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ABSTRACT

The properties of superconducting lead have been studied 

using the technique of electron tunnelling through a thin insulating 

barrier. Certain features in the second derivative of the current­

voltage characteristic of this tunnelling mechanism have been related 

to the phonon spectrum of lead.

In addition, a small amount of bismuth impurities have been 

added and the effect of these impurities on the superconducting 

density of states reported. In particular, both the superconducting 

energy gap has widened and the phonon spectrum of lead altered with 

the addition of these impurities.
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I. INTRODUCTION
1.1 Historical

The phenomenon of superconductivity was discovered in 1911 by 

Kammerlingh Onnes (01) at Leiden while studying the decrease in 

resistance of metals as they were cooled. He found that the resist­

ance of certain metals at a characteristic temperature, dropped to 

zero. Since that time, this peculiar habit of some materials has 

been extensively studied and many theories as to its cause have been 

proposed.

Before the era of the quantum theory, attempts were made to 

describe the behaviour of superconductors in terms of phenomenological 

theories. The most successful of these theories have been the two 

fluid model of Gorter and Casimir (G1) which accounts for the thermo­

dynamic properties, and the London equations, developed by Fritz and 

Heinz London (L1), which account for the electromagnetic properties 

of a superconductor. The two—fluid model assumes that a percentage of 

the available conduction electrons are "condensed" into their ground 

state and these are the superconducting electrons, while the remaining 

electrons stay in the normal state. It is assumed that those two 

fluids permeate one another. The London equations, on the other hand 

describe the infinite conductivity as well as the perfect diamagnetic 

nature of the superconductor.

The major problem toward the development of a successful
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microscopic theory was the lack of knowledge of the interactions 

between electrons. Fröhlich (Fl) first studied the interaction of the 

electrons in a metal with the acoustic lattice vibrations. From this 

study he concluded that this interaction would lead to an attraction 

between electrons near the Fermi surface. Later, Cooper (Cl) showed 

that the attractive force between two electrons at the Fermi surface 

is mediated by the phonons. This conclusion led Bardeen, Cooper and 

Schrieffer (known as BCS) to propose a microscopic theory of super­

conductivity that agrees amazingly well with experiment (Bl).

One of the most conclusive endorsements of the BCS theory 

showed up in the results of an experiment performed by Giaever (G2) 

using the phenomenon of quantum mechanical tunnelling. In this 

experiment, electrons wore allowed to tunnel from one metal, through a 

thin insulating barrier into another metal. Either or both of those 

metals could be superconducting. These experiments using this tech­

nique have verified many of the predictions of the BCS theory of 

superconductivity. In particular, this method has become an extremely 

useful tool in studying the density of states of electrons, both in 

the region of the Fermi surface, and as distantly removed as a few 

k θD (θD = the Debye temperature) from the Fermi surface. It has

been found that the coupling of the electrons and phonons is so strong 

that the density of states is altered enough to make this effect 

observable using the tunnelling technique.

1.2 Purpose of this Thesis

The purpose of this thesis is to describe a method by which the

density of states of a superconductor and the effects of the phonons 
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on that density of states is observed. Essentially the experiment 

consists of obtaining the second derivative (d2I/dV2) of the I-V (current 

vs. voltage) tunnelling characteristic curve of two similar super­

conductors separated by a thin insulating barrier. In this case, that 

barrier is the oxide of the material used as the superconductor. The 

method by which these tunnelling junctions are produced is described 

and the method used to differentiate the I-V characteristic is outlined 

in some detail.

In addition, a small amount of impurity is added and the effect 

of this on both the energy gap of the superconductor and the density 

of states in the phonon-affected region is reported. In particular, 

five and ten per cent impurities of bismuth in lead are studied and 

the results are given. It is felt that the existing data on lead 

bismuth alloys is incomplete and an extension of the knowledge would 

prove valuable.

Also, an experiment designed to investigate the properties of 

bulk mercury using this tunnelling technique is described and the 

probable reasons for its failure are outlined.



II. THEORY

2.1 The Gorter-Casimir Theory

The two fluid model of superconductivity as postulated by 

Gorter and Casimir (Gl) Gives a useful picture of the transition from 

normal to superconducting state. They postulated that below a certain 

temperature Tc (the critical temperature), the available electrons could 

be separated into two classes. Firstly, a fraction of them 0 remained 

normal and underwent no change. The others (1-Ø), they claimed, 

condensed into the superconducting state. Following this assumption, 

and the assumption that at T = Tc Ø = 1

and at T = 0 Ø = 0,

a rather arbitrary expression for the free energy of the system was 

developed

FTOT = Øx FN(T) + (1-Ø) FS(T) (1)

where FN(T) = -1/2 YT2 (the usual expression for a normal metal) 

and FST) = -β = a constant.

Experimentally it was found that This was chosen for no other

reason than that it agreed with experimental results.

Minimizing equation (1) and fitting to the appropriate boundary 

conditions leads to the result
Ø = (T/Tc)4.

In other words the number of superconducting electrons increases quite 

rapidly as the temperature is lowered below Tc.

This theory leads to rather good qualitative agreement with
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experiment, predicting the electronic specific heat in the superconduct­

ing state and an expression for the critical magnetic field as a 

function of temperature.

2.2 The London Theory

In 1933 Meissner and Ochsenfeld (Ml) discovered that a super­

conductor is a perfect diamagnet. That is, a magnetic field impressed 

on the material penetrates only a very small distance into the super­

conductor (about >00 A°). Their results also showed that even if the 

field is already inside the metal before cooling through Tc, the flux 

is actually expelled as the material becomes superconducting. Hence a 

superconductor is more than just a perfect conductor.

This fact, as well as the perfect conductivity of a super­

conductor led F. and H. London to develop the now-famous London equations 

(L1).

Starting with the vector potential A and bearing in mind the 

Meissner effect the Londons developed the first of their equations

B = -ʌ(Ѵ x J) or J = -1/ʌ A (2)

where: J = superconducting current density 

B = impressed magnetic field 

ʌ = a constant whose value

is characteristic of the superconductor. If all the conduction 

electrons were allowed to accelerate freely ʌ would have the value m/ne2 
 

where: m = electronic mass

e = electronic charge 

n = number of conduction electrons 
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From this equation it is possible to obtain an expression for the 

magnetic field inside a superconductor. In the one dimensional case 

BINT = BEXT e-x/λ

where λ =√(ʌ/μ).

This λ is defined as the penetration depth.

Since the current is superconducting, the Londons assumed that 

there is no collision with the lattice (i.e., no resistance and hence 

the force on an electron would be the same as if it were accelerating 

freely in an applied field). Hence, the force on the electronØθβʌѴλμεῠ

F = eε = mῠ

But Js = n eῠ superconducting current density

This equation is the second of the London equations and accounts 

for the perfect conductivity of a superconductor. Applying these two 

equations, it is found that one can explain many of the phenomena 

associated with superconductors,including the Meissner effect, frequency 

dependence of a superconductor and the recently observed (D1)(’>2) quant­

ization of flux in a superconductor.

2.3 Pippard's Extension of the London Theory

Pippard (P1) suggested a modification to the London equations 

to oxplain certain experimental results. It was found that the 

penetration depth λ began to increase quite appreciably when impurities 

Therefore, ε = m/e ῠ

But Js = n eῠ superconducting current density

(4) 
Therefore ε = m/ne2 Js = ʌJs.

This equation is the second of the London equations and accounts 

for the perfect conductivity of a superconductor, Applying these two 

equations, it is found that one can explain many of the phenomena 

associated with superconductors,including the Meissner effect, frequency 

dependence of a superconductor and the recently observed (D1)(D2) quant­

ization of flux in a superconductor.
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were added which lowered the electronic mean free path. In the London 
theory no such an effect was expected since ʌ depended only on the 

constants of the material. Also, variation of the penetration depth 

with angle between the surface of a sample and the crystal axes was 

observed. These discrepancies led Pippard to propose a non-local 

modification of the London equations with a characteristic coherence 
length Ѯo≈10-4 cms. This non-local development implies that we must 

consider more than just nearest neighbour interactions, and that the 

superconducting electron is "aware" of events occurring over a rather 

large spatial region. Consequently Pippard identified a parameter 

with the range of coherence of the pure superconductor and defined a 

coherence distance Ѯ(ℓ) such that

 1/Ѯ(ℓ) = 1/Ѯo + 1/αℓ (5)
where ℓ = mean free path of electron

α = a constant ≈ 1

In the BCS theory this Ѯo is a measure of the size of the pair 

bound state from which the super fluid wave function is constructed.

The form of this expression suggests that

Ѯ(ℓ)→ Ѯo as ℓ→∞
and Ѯ(ℓ)→ℓ as ℓ→0

In addition Pippard altered the London equation

where R = r - r’

Js = -1/ʌ A

to Js(r) = -3/Ѯ.ʌ ∫ (R[R.A(r')]e-R/Ѯ(ℓ))/R4 d3r'
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in an exactly analogous manner to the replacing of Ohm’s law by 

Chambers’ (C2) non-local expression used to describe the anomolous 

skin effect.

Although these phenomenological theories describe in an 

adequate manner the existing data, they do not give us much of an 

indication of the microscopic nature of superconductivity and the 

mechanism which causes it.

2.4 The Microscopic Theory of Superconductivity

It was pointed out by Fröhlich (Fl) that an electron in a 

lattice is screened by a cloud of virtual phonons. These are called 

virtual phonons due to the fact that, because of the very short life­

time of them, and because of the uncertainty principle, energy need not 

be conserved. Now consider an interaction between two electrons as 

illustrated in figure 1.

Figure 1
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An electron of wave vector k emits a virtual phonon q which is 

adsorbed by another electron k’ thus leaving electrons in the final 

state k — q and k’ + q. As stated earlier, this process need not be 

a conservative one. In fact the effective matrix element for this sort 

of interaction could be written (21)

(6)
Vkk' = (2hωq |Mq|2)/((εk' - εk'q)2 - (hωq)2) 

where hωq = phonon energy

εk' = electron energy measured from the Fermi surface

Mq = a matrix element for a single scattering by the 

electron-phonon coupling-
It should be noticed that near the Fermi surface, where εk' ≤ kθD' 

the term is negative and roughly equal to

Vkk' = -2|Mq|2/hωq (7)

Hence we see that under these circumstances the interaction is

indeed an attractive one. The BCS theory is based on the postulate 

that when this attractive interaction dominates the normal coulombic 

repulsion, superconductivity results. Cooper (C1) showed that however 

small this net attraction is between two electrons just above the Fermi 

surface, the result is that these electrons could form a bound state.

The electrons undergoing this interaction must be within a distance 

hωq of the Fermi surface.

Considering all possible interactions which take a pair of 

electrons from any two k values in this region to any other two, it is 
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found that because of alternating signs of matrix elements, the total 

interaction energy is negligible. If however, one categorizes all 

possible k values into pairs, and further demands that neither or both 

states of a given pair be occupied, one finds that the matrix elements 

have all the same sign and the total interaction energy is not neglig­

ible. Hence we can say that a pair (k1,k2) scatters into another 

state (k1',k2'). Because we must conserve momentum

k1 + k2 = k1' + k2' = K

The most favourable arrangement which satisfies this condition is that 

in which K = 0, i.e., k1 = -k2. It is also core favourable that these

electrons have equal and opposite values of spin. Hence we can write 

the interaction as (k↑,-k↓) scattering into (k'↑,-k'↓). This also 

satisfies the all-important condition that a finite amount of energy is 

needed to excite a single unpaired or normal electron for, in order to 

have a single electron in a state we must remove from the system a 

large number of possible interactions of other states with the state 

(k↑,-k↓). Thus the total energy difference between having all pairs 

and having a single excited electron is a multiple of many single 

pair correlation energies. This consideration accounts for, in a 

qualitative way, the energy gap in the density of states curve 

characteristic of a superconductor.

It should be pointed out, however, that this correlation energy 

is very small compared to cost other interactions contributing to the 

total energy of the electrons. The BCS theory assumes that all these 

other interactions are the same for the superconducting state as for 
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the normal state. Hence the energy difference between the super­

conducting state and the normal state is this correlation energy.

The BCS theory in calculating the ground state of a super­

conductor, assumes that the energy is due to the correlation of these 

Cooper pairs of opposite spin and momentum and the screened coulomb 

energy. The matrix element for transforming a pair in the state 

(k↑,-k↓) into the state (k'↑,-k'↓) can be written

Vkk' = -2 <-k'↓,k'↑|H|-k↓,k↑>

where H is a Hamiltonian in which all the common terns between the 

normal and superconducting states have been omitted. From equations 

(6) and (7) we see that Vkk' is approximately a constant and so we 

say that
Vkk' ≈ V for εk' εk' ≤ hωq (8)

Vkk' = 0 elsewhere. 

Recall that a necessary condition for superconductivity is that 

V < 0. If we define h^ to be the probability that the (k↑,-k↓) is 

occupied, then the energy of the superconducting ground state as 

compared to the normal ground state at 0°K is

Applying equation (8) we see that

W(0) = Σk 2εkhk - V Σk'k {hk(1-hk')hk'(1-hk)}1/2. (9)

The first term in this expression is the difference between the kinetic 

W(0) = Σk 2εkhk - Σkk' Vkk' {hk(1-hk')hk'(1-hk)}1/2.
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energy of the system in the superconducting and normal states at 0°K.

This is very small compared with the second term which gives the 

correlation energy for all possible transitions from (k↑,-k↓) to

To be in the superconducting state W(0) must be negative.

Hence minimizing (9) with respect to gives ØθβʌѴλμεῠαѮ→∞≈ℓΣω↑↓Δ

If we define

(10)

(11)

which turns out to be the energy gap parameter for the k'th electron,

equation (10) becomes

where Ek = (εk2 + Δ2)1/2 .

(12)

(13)

which gives, for equation (11)

Δ=VΣk'[hk'(1-hk')]1/2

Assuming that A is approximately constant for εk ≤ hωq replacing 

the summation by an integral over energy we obtain

(14)

where N(O) = density of states in the energy 

region considered = a constant.

This equation has the solution 

Δ = hωq/sinh[1/N(O)V] ≈ 2hωe-1/N(O)V (15)

[hk(1-hk)]1/2/(1-2hk)= V Σk'[hk'(1-hk')]1/2/2εk 
.

Δ =  V/2 Σk Δ/(εk2 + Δ2)1/2 .

1/N(O)V = ∫hωqo 
dε/√(ε2 + Δ2)



13

which, applying back to equation (9) gives us for the ground state 

energy
 

W(O) = -2N(O)(hωq)2/(exp[2/N(O)V]-1).

Raising the temperature above 0°K will result in an increasing 

number of electrons being excited into single quasi-particle states. 

These are similar to electrons in a normal metal and will be called 

normal electrons.

If we define

ak = probability of occupation of k↑ or -k↓ by a single normal electron, 

(1-2ak) = probability that neither k↑ or -k↓ are occupied,

W(T) will be a sum of two terms, one a kinetic energy term, and the other

a correlation energy term. The free energy expression is

G = W(T) - TS = W(T)KE + W(T)CORR - TS (16)

W(T)KE = 2Σk |εk| [ak + (1-2ak)hk] 

w(t)CORR = -v Σkk' {hk(1-hk')hk'(1-hk)}1/2 {(1-2ak)(1-2ak')}.

The second curly bracket assures that the correlated states are not 

occupied by normal electrons. Working through a similar analysis as 

before one obtains an expression for the energy gap

Δ(T) = V Σk'[hk'(1-hk')]1/2(1-2ak') (17)

where again Ek=[εk2 + Δ2(T)].

Minimizing (16) with respect to ak yields

(18)
ak = [exp (Ek/kBT) + 1]-1 .
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In a precisely similar manner as previously changing (17) from a 

summation to an integral and imposing (18) one obtains

 
1/N(O)V = ∫ohωq tanh{(ε2+Δ2(T))1/2/2kT / (ε2+Δ2(T))1/2}dε. (19)

One should note that at T = 0 this expression reduces to (14). It is 

also important to note that at T = Tc, Δ → 0 and for T > Tc there is 

no solution and the metal reverts to the normal situation with no 

energy gap. To find the critical temperature Tc one simply substitutes 

Δ = 0 in (19) which gives, for kBT < < hωq

kBTc = 1.14 hωq exp [-1/N(O)V]

which together with (15) gives

2Δ(O) = 3.52 kTc . (20)

2.5 Density of States

Because the excitations in the superconducting state have a one 

to one correspondence with Bloch states in a normal metal, the density 

of states function can be calculated

 N(E) = N(ε)dε/dE = N(O)/dE/dε

but applying (15) gives

N(E) = N(O) E/(E2-Δ2)1/2 for E≥Δ (21)

= 0 E < Δ (no solution).

This density of states is shown schematically in figure 2. For energies 

well above the gap energy this reduces properly to N(0) but at the edge
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FIGURE 2

BCS SUPERCONDUCTING DENSITY
OF STATES

ENERGY E



16

of the gap it is infinite. Crudely, one could say that the states 

have been piled up at the edge of the gap. This density of states 

curve leads to a model somewhat analogous to that of an intrinsic 

semiconductor. In fact this semiconductor model has been used with 

a relatively high degree of success.

More recently, Schrieffer, Scalapino and Wilkins (S1) have 

developed a more complicated equation for a complex energy gap function 

in terms of phonon energies

Δ(hωq) = Δ1hωq + iΔ2(hωq).

Assuming a very simple model for the phonon spectrum of lead, (the sum 

of two Lorentzians centred at the energies hωl = 8.5 x 10-3 eV 

(longitudinal phonons) and hω* = 4.4 x 10-3 eV (transverse phonons) 

with half widths 0.5 x 10-3 eV and 0.75 x 10-3 eV respectively) they

calculated that at energies of hωl + Δ and hω+ + Δ the panics in the

phonon spectrum produce a rapid increase in the imaginary part 

which corresponds to a drop in the lifetime of the electron excitation. 

This brings about a corresponding drop in Δ1. The not effect is to 

produce a rather sharp drop in the density of states curve N(E) at 

these energies. In other words, the lifetime of an excited state is 

proportional to the density of phonons available and the density of 

final single particle states. As equation (21) indicates, the density 

of states is sharply peaked at the energy A in a superconductor. Hence 

if there is a concentration of phonons at hω, those excited states at 

energy hω + Δ will decay quickly to their final states around the gap. 

This effect was first reported by Giaever, Hart and Megerle (G3) and
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later in a more detailed fashion by Howell, Anderson and Thoms (Rl).

2.6 Electron Tunnelling Between Superconductors

In 1960 Giaever (G2) proposed and carried out the first 

experiments on the tunnelling of electrons from normal metals into 

superconductors. Techniques have improved so greatly since then that 

it has now become as extremely effective tool in measuring the energy 

gap and density of states in a superconductor.

If one has a sandwich of two metals separated by a thin (≈20 A°) 

insulating barrier and a potential is applied across that barrier, a 

current will flow through the barrier by means of quantum mechanical 

tunnelling of electrons. Depending upon the state of the two metals, 

i.e., whether they are superconducting or normal, the shape of the 

resulting I-V curve will vary. Figure 3 illustrates different curves 

under different circumstances. A brief analysis by means of the 

accompanying "semiconductor model" diagrams should explain the various 

details of the different characteristic curves. One should use this 

model with a certain amount of caution. The validity of this model is 

discussed by Bardeen (B2).

When no potential is applied across the barrier, the two Fermi 

levels will line up at the same energy. The application of a potential 

V will cause the Fermi level of one metal to shift an energy eV with 

respect to the other one. Assuming the "golden rule" we can say that 

the transition probability of tunnelling from an occupied state in 

metal 1 to an unoccupied state in metal 2 can be written

P12 = 2π/h |M12|2 M2(E)(1-f2(E))
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(i) BOTH METALS NORMAL

FIGURE 3



19

where N2(E) 

f2(E)

= density of states

= Fermi function

in metal 2

M12 = transition matrix connecting

the two states,

Consequently, the total current tunnelling from metal 1 to metal 2 is

the sum of all these transitions. Defining a reduced density of 

states p(E) = N(E)/N(O)

N(0) = density of states in normal metal

we obtain tho expression for current tunnelling from metal 1 to metal 2

I12 = N1(0) N2(0) 2πe/h
(E-eV) [l-f(E-ev)] p1(E) f(E)dE.

Similarily in the other direction, the current going from metal 2 to

metal 1 can be written

I21 = Nl(0) N2(0) 2πe/h

Summing these two we obtain the total current (assuming |M12|=|M21|)

ITOT = 2πe/h N1(O)N2(O)
∫∞-∞ |M12|2 p1(E)p2(E-eV)[f(E-ev)-f(E)]dE. (22) 

Mow consider the various possibilities of normal and superconducting

metals in figure 3 and assume that |M12|2 is a constant over the range

considered.

Case (i). Both metals normal.

In this case p1(E) = p2(E) = 1 equation (22) becomes 

I = 2πe2/h N1(0)N2(o)|M12|2v

or I = σNV 

where σN is approximately a constant. 

∫∞-∞ |M12|2 p2

∫∞-∞ |M21|2 p2 (E-eV)f(E-eV) p1 (E)[1-f(E)]dE.
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Hence for small applied voltages, the curve produced when both retain 

are normal is linear.

Case (ii).

If we have the case of one metal normal and one metal super­

conducting, then

p1(E) ≠ 1

p2(E) = 1 and the current becomes

I = σN/e ∫∞-∞ p1(E)[f(E-eV) - f(E)]dE . 

At 0°K this becomes 
I = σN/e ∫eV-eVp1(E)dE . (23)

Differentiating once, we obtain

dI/dV = σNp1(E).

Thus we see that by differentiating the I—V characteristic curve at 

0°K we can obtain directly the density of states of the superconductor.

At finite temperatures this becomes slightly more complicated;

(24)

This is identical to equation (23) except that the term in the curly 
brackets is a bell-shaped curve that becomes a delta function at 0°K. 

Hence at 0°K (24) reduces to (23) and at very low temperatures we can 

say that dI/dV gives us approximately the density of states.

dI/dV = σN ∫∞-∞p1(E) {(eE-eV/kT/kT)/[eE-eV/kT + 1]2}dE. 
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Case (iii).

When both metals are superconducting we have the case that 

p1(E) ≠ 0 

p2(E) ≠ 0 

and the current becomes 

I = σN/e ∫∞-∞p1(E)p2(E-eV)[f(E-eV)-f(E)]dE. 

Here at 0°K, the derivative dI/dV will give us a measure of the product 

of the density of states of the two materials. Hence it seems 

immediately obvious that it would be advantageous to use two super­

conductors of the same material. In this way, any finer detail would 

become more apparent.

There is another distinct advantage in using two metals in 

the superconducting state in these electron tunnelling experiments. 

Essentially what one is doing is probing one density of states 

function with another. If a normal metal is used to probe a super­

conductor, even at 1°K there is a considerable amount of thermal 

smearing at the Fermi level as determined by the Fermi function 

(see figure 4a). In other words, the probe being used is not a sharp 

one and hence the detail sought after is thermally smeared. On the 

other hand, using another superconductor circumvents this problem. 

From equation (21) we see that the edge of the gap, as well as having a 

large number of available states for tunnelling, is infinitely sharp. 

Also, if we are well below the critical temperature the number of 

filled states above the energy gap will be very small (see figure 4b). 

Consequently it is far more advantageous to probe a density of states
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curve with this infinitely sharp probe which has far core available 

energy states, than a normal metal at the Fermi level.

It should be noted, however, that using a probe that is 

displaced on energy Δo below the Fermi level necessitates applying 

a potential equivalent to

Δo + Δ + hωq

to observe the phonon effects previously mentioned.
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III. APPARATUS AND TECHNIQUE

3.1 Cryostat

The cryostat used is as shown in figure 5. This cryostat 

allows the immersion of the sample under study directly into liquid 

helium. The system is arranged in such a way that the helium is 

recovered after the experiment. Connected to the cryostat by means 

of a 3/4” pumping line is a Welch model 1402 duo-seal vacuum pump with 

a speed of 140 litres per minute. With this pump it is possible to 

reduce the temperature of the helium system to 2.0°K. This temperature 

is quite low enough to study the superconducting properties of lead, 

which has a transition temperature of 7.2°K.

The holder upon which the sample is mounted is shown in 

figure 6. This consists of thin-wall stainless steel tubing 1/8 inch in 

diameter, the top end of which is soldered to tho removable part of 

the head of the cryostat, and the bottom end connected, by means of 

small bolts, to a piece of non-conducting thin board. It is here that 

the sample under study is mounted. In the head is mounted a 3/4” kovar 

seal with eight electrical feed through leads and a tube into which the 

liquid helium transfer tube can fit. The electrical leads to the 

sample enter the system through the kovar seal and are connected, 

through number 38 insulated copper wire to posts on the board at the 

bottom of the stainless steel rod. These leads go down the cryostat 

inside the tubing. In addition to the six leads to the sample, there 

are two more leads which are connected to a heater on the under side of
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the sample holder proper. This heater consists of four - 47 ohm 

Allen-Bradley 1/2-watt resistors in parallel. This heater will boil off 

approximately one litre of helium an hour under a dissipation of 1 watt 

The temperature of the liquid helium bath may be determined 

from surface vapour pressure measurements. Sufficiently accurate 

temperature measurements in this system are made with the aid of a 

standard mercury manometer.

3.2 Preparation of Superconductive Tunnelling Samples

A suitable tunnelling sample was obtained by deposition of 

metal films onto a substrate of a flame polished microscope slide 

section approximately an inch square. The slide was initially out­

gassed in a vacuum oven for several hours at a temperature of 150°C 

and a pressure of about 10 microns of mercury. The slide was then 

cleaned with Ajax cleaner and hot water, and thoroughly rinsed with 

distilled water, making certain that there was no residual grease or 

dirt. It was then dried using a tissue designed for use with optical 

surfaces. Immediately after drying the slide was transferred to a 

vacuum coating unit. This unit was an Edwards multi-filament coating 

unit model number 12E3 capable of achieving a vacuum of at least 

10-6 torr.

The material under study was evaporated from a molybdenum 

boat through which 30-55 amperes at 3-4 volts was passed. The evap­

oration occurred in 15-20 seconds.

The glass slide was placed in a slide holder 12” above the 

filament from which the evaporation was to take place. In front of 

this slide holder one can place casks which allow strips of different
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geometries to be deposited. The evaporated film strips were dumbbell 

shaped, by virtue of the mask design, to facilitate the attachment of 

electrical leads. Further, as an experimental aid, those masks were 

so designed to enable two samples to be prepared on the same substrate. 
The actual metal films were made to be about 1000 to 2000 A° thick 

and about 0.050” wide. This relatively small width decreased the 

probability of a hole or short being produced in the oxide, simply 

because the surface area of the sample was small.

After evaporation of the first metal, the slide was placed in 

an oxidation chamber (see figure 7a), which was continually flushed with 

dry oxygen, With this technique a suitable insulating oxide film of 

thickness required for tunnelling observations could be prepared.

It was observed that the oxidising parameters were dependent 

not only on the metal evaporated, but also on the impurity content in 

the metal. For a pure lead sample (Cominco 99.9999% pure) it was found 

that it was necessary to place the films in the oxidation chamber for 
3 hours at a temperature of 75°C. This amount of oxidation grew an 

oxide on the surface which gave an ultimate sample tunnelling resistance 

of 50-100 ohms for the sample geometry employed in these experiments. 

On the other hand, for a 5% bismuth impurity in pure lead, oxidation for 

about 2 1/2 hours at 50°C gave approximately the same result. A 10% 

bismuth impurity required an oxidation time of 2 hours at 45°C to give 

an oxide of about the same resistance. The thickness of those oxides 

was not measured directly, but estimated from resistance measurements 

at room temperature to be about 20 A°.

After this oxidation procedure was completed, the sample was 
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again placed in the slide holder inside the vacuum coating unit and a 

film strip of the same material was evaporated onto the substrate at 

right angles to the oxidized one thus forming 2 small (.05" x .05”) 

junctions of the type metal-insulator-metal (M-I-M). The completed 

sample was as illustrated in figure 7b.

The sample was then mounted on the insulating board previously 

described, and electrical leads were connected to it, with the aid of 

indium solder. It was found that indium made good electrical contact 

with the films and adhered well, even at liquid helium temperatures. 

Because of their mechanical fragility the leads were connected to the 

external circuit via connecting posts mounted on the insulating board 

3.3 Preparation of Lead Bismuth Alloys

Tunnelling observations were used as a tool to study the effect 

of impurities on the density of states of certain superconductors. In 

particular, it was felt that such studies of Fb-Bi alloys which had 

been reported by other observers (A1) might yield valuable information 

on such density of states structures.
These alloys were made in a vacuum of approximately 10-5 torr. 

The constituents of bismuth and lead (5% and 10% bismuth by weight) were 

placed in a small, graphite crucible. This crucible was then placed on a 

tungsten wire filament and the whole arrangement was mounted inside the 

Awards vacuum coating unit. Graphite was chosen because molten lead, 

when cooled, does not adhere to it. The crucible was heated up to about 
350°C until both constituents were in the molten state and allowed to 

remain in this state for well over 1 hour, with occasional shaking to 

insure homogeneity. Tunnelling results obtained from material extracted
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from different regions of the resulting ingot showed that, within 

experimental error, the alloy was indeed homogeneous. The crucible 

and alloy wore then quenched in an atmosphere of pure helium gas. It 

was found that such quenching greatly reduced the amount of oxido 

formed on the surface.

After the alloy was formed, it was handled exactly as the pure 

metal. During evaporation, care was taken that all the charge placed 

in the molybdenum boat was evaporated, in order to insure a correct 

percentage of the constituents in the deposited film. Also, in order 

to be certain that the percentage of bismuth in the lead was indeed 

that prescribed, it was necessary to consider relative evaporation 

rates. For a pure material Kubaschewski and Evans (K1) show that the 

evaporation rate of a molten material is given by

W = po √(M/2πRT) .

where po = vapour pressure of that material

M = molecular wt. of that material.

For an alloy, it is possible to describe the rate of evaporation of a 

constituent, say material a

Wa = pa √(Ma/2πRT)

where pa = vapour pressure of the a material above a solution with 

another material b. This is more often defined in torus of the 

activity aa where, 

 aa = pa/po .

In the ideal solution, the vapour pressure of the material is lowered 
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proportionally to its molar concentration in the mixture. Its activity 

is therefore, ideally equal to its molar fraction

This is just a formulation of Raoult's law. Hence we can write, for 

bismuth in lead

 

Wbi = pbi   √(Mbi/2πRT = abi)   pobi √(Mbi/2πRT)

Similarly, for the lead in bismuth we can write

Wpb = ppb √(Mpb/2πRT) = apb ppb √(Mpb/2πRT)

at the most about 10% of the totalThe difference between ppb and pbi is

value (R2) at these temperatures considered, and the deviation from

Raoult’s law is of the order of a few per cent. Consequently we can 

be certain that the error in our mixture concentration is not core than 

± 1% even for 10% bismuth in lead mixtures. Also, from the repeatability 

of tunnelling observations cade on samples evaporated from different 

sections of the alloy ingot, we conclude that the alloy is indeed homo­

geneous and that the above estimates are indeed valid.

3.4 Mercury Sample Preparation

Tunnelling studies on thin mercury films have been reported in 

the literature (B3). No tunnelling studies on bulk mercury - a strong 

coupled superconductor - have been reported to date and it was felt that 

an attempt should be made to study the density of states structure and 

possible anisotropy in such bulk material. In this respect, attempts

 
aa = pa/po = Na
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were made to construct a sample incorporating bulk mercury. Samples 

were prepared of the type Al-Al2O3-Hg - aluminium being chosen for its 

rapidity of oxidation to suitable tunnelling thicknesses, and for the

durability of its oxide in tunnelling fabrications at liquid helium 

temperatures. Because of the obvious difficulty in handling mercury 

at room temperature, the following fabrication technique was employed. 

An aluminium film was deposited by techniques previously described, 

and allowed to oxidize. This oxidation involved simply exposing the 

film to air for a few minutes. A small tray, through which electrical 

leads were connected, was then placed on top of the glass slide and the 

mercury was poured into this tray. As before, the whole system was 

then mounted on the sample holder and cooled to liquid helium temperatures

TOP VIEW SIDE VIEW
FIGURE 8 

MERCURY TRAY

Unfortunately, with this technique, it was found that the 

mercury attacked the oxide film, and eventually the aluminium itself, 

lifting it up from the glass slide. Another method was attempted in 

which the substrate and aluminium strip were cooled down to 77°K, 

prior to the pouring of the liquid mercury, in the hope that the 

aluminium oxide would not be attacked as severely by the mercury. It 

was found, in all cases, however, that either an extremely high 

tunnelling resistance or zero resistance resulted.



The former result could possibly be due to the fact that the 
glass, being at 77°K allowed vapours to condense upon it, thus forming 

a very thick insulating barrier between the aluminium and the mercury. 

The latter result was attributed to the penetration of the aluminium 

oxide by the mercury as observed with the first mentioned technique.

Because of the inherent limitations of the particular electronic 

instrumentation employed, satisfactory tunnelling observations could 

not be made on very high resistance samples. Nor could such observa­

tions be made on shorted samples in which the tunnelling current was 

completely masked by conventional conduction currents.

For these reasons therefore, an investigation of tunnelling in 

bulk mercury was abandoned in favour of further experiments on lead 

bismuth alloys.

3.5 Current vs. Voltage Measurements

The circuit used to study the straightforward I-V character­

istics of various tunnelling junctions is as shown in figure 9. 

D-C bias for the junctions is obtained from a Harrison type 6200 A 

programmable power supply. In this case the output voltage is 

programmed by a variable external resistor included in the reference 

feed-back circuit of the supply. For these experiments in particular, 

a suitable voltage-time sweep was obtained with the aid of a 10-turn, 

10000 ohm helipot resistor, driven by cither a 1 r.p.m. or 10 r.p.m. 

reversible a-c motor. For a given motor speed, further control of the 

bias sweep voltage applied to the sample could be achieved by adjustment 

of resistance in the power supply output circuit. A typical sweep 

speed used in this experiment was 1 millivolt per minute.
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FIGURE 9I-V Measuring Circuit
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The source impedance as seen by the tunnelling junction is 

essentially RD, which is always kept much less than the static 

resistance RT, of the tunnelling sample. This ensures that the tunnel- 

ling junction always sees a "constant voltage” source, which is 

necessary for suitable plotting of the I-V characteristics. Note that 

this result is only strictly valid when the value of the current 

measuring resistance RM is such that RD < RM < RT.

To eliminate errors in voltage measurement, the voltage 

developed across the insulating barrier is measured from the two 

terminals of the four terminal sample not included in the main current 

path. This measured voltage is then fed through a Dymec model 2460 A 

amplifier to the X-input of a Moseley 1350 X-Y recorder. This amplifier, 

with an input impedance of 150 KΩ. serves to amplify the tunnel voltage 

to a suitable level for recording and at the same time eliminates 

circuit problems associated with the relatively low input impedance of 

the X—Y recorder on the particular ranges used. As mentioned above, 

tunnelling currents are obtained from measurements of the voltage drop 

across the current measuring resistor RM. This resistor is a selected 

standard resistor accurate to ± 1%. This d-c signal across RM is fed 

into the Y input of the X-Y recorder. In this current monitoring 

circuit, impedance levels are such that an intermediate buffer amplifier 

is not required.

3.6 Derivatives of the I-V Characteristic

As was pointed out in chapter II, for studies of the density of 

states function both in the region of the energy gap and in the phonon 

affected region of the superconductor under observation, it is extremely
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advantageous to obtain the first (dI/dV) and second (d2I/dV2) derivatives of 

the current voltage characteristic of a superconducting tunnel junction 

A very convenient method of obtaining these functions is with the aid 

of an a-c modulation technique as will be described below.

If, for a non-linear current-voltage device, one considers the 

Taylor expansion of current as a function of voltage about on arbitrary 

reference voltage VQ, one obtains

I(V) = I(Vo) + dI/dV |Vo (V-Vo) + 1/2! d2I/dV2|Vo (V-Vo)2

+ 1/3! d3I/dV3 |Vo (V-Vo)3 + 1/4! d4I/dV4|Vo (V-Vo)4 

+ higher order terms.

If we consider the application of a sinusoidal modulating voltage

Vac cos ωt causing excursions about the reference voltage such that

V-Vo = Vac cos ωt 

we obtain

I(V) - I(VO) = dI/dV |Vo(Vac cos ωt) + 1/2! d2I/dV2|Vo (Vac cos ωt)2

+ 1/3! d3I/dV3 |Vo (Vac cos ωt)3 + 1/4! d4I/dV4|Vo (V-Vo)3 + ....... 

After trigonometric expansions for cos2ωt, cos3ωt and higher order

terms, the above expression nay be reduced to

Iac = (d2I/dV2 |Vo Vac2/4 + d4I/dV4|Vo Vac4/4 + higher order terms) 
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+ cos ωt (dI/dV |Vo Vac + d3I/dV3|Vo Vac3/8 + higher order terms) 

+ cos ωt (d2I/dV2 |Vo Vac2/4 + d4I/dV4|Vo Vac4/96  + higher order terms)

where Iac = I(V) - I(Vo).

The fundamental current component that results from such 

modulation is therefore

Iac(ω) = cos ωt(dI/dV |Vo Vac + d3I/dV3|Vo Vac3/3 + .....),

this summation.

such a

It is found that, considering the parameters used in this experiment, 

the second and remaining terms contribute less than 1% of the total of 

Hence, to a good approximation we obtain

Iac(ω) = dI/dV |Vo Vac cos ωt, 

where Cac is the dynamic a-c conductance. Thus, with

modulation voltage applied to a tunnelling junction thedI/dV 

function may be easily obtained at a given reference voltage. It is 

seen that if this reference voltage itself is, in addition, made to be 

linearly and slowly time varying, then the dI/dV function may be obtained 

over the entire region of bias interest.

suitable

In a similar fashion the first harmonic current component is 

given by

Iac(2ω) = cos 2ωt(d2I/dV2 

+ . . . ..
.
.

or dI/dV 
|Vo = 

Cac

|Vo Vac2/4 + d4I/dV4|Vo 
Vac4/96 + ....).
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Again it is valid to within 1% to truncate the series after the first 

term and we obtain

Iac (2ω) = cos 2 ωt d2I/dV2 |Vo Vac2/4 

or d2I/dV2 |Vo = 4Iac(2ω)/(Vac2 cos2ωt) 

Consequently, by measuring the first harmonic component of the current 

produced through the sample, we can obtain d2I/dV2 directly over the region 

of bias interest.

The circuit used to achieve this end is as illustrated in 

figure 10. The oscillator used supplies a 1000 c.p.s. signal with a 

relatively small amount of distortion from a pure sine wave. Because 

it is of a high enough frequency that it will not be affected by the 

d-c sweep, and because of the practical convenience of it, a 1000 c.p.s. 

frequency was used. In order that all harmonics produced in the 

circuit are a result of the non-linearity of the device under study, 

it is imperative that no 2000 c.p.s. component be coming from this 

oscillator. For this reason, two — 1000 c.p.s. low pass filters are 

connected directly to the output of this instrument. With these 

filters, the 2000 c.p.s. component is less than .2% of the original 

signal. This modulation is inserted into the circuit across RD so 

that the small modulation will be seen by the sample on top of the 

larger d-c sweep voltage. The amplitude of this modulation must be 

small as compared to the detail on the curve which is to be investigated. 

If the modulation is of the same order as the detail, the modulating 

signal will gloss over the sharpness and thus cause a type of smearing.



FIGURE 10

DIFFERENTIATING CIRCUIT
40
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Also, if the d-c sweep is fast or jerky and of the same rate as the 

modulating signal sweep, the harmonics of 1000 c.p.s. produced will 

not be a true indication of the non-linearity of the tunnelling 

junction but will also be a function of the sweep speed. In order to 

eliminate this problem, the d-c sweep must be very slow. A typical 

sweep speed used in this experiment is 1 millivolt per minute. This 

sweep does not in any visible way affect the resultant harmonics of 

the modulating signal.

For measurements in the region of the energy gap an a-c probe 

of 50 to 75 microvolts peak to peak seemed adequate to determine the 

derivatives of the curve without appreciable smearing. In regions of 

energy far above that of the energy gap, it was found that, due to the 

fact that the alteration of the density of states curve by interactions 

with the phonons of the metal was small, the harmonic of such a signal 

was extremely difficult to detect. Hence it was necessary to increase 

the a-c modulation level in this region in order to detect any harmonic 

of the fundamental signal and hence any second derivative. Increasing 

the modulation to approximately 350 microvolts peak to peak seemed to 

give an appreciable signal with very little apparent smearing. Even 

after this increase in signal it was found that the resultant harmonic 

was of the order of .1 microvolt at the points of largest signal in the 

phonon affected region of the curve. Consequently, the major problem 

confronting this method of finding derivatives is that of suppressing 

the noise and allowing the pure signal to be filtered through. Across 

the current measuring resistor RM1(from which we measure Iac) there is 

a General Radio tuned amplifier model 1232-A tuned to the desired 



frequency (either 1000 c.p.s. for dI/dV or 2000 c.p.s. for d2I/dV2). This 

instrument has a band width of 5% of the tuned frequency and is capable 

of an amplification of 106. From this instrument the amplified signal 

is fed into a Princeton Applied Research model JB-4 lock-in amplifier 

which filters, amplifies and detects a desired frequency, giving a 

d-c output proportional to the signal at that frequency. From this 

detector the d-c signal is fed into the Y input of an X-Y recorder 

thus giving us the desired derivative as a function of applied voltage 

V. By adjusting the output filter on the lock-in amplifier and varying 

the sweep speed of the power supply accordingly, much of the pick-up 

noise is reduced without appreciably altering the resolution of the 

apparatus.

It is also necessary to supply to this lock-in amplifier a

reference signal which has the same frequency as, and is at a fixed 

phase to the signal under observation. This io achieved by means of 

the following circuit:

The diode is inserted to give a substantial harmonic to the

fundamental signal so that both 1000 c.p.s. and 2000 c.p.s. signals are 

fed into the reference input.

Lg
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FIGURE 11
I-V CHARACTERISTIC FOR Pb-I-Pb

T=2.0°K



IV. RESULTS AND DISCUSSION

4.1 Superconductor Energy Gap Characteristics

As was discussed in chapter II, a particularly convenient 

method of determining the width of the energy gup is by measurement 

of the I-V characteristic curve with both metals in the super­

conducting state. An even more accurate value is achieved when the 

superconducting metals are similar. In general, for two similar super­

conductors and operating temperatures well below the critical tempera­

ture, we would expect to see almost zero current until the point 2Δ 

is reached at which point a sharp rise in the current should result

Figure 11 shows an experimental plot of current vs. voltage 
for a lead-insulator-lead junction measured at 2.00°K, with the applied 

voltage V extending from 0 to approximately 15 millivolts. The 

uncertainty of the curve is within the thickness of the recorder trace. 

This I-V curve exhibits this expected almost negligible current flow 

until the voltage corresponding to the energy 2Δ is applied. At this 

point, however, there is a slight disagreement with the BCS theory 

which predicts a discontinuous rise. Since there is no discontinuous 

jump at this point, a certain amount of ambiguity is introduced in 

selecting the voltage corresponding to 2Δ. It is assumed that the 

point at which the slope of the I-V characteristic passes through a 

maximum indicates the energy gap 2Δ. Effectively, this corresponds 

to the point where, for an incremental change in voltage ΔV, there are 

a maximum number of available states into which tunnelling can occur.
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FIGURE 12 
dI/dV vs. V of Pb-I-Pb

T=2.0°K
MODULATION 75 μV p-p
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Consequently, it seems obvious that a plot of dI/dV vs. V would be a 

more helpful aid in determining the value of the energy gap. A plot 

of this function is illustrated in figure 12 and at a glance one can 

readily see that the point of maximum slope is very easy to discern.

Using this criterion, we conclude that the energy gap as 
measured for thin lead films at 2.0°K is 2Δ = 2.70 ± .05 x 10-3 eV 

or Δ = 1.35 ± .025 x 10-3 eV.

Using the relation (L3)

Δ(T) = Δ(0)

where Δ(0) = energy gap at 0°K and the bulk critical temperature

Tc = 7.18°K for lead, we calculate that

Δ(0) = 1.35 ± .025 x 10-3 eV

which, expressed in terms of kTc is

2Δ(0) = 4.35 kTc.

This value is in good agreement with that given by Giaever and 

Megerle (G4) using tunnelling techniques and by Ginsberg and Tinkham 

(G5) from infrared transmission. It should also be noted that this 

is not in particularly good agreement with the DCS weak coupling model 

which gives (equation 20)

2Δ(0) = 3.52 kTc.

Of considerable interest is this smearing around the gap edge 

or the non-discontinuous jump. This smearing could be due to, among 

other things: 1) non-uniform strain set up in the film due to the 

[1 - (T/Tc)4]-1/2 
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unequal contraction of the substrate and the film, 2) anisotropy of 

the energy gap. It has been suggested (T2) that a variation in the 

energy gap over the Fermi surface should be observed. Anderson (A3) 

claims that if the collision tine for scattering of electrons against 
impurities is short enough so that the mean free path, l ≤ |o, 

(the coherence distance) the rapid scattering will connect states all 

around the Fermi surface producing a sharp "isotropic” gap. Comparison 

of figure 13 with figure 11 which is a similar I-V plot of lead- 
insulator lead with a 5% bismuth impurity in the lead (l ≈ |o), will 

immediately indicate that the sharpness of the rise is much core 

marked with a small amount of impurity present. These results seem 

to indicate that the smearing in the pure material is perhaps due to a 

small anisotropy of the lead energy gap.

4.2 Density of States

According to theory, the quantity most closely related to the 

superconducting tunnelling density of states is the first derivative of 

the current voltage characteristic. At T = 0°K, dI/dV should be directly 

proportional to the density of states, while for temperatures greater 

than this, dI/dV and N(E) are related by equation 24. Figure 12 is a 

plot of dI/dV vs. V obtained with the first derivative circuit as applied 

to a lead-insulator-lead system. The maximum a-c modulation is 75 μV 

peak to peak. It should be noted that this curve approximates the 

theoretical BCS density of states function as given in figure 2, 

except that a displacement of a in energy is inherent because the probe 

used to study the density of states curve is removed from the Fermi 

surface by a distance Δ. The observed smearing of the first derivative



FIGURE 13

I-V CHARACTERISTICS of (Pb95B15 )-I-(Pb95B15)
T=2.0°K
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characteristic about the energy gap edge can be attributed both to the 

finite size of the modulation signal and to anisotropy of the energy 

gap itself.

As was explained in chapter II, one should expect to observe 

distinctive structure in the superconducting tunnelling density of 

states which can be related to the phonon spectrum of that material.

Peaks in the phonon spectrum at energies hωq produce drops in the

density of states at energies equal to hωq + Δ above the Fermi level, 

or hωq + 2Δ in the type of plot illustrated in figure 12. In figure 12 

we see that, at regions well above that of the energy gap, there is 

distinct and undeniable structure. The drops in dI/dV at energies of 

approximately 7 and 11 mV's are unmistakable. In fact, even very 

close scrutiny of the original I-V characteristic (figure 11) shows 

some non-linear detail in this region.

A particularly useful and sensitive method for investigating 

this structure is to measure the behaviour of the second derivative of 

the tunnelling current with respect to the voltage (i.e., d2I/dV2 vs. V). 

The location of sharp drops in the density of states curve produced 

by peaks in the phonon distribution can be determined by the points of 

maximum negative slope in the differential conductance dI/dV . These

points correspond, in the derivative of the differential conductance, 
(i.e., d2I/dV2) to negative peaks whose positions are much easier to 

discern. Moreover, structure very difficult to see in the first

derivative should show up quite clearly.

With this end in mind, a plot of d2I/dV2 vs. V was made (figure 14) 

and it was found to agree extremely well with results reported by other 

observers (R3). A detailed method of interpeting these curve in terms



FIGURE 14 d2I/dV2  vs. V of Pb-I-Pb  T=2.0°K
MODULATION 350 μV  p-p
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of electron phonon interactions (R3) and the results of this analysis 

are in good agreement with those obtained by Brockhouse from neutron 

scattering data (B4). In this figure, we can identify a set of peaks 

around 4.5 mV's with transverse phonons and a sot at about 8.5 mV’s 

with longitudinal modes. This tunnelling technique of investigating 

the phonon spectrum of a material has also been extended by other 

investigators to the study of tin, thallium (R3), mercury (B3) and 

indium (A2).

4.3 Bismuth Impurities

We have observed that the introduction of 5% and 10% impurities 

of bismuth into pure lead causes a widening of the energy gap. This 

widening of the energy gap with impurities is illustrated in figures 15 

and 16 from which we derive the following table:

RELATION OF ENERGY GAP WITH %Bi IMPURITY

%Bi in Lead Energy Gap (2Δ(0))

0 2.70 ±  .05 meV

5 2.95 ±  .05 meV

10 3.15 ±  .05 meV

This widening of the energy gap with increased bismuth impurity is in 

agreement with Leslie and Ginsberg (L2) who observed, from far infrared 

absorption experiments, that as small amounts of bismuth impurity are 

added to the lead, the energy gap widens. It was suggested that the 

energy gap is widened because of a net shifting of the phonon spectrum, 

but at that time no experimental data was available on the spectrum of 

these alloys. A shift in the average of the phonon energies would
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FIGURE 15dI/dV vs. V of (Pb95 Bi5 )-I-(Pb95 Bi5)T=2.0°KMODULATION 75 μV p-p 



FIGURE 16  - »dI/dV vs. V of (Pb90 Bi10)-I-(Pb90 Bi10)
 T=2.0°KMODULATION 75 μV p-p
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indeed result in a corresponding shift of the size of the energy gap, 

as can be readily seen from consideration of equation 15, i.e.,

Δ = 2hωq e-1/N(O)V 

where we get an expression of the energy gap dependence on the phonon 

energies hωq.

It should be noted here that these values disagree slightly 

with those reported by Adler and Ng (Al) using samples of Al-Al2O3-Pb 

with varying degrees of bismuth impurities in the lead. It is felt 

that using two similar superconductors decreases the ambiguity of 

measurement by a sizable amount. Also, the criterion used to select 

the edge of the energy gap is not universally accepted and discrepancies 

in results with other investigators could be attributed to this.

The second derivative plots of 5% and 10% bismuth impurities 

are illustrated in figures 17 and 18 respectively. Immediately one can 

see that the peaks due to the phonon effects arc being altered quite 

markedly. At the points indicated by arrows there is a shift of 

certain peaks indicating a probable shifting in energy of various peaks 

in the phonon spectrum. In the longitudinal phonon region case, there 

seems to be a splitting of the peak around 8.5 mV’s into two discernable 

peaks; the total area under the curve remaining approximately constant. 

This result seems to indicate that a certain number of the codes are 

shifting slightly in energy. This shift is of the order of 5% of the 

total energy and the strength of this peal: is quite obviously dependent 

on the amount of impurity atoms in the material. In other words, the 

more impurity atoms present in the metal, the more frequent is this 

new mode.
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FIGURE 17d2I/dV2 vs. V of (Pb95 Bi5)-I-(Pb95 Bi5) T=2.0°KMODULATION 350  μV p-p
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FIGURE 18 d2I/dV2 vs. V of (Pb90 Bi10)-I-(Pb90 Bi10)T=2.0oKMODULATION 350 μV p-p



Although it is not quite as obvious, there is a rather large 

change in the transverse modes about the region of 4.5 mV’s. A 

widening of the basic pattern is evident and a shifting of the two 

peaks relative to each other both in energy and relative intensity 

occurs. This is even more spectacular when a 10% bismuth impurity is 

injected as illustrated in figure 18.

The net effect of all this shifting both in energy and intensity 

is undoubtedly a resulting shift in the phonon spectrum of the material. 

As was mentioned above, a net shift in the average energy of the 

phonons would probably bring about a change in the energy gap of the 

superconductor.

Unfortunately, no neutron scattering data is available with 

which one can compare these results. On the strength of the results 

reported here, however, one can predict, with a certain degree of 

confidence, that a similar shift in some of the phonon dispersion curves 

for certain directions will result and that the intensity or frequency 

of occurrence of these shifts will be a function of concentration of 

impurity. It is impossible, without inelastic neutron scattering data, 

to relate these shifting peaks to any explicit codes.
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V. CONCLUSIONS AND SUGGESTIONS

FOR FURTHER EXPERIMENTS

This tunnelling method of investigation can be applied to 

almost any superconductor provided temperatures low enough below the 

critical temperature are available. For weak coupled superconductors, 

the alteration of the density of states curve caused by the interaction 

with the phonons is not as great but is still observable using this 

technique.

This method appears to be a reasonably accurate, rapid, 

preliminary experiment to the slower and more exacting, neutron 

diffraction analysis for, in a relatively small amount of time one can, 

in a qualitative manner, determine what sort of changes in the phonon 

dispersion curves could be expected with the introduction of impurities. 

Also, after more quantitative data is available, a relation between the 

percentage of impurities and the phonon spectrum shift could be more 

easily determined than with the neutron scattering method.

Another experiment which might prove extremely interesting is 

that in which impurities of thallium are introduced into lead. Leslie 

and Ginsberg (L2) have shown by infrared adsorption that, unlike the 

addition of bismuth, the introduction of thallium causes a narrowing of 

tho energy gap. A study of the probable shift of the phonon spectrum 

using this technique, would yield valuable information and together with 

the data obtained with bismuth impurities, one could derive conclusions 

concerning the interaction of these impurities with the original metal.
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