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ABSTRACT
Secondary structures may have to endure severe vibration amplitudes under the 

influence of the primary structures on which they are mounted. A series of numerical case 
studies are presented in this thesis to investigate the effectiveness of a passive vibration 
controller which combines a conventional tuned absorber with an impact damper, to attenuate 
the excessive vibration amplitudes of light secondary structures. In addition, experimental 
measurements are reported for some selective cases and comparisons are made with numerical 
predictions. This suggested configuration seems to suit ideally as an add-on enhancer for 
existing conventional absorbers. Most of the Results are presented for random white noise 
excitation, and a few representative transient vibration cases are also studied.
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CHAPTER 1
INTRODUCTION

A modified tuned vibration absorber is studied for the application on light secondary 
structures. The new passive vibration controller combines a conventional tuned absorber with 
an impact damper. The studies consist of dynamic modeling, numerical simulation and 
experimental verification.

Term "secondary structure" is used generically for light systems which are under some 
influence of larger primary systems. Therefore, response of a light secondary system is an 
indirect one through the dynamic response of the primary system to an external disturbance. 
Flexibly mounted machinery, transport of delicate cargo or the piping system in buildings may 
be envisaged as examples of secondary structures. Prediction and control of the excessive 
dynamic response of secondary structures have attracted significant attention in the literature 
[1-5]. A new approach of combining two conventional passive controllers is investigated in 
this thesis.

Tuned vibration absorbers have been used effectively to control excessive vibrations
1



2of resonant systems [5,6], A tuned absorber is an auxiliary oscillator added to the primary 
system to be controlled. The purpose here is to interact strongly with the primary system and 
to absorb the energy input from the external disturbance. Control is accomplished by tuning 
the parameters of the auxiliary oscillator so that an opposite force to the external disturbance is generated by intentionally resonating the absorber. Control may be very effective on 
restraining vibration amplitudes at the tuning frequency. However, effectiveness of a 
conventional tuned absorber deteriorates rapidly as the frequency of oscillations differs from 
this critical tuning frequency.

Many practical applications expose dynamic systems to wide-band excitations, rather 
than single-frequency excitations. Naturally, a passive conventional tuned absorber is 
inadequate for such cases. Some other means are required to improve the performance of the 
conventional tuned absorber. Active interference to maintain the resonance condition for the 
auxiliary absorber system promises to be effective for varying frequencies [7], However, the 
approach taken in this study is to attempt to improve the performance by passive means only. 
Passive systems have the unquestionable advantage of simplicity and robustness, provided that 
they are effective. It has been demonstrated that the effectiveness of a passive tuned absorber 
could be enhanced significantly if another passive vibration controller, an impact damper, is 
used to complement the tuned absorber [8, 9],

An impact damper is a loose rigid mass placed in a container which is secured to a 



3resonant system to be controlled. The dimensions of the container are chosen so that there 
is an intentional clearance around the impact damper to allow intermittent collisions. Hence, 
an impact damper is another passive vibration controller which works on the principle of 
generating an intermittent control force through intentional collisions. Each collision 
dissipates some energy and imposes an exchange of momentum. As a result of this exchange 
of momentum, the smaller impact damper reverses its direction of motion. On the other hand, 
the larger primary mass only slows down due to the momentum lost to the damper. Control 
is the consequence of this slowing of the primary mass leading to a smaller excursion 
amplitude. An impact damper's effectiveness largely depends upon the proper choice of the 
clearance. Reference 10 outlines the general approach in designing an impact damper, 
presents information in the form of design charts and lists significant publications.

An impact damper is used in this study to enhance the vibration control ability of a 
tuned absorber. Impact damper is placed in the tuned absorber to control the secondary 
system. As mentioned earlier, the concept of using these two passive controllers to complement each other's deficiencies has been introduced in References 8 and 9. Therefore, 
the purpose of this thesis is to extend its use in secondary structures and to provide 
performance charts for potential practical applications.

The focus of Chapter 2, Chapter 3 and Chapter 4 is on secondary structures under 
wide band random excitation. Specifically, Chapter 2 presents the dynamic model and a series 



4of numerical results and Chapter 3 demonstrates the experimental results for one 
representative physical structure. In Chapter 4, the new controller is modified by tuning the 
natural frequency of the absorber, which is part of the new controller, off the natural 
frequency of the system to be controlled. Then the effects of off-tuning are presented for 
representative cases. Chapter 5 shows the performance of the new controller for secondary 
structures under transient excitation. Chapter 6 consists of the conclusions of this thesis and 
some recommendations for using the new controller. In addition, the computer program used 
for the numerical simulations in this thesis is listed in Appendix with input and output 
examples.



CHAPTER 2
AN NUMERICAL STUDY OF THE NEW VIBRATION CONTROLLER

ON SECONDARY STRUCTURES UNDER RANDOM EXCITATION
2.1 INTRODUCTION

In this chapter, a 4 Degree-Of-Freedom (4DOF) dynamic model was developed to 
represent a secondary structure controlled by a new vibration controller which consisted of 
a conventional tuned absorber and an impact damper (a modified tuned vibration absorber). 
Based on this primary system - secondary system - absorber - impact damper model, a 
computer program ( Appendix ) was designed to simulate the dynamic responses of this 
model under wide band random excitation. A series of case studies were performed to 
investigate the effectiveness of the combined controller to the secondary system.
2.2 NUMERICAL SIMULATIONS

The model used in numerical simulations is shown in Figure 2.1 schematically. In this 
4 Degree-Of-Freedom (4DOF) model, the first oscillator (m1,c1,k1), represents the primary 

5



6system excited by the disturbance F(t). The smaller secondary system (m2, c2, k2) is mounted 
on the primary system. Attention will be mostly focused on this secondary system to restrain 
its response as much as possible with the new controller (a combination of a tuned absorber and an impact damper). The tuned absorber (m3, c3, k3) is the auxiliary oscillator attached to 
m2. Finally, the rigid mass m4 is the impact damper, which is placed in a cavity of m3 with a 
total clearance of d.

The differential equations of motion of the 3D0F oscillator (ml5 m2 and m3) between 
collisions are

cPx, dx. dx~

dt2 dt dt (1)

(Px- dx. dx,
m2—+(c^c3)—+(k2+k3}x2-c2—-k2xx=Q

dt2 dt dt (2)

at (3)

,whereas the impact damper experiences a constant velocity motion resulting



7
dt (4)

Numerical procedure consisted of using a standard fourth order Runge-Kutta finite 
difference scheme to integrate all four equations of motion simultaneously until a contact 
between m3 and m4 was established. A time step of smaller than 1/100 of the natural period 
of the primary system was used to ensure the stability of integration. A collision was assumed 
to take place when the difference between the two coordinates x3(t) and x4(t), was obtained 
to be smaller than one millionth of the total clearance, d, in Figure 2.1. Iteration on the time 
step was performed by simple Bisection to locate the instant of contact.

Standard instantaneous collision assumption was used to implement the energy 
dissipation and momentum transfer [8], Each collision resulted in an incremental change of 
velocities of the impact damper and the tuned absorber according to

^_(l-pe) ^3- + μ(1+^ 

dt (l+μ) dt (l+μ) dt (5)
and

^_(l+e) + (μ-e) ^4-

dt (l+μ) dt (l+μ) dt (6)



8where μ is the mass ratio (m4/m3) and e is the coefficient of restitution. Equations 5 
and 6 may be obtained easily from the simultaneous solution of the conservation of linear 
momentum (before and after a collision) and from the definition of the coefficient of 
restitution:

dt dt
dx^ dx^ 

dt dt
J (7)

where subscripts - and + indicate the instances immediately before and after a 
collision. Consistent with the instantaneous collision assumption, the displacements of m3 and 
m4 were left unchanged. A collision caused no change in the primary and the secondary 
systems. Numerical integration always started with zero initial conditions. After every 
collision, integration resumed with new initial conditions until a new contact was located.

The random white noise excitation was approximated by using the expression 
suggested in reference 11, which can be expressed as

N 1iW’/z Cos (ω^ί+Φ*) , (8)



9where S0(wk) is the desired power spectral density of F(t) with N equally spaced 
spectral components, ω^=Δω {k-1/2), Δω= wu/N, ωkωk,+δω. δω and Φk are
random variables uniformly distributed over the ranges ±0.05 Δω and 0 to 2n, respectively. 
S0(ωk) was taken to be unity. The cut-off frequency of the excitation, ωu, was set to be twice as large as the natural frequency of the uncontrolled primary system with 100 spectral 
components (N).

Performance of the new controller was evaluated by comparing the Root Mean Square 
(RMS) displacement of the secondary structure between the cases with and without the 
presence of the impact damper. In other words, the comparison was made between the 
secondary structure controlled by the new controller and that controlled by the conventional tuned absorber. Previous work [28] has shown that a conventional tuned absorber has 
positive, though limited, effect on the secondary structures under random excitation in terms 
of vibration reduction. Therefore, in this chapter, attention was focused on the investigation 
of the improvement of adding an impact damper.

RMS averages were calculated after every time step of integration until they were 
observed to reach stationary state. A1000 second simulation was generally found to be long 
enough to obtain stationary RMS averages (where the fundamental frequency of the primary 
system was 1 rad./s). Hence, one 1000 second long sequence of values for F(t), was 



10generated from equation 8 and the same sequence was used invariably for each case of 
simulation, in order to maintain a consistent excitation for comparison purposes.

Case studies were performed for mass ratios between the secondary and the primary 
systems (m1/m2) ranging from 1 to 1000. Smaller ratios represented cases in which the primary and the secondary systems were comparable in size, whereas large ratios represented 
light resonant secondary structures in buildings. The fundamental frequency of the primary system (kl/ml)1/2 was set to be unity (1 rad./s). The natural frequency of the secondary system 
(k2/m2)1/2 was taken to be identical with that of the primary system, as this case represented 
the strongest interaction between these systems and hence the most critical case for the 
secondary structure [12,13], The critical damping ratio of the primary system, ξ1 = C1/ (2m1k1) , was varied from 0 to 0.10. The secondary system was taken to be 
undamped (c2=0.0).

A mass ratio (m3/m2) of 0.10 was maintained between the secondary system and the 
absorber. The absorber was tuned to the natural frequencies of the primary and the secondary systems, (k3/m3)I/2 = (k2/m2)1/2 = (k1/m1)1/2 = 1 rad./s, and assumed undamped (c3=0.0). The 
mass ratio between the absorber and the impact damper, μ = m4/m3, was kept at 0.25. Hence, 
although the value of μ was quite large, the addition of the impact damper raised the inertia 
of the secondary system only by a relatively insignificant factor of 1.025.



112.3 NUMERICAL RESULTS
In Figure 2.2, RMS displacement ratios, σχ2/σχ20, of the secondary system are 

presented for different non-dimensional clearances, d/σx20. Here, σx2 and σx20 represent the 
RMS displacement of the secondary system with and without the impact damper; and d is the 
total clearance of the impact damper. Hence, ratios smaller than unity represent attenuation, 
whereas a ratio of unity represents no change due to the impact damper.

Two different coefficients of restitution, e, were used for these simulations. A value 
of 0.3, for instance, represents contacts between hard neoprene and metal surfaces. These 
results are marked with (■) in Figure 2.2. A coefficient of restitution of 0.8, on the other 
hand, represents contacts between polished surfaces of hardened metals, such as tool steels. 
These results are marked with (□ ). For all cases presented in Figure 2.2, e = 0.3 (■) 
produced more effective attenuations than those of e = 0.8 (□ ). Hence, all further 
discussions will be limited to the smaller coefficient of restitution. This trend is in agreement 
with earlier findings reported for random excitations [9,14], Different ratios of the primary 
mass to the secondary mass, m1/m2 are presented in each row in an ascending order from top 
to bottom, namely 1,10,100 and 1000. Each column corresponds to a critical damping ratio 
of the primary system, ξ1 of 0.001, 0.01 and 0.05 from left to right.

Generally, all parameter combinations in Figure 2.2 show attenuations due to the 



12presence of the impact damper. These attenuations are quite marginal for cases with small 
d/ox20, producing values of σx2/σx20 close to unity. Small d/σx20 causes too many collisions 
which mostly occur with small relative approach speeds before contact. In turn, these slow 
speeds drastically inhibit the momentum exchange between the impact damper and the tuned 
absorber. When d/ox20 is large, on the other hand, too few collisions occur. As a result, 
attenuations are again quite insignificant. Absence of collisions due to too large a clearance 
is always indicated with a σx2/σx20 of unity for each case. Between too small and too large 
clearances, results for each set of parameters indicate an optimal clearance to produce the 
largest attenuations. These optimal clearances, produce relatively large approach speeds with 
an average frequency of two collisions per cycle. Term "cycle" is used loosely here due to 
the random nature of the disturbance.

In Figure 2.2, for m1/m2 = 1 and ml/m2 = 10 (in the first two rows), as the critical 
damping ratio of the primary system increases from 0.001 to 0.05 (from the first to the third 
column) effectiveness of the impact damper decreases. This trend is not surprising since any 
increase in damping will result in a smaller excursion amplitude in the absorber's oscillations. 
Effect of the impact damper on the secondary system is an indirect one through the response 
of the tuned absorber. Therefore, smaller excursion of the absorber gives the impact damper 
less of a chance to make a difference . Best attenuations are in the order of 50% for mj/m2 = 
1 and 80% for m1/m2 =10. These attenuations deteriorate to approximately 25% and 45%, 
respectively, in the third column of each row. The last two rows of Figure 2.2, for m1/m2 =



13100 and m1/m2 = 1000 show a different trend than the first two rows. Particularly for m1/m2 
= 1000, increasing values of ξ1 produce more effective attenuations from approximately 50% 
in the first column to 80% in the third column. This drastic change may be attributed to the 
ratio of the primary and the secondary masses. When the secondary system's mass is 1000 
fold smaller than that of the primary system, it is virtually impossible for the primary system 
to be affected by changes in the response of the secondary system. Hence, excitation applied 
on the primary system is in fact perceived as a moving base disturbance by the secondary 
system for control purposes, therefore, the "apparent" degree of freedom of the system is now 
reduced by one. Increasing damping in the primary system only enhances this apparent 
reduction phenomenon.

Dependence of the attenuations of the impact damper on m1/m2, is demonstrated 
further in Figures 2.3 and 2.4. In Figure 2.3, the RMS displacement ratios of the primary (°), 
secondary (*) and the tuned absorber (▲) systems are given for the same non-dimensional 
clearances as in Figure 2.2 but for a constant m1/m2 = 10 and again for e = 0.3. Each frame 
from Figure 2.3 (a) to 2.3 (e) corresponds to a ξ1 of 0.0, 0.001, 0.01, 0.05 and 0.10. Hence, 
RMS displacement ratios of the secondary system (*) in the middle three frames are repeated 
from Figure 2.2. Because of the relatively strong interaction between the primary and the 
secondary systems for this m1/m2 = 10, as the damping in the primary system increases, the 
relative performance of the impact damper deteriorates from approximately 80% attenuation 
in frames Figure 2.3 (a) and 2.3 (b) to 30% in frame 3 (e). What is very interesting in Figure



142.3 is that, when the impact damper is effective, the attenuations are achieved in about the 
same order for all three of the primary, secondary and tuned absorber systems simultaneously. On the other hand, when the performance deteriorates, attenuations follow a reverse order 
depending on how large each system's mass is. They are most pronounced in the tuned 
absorber, then the secondary system and the primary system.

Results in Figure 2.4 are presented in an identical format to that of Figure 2.3, but this 
time for m1/n2 = 1000. As discussed briefly earlier, the effectiveness of control of the 
secondary system is particularly pronounced in Figures 2.4 (d) and 2.4 (e), for ξ1 of 0.05 and 
0.10, producing approximately 80% attenuation for non-dimensional clearances of 1.5 to 4. 
Best attenuations gradually deteriorate to approximately 65%, 50% and 40% as the value of 
ξ1 changes to 0.01, 0.001 and 0.0, respectively. In Figures 2.4 (d) and 2.4 (e), the primary 
system's response remains unaffected for all clearances, whereas some marginal changes may 
be observed in Figures 2.4 (a) to 2.4 (c) due to the presence of the impact damper.

One of the drawbacks of a conventional tuned absorber is the large excursion 
amplitudes of the tuned absorber. Since the absorber is intentionally designed to resonate at 
the tuning frequency to be effective, resulting large amplitudes require sufficiently large space 
around the absorber and unavoidable maintenance or replacement of the absorber in time. 
Results presented so far invariably suggest that addition of the impact damper should negate 
this particular drawback of the tuned absorber.



15Displacement histories of the primary ( — ) secondary ( — ) and the tuned 
absorber (...... ) are shown in Figure 2.5 (a) for the system controlled by the conventional 
absorber with ml/m2 = 10 and ξ1 = 0. In Figure 2 5 (b), the same system is shown with the 
addition of the impact damper at a non-dimensional clearance of d/ox20 = 2.17. The first 150 
s (second) period of the histories shows the process of gradually building of the excursion 
amplitudes starting from zero initial conditions. The last 150 s period, on the other hand, 
exhibits an almost perfectly periodic character in response to the random white noise excitation. This periodic character is not surprising considering that an oscillator is expected 
to respond in a narrow band of frequencies regardless of the frequency content of the 
excitation. However, this natural self-organization process of deliberately picking a narrow 
band of preferred frequencies is a gradual one. If a randomly excited response may be 
envisaged as a sequence of short transient disturbances, gradual building of significantly large 
oscillation amplitudes requires the presence of the preferred frequency components as initial 
conditions for each of these short transient disturbances. When this gradual building of the 
oscillation amplitudes is interrupted by discontinuities of the impact damper's collisions, the 
resulting response is somewhat disorganized and certainly smaller than the case without the 
impact damper [15], Responses in both Figures 2.5 (a) and 2.5 (b) are identical until the first 
contact is established at about 50s. Differences start emerging towards the end of the initial 
150 s period, though both cases are still quite similar. This similarity is due to the first few 
collisions having inevitably small approach speeds and being quite ineffective. However, 
displacement amplitudes with the new controller for the last 150 s are significantly smaller 



16than those of the displacements without the impact damper. Similar comparisons may be 
made between the displacement histories with and without the impact damper in Figures 2.6 
(a) and 2.6 (b), this time for m1/n2 = 1000, ξ1 = 0.10 and for d/ox20 = 2.95. In Figure 2.6 (b), 
oscillation amplitudes of the primary system controlled by the new controller remain virtually 
unchanged due to its large inertia.

Figure 2.7 shows the Fast Fourier Transformation (FFT) of the displacement of the 
same secondary system in Figure 2.5. In this figure, the vertical axis represents the spectral 
amplitude, horizontal axis represents the frequency (in Hz) and the depth represents the 
starting time of a FFT snapshot (approximately 150s long each). The top half of Figure 2.7 
is the response controlled by the conventional absorber (without the impact damper). The 
gradual building process discussed earlier, is displayed in this response without the impact 
damper, clearly emphasizing the exaggerated narrow band response after 600 s. For the first 
FFT, response with the impact damper, shown in the bottom half, has a very similar spectral distribution to that of the response without the impact damper. Starting from the second 
FFT, response's spectral amplitudes with the impact damper are significantly smaller with a 
wider frequency distribution. Figure 2.8 shows the same FFT histories in an identical format 
to that of Figure 2.7, but this time for the same parameters in Figure 2.6.

Figure 2.9 shows the effect of the clearance of the impact damper on the displacement 
of the secondary structure for m1/m2 = 10 and ξ1 = 0. For comparison purposes, only the last



17FFT snapshot (between 850 and 1000 s) of the displacement spectra of the secondary system 
are shown in Figure 2.9 (a). Some selective non-dimensional clearances, d/ox20, are marked 
along the depth axis. In Figure 2.9 (a), the second FFT corresponds to the best clearance 
case shown earlier in Figures 2.5 (b) and 2.7 (b). The clearance corresponding to the fifth FFT 
is deliberately chosen to be large enough to avoid collisions, and therefore to produce the 
response without the impact damper which is the same case shown in Figures 2.5 (a) and 2.7 
(a). As may be noted easily in this figure, too small a clearance (d/σx20 = 0.54) produces a 
spectral distribution with a smaller peak frequency but with a comparable spectral amplitude 
to that of the case without the impact damper (d/σx20 = 25.0) due to having too frequent 
collisions. Larger clearances, on the other hand, are again ineffective due to too infrequent 
collisions. Example cases shown here correspond to σx2/σx20 of approximately 0.37, 0.18, 
0.32, 0.36 and 1.00 for d/σx2 of 0.54, 2.17, 7.60, 12.49 and 25.0 ( refer to Figure 2.3 (a) ). 
Same information for clearance dependence is presented this time using the probability 
distribution in Figure 2.9 (b). The optimal clearance case (d/σx20 = 2.17), which is cross 
hatched for easy comparison, suggests a three fold attenuation of the peak displacement as 
compared to the case when the impact damper is not active (d/ox20= 25.0). Other non- 
optimal clearances show similar attenuations in peak displacement to those of the 
corresponding RMS averages (refer to Figure 2.3 (a)).

In Figure 2.10, similar information to Figure 2.9 is presented in an identical format but 
for m1/m2 = 1000 and ξ1 = 0.10. In Figure 2.10 (a), the comments made for Figure 2.9 (a) 



18are valid in general. The exception is that the spectral distribution of the components is 
significantly narrower this time due to an apparent loss of degree of freedom discussed earlier. 
This narrow band response leads to an almost perfectly periodic response which is reflected 
in the shape of the probability distribution of the case in Figure 2.10 (b) when the impact 
damper is not active. This resemblance of the probability distribution to a harmonic variation 
may also be noticed in the first (d/σx20 = 0.295) and the fourth (d/ox20 = 16.20) clearances at 
varying degrees as well.

Another look at the attenuation mechanism of the impact damper is presented in 
Figure 2.11, Figure 2.12 and Figure 2.13. In Figures 2.11 and 2.12, histories of the energy 
input to the primary system from the excitation for both cases without and with the impact 
damper (at optimal clearance) are presented. In addition, energy dissipated through collisions 
and the difference between the input and the dissipated energy (net-energy) are also marked 
for the case with the impact damper. In Figure 2.11, energy histories are given for m1/m2 = 
10 and ξ1 = 0 and d/σx20 = 2.17. Energy input from the random excitation seems to produce 
rather large fluctuations due to large velocity fluctuations of the system without the impact 
damper. For the optimal impact damper, on the other hand, the input energy history is much 
smoother as compared to the case without the impact damper. This, of course, is due to the 
attenuations induced in the response of the primary system by the impact damper. 
Surprisingly, the cumulative energy input with the impact damper is larger than that of the 
case without the impact damper. Dissipated energy due to impacts, however, is just as large



19as the input energy, leaving only a minimal net energy. In Figure 2.12, energy histories are 
presented in the same format as in Figure 2.11 but for m1/m2 = 1000, ξ1 = 0.10 and d/σx20 = 
2.95. In this figure, energy histories without the impact damper, with the impact damper and 
net-energy with the impact damper seem very similar since the response of the primary system 
is virtually unaffected by any change in the secondary system. Histories in Figure 2.13 are for 
the same cases in Figure 2.12, but this time energy input to the secondary system rather than 
the primary system is plotted. Hence, this case is treated as if the primary system does not 
exist and the secondary system is given a base excitation. Trends in Figure 2.13 are very 
similar to those in Figure 2.11, leaving a minimal net-energy for the secondary system after 
the energy dissipation due to collisions subtracted from the energy input from the primary 
system.

2.4 CONCLUSIONS
A new passive vibration controller, which combines a tuned absorber with an impact 

damper, is investigated in this chapter for controlling excessive oscillations of light secondary 
structures. A numerical procedure is presented for predicting performance under random 
white noise disturbance. Addition of an impact damper provides significant improvement in 
the performance of the conventional absorber.



20When the mass of the secondary system to be controlled is ten fold smaller than the 
mass of the primary system, m1/m2 =10, impact damper is most effective when there is 
minimal damping in the system. Attenuations in the order of 80% are possible in the response 
of the secondary as well as the primary and the tuned absorber systems.

When the mass of the secondary system to be controlled is thousand fold smaller than the mass of the primary system, m1/m2 = 1000, impact damper is most effective when primary 
system has at least 5% critical damping. For this case, 80% attenuation is possible for both 
the secondary and the tuned absorber systems. No control is attainable for the primary system 
due to its large inertia.



CHAPTER 3
AN EXPERIMENTAL STUDY OF THE NEW VIBRATION CONTROLLER

ON A SECONDARY STRUCTURE UNDER RANDOM EXCITATION
3.1 INTRODUCTION

A series of numerical case studies in Chapter 2 have shown that a new passive 
vibration controller combining a tuned absorber and an impact damper is effective on 
controlling a light secondary structure. In this chapter, the investigation of this new controller 
is continued with experimental observations. A prototype structure is built with selected 
parameters and tested under random excitation with the new controller as well as the 
conventional tuned absorber alone. Comparisons are made between the performances of the 
two controllers. In addition, measured results are compared with numerical predictions.
3.2 DETAILS OF THE EXPERIMENTS

A schematic drawing of the experimental model is shown in Figure 3.1. The design 
of the experimental rig is based on the 4 Degree-Of-Freedom (4DOF) model discussed in the 
previous chapter. The experimental structure consists of three mechanical oscillators and an 
impact damper. The primary structure is a rigid plate cantilevered from a fixed base by four
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22thin strips of steel. The strips act as the resilient elements, and in the mean time they also 
contribute to the equivalent mass. On top of the primary structure is another oscillator, the 
secondary structure, which is mounted on the primary structure by two similar steel strips. 
The equivalent mass of the secondary structure is approximately 1/10 of the primary mass. 
The third oscillator is mounted on the secondary structure with two thin strips. The mass of 
the third oscillator is approximately 1/10 of the secondary’s. The third oscillator is designed 
as a conventional tuned absorber for the secondary system. Therefore, the natural frequency 
of the third structure is tuned to be the same as the secondary’s. The impact damper is 
suspended into the cavity of the absorber as the mass of a simple pendulum. Hence, the 
impact damper’s motion is free of all external forces between contacts with the walls of the 
cavity on the absorber. The radial clearance, d/2, between the damper and the absorber is 
indicated for clarity in Figure 3.1.

The parameters chosen for the experimental structure are listed in Table 3.1. Where 
Keq, meq and ξeq represent the equivalent stiffness, critical viscous damping ratio and mass 
when each system is considered individually as SDOF oscillators. The dynamic response of 
the secondary system depends upon the level of interaction between the secondary system and 
the primary system. The parameters of the system were chosen so that the resulting 
uncontrolled combination (without the impact damper) would produce the largest response 
of the secondary system. Previous work has demonstrated that the largest response of the 
secondary system is produced when the natural frequencies of the primary and the secondary



23systems are the same [12, 13], Hence, the natural frequencies of all three structures in Figure 
3.1 were tuned to be identical (within experimental variations) when they were tested as 
SDOF oscillators individually. The natural frequency of the simple pendulum which consists 
of the impact damper and a string was set to be approximately 0.6 Hz, much smaller than 
those of the primary, secondary and absorber systems.
Table 3.1 Parameters of the experimental structure

Resonant Frequency* (Hz)
Stiffness* Keq(103N/m) Mass* meq (kg) Damping Ratio*

SeaPrimary System 25.17 ±0.30 113.63 4.544 0.0053 ±0.0002Secondary System 24.67 ±0.30 11.22 0.467 0.0026 ±0.0002TunedAbsorber 23.08 ±0.30 1.22 0.058 0.0034 ±0.0002ImpactDamper 0.011± 0.002
t Measured + Calculated
The experimental setup is shown in Figure 3.2. The primary system was randomly 

excited by an electromagnetic exciter. A soft spring was used between the exciter and the 
primary system to facilitate the excitation on the primary system from the motion of the coil 
of the exciter. The random signals were generated by an HP Spectrum Analyzer. The 
original signals were amplified by a power amplifier. Three accelerometers were placed on 



24the primary system, secondary system and the absorber to measure the responses. The signals 
collected by the accelerometers were amplified by another amplifier, then sent to the HP 
Analyzer for data processing. In the analyzer, first the low frequency noise below 5 Hz was 
filtered by built-in filters. Power spectra of the accelerations were measured by averaging 32 
samples to obtain a reliable average. Then by using built-in integrators, acceleration spectra 
were converted to those of the displacements. Finally, the Root Mean Square (RMS) 
averages of the displacements were calculated. A printer was connected to the analyzer to 
obtain hard copies when needed.

During the experiment, the RMS displacement amplitudes of the primary system, the 
secondary system and the absorber, were measured both with and without the impact damper 
at each level of random excitation. Again, the attention was focused on the investigation of 
the improvement of adding an impact damper, since previous work [28] had shown that a 
conventional tuned absorber had positive, though limited, effect on the secondary structures 
under random excitation in terms of vibration reduction. Measurements were performed over 
a frequency span from 0 to 50 Hz, whereas the natural frequencies of the primary, secondary 
and the absorber were tuned to be around 25 Hz. The dimensionless variable d/σx20 was 
chosen to represent the change of the clearance of the impact damper, where d was the 
measured value of the clearance and σx20 represents the RMS displacement of the secondary 
system without the impact damper (with the absorber alone), d was kept constant throughout 
the experiments. The variations of the clearance d/σx20, were obtained by gradually adjusting 



25the excitation level, and therefore changing σx20 values. The clearance was measured to be 
1.44±0.02 mm. The coefficient of restitution between the damper and the neoprene-lined 
walls of the tuned absorber was measured to be 0.34±0.05 [9],
3.3 RESULTS

Figure 3.3 shows the measured displacement spectrum of the electromagnetic exciter’s 
moving coil within the 50 Hz frequency span. This random signal was assumed to be close 
to a theoretical white noise for a 25 Hz natural frequency and was used as the excitation of 
the primary system.

The representative frequency spectra of the displacements of the secondary system are 
shown in Figure 3.4 for increasing levels of excitation from the first row to the fourth row. 
The left column represents the spectra with the conventional tuned absorber, whereas the 
right column represents the spectra with the new combined controller. The Root-Mean
Square (RMS) values are obtained by integrating these displacement spectra to evaluate the 
performance of the new combined controller on the experimental structure. The RMS 
displacement value of the secondary system controlled by the new controller is denoted as σx2. 
The RMS displacement value of the secondary system controlled by the conventional tuned 
absorber is denoted as σ^ here. The ratio of is used here to indicate the effectiveness 
of the new controller comparing with the conventional tuned absorber. Hence, a value of



26σx2/σx20 less than unity represents an additional attenuation of the RMS displacement of the 
secondary system for each level of excitation. As we mentioned in the previous section, 
changing the excitation level is equivalent to changing the clearance of the impact damper in 
this experiment. A non-dimensional variable d/σx20, where d is the measured value of the 
clearance of the impact damper, is used to represent the clearance. Because d remains constant (1.44 mm), the non-dimensional clearance d/σx20 decreases when the excitation (σx20) 
increases.

The spectra in Figure 3.4 from frames (a), (c), (e) to (g) in the first column, and from 
frames (b), (d), (f) and (h) in the second column correspond to d/σx20 of 45.7, 30.9, 10.2 and 
4.7, respectively. From the spectra in the first column of Figure 3.4, it can be seen that the 
RMS of the secondary system controlled by the conventional absorber increases steadily with 
increasing excitation (decreasing of d/σx20). Each spectrum shows three peaks around the 
original natural frequency of the secondary system (25 Hz). In the second column of this 
figure, the spectral responses, with the help of adding an impact damper, are flatter and the 
peak values are much smaller than those in the first column. The variation of the effectiveness 
of the new controller with different excitation levels reflects the dependence of the impact 
damper to its clearance. For d/σx20=45.7, the ratio between the RMS displacement of the 
secondary system with the new controller (Figure 3.4 (b)) and that with the conventional 
absorber (Figure 3.4 (a)), σx2/σx20, is about 86%. It indicates about 14% RMS reduction for 
adding the impact damper. As the non-dimensional clearance d/σx20 decreases to 30.9 in



27Figure 3.4 (c) and (d), the RMS displacement reduction increases to 34% with the help of the 
impact damper. The best RMS attenuation for the secondary system was obtained at 
d/σx20=10.2 (Figure 3.4 (f) comparing with Figure 3.4 (e)), where the RMS reduction is about 
57%. As the clearance continue to decrease, the effectiveness of the impact damper starts to 
decrease. For d/σx20 of 4.7 in Figure 3.4 (g) and (h), the RMS displacement reduction is 
about 53% with the impact damper.

Very similar to the frequency spectra of the secondary system, Figures 3.5 and 3.6 
present the frequency spectra of the displacement of the primary system and the absorber 
system. For both Figure 3.5 and 3.6, Frames (a), (c), (e) and (g) in the first column, and 
frame (b), (d), (f) and (h) in the second column correspond to d/σx20 of 45.7, 30.9, 10.2 and 
4.7, which are the same cases listed in Figure 3.4. Figure 3.5 and Figure 3.6 show that the 
addition of the impact damper to the conventional tuned absorber also helps reducing the 
displacements of the primary system and that of the absorber system. This trend is in 
agreement with the findings of the previous chapter. Comparing Figures 3.5 (b), (d), (f) and 
(h) with Figures 3.5 (a), (c), (e) and (g), the obtained RMS displacement reductions for the primary system are 6%, 30%, 56% and 55%. The RMS displacement reductions are 14%, 
38%, 53% and 59% for the absorber system in Figures 3.6 (b), (d), (f) and (h) as compared 
with that in Figures 3.6 (a), (c), (e) and (g). The vibration reduction achieved for the primary 
system is especially significant considering that the mass ratio of the primary system over the 
impact damper is approximately 400. The vibration reduction to the absorber is also useful 



28in practice at the situation where space is limited for adding an absorber on a system.
Both numerically predicted and experimentally observed RMS displacement ratios of 

the primary, secondary and tuned absorber systems are shown in Figures 3.7 (a), (b) and (c). 
Vertical axis of each frame represents the corresponding non-dimensional displacement ratio 
(σχ1/σx10 or σx2/σx20 or σx3/σx30), whereas the horizontal axes indicate the clearance non- 
dimensionalised with the RMS displacement of the secondary system (d/σx20).

Two sets of numerical predictions are presented in this figure, considering the 
variation of the experimentally measured coefficient of restitution. Results for e=0.3 are 
shown with (o), whereas (□ ) represents results for e=0.4. Experimentally measured ratios 
are marked with (▲). Changing the coefficient of restitution between 0.3 and 0.4, produces 
quite insignificant differences. Generally, overall agreement between the numerical predictions 
and measurements is quite close for all three coordinates, particularly when the attenuations of the impact damper are most effective. This close agreement slowly deteriorates as the value 
of the non-dimensional clearance d/σx20 increases to values greater than 13. Here, it must be 
kept in mind that an experimental value of the non-dimensional clearance d/σx20, is varied by 
keeping the clearance constant and changing the level of excitation (whereas changing the 
clearance is a more practical approach in numerical simulations). Hence, a large d/σx20 is only 
possible by lowering the level of excitation. At these low levels, it was found to be practically 
impossible to avoid the effects of small amplitude building vibrations. These structural



29vibrations were confounded with the practical impossibility of centering the impact damper 
perfectly in its cavity. Hence, at low excitation levels, more frequent collisions were observed 
in the experiments as compared to what could be predicted in numerical simulations. As a 
result, these more frequent collisions at large d/ox20 produced larger attenuations. For small 
d/σx20, experimental imperfections were largely overwhelmed by high excitation levels.

Figure 3.8 presents a set of acceleration spectra and histories for the secondary and 
the primary systems for a representative case. The non-dimensional clearance d/σx20 in this 
case is 8.6. On the left side of Figure 3.8, frames (a) and (e) show the acceleration spectra 
of the secondary system and the primary system with the tuned absorber alone, whereas 
frames (c) and (g) show the corresponding spectra with the new controller for the secondary 
system and the primary system. On the right side of Figure 3.8, frames (b), (d), (f) and (h) 
present the histories of the acceleration corresponding to frames (a), (c), (e) and (f), 
respectively. Figure 3.8 indicates that the new controller is effective on reducing not only the 
displacements but also the accelerations of the system. The RMS acceleration attenuations 
are 35% for the secondary system and 21% for the primary system.

The ability of reducing the accelerations as well as displacements of the system is one 
of the advantages of the new controller over the conventional impact damper. Using the 
conventional impact damper as a vibration controller results in relatively large contact forces 
due to intermittent rigid body collisions. These collisions, when utilized properly, may control 



30the displacement excursions of a resonant system effectively. However, the acceleration 
amplitudes of the system may in fact be exaggerated as a result of the contact forces [30], 
Placing the impact damper within the absorber mass, rather than in direct contact with the 
secondary system helps alleviating this problem.
3.4 CONCLUSIONS

In this chapter, the experiments are detailed to demonstrate that using an impact 
damper as a supplementary controller for a conventional tuned vibration absorber enhances 
the vibration control significantly. The new controller, which combines an impact damper 
with a tuned absorber, is effective for both the primary system and the secondary system. For 
the experimental structure under a random white noise excitation, the best result for the 
secondary system is obtained at d/σx20 =10.2 with 57% RMS displacement attenuation as 
compared with the result of the conventional tuned absorber. At the mean time, the RMS 
displacement attenuation to the primary system and the absorber system are 56% and 53%. 
In addition to the displacement attenuation, the new controller also reduces the acceleration 
of the controlled system, which overcomes the inherent disadvantages of using the impact 
damper alone. An overall agreement between the experiment and the simulation is achieved 
with the exception of low levels of excitation. At these low levels, experimental model 
performs better than the numerical model.



CHAPTER 4
THE EFFECTS OF AN OFF-TUNED ABSORBER

ON SECONDARY STRUCTURES UNDER RANDOM EXCITATION
4.1 INTRODUCTION

In previous chapters, a new passive vibration controller combining a tuned absorber 
and an impact damper has been discussed for controlling a secondary structure under random 
excitation. In this treatment, the natural frequency of the absorber has always been assumed 
to be exactly the same as the natural frequency of the secondary system to be controlled. 
However, there might be difficulties in practice to obtain a precise tuning due to inaccuracies 
of measurement, manufacturing and assembly. In some other situations, the resonant 
frequency of the system might shift after the absorber is installed. In other words, it is 
possible that the natural frequency of the absorber is off tuned to that of the system.

Another reason for the investigation presented in this chapter, is to observe the 
possibility of improving the new controller by off-tuning its absorber. Such an observation 
may lead to a recommendation of deliberately designing an off-tuned absorber with the impact
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32damper.
In this chapter, performance of an off-tuned absorber is investigated to control the 

secondary system under random excitation. The coσesponding responses of the primary system are also presented. The investigation is conducted for the new vibration controller 
(with an impact damper and an absorber) as well as for the conventional absorber.
4.2 NUMERICAL APPROACH

The basic numerical approach used in this chapter is very similar to that in Chapter 2. 
The simulation is still based on the model illustrated in Figure 2.1. The system is configured 
as the 4DOF system discussed in previous chapters. As a quick reminder, this system consists 
of a primary system (m1, c1,k1), a secondary system (m2, c2, k2), an absorber (m3, c3, k3) and 
an impact damper (m4).

An off-tuned absorber was obtained by adjusting the stiffness of the absorber (k3). 
The mass of the absorber ( m3) and the undamped natural frequency of the secondary system ( f2 = (k2/m2)1/2(2π)) remained constant throughout. The natural frequency of the absorber 
(f3 = (k3/m3)1/2/(2π)) was tuned to be up to 20% off the natural frequency of the secondary 
system (f2). Therefore, the tuning ratio, f3/f2, ranged from 0.8 to 1.2. The natural frequency of the primary system (f1 = (k1/m1)1/2(2π) ) was taken to be identical to the natural frequency



33of the secondary system, to represent the strongest interaction between these systems [12, 
13]· 

The investigation still concentrated on the effectiveness of the control of a light 
resonant structure. Two representative cases were studied in details, one with mass ratio 
ml/m2 = 10 and ξ 1 = ξ2 =0, the other with mass ratio ml/m2 = 1000, ξ l = 0.1 and ξ2 = 0. 
From previous finding in Chapter 2, these two represented the cases in which the new 
controller was most effective. A mass ratio of 0.10 was maintained between the secondary 
system and the absorber (m3/m2) and the mass ratio between the absorber and the impact 
damper ( m4/m3) was kept constant at 0.25. In addition, the absorber was taken to be 
undamped ( ξ3 = 0.0). The coefficient of restitution, e, between the impact damper and its 
container was kept to be 0.3 in this chapter. The random white noise excitation described in 
Chapter 2 was employed to excite the primary mass (m1). The critical system parameters 
investigated were the clearance between the impact damper and the container, d, the mass 
ratio between the primary system and the secondary system, m1/m2 and the tuning ratio, f3/f2.

For comparison purposes, the dynamic model in Figure 2.1 was also configured as a 
2DOF system, only the primary and secondary systems, by simply setting k3 and c3 to be zero. 
This system represented the original uncontrolled structure, before a tuned absorber was 
introduced. Then the comparison of the effectiveness of off-tuning was made between the 
system controlled by the new controller and that controlled only by the absorber.



344.3 NUMERICAL RESULTS
Figure 4.1 demonstrates the influence of off-tuning the absorber on the performance 

of the impact damper as part of the new controller for the case of m1/m2, =10. In this figure, 
RMS displacement ratios between the system controlled by the combined new controller and 
that controlled by an absorber alone are presented for different non-dimensional clearances, 
d/ox20. In each frame of Figure 4.1, (□) represents the RMS ratio of the displacement of the 
primary system, σχ1/σχ10. The RMS ratio of the displacement of the secondary system, 
σx2/σx20, is represented by (x). Again, and represent the RMS displacements of the 
primary and secondary systems controlled by the new controller. σχ10 and σx20 represent the 
RMS displacements of the primary and secondary systems controlled by the conventional 
tuned absorber. Frames (a), (b), (c), (d) and (e) in Figure 4.1 correspond to the tuning ratios, 
f3/f2, of 0.8, 0.9,1.0,1.1 and 1.2. Where f3/f2=1.0 is the same case as that discussed in Figure 
2.3 (a) of Chapter 2, where the absorber is tuned to the resonant frequency of the secondary 
system.

Rather significant attenuations are suggested in Figure 4.1 due to the presence of the 
impact damper, even when the absorber is tuned 20% off the resonant frequency of the 
secondary system. From frame (a) to (e), the best RMS reductions for the secondary system 
are 55%, 77%, 79%, 67% and 75%, which are obtained at d/σx20 of 3.24, 2.69, 2.72, 4.46 and 
1.10, respectively. The best RMS reductions of the primary system are 57%, 79%, 82%,



3586% and 72%, corresponding to d/ox20 of 3.24, 2.69, 2.17, 4.46 and 1.10. Comparing with 
each case, the best RMS reduction of x2 is obtained at f3/f2=1.0 and it decreases when the 
tuning is off the center. However, the best RMS reduction for x1 happens at f3/f2=l.1 and the 
attenuation decreases when f3/f2 changes from this point. Considering the secondary system 
is the major object to be protected, the best overall performance of the impact damper can be 
considered at f3/f2=l.0 (Figure 4.1 (c)), where the RMS reductions are 79% and 82% for x2 
and x1. Generally, off-tuning the absorber reduces the effectiveness of the impact damper.

The overall performance of the new controller and the conventional absorber to the 
off-tuning is summarized in Figure 4.2. In each frame, the horizontal axis is the tuning ratio 
f3/f2. Figure 4.2 (a) shows the performance of the conventional absorber on the secondary 
system. In this frame, the vertical axis is the RMS displacement ratio σx20/Sx2. Here, Sx2 is 
the RMS displacement of the secondary system of the original 2DOF system without the 
absorber. Similarly, Figure 4.2 (b) presents the performance of the conventional absorber on 
the primary system. The vertical axis in this frame is σx10/Sx1, where Sx1 is the RMS 
displacement of the primary system of the original 2DOF system. The overall performance 
of the new controller is demonstrated in Figure 4.2 (c) to (f) with two different approaches. 
As discussed earlier in this section, the best performance of the impact damper is obtained at 
different clearances (d/σx20) for different tuning conditions. In Figure 4.2 (c), the RMS displacement ratio of the secondary system (σx2/Sx2) is obtained by assuming that the impact 
damper works at its best clearance values for all off-tuning conditions. In other words, Figure



364.2 (c) shows the best results of the new controller. Figure 4.2 (d) shows the corresponding 
RMS displacement ratio of the primary system (σχ1/Sχ1). This approach is used to investigate 
the possibility of getting better performance from off tuning. The second approach is used 
to investigate the sensitivity of the new controller with a fixed clearance (d/σx20) when the 
tuned frequency of the absorber is shifted. Therefore, in Figure 4.2 (e), the RMS 
displacement ratio of the secondary system (σx2/Sx2) is obtained by assuming the clearance of 
the impact damper (d/σx20) is fixed at 2.72 which is the best clearance for f3/f2 = 1.0 (refer to 
Figure 4.1 (c) ). Figure 4.2 (f) shows the RMS displacement ratio of the primary system 
(oxl/Sxl) corresponding to this clearance.

In Figures 4.2 (a) and (b), the RMS ratio with the absorber alone shows large 
fluctuations. When f3/f2 changes from 0.8 to 1.2, σx20/Sx2 varies from 0.41 to 0.97, whereas 
oxl0/Sxl varies from 0.68 to 0.99. This is not surprising, considering the extreme sensitivity 
of the undamped system to any significant presence of a frequency component in the 
excitation close to a resonance frequency.

Figures 4.2 (c) and (d) show that the new controller provides much larger and stable 
reductions on the RMS displacements of the structure when working at its best clearance. 
When f3/f2 changes from 0.8 to 1.2, σx2/Sx2 ranges from 0.09 to 0.32, and Oxl/Sxl ranges from 
0.14 to 0.43. Figures 4.2 (c) and (d) show very clearly that the performance of the new 
controller decreases with off-tuning. The best performance of the new controller is obtained 



37at f3/f2 = 1.0 for both the secondary system and the primary system. Therefore, off-tuning can 
not be used to improve the performance of the new controller for this case.

With the clearance (d/σx20) fixed at 2.72, the new controller has slightly less 
performance for both the secondary and primary systems when the frequency of the absorber 
is shifted from its center. In Figures 4.2 (e) and (f), σx2/Sx2 ranges from 0.09 to 0.43, and 
σxl/Sxl ranges from 0.14 to 0.52, while f3/f2 changing from 0.8 to 1.2. Within 10% of off- 
tuning range (f3/f2 = 0.9 to 1.1), o^S^ variation is only about 15%, whereas σxl/Sxl variation 
is only about 5%. Comparing with the conventional absorber in Figures 4.2 (a) and (b), the 
new controller provides better RMS displacement performance, and it is less sensitive to off- 
tuning.

The effect of off-tuning on the performance of the impact damper for a large mass 
ratio structure is demonstrated in Figure 4.3. This time m1/m2 is set to be 1000, and 
ξ1 = 0.1 and ξ2 = 0. It is one of the best cases discussed in Chapter 2. In Figure 4.3 the RMS 
displacement ratio variations of the secondary system (χ), σx2/σx20, and the primary system 
(□), σχ1/σχ10, are presented in an identical format to those in Figure 4.1. The horizontal axes 

are the non-dimensional clearance, d/σx20. Again, in this figure, frames (a), (b), (c), (d) and 
(e) correspond to the off-tuning ratios of 0.8, 0.9, 1.0, 1.1 and 1.2.

The primary system with 1000 mass ratio shown in Figure 4.3 has a very different



38response to the tuning of the absorber as compared with the 10 mass ratio case in Figure 4.1. 
Due to the large mass ratio between m1 and m2, the impact damper has almost no effect on 
the primary system when f3/f2 changing from 0.8 to 1.1. Further simulation results show that 
both the new controller and the conventional absorber have simply no effect on the primary 
system for this case. This is due to the large mass ratio of the structure. As discussed in 
Chapter 2, when the secondary system’s mass is 1000 fold smaller than that of the primary 
system, it is virtually impossible for the primary system to be affected by changes in the 
response of the secondary system.

On the other hand, the response of the secondary system shows very similar trend to 
that of the 10 mass ratio case illustrated in Figure 4.1. From frames (a) to (e), the best RMS 
displacement reductions for the secondary system are 72%, 81%, 82%, 77% and 73%, which 
are obtained at d/σx20 of 2.82, 3.18, 2.95, 2.25, and 2.17, respectively. It is obvious that the 
impact damper is still in favor of f3/f2=1.0, at which the best RMS reduction ( 82% ) is 
obtained.

The overall performance of the new combined controller and the conventional 
absorber under off-tuning condition for the secondary system is summarized for this 1000 
mass ratio case in Figure 4.4. The comparison in Figure 4.4 is made only for the secondary 
system since both of the controllers do not have any effect on the primary system.



39In the same format as that used in the first column of Figure 4.2, Figure 4.4 (a) shows 
the RMS displacement ratio of the secondary system ( σx20/Sx2) with the conventional 
absorber. Figure 4.4 (b) presents the RMS displacement ratio of the secondary system ( 
σx2/Sx2) with the new controller when the impact damper is assumed working at its best 
clearances under off-tuning conditions. In Figure 4.4 (c), the RMS displacement ratio, 
σx2/Sx2, is obtained at a fixed impact clearance. This time the clearance, d/σx20, is set at 2.95 
which is the best clearance value for the secondary system at f3/f2=l.0.

In Figure 4.4 (a), while f3/f2 changing from 0.8 to 1.2, varies between 0.56 to 
0.98. At f3/f2=l.0, σx20/Sx2 is 0.78. The conventional absorber shows its best performance at 
f3/f2= 1.1 on the secondary system with σx20/Sx2 of 0.56 (about 44% total reduction).

The presence of the impact damper provides large additional attenuation to the 
secondary system. In Figure 4.4 (b), while the impact damper working at its best clearances 
within 20% off-tuning, ranges from 0.13 to 0.28, which indicates about 87 - 72% total 
reduction. However, the best RMS reduction of the secondary system is obtained still around f3/f2 of 1.0. There is no improvement of the performance obtained when f3/f2 is off its center. 
Therefore, off-tuning the absorber is not an effective way to improve the performance of the 
new controller in this large mass ratio case either.

With the clearance (d/σx20) fixed at 2.95, Figure 4.4 (c) is essentially very similar to



40Figure 4.4 (b). The new controller keeps very good performance when f3/f2 shifting between 
0.8 to 1.2. It has its best performance within 10% of off-tuning range ( f3/f2= 0.9 to 1.1).
4.4 CONCLUSIONS

In this chapter, the effect of tuning an absorber is investigated. Comparisons are 
presented between performances of the new controller and the conventional absorber. For 
the range of parameters investigated, the new controller shows much better performance than 
the absorber alone. Presence of the impact damper always contributes additional 
displacement attenuation to the system. However, no significant improvement has been 
observed by tuning the absorber of the new controller off the natural frequency of the 
secondary system. In addition, it has been found that the performance of the new controller 
is not a strong function of the tuning of its absorber. Especially within 10% of off-tuning, the 
new controller may be able to remain in its best effectiveness range. The insensitivity to 
absorber’s frequency shifting of the new controller may be useful in applying the new 
controller for practical problems.



CHAPTER 5
EFFECTIVENESS OF THE NEW VIBRATION CONTROLLER

FOR TRANSIENT OSCILLATIONS OF SECONDARY STRUCTURES
5.1 INTRODUCTION

In this chapter, the new passive vibration controller combining a tuned absorber and 
an impact damper will be studied further for the applications of secondary structures. A 
parametric study will be presented to determine the capabilities of this new controller in 
attenuating the excessive transient vibrations of a resonant secondary structure in response 
to an initial velocity. Comparisons will be made among the new controller, the conventional 
impact damper and the conventional tuned absorber. Next, the numerical approach will be 
discussed along with the system parameters chosen for numerical simulations.
5.2 NUMERICAL APPROACH

The basic numerical approach followed in this chapter is very similar to that in Chapter 
2. Again, the attention in this chapter will be still focused on the response of the secondary 
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42system. The response of the primary system will be discussed briefly. The effectiveness of 
the new vibration controller to attenuate the transient oscillations of a secondary structure will 
be investigated by comparing its response with those of: (1) the uncontrolled secondary 
structure; (2) the structure controlled by a conventional tuned absorber; (3) the structure 
controlled by an impact damper alone. The 4D0F model in Figure 2.1 was designed to be 
flexible enough to simulate the dynamic responses of these four different configurations. The 
details of the parameter setting are as following:
(1) The uncontrolled secondary structure is obtained by setting k3 and c3 in Figure 2.1 
to zero. Where m1,k1,C1 and m2, k2, c2 constitute the primary system and the secondary 
system.
(2) The secondary structure controlled by a conventional tuned absorber is obtained by
choosing the clearance, d, to be very large to avoid collisions between m4 and its container. 
Here m3, k3, and c3 constitute the tuned absorber.
(3) The secondary structure controlled by a conventional impact damper is obtained by
setting mt to be very large so that it will be virtually motionless. This time, m2, k2 and c2 will 
represent the primary system and m 3, k3 and c3 will represent the secondary system. The 
impact damper is m4.



43(4) The secondary structure controlled by the new controller vs, the original 4D0F system.
The new controller is represented by the combination of m3, k3, c3 and m4.

The differential equations of motion of the 4D0F oscillator have been discussed in 
Chapter 2 and will not be repeated here. In the case studies of this chapter, the external force 
F(t) in equation 1 of Chapter 2 is set to zero. A non-zero Vl0, initial velocity of the primary 
system, is imposed as the disturbance. All other initial conditions of the system are zero.

Similar to Chapters 2 and 4, the case studies in this chapter are performed for mass 
ratios of 10 and 1000 between the secondary and the primary systems (m1/m2). The natural frequency of the secondary system (k2/m2)1/2 and the primary system (k1/m1)1/2 are taken to be 
identical to represent the most critical case for the secondary system. The studies are 
focused on light damped resonant structures, therefore the critical damping ratios of the 
primary system, ξ1 and the secondary system, ξ2, are set to be 0.01 and 0.0 throughout.

The absorber is tuned to the natural frequencies of the primary and the secondary systems and assumed undamped. That is (k3/m3)1/2 = (k2/m2)1/2 = (k1/m1)1/2 and c3 = 0.0. The 
coefficient of restitution of the impact damper, e, will be kept at 0.3.

The ratio of the controller’s total mass over the secondary system’s mass, μc, is kept 
constant for the three controlled configurations. For the structure controlled by the 



44conventional absorber, the mass ratio μc is equal to m3/m2. For the structure controlled by 
the conventional impact damper, the mass ratio μc is equal to m4/m3, where m3 becomes the 
secondary mass for this configuration. For the structure controlled by the new combined 
controller, the mass ratio μc is taken to be (m3+m4)/m2 while maintaining m4 /m3 = 0.25 
throughout.

Before performing the parametric case studies, the validity of the computer code was 
tested extensively by using previously published data [8, 10, 28], No experimental 
verification will be sought in this study, since the model presented in Figure 2.1 has been 
demonstrated to be an accurate representation of the impact process in references 8 and 28.
5.3 NUMERICAL RESULTS

Figure 5.1 shows the time histories of the secondary system (x2), for the case of mass 
ratio m1/m2 = 10 and ξ^ 0.01, in response to an initial velocity Vl0 imposed on the primary 
system. Figure 5.1(a) represents the response of the uncontrolled secondary system, whereas 
Figure 5.1(b) shows the response of the system controlled by a conventional tuned absorber. 
Starting from the second row, the first column represents the representative responses of the 
system controlled by a conventional impact damper with different clearances. On the other 
hand, the second column shows the results of the system controlled by the new controller 
corresponding to the same clearances. The clearance of the impact damper is taken to be 



45non-dimensional as d/(V10/wd), where d is the absolute clearance, Vl0 is the initial velocity of 
the primary system and ωά is the damped natural frequency of the SDOF primary system. 
As mentioned in previous section, the ratio of the total mass of the controller over the 
secondary system, μc, is kept to be 0.10 for all the controlled cases in Figure 5.1.

To evaluate the performance of the three different controllers, two kinds of 
performance indicators are used, namely the maximum displacement amplitude (x^ and the 
duration required for this displacement amplitude to decay to an acceptably small value. 
Although the first criterion is quite intuitive, the second requires some elaboration. Two different settling times are used in the studies. A 10% settling time (tl0) represents the time 
required for the displacement amplitude to decay within ±10% of the uncontrolled 
displacement peak of the original 2DOF secondary structure in response to the same initial 
velocity. A 5% (t5) settling time has the same definition for ±5% of the uncontrolled peak.

As suggested in Figures 5.1(c) and (e), for the structure with mass ratio of 10 
(m1/m2=l0), the response of the secondary system controlled by the conventional impact 
damper decays much faster than that of the uncontrolled secondary system. For 
d/(Vl0/wd)=2.O in Figure 5.1(c), the 10% settling time, is reduced by 65% as compared 
with the uncontrolled case in Figure 5.1(a), whereas the 5% settling time, t5 has 58% 
reduction, which are the best results in this group as far as the settling time is concerned. For 
d/(Vlo/wd)=4.O in Figure 5.1(e), tl0 and t5 reductions are 57% and 48%. In Figure 5.1(g), for 



46d/(Vlo/wd)=6.0, the impact damper has no effect on the system, because the clearance is too 
large for the impact damper to have any collisions. Although the effectiveness of the impact 
damper is always clearance dependent, further simulation shows that for 1.0 < d/(Vl0/md) < 
5.8, at least 40% reduction of tl0 and t5 can be obtained. However, the impact damper shows 
little effect on the maximum amplitude (x,^ of the system. The best reduction of x^ from 
the impact damper is only 12% of the uncontrolled peak, which shows in Figure 5.1(c).

Unlike the impact damper, the conventional tuned absorber (Figure 5.1(b)) does not 
reduce the settling time of the secondary system, but it reduces the maximum amplitudes 
(xmax) by about 24%. Comparing the absorber controlled response in Figure 5.1(b) with the 
uncontrolled response in Figure 5.1(a), after 75 seconds the amplitudes of the controlled 
response are even larger than those of the uncontrolled response. The system controlled by 
the conventional absorber will need longer settling time. Hence, the classical tuned absorber 
is not at all an effective controller of transient vibrations.

The new controller as a combination of a tuned absorber and an impact damper retains 
the advantages of both of its individual components. As shown in Figures 5.1 (d), (f), (h) 
with d/(V10/wd) of 2.0, 4.0 and 6.0, the responses of the secondary system under the control 
of the new controller show both reduction on settling time and maximum displacement 
amplitudes. Comparing with the uncontrolled case, the tl0 and t5 reductions corresponding 
to Figures 5.1(d), (f), (h) are 55%, 68%, 74% and 66%, 61%, 62%, respectively. The xmax 



47reductions for all three cases are about 24%, which are very close to the attenuations obtained 
with the tuned absorber alone. Comparing with the conventional impact damper, the new 
controller not only provides better attenuation to but also has further reduction to tl0 and 
t5. In addition, the new controller works in a wider range of clearance.

The comparison between the conventional impact damper and the new controller for 
m1/m2=l0, is summarized in the first column of Figure 5.3. In these figures, the horizontal 
axes represent the non-dimensional clearance d(V10/ωd), while the vertical axes represent x^ 
ratio (Figure 5.3(a)), tl0 ratio (Figure 5.3(c)) and t5 ratio (Figure 5.3(e)) of the controlled over 
the uncontrolled response, respectively. The performance of the conventional impact damper 
is denoted by the curves with (Δ), and the performance of the new controller is denoted by 
the curves with (□). For the structure controlled by the conventional impact damper, when 
d/(Vl0/ωd) increases beyond 6.0, the clearance becomes too large for the impact damper to 
establish contact. Hence, beyond the point d/(Vl0/ωd) of 6.0, the curves become horizontal 
lines with unity value. Similarly, the new controller starts working as a conventional tuned 
absorber after d/(Vl0/ωd) of 20.0.

In Figure 5.3(a), the system with the new controller (□) shows almost a horizontal line 
at 0.76, which indicates its stable attenuation of xmax (about 24% reduction), over a wide 
range of clearances. On the other hand, the system with the conventional impact damper (Δ) 
provides only small attenuations of (0-12%) in a smaller range of clearances. In Figures



485.3 (c) and (e), the conventional impact damper shows good attenuation of the settling time 
in its effective clearance range. However, the new controller has either comparable or better 
attenuations of the settling time with wider effective clearance range.

Figure 5.2 presents the time history of the displacement of the primary system (xj for the case of ml/m2 = 10 with the same format as that used in Figure 5.1. Comparing with the 
uncontrolled case in Figure 5.2 (a), the case controlled by the conventional absorber in Figure 
5.2(b) shows no attenuation for xmax and even longer settling time. Starting from the second 
row, Figures 5.2 (c), (e) and (f) on the left side show the effects of the conventional impact 
damper for d(V10/wd) of 2.0,4.0 and 6.0, whereas Figure 5.2 (d), (f) and (h) demonstrate the 
effects of the new controller. It can be easily observed that both the conventional impact 
damper and the new controller reduce the settling time of the primary system during their 
effective clearance ranges. However, they have no effect on the maximum displacement of 
the primary system. For d/(Vl0/wd) of 2.0 and 4.0 in Figure 5.2 (c) and (e), the conventional 
impact damper has 66% and 67% reductions for tl0, 51% and 43% for t5. For d/(Vl0/wd) of 
6.0 in Figure 5.2 (g) the clearance is out of the effective range of the conventional impact 
damper. Corresponding to d/(Vl0/wd) of 2.0,4.0 and 6.0, the new controller has 55%, 69%
and 82% reductions for tl0, 69%, 65% and 68% for t5.

The comparison between the conventional impact damper and the new controller on 
the primary system of these 10 mass ratio cases is summarized in the second column of Figure



495.3 . Very similar to the first column, frames (b), (d) and (f) in Figure 5.3 show the xmax, t10 
and t5 ratios with different clearances d/(V10/wd). There are two overlapped horizontal lines 
(symbol Δ and □ ) at x^ ratio of 1.0, because there is no attenuation on xmax for both 
controllers. In Figures 5.3 (d) and (f), for both tl0 and t5 the new controller (□) shows better 
attenuation and wider effective clearance range than the conventional impact damper does 
(△)·

Figures 5.4 presents the time histories of the secondary system (x2) of ml/m2=l000 
and ξ1 = 0.01, responding to an initial velocity of the primary system. The results are 
arranged with the same format as in Figure 5.1 to compare the performance of the three 
controllers.

As shown in Figure 5.4(b), the conventional tuned absorber reduces the maximum 
displacement amplitudes of the secondary system (xmax) by an impressive 74% comparing with 
the uncontrolled case in Figure 5.4(a). However, similar to Figure 5.1(b), the conventional 
absorber is relatively less effective on the settling time, producing attenuations of 34% and 
0% for tl0 and t5, respectively.

Figures 5.4 (c), (e) and (g) show the effect of the conventional impact damper on the 
displacement of the secondary system x2 for d/(Vl0/wd) of 1.8, 3.6 and 25.0. In these 1000 
mass ratio cases, the impact damper provides larger reduction on the maximum displacement 



50amplitudes than that of the 10 mass ratio cases except the too large clearance case in Figure 
5.4 (g). The peak displacement amplitudes also decay sooner comparing with the 
uncontrolled time history in Figure 5.4 (a). In each case with the impact damper, however, 
a relatively large amplitude residual vibrations remain for a long period of time, after the initial 
decay. Hence, tl0 and t5 reductions are not very impressive for most of the cases with the 
conventional impact damper.

The histories of the displacement of the secondary system (1000 mass ratio) with the 
new controller are shown in Figures 5.4(d), (f) and (h) for d/(Vl0/wd) of 1.8, 3.6 and 25.0. 
The new controller provides smaller maximum displacement amplitudes and shorter settling 
time in most of the cases, than those of the conventional impact damper.

The x^ ratio, tl0 and t5 ratios to the uncontrolled values are demonstrated in Figures 
5.6(a), (b) and (c) for the new controller (□ ) and the conventional impact damper (Δ), for 
different non-dimensional clearances d/(V10/ωd). For a wide range of clearances 
(2<d/(Vl0/ωd)<27 ) the new controller has consistent attenuations to x^, tl0 and t5. The 
overall best reduction for xmax, tl0 and t5 are 74%, 69% and 43% at d/(Vl0/ωd)=25.0. On the 
other hand, the conventional impact damper has only slight reduction for t5 in a small 
range of clearances (1.0<d/(Vl0/ωd)<2.0), even producing amplifications of t5 for some other 
clearances. Also, the conventional impact damper is generally less effective on xmax and tl0.



51Figure 5.5 presents the time histories of the primary system for the same cases listed 
in Figure 5.4 with the same format. The responses of the primary systems controlled by the 
conventional absorber (Figure 5.5 (b)), the impact damper (Figures 5.5 (c), (e)) and the new 
controller ( Figures 5.5 (d), (f) and (h)) are surprisingly very similar, except the response in 
Figure 5.5 (g) which is identical to the uncontrolled case in Figure 5.5 (a) since the impact 
damper is out of its working range at this clearance (d/(Vl0/ωd) = 25.0). On the other hand, 
it is not surprising that all the three controllers do not work well on the primary system for 
such large mass ratio cases. For all the controlled cases, and t5 remain almost unchanged 
as compared with the uncontrolled values in Figure 5.5 (a). The systems controlled by the 
conventional absorber (Figure 5.5 (b)) and the impact damper (Figures 5.5 (c), (e)) have 
about 80% longer tl0, while those controlled by the new controller (Figures 5.5 (d), (f) and 
(h) ) have 110% increase in tl0. For both the conventional impact damper and the new 
controller, changing the clearance (d/(Vl0/ωd) makes almost no difference on their 
performance. Therefore, the x^ ratio, tl0 and ratios versus d/(V10/ωd) would be almost 
horizontal lines if they were plotted.

Generally, for a system with a mass ratio (m1/m2) as large as 1000, all the controllers 
which has been discussed (including the new controller) have no effect on the maximum 
displacement on the primary system, and they make the primary system need longer time to 
settle down. This drawback shows the limitation of these passive controllers for this large mass ratio case. But this does not offset the impressive positive effect of the new controller 



52on the secondary system which is the major object to be protected.
Comparing the 10 mass ratio structure with the 1000 mass ratio structure, as far as 

the secondary system is concerned, the first one has better settling time attenuation with both 
the conventional impact damper and the new controller, and the second one has better 
maximum amplitude reduction. It is found that the impact damper is more effective on 
reducing settling time for small m1/m2 ratio, and it is more effective on reducing the maximum 
displacement amplitudes for large m1/m2. For the primary system, both the conventional 
impact damper and the new controller work better for small m1/m2 ratio.
5.4 CONCLUSIONS

In this chapter, the effectiveness of the new passive vibration controller combined with a tuned absorber and an impact damper to the secondary structures under transient vibration 
is investigated and compared with that of the conventional tuned absorber and the 
conventional impact damper.

The investigation is focused on protecting the secondary system (m2, k2, and c2) from 
excessive vibration. It has been found that the conventional tuned absorber mostly 
contributes to the attenuation of the maximum displacement amplitudes of the secondary 
system (x2), it has less effect on the settling time. Generally, the conventional impact damper 



53can be effective on both the maximum displacement amplitudes and the settling time, but the 
effectiveness is limited on the maximum displacement amplitudes for a system with small 
m1/m2 ratio, and it is also limited on the settling time for a system with large m1/m2 ratio.

As a combination of a tuned absorber and an impact damper, the new controller takes 
the advantageous features of both the conventional tuned absorber and the impact damper, 
and it produces larger attenuations for both the maximum displacement amplitudes and the 
settling times on the secondary system as compared to those of its individual components. 
As the indirect application of the impact damper, the new controller works effectively in a 
wider range of clearances than the conventional impact damper. Generally, the maximum 
amplitudes of the secondary system with the new controller are largely determined by the 
absorber and have little change with the clearance variation. On the other hand, the settling 
time is mostly determined by the impact damper. Settling time is more sensitive to the 
clearance variation than the maximum displacement.

For the structure with ml/m2=l0, the new combined controller also provides the best 
vibration attenuation on the primary system comparing with the conventional impact damper 
and the conventional tuned absorber. However, for the structure with a mass ratio as large 
as 1000, the primary system controlled by any of the three controllers requires longer settling 
time as compared with the uncontrolled system.



CHAPTER 6
CONCLUSIONS

In this study, a new passive vibration controller which combines a tuned absorber and 
an impact damper was investigated for controlling the vibrations of light secondary structures. 
A series of parametric studies were conducted by computer simulation. Experiments were 
performed along with numerical predictions. Most of the studies were based on random 
excitation. Some representative transient vibration cases were also investigated. Following 
are the major conclusions of this study.

For a light secondary structure under random vibration, adding an impact damper on 
the conventional tuned absorber may provide significant improvements in controlling the 
excessive vibrations of the secondary system as well as those of the primary system. In addition, the displacement of the absorber itself as part of the new controller is smaller than 
that of the absorber when working alone.

When the mass ratio between the primary system and the secondary system (m1/m2) 
is 10, the impact damper as part of the new controller is most effective for system with
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55minimal damping. RMS displacement attenuations in the order of 80% based on the 
effectiveness of a conventional absorber are possible in the responses of the secondary, the 
primary, and the tuned absorber systems. This indirect benefit of controlling the primary 
system through the controlled response of the secondary system, may prove particularly 
useful for practical applications.

For the structures with m1/m2=l000, the impact damper as part of the controller is 
most effective when primary system has at least 5% critical damping. The impact damper can 
provide about 80% further RMS displacement attenuation for both the secondary and the 
tuned absorber systems. No control is attainable for the primary system due to its large 
inertia.

For the experimental structure (m1/m2=l0, ξ1=0.0053, ξ2=0.0026) under a random 
white noise excitation, the best result for the secondary system was measured at d/ox20 =10.2 
with 57% RMS displacement attenuation as compared with the result of the conventional 
tuned absorber, whereas the RMS displacement attenuations to the primary system and the 
absorber system are 56% and 53%.

Tuning the natural frequency of the absorber off the natural frequency of the 
secondary system to be controlled is found to be ineffective to further improve the 
performance of the new controller. Keeping the absorber within 10% off-tuning (f3/f2 



56ranging from 0.9 to 1.1) will ensure that the new controller works in its most effective range.
For secondary structures under transient vibration, the new controller takes the 

advantageous features of both the conventional tuned absorber and the impact damper. It 
produces larger attenuations, for both the maximum displacement amplitudes and the settling 
times on the secondary system, than those of the two conventional controllers when they are 
used individually. In addition, as the indirect application of the impact damper, the new 
controller works effectively in a wider range of clearances than the conventional impact 
damper does.

For transient vibrations, the new controller also provides large vibration attenuation 
to the primary system with ml/m2=10, as it does to the secondary system. For the primary 
system with m1/m2=1000, the new controller has no effect on the maximum displacement and 
some negative effect on the settling time though its performance on the secondary system is 
quite impressive.
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Figure 2.1 The Four Degree-Of-Freedom model to represent a secondary structure controlled by a tuned absorber and an impact damper.
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Figure 2.2 Variation of RMS displacement ratios of the secondary structure with clearance d/ox20 for e=0.3 (■) and e=0.8 (□) andfor m1/m2 = 1for m1/m2 =10 for ml/m2= 100 for ml/m2 = 1000
(a) ξ1=0.001, (b) ξ1=0.01, (c) ξ1=0.05;(d) ξ1=0.001, (e) ξ1=0.0l, (f) ξ1=0.05;(g) ξ1=0.001, (h) ξ1=0.01, (i) ξ1=0.05;(j)ξ1=0.001, (k)ξ1=0.01, (I) ξ1=0.05.
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Figure 2.3 Variation of RMS displacement ratios of the primary system (□),secondarysystem (*) and the absorber (A) for e=0.3 and for m1/m2=10 and (a) ξ1=Ο, (b) ξ1=0.001, (c) ξ1=0.01, (d) ξ1=0.05 and (e) ξ1=0.10.
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Figure 2.4 Variation of RMS displacement ratios of the primary system (□),secondary system (*) and the absorber (A) for e=0.3 and for m1/m2=1000 and (a) ξ1=0, (b) ξ1=0.001, (c) ξ1=0.01, (d) ξ1=0.05 and (e) ξ1=0.10.
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Figure 2.5 Time History of the primary ( — ), secondary ( — ) and absorber ( -— )displacement for the system controlled by (a) the absorber alone, (b) the new controller at d/σx20= 2.17. ml/m2= 10 and ξ1 = 0.
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Figure 2.6 Time History of the primary ( —), secondary (— ) and absorber ( — ) displacement for the system controlled by (a) the absorber alone, (b) the new controller at d/σx20= 2.95. ml/m2= 1000 and ξ1 = 0.10.
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Figure 2.7 Variation of FFT of the displacement of the secondary system with time for the system controlled by (a) the absorber alone, (b) the new controller at d/σx20 = 2.17. m1/m2 = 10 and ξ1=0.
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Figure 2.8 Variation of FFT of the displacement of the secondary system with time for the system controlled by (a) the absorber alone, (b) the new controller at d/σx20 = 2.95. m1/m2 = 1000 and ξ1=0.10.
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Figure 2.9 Variation of (a) FFT and (b) probability distribution of the displacement of the secondary system with clearance. ml/m2=10 and ξ1=Ο.
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Figure 2.10 Variation of (a) FFT and (b) probability distribution of the displacement of the secondary system with clearance. m1/m2=1000 and ξ1=0.10.
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Figure 2.11 History of the input energy to the primary system, dissipated energy and net energy for m1/m2=lO and ξ1=Ο.
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Figure 2.12 History of the input energy to the primary system, dissipated energy and net energy for m1/m2=lOOO and ξ1=0.10.
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Figure 2.13 History of the input energy to the secondary system, dissipated energy and net energy for m1/m2=1000 and ξ1=0.10.
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Figure 3.1 Schematic drawing of the experimental structure.
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Figure 3.2 Experimental setup and instrumentation.
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Figure 3.3 Frequency spectrum of the moving coil of the magnetic shaker.
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Frequency (Hz)

Figure 3.4 Displacement spectra of the secondary system controlled by the conventional absorber (the first column) and the new controller (the second column) for d/σx20 of (a), (b) 45.7; (c), (d) 30.9; (e), (f) 10.2; and (g), (h) 4.7.
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Figure 3.5 Displacement spectra of the primary system controlled by the conventional absorber (the first column) and the new controller (the second column) for d/σx20 of (a), (b) 45.7; (c), (d) 30.9; (e), (f) 10.2; and (g), (h) 4.7.
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Figure 3.6 Displacement spectra of the absorber system when it works alone (the first column) and when it works as part of the new controller (the second column) for d/σx20 of (a), (b) 45.7; (c), (d) 30.9; (e), (f) 10.2; and (g), (h) 4.7.
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Figure 3.7 RMS displacement variation of: (o) the simulation results of e=0.3, (□) the simulation results of e=0.4; and (A) the experiment results for (a) the primary system (σχ1/σχ10); (b) the secondary system (σx2/σx20); (c) the absorber (σx3/σx30) versus the non- dimensional clearance d/σx20.
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Figure 3.8 Acceleration spectra (the first column) and the corresponding time histories (the second column) for d/σx20=8.6. (a), (b): The secondary system with the absorber; (c), (d): the secondary system with the new controller; (e), (f): the primary system with the absorber; (g), (h) the primary system with the new controller.
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Figure 5.4 Time histories of the secondary system for the structure with m1/m2=1000,ξ1=0.01, and ξ2=0, while the structure is (a): uncontrolled;(b): controlled by absorber alone; (c), (e) and (g): controlled by impact damper with  d/(v10/ωd) of 1.8, 3.6, and 25.0; (d), (f) and (h): controlled by new controller with  d/(v10/ωd) of 1.8, 3.6 and 25.0.
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Figure 5.6 Comparison of (a): the maximum displacement ratio; (b): 10% settling time ratio; (c): 5% settling time ratio of the secondary system between the structure controlled by the new controller (□) and that controlled by the conventional impact damper (Δ) versus the non dimensional clearance  d/(v10/ωd) for the case of m1/m2 =1000, ξ1=0.01 and ξ2=0.0.



APPENDIX
THE PROGRAM USED FOR THE NUMERICAL STUDIES

1. PROGRAM LIST PROGRAM FOURC THIS FORTRAN PROGRAM IS DESIGNED TO SOLVE THE COUPLED C SYSTEM OF EQUATIONS FOR A 3DOF SYSTEM WITH AN IMPACT1 C DAMPER USING A FOURTH ORDER RUNGE-KUTTA METHOD.

‘Refer to Figure 2.1 for the mathematical model and variables.

C ml : primary massC m2 : secondary massC m3 : mass of the vibration absorberC m4 : mass of the impact damper (interacting with m3)C kl : primary stiffnessC k2 : secondary stiffnessC k3 : stiffness of the vibration absorberC k4 : optional stiffness of the vibration absorberC b : distance from centre of impact damper to the left wallC c : distance from centre of impact damper to the right wallC c1 : viscous damping coefficient for the primary systemC c2 : viscous damping coefficient of the secondary systemC c3 : viscous damping coefficient of the vibration absorberC c4 ; optional viscous damping coefficient of the vibration absorberC d : diameter of spherical impact damperC e : coefficient of restitutionC TO : timeC Ttotal : total timeC h : time step of integrationC K1Z1 ...K4X3 : coefficients needed for integrationC SIDE : variable to flag impact - right/left indicatorC X1 ,Z1 : displacement and the velocity of the primary systemC (at t = TO + H )C X2,Z2 : displacement and the velocity of the secondary systemC (at t = TO + H )C X3,Z3 : displacement and the velocity of the vibration absorberC (at t = TO + H )
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95Χ10,ΖΊΟ : initial conditions at t = TOX20.Z20 : initial conditions at t = TOX30,Z30 : initial conditions at t = TOFORCE(IFORC): VECTOR CONTAINING THE RANDOM FORCE READ FROM AN INPUT DATA FILE FFORCEOPTION ADDED FOR CHATTER DETECTION. IF THERE ARE > 20 COLLISIONS DETECTED DURING THE LAST TIME INCREMENT Ή' THE EXECUTION IS TERMINATED THROUGH CCOUNT AND DCOUNT.declare variable statusIMPLICIT REAL*8 (A-H.O-Z)REAL*8 M1,M2,M3,M4,K1,K2,K3,K4INTEGER CCOUNT.DCOUNTDIMENSION FORCE(20000)CHARACTER*20 FILE1.FILE2,FFORCECHARACTER*1 SIDECOMMON FORCE, IFORCCOMMON FOLD,FNEW,FNOWCOMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFINITIALIZE THE COUNTER TO DETERMINE THE # OF IMPACTS IN ONE TIME STEPCOUNT=0WRITE(*,'(A)')' ENTER THE NAME OF THE INPUT DATA FILEREAD(*,'(A)') FILE1set the output optionWRITE(*,'(A)')' ENTER 1 FOR SCREEN OUTPUT$' ENTER 2 FOR SAVING THE OUTPUT IN A DATA FILEREAD(*,'(I1)') IOUTIF(IOUT.EQ.2) THENWRITE(*,'(A)')' ENTER THE NAME OF THE OUTPUT DATA FILEREAD(*,'(A)') FILE2OPEN(6,FILE=FILE2,STATUS='new')END IFread in parameters from data file*********************oo
oo

 
oo

o o
oo

oo
 

oo
oo

oo
oo

oo
oo

c



96IMASS=1id=09 CONTINUEOPEN(5,FILE=FILE1 ,STATUS='old')READ(5,10)FFORCE,M1,M2,M3,C1,C2,C3,C4,K1,K2,K3,K4ITO,H,TTOTAL,$X10,Z10,X20,Z20,X30,Z30,e,dmin,dmax,dinc,m4READ(5,'(I2)') IPRINTJFORCE10 FORMAT(A,/,(e14.7))CLOSE (5)if(dmin.lt.O.O) id=1C IF(IFORCE.NE.O) 0PEN(7,FILE=FF0RCE,STATUS-OLD')CC*********************
cC INCREMENT FOR DIFFERENT MASS RATIOS FROM 1 TO 1000 INC FOUR STEPS :M1=M1*10**(IMASS-1)K1=K1*10**(IMASS-1)C1=C1*10**(IMASS-1)IF(IMASS.EQ.1.AND.ID.EQ.1) THENDMIN=1000.0DMAX=700.0DINC=50.0ELSE IF(IMASS.EQ.2.AND.ID.EQ.1) THENDMIN=1000.0DMAX=120.0DINC=10.0ELSE IF(IMASS.EQ.3.AND.ID.EQ.1) THEN DMIN=1000.0 DMAX=25.0 DINC=2.5ELSE IF(ID.EQ.I) THENDMIN=1000.0DMAX=5.00DINC=0.25 END IFC****************************************************CC echo inputwrite(6,'(a,2x,e14.7)')'m1,m1,'m2',m2,'m3',m3,'k1,k1,'k2,,k2,

AIVIAWt“U.U



97$'k3',k3,'k4',k4,'c1',c1,'c2,,c2,,c3'1c31'c4,1c4,,t0,,t0,'ttotal·, $ttotal,'H ',h,'x10',x10,'x20',x20,'v10',z10,,v20',z20,'x30',x30, $'v30',z30,'e ',e,'dia',d,'c ',c,'b ’,b,’m4 ',m4 write(6,'(a,i2)') 'IPRINT ',iprint,'IFORCE '.iforce IF(IPRINT.EQ.1.OR.IPRINT.EQ.2) THEN WRITE(6,'(A,A)') $' t x1 x2', $' x3 x4 v4 F(t)’WRITE(6,'(A,A)')$·_____________________________________________________ · END IFC set the values of d,c and b for the desired clearance d=0.0511 b=dmin/2.0+d/2.0 c=dmin/2.0+d/2.0CC open the data file to input the random forceIF(IFORCE.NE.O) OPEN(7,FILE=FFORCE,STATUS='OLD') CC set initial conditions of impact damper to x=0, z=0 Z4=0.0 X40=0.0 TINC=H HOLD=H IFLAG=0 SIDE='' IFORC=1 FOLD=0.0 FNOW=0.0 FNEW=0.0 RMSX1=0.0 RMSV1=0.0 RMSX2=0.0 RMSV2=0.0 RMSX3=0.0 RMSV3=0.0 RMSX4=0.0 RMSV4=0.0 RMSF =0.0 RMSA1=0.0 RMSA2=0.0 RMSA3=0.0 XMAX1=0.0 XMAX2=0.0 XMAX3=0.0 XMAX4=0.0



98XMAXF=0.0 15 CONTINUE C C Accelerations A10=F1 (M1,K1 ,K2,C1 ,C2,T0,Z10,X10.Z20.X20, $4,IFLAG,TINC,H,IFORCE)A20=F3(M2,K2,K3,C2,C3,T0,Z10,X10,Z20,X20,Z30,X30, $4,IFLAG,TINC,H,IFORCE)A30=F5(M3,K3,K4,C3,C4,T0,Z20,X201Z30,X30, $4,IFLAG,TINC,H,IFORCE)CC outputCALL PRINT(T0,HOLD,X10lz10,a10,X20,z20,a20,x30,z30,a30,x40,Z4, $SIDE,IPRINT,IFORCE) IF(SIDE.NE.'') SIDE-'CC call solution routine for next time step (t=T0+H)20 CALL RK4(M1lM2lM3,C1,C2,C3,C4,K1,K2,K3,K4,T0,H,Z10,X10,Z20,X20,  $Z30,X30,Z1 ,X1 ,Z2,X21Z3,X3,IFLAG,TINC,IFORCE)CC check for impact damper (through m4)IF(M4.LE.0.0) GO TO 21X4=X40+Z4*H C C check for impact on left wall IF((B-D/2)+(X4-X3).LT.0.0.AND.IFLAG.NE.1) THEN IFLAG=1 SIDE='L' H=H/2.0 START=0.0 FINISH=H GO TO 20END IF C C check for impact on right wall IF((C-D/2)+(X3-X4).LT.0.0.AND.IFLAG.NE.1) THEN IFLAG=1 SIDE=R' H=H/2.0 START=0.0 FINISH=H GO TO 20END IF CC check for convergence of a collision if the two masses are located to be 0.00001*D, C assume that the contact has establishedIF(IFLAG.EQ.I) THEN



99IF( (DABS((B-D/2)+(X4-X3)).LE.0.00001*D) .OR.+ (DABS((C-D/2)+(X3-X4)).LE.0.00001 *D) ) THENC C The next 3 statements determine the velocities of the vibration C absorber [Z3] and of the impact damper [Z4]. The dummy variable, C [ZZ2] is only an intermediate variable because the velocity of the C vibration absorber before the impact is required to determine the C mass of the impact damper. C C the following conditions are obtained from the conservation of C linear momentum and the coefficient of restitution.ZZ2=(M4*Z4+M3*Z3-M4*E*(Z3-Z4))/(M3+M4) Z4=E*(Z3-Z4)+ZZ2 Z3=ZZ2 CC CHECK FOR CHATTER. IF FOUND, GO TO SUBROUTINE CARRY CCOUNT=CCOUNT+1IF(CCOUNT-DCOUNT.GT.20) GO TO 23 T0=T0+H HOLD=H H=TINC-H IFLAG=2 GO TO 22 END IF END IF C C call bisect to determine impact instant, if convergence has not been satisfied yet IF(IFLAG.EQ.I.AND.SIDE.EQ.'L') THENCALL BISECT(START,FINISH,H,(B-D/2)+(X4-X3),-1) GO TO 20 END IF C IF(IFLAG.EQ.I.AND.SIDE.EQ.'R') THENCALL BISECT(START,FINISH,H,(C-D/2)+(X3-X4),-1) GO TO 20 END IF C C increment time 21 T0=T0+H IF(IFLAG.EQ.O) HOLD=HDCOUNT=CCOUNT C RESTORE THE CONTROL PARAMETERS AFTER COMPLEMENTING THE C FULL STEPIF(IFLAG.EQ.2) THEN HOLD=H H=TINC IFLAG=0



100END IF C 22 Z1O=Z1X10=X1 Z20=Z2 X20=X2 Z30=Z3 X30=X3 X40=X4 C IF(TO.LT.TTOTAL) GO TO 15GO TO 25 23 CONTINUE C C 20 COLLISIONS HAVE BEEN DETECTED WITHIN ONE TIME STEP. C THIS SITUATION IS INTERPRETED TO BE "CHATTER" C THIS SECTION OF THE PROGRAM ASSUMES THAT THE IMPACT DAMPER C m4 AND MASS m3 WOULD WANT TO MOVE TOGETHER.CALL CARRY(M1,M2,M3,M4,K1,K2,K3,K4,C1,C2,C3,C4,T0,H,TINC,X1,Z1,  $X2,Z2,X3,Z3,SIDE,B,C,D,IPRINT,IFORCE)Z4=Z3 C IF(SIDE.EQ.'L') THEN X4=X3-B+D/2ELSE X4=X3+C-D/2END IF C T0=T0+H HOLD=H H=TINC-H IFLAG=2 GO TO 22 25 continue close(7)write(6,'(a,e14.7)')$'d1 = ’,(b+c-d),$'x1 = ',sqrt(RMSX1),'v1 = ',sqrt(RMSV1),'a1 = ',sqrt(RMSA1), $'x2 = ,,sqrt(RMSX2),'v2 = ’,sqrt(RMSV2),'a2 = ',sqrt(RMSA2), $'x3 = ',sqrt(RMSX3),'v3 = ',sqrt(RMSV3),'a3 = ',sqrt(RMSA3), $'x4 = ',sqrt(RMSX4),'v4 = ',sqrt(RMSV4),'f1 = ',sqrt(RMSF), $'X1 = ',XMAX1,'X2 = ',XMAX2,'X3 = ',XMAX3,'X4 = ',XMAX4, $'F1 = '.XMAXFC WRITE(6,'(a)')C



101if(dmin.lt.dmax) then dmin=dmin+dinct0=0.0x10=0.0 z10=0.0 x20=0.0 z20=0.0 x30=0.0z30=0.0 h=tinc go to 11 end if
cC INCREMENT FOR THE MASS RATIO IN FOUR STEPSIMASS = IMASS+1IF(IMASS.LT.5.AND.ID.EQ.1) GO TO 9STOPENDCC============================================================= SUBROUTINE CARRY(M1,M2,M3,M4,K1,K2,K3,K4,C1,C2,C3,C4,TO,H,TINC, $X1,Z1,X2,Z2,X3,Z3,SIDE,B,C,D,IPRINT,IFORCE)C IMPLICIT REAL*8 (A-H.O-Z)REAL*8 M1,M2,M3,M4,K1,K2,K3,K4CHARACTER*1 SIDECOMMON FORCE, IFORCDIMENSION FORCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1,RMSV1,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFC IF(SIDE.EQ.'L') THENX4=X3-B+D/2ELSEX4=X3+C-D/2END IFC OLDM3=M3M3=M3+M4IFLAG=2T0=T0+H



102HOLD=HCC COMPLEMENT THE TIME STEP COMING FROM CHATTER C IDUMMY=T0/TINCH=(IDUMMY+1)*TINC-T0Z10=Z1X10=X1Z20=Z2X20=X2Z30=Z3X30=X3 5 continue C C EVALUATE THE ACCELERATIONA10=F1 (M1, K1, K2,C1 ,C2,T0,Z10,X10,Z20,X20,$4,IFLAG,TINC,H,IFORCE)A20=F3(M2,K2,K3,C2lC3,T0,Z10,X10,Z20,X20,Z30,X30I$4,IFLAG,TINC,H,IFORCE)A30=F5(M3,K31K4,C31C4,T0,Z20,X20,Z30,X30,$4,IFLAG,TINC,H,IFORCE) C CALL PRINT(T0,HOLD,X10,z10,a10,X20,z20,a20,X30,z30,a30,x4,z30, $SIDE,IPRINT,IFORCE)CC SOLVE FOR TO+H10 CALL RK4(M1,M2,M3lC1,C2,C3,C4,K1,K2,K3,K4,T0,H,Z10,X10,Z20,X20,  $Z30,X30,Z1 ,X1 ,Z2,X2,Z3,X3,IFLAG,TINC,IFORCE)ACCEL=F5(M3,K3,K4,C3,C4,T0+H,Z2,X2,Z3,X3,  $4,IFLAG,TINC,H,IFORCE)CC CALCULATE THE POSITION OF THE IMPACT DAMPER :IF(SIDE.EQ.'L') THENX4=X3-B+D/2ELSEX4=X3+C-D/2END IF C C CHECK FOR SEPARATIONIF(SIDE.EQ.'L') THENIF(ACCEL.LT.0.0.AND.IFLAG.NE.1) THENIFLAG=1H=H*ABS(A30)/(ABS(A30)+ABS(ACCEL))START=0.0FINISH=HGO TO 10END IF



103ELSEIF(ACCEL.GT.O.O.AND.IFLAG.NE.I) THENIFLAG=1H=H*ABS(A30)/(ABS(A30)+ABS(ACCEL))START=0.0FINISH=HGO TO 10END IFEND IFCIF(IFLAG.NE.I) GO TO 15 C IF(DABS(ACCEL).LE.0.000001) GO TO 20C IF(SIDE.EQ.'L') THENCALL BISECT(START,FINISH,H,ACCEL,-1)GO TO 10ELSECALL BISECT(START,FINISH,H,ACCEL,1)GO TO 10END IFC15 T0=T0+HIF(IFLAG.EQ.O) HOLD=HIF(IFLAG.EQ.2) THENHOLD=HH=TINCIFLAG=0END IFC Z10=Z1X10=X1Z20=Z2X20=X2Z30=Z3X30=X3GO TO 5C20 M3=OLDM3C RETURNENDCC============================================================= SUBROUTINE RK4(M1,M2,M3,C1,C2,C3,C4,K1,K2,K3,K4,T0,H,Z10,X10, $Z20,X20,Z30,X30,Z1 ,X1 ,Z2,X2,Z3,X3,IFLAG,TINC,IFORCE)C



104IMPLICIT REAL*8 (Α-Η,Ο-Ζ)REAL‘8 M1,M2,M3,K1,K2,K3,K4REAL*8 K1Z1,K1X1,K1Z2,K1X2,K1Z3,K1X3,K2Z1,K2X1,K2Z2,K2X2,K2Z3, $K2X3,K3Z1 ,K3X1 ,K3Z2,K3X2,K3Z3,K3X3,K4Z1 ,K4X1 ,K4Z2,K4X2,K4Z3,K4X3COMMON FORCE, IFORCDIMENSION FORCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1,RMSV1,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1 ,XMAX2,XMAX3,XMAXF CC fourth order runge kutta integration subroutineC statements (200 - 300)C200 CONTINUEC K1Z1=F1(M1,K1,K2,C1,C2,T0,Z10,X10,Z20,X20,$1,IFLAG,TINC,H,IFORCE)K1X1=F2(Z10)K1Z2=F3(M2,K2,K3,C2,C3,T0,Z10,X10,Z20,X20,Z30,X30,$1,IFLAG,TINC,H,IFORCE)K1X2=F4(Z20)K1Z3=F5(M3,K3,K4,C3,C4,T0,Z20,X20,Z30,X30,$1 ,IFLAG,TINC,H,IFORCE)K1X3=F6(Z30)C K2Z1=F1(M1,K1,K2,C1,C2,T0+H/2.0,Z10+H/2.0*K1Z1,$X10+H/2.0*K1X1,Z20+H/2.0*K1Z2,X20+H/2.0*K1X2,$2,IFLAG,TINC,H,IFORCE)K2X1=F2(Z10+H/2.0*K1Z1)K2Z2=F3(M2,K2,K3,C2,C3,T0+H/2.0,Z10+H/2.0*K1Z1,$X10+H/2.0*K1X1,Z20+H/2.0*K1Z2,X20+H/2.0*K1X2,$Z30+H/2.0*K1Z3,X30+H/2.0*K1X3,$2,IFLAG,TINC,H,IFORCE)K2X2=F4(Z20+H/2.0*K1Z2)K2Z3=F5(M3,K3,K4,C3,C4,T0+H/2.0,Z20+H/2.0*K1Z2,$X20+H/2.0*K1X2,Z30+H/2.0*K1Z3,X30+H/2.0*K1X3,$2,IFLAG,TINC,H,IFORCE)K2X3=F6(Z30+H/2.0*K1Z3)C K3Z1=F1 (M1 ,K1 ,K2,C1 ,C2,T0+H/2.0,Z10+H/2.0*K2Z1,$X10+H/2.0*K2X1,Z20+H/2.0*K2Z2,X20+H/2.0*K2X2,$3,IFLAG,TINC,H,IFORCE)K3X1=F2(Z10+H/2.0*K2Z1)K3Z2=F3(M2,K2,K3,C2,C3,T0+H/2.0,Z10+H/2.0*K2Z1,$X10+H/2.0*K2X1,Z20+H/2.0*K2Z2,X20+H/2.0*K2X2,



105$Z30+H/2.0*K2Z3,X30+H/2.0*K2X3,$3,IFLAG,TINC,H,IFORCE)K3X2=F4(Z20+H/2.0*K2Z2)K3Z3=F5(M3,K3,K4,C3,C4,T0+H/2.0,Z20+H/2.0*K2Z2,$X20+H/2.0*K2X2IZ30+H/2.0*K2Z3,X30+H/2.0*K2X3,$3,IFLAG,TINC,H,IFORCE)K3X3=F6(Z30+H/2.0*K2Z3)C K4Z1=F1(M1,K1,K2,C1,C2lT0+H,Z10+H*K3Z1,$X10+H*K3X1 ,Z20+H*K3Z2,X20+H*K3X2,$4,IFLAG,TINC,H,IFORCE)K4X1=F2(Z10+H*K3Z1)K4Z2=F3(M2,K2,K3,C2,C3,T0+H,Z10+H*K3Z1,$X10+H*K3X1 ,Z20+H*K3Z2,X20+H*K3X2,$Z30+H*K3Z3,X30+H*K3X3,$4,IFLAG,TINC,H,IFORCE)K4X2=F4(Z20+H*K3Z2)K4Z3=F5(M3,K3,K4,C3,C4,T0+H,Z20+H*K3Z2,$X20+H*K3X2,Z30+H*K3Z3,X30+H*K3X3,$4,IFLAG,TINC,H,IFORCE)K4X3=F6(Z30+H*K3Z3)C Z1 =Z10+H/6.0*(K1Z1 +2.0*K2Z1 +2.0*K3Z1 +K4Z1)X1 =X10+H/6.0*(K1X1 +2.0*K2X1 +2.0*K3X1 +K4X1)Z2=Z20+H/6.0*(K1Z2+2.0*K2Z2+2.0*K3Z2+K4Z2)X2=X20+H/6.0*(K1X2+2.0*K2X2+2.0*K3X2+K4X2)Z3=Z30+H/6.0*(K1Z3+2.0*K2Z3+2.0*K3Z3+K4Z3)X3=X30+H/6.0*(K1X3+2.0*K2X3+2.0*K3X3+K4X3)C300 CONTINUERETURNENDCC============================================================= FUNCTION F1(M1 ,K1 ,K2,C1 .C2.T.Z1 ,X1 .Z2,X2, $ICOUNT,IFLAG,TINC,H,IFORCE)CC function subprogram for the velocity (Z1) of the primary massC IMPLICIT DOUBLE PRECISION (Α-Η,Ο-Ζ)REAL*8 M1,K1,K2COMMON FORCE, IFORCDIMENSION F0RCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4



106COMMON XMAX1,XMAX2,XMAX3,XMAXF CIF(IFORCE.EQ.1.OR.IFORCE.EQ.4.OR.IFORCE.EQ.5.OR.IFORCE.EQ.7)THENF1=1.0/M1*(RANDF(T,ICOUNT,IFLAG,TINC,H)-$(C1 +C2)*Z1 +C2*Z2-(K1 +K2)*X1+K2*X2)ELSE IF(IFORCE.EQ.8.OR.IFORCE.EQ.11.OR.IFORCE.EQ.12.OR.$IFORCE.EQ.14) THENF1=1.0/M1*(FORCE1(T)-$(C1 +C2)*Z1 +C2*Z2-(K1 +K2)*X1 +K2*X2)ELSEF1=1,0/M1*(-(C1 +C2)*Z1+C2*Z2-(K1+K2)*X1+K2*X2)END IF C RETURNEND

CC
CC

C 
C C

C 
CC FUNCTION F2(Z1)function subprogram for the displacement (X1) of the primary massIMPLICIT REAL*8 (A-H.O-Z)F2=Z1RETURNEND

FUNCTION F3(M2,K2,K3,C2,C3,T,Z1 ,X1 ,Z2,X2,Z3,X3, $ICOUNT,IFLAG,TINC,H,IFORCE)function subprogram for the velocity (Z2) of the secondary massIMPLICIT REAL*8 (A-H.O-Z)REAL*8 M2,K2,K3COMMON FORCE, IFORCDIMENSION F0RCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1,RMSV1,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFIF(IFORCE.EQ.2.OR.IFORCE.EQ.4.OR.IFORCE.EQ.6.OR.IFORCE.EQ.7)THENF3=1.0/M2*(RANDF(T,ICOUNT,IFLAG,TINC,H)-$(C2+C3)*Z2+C2*Z1-(K2+K3)*X2+K2*X1+C3*Z3+K3*X3)ELSE IF(IFORCE.EQ.9.OR.IFORCE.EQ.11.OR.IFORCE.EQ.13.OR.$IFORCE.EQ.14) THEN



107F3=1.0/M2*(FORCE2(T)-$(C2+C3)*Z2+C2*Z1-(K2+K3)*X2+K2*X1+C3*Z3+K3*X3)ELSEF3=1.0/M2*(-(C2+C3)*Z2+C2*Z1-(K2+K3)*X2+K2*X1+C3*Z3+K3*X3)END IFRETURNENDCC 
CCC 

C 
CCC 

CCC

FUNCTION F4(Z2)function subprogram for the displacement (X2) of the secondary massIMPLICIT REAL*8 (A-H.O-Z)F4=Z2RETURNEND
FUNCTION F5(M3,K3,K4,C3,C4,T,Z2,X2,Z3,X3, $ICOUNT,IFLAG,TINC,H,IFORCE)function subprogram for the velocity (Z3) of the mass of the vibration absorberIMPLICIT REAL*8 (A-H,O-Z)REAL*8 M3,K3,K4COMMON FORCE, IFORCDIMENSION F0RCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1,RMSV1,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFIF(IFORCE.EQ.3.OR.IFORCE.EQ.5.OR.IFORCE.EQ.6.OR.IFORCE.EQ.7)THENF5=1.0/M3*(RANDF(T,ICOUNT,IFLAG,TINC,H)-$(C3+C4)*Z3+C3*Z2-(K3+K4)*X3+K3*X2)ELSE IF(IF0RCE.EQ.10.0R.IF0RCE.EQ.12.0R.IF0RCE.EQ.13.0R.$IFORCE.EQ.14) THENF5=1.0/M3*(FORCE3(T)-$(C3+C4)*Z3+C3*Z2-(K3+K4)*X3+K3*X2)ELSEF5=1.0/M3*(-(C3+C4)*Z3+C3*Z2-(K3+K4)*X3+K3*X2)END IF



108
RETURN ENDCC 

CC 
C 

CCC 
CC 

CC 
CCC 

CC 
C 

CCC 
CC

FUNCTION F6(Z3)function subprogram for the displacement (X3) of the mass of the vibration absorberIMPLICIT REAL*8 (Α-Η,Ο-Ζ)F6=Z3RETURNEND
FUNCTION FORCE1(T)function subprogram for forcing on the primary massIMPLICIT REAL*8 (Α-Η,Ο-Ζ)F0RCE1=1.0*DSIN(1.80245*t)FORCE1=0RETURNEND
FUNCTION FORCE2(T)function subprogram for forcing on the secondary massIMPLICIT REAL*8 (Α-Η,Ο-Ζ)FORCE2=1.0*DSIN(1,80245*t)RETURNEND
FUNCTION FORCE3(T)function subprogram for forcing on the mass of the vibration absorberIMPLICIT REAL*8 (A-H,O-Z)FORCE3=1,0*DSIN(1,80245*t)RETURN END



109
CC

C 
CC

 C 
C 

C 
C C

CC
C 

CC
C

SUBROUTINE BISECT(START,FINISH,DT,CHECK,I) Subroutine subprogram to iterate by bisection.If the control flag I is negative, CHECK<0 means mass 4 has exceeded the required limit for bisection, and vice versa.IMPLICIT REAL*8 (A-H,O-Z)INTEGER IREAL START,FINISH,DT,CHECKIF(I.LT.O) GO TO 5IF(CHECK.GT.0.0) THENDT=DT-(FINISH-START)/2.0FINISH=DTELSEDT=DT+(FINISH-START)/2.0START=FINISHFINISH=DTEND IFGO TO 105 CONTINUEIF(CHECK.LT.0.0) THENDT=DT-(FINISH-START)/2.0FINISH=DTELSEDT=DT+(FINISH-START)/2.0START=FINISHFINISH=DTEND IF10 RETURNEND
FUNCTION RANDF(T,ICOUNT,IFLAG,TINC,H)CONTROLLER SUBROUTINE TO PROVIDE A SEQUENCE OF RANDOMNUMBERS WITH A GAUSSIAN DISTRIBUTION (WHITE)SEE MARK DOLATA'S THESIS FOR REFERENCEIMPLICIT REAL*8 (A-H,O-Z)COMMON FORCE, IFORCDIMENSION FORCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1 ,RMSV1 ,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2



110COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFC READ IN THE FORCE VECTOR FOR EVERY 20000 FULL TIME STEP C IF(IFORC.EQ.1.AND.ICOUNT.EQ.1) THENC write(*,'(a,i5)') 'IFORC = '.IFORC,C $' GOING TO THE DATA FILE TO READ SOME FORCE 'DO 10 11=1,20000READ(7,*,END=11) FORCE(II)10 CONTINUE GO TO 1211 write(*,'(a)') 'end of data file encountered '12 CONTINUEEND IFCC A NEW FORCE IF THERE IS NOT A COLLISIONC ELSE, INTERPOLATE FOR THE FORCEC IF(IFLAG.EQ.O.AND.ICOUNT.EQ.I) THENCC A NEW FORCE FOR ADVANCING BY A CONSTANT TIME STEPC **** NOTE :C THIS SECTION WHICH READS IN THE FORCING NEEDSC MODIFYING TO ACCOMODATE MULTIPLY FORCED CASESCC F=RAND1(T,N,WU,SOWK,ix,iy,iz)F=FORCE(IFORC)C CHECK IF END OF THE FORCE VECTOR (20000). IF SO,C INITIALIZE THE INDEX TO READ IN NEW FORCEIF(IFORC.EQ.20000) THENIFORC=1ELSEIFORC=IFORC+1END IFC FOLD=FNOWFNEW=FFNOW=FNEWELSE IF(IFLAG.EQ.1.AND.ICOUNT.EQ.1) THENC ADJUST THE UPPER LIMIT OF THE FORCE DURING ITERATIONFNOW= FOLD+(FNEW-FOLD)/TINC*HELSE IF(IFLAG.EQ.2.AND.ICOUNT.EQ.1) THENC USE THE FIRST UPPER LIMIT WHICH DID NOT GET USED DUE TOC ITERATIONSFOLD=FNOW



111FNOW=FNEWEND IFCC PROVIDE THE FOUR-STEP FORCE FROM FOLD TO FNOW TO USE IN RK4C IF(ICOUNT.EQ.I) RANDF=FOLDIF(ICOUNT.EQ.2) RANDF=FOLD+(FNOW-FOLD)/2.0IF(ICOUNT.EQ.3) RANDF=FOLD+(FNOW-FOLD)/2.0IF(ICOUNT.EQ.4) RANDF=FNOWCC write(*,'(a,i5)') 'IFORC = 'IFORC, .C $' RETURNING TO THE CALLING PROGRAM '20 RETURNENDC0=============================================================
c SUBROUTINE PRINT(T,H,X1 ,V1 ,A1 ,X2, V2,A2,X3, V3,A3,X4,V4,SIDE,$IPRINT,IFORCE)IMPLICIT REAL*8 (Α-Η,Ο-Ζ)CHARACTER*1 SIDECOMMON FORCE, IFORCDIMENSION F0RCE(20000)COMMON FOLD,FNEW,FNOWCOMMON RMSX1,RMSV1,RMSX2,RMSV2,RMSX3,RMSV3COMMON RMSF,RMSA1,RMSA2COMMON RMSX4,RMSV4,RMSA3,XMAX4COMMON XMAX1,XMAX2,XMAX3,XMAXFCC T : present timeC H : last time stepC if(t.eq.O.O) go to 10C RMSX1=(RMSX1 *(T-H)+X1 **2*H)/TRMSV1=(RMSV1 *(T-H)+V1 **2*H)/TRMSX2=(RMSX2*(T-H)+X2**2*H)/TRMSV2=(RMSV2*(T-H)+V2**2*H)/TRMSX3=(RMSX3*(T-H)+X3**2*H)/TRMSV3=(RMSV3*(T-H)+V3**2*H)/TRMSX4=(RMSX4*(T-H)+X4**2*H)/TRMSV4=(RMSV4*(T-H)+V4**2*H)/TRMSF =(RMSF *(T-H)+FNOW**2*H)/TRMSA1=(RMSA1 *(T-H)+A1 **2*H)/TRMSA2=(RMSA2*(T-H)+A2**2*H)/TRMSA3=(RMSA3*(T-H)+A3**2*H)/TIF(ABS(X1).GT.ABS(XMAX1)) XMAX1=X1



112IF(ABS(X2).GT.ABS(XMAX2)) XMAX2=X2IF(ABS(X3).GT.ABS(XMAX3)) XMAX3=X3IF(ABS(X4).GT.ABS(XMAX4)) XMAX4=X4IF(ABS(FNOW).GT.ABS(XMAXF)) XMAXF=FNOW10 continueIF(IFORCE.EQ.I)IF(IFORCE.EQ.2)IF(IFORCE.EQ,3)IF(IFORCE.EQ.4)IF(IFORCE.EQ.5)IF(IFORCE.EQ.6)IF(IFORCE.EQ.7)IF(IFORCE.EQ.8)IF(IFORCE.EQ.9)

F=FNOW F=FNOW F=FNOW F=FNOW F=FNOW F=FNOW F=FNOW F=FORCE1(T) F=FORCE2(T)IF(IFORCE.EQ.IO) F=FORCE3(T)IF(IFORCE.EQ.11) F=FORCE1(T)+FORCE2(T)IF(IFORCE.EQ.12) F=FORCE1(T)+FORCE3(T)IF(IFORCE.EQ.13) F=FORCE2(T)+FORCE3(T)IF(IFORCE.EQ.14) F=FORCE1(T)+FORCE2(T)+FORCE3(T)C WRITE(6,'(a,i2,a,e10.3)')'IFORCE ='JFORCE,' F =',FC WRITE(6,'(A,e10.3)') 'FORCE3(T) = FORCE3(T)C if(iprint.eq. 1) WRITE(6,16)T,X1,V1,X2,V2,X3,V3,X4,V4,F,SIDEC if(iprint.eq.2) WRITE(6,17)T,sqrt(RMSX1),sqrt(RMSV1),C $sqrt(RMSX2),sqrt(RMSV2),sqrt(RMSX3),sqrt(RMSV3),sqrt(RMSX4),C $sqrt(RMSV4),sqrt(RMSF),SIDEC 16 FORMAT(F7.3,9(1X,E9.2),A)C 17 FORMAT(F7.3,9(1X,E9.3),A)if(iprint.eq.l) WRITE(6,16)T,X1,X2,X3,X4,V4,F,SIDEif(iprint.eq.2) WRITE(6,17)T,sqrt(RMSX1),$sqrt(RMSX2),sqrt(RMSX3),sqrt(RMSX4),$sqrt(RMSV4),sqrt(RMSF),SIDE16 FORMAT(F8.3,6(1X,E10.3),A)17 FORMAT(F8.3,6(1X,E10.3),A)20 RETURNEND



1132. EXAMPLE OF INPUT DATA FILE2

2This example is for the structure excited by an initial velocity on the primary system.3A file contains radom data is needed for the simulation of random excitation.

force.out3 10.01.00.10.4 0.04 0.00.040.04.00.40.00.00.5300.00.010.00.00.00.00.00.330.00.010.0 0.0251 0

m1m2m3c1c2c3c4k1k2k3k4toHTtotalx10z10x20z20x30z30 edmin; if negative, incremented from the program dmaxdincm4IPRINT (1:TIME VARIATION; 2:RMS VARIATION) IFORCE (0: NO FORCE;1 : F1;2 : F2;3 : F3;4 : BOTH F1 & F2;5 : BOTH F1 & F3;6 : BOTH F2 & F3;7 : F1, F2 & F3;8 : sine on 1;9 : sine on 2;10 : sine on 3;11 : sine on both 1 & 2;



11412 : sine on both 1 & 3;13 : sine on both 2 & 3;14 : sine on 1, 2 & 3;)
3. EXAMPLE OF OUTPUT DATA FILE ml 0.1000000E+02m2 0.1000000E+01m3 0.1000000E+00k1 0.4000000E+02k2 0.4000000E+01k3 0.4000000E+00k4 0.0000000E+00c1 0.4000000E+00c2 0.4000000E-01c3 0.0000000E+00c4 0.0000000E+00t0 0.0000000E+00ttotal 0.3000000E+03Η 0.5000000E+00 x10 0.0000000E+00 x20 0.0000000E+00 v10 0.1000000E+02v20 0.0000000E+00x30 0.0000000E+00v30 0.0000000E+00 e 0.3000000E+00 dia c bm4 0.2500000E-01 IPRINT 1 IFORCE 0t x1 x2 x3 x4 v4 F(t)0.000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+000.500 0.404E+01 0.865E+00 0.417E-02 0.000E+00 0.000E+001.000 0.411E+01 0.417E+01 0.106E+01 0.000E+00 0.000E+001.500 0.570E+00 0.658E+01 0.502E+01 0.000E+00 0.000E+002.000-0.286E+01 0.327E+01 0.987E+01 0.000E+00 0.000E+00



115297.500 0.181E-02 0.922E-02 0.247E-01 -0.102E+02 0.107E+00298.000 -0.910E-03-0.218E-02 0.672E-03-0.101E+02 0.107E+00298.500-0.287E-02-0.119E-01 -0.257E-01 -0.101E+02 0.107E+00 299.000-0.298E-02-0.143E-01 -0.387E-01 -0.100E+02 0.107E+00 299.500 -0.137E-02 -0.837E-02 -0.287E-01 -0.994E+01 0.107E+00 d1 = 0.3000000E+02x1 = 0.3619602E+00v1 = 0.6889547E+00a1 = 0.1553189E+01x2 = 0.9958209E+00v2 = 0.1903709E+01a2 = 0.4304667E+01x3 = 0.3036091E+01v3 = 0.5267406E+01a3 = 0.1249212E+02x4 = 0.9978499E+01v4 = 0.7187268E+01f1 = 0.0000000E+00X1 = 0.4111829E+01X2 = -0.9562503E+01X3 = 0.2795332E+02X4 = -0.3946021 E+02F1 = 0.0000000E+00


