT algorithm, we apply range-FFT to

the sampled radar data matrix and find peaks in the spectrum. CFAR detection and

group peaking are used to estimate the number of targets and their ranges. Next,

we apply angle-FFT to the data at each detected peak from all antennas to obtain

the angle information. In 2D-MUSIC, target detections and range estimation are the

same as in 2D-FFT, but angle-FFT is replaced by the MUSIC algorithm to estimate

the AoAs of potential targets.

The 3D-MUSIC algorithm is based on the approach in [41]. It pre-calculates range

steering vectors, azimuth & elevation angle steering vectors. The number of targeted

is estimated by MDL, a mode selection approach based on information theory criteria.

To accelerate the computation time, after calculating pseudo-spectrum, we restrict

peak searches to neighborhoods of ground truth target locations. Note that doing so

errs on the optimistic side for 3D-MUSIC. Exhaustive search in 3D space will incur
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Table 3.1: Key Parameters of the Three Algorithms

2D-FFT algorithm
Range-FFT bins 256
Angle-FFT bins 1024

CFAR averaging mode CFAR-Cell Averaging Smallest Of (CASO)
CFAR noise averaging window length 8

CFAR guard length 4
CFAR cyclic mode or wrapped Not used

CFAR threshold scale 15dB
MUSIC algorithm

Angle bins 1024
Proposed algorithm

NSAMP 80
R 50

Threshold 50% of R
Range of the Lattice L -1 to 1 and -j to j

Side length of each grid of L 0.01

Variance of added pseudo noise σ
′2
= 0.64σ2

Table 3.2: Time Complexity of the Three Algorithms

2D-FFT O(12NSAMP logNSAMP + LaNSAMP +NSAMP + 2T̂NDFT logNDFT)

2D-MUSIC O(T̂ (N3 +N2
A(N(N − T̂ )̂2 +N2) +N2

DFT))

3D-MUSIC
O((NSAMPN)3 + NSAMP(

√
NDFT)

2(NSAMPN(NSAMPN − T̂ )2 +

(NSAMPN)2) +NSAMP(
√
NDFT)

2 + T̂ ((
√
NDFT)

2(NSAMPN(NSAMPN −
T̂ )2 + (NSAMPN)2) + (

√
NDFT)

2))

excessive computation overhead and likely worse performance.

The key parameters of the three algorithms are summarized in Table 3.1 and the

time complexity analysis has been put in Table 3.2. Note that La is the CFAR noise

averaging window length and NA is the number of angle bins. In our case, NA equals

to NDFT. All the baseline algorithms except 3D-MUSIC have been evaluated in 10000

Monte-Carlo experiments for each SNR situation. We only run 100 experiments per

SNR scenario for 3D-MUSIC due to its extremely high time complexity.
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3.4.3 Results and Analysis

Average number of detected targets

Figure 3.4 shows that with 3 or 6 targets, the average number of detected targets

under different SNRs. It can be observed the proposed method under-estimate the

number of targets in the low SNR regime but outperform the 2D-FFT method when

the SNR is above 8dB for 3 targets and 18dB for 6 targets. In addition, MDL, a

method based on information theoretic criteria, has the best performance in nearly

all SNR regimes.

Recall that from Padé approximant theory, the candidate Padé poles are among

the local maxima of complex measure ŜNSAMP,R (z, σ̃2). However, in the low SNR

situation, the energy of the noise and the energy of the signal are comparable. Thus,

the local maxima due to signal and those from noise are of similar values. From

[7], the higher local maxima, the higher the probability for more Padé poles in its

neighboring area. However, due to noise, the number of large local maxima increases

on the lattice. As a result, the number of Padé poles around the local maxima

corresponding to a real target may drop below the predefined percentage (e.g., >50%

of R). In contrast, in the higher SNR regime, large local maxima typically corresponds

to the signals reflected from real targets. They can attract sufficient number of Padé

poles to exceed the threshold and thus can be detected.

The 2D-FFT method performs well when targets are well separated. However,

its range resolution is determined by the sweeping bandwidth B (e.g., 4GHz) and its

best angle resolution is given by 2/N at the boresight direction. If two targets fall

in the same range and angle bins, they cannot be separated in the 2D-FFT method.

The choice of the CFAR threshold also affects the number of detected targets in low
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Figure 3.4: Average number of detected targets under different SNRs

SNRs by trading-off false positive rates with detection probabilities.

Location errors

Figure 3.5 shows the distance between the estimated and true locations for 3 and

6 targets under different SNRs. As expected, as the SNR increases, the average

location error decreases for all algorithms. In comparison, the proposed algorithm

always achieves lower location errors than 2D-FFT and has better performance than

2D-MUSIC in high SNR regime. We further plot the MAE of range, azimuth and

elevation angle estimation errors for 3 and 6 targets in Figure 3.6. It can be observed

from Figure 3.6a that the proposed algorithm has lower errors in estimating range

parameters. However, in estimating azimuth and elevation angles, 2D-FFT and 2D-

MUSIC algorithms have higher accuracy in low SNRs, but the proposed algorithm

outperforms both of them under high SNRs.

While the AoA and localization accuracy of 2D-MUSIC consistently outperforms

2D-FFT in all scenarios, the AoA estimations of 3D-MUSIC are worse than those
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Figure 3.5: Average location errors under different SNRs

of 2D-FFT in the low SNR regime for both 3-target and 6-target cases. This can

be attributed to two factors. First, the 3D-MUSIC algorithm in [41] only utilizes

stacked-up auto-correlation matrices for each antenna element over time (instead of

exploring the correlation in both space and time. Second, to approximate auto-

correlation matrices in time, a large number of frames are needed. Otherwise, the

resulting approximation is biased. This is especially true in the low SNR regime. It

should be noted that due to the peak search approach adopted, the accuracy of 3D-

MUSIC reported errs on the optimistic side. Nevertheless, the proposed method has

comparable or lower localization errors as 3D-MUSIC in mid- to high- SNR regimes

at significantly lower computation costs. This demonstrates the advantages of the

proposed method.

Impact of the number of data samples

The purpose of this set of experiments is to understand how the number of samples

affects the performance of the proposed method. In the experiments, the SNRs are
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Figure 3.6: The MAE of the polar coordinate parameters of the targets in 3- (left
column) & 6- (right column) target situation
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Figure 3.7: Effects of the number of data samples. (3 Targets)

set to 30dB and the number of sampled data is chosen from 12, 42, 73, 103, 134,

164, 195 and 225. A total of 10000 experiments are performed for each value. Figs.

3.7 and 3.8 show the results for 3-target and 6-target cases, respectively. It can be

observed from the figures that as the number of data samples becomes larger, the

number of detected targets approaches to the actual value while the estimated target

locations get closer to the ground truth locations. In fact, about 100 data samples are

sufficient to detect all targets accurately with the proposed algorithm, and using less

data samples is advantageous in detecting and locating mobile targets. In the previous

experiments using the proposed algorithm, we only utilize the first 80 sampled data

from each virtual receiver antenna to achieve the results and any 80 contiguous data

samples can be used to get the similar results. In contrast, the 3D-MUSIC algorithm

cannot attain comparable results with such a small number of data samples.
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Figure 3.8: Effects of the number of data samples. (6 Targets)

3.5 Testbed Evaluation

We have implemented the proposed and baseline algorithms using a COTS mmWave

radar, i.e., Taxes Instruments IWR6843ISK. The radar has 3 transmit antennas and

4 receiver antennas, where the antenna arrangement is the same as that in Fig.

3.1a. Three corner reflectors, each of which is constructed by three metal plates

perpendicular to one another, are used to represent three point targets. We use

Optitrack, an optical motion capture system, to determine the ground truth locations

of the radar and targets. The detailed parameters are summarized in Table 3.3 and

the experiment environment is shown in Fig. 3.9.

Table 3.4 and 3.5 summarizes the average range and directional errors for the

1-target case and the 3-target case, respectively. From the experiment results, we

see that the proposed algorithm has lower average errors than baseline algorithms in

most of the criteria. Nonetheless, we notice that the measured errors are far larger

than those from simulations. The discrepancy between simulation and experimental

results can be attributed to several sources. First and foremost, interference from
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Table 3.3: Testbed Setup

Radar
Frequency 60∼64GHz
Pulse width 50us

Number of ADC samples 225
Corner Reflector

Edge length 8 inch
Optitrack

Measurement error 0.2mm

Figure 3.9: Experiment Environment
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Table 3.4: 1-Target Experiment Results

Metrics (averaged) Proposed algorithm 2D-FFT 2D-MUSIC 3D-MUSIC
# of detected targets 1 1 1 1
Location errors (m) 0.4501 0.6198 0.4663 0.6088

MAER (m) 0.0671 0.0714 0.0714 0.0669
MAEθ (rad) 0.0212 0.0454 0.0248 0.0442
MAEϕ (rad) 0.4405 0.6113 0.4554 0.6100
Time cost (s) 7.7902 0.0024 17.6388 21.0659

Table 3.5: 3-Target Experiment Results

Metrics (averaged) Proposed algorithm 2D-FFT 2D-MUSIC 3D-MUSIC
# of detected targets 3 3 3 3
Location errors (m) 0.4140 0.5619 0.4736 0.5638

MAER (m) 0.2811 0.5191 0.4614 0.5192
MAEθ (rad) 0.1861 0.2676 0.2129 0.2692
MAEϕ (rad) 0.2322 0.2239 0.1994 0.2239
Time cost (s) 7.8355 0.0038 31.0145 34.0348

surrounding objects such as walls, pillars and furniture, can significantly impact the

performance. Second, the edge length of corner reflectors is 8 inches, making them

multi-scatter point targets. Third, corner reflectors can interfere with each other.

For instance, the peak of one corner reflector may be obscured by the sidelobes of

another in the spectrum, making the algorithms capture wrong targets elsewhere

with relatively high peaks. This may explain the performance gap between the single

target and 3-target cases. Other reasons may include the limitations of the radar

board, e.g., the accuracy of its mixer, ADC and the cosine pattern of its antennas.

In terms of the MUSIC algorithms, we only utilize one received chirp in the analysis,

which may not be sufficient to estimate covariance matrices accurately in such an

indoor environment with high interference. In addition, the MUSIC algorithms need

more computation time than the proposed algorithm.
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3.6 Conclusion

In this chapter, we proposed a new algorithm to estimate the locations of multi-

targets by using the radar with irregular antenna placement. From the simulation

results, it can be concluded that the proposed algorithm can detect nearly all the

targets especially in the high SNR regime, and the probability of losing targets is

very low compared with 2D-FFT method. Besides, among those detected targets,

the location error is significantly lower than that of 2D-FFT and MUSIC algorithm.

We also found that the resolution and performance of the proposed algorithm does

not heavily depends on the number of sampled data and hardware design. Compared

with 2D-FFT algorithm which needs hundreds of data samples to cover a large indoor

area, the proposed algorithm only needs less than half of them to get an even better

result.
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Chapter 4

A Robotic ROSAR System for

Indoor Imaging

4.1 Introduction

In this chapter, we present the design of a real-world robotic ROSAR system. We

begin by analyzing the array pattern of ROSAR. The analysis informs the choice of

key design parameters, including the rotation speed, diameter of the rotation plat-

form, radar frame rate, and maximum rover speed. We then introduce the details

of the ROSAR system, followed by a measurement study of possible error sources in

controlled radar trajectories.

4.2 Related Work

The use of ROSAR was first proposed by Klausing [36]. The author attached a

radar to a helicopter blade tip. The radar boresight direction pointed outward with
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a downward angle. Through the analysis of the data collected during the fast blade

rotation, a basic idea of the ground situation can be characterized. Later, ROSAR

theory was applied to precise wireless positioning [62]. By accurately locating a

backscatter transponder, the position of a vehicle with the transponder in a parking

lot could be determined.

ROSAR was first applied to indoor mapping in [3]. The authors developed a sys-

tem consisting of an omnidirectional radar mounted on a rotating platform operating

in K band. By applying BPA to the data collected by the radar, the system can pro-

duce clear images of objects with different backscatter coefficients in a 360° view [4].

Windowing functions are also used to enhance the image quality. In a follow-up work

by the same author, the ROSAR system is mounted on to a rover that moved in a

straight line to image a larger area [2]. In this case, the radar path is a spiral line,

but BPA is still applicable. To correct the measurement errors of the radar positions,

modifications were made to the original BPA.

4.3 Array Pattern Analysis

To determine the key design parameters of ROSAR, we need to characterize its ar-

ray pattern. In this section, we compare the array patterns of two types of arrays:

Uniform Linear Array and Uniform Circular Array in both near and far field cases.

UCA is a special case of ROSAR when there is only rotation motion and the rotation

speed is constant. In practice, because of the unforeseen time-variant disturbances in

the platform, the phase centers are not always evenly spaced. Moreover, compared

to UCA, the ROSAR system can be mounted on a moving vehicle, which makes the
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array manifold a spiral line. Nevertheless, under slow translational motions and con-

stant rotation speed, one can approximate the array pattern of a ROSAR by that of

a UCA.

Consider N antennas arranged in a line or a circle with identical spatial intervals,

i.e., ULA and UCA. The antenna radiation pattern is cosine-shaped and the field-

of-view of each antenna is between 0◦ to 180◦. The region of the electromagnetic

field around the antennas can be divided into near field and far field, where the

wavefront of the signals reflected from targets in far field is assumed to be planar and

perpendicular to the direction of propagation. The limit between the near and far

field is usually determined by Fraunhofer distance [58], i.e., dF = 2L2/λ, where L is

the array physical length. Let d, r, n, θ denote the distance between the neighbouring

antennas in the ULA, its radius, the antenna index and AoA of the signal, respectively.

The array patterns are given by

AP (θ) = wHa(θ), (4.3.1)

where θ is within 0◦ to 180◦; a(θ) is the steering vector and w is a complex matched

filter, which has the same expression of a(θ). In far field scenarios, w steers the beam

to the 90◦ direction (boresight direction). In near field scenarios, w is chosen to steer

the resulting beam to a pixel in polar coordinate (R, 90◦). Next, we analyze four

array patterns of ULA and UCA in near and far fields.
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Figure 4.1: Radar Model of the ULA (Near Field)

(1) ULA (Near Field)

AP (θ) = wH



cos (θ0) e
j2k
√

(R cos θ−x0)2+(R sin θ)2

cos (θ1) e
j2k
√

(R cos θ−x1)2+(R sin θ)2

...

cos (θN−1) e
j2k
√

(R cos θ−xN−1)
2+(R sin θ)2


, (4.3.2)

where k = 2π/λ is the wavenumber; xn is the x-coordinate of the n-th antenna; (R, θ)

is the target coordinate and θn is given by

θn = arctan
R sin θ

R cos θ − xn
− 90. (4.3.3)
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Figure 4.2: Radar Model of the ULA (Far Field)

(2) ULA (Far Field)

AP (θ) = wH



cos(θ − 90)ej2k·0·d cos θ

cos(θ − 90)ej2k·1·d cos θ

...

cos(θ − 90)ej2k·(N−1)·d cos θ


(4.3.4)

Figure 4.3: Radar Model of the UCA (Near Field)
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(3) UCA (Near Field)

AP (θ) = wH



cos (θNmin
) e

j2k
√
R2+r2+2Rr cos(θ−ϕNmin)

cos (θNmin+1) e
j2k

√
R2+r2+2Rr cos(θ−ϕNmin+1)

...

cos (θNmax) e
j2k
√
R2+r2+2Rr cos(θ−ϕNmax )


, (4.3.5)

where θn is given by

θn = arctan
R · sin (|θ − ϕn|)

R · cos (|θ − ϕn|)− r
,

n = Nmin, Nmin + 1, . . . , Nmax, Nmin =
⌈
(θ−ϕv)
ϕ∆

⌉
, Nmax =

⌊
(θ+ϕv)
ϕ∆

⌋
, ϕv = arccos r/Rt,

ϕ∆ = 2π/N .

Figure 4.4: Radar Model of the UCA (Far Field)
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(4) UCA (Far Field)

AP (θ) = wH



cos (θ − θNmin
) ej2kr cos(θ−θNmin)

cos (θ − θNmin+1) e
j2kr cos(θ−θNmin+1)

...

cos (θ − θNmax) e
j2kr cos(θ−θNmax )


(4.3.6)

Table 4.1: Parameter Settings

r 0.145 m
λ 0.005 m
Antenna Pattern Omni-directional
Radar Signal Type Chirp Signal
Bandwidth 4 GHz
Chirp duration 50 us
N 800

Fig. 4.5 shows the array patterns of the four cases with the parameter settings in

Table 4.1. Fig. 4.5a shows the far-field array patterns, where the blue line and red line

represent the array patterns of the ULA with L being πr and 2r, respectively. Green

line represents the UCA’s with radius r. Fig. 4.5b zooms in on the direction between

80◦ to 100◦. From the figures, we can see that the ULA has narrower main beamwidth

than that of a UCA, which means it has better angle resolution. However, the UCA

has lower sidelobe levels. Figs. 4.5c and 4.5d show the near-field array patterns,

where L = 2r and the target location is at (0.5m, 90◦) and (2m, 90◦), respectively.

Based on the parameter settings, both targets are within the Fraunhofer distance,

i.e., dF = 75.69m. The array patterns in Figs. 4.5c and 4.5d are nearly comparable

to those in far-field case.
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Figure 4.5: Array Patterns

In this thesis, we focus on ROSAR, which has a similar array pattern to a near-field

UCA. In Chapter 6, we investigate the case where a ROSAR system is mounted on a

rover that moves linearly. This results in a spiral line for the radar movement path.

Although ROSAR has low sidelobe levels, the spacing of phase centers can have an

significant impact on the sharpness of the resulting images. In [72], it is demonstrated

that when the spatial Nyquist–Shannon sampling criterion is violated, grating lobes

emerge in the beam pattern. These grating lobes cause the same target to appear at
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multiple locations. To mitigate this effect, the maximum distance between adjacent

phase centers in a ULA should be λ/4. Since ROSAR lacks a closed-form array

pattern, we approximate its behavior by using the requirement that the aperture

size of the ULA matches the diameter of the ROSAR, given their similar mainlobe

width. For ROSAR, this implies constraints on the rotation speed ω (rad/s), rotation

platform radius r (m) and radar chirp rate f Hz. Specifically,

ωr

f
≤ λ

4
. (4.3.7)

Similarly, the angular resolution can be approximated as θ∆ = λ
2r

at its boresight

direction (i.e., 90◦).

Considering the case that the ROSAR system is mounted on a moving rover.

Let the maximum and actual rotation speed be ωmax and ω0 (rad/s), respectively.

The maximum rover speed without violating the spatial Nyquist–Shannon sampling

criterion is given by

vmax = (ωmax − ω0) r. (4.3.8)

For example, based on the parameter settings in Table 4.1, ωmax is 6.8918 rad/s.

Assuming ω0 = 2π rad/s, the maximum rover speed is 0.0882 m/s.
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4.4 ROSAR System Design

Mini PC

RadarArduinoCamera

Motor Control 

Board

Left Wheel Right Wheel

Hall Effect 

Sensor

Rotation Platform 

Motor Controller

Rotation Motor

Figure 4.6: System Architecture

Figure 4.6 illustrates the overall system architecture. We use an Arlo robot to carry all

the components, and the entire system is controlled by a mini-PC running Linux and

Robot Operating System (ROS). The Mini-PC is directly connected to a webcam, an

Arduino Mega 2560 board, and a Texas Instruments (TI) IWR6843ISK+DCA1000EVA

radar. The antenna pattern of IWR6843ISK can be approximated as a cosine shape

based on its real-world measurement1, which matches the simulated antenna elements

in Sec. 4.3. The FoV of each antenna along the azimuth direction is wider than that

along the elevation direction. The Arduino board controls all the embedded devices,

including a hall effect sensor (US5881) that marks the zero-degree direction of the

rotation plate, the Arlo motor control board (DHB-10) that controls the rotation of

the two wheels, and the rotation platform motor controller (DRV8771) that controls

the speed of the rotation motor. Figure 4.7 shows a prototype of the built ROSAR

1https://www.ti.com/lit/ug/swru546e/swru546e.pdf
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system, and the detailed circuit is attached in Appendix C. As shown in these figures,

we placed the rotation platform on top of the robot. The rotation platform contains

the radar, a 3D-printed plate, counterweight, and a hidden magnetic chip. The rota-

tion motor connects the 3D-printed plate directly and drives the whole platform to

rotate. The radar antenna’s rotation radius is 0.145m.

Figure 4.7: ROSAR system

The entire system is controlled by ROS, including the radar signal transmission

and reception, the rotation speed, the recording of hall effect triggers, and the rover

moving speed. Specifically, the radar data is collected from the antenna board, and the

angle readings of the rotation platform are obtained from the rotation motor encoder.

Combined with hall effect triggers and rotation radius, the real-time directions and

locations of the radar can be derived. The wheel encoder can provide the tick readings

of both wheels. When the system starts running, the rotation speed is adjusted by a

PID controller running on the Arduino board based on angle readings. The magnetic

chip attached to the plate passes the hall effect sensor in each round, generating
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a trigger to signal the zero-degree direction. Encoders on both wheels are used to

control the robot’s real-time moving speed by using Arlo APIs. All the data is also

streamed to the mini-PC for further processing, such as ROSAR imaging.

4.5 Movement Profiling

Direction Deviation of Phase Centers
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Figure 4.8: Direction deviation of phase centers

Ideally, the locations of the radar as well as its antennas should be precisely known

and controlled. But unfortunately, unforeseen disturbances and resistances can lead

to fluctuations in the radar’s rotation speed that cannot be corrected by the PID

controller. Consequently, the radar may not consistently locate at its target position

at each timestamp. In other words, there is a direction deviation of each virtual phase

center. To measure rotation stability, we mount several optical markers (grey balls in

Fig. 4.7) on top of the 3D-printed plate. Markers can be tracked by OptiTrack, an
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optical motion capture system to obtain ground truth locations (position accuracy:

0.2 mm). To measure the direction deviation of phase centers, we let the radar rotate

for many rounds at 2π rad/s and compare the directions derived from sensors on the

ROSAR system in Sec. 4.4 and from the OptiTrack system. Fig. 4.8 shows the mean

value of 3.9× 10−4 degree. If the data is fit by a Gaussian distribution, the standard

deviation is σ = 0.086. Thus, we can approximate the direction of the n-th phase

center as ϕ̂n∼ N (2πn/N, 0.086).

Next, we quantify the accuracy of rover movements as estimated from its wheel

encoders. To determine rover’s location, direction and speed at each timestamp, we in-

put the ticks from two encoders into a MATLAB module called “wheelEncoderOdom-

etryDifferentialDrive”1. The resulting poses are then processed by another module

called “poseGraph”2, which provides rover’s locations and directions. Additionally,

we continuously rely on Optitrack to obtain the rover’s ground truth locations and

directions. The rover’s real-time speed can be estimated based on the displacement

between adjacent location points and a time interval of 0.05 seconds.

The rover movement is subject to more disturbances than the radar rotation, due

to the ground surface roughness and levelness. In practice, these factors could vary a

lot within a short distance. Moreover, by using the two wheel encoders, one can only

obtain the rotation angles of the wheels while wheel slippage cannot be obtained from

the encoders. Therefore, it is difficult to find any patterns for the deviations of the

rover. We present two rover movement examples in Figs. 4.9 and 4.10. Fig. 4.9 shows

that the rover is set to move in a straight line for about 3m. Its real-time location,

direction and speed are measured by both the wheel encoders and the OptiTrack. The

1https://www.mathworks.com/help/nav/ref/wheelencoderodometrydifferentialdrive-system-
object.html

2https://www.mathworks.com/help/nav/ref/posegraph.html
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location measurement result is shown in Fig. 4.9a. Fig. 4.9b shows the rover location

deviations, which is the distance between the ground truth location (OptiTrack) and

the measured location (Wheel Encoder). From these figures, we can see that the

deviation may reach up to 0.025m. As the rover moves further, the deviation could

accumulate to a larger value. In fact, based on the hardware parameters, when the

radar rotates at 2π rad/s, a 0.025m difference on the rover can make the virtual phase

center deviate by more than 20 phase centers. Such a deviation may cause significant

blurring of the radar image, which will be shown in the following two chapters. We

can also observe the rover direction deviation was accumulating while moving from

Fig. 4.9c and the final deviation is approximate 3◦ as shown in Fig. 4.9d. Figs.

4.9e and 4.9f present the rover speed measurement by both modalities and the speed

deviations, respectively. It is clearly shown that the wheels were suffering from uneven

surface roughness, since they frequently stopped rotating followed by a suddenly fast

rotating. Fig. 4.10 shows that the rover is set to move in a loop. When involving

turning, there is a big difference between the ground truth data and the measured

data.

66



Ph.D. Thesis—W. Zhao McMaster University—Computer Science

0 0.5 1 1.5 2 2.5 3

X (m)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Y
 (

m
)

Wheel Encoder

Optitrack

(a) Rover Location Measurement

0 100 200 300 400 500 600

Rover Location Index

0

0.005

0.01

0.015

0.02

0.025

D
e
v
ia

ti
o
n
 (

m
)

(b) Rover Location Deviations

0 100 200 300 400 500 600

Rover Location Index

-1

0

1

2

3

4

D
ir
e
c
ti
o
n
 (

d
e
g
)

Wheel Encoder

Optitrack

(c) Rover Direction Measurement

0 100 200 300 400 500 600

Rover Location Index

0

0.5

1

1.5

2

2.5

3

3.5

D
ir
e
c
ti
o
n
 D

e
v
ia

ti
o
n
 (

d
e
g
)

(d) Rover Direction Deviations

0 100 200 300 400 500 600

Rover Location Index

0

0.1

0.2

0.3

0.4

S
p
e
e
d
 (

m
/s

)

Wheel Encoder

Optitrack

(e) Rover Speed Measurement

0 100 200 300 400 500 600

Rover Location Index

0

0.05

0.1

0.15

0.2

0.25

S
p
e
e
d
 D

e
v
ia

ti
o
n
 (

m
/s

)

(f) Rover Speed Deviations

Figure 4.9: An Example of a Rover Moving in a Straight Line
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Figure 4.10: An Example of a Rover Moving in a Loop
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Chapter 5

Efficient Rotating Synthetic

Aperture Radar Imaging via

Robust Sparse Array Synthesis

5.1 Introduction

SAR has been widely used in military reconnaissance and remote sensing, because of

its all-weather all-day acquisition capabilities [67]. Conventional SAR working modes

include “stripmap”, “spotlight” and “scan” [47]. In these modes, high range resolu-

tions are achieved by transmitting large bandwidth signals, while the high resolution

in the cross-range dimension is achieved by utilizing the Doppler effect induced by

the relative motion between the radar platform and the target. However, the imaging

swaths of these SAR modes are relatively small due to the limited beam footprint

and the restricted moving track. Different from the aforementioned imaging schemes,

ROSAR systems mount antennas on the edge of rotation platforms with a certain
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radius [36]. Through platform rotation, ROSAR systems are able to scan the sur-

rounding environment continuously and generate a 360◦ image using the collected data

from a single moving track [4]. ROSAR can overcome limited (angular) field-of-view

of radar boards and allow imaging without translational movements of the platform

making it a promising low-cost solution in helicopter-borne SAR imaging [39, 51, 75],

indoor imaging [2] and so on. In indoor environments, ROSAR can be used for map-

ping and localization in case of fire emergencies or situations where other sensors fail

due to high heat and low visibility.

Due to the highly non-linear moving track of ROSAR, BPA is typically employed,

where its basic idea is to perform range-azimuth matched filtering with the prior

knowledge of the distance between the target and each phase center. Although the

conventional BPA can produce high-quality images without any limitation on the ar-

ray geometry, it suffers extremely high computation complexity making it inadequate

for real-time high-resolution imaging systems. The computational complexity of BPA

is determined by the number of pixels, the number of fast-time samples per pulse and

the number of pulses needed to generate one image. In a practical system, all three

parameters can be very large: the number of pixels depends on the image resolution;

a high pulse repetition frequency and consequently dense virtual array elements are

required to avoid aliasing [72]; and a large signal bandwidth, which results in a large

number of fast-time samples, is needed to ensure the high range-resolution. However,

due to the unique array geometry of ROSAR, frequency domain processing algorithms

such as Chirp Scaling Algorithm [53] and Omega-K [79] that assume linear motions

of the radar platform relative to the scene are not applicable. In the past decades,

much effort has been made in improving the efficiency of BPA and many algorithms
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have been proposed. For example, fast factorized Back-Projection (FFBP) [60, 76],

Cartesian factorized BPA [19] and its variant [45]. The core idea of these algorithms

is sub-aperture fusion. In sub-aperture fusion, the entire aperture is split into many

small apertures and BPA is applied to each sub-aperture to obtain coarse images.

A high-quality image can then be obtained by fusing these coarse-grained images

together. However, all of them assume a linear aperture too and cannot be applied

to circular aperture directly. In addition, sparse array synthesis is also a technique

with low complexity. Conventional ways to select sparse elements, e.g., randomly or

uniformly, are not optimal under every condition. Compressive sensing-based algo-

rithms [11, 74] still suffer from high complexity, the requirement of sparse environment

and the sensitivity to array manifold error.

In this chapter, we propose a new sparse array synthesis technique to reduce

the computation complexity of BPA. The proposed algorithms are implemented in

MATLAB. Extensive numerical simulations are conducted to evaluate the impact of

the parameter settings on the sparsity of the design and array patterns. Additionally,

we collect real-world data from indoor environments from the rotational hardware

platform detailed in Chapter 4. The evaluation study shows that in both simulations

and real experiments the proposed algorithm can reduce the total computation time

by more than 90% while generating SAR images with comparable quality as BPA.

The rest of the chapter is organized as follows. Section 5.2 gives the system model

of ROSAR and formulates the sparse array synthesis problem for ROSAR. Problem

transformation and the solution approach are proposed in Section 5.3. Section 5.3.4

introduces range-dimension filtering using range-FFT to further reduce computation

complexity. We validate our approach in Section 5.4 by numerical evaluation and
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simulation study as well as experiments in real environment in Section 5.4.5. Section

5.5 concludes the chapter.

5.2 System Model and Problem Formulation

In this section, we introduce the ROSAR system geometry, signal model, prepro-

cessing steps and give the formal problem formulation of spare array design at the

end.

5.2.1 Radar Geometry

Consider a stationary ROSAR system in Fig. 5.1. The radar is moving along the edge

of a circle centered at the origin with radius r. The bore-sight of the antenna always

faces outwards along the radial direction. The antenna radiation pattern in azimuth is

assumed to be cosine-shape and non-zero within
[
−π

2
, π
2

]
. The radar transmits chirp

signals at a constant rate, e.g., N times per circle. Due to the symmetry, without loss

of generality, we define a 2D coordinate frame such that a point target Rt distance

away from the circle center locates at (0, Rt) and the first (indexed by 0) phase center

(with respect to the X-axis counter-clock wise) is at (r, 0). Then, the bore-sight

direction of the antenna at the n-th radar position (phase center) is

ϕn =
2πn

N
, (5.2.1)

where n = 0, 1, .., N − 1. Let Rn and θn be the distance and the direction from the

n-th phase center to the target with respect to its bore-sight direction, respectively.

Due to the cosine antenna beam pattern, the target is in the field of view (FoV)
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Figure 5.1: Imaging geometry of a ROSAR system

of only a subset of antenna positions. Denote by ϕv the angle such that if ϕn ∈

(π/2−ϕv, π/2+ϕv), the target is visible to the n-th phase center. Rn, θn and ϕv can

be derived from trigonometry relationships, i.e.,

Rn =
√
R2
t + r2 − 2rRt cos (ϕn − ϕt), (5.2.2)

θn = arctan
Rt · sin (|ϕn − ϕt|)

Rt · cos (|ϕn − ϕt|)− r
, (5.2.3)

ϕv = arccos
r

Rt

. (5.2.4)
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The indices of the phase centers where the target is in their FOV are given by

n = Nmin, Nmin + 1, Nmin + 2, . . . , Nmax, (5.2.5)

where Nmin =
⌈

π
2
−ϕv
ϕ∆

⌉
, Nmax =

⌊
π
2
+ϕv
ϕ∆

⌋
and ϕ∆ = 2π

N
. To generate the image of the

target, only signals received by those phase centers are used.

5.2.2 Signal Model and Preprocessing

Let the chirp signal transmitted by the radar be

x(t) = ej2π(fct+
1
2
Kt2), (5.2.6)

The received signal at the n-th phase center is

yn(t) = αne
j2π[fc(t−τn)+ 1

2
K(t−τn)2] + v(t), (5.2.7)

where αn combines the complex reflection coefficient of the target, the antenna radia-

tion pattern and channel fading, τn = 2Rn/c is the round-trip time delay. Specifically,

the antenna radiation pattern is represented as

p (θ) =

cos (θ) θ ∈
(
−π

2
, π
2

)
,

0 otherwise.
(5.2.8)
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After down-converting and deramping, the resulting intermediate frequency (IF) sig-

nal is approximated to be

yIF,n(t) ≈ αne
j2π[τnKt+fcτn] + vIF(t), (5.2.9)

and the sampled IF signal is

yIF,n(m) = αne
j2π[τnK(mts+TStart)+fcτn] + vIF(m), (5.2.10)

where m is the sampling index, 0 ≤ m ≤ M − 1. Combining all the samples, we get

the following vector representation

yIF,n =



αne
j2π[τnK(0·ts+TStart)+fcτn]

αne
j2π[τnK(1·ts+TStart)+fcτn]

...

αne
j2π[τnK((M−1)·ts+TStart)+fcτn]


+ vIF, (5.2.11)

where vIF = [vIF(0), vIF(1), . . . , vIF(M − 1)]T . Let k = 2π (KTstart + fc)/c. Substi-

tuting the τn’s in each entry by 2Rn/c and rearranging items in (5.2.11), we have

yIF,n =



αne
j2πτnK·0·tsej2kRn

αne
j2πτnK·1·tsej2kRn

...

αne
j2πτnK·(M−1)·tsej2kRn


+ vIF. (5.2.12)
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Now, the data matrix from the effective phase centers used for SAR is

YIF = [yIF,Nmin
,yIF,Nmin+1, . . . ,yIF,Nmax ] . (5.2.13)

The conventional BPA images a point with parameter (ϕt, Rt) by computing the

Hadamard product of YIF and a matrix WBP of size M × (Nmax −Nmin + 1), where

the element locating at the i-th row and j-th column is

WBP,(i,j)=αNmin+j−1e
−j2πτNmin+j−1K(i−1)tse−j2kRNmin+j−1 .

Then, the intensity of the point is

I (ϕt, Rt) = 1T · (WBP ⊙YIF) · 1, (5.2.14)

If the target indeed locates at (ϕt, Rt) in polar coordinates, all the phases of the sam-

pled data are perfectly compensated, and (5.2.14) achieves its maximum. However,

the computation complexity of imaging a rectangular area using conventional BPA

is O (Lx × Ly ×M ×N), where Lx and Ly is the number of grids along X and Y

direction of the area. Clearly, the complexity grows linearly withM , N and area size.

From the complexity analysis, it can be deduced that two possible ways to lower the

complexity of BPA are, (1) reducing the number of phase centers to be used, i.e., re-

ducing N , and (2) apply range-dimension matched filtering and select the appropriate

range bin instead of using all M data samples in each pulse.

In the subsequent sections, we first develop a Sparse Array Synthesis method that

selects a subset of the phase centers and assigns appropriate complex weights. Then,
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we investigate the use of range-dimension matched filter (or more commonly known

as range FFT) to further reduce computation complexity. The two approached are

abbreviated to “SAS” and “FFT+SAS” respectively for simplicity.

5.2.3 Problem Formulation for Robust Sparse Array Synthe-

sis

For simplicity, we assume that the reflection coefficient is always 1. Due to complex

multipath reflection, wall penetration in indoor environments and the small diameter

of the rotation platform relative to the dimension of the environment, the channel

fading factor can be approximated to be a constant for the same range bin in all

directions and thus we omit it in the formulation. Thus,

αn = p (θn) . (5.2.15)

BPA can be viewed as a form of range-azimuth two-dimension filtering. To generalize

it to sparsely-selected phase centers, we first apply a compensation matrix to YIF to

remove the phase items related to fast-time sampling, i.e.,

Y′
IF = WSA ⊙YIF,

=



αNmin
ej2kRNmin · · · αNmaxe

j2kRNmax

αNmin
ej2kRNmin · · · αNmaxe

j2kRNmax

...
. . .

...

αNmin
ej2kRNmin · · · αNmaxe

j2kRNmax


,
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where the i-th row and j-th column element ofWSA isWSA,(i,j) = e−j2πτNmin+j−1K·(i−1)·ts .

The steering vector of the ROSAR array to a near-field target located at range R can

be represented as

a(ϕ;R) =



cos(θ
′
Nmin

)ej2k
√
R2+r2−2Rr cos(ϕ−ϕNmin

)

cos(θ
′
Nmin+1)e

j2k
√
R2+r2−2Rr cos(ϕ−ϕNmin+1)

...

cos(θ
′
Nmax

)ej2k
√
R2+r2−2Rr cos(ϕ−ϕNmax )


, (5.2.16)

where θ
′
n = arctan R sin(|ϕ−ϕn|)

R cos(|ϕ−ϕn|)−r , and the array pattern can also be calculated as

F (ϕ;R) = wHa(ϕ;R), (5.2.17)

where w is a sparse complex weight vector to be designed and some of its elements

can be equal or be close to zero. Note that, w is also a function of R, but we omit

the subscript R for simplicity. To focus a point target locating at (ϕt, Rt), we need

to compute

I (ϕt, Rt) = 1T ·
(
wH ◦Y′

IF

)
· 1

= 1T ·
(
wH ◦WSA ⊙YIF

)
· 1,

where ◦ is the Khatri-Rao product.

Due to the vibration of the rotation platform, odometry errors and antenna pattern

mismatch (e.g., cosine pattern), there exist array manifold errors, which may lead to

blurred images. To obtain an SAR image with good quality in this situation, the

sparse weight vector w must be carefully designed with consideration of robustness
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to array errors.

We formulate the way to obtain the desirable w as to solve an optimization prob-

lem. In the optimization, the first constraint is that the power of the main-lobe peak,

locating at ϕm = π
2
, should be larger than or equal to a threshold U , i.e.,

∣∣wH (a (ϕm;R) + em)
∣∣2 ≥ U, ∥em∥ ≤ ∆R, (5.2.18)

where em is the array error vector caused by measurement and imperfect radar ro-

tations, and we assume that em is bounded by a ball with radius ∆R (0 ≤ ∆R ≤

∥a(ϕ;R)∥). Second, to restrict the main-lobe width and the sidelobe level, we put

limitations on the received power at some uniformly spaced discrete directions except

for the desired main lobe area, i.e.,

∣∣wH (a (ϕs;R) + es)
∣∣2 ≤ ηU, s = 1, 2, . . . , S; ∥es∥ ≤ ∆R, (5.2.19)

where es is the error vector for sidelobe area with the same properties as em, S

is the number of uniformly spaced discrete directions, ϕs ∈
[
ϕNmin

, π
2
− ϕMW

]
∪[

π
2
+ ϕMW, ϕNmax

]
, ϕMW is the half of the desirable main-lobe width, η is the pre-

set power ratio of the main-lobe to the sidelobe. Third, to avoid amplifying the noise

level, we impose a constraint on the gain of noise power:

∥w∥22 = 1. (5.2.20)

Lastly, to guarantee a sufficient gain on the target, we set another constraint U ≥

Umin.
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The objective is to minimize the number of virtual phase centers given by ∥w∥0.

To this end, we formulate the sparse array synthesis problem as

min
w,U,em,es

∥w∥0

s.t.



C1 :
∣∣wH (a (ϕm;R) + em)

∣∣2 ≥ U, ∥em∥ ≤ ∆R,

C2 :
∣∣wH(a(ϕs;R)+es)

∣∣2 ≤ ηU, s = 1, 2, . . . , S;∥es∥≤∆R,

C3 : ∥w∥22 = 1,

C4 : U ≥ Umin.

(5.2.21)

Problem (5.2.21) is a non-convex optimization problem since both the objective

function and constraints C1 and C3 are non-convex. Because of the consideration

of robustness to array errors, the problem formulation is markedly different from

those in conventional sparse array synthesis[50, 25, 43, 42, 35, 22], rendering existing

techniques inapplicable. In the next section, we develop a customized algorithm based

on FPP and SCA to solve (5.2.21).

5.3 Solution Approach for Robust Sparse Array

Synthesis

5.3.1 Problem Transformation

Directly solving (5.2.21) is hard, since l0-norm minimization problem requires in-

tractable combinatorial search. To reduce the complexity, we replace the l0-norm

objective function with l1-norm, i.e., ∥w∥1 as suggested by [13, 20].

C1 and C2 contain additional control variables em and es to express robustness
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constraints. They can be simplified by considering the worst case scenarios. Specifi-

cally, by using the Cauchy-Schwarz inequality and the triangle inequality, we can find

the minimum of main-lobe response and the maximum of sidelobe response respec-

tively as follows

∣∣wH(a(ϕm;R) + em)
∣∣2 =∣∣wHa(ϕm;R) +wHem

∣∣2
≥(|wHa(ϕm;R)| −

∣∣wHem
∣∣)2

≥(|wHa(ϕm;R)| − ∥w∥2 ∥em∥2)2

≥(|wHa(ϕm;R)| − 1 ·∆R)
2,

(5.3.1)

∣∣wH(a(ϕs;R) + es)
∣∣2 =∣∣wHa(ϕs;R) +wHes

∣∣2
≤(|wHa(ϕs;R)|+

∣∣wHes
∣∣)2

≤(|wHa(ϕs;R)|+ ∥w∥2 ∥es∥2)2

≤(|wHa(ϕs;R)|+ 1 ·∆R)
2.

(5.3.2)

The equalities hold when e = a · a(ϕ;R) (a ∈ R). Substituting (5.3.1) and (5.3.2)

into C1 and C2, we obtain the worst-case constraints as

(|wHa(ϕm;R)| −∆R)
2 ≥ U (5.3.3)

(|wHa(ϕs;R)|+∆R)
2 ≤ ηU, s = 1, 2, . . . , S (5.3.4)

Taking the square root of both sides of (5.3.3) and (5.3.4), and re-arranging items in

the inequalities, we have

C1 : (U
′
+∆R)

2 −wHa(ϕm;R)a
H(ϕm;R)w ≤ 0, (5.3.5)
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C2 : wHa(ϕs;R)a
H(ϕs;R)w − (

√
ηU

′ −∆R)
2 ≤ 0, s = 1, 2, . . . , S, (5.3.6)

where U
′
=
√
U . Constraint C3 in (5.2.21) can be replaced by two inequality con-

straints as

C3 : ∥w∥22 − 1 ≤ 0, (5.3.7)

C4 : 1− ∥w∥22 ≤ 0, (5.3.8)

and C4 is replaced by

C5 : U
′ ≥ U

′

min, (5.3.9)

where U
′
min =

√
Umin. The optimization problem is thus transformed to

min
w,U ′
∥w∥1

s.t.



C1 : (U
′
+∆R)

2 −wHa(ϕm;R)a
H(ϕm;R)w ≤ 0,

C2 : wHa(ϕs;R)a
H(ϕs;R)w − (

√
ηU

′ −∆R)
2 ≤ 0, s = 1, 2, . . . , S,

C3 : ∥w∥22 − 1 ≤ 0,

C4 : 1− ∥w∥22 ≤ 0,

C5 : U
′ ≥ U

′
min.

(5.3.10)

5.3.2 FPP-SCA-based Algorithm

The reformulated problem (5.3.10) is still non-convex which is hard to be solved

directly, and it is also tricky to find feasible initial solutions, but it is now amenable

to the convex approximation technique. Inspired by the idea of FPP [46], we introduce

three slack variables b, b1, b2 (b, b1, b2 > 0) for C1–C4, and we construct the following
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slacked surrogate problem of (5.3.10)

min
w,U ′ ,b,b1,b2

∥w∥1 + λb (b+ b1 + b2)

s.t.



C1 : (U
′
+∆R)

2 −wHa(ϕm;R)a
H(ϕm;R)w − b1 ≤ 0,

C2 : wHa(ϕs;R)a
H(ϕs;R)w − (

√
ηU

′ −∆R)
2 − b2 ≤ 0, s = 1, 2, . . . , S,

C3 : ∥w∥22 − 1− b ≤ 0,

C4 : 1− b− ∥w∥22 ≤ 0,

C5 : U
′ ≥ U

′
min,

(5.3.11)

where λb (λb > 0) is a pre-set coefficient to penalize constraint violations.

To handle the non-convex terms in above constraints, i.e., −wHa (ϕm;R) a
H (ϕm;R)w

in C1, −(√ηU ′ − ∆R)
2 in C2 and −∥w∥22 in C4, we next apply SCA [9]. SCA is

an iterative method and its core idea is to replace non-convex terms with convex

approximations (usually upper bounds of these non-convex terms) in each iteration.

In our case, given {w(i), U
′

(i)} after the i-th iteration, the convex upper bounds of

the three non-convex terms are derived by applying their respective first-order Taylor

expansions as

−wHa (ϕm;R) a
H (ϕm;R)w

≤−wH
(i)a (ϕm;R) a

H (ϕm;R)w(i)

−2Re{wH
(i)a (ϕm;R) a

H (ϕm;R)
(
w −w(i)

)
}

=wH
(i)a (ϕm;R) a

H (ϕm;R)w(i)

−2Re{wH
(i)a (ϕm;R) a

H (ϕm;R)w},

(5.3.12)
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−(√ηU ′ −∆R)
2

≤−(√ηU ′

(i) −∆R)
2 − 2(ηU

′

(i) −
√
η∆R)(U

′ − U ′

(i))

=2(
√
η∆R − ηU

′

(i))U
′
+ ηU

′2
(i) −∆2

R,

(5.3.13)

−∥w∥22≤ −
∥∥w(i)

∥∥2
2
− 2Re{wH

(i)

(
w −w(i)

)
}

=
∥∥w(i)

∥∥2
2
− 2Re{wH

(i)w}.
(5.3.14)

Replacing the non-convex terms in C1, C2 and C4 with the convex upper bounds

in (5.3.12)–(5.3.14), we finally transform (5.2.21) to a convex sub-problem in (5.3.15).

min
w,U ′ ,b,b1,b2

∥w∥1 + λb (b+ b1 + b2)

s.t.



C1:(U
′
+∆R)

2+wH
(i)a (ϕm;R) a

H (ϕm;R)w(i)−2Re{wH
(i)a (ϕm;R) a

H (ϕm;R)w}−b1≤0,

C2 : wHa (ϕs;R) a
H (ϕs;R)w + 2(

√
η∆R − ηU

′

(i))U
′
+ ηU

′

(i)

2 −∆2
R − b2 ≤ 0,

s = 1, 2, . . . , S,

C3 : ∥w∥22 − 1− b ≤ 0,

C4 : 1− b+
∥∥w(i)

∥∥2
2
− 2Re{wH

(i)w} ≤ 0,

C5 : U
′ ≥ U

′
min.

(5.3.15)

Repeatedly solving (5.3.15) with the values from the previous iteration until the

number of iterations reaches a pre-set value ITER. Let J (i) = ∥(w)⋆i ∥1 + λb(b
(i) +

b
(i)
1 + b

(i)
2 ) be the value of the objective function after the i-th iteration, R be a vector

of target range bins of concern, ∆R be a vector of the maximum l2-norm of e for all

range bins. Algorithm 3 and 4 summarize the proposed approaches to determine the

sparse weight vector for each range bin and to apply the resulting weight vector for
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SAR imaging, respectively.

Algorithm 3 Computing sparse weight vectors

Input R, ∆R, ϕMW , η, λb, N , J , w(0), U
′

(0);
W ⋆ ← ∅; i← 0;
for each R, ∆R doR, ∆R

Calculate ϕv, ϕ∆, Nmin, Nmax, a (ϕm;R), a (ϕs;R)
repeat

i← i+ 1;
Compute w(i), U

′

(i) by solving (5.3.15) with w(i−1), U
′

(i−1);
until i > ITER
Save w(i) to the set W ⋆;

end for
Output W ⋆.

Algorithm 4 The proposed approach for ROSAR imaging

Input YIF, Rt, ϕt;
Compute the index of range bin, i.e., IRt , for Rt;
Compute the central index of the phase center Iϕt ← round(ϕt/ϕ∆);
w⋆ ← W ⋆ (IRt)

1;
Y

′
IF ← YIF(:, Iϕt − (|w⋆| − 1) /2 : Iϕt + (|w⋆| − 1) /2);

Output I(ϕt, Rt)← 1T · (w⋆H ◦ (WSA ⊙Y
′
IF)) · 1.

5.3.3 Initial values and parameter settings for Algorithms 3

and 4

Initial Value Settings

The proposed approach is able to work with any initial values of the control variables

since the constraints are always feasible due to the introduced slack variables. In

our implementation, the initial value of w is chosen as w(0) = 1√
Nmax−Nmin+1

1 and

U
′

(0) = |wH
(0)a(ϕ;R)|2.

1W ⋆(i) represents the i-th vector in the ordered set W ⋆.
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Parameter Settings

To ensure convergence, ITER and Th can be set to around 50 ∼ 100 and 10−4 ∼ 10−3,

respectively. ϕMW and η are design parameters of the sparse array. We found that any

value lower than both ϕMW = 1◦ and η = −33dB makes the SCA diverge. ∆R should

be chosen by considering practical limitations of target platforms. For example, in

Section 5.4.1, the simulation setup and experiments take the unstable rotation speed

of a ROSAR platform into account. The direction of each phase center under unstable

rotations is modeled as a Gaussian distribution

ϕ̂n ∼ N
(
2πn

N
, σ

)
, (5.3.16)

where the σ is the standard deviation of the direction. The error vector is computed

from e = â(ϕ; R)−a(ϕ; R), where â(ϕ;R) is determined by substituting ϕn with ϕ̂n.

Let ∆̂R = ∥e∥. By repeatedly sampling from (5.3.16), we can obtain the cumulative

distribution function of ∆̂R, and choose the ∆̂R corresponding to 99% of the cumula-

tive probability as ∆R. The testbed evaluations in Section 5.4.5 show that this model

is reasonable in realistic settings. Note since the phase error e differs among range

bins, one specific ∆R must be pre-computed for each range bin.

To ensure accurate results, the angle interval should be less than or equal to

the angular resolution of ROSAR. However, reducing the angle interval increases the

number of grid points and leads to higher computation costs. Since there is no closed-

form solution to the angular resolution of a circular array, we use the results of a linear

array as a reference. The determination of Umin is based on the expected image quality

in target applications. It should be large enough to guarantee a sufficient gain for all
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range bins. Otherwise, there could be light and dark strips on the generated SAR

image.

In (5.3.15), the purpose of the slack variables b, b1, b2 is to penalize constraint

violation. The penalty coefficient λb plays a crucial role in balancing the trade-off

between sparsity and the magnitudes of slackness in constraints. A large λb encourages

stricter adherence to the constraints, but it is challenging to find the sparse w⋆ within

a small feasible region. Conversely, a small λb can lead to the significant violations

of the constraints, e.g., sidelobe levels exceeding the preset limits, which may further

reduce the quality of the generated SAR images. As a general rule of thumb, λb should

be several times larger than the maximum of ∥w∥1 to ensure that the slack variables

are close to zero. Since the l1-norm differs l0-norm and cannot enforce sparsity in

itself, we must manually set any term in w⋆ lower than a pre-defined threshold to

0. Thus, in Algorithm 4, only the nonzero entries in w⋆ are included in computing

w⋆H ◦WSA ⊙Y
′
IF. Moreover, a final step must be taken to verify the solution. This

can be accomplished by checking if the slack variables are sufficiently small, i.e.,

b+ b1 + b2 < bmin and bmin is set to 10−5 in the experiments.

5.3.4 Further Complexity Reduction

Since applying range compression to the fast time samples [16] (denoted as “FFT+BPA”)

can reduce the processing time of conventional BPA, we borrow its idea to further
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reduce the complexity of the proposed SAS approach (denoted as “FFT+SAS”). Ig-

noring the noise term in (5.2.10) and applying range-FFT to yIF,n, we have

Y1D,n(l) =
M−1∑
m=0

yIF,n(m)e−j2π
l
L
m

= αne
j2π(τKTStart+fcτ)

M−1∑
m=0

ej2π(τKts−
l
L)m

= αne
j4π

KTStart+fc
c

Rn

M−1∑
m=0

ej2π(
2RnKts

c
− l

L)m, (5.3.17)

where l = 0, 1, . . . , L − 1 and L is the number of range bins. Let k = 2π(KTStart+fc)
c

.

We have

Y1D,n(l) = αne
j2kRn

M−1∑
m=0

ej2π(
2RnKts

c
− l

L)m, (5.3.18)

and Y1D,n(l) reaches the maximum for

l⋆n = round

(
2RnKtsL

c

)
, (5.3.19)

which is the range bin where the target is located. The data vector at the n-th phase

center now becomes

y1D,n = [Y1D,n(0), Y1D,n(1) . . . , Y1D,n(L− 1)]T . (5.3.20)

The data matrix from effective phase centers used for SAR is given by

Y1D = [y1D,Nmin
,y1D,Nmin+1, . . . ,y1D,Nmax ] . (5.3.21)
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To focus a point locating at (ϕt, Rt) in polar coordinates, we need to compute

I(ϕt, Rt) = wH ·Y1D(l
⋆
Nmin

, l⋆Nmin+1, . . . , l
⋆
Nmax

), (5.3.22)

whereY1D(l
⋆
Nmin

, l⋆Nmin+1, l
⋆
Nmin+2, . . . , l

⋆
Nmax

) = [y1D,Nmin
(l⋆Nmin

),y1D,Nmin+1(l
⋆
Nmin+1), . . . ,

y1D,Nmax(l
⋆
Nmax

)]T and y1D,n(l) represents the l-th entry of the vector y1D,n. Vector

w in (5.3.22) can be the sparse weight vector of the corresponding range bin de-

termined by Algorithm 2, or the weight vector of BPA with the j-th entry being

wBP,j = αNmin+j−1 · e−j2kRNmin+j−1 .

Remark 3 The steering vector may differ from the original one in (5.2.16) after

applying range-FFT, since substituting (5.3.19) into (5.3.18) cannot fully cancel the

phase summation term in some cases (e.g., when Rn is not multiple of the length

of range bin). In our implementation, w⋆ is still obtained from the original steering

vector. Thus, the array pattern could deviate from the desired one. However, doing

so can lead to computation reduction.

Remark 4 The computation complexity of SAS is O(Lx × Ly ×M ×N ′), where N ′

is number of phase centers corresponding to non-zero weights. N ′ is typically less

than a half of N . As for FFT+SAS, the computation complexity is given by O(N ′ ×

M log2M+Lx×Ly×N ′). When Lx×Ly ≫M , the second term dominates. Thus, the

overall reduction in complexity by combining FFT and SAS is substantial compared

with that of the conventional BPA algorithm. Since the proposed algorithms conduct

filtering pixel-by-pixel independently, they can be further accelerated by separating

these pixels into multiple groups and processing them in a parallel manner.
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5.4 Performance Evaluation

In this section, we conduct experimental study to evaluate the effectiveness of the

proposed ROSAR imaging algorithms.

5.4.1 Implementation and Parameter Settings

We implement the proposed algorithms in MATLAB using the Phased Array Toolbox

on a PC equipped with an Intel Core 8700 CPU and 16GB RAM. Our ROSAR system

is used for real-world data collection (shown in Fig. 4.7). The detailed parameter

settings of the ROSAR system for this work are summarized in Table 5.1. Based

on the settings, the range resolution is calculated as R∆ = c
2B

= 0.0435m, where

B is the bandwidth of the sampled chirp signal. The maximum unambiguous range

is Rmax = cFs

4K
≈ 4.8686m. If we choose ∆R to represent 99% of the probability of

the CDF, Fig. 5.2a shows an example CDF for R = 2 and ∆R = 0.035. Fig. 5.2b

shows ∆R as a function of range, from which we can see ∆R decreases as the range

becomes larger. It is because a small displacement from the desirable positions of

phase centers has less impact when the radar is further away from the target. The

detailed calculation steps have been given in Section 5.3.3.

All the sparse weight vector w for each range bin are computed in advance using

Algorithm 3 with parameters listed in Table 5.2. We use CVX and Mosek solver [28]

to find the optimal values in each iteration of SCA.
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Table 5.1: Parameters of the ROSAR System

Radar Settings
r 0.145 m
Rotation speed 60 RPM
Rotation time 1 s
# Of TX 1
# Of RX 1
Antenna Pattern Cosine
Antenna FOV [-90°, 90°]
Start rotating direction 0°
Rotation direction Counter-clockwise
TX power 12 dBm
Antenna gain 7 dBi
RX gain 48 dB

Chirp Signal Settings
Start Frequency 60 GHz
End Frequency 64 GHz
Ramp start time 0 us
Ramp end time 58 us
TStart 7 us
Sampling end time 57 us
Fs 4.5 MHz
M 225
N 800
K 6.8× 1013 Hz/s
L 225

Table 5.2: SAS Parameters

ITER 50
Th 0.001
ϕMW 1◦

Sampled angle interval 0.5◦

λb 50
η 0.0005 (-33 dB)

Umin 5
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Figure 5.2: ∆R calculation

5.4.2 Baseline Algorithm and Metrics

We implement four algorithms: “BPA”, “FFT+BPA”, “SAS”, “FFT+SAS”, “RBPA”

(BPA with randomly selected phase centers) and “FFT+RBPA” for comparison. The

following metrics are used in quantitative evaluations:

� Half main lobe width ϕMW: The half main lobe width is defined as the angle

interval between the peak and the closest local minima on either side of the

main lobe.

� Peak-to-integral sidelobe ratio (PISR): The PISR R for a specific range bin R

is calculated as

R =
|I (ϕm, R)|2∑S
s=1 |I (ϕs, R)|

2
. (5.4.1)

� SAR computation cost : The elapsed time of generating a SAR image.

� Image entropy [69]: Let E =
∑

ϕ

∑
R |I(ϕ,R)|

2 be the total energy of the

image, and d(ϕ,R) = |I(ϕ,R)|2

E=
∑

ϕ

∑
R|I(ϕ,R)|2 be the energy density of a pixel. The
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Figure 5.3: The magnitude of each element in w∗ under different scenarios

image entropy is defined as

EI = −
∑
ϕ,R

d(ϕ,R) ln d(ϕ,R). (5.4.2)

The targets are well focused on the SAR image if R is large and EI is small.

5.4.3 Numerical Results and Analysis

Solution to the Optimization Problem

We first give the numerical result through imaging a point target located at
(
π
2
, 2m

)
.

In this case, the number of effective phase centers, i.e., the length of synthesized

aperture, is calculated to be 381 by (5.2.5). Fig. 5.3 shows the magnitude of each

element in w⋆ out and robust design, respectively. In both cases, we can see ∥w∥0 is

less than a half of the total number of phase centers from Table 5.3. However, in the

robust design, the sparsity is slightly reduced.
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Table 5.3: Solution to the Optimization Problem

∥w∥0 U ′

Non-Robust (∆R = 0) 141 8.21
Robust (∆R = 0.035) 157 8.38

Array Pattern

Fig. 5.4 shows the array patterns of the SAS and considering robust design for R = 2.

Figs. 5.4b and 5.4d are the main lobe area of Figs. 5.4a and 5.4c, respectively. The

array pattern is calculated by F (ϕ; 2) = |w⋆Ha(ϕ; 2)| for ϕ =
[
π
2
− ϕv, π2 + ϕv

]
. The

blue and red lines show the array pattern and adding phase errors e, respectively.

The yellow line is the array pattern of BPA phase errors. As we can see, the main

lobe is in [−1◦, 1◦], which meets the design parameters. As shown in Fig. 5.4a,

the power of the sidelobes when there is no error e in the steering vector is mostly

-33dB lower than that of the main lobe peak. The few exceptions fall in between

angle grid points of interval 0.5° and thus their power levels are not enforced by

the constraints. Although denser grid points (and consequently more constraints)

can reduce the chance of requirement violation, the computation cost of SCA grows

drastically. When there are errors in the steering vector, most of the sidelobes do

not meet the -33dB criteria in non-robust design. In contrast, the robust design (the

red line in Fig. 5.4c), this is no longer the case. Furthermore, the average power

of the sidelobes is lower than -33dB robust design even in absence of steering vector

errors. This is due to the worst case assumption of robustness design as evident in

(5.3.5) and (5.3.6). The PISRs are given in Table 5.4. High values are better. The

conventional BPA gives the best PISR due to its low sidelobes but needs much more

computation time.

94



Ph.D. Thesis—W. Zhao McMaster University—Computer Science

20 40 60 80 100 120 140 160

Direction (deg)

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

(d
B

)

Array pattern with w*

BPA w. error

Sparse Array w. error

Sparse Array w/o error

(a) Non-robust design

80 85 90 95 100

Direction (deg)

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

(d
B

)

Array pattern with w*

BPA w. error

Sparse Array w. error

Sparse Array w/o error

(b) Main lobe region of (a)

20 40 60 80 100 120 140 160

Direction (deg)

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

(d
B

)

Array pattern with w*

BPA w. error

Sparse Array w. error

Sparse Array w/o error

(c) Robust design

80 85 90 95 100

Direction (deg)

-70

-60

-50

-40

-30

-20

-10

0

P
o
w

e
r 

(d
B

)
Array pattern with w*

BPA w. error

Sparse Array w. error

Sparse Array w/o error

(d) Main lobe region of (c)

Figure 5.4: The Array Pattern in Different Scenarios

Table 5.4: Peak-to-Integral Sidelobe Ratio

Algorithms & Settings w/o error w. error
SAS w. Robust 0.1256 0.1253
SAS w/o robust 0.1308 0.1303
BPA w. error N/A 0.2339
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Figure 5.5: The solutions of the SCA Umin = 0 for different range bins

Results for All Range Bins

Fig. 5.5 shows the values of ∥w∥0 and U ′ for all range bins when Umin = 0. Clearly,

the sparsity of the array holds in all range bins. We observe that all U ′s are small.

In this case, although the array is very sparse, the SNR is low (recall that U ′ is

the magnitude of main-lobe peak and the noise power is constant from C3). Setting

Umin = 5 can bound the SNR at the cost of reduced sparsity as shown in Fig. 5.6.

5.4.4 SAR Imaging Simulation for a Point Target

By using the MATLAB Phased Array Toolbox, we simulated a point target locat-

ing at
(
π
2
, 2m

)
, a rotating radar and the sending/receiving signals of radar antennas.

Figs. 5.7a, 5.7c and 5.7e show the imaging results of the target area by conven-

tional BPA, SAS and RBPA, while Figs. 5.7b, 5.7d and 5.7f show the SAR images

by employing FFT acceleration. The SAR image quality and computation cost is

summarized in Table 5.5. Although the entropy of the SAR image generated by SAS
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Figure 5.6: The solutions of the SCA Umin = 5 for different range bins

Table 5.5: SAR image quality and time cost

Algorithm EI Time Cost (s)
BPA 3.7489 43.66

FFT + BPA 3.9812 29.43
SAS 4.4073 18.03

FFT + SAS 4.4703 3.61
RBPA 5.7850 18.03

FFT + RBPA 5.8728 5.86

is slightly worse than that by BPA, the computational time is significantly reduced.

Furthermore, although BPA with randomly selected phase centers takes less time as

well, the resulting image quality is much worse than others.

5.4.5 Testbed Evaluation

Although simulations can provide insights on the impacts of configuration parameters

and the performance of the proposed approach in simulated environments, existing

packages in MATLAB cannot model the reflection, diffusion and deflection properties

of mmWave signals in indoor environments well. In this section, the performance and
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Figure 5.7: The SAR Image (Contour) of a point at
(
π
2
, 2m

)
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efficiency of the proposed approach is validated through two real-world experiments.

The size of SAR area is set to be 9.8756m×9.8756m with grid size being 0.04m×0.04m.

Scenario 1: Corner Reflector

We put a radar platform (red dot) and a corner reflector (blue dot) in a lab (see Fig.

5.8). In addition to a corner reflector which can be treated as the point target with

strong reflection in practice, there are also computer desks, wood cabinet, metal cases

and other equipment in the environment. Figs. 5.9, 5.10 and 5.11 illustrate the SAR

images under different algorithms and settings. The numerical results are summarized

in Table 5.6. It can be observed from the figures that BPA gives the clearest image

among all approaches. The inclusion of robust design can improve sharpness of the

image. At ϕMW = 1◦ and η = −33dB, the image entropy from SAS is comparable to

that of the BPA but takes only one fifth of the total computation time. Range-FFT

can work in conjunction with both BPA and SAS. When comparing all these figures,

we find that range-dimension match filtering degrades image sharpness slightly. This

is also corroborated by the image entropy results in Table 5.6. Among all approaches,

“FFT+SAS” incurs the least amount of compute time – close to 13 times faster than

BPA while achieving acceptable image quality.

Scenario 2: Corridor Corner

Next we collect data from the corner of a corridor. The floor map is given in Fig.

5.12, where the red dot indicates the location of the system, the blue area corresponds

to the corridor and the white space with labels represents different rooms. Figs. 5.13,

5.14 and 5.15 show the SAR images from different algorithms and parameter settings.
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(a) Geometry Relation (b) Experimental Scenario

Figure 5.8: Experiment setup for imaging a corner reflector

Table 5.6: Imaging Performance with Different Approaches in Corner Reflector Case

Algorithm Settings EI Time Cost (s)
BPA N/A 6.0472 151.84

FFT+BPA N/A 6.3400 21.69

SAS
ϕMW=1◦,η=−30dB,w/o Robust 7.2607 28.04
ϕMW = 1◦,η = −30dB,Robust 7.1717 28.94
ϕMW = 1◦,η = −33dB,Robust 6.8913 30.56

FFT+SAS
ϕMW=1◦,η=−30dB,w/o Robust 7.3989 11.45
ϕMW = 1◦,η = −30dB,Robust 7.3227 12.14
ϕMW = 1◦,η = −33dB,Robust 7.1170 12.31

RBPA N/A 8.3060 25.02
FFT+RBPA N/A 8.3179 13.07
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(b) SAS, ϕMW = 1◦, η = −30dB,w/o Robust
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(c) SAS, ϕMW = 1◦, η = −30dB, Robust
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(d) SAS, ϕMW = 1◦, η = −30dB, Robust

Figure 5.9: SAR Images of a corner reflector (BPA and SAS)
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(b) FFT + SAS, ϕMW = 1◦,
η = −30dB,w/o Robust
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(c) FFT + SAS, ϕMW = 1◦, η = −30dB,
Robust
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Figure 5.10: SAR images of a corner reflector (FFT + BPA and FFT + SAS)
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Figure 5.11: SAR images of a corner reflector (RBPA and FFT + RBPA)

The numerical results are summarized in Table 5.7. From the figures, one can discern

the outline of the corridor corner. Due to the penetration of mmWave signals through

drywalls, the steel bars inside the walls are visible in the figures. Additionally, an

object in the Room 128 and the contour of Room 132 are also visible. Similar to

the case with corner reflector, the consideration of robust design can indeed improve

image quality. When η is set to -33dB and robust design, the sidelobes are less visible.

Moreover, inclusion of range-domain FFT can indeed greatly reduce the compute

time. BPA with randomly selected phase centers takes less time, but the generated

image is blurred. The proposed robust design, with ϕMW = 1◦ and η = −33dB, gives

comparable image quality as that of BPA and consume much less computation time.

5.5 Conclusion

In this chapter, we proposed a new fast imaging algorithm based on robust sparse

array synthesis for ROSAR. Since radar path is circular, such an algorithm only needs
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Figure 5.12: Floor map of the corridor corner

Table 5.7: Imaging Performance with Different Approaches in Corridor Corner Case

Algorithm Settings EI Time Cost (s)
BPA N/A 6.4436 151.22

FFT+BPA N/A 6.6881 21.85

SAS
ϕMW=1◦,η=−30dB,w/o Robust 7.3802 27.75
ϕMW = 1◦,η = −30dB,Robust 7.2871 29.30
ϕMW = 1◦,η = −33dB,Robust 7.0251 30.25

FFT+SAS
ϕMW=1◦,η=−30dB,w/o Robust 7.5309 12.50
ϕMW = 1◦,η = −30dB,Robust 7.4562 12.21
ϕMW = 1◦,η = −33dB,Robust 7.2425 12.47

RBPA N/A 8.3671 25.35
FFT+RBPA N/A 8.3801 13.28
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(b) SAS, ϕMW = 1◦,η=−30dB,w/o Robust
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(c) SAS, ϕMW = 1◦, η = −30dB, Robust
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(d) SAS, ϕMW = 1◦, η = −33dB, Robust

Figure 5.13: SAR images of corridor corner (BPA and SAS)
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(b) FFT + SAS, ϕMW=1◦,η=−30dB,w/o
Robust
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(c) FFT + SAS, ϕMW = 1◦, η = −30dB,
Robust
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(d) FFT + SAS, ϕMW = 1◦, η = −33dB,
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Figure 5.14: SAR images of corridor corner (FFT + BPA and FFT + SAS)

106



Ph.D. Thesis—W. Zhao McMaster University—Computer Science

-6 -4 -2 0 2 4 6

X (m)

-4

-2

0

2

4

Y
 (

m
)

SAR Image (dB)

60

80

100

120

(a) RBPA

-6 -4 -2 0 2 4 6

X (m)

-4

-2

0

2

4

Y
 (

m
)

SAR Image (dB)

100

120

140

160

180

(b) FFT + RBPA

Figure 5.15: SAR images of corridor corner (RBPA and FFT + RBPA)

to pre-compute the complex weights of the imaging filter offline for one direction per

range bin. Due to the external influence could affect the sidelobe level, we added

robust design to maintain the image quality. To meet our pre-set expectation and

solve this problem, our proposed algorithm employs feasible point pursuit and succes-

sive convex approximation technology. On that basis, we also gave another algorithm

based on range-FFT to further reduce the computation complexity.

According to the simulation and testbed results, we can conclude that our ap-

proach can generate an SAR image with the quality comparable to that of BPA.

Meanwhile, the proposed approach is able to reduce the computational cost signifi-

cantly and is robust to the array error.

Nonetheless, we must sacrifice some image quality if employing FFT-based range-

dimensional matched filtering. Thus, exploring a better approach for the processing

based on range FFT is our future research direction.
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Chapter 6

ROSAR Autofocusing

6.1 Introduction

Due to their ability to image a 360 view of the surrounding environments, ROSARs

find applications in helicopter-borne remote sensing, indoor imaging, etc. As dis-

cussed in Chapter 5, applying BPA in ROSAR imaging require precise positions of

the virtual antenna elements, which in turns imply either the precise control or mea-

surements of radar movements. However, as profiled in Chapter 4, in practice, the

rotation speed of a ROSAR system may not be constant, or the platform holding a

ROSAR may not maintain a constant moving speed. In both cases, deviations may

be caused by unforeseen disturbances or measurement errors. If the presumed or

measured moving parameters are used to derive the locations of phase centers, the

final SAR image is blurred. Therefore, autofocusing algorithms are needed to sharpen

the images.

There are mainly two kinds of SAR autofocusing algorithms: (1) parametric-based

methods, and (2) nonparametric-based methods. The core idea of parametric-based
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methods is to model the phase errors as a series of polynomials with different or-

ders, and then estimate the coefficient of each term to improve image quality [71].

However, in practice, receiver-side noise and thermal noise make it difficult to esti-

mate the parameters accurately. Nonparametric-based methods, on the other hand,

do not require any pre-defined error model. Algorithms such as Dominant Scatter

Algorithm (DSA) [59] and Multiple Scatterer Algorithm (MSA) [34] focus on the

dominant scatters on an image. If the scatters cannot be identified, Phase Gradient

Algorithm (PGA) [24] that can derive arbitrary phase errors through iterative Least-

Square estimator is a good alternative. Another category of nonparametric-based

methods perform autofocusing based on global image quality, such as Maximum Con-

trast Algorithm(MCA) [10], General Renyi Entropy based Algorithm (GREA) [49],

and Minimum Entropy Algorithm (MEA) [37] by solving a non-convex optimization

problem.

In this chapter, we consider the uncertainty in rotation and linear movements of

ROSAR systems, and devise autofocusing methods for ROSAR imaging to improve

the global quality of SAR images. Unlikely existing MEAs that directly compen-

sate for phase errors independently, we solve for the optimal motion parameters in

MEA. We analyze the optimization landscapes of the optimization problems and find

that they are highly non-convex and contain many saddle points, local minima and

maxima. We compare the solutions based on gradient descent and interior point.

Simulation results show that although solutions to MEA cannot yield the actual de-

viations of the virtual phase centers, they still can successfully reduce the resulting

image entropy and to generate sharper images.

The rest of the chapter is organized as follows. Section 6.2 gives two error models
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for the stationary and moving ROSAR platforms with their corresponding MEA-based

problem formulations. Two iterative methods are employed to solve the optimization

problem of MEA in Section 6.3, and the effectiveness of the MEA-based autofocusing

is validated in Section 6.4. Section 6.5 concludes the chapter.

6.2 System Models

In this section, we introduce the two error models for the stationary and moving

ROSAR platforms, and then give the formal problem formulation based on MEA.

6.2.1 Autofocusing for Error Model I: Stationary ROSAR

Platform

Figure 6.1 illustrates the virtual phase center position errors due to noisy in rotation

speed or measurements in a stationary ROSAR system. When the plate rotates at

a constant speed, the radar mounted on the edge of a disk plate transmits chirp

signals at a constant rate. However, in practice, the rotation speed may vary due

to unexpected time-variant resistance or wheel encoder errors. This means that each

virtual phase center may deviate from its assumed location by an angle of ∆ϕn for

n = 1, 2, . . . , N − 1, where N is the number of virtual phase centers. Such deviations

affect the distances between the phase centers and the imaged pixels, resulting in a

blurred image.

After down-converting and de-ramping, the sampled IF signal received at the n-th
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Figure 6.1: Error Model I

phase center is given by

yIF,n(m) =
T∑
t=1

αn,te
j2π[τn,tK(mts+TStart)+fcτn,t] + vIF(n,m)

=
T∑
t=1

αn,te
j2π(mKts+KTStart+fc)

2Rn,t
c + vIF(n,m), (6.2.1)

where τn,t = 2Rn,t/c is the round-trip time delay between the n-th phase center and

the t-th target; Rn,t =
√
R2
t + r2 + 2Rtr cos (ϕt − ϕn −∆ϕn); ϕt and Rt are the polar
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coordinates of the t-th target; ϕn and ∆ϕn denote the presumed direction and the

actual direction deviation of the n-th phase center, respectively; r is the radius of

the rotation platform; vIF(n,m) is the sampled noise after deramping; αn,t represents

the combination of complex reflection coefficient of the t-th target, radiation pattern

of the n-th phase center and the channel fading. For simplicity, we only consider

backbaffled omni-directional antenna, whose radiation pattern is given by

p(θ) =

1 θ ∈
(
−π

2
, π
2

)
0 otherwise.

. (6.2.2)

Due to the complex multipath reflection, wall penetration and the small rotation

diameter, we assume that αn,t is only affected by the radiation pattern, namely,

αn,t = p (θn,t) , (6.2.3)

where θn,t = arctan Rt·sin(|ϕn−ϕt|)
Rt·cos (|ϕn−ϕt|)−r . Let km = 2π (mKts +KTStart + fc) /c. We have

yIF,n(m) =
T∑
t=1

αn,te
j2kmRn,t + vIF(n,m). (6.2.4)

Let Nmin and Nmax be the smallest and the largest indices where the target is visible

in the radar field-of-view (FOV), respectively. With BPA, the intensity of a pixel

locating at (x, y) can be written as

I(x, y) =
Nmax∑
n=Nmin

M−1∑
m=0

yIF,n(m)e−j2kmR̃n , (6.2.5)
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where R̃n =

√
R2 + r2 + 2Rr cos

(
ϕ− ϕn −∆ϕ̃n

)
; ϕ and R are the polar coordinates

of a pixel locating at (x, y) on the image, ∆ϕ̃n is the estimated direction deviation of

the n-th phase center. Since the actual direction deviation ∆ϕn is not known a priori,

assuming ∆ϕ̃n is 0 would lead to a blurred image. The image entropy is calculated

as

Eg = −
∑
x

∑
y

|I(x, y)|2

E
ln
|I(x, y)|2

E

= lnE − E2

E
, (6.2.6)

where E =
∑

x

∑
y |I(x, y)|

2 and E2 =
∑

x

∑
y |I(x, y)|

2 ln |I(x, y)|2. The goal of

MEA is represented as

∆ϕ̃⋆ = argmin
∆ϕ̃

Eg, (6.2.7)

where ∆ϕ̃ =
{
∆ϕ̃n|n = 0, 1, . . . , N − 1

}
.

6.2.2 Autofocusing for Error Model II: Moving ROSAR Plat-

form

In the second error model, a rover is assumed to move in a straight line at a contant

speed v with a radar that rotates at a fixed angular speed (Fig. 6.2). Because of the

rotational symmetry, we always set the heading direction to be the positive direction

of X-axis. The radar’s start capturing direction, i.e., the direction of the 0-th virtual

phase center, is set to be 0◦. Due to the imperfect control, the rover linear speed

and start capturing direction may deviate from their predefined values. Let ∆v,

∆ψ, tf be the speed deviation of the rover, start capturing direction deviation and
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Figure 6.2: Error Model II

pulse repetition interval (also called “slow time”). For the n-th phase center, the

corresponding actual rover location is [(v +∆v)ntf , 0] and its relative location w.r.t.

the rover is r ·
[
cos
(
2πn
N

+∆ψ
)
, sin

(
2πn
N

+∆ψ
)]
. Then, the absolute location of the

n-th phase center is represented as

[
(v +∆v)ntf + r cos

(
2πn

N
+∆ψ

)
, r sin

(
2πn

N
+∆ψ

)]
. (6.2.8)

After down-converting and de-ramping, the sampled IF signal received at the n-th
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phase center is given by

yIF,n(m) =
T∑
t=1

αn,te
j2π(mKts+KTStart+fc)

2Rn,t
c + vIF(n,m), (6.2.9)

where the distance between the n-th phase center and t-th target is calculated as

Rn,t =

√√√√√√√√
[
(v +∆v)ntf + r cos

(
2πn

N
+∆ψ

)
−Rt cos (ϕt)

]2
+

[
r sin

(
2πn

N
+∆ψ

)
−Rt sin (ϕt)

]2 . (6.2.10)

By applying BPA, the intensity of a pixel locating at (x, y) can be formulated as

I(x, y) =
Nmax∑
n=Nmin

M−1∑
m=0

yIF,n(m)e−j2kmR̃n , (6.2.11)

where the estimated distance R̃n is defined as

R̃n =

√[
(v +∆ṽ)ntf + r cos

(
2πn

N
+∆ψ̃

)
− x
]2

+

[
r sin

(
2πn

N
+∆ψ̃

)
− y
]2
,

(6.2.12)

∆ṽ is the estimated speed deviation and ∆ψ̃ is the estimated start capturing direction

deviation. Similarly, to get a sharper image, we choose MEA to optimize the entropy

over these two variables. Thus, the optimization problem is stated as

∆ṽ⋆,∆ψ̃⋆ = arg min
∆ṽ,∆ψ̃

Eg, (6.2.13)

where Eg is defined in Eq. (6.2.6).
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6.3 Solution Approach and Implementation

Due to the high nonlinearity of Eg, it is challenging to obtain the global optimal

values corresponding to the minimum Eg. Thus, we consider two iterative methods,

i.e., gradient descent and interior point. Both methods need the gradient information

of the objective function.

For Error Model I, we only need to calculate the first derivative for any one of the

N variables since they all have the same form. Thus, taking the first derivative to Eg

with respect to an optimization variable ∆ϕ̃n̂, we have

∂Eg

∂∆ϕ̃n̂
=

1

E

∂E

∂∆ϕ̃n̂
− 1

E

∂E2

∂∆ϕ̃n̂
+
E2

E2

∂E

∂∆ϕ̃n̂

=
∑
x

∑
y

(
E + E2

E2
− ln |I(x, y)|2

E

)
2Re

{
I∗(x, y)

∂I(x, y)

∂∆ϕ̃n̂

}
, (6.3.1)

and

∂I(x, y)

∂∆ϕ̃n̂
= j

M−1∑
m=0

yIF,n̂(m)e−j2kmR̃n̂

2kmRr sin
(
ϕ− ϕn̂ −∆ϕ̃n̂

)
R̃n̂

. (6.3.2)

For Error Model II, we must calculate the first derivative of Eg with respect to both

∆ṽ and ∆ψ̃. The results are given by

∂Eg
∂∆ṽ

=
1

E

∂E

∂∆ṽ
− 1

E

∂E2

∂∆ṽ
+
E2

E2

∂E

∂∆ṽ

=
∑
x

∑
y

(
E + E2

E2
− ln |I(x, y)|2

E

)
2Re

{
I∗(x, y)

∂I(x, y)

∂∆ṽ

}
, (6.3.3)
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∂Eg

∂∆ψ̃
=

1

E

∂E

∂∆ψ̃
− 1

E

∂E2

∂∆ψ̃
+
E2

E2

∂E

∂∆ψ̃

=
∑
x

∑
y

(
E + E2

E2
− ln |I(x, y)|2

E

)
2Re

{
I∗(x, y)

∂I(x, y)

∂∆ψ̃

}
. (6.3.4)

The detailed derivation is given in Appendix B.

Gradient Descent Method Gradient descent is an iterative method that repeat-

edly moves the current point along the opposite direction of its gradient. Gradually,

a local minimum value is founded. For Error Model I, the key iteration step for each

optimization variable is given by

∆ϕ̃(l+1)
n = ∆ϕ̃(l)

n − γ
∂Eg

∂∆ϕ̃n

∣∣∣∣
∆ϕ̃n=∆ϕ̃

(l)
n

, (6.3.5)

where γ is the learning rate. Similarly, for Error Model II, we have

∆ṽ(l+1) = ∆ṽ(l) − γ
∂Eg
∂∆ṽ

∣∣∣∣
∆ṽ=∆ṽ(l)

, (6.3.6)

∆ψ̃(l+1) = ∆ψ̃(l) − γ
∂Eg

∂∆ψ̃

∣∣∣∣
∆ψ̃=∆ψ̃(l)

(6.3.7)

Interior-Point Method Interior-point is an iterative method that searching an

optimum value by traversing the feasible region given an initial feasible point. This

method is usually more efficient than the simplex method and ellipsoid method. In

MATLAB, “fmincon” is a powerful tool to find the minimum value of constrained

nonlinear multivariable function. It uses interior-point as the optimization algorithm

by default. In practice, “fmincon” can estimate the gradient automatically, but it can

be very time consuming due to the high computation complexity of BPA. Therefore,
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we specify the gradients to accelerate the computation.

6.4 Performance Evaluation

To simulate a ROSAR platform, we implement the radar antenna, the target platform

and radar signal transmissions using the MATLAB Phased Array Toolbox. We use

the Sensor Fusion and Tracking Toolbox to implement the movement of the radar

antenna and the rover. These toolboxes allow us to obtain the IF signals collected

by each virtual phase center and the location, velocity, and orientation of the radar

antenna and the rover. The simulated parameters are set to be the same as the one

in the hardware platform as summarized in Table 6.1.

We evaluate the performance of the autofocusing algorithms in four scenarios with

one, two, four and five point targets. All the targets are stationary and have the same

backscatter coefficient in all directions. The coordinates of the targets in each scenario

are listed below and illustrated in Fig. 6.3.

� 1 target: (0, 2).

� 2 targets: (0.0349, 1.9997), (−0.0349, 1.9997).

� 4 targets: (0, 2), (2, 0), (−2, 0), (0,−2).

� 5 targets: (0.145, 1), (0.145, 1.5), (0.545, 0.5), (0.545, 1), (0.545, 1.5).
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Table 6.1: Simulation Settings

Radar Settings
r 0.145 m
Rotation speed 60 RPM
Rotation time 1 s
# Of TX 1
# Of RX 1
Antenna pattern Omni-directional
Antenna FOV [−90◦, 90◦]
Start rotating direction Same as rover heading direction
Rotation direction Counter-clockwise
TX power 12 dBm
Antenna gain 7 dBi
RX gain 48 dB
RX noise power 0 dB

Chirp Signal Settings
Start frequency 60 GHz
End frequency 64 GHz
Ramp start time 0 us
Ramp end time 58 us
TStart 7 us
Sampling end time 57 us
Fs 4.5 MHz
M 225
N 800
ts 1/800 s
K 6.8× 1013 Hz/s

SAR Image Settings
Image length 6.88 m
Image width 6.88 m
Grid length 0.01 m
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Figure 6.3: Geometrical Relationship
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6.4.1 Numerical Results and Analysis

Autofocusing for a Stationary ROSAR

In the experiments, the direction deviation of each virtual phase center is set to fol-

low a uniform distribution between [−0.225◦, 0.225◦]. Fig. 6.4 shows the autofocusing

results for the 1-target case. Fig. 6.4a displays the image entropies in each iteration

using MEA with either gradient descent or interior-point method. Fig. 6.4b presents

the image entropies based on different value combinations of ∆ϕ̃34 and ∆ϕ̃68 around

the ground truth (the red dot) while setting remaining control values to their respec-

tive ground truth values. Fig. 6.4c and 6.4d compare the phase center deviations

given by both methods, where the red line represents the ground truth deviations

and the green line represents the estimated deviations. Figs. 6.4e, 6.4f, 6.4g and 6.4h

show the SAR images in dB scale based on the ground truth, initial, MEA estimated

(gradient descent and interior-point) deviations of each phase center, respectively.

We also conduct the same experiments for the 2-target, 4-target and 5-target cases

and present the results in Figs. 6.5, 6.6 and 6.7. Table 6.2 summarizes the numerical

results for all scenarios. From these results, we have the following findings:

� From the optimization landscape figures (Figs. 6.4b, 6.5b, 6.6b and 6.7b), we

can observe the existence of periodic local maxima and minima, with saddle

points appearing between them. Furthermore, the ground truth location is not

always situated at a local minimum.

� The initial image entropy may be lower than that of the ground truth image.

This is because the ground truth may not have the global minimum entropy.

In fact, setting all the estimated deviations to zero could blur the SAR image,
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Table 6.2: Numerical Results for Error Model I

Case Ground Truth Initial MEA (Gradient Descent) MEA (Interior-Point)
1 Target 6.7526 6.3586 4.9786 4.8609
2 Targets 7.0692 7.0378 5.6060 5.5509
4 Targets 7.6686 7.5729 6.6167 6.6127
5 Targets 7.9033 7.5494 5.4579 5.4159

but not necessarily increase the entropy.

� Both gradient descent and interior-point methods can gradually decrease the

image entropy and sharpen the images from the initial value settings. However,

these methods usually restrict the searching range to the adjacent local mini-

mum area, which may not contain the global minimum entropy or the ground

truth.

� By using the final estimated deviations from both methods, we can obtain

sharpened images, although the estimated deviations may not be consistent

with the ground truth.

Based on the overall results in this error model, MEA can significantly reduce the

image entropies and sharpen the images.

Autofocusing for a Moving ROSAR

In this experiment, the rover’s moving speed and deviations of the ROSAR system are

set in Table 6.3. Table 6.4 compares the SAR image entropies based on phase center

locations according to the ground truth, initial, MEA estimated (gradient descent

and interior-point) deviations of each phase center, respectively. Table 6.5 and 6.6

show the ∆v and ∆ψ estimations. Fig. 6.8 shows the autofocusing results for the
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1-target case. Fig. 6.8a, 6.8b and 6.8c displays the image entropies, the estimated

∆v and the estimated ∆ψ in each iteration using MEA with either gradient descent

or interior-point method. We also conduct the same experiments for the 2-target,

4-target and 5-target cases and present the results in Fig. 6.9, 6.10 and 6.11. From

these figures, we can see the algorithm usually stops in a few iterations and the image

entropy improvement is very small. In addition, the estimated ∆v and ∆ψ are far

from the ground truth ones.

Similar to Error Model I, we aim to understand the optimization landscape. To

achieve this, we analyze image entropies based on various combinations of ∆ṽ and

∆ψ̃ around the ground truth (as depicted in 6.8d, 6.9d, 6.10d and 6.11d). The

red dot represents the ground truth deviation values, while the initial optimization

variables are consistently set to zero. Upon examining these figures, we observe that

the difference between local maxima and local minima are relatively small. This

phenomenon explains why the iteration process terminates quickly. Additionally,

we’ve identified multiple local minima between the initial value and the ground truth.

Algorithms that exclusively seek a descent direction, such as gradient descent, may

be trapped in nearby local minima and struggle to converge to the global optimum or

ground truth. In the context of Error Model II, MEA can marginally reduce image

entropy but still rarely achieves ground truth deviations.

Table 6.3: Parameter Settings

v 0.05 m/s
∆v 0.01 m/s
∆ψ −5◦
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Table 6.4: Numerical Results for Error Model II

Case Ground Truth Initial MEA (Gradient Descent) MEA (Interior-Point)
1 Target 5.4923 5.4590 5.4583 5.4555
2 Targets 7.0848 6.8370 6.8362 6.8100
4 Targets 6.7754 6.9143 6.8664 6.8266
5 Targets 6.6030 5.9612 5.9231 5.8465

Table 6.5: ∆v Estimations

Case Ground Truth Initial MEA (Gradient Descent) MEA (Interior-Point)
1 Target

0.01 0

0.00007 -0.0005
2 Targets 0.00002 -0.0033
4 Targets 0.0008 0.0121
5 Targets 0.0009 0.0106

6.5 Conclusion

In this chapter, we investigated the problem of ROSAR image autofocusing. Mo-

tivated by the measurement study of the hardware ROSAR system in Chapter 4,

we proposed two error models to characterize phase center deviations of the station-

ary and moving platforms. Among nonparametric-based autofocusing algorithms, we

considered MEA to reduce the image entropy and to get sharp SAR images. Gra-

dient descent and interior point methods were employed to solve the corresponding

optimization problem of MEA. Simulation results show that both solutions can suc-

cessfully generate sharper images although they cannot be used to estimate the ground

truth deviations. This is because the ground truth deviations may not necessarily lo-

cate at the global minima or a local minima on the optimization landscape, and only

iterative reducing the image entropy is not enough to achieve the desirable values.

Furthermore, due to the complex optimization landscapes, both iterative methods

tend to converge to a sub-optimal solution.
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Table 6.6: ∆ψ Estimations

Case Ground Truth Initial MEA (Gradient Descent) MEA (Interior-Point)
1 Target

-5 0

-0.0040 -0.0274
2 Targets 0.0021 0.3783
4 Targets 0.0482 0.2407
5 Targets 0.0506 0.5958
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Figure 6.4: Numerical Results for 1-Target Case (Error Model I)
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Figure 6.4: Numerical Results for 1-Target Case (Error Model I)
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Figure 6.5: Numerical Results for 2-Target Case (Error Model I)
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Figure 6.6: Numerical Results for 4-Target Case (Error Model I)
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Figure 6.7: Numerical Results for 5-Target Case (Error Model I)
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Figure 6.9: Numerical Results for 2-Target Case (Error Model II)
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Figure 6.10: Numerical Results for 4-Target Case (Error Model II)
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Figure 6.11: Numerical Results for 5-Target Case (Error Model II)
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we delved into the utilization of mmWave radars for target localization

and imaging. The unique characteristic of mmWave radars lies in their short wave-

length, which enables the integration of multiple antennas within a confined space.

This advancement facilitates the implementation of sophisticated algorithms on IoT

devices. Building upon these advantages, we achieved the following key objectives:

First, we introduced a novel method for locating multiple targets using an mmWave

radar equipped with a trapezoid virtual antenna array. By employing Barone’s

method, we effectively separated the signals reflected from each target on the receiver

antennas and estimated both the number of targets and their respective ranges. Then,

the Least-Square algorithm was used to estimate the azimuth and elevation angles

of the targets. The simulation and testbed experiments demonstrated that the pro-

posed algorithm outperforms traditional 2D-FFT and MUSIC algorithms in terms of

location accuracy. Moreover, the proposed algorithm does not heavily depend on the
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number of sampled data or the antenna arrangement to detect a large area.

Second, we analyzed the array pattern of ULA and UCA, where UCA represents

a special case of ROSAR when the rotation platform remains stationary and rotation

speed remains constant. Then, based on the characters of ULA and UCA, we gave the

limitations on the designed parameters of ROSAR to meet application requirements.

Next, we presented the built real-world robotic ROSAR system designed for evalu-

ating imaging algorithms. The measurement study showed that the radar rotation

speed and rover movement cannot be precisely controlled, potentially leading to the

radar location deviations and blurry SAR images.

Third, we proposed an efficient and robust ROSAR imaging approach based on

sparse array synthesis. To mitigate heavy computational complexity of tradition

BPA and ensure robustness against array manifold errors induced by unstable radar

rotation, our approach employs azimuth-dimension matched filtering using carefully

selected phase centers with well-designed weights. We also considered mainlobe and

sidelobe levels while deriving the optimal weights to maintain image quality. Thanks

to the circular array’s symmetry, these optimal weights only need to be computed

offline in advance for one direction, making them usable for imaging in any direction.

The resulting robust sparse array synthesis problem is a non-convex optimization

problem with quadratic constraints. We devised an algorithm based on feasible point

pursuit and successive convex approximation to solve it. Extensive simulation studies

and experimental evaluations using the built ROSAR system demonstrated that the

proposed algorithm achieves image quality comparable to that of BPA, but with a

substantial reduction in computational time of up to 90%.

Fourth, we introduced an alternative method to mitigate image blurriness caused
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by array manifold errors, that is employing MEA to solve for optimal motion param-

eters and enhance the overall quality of SAR images. We modelled array manifold

errors as unstable radar rotation and rover linear movements of the ROSAR system.

To solve the corresponding optimization problem of MEA, we utilized gradient descent

and interior-point methods. Simulation results indicated that MEA can successfully

sharpen SAR images by reducing their entropies, although it cannot yield the actual

deviations of the virtual phase centers.

7.2 Future Works

Here is a list of possible improvements and research directions.

First, the current robotic ROSAR system relies on an outdated Arlo robot, which

has been discontinued for some time. To enhance reliability, we recommend to rebuild

the system on a more robust platform. For example, newer robots like the Turtle-

Bot 4. For the new platform, it’s crucial to increase the robot’s battery capacity

to support power-consuming components such as the radar, the Lidar, and motors,

ensuring enough operation time. Furthermore, alternative methods must be explored

for measuring rover trajectory with higher accuracy. One can start with employing

better sensors that do not suffer from wheel slippage.

Second, the proposed efficient and robust algorithm in Chapter 5 are expected

be promoted to apply for general cases, e.g., moving ROSAR platforms. Then, the

ROSAR system is able to undertake Simultaneous Localization and Mapping (SLAM)

tasks.

Third, we have explored two types of error models and employed MEA for autofo-

cusing in Chapter 6. However, only using MEA cannot guarantee the performance or
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estimate the ground truth. We would like to design new algorithm that can fit ROSAR

autofocusing well and conduct real-world experiments to verify the algorithm.
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Appendix A

Transformation of the Least Square

Optimization Problem for (3.3.18)

We now show the detailed transformation steps of the Least Square optimization

problem:

min
αi,ωx,i,ωz,i

f (αi, ωx,i, ωz,i), (A.0.1)

where f (αi, ωx,i, ωz,i) = ∥ĉi − ci∥2. Since ∥ci∥2 = 12α2
i ,

f (αi, ωx,i, ωz,i) = ∥ĉi∥2 + ∥ci∥2 − ĉHi ci − cHi ĉi

= ∥ĉi∥2 + 12α2
i − 2Re

(
ĉHi ci

)
.

Let c̃i = ejψh∗
i , where ψ = 2π

(
τ̂iSTStart + fcτ̂i − 1

2
Sτ̂ 2i

)
. Then, ci = αic̃i and

f (αi, ωx,i, ωz,i) = ∥ĉi∥2 + 12α2
i − 2αiRe

(
ĉHi c̃i

)
. (A.0.2)
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Take the derivative of (A.0.2) with respect to αi, we have ∂f
∂αi

= 24αi − 2Re
(
ĉHi c̃i

)
.

From the KKT conditions, to minimize (A.0.1), we have α̂i =
Re(ĉHi c̃i)

12
. Next, we

substitute α̂i in f (αi, ωx,i, ωz,i) to get

f (α̂i, ωx,i, ωz,i) = ∥ĉi∥2 + 12

(
Re
(
ĉHi c̃i

)
12

)2

− 2
Re
(
ĉHi c̃i

)
12

Re
(
ĉHi c̃i

)
= ∥ĉi∥2 −

1

12

[
Re
(
ĉHi c̃i

)]2
.

Clearly, since ∥ĉi∥2 is a constant, in order to minimize f (α̂i, ωx,i, ωz,i), we need to

maximize
∣∣Re (ĉHi c̃i)∣∣. Due to the phase shift differences, we consider the bottom

8 virtual antennas and top 4 receiver antennas separately, and write
∣∣Re (ĉHi c̃i)∣∣ as∣∣Re (ĉ1:8Hi c̃1:8i

)
+Re

(
ĉ9:12Hi c̃9:12i

)∣∣. Let
B1:8 =

∣∣B1:8
∣∣ ejϕB1:8 = ĉ1:8Hi

[
1, e−jωx,i , . . . , e−j7ωx,i

]T
, (A.0.3)

B9:12 =
∣∣B9:12

∣∣ ejϕB9:12 = ĉ9:12Hi

[
1, e−jωx,i , e−j2ωx,i , e−j3ωx,i

]T
. (A.0.4)

In order to maximize
∣∣Re (ĉ1:8Hi c̃1:8i

)
+Re

(
ĉ9:12Hi c̃9:12i

)∣∣, the following conditions must

be achieved:  ϕB1:8 + ψ = 2kπ

ϕB9:12 + ψ + ωz,i − 2ωx,i = 2kπ
(k∈ Z) . (A.0.5)

Under the above conditions, (A.0.1) is equivalent to

max
ωx,i,ωz,i

∣∣∣∣B1:8
∣∣+ ∣∣B9:12

∣∣∣∣ .
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The form of B1:8 and B9:12 can be determined by taking Discrete Fourier Transform

(DFT) of ĉ1:8Hi and ĉ9:12Hi . Usually, to achieve a higher precision, we append 0s to

ĉ1:8Hi and ĉ9:12Hi to make their lengths to a pre-set value, e.g., d̂1:8
i =

ĉ1:8Hi

0

 and

d̂9:12
i =

ĉ9:12Hi

0

. Next, we can take DFT to d̂1:8
i and d̂9:12

i as

B̃1:8 [l] =

NDFT−1∑
n=0

d̂1:8
i [n] e−jωx,i[l]n,

B̃9:12 [l] =

NDFT−1∑
n=0

d̂9:12
i [n] e−jωx,i[l]n.

Once we add the magnitude of the DFT results together, (A.0.1) has been transformed

to

l̂ = arglmax
∣∣∣∣∣∣B̃1:8 [l]

∣∣∣+ ∣∣∣B̃9:12 [l]
∣∣∣∣∣∣.
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Appendix B

The Derivatives of E, E2 and I(x, y)

in Eq. (6.3.1) ∼ (6.3.4)

B.1 Error Model I

Detailed steps to obtain the first derivatives of E and E2 with respect to ∆ϕ̃n̂ are

give by

∂E

∂∆ϕ̃n̂
=

∑
x

∑
y

∂ |I(x, y)|2

∂∆ϕ̃n̂

=
∑
x

∑
y

I(x, y)
∂I∗(x, y)

∂∆ϕ̃n̂
+ I∗(x, y)

∂I(x, y)

∂∆ϕ̃n̂

=
∑
x

∑
y

2Re

{
I∗(x, y)

∂I(x, y)

∂∆ϕ̃n̂

}
,

where

∂I(x, y)

∂∆ϕ̃n̂
= j

M−1∑
m=0

yIF,n̂(m)e−j2kmR̃n̂

2kmRr sin
(
ϕ− ϕn̂ −∆ϕ̃n̂

)
R̃n̂

;
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∂E2

∂∆ϕ̃n̂
=

∑
x

∑
y

(
1 + ln |I(x, y)|2

) ∂ |I(x, y)|2
∂∆ϕ̃n̂

=
∑
x

∑
y

(
1 + ln |I(x, y)|2

)
2Re

{
I∗(x, y)

∂I(x, y)

∂∆ϕ̃n̂

}
.

B.2 Error Model II

Detailed steps to derivate the first derivatives of I(x, y) with respect to ∆ṽ and ∆ψ̃

are give by

∂I(x, y)

∂∆ṽ
= −j

Nmax∑
n=Nmin

M−1∑
m=0

yIF,n(m)e−j2kmR̃n

·
2kmntf

(
(v +∆ṽ)ntf + r cos

(
2πn
N

+∆ψ̃
)
− x
)

R̃n

,

∂I(x, y)

∂∆ψ̃
= −j

Nmax∑
n=Nmin

M−1∑
m=0

yIF,n(m)e−j2kmR̃n

·
2kmr

(
sin
(

2πn
N

+∆ψ̃
)
((v +∆ṽ)ntf − x) + cos

(
2πn
N

+∆ψ̃
)
y
)

R̃n
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Appendix C

The Circuit Diagram of the

Robotic ROSAR System
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