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Abstract

To adapt to overarching objectives and changing demands, a plant automation sys-

tem capable of real-time optimization and dynamic model predictions is desirable.

Dynamic real-time optimization (DRTO) can achieve higher level objectives such

as profitability, however RTO and DRTO schemes require a mechanism to utilize

plant measurements to adapt the model to reflect changing conditions. This study

proposes a novel integration of Kalman filter state and parameter estimation in which

the impact of the controller and the plant response is accounted for in the DRTO. This

closed-loop DRTO (CL-DRTO) approach is used to control a multi-input multi-output

CSTR where a critical parameter is not measurable. The CSTR is optimized under

economic and target tracking objectives, and is tested using two different control

layers, PI-based and MPC-based. In the PI controlled CSTR, the proposed solution

was compared to the ideal case of full state feedback and a common approach to

dealing with mismatch: bias updating. The proposed Kalman filter estimator effec-

tively handles noise and infeasible targets, surpassing bias updating in scenarios

involving input saturation and increased measurement noise. The PI controlled CSTR

is also tested with nonlinear models and an extended Kalman filter, demonstrating a

method for controlling even highly nonlinear systems. In the MPC controlled CSTR,

the Kalman filter is tested under input saturation and various disturbance sources. By

using DRTO setpoints to guide the MPC towards targets, inputs can be maintained at

their constrained bounds without directly accounting for these constraints in the MPC

formulation or clipping the inputs directly. Under every scenario tested, the Kalman

filter successfully estimated the unknown parameter and demonstrated excellent

robustness. The proposed strategy’s ability to control nonlinear plants using linear

models suggests potential scalability for larger, more complex systems.
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Chapter 1

Introduction

1.1 Motivation and Research Objectives . . . . . . . . . . . . . . . . . 1

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Relations to Previous Work . . . . . . . . . . . . . . . . . . . . . 7

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Motivation and Research Objectives

Optimizing chemical processing facilities and their interconnected elements is critical,

but often complex. These facilities have design limitations, operational goals, and

local control objectives to account for. To optimize these systems, optimization

structures must consider high frequency control targets as well as low frequency

plant-wide objectives. An example of this type of tiered control is given in Figure

1.1, adapted from Marlin and Hrymak [1]. Typically, these methods achieve broader,

1
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long-term objectives by optimizing targets sent to local elements in the facility. This

work delves into dynamic real-time optimization (RTO) of PI-controlled and MPC-

controlled plants, coupled with state and parameter estimation to achieve these

objectives.

Figure 1.1: Multi-layered Control Strategy

Dynamic RTO (DRTO) can be run open-loop: without consider the plant response

to the control actions, however if the DRTO is able to predict the effect of its set-

points it will have a more comprehensive understanding as to how those set-points

affect the objective function. To accomplish this, the DRTO can run a model of plant

and controller dynamics within the optimizer to predict the effects of the set-points

it chooses. This may include a prediction for how the controller will respond to

the set-point, and the predicted controller action will be sent to the model for a

predicted plant response. This work will seek to approach DRTO using closed-loop

optimization, and will be giving particular focus to how the controller dynamics are

included in the optimization problem. Even when control architecture can accurately

control the plant, there may be times when the control layer receives a set-point from

the DRTO that it cannot reach. During these times, the control layer must clip its

control action to the maximum or minimum values determined by the controller’s

2
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practical limitations. To avoid this scenario, constraints may be added to the MPC

layer, but approximating constrained MPC in DRTO requires additional complexity

in the optimization problem, and a constrained controller is not possible with a

standard PI control formulation. Instead, the DRTO can either approximate the

effect of input clipping or attempt to avoid it entirely. This work will employ the

latter choice by adding the maximum and minimum controller values to the DRTO

optimization problem. Plant-model mismatch can come from many sources: noise,

disturbances, poor model choice or linearization of a highly nonlinear process. The

control and optimization layers are affected by these disturbances, and there are

various approaches to dealing with these inaccurate values. While bias updating

would be considered standard practice, its method simply applies a correcting “bias”

term to compensate for a poor model or inaccurate measurements. Even when

working successfully, bias updating cannot predict the true value of the states, let

alone any parameters that are not known to the control architecture. The Kalman

filter can estimate these states as well as unknown parameters, and offers a promising

alternative to bias updating in closed-loop DRTO. This work will explore Kalman

filter estimation as a method of dealing with disturbances, noise, and the plant-model

mismatch caused by input saturation. It will also explore the extended Kalman filter

as a means of estimating the states and parameters of nonlinear plants. The purpose

of this research is to test the implementation of the Kalman filter in a closed-loop

dynamic RTO (CL-DRTO) setting using various forms of control and testing the

performance under input saturation. This will be tested using a CSTR case study,

and will be compared to alternative methods and a full state feedback baseline to

determine its merit.

1.2 Main Contributions

In this work, the main contributions are as follows:

1. CL-DRTO model with integrated controller equations. CL-DRTO by nature

3
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has a built in model that approximates the plant response to set-points chosen

by the DRTO. This improves DRTO control, however typically this is done by

predicting the controller response to the set-point in a separate equation. This

work demonstrates a method for incorporating controller dynamics directly into

the DRTO model, a method that allows the controller dynamics to be linearized

and discretized along with the model. While ideally this method would be

equivalent to calculating the controller dynamics in an auxiliary function, it

provides the opportunity to include controller dynamics into the Kalman filter’s

prediction step: a novel technique that gives the Kalman filter more information

in its predictions.

2. Kalman filter estimation with CL-DRTO and PI control under input satura-

tion. This work demonstrates a method for using Kalman filter estimation

in a CL-DRTO setup with PI control. The PI controller dynamics are directly

incorporated into the predictions made by the estimator and the CL-DRTO. By

adding the input bounds from the PI layer to the DRTO layer’s constraints,

this work shows that the effects of input saturation on estimator performance

can be significantly reduced without using a constrained control layer such as

MPC. In this work, the mismatch arising while the estimator converges will

specifically be parametric plant-model mismatch, though Chapter 4 will explore

other sources of mismatch. Under these conditions, the CL-DRTO is able to

perform well even when given infeasible targets or placed under heavy noise.

3. Extended Kalman filter to help CL-DRTO control nonlinear systems. This work

proposes a control architecture for controlling nonlinear systems. This work

demonstrates how the extended Kalman filter can be used along with nonlinear

models in the optimization and control layers to control a nonlinear system.

This contribution expands the scope of the strategy proposed in Section 3.2 by

offering a version usable in nonlinear systems.

4. Kalman filter estimation with CL-DRTO and MPC control under input satu-

ration. MPC offers a more sophisticated form of control, and this work also

4
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contributes an architecture for implementing the Kalman filter in MPC con-

trolled systems. This work also demonstrates that by adding the input bounds

to the DRTO optimization problem it is possible to obey controller constraints

without using a constrained MPC layer. The MPC and Kalman filter will at-

tempt to handle structural plant-model mismatch arising from various sources

described in Chapter 4 as well as the parametric plant-model mismatch studied

in Chapter 3. The proposed structure also demonstrates that by adding con-

troller constraints to the DRTO, satisfactory control can be achieved without

incorporating input saturation into the DRTO.

1.3 Thesis Summary

Chapter 2: Literature Review. This chapter explores the field of Real-Time Optimiza-

tion and the advancements made to improve the economic and safety performance

of RTO control structures. There are several challenges with RTO, and this chapter

discusses some of those challenges, such as the need for steady-state conditions and

difficulty during transient plant dynamics. State and parameter estimation has been

proposed as a method of improving RTO during these conditions and even improving

the performance of dynamic RTO, although estimators have not been tested on DRTO

that incorporates controller dynamics (CL-DRTO). Additionally, there are significant

issues with estimators when plant-model mismatch occurs, and research is needed to

study the effect of various controllers coupled with CL-DRTO and state and parameter

estimation.

Chapter 3: Kalman filter estimation with CL-DRTO and PI control layers under

Input Saturation This chapter studies Kalman filter estimation coupled with CL-

DRTO and PI control layers to control a multi-input multi-output CSTR under input

saturation. The control structure optimizes operation of the CSTR under economic and

target tracking objectives. The proposed structure integrates the controller dynamics

directly into the model used in the DRTO layer and estimator, giving the estimator

5
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more informed predictions. This chapter will induce input saturation by using

infeasible targets (in the target tracking objective) or by severely limiting the input

clipping bounds on the controller (in the economic objective). The Kalman filter must

estimate an unmeasured efficiency parameter despite significant input saturation.

In Chapter 3, the input saturation directly affects the estimator which models the

controller dynamics without accounting for input saturation. However, in Chapter 4,

the estimator does not include controller dynamics, and the estimator performance

is instead affected indirectly by the mismatch within the DRTO and MPC layers. To

mitigate this effect, the DRTO predicts the PI layer’s response to DRTO set-points and

constrains them between the plant input bounds. By avoiding input saturation in

this way, plant-model mismatch is significantly reduced. This chapter compares the

proposed approach to the common approach to plant-model mismatch, bias updating,

as well as a baseline of full state feedback. A nonlinear architecture is also proposed

for controlling a nonlinear plant, including the extended Kalman filter, a nonlinear

variation of the standard Kalman filter. This chapter also studies how the proposed

approach behaves under significant noise compared to other techniques.

Chapter 4: State and Parameter Estimation in closed-loop dynamic RTO of MPC-

controlled plants This chapter explores Kalman filter estimation and its interaction

with another controller type: model predictive control (MPC). This chapter’s archi-

tecture also uses CL-DRTO, however the DRTO predicts controller dynamics using

an auxiliary function instead of directly integrating them into the model. An uncon-

strained MPC formulation is run on the same CSTR as Chapter 3, optimizing the

system under economic and target tracking objectives. Input clipping is minimized by

predicting the MPC controller within the DRTO and constraining the actions within

the input bounds. MPC controllers have their own built-in disturbance term for han-

dling plant-model mismatch, and testing how the architecture handles disturbances

is studied under several disturbance types.

Chapter 5: Conclusions and Recommendations This chapter consolidates the conclu-

sions from Chapters 3 and 4, noting significant improvements in the performance of

Kalman filter estimation with CL-DRTO. In both chapters the DRTO was able to sig-

6
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nificantly minimize input clipping by constraining the predicted controller behavior

within the DRTO. In the PI controlled system, the Kalman filter and CL-DRTO showed

excellent performance in economic and set-point tracking, especially under conditions

of input saturation and increased measurement noise. The extended Kalman filter

was also able to control the nonlinear plant effectively, even under input saturation.

This chapter also suggests applying the architecture to constrained controllers such

as MPC or approximating input clipping within the DRTO. In the MPC controlled

system, the Kalman filter effectively adhered to constraints and handled mismatch

and input saturation well. The MPC based architecture also demonstrated an ability

to control a nonlinear plant with linear models and estimators, suggesting a potential

for scalability to larger or more complex systems. The findings presented in this chap-

ter indicate promising potential for Kalman filter estimation coupled with CL-DRTO,

and suggest that even under noise, input saturation, nonlinearity, or linearization

mismatch, the Kalman filter can perform well in both PI and MPC controlled systems.

1.4 Relations to Previous Work

This work employs multilayered control, and the components comprising these layers

have been studied in different settings elsewhere in literature. For example, Dering

and Swartz [2], [3], and MacKinnon [4] have employed CL-DRTO, and several works

testing CL-DRTO also used predicted control actions to constrain the DRTO as this

study does [5] [6] [7] [8] [9]. However, none of these studies employed any form of

estimator, they each used bias updating to send feedback to the DRTO. The Kalman

filter has also been studied in literature [10] [11], however these studies did not

use CL-DRTO, nor did they attempt to constrain controller behavior from within

the optimizer. This work seeks to offer a unique combination of these elements by

combining CL-DRTO with Kalman filter estimation and using input constraints in

the optimizer to avoid input saturation. This work also embeds the PI controller

dynamics into the nonlinear model, allowing the controller dynamics to be included

in the Kalman filter: a feature not studied anywhere in literature to date. By studying

7
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the effects of noise and nonlinearity this work offers a material contribution to existing

literature on control theory.
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2.1 Real-Time Optimization

Real-Time Optimization (RTO) has been thoroughly studied both in practical applica-

tion and academic research, playing a pivotal role in meeting a plant’s economic and

safety requirements [1]. RTO continuously monitors and updates process conditions

using a feedback loop, offering a real-time response to changing demands and con-

straints [2] [3]. RTO can correct for disturbances and uncertainty using model biases,
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and a detailed approach on how these bias terms function can be found in Forbes and

Marlin [4]. In self-optimizing control (SOC), combinations of measurements are used

to compute self-optimizing variables, which are maintained at optimal set-points

to minimize economic loss under disturbances, as demonstrated by Skogestad [5].

In this case, the model is not updated, but instead the self-optimizing variables are

controlled to meet this objective given an expected disturbance range. To update

these manipulated variables, RTO must have steady-state conditions, a significant

drawback of the methodology [3].

Despite these benefits, RTO comes with significant limitations. RTO control requires

steady state conditions to execute the optimization problem. Determining this steady

state is difficult, but the primary issue is RTO’s inability to update during transient

operation. RTO is especially ill-suited in systems with constant disturbances, slow dy-

namics, or frequent changes, resulting in poor system operation [6]. Most integrated

plants have transient periods lasting up to multiple days due to transportation delays,

intermediate storage, and recycle loops [7]. Embedding the economic objective within

the model predictive controller (MPC) layer can address this issue, and creates an

economic MPC (EMPC) layer. A detailed explanation of EMPC systems can be found

in Ellis et al. [8].

2.2 DRTO

Another method of dealing with the steady-state drawback to RTO is to include the

system dynamics in the upper RTO layer, creating a dynamic RTO (DRTO) layer

[9]. There have been several advancements to this technique, and several are listed

here. Würth et al. [10] proposed a method of dealing with dynamics at different

speeds. Würth’s two-layer approach used a higher level DRTO operating at a lower

frequency to capture slow process dynamics, and a lower level neighboring-extremal

(NE) controller to track the trajectory and account for faster dynamics. Tosukhowong

et al. [7] also found it advantageous to operate the DRTO layer at a reduced frequency,
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and developed a method of choosing a reduced-order model for a given DRTO

frequency and discussed its implementation in a system of controllers. Biegler et al.

[11] noted that unknown inputs and model parameters affect steady state values in a

significant way, and suggested using on-line state and parameter estimation where

the states and parameters are updated for each optimization problem. Pontes et al.

[12] suggested a method of DRTO that could be easily used on processes with rapid

transitions. Their objective function prioritized economics and used both dynamic

and static stages to handle rapid transitions. The control layer that executes the

set-points from the optimizer can take several forms: PI control and MPC control are

two popular examples of control strategies. This work will look at both and evaluate

how closed-loop DRTO coupled with state and parameter estimation performs in

each.

2.3 CL-DRTO with PI Control

Typical two-layer DRTO and PI models use an open-loop dynamic prediction for the

DRTO, however Jamaludin and Swartz [6] demonstrated improved economics using

closed-loop DRTO (CL-DRTO), and this model will be considered here. A closed loop

prediction can be computationally expensive, and literature has instead developed

methods of approximating the closed-loop prediction. A detailed explanation of the

variables and equations governing rigorous CL-DRTO structure is given in Sections

3.1.4 and 4.1.5. PI control offers a simple approach to reaching setpoints from the

DRTO, however the control laws are reactionary; they do not consider future plant

dynamics and cannot optimize an objective function within the controller subproblem.

These drawbacks make model predictive control a desirable improvement to control

architecture.
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2.4 CL-DRTO with MPC Control

Model predictive control is frequently used industrially, and significant research has

focused on improving its performance. Qin and Badgwell [13] details many of these

MPC approaches that have been used commercially. Some notable advancements in

MPC approaches are given here. Bemporad and Morari [14] integrated logic rules

into MPC using mixed integer programming, and Biegler [15] implemented discrete-

time optimization using simultaneous collocation. These advancements give greater

flexibility in how DRTO can approach optimization. Some innovative techniques have

been developed for applying MPC such as Bemporad et al. [16] including explicit state-

feedback solutions for quadratic control or Amrit et al. [17] directly optimizing process

economics to improve profitability. Several advancements have also been made in

MPC’s ability to handle nonlinearity; Rawlings et al. [18] improved MPC performance

in complex nonlinear systems, and Zavala and Biegler [19] further improved nonlinear

MPC with sensitivity-based predictions to reduce their computational expense. These

are some examples of the innovation and interest invested in improving MPC control,

and these advancements highlight MPC’s growing adaptability and efficiency in

diverse and complex industrial applications.

2.5 State and Parameter Estimation

Dynamic state and parameter estimation can also be used in RTO as a method of

overcoming the steady-state drawback to RTO [20]. Matias et al. [20] mentioned that

steady-state detection methods can be easily misled by complex issues such as slow

signals out of phase with measurements, large processes, or high frequency distur-

bances. Failing to properly detect steady-states may result in inaccurate parameter

estimation if a steady-state model updating strategy is used. As a consequence, the

optimality of the solution computed by RTO can be affected. To help models improve

the accuracy of their states and parameters, dynamic state and parameter estimation
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can be used in RTO and has also been included in implementations of dynamic RTO,

such as in Matias et al. [20]; however Matias et al. [20] only demonstrated this setup

on classical DRTO; controller dynamics were not taken into account.

While adding state and parameter estimation to DRTO structures improves model ac-

curacy, it can lead to plant-model mismatch if the system undergoes input saturation.

A method that mitigates this effect could improve overall performance and make the

Kalman filter less vulnerable. This unfavorable behavior is due to incompatibility

between Boolean logic at the controller level and optimizers at the DRTO level. This

problem is a significant obstacle to optimizers with estimated states and parameters,

as any constraints at the DRTO level would be based on estimated values and may

not accurately predict plant behavior. In a highly constrained system, this can lead to

poor state and parameter estimation and subsequent inefficiencies in the economic

objective of the plant. Note that even with perfect state and parameter estimation, if

the DRTO is unable to approximate or avoid input saturation the estimated values

will be wasted, used by the DRTO to send inaccurate set-points. As input saturation

is a common occurrence in practice, it is of particular interest to find a method to deal

with input saturation for DRTO optimizers using estimated information.

The Kalman filter has not yet been tested on CL-DRTO combined with MPC setups,

let alone under the effects of input saturation. This is particularly interesting for MPC

controllers with a disturbance model, as the disturbance term must converge while

the Kalman filter parameters converge, and the interaction may impact control. The

Kalman filter has also not been studied under the effect of input saturation, a situation

that may derail estimators and requires mixed integer optimization architecture. Input

saturation will directly affect the estimator when controller dynamics are included

in the model, as in Chapter 3, and may also affect the estimator indirectly when

the mismatch causes poor performance in the MPC and DRTO layers the estimator

interacts with, as in Chapter 4. This paper will be studying all these effects, using

a Kalman filter estimator on a DRTO layer and MPC layer under significant input

saturation. This work will evaluate the performance of the estimator as the control

structure using it achieves economic and target tracking objectives, and will test the
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robustness of the structure by introducing disturbances and attempting to control a

nonlinear plant with linear architecture.
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3.1 Preliminaries

This section will explore the equations and concepts comprising the control architec-

ture of this study. After describing the system, the equations governing the CL-DRTO

used in this chapter will be demonstrated. The Kalman filter and the observability of

the system will also be demonstrated, alongside an alternative approach to handling

disturbances: bias updating. After describing these layers in detail, this section will

propose adaptations to the control architecture for controlling nonlinear systems,

namely the extended Kalman filter. Input saturation plays a significant role in how

these architectures perform, and this section will close with an explanation of these

effects and how they affect the system.

3.1.1 Background

Linearized control architecture offers a less computationally expensive means of

control than nonlinear architecture. Equation Set 3.1 gives a general representation of

a nonlinear plant.

ẋnl =
dxnl
dt

= f (xnl(t), unl(t))

ynl(t) = g(xnl(t))
(3.1)

Here xnl(t) and unl(t) represent the current state and input values at time t, respec-

tively. These are used to calculate the change in the states (ẋnl) and used to map the

states to their measured output vector (ynl(t)). The vectors used in Equation Set 3.1

are given the subscript "nl" to indicate the nonlinear vectors are not in deviation form.

This was done for simplicity of notation, as the remainder of this work will deal with

variables in deviation form, this will be treated as the default form of the vectors.

Based on these values, the nonlinear plant can determine the rate at which the states

change (ẋnl). In many cases a sufficiently accurate approximation of the nonlinear
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process can be achieved with linearization, though if the process is significantly non-

linear or deviates from the nominal value of the states enough this approximation

can lead to poor control. The nonlinear model shown in Equation 3.1 would take the

form of the linearized state space model in Equation Set 3.2.

ẋ = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.2)

where ẋ and y represent the derivative of the states and measurements, respectively.

A and B are matrices that describe the relationship between the states and inputs,

and C is used to select states that correspond to the measurement of the system in

practice.

After demonstrating proficiency with linear systems, the strategy proposed in this

chapter will also be tested on a nonlinear plant and model as shown in Equation 3.1.

However as linearized systems are more common in practice, the primary focus of

this chapter and its formulations will be on linear systems.

3.1.2 Deviation Form

When the state space model matrices are linearized, a steady state condition is chosen

for the states and manipulated variables. The act of linearization places the linearized

model in deviation form, and all state and input vectors must be adjusted to conform

with deviation form as well. This is accomplished by subtracting the steady state

values used in linearization from the current values of those states in their vector. For

example, state vector x(t) composed of n states and input vector u(t) composed of m
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inputs are set in deviation form as in Equation Set 3.3:

x(t) =


x′1
x′2
...

x′n

 =


x1

x2
...

xn

−


x1,ss

x2,ss
...

xn,ss

 u(t) =


u′

1

u′
2
...

u′
m

 =


u1

u2
...

um

−


u1,ss

u2,ss
...

um,ss

 (3.3)

Typically, vectors in deviation form are denoted with an apostrophe, however nearly

all vectors in this work will be in deviation form, so to reduce unnecessary notation it

will be assumed that any vectors that interact with state space model matrices are in

deviation variable form unless stated otherwise.

3.1.3 System Description

Unlike other research, this work seeks to integrate the behavior of the PI-level into

the DRTO model of the plant to account for the impact of controller dynamics on

the response, resulting in a model that is a function of the set-point. This poses a

challenge due to input saturation issues described later, but as this chapter mitigates

those effects, the PI-level can be safely integrated into the model, though input

saturation will not be directly integrated in this way. The combined model can now

predict the plant behavior and PI behavior together. This is first done by considering

the PI-level’s relationship between the set-points it receives (ysp,nl) and the control

actions it chooses as a result (unl(t)). This relationship can be simply described by

Equation Set 3.4.

unl(t) = ubias + Kcenl(t) +
Kc

τI
Ie,nl(t)

e(t) = ysp,nl(t)− ynl(t)
(3.4)

Where ubias is a vector of input values at steady state conditions, enl(t) is the error

of the system measured as the distance between the set-point (ysp,nl(t)) and the
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measured states (ynl(t)). Ie,nl(t) is the integral of the error accumulated by the system,

which is initially 0. In this nonlinear equation set, Ie,nl(t) is calculated using the

following ODE:

dIe,nl

dt
= enl(t) (3.5)

The ODE from Equation 3.5 will be added to the state vector to calculate the integral

terms alongside the other states. The gain (Kc) and time constant (τI) of Equation Set

3.4 are tuned to control the behavior of the controller. Anti-reset windup (ARW) was

employed in the PI layer, but due to the computational expense of boolean logic in

optimization, the prediction of the PI layer within the DRTO will not take anti-reset

windup into account. Substituting Equation 3.4 into Equation 3.1, we can instead

describe ẋnl as a function of the current states, set-points of the outputs, and the

integral of the error between them. This new model includes the dynamics of the

PI-layer in its model, and Equation Set 3.6 gives a generic example of the nonlinear

and linearized versions of this process.

ẋnl = h(xnl(t), ysp,nl(t), Ie,nl(t))

The derivative of the states (ẋnl) contains both states and the integral of error for the

states involved in PI control. The linearization of ẋnl yields Equation Set 3.6. dx
dt
dIe
dt

 =

Ax(t) + Bysp(t)

ysp(t)− y(t)


y(t) = Cx(t)

(3.6)

Note that in Equation Set 3.6, the generic nonlinear model given in Equation Set

3.2 will be expanded to include integral terms as additional rows from this point

onward. This work will be concerned with parameter estimation, so the model will

be a function of the changing parameters as well. To accomplish this, an additional

term, Dθ,mθ(t), is included to represent the effect of changing parameters on the states
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of the model and plant. The aforementioned concepts are combined to create the

continuous model used for this work, given in Equation Set 3.7.

ẋm = Amxm(t) + Bmysp(t) + Dθ,mθ(t)

ym = Cmxm(t)
(3.7)

In Equation Set 3.7, ysp(t) represents the set-points sent from the DRTO layer to the PI

controller. ẋm and ym are the states and measurements from the model, respectively.

Am, Bm and Cm are the state space model matrices of the model. An estimator will

be used to predict the parameters of the plant, so it is desirable to describe the states

as a function of the parameter value as well. The matrix Dθ,m represents how the

parameters affect the states, and θ(t) represents the parameters as a function of time.

This value will be constant for the plant as the parameter values will be fixed for the

case study, but due to the estimator described in Section 3.1.6 this value will change

in the model, so it is included as a variable here. Using Equation Set 3.7„ the plant

response due to the DRTO set-point can be simulated for the optimizer. A detailed

explanation of the linearization that enables matrices Am, Bm and Cm to describe

the PI control and the model is given in the proposed solution. It should be noted

that although the DRTO will incorporate the PI layer into its model, the plant is still

distinct from the PI level, and as such the plant will be a function of controller action

(u(t)). The change in plant states (ẋp) and measurements (yp) can be described as

follows:

ẋp = Apxp(t) + Bpu(t) + Dθ,pθ

yp = Cpxp(t)
(3.8)

Notice here that the parameter values θ do not change as a function of time for the

current case study, however this may not always be the case. Since the plant is distinct

from the PI level, Ap, Bp, Cp and Dθ,p are used to describe the plant on its own. To

incorporate the system into optimizers and DRTO architecture, the plant and model

are discretized using the same time interval as the optimization interval (∆topt). The
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choice of this interval is especially important for the optimizer, and Tosukhowong

et al. [1] gave an example of how to choose an appropriate ∆topt for DRTO. The

resulting discretized model for the DRTO is given in Equation Set 3.9 below.

xm,(k+1) = Am,dxm,k + Bm,dysp,k + Dθm,dθk

ym,(k+1) = Cm,dxm,(k+1)

(3.9)

The PI level takes more frequent actions than the DRTO level, and this must be

accounted for when discretizing the matrices. To account for these more frequent

actions, the plant matrices have been discretized using ∆tPI/plant which is equal

to ∆topt
N where N is number of control actions taken between points on the DRTO

horizon. Once discretized at this shorter interval, the plant model from Equation Set

3.8 becomes the new discrete form in Equation Set 3.10.

xp,(k+1) = Ap,dxp,k + Bp,dysp,k + Dθp,dθk

yp,(k+1) = Cp,dxp,(k+1)

(3.10)

3.1.4 CL-DRTO

Tosukhowong et al. [1] gave an example of DRTO implementation which is adapted

for use here. Their system was a function of controller action, whereas this model

is a function of the set-points. Their system also used an MPC layer that will be not

be used in this study but will be integrated in the next chapter. The adapted system

comprises the optimization setup in Equation Set 3.11 in addition to the model in

Equation Set 3.9 and is optimized for each ∆topt interval.
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min
Ysp

ϕ

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(3.11)

Here ϕ is the objective function of the DRTO, Ysp is a vector of set-points to send to

the PI layer starting at time step k over the control horizon of length M, subject to

Ysp,min and Ysp,max, the respective lower and upper limits on that vector. U represents

a vector of the predicted control actions from the PI layer as a result of the chosen

set-points. U may not directly appear in the objective function, but it’s values must

be constrained to ensure the optimal set-point is feasible for the PI layer. The notation

(k + n|k) indicates the variable was calculated for time step k + n, and the most recent

measurements came from time step k. These measurements are obtained from the

state-to-output mapping given in Equation 3.9. Xm represents a vector of predicted

states starting at time step k and continuing over prediction horizon P. The vector

Ysp is then used by the model to determine Xm,(k+1|k), the predicted states resulting

from those set-points. The composite vector Ysp is an array of optimized set-points

which can be sent directly to the PI layer. Often states or parameters are not available

as measurements for the model, or the measurements contain significant levels of

noise. In this case, it is desirable to correct for resulting disturbance in some way. In

CL-DRTO the current standard practice of dealing with these issues is bias updating.

27



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

3.1.5 Bias Updating

The bias term is simply the difference between the value of the measured states and

the value of those states predicted by the model. After measuring the plant and using

the DRTO model to predict it’s value, the bias is calculated for the following time

step: k + 1, as shown in Equation 3.12.

βbias,(k+1) = yp,(k+1) − ym,(k+1) (3.12)

Bias updating deals with plant-model mismatch by adjusting the constraints and

objective function of the optimizer to better agree with plant measurements.

min
Ysp

ϕβ

s.t. Xm,β,min ≤ Xm,(k+1|k) ≤ Xm,β,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(3.13)

In the adjustment shown in Equation 3.13, ϕβ represents the objective function where

the measured states are adjusted with their own individual bias term, β. As with

Equation Set 3.11, the optimization problem for bias updating comprises of Equation

Set 3.13 and model in Equation Set 3.9 after discretization. Xm,β,min and Xm,β,max rep-

resent the minimum and maximum constraints on the predicted plant response, with

constraints on measured states adjusted by their respective bias term. By adjusting the

values of the states, the bias terms apply an “incentive” to the objective function and

allow a deviation in the model constraints corresponding to the degree of mismatch

between the plant and model.

While bias updating corrects the behavior of the plant towards a desirable objective, it
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does not directly predict the values of the estimated states and unknown parameters.

This prediction is a desirable feature, particularly for non-measured parameters that

require maintenance when they drop below a particular value, such as the efficiency

of a heater or the fouling factor of a heat exchanger. This makes estimators especially

valuable for dealing with missing measurements. The Kalman filter estimator is a

good candidate for this task and has already been used to approximate missing states

and parameters in DRTO [2].

3.1.6 Kalman filter Estimation

The Kalman filter can estimate states and parameters, and Song and Grizzle [3]

demonstrated that over time this method will converge to the true states and pa-

rameters depending on certain noise and model conditions. This technique will be

adapted to CL-DRTO using the following Kalman filter algorithm, which is derived

from the set-point model in Equation 3.7. In this chapter the controller dynamics are

incorporated directly into the estimator model, a novel enhancement offering the

Kalman filter improved accuracy. The estimator will estimate any states or parameters

of interest before sending them to the DRTO layer for optimization.

The state vector used by the estimator (x̃e) expands on the state vector (xm) from

Equation 3.7 by adding the estimated parameters as pseudo-states. Naturally, x̃ will

have nps more rows than xm; where nps is the number of pseudo-states estimated by

the Kalman filter.

This estimator model will be a function of the set-points and the parameter values,

shown in Equation Set 3.14.

˙̃xe = Aex̃e(t) + Beysp(t)

ỹe = Cex̃e(t)
(3.14)

Equation Set 3.14 is very similar to the model in Equation Set 3.7, and it’s Ae, Be, and

Ce are identical to their counterparts in the DRTO model except for an added row or
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column for each pseudostate parameter. This new structure for Equation Set 3.14 is

given in greater detail in Equation Set 3.15. ẋm

ẋps

 =

 Am Aps1

Aps2 Aps3

xm

xps

+

Bm

Bps

 ysp

ỹe =
[
Cm 0

] xm

xps

 (3.15)

Here the model from Equation Set 3.6 is expanded to include the pseudostate parame-

ters estimated by the Kalman filter. Vectors and matrices associated with these added

pseudo-states are given the subscript "ps". Together the ẋm and ẋps vectors comprise

the larger estimator vector ˙̃xe from Equation Set 3.14. However as pseudo-states

are not measured, ỹe must be equal to ym and the composition of the model vector

remains unchanged.

As the estimated parameters are treated as pseudo-states in the estimator model, the

effect of the pseudostate on the other states is described by Aps1, so the Dθ,eθ(t) term

used in the DRTO model is not needed.

The estimator model given in Equation Set 3.14 is then discretized using ∆topt, result-

ing in the discretized state space model in Equation Set 3.16.

x̃e,(k+1) = Ae,dx̃e,k + Be,dysp,k

ỹe,(k+1) = Ce,dx̃e,k

(3.16)

Equation Set 3.16 is used to estimate the states and unknown parameters. The Kalman

filter algorithm from Walter et al. [4] is given in Equation Set 3.17.
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1. x̃e,(k+1|k) = Ae,dx̃e,(k|k) + Be,dysp,k

2. P(k+1|k) = Ae,dP(k|k)AT
e,d + Vk

3. K f ,(k+1) = P(k+1|k)C
T
e,d

(
W(k+1) + Ce,dP(k+1|k)C

T
e,d

)−1

4. x̃e,(k+1|k+1) = x̃e,(k+1|k) + K f ,(k+1)

(
yp,(k+1) − Ce,dx̃e,(k+1|k)

)
5. P(k+1|k+1) = P(k+1|k) − K f ,(k+1)Ce,dP(k+1|k)

(3.17)

The equations above are solved sequentially, and the algorithm is repeated at each

time step. The subscript (g|h) indicates that the corresponding value(s) at time step g

were calculated using data from time step h. The estimated state vector x̃e is similar to

the model state vector xp except that pseudo-state parameters are included in x̃e. Ae,d,

Be,d and Ce,d are the linearization matrices of the estimator, discretized using ∆topt.

The estimator has its own linearization matrices to accommodate the pseudo-states it

uses in the Kalman filter. P and K f represent the noise covariance of the estimates and

gain of the Kalman filter, respectively. These matrices converge on their stationary

values as Equation Set 3.17, iterates. The initial value of the covariance matrix, P(0|0)
is an initial guess for the algorithm. W and V represent the measurement noise and

process noise of the system, respectively. The V matrix needed to be extended to

include the covariance of the pseudostate estimates. This gives the pseudostate the

ability to change values even if its dynamics are static. The values comprising W and

V are chosen to represent the system’s noise sources and are important to gurantee

good performance from the estimator. In Step 1 the Kalman filter predicts the future

state of the system using a state space model. Similar to the DRTO model these

states are a function of the set-point. The covariance of the estimates P(k+1|k) is then

calculated in Step 2, and the Kalman filter gain K f ,(k+1) is calculated in Step 3. The

values from the first 3 steps are then used to update the states and parameters in

step 4. The new Kalman filter gain is also used to update the covariance matrix in

step 5. This process returns a vector of estimated states and an improved gain and

covariance matrix for the next iteration of the Kalman filter.
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In the context of CL-DRTO, the controller dynamics can have a significant impact on

the predictions of how the plant and controller respond to set-points. Traditionally the

control architecture using the Kalman filter estimator does not take into account the

dynamics of the control layer in the DRTO constraints. Without a means of preventing

or approximating input-clipping this setup may perform poorly in highly-constrained

systems. An example of this traditional Kalman filter setup can be found in Matias and

Le Roux [5] applied to RTO control. This traditional approach does not use controller

constraints (Umin and Umax from Equation Set 3.11) in the optimization layer. The

proposed solution will be compared against this unconstrained implementation to

determine its merit.

3.1.7 Observability

Each system has limits on its observability. While the controllability of the system

is a function of state space model matrices Ae and Be, the observability is a function

of matrices Ae and Ce. This is intuitive as the matrix Ae represents state dynamics

and Ce represents which of these states are visible to the estimator. The system in

Equation Set 3.16 is considered observable if it is possible to estimate any states in x̃e

given the past trajectories of the measurements in ỹe. There are many types of tests

to determine observability. Here the observability matrix Oe is used to determine

observability

Oe =



Ce

Ce Ae

Ce A2
e

...

Ce An−1
e


(3.18)

where n is the dimension of the full state, including any pseudo-states estimated by

the Kalman filter. In an estimator with 4 states and 1 estimated parameter, n would
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be 5. If the rows of this matrix span Rnx+nps dimensions, any state vector can be

estimated from the past trajectories of ỹe and the system is observable [6].

3.1.8 Nonlinear Adaptations to Control Architecture

Julier and Uhlmann [7] discussed the necessary conditions for an estimation to be

considered consistent; a property described in part by the mean and covariance of

that estimate. While Julier and Uhlmann [7] demonstrated the mean and covariance

can be recursively obtained in linear systems using the Kalman filter, they noted a

new method would be needed for nonlinear systems. Approximating these terms

using a truncated Taylor expansion leads to the extended Kalman filter. This tech-

nique has been used by Julier and Uhlmann [7], and Julier and Uhlmann [7] warned

that negelcting these terms may lead to inadequate estimator behavior in nonlinear

systems. This extended Kalman filter (EKF) technique has been used in the past to

improve the performance of KF estimation [4] on nonlinear systems. The extended

Kalman filter approximates this missing nonlinearity by updating the linear state

space matrix Ae each iteration using the nonlinear model equations.

Equipped with the EKF, the estimator can estimate the states and parameters of a

nonlinear plant with improved accuracy by obtaining a better approximation of the

mean and covariance of the estimate when compared to the linear Kalman filter. Using

this adaptation, this chapter will demonstrate the proposed strategy’s performance

in nonlinear systems. To do this several adaptations are made to the above setup.

As mentioned in Section 3.1.1, the nonlinear comparison will use a nonlinear plant

shown generically in Equation 3.1. The DRTO will use Equation Set 3.4 to predict the

PI-level behavior based on the DRTO set-points and then use these PI-level actions as

inputs to a nonlinear model. This is slightly different than the linearized setup which

incorporates PI-level behavior directly into the model.

Using Equation 3.1 and Equation Set 3.4, the DRTO will optimize a nonlinear model

while constraining the actions taken at the PI-level.
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The CL-DRTO used in the nonlinear study will use a single-shooting NL optimization

technique for integrating the ODE system to obtain an NLP suitable for the optimiza-

tion solver. The gain and time constant of the PI equation also needed to be retuned

to control the nonlinear plant.

These changes serve to create a fully nonlinear system in an attempt to test how the

control architecture handles nonlinearity. The most significant change to the control

architecture in this nonlinear study is the use of an extended Kalman filter over a

linear Kalman filter. The way this EKF is applied to the proposed solution is detailed

below.

Extended Kalman filter

To incorporate the nonlinear nature of the system, the linear matrix Ae from Equation

Set 3.17 is recalculated at each iteration of the estimator. This dynamic matrix is now

a function of time: Ae,t. The EKF will also use a nonlinear model to increment the

estimated states. The remaining steps remain unchanged from Equation Set 3.17. Ae,t

is updated using Equation 3.19 below:

Ae,k =
∂ f (x̃e,k, ysp,k)

∂x̃T
e,k |x̃e,(k|k)

=

 ∂ f (xm,k,xps,k,ysp,k)

∂xT
m,k

∂ f (xm,k,xps,k,ysp,k)

∂xT
ps,k

0 I


|x̃e,(k|k)

(3.19)

where xm,k, xps,k, and ysp,k represent the states, pseudostates, and set-points of the

system at time k, respectively. Instead of being linearized around the steady-state

conditions like the linear KF, the EKF linearizes the Ae,k matrix around the current

state values calculated by the estimator, x̃e,(k|k). The subscript "k|k" denotes that the

values used here are before any Kalman filter correction in this iteration. The " ˜ "

symbol denotes the new vector structure, which now includes the parameters as

pseudo states. As a result of including these pseudo states, x̃e,k has m more rows than
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xk, so the zero and identity matrices 0 and I are used to pad Ae,k to its new size. This

is explained in greater detail in Section 3.1.6.

The Ae,k matrix is then discretized using ∆topt as described in Section 3.1.3, resulting

in the discretized matrix Ae,d,k. After updating the Ae,d,k matrix, the steps proceed

very similarly to Equation 3.17, except that Step 1, which increments the states, is

now a nonlinear step. The resutlting algorithm for an extended Kalman filter is given

below in Equation Set 3.20.

0. Ae,d,k =
∂ f (x̃e,k, ysp,k)

∂x̃T
e,k |x̃e,(k|k)

1. x̃e,(k+1|k) = f (x̃e,(k|k), ysp,k)

2. P(k+1|k) = Ae,dP(k|k)AT
e,d + Vk

3. K f ,(k+1) = P(k+1|k)C
T
e,d

(
W(k+1) + Ce,dP(k+1|k)C

T
e,d

)−1

4. x̃e,(k+1|k+1) = x̃e,(k+1|k) + K f ,(k+1)

(
yp,(k+1) − Ce,dx̃e,(k+1|k)

)
5. P(k+1|k+1) = P(k+1|k) − K f ,(k+1)Ce,dP(k+1|k)

(3.20)

Notice in Equation Set 3.20 the EKF still uses linearized matrices, but nonlinear

behavior is captured by the nonlinear model by updating Ae,d,k, the relationship

between the inputs and the outputs, in real-time and computing x̃e,(k+1|k) using the

nonlinear model in Step 1. For a complete description on how these modifications

turn the Kalman filter into an extended Kalman filter, see Walter et al. [4]. For further

details on steps 1 through 5, please refer to the description of 3.17 as they remain

unchanged.
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3.1.9 Input Saturation

While a system may be observable according to the test described above, an estimator

may still have difficulty predicting plant behavior if significant input saturation

occurs. As shown in Figure 3.1, if the optimizer sends an unreachable set-point to

the PI layer, it will be clipped by constraints the DRTO layer in unaware of. This

causes significant plant-model mismatch, especially during the time the estimator is

converging as it’s estimated x̃e vector will be less accurate.

Figure 3.1: Issues with estimators and input saturation

As Figure 3.1 shows, each time input saturation occurs at the PI level the estimator

is thrown off its converged value. Incorporating input saturation behavior into the

DRTO layer is complicated; in simultaneous optimization the boolean logic from

input saturation gives rise to mixed integer optimization or smoothing functions. It is

therefore desirable to mitigate this effect by only sending set-points the PI layer can

reach without input clipping.

3.2 Proposed Solution

The solution proposed here combines Kalman filter estimation with CL-DRTO and

constrains the predicted behavior of the PI layer within the DRTO using estimated
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states from the Kalman filter or extended Kalman filter. This input constrained

CL-DRTO must overcome the challenge of constraining inaccurate state estimates

while the estimator is still converging. However, this work will show that even

during convergence the effects of input clipping are reduced with DRTO constraints.

As shown in Figure 3.2, input constrained CL-DRTO reduces the degree of plant-

model mismatch from input saturation effects while the estimator is converging and

eliminates it after convergence. After convergence the DRTO level will be able to

accurately predict the PI level. By constraining the predicted response of the PI layer

to its feasible region, the optimizer will only send set-points that the PI layer can

reach without saturating the inputs.

Figure 3.2: Input constrained CL-DRTO and its effect on the estimator

Once the DRTO level can avoid input saturation, the estimated states and parameters

should stay at their converged values and the optimizer will send more accurate

set-points to the controller. The result is a much more effective optimizer and greater

economic yields for systems using this technique. The proposed solution will use a

similar DRTO structure to Equation Set 3.11, which includes the optimizer equations
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in Equation Set 3.21 and the model in Equation Set 3.9.

min
Ysp

ϕ

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(3.21)

The significant change is the inclusion of constraints on predicted PI-level behavior:

U. The model and plant will take the linearized and discretized structure given in

Equation Set 3.9 and 3.10. The integral of error terms are measured from the PI layer

and fed to the estimator and DRTO as pseudo states along with measured states

and any parameters that need to be estimated. See Figure 3.3 for the structure of the

proposed control strategy.

Figure 3.3: Information flow diagram of proposed solution in generalized form

Here the diagram uses a clock icon to denote the progression of time at the end of

a time step and the time subscript "k + 1" is stepped backwards to "k" for the next

time step. In Figure 3.3 the pseudostate estimates of the unknown parameters are
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contained within x̃e. In Figure 3.3, Modelm(L) is the linearized model referenced

in Equation Set 3.9, the ModelKF(L) is the linearized estimator model referenced

in Equation Set 3.14 that includes additional estimated states and treats unknown

parameters as pseudo-states. PlantP(L) is the linearized set of equations referenced

in Equation Set 3.10 which is a function of the manipulated variable uk. Using this

structure, this work seeks to show that despite the estimator taking time to converge,

the CL-DRTO can still use these estimates to update the model so the optimizer can

constrain the predicted controller response; in this case by only sending feasible

set-points to the PI-level.

3.3 Software Implementation

The control architecture for this case study was coded using Python 3.9.6 in Jupyter

Notebook, and represents the original work of the author, though several pre-built

packages were employed within the code. CasADi 3.6.2 was used for optimization

[8], and Control 0.9.3 was used for discretization [9]. Model discretization was

performed with a zero-order holder being applied to the model inputs. The CL-

DRTO is optimized using CasADi’s built-in IPOPT solver [8]. Integration of the linear

models was carried out using a forward Euler method, and in Chapter 3, integration

of the nonlinear models was done using direct single shooting and the “CVODES”

integrator method within CasADi [8] [10]. Linear simulations took an average of

5.2 seconds to compute, while nonlinear simulations took an average of 308 seconds

to compute. The calculations were performed on a computer with an Intel Core

i7-10750H CPU @ 2.60GHz and 32.0 GB of RAM.
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3.4 Case Study

3.4.1 Nonlinear Plant

The CSTR case study used in the Economic MPC study in Li et al. [11] will be used

here to evaluate the performance of the proposed method. The CSTR is a multiple-

input multiple-output (MIMO) system where the process variables of concentration

(CA) and temperature (T) are controlled by the manipulated variables of inlet flowrate

(F) and heater output (Q). A diagram showing the CSTR used in this case study is

given below in Figure 3.4.

Figure 3.4: A diagram of the CSTR used in the case study

The nonlinear model from is given below, and the associated constants for this CSTR

are defined in Table 3.1, and were obtained from Li et al. [11].

dCA

dt
=

F
VR

(CA0 − CA)− k0e−
E

RT C2
A (3.22)

dT
dt

=
F

VR
(T0 − T)− ∆Hk0

ρRCp
e−

E
RT C2

A +
ηQ

ρRCpVR
(3.23)

The heater efficiency will be considered unknown to the model. For the purposes of
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Table 3.1: Table of values used in the nonlinear formula of case study

Symbol Description (Initial) Value Units
CA Conc. of A in CSTR 0.339 kmol/m3

T Temperature of CSTR 545 K
F Inlet Flowrate 5 m3/h
Q Heater Power 99,840 kJ/h
t time 0 h
CA0 Inlet Conc. of A 3.5 kmol/m3

T0 Inlet Temperature 300 K
k0 Pre-exponential rate factor 8.46 × 106 m3/kmol-h
E Activation Energy 5 × 104 kJ/kmol
R Ideal Gas Constant 8.314 kJ/kmol-K
ρR Density of fluid in CSTR 1000 kg/m3

Cp Heat capacity of fluid in CSTR 0.231 kJ/kg-K
VR Reactor fluid volume 1.0 m3

∆H Heat of reaction −1.16 × 104 kJ/kmol
η Heater efficiency 0.9 ——–

this case study, all parameters in Table 3.1 are assumed to remain constant throughout

the simulation. The initial conditions of the process variables and manipulated

variables were obtained by calculating the steady-state conditions corresponding to a

set of specified inputs.

The nonlinear plant will be linearized in Section 3.4.2 below, however the nonlinear

plant will also be used directly in Strategy 4.
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3.4.2 Linearized Plant

The plant above was linearized and expressed in deviation form, represented using

Equation 3.24.

x =

 C′
A

T′

 =

 CA − CA,ss

T − Tss


u =

 F′

Q′

 =

 F − Fss

Q − Qss


θ = [η′] = η − ηss

dxp

dt
=

apC′
A + bpT′ + epF′ + fpQ′ + p1,pη′

gpC′
A + hpT′ + kpF′ + lpQ′ + p2,pη′


In state space form, the linearized model is given by

 dC′
A

dt

dT′
dt

 =

 ap bp

gp hp

 C′
A

T′

+

 ep

fp

 F′

Q′

+

 p1,p

p2,p

 [
η′]

which can be expressed compactly as

ẋp = Apxp + Bpu + Dθ,pθ

yp = Cpxp

(3.24)

In Equation Set 3.17, constants ap, bp, ep, fp and p1,p represent the partial derivative of

Equation 3.22 with respect to CA, T, F, Q, and η, respectively. Constants gp, hp, kp, lp,

and p2,p represent the partial derivative of Equation 3.23 with respect to CA, T, F, Q,

and η, respectively. The Ap, Bp, and Dθ,p matrices are used to create a linearized state

space model for how the states change with time. Equation Set 3.24 is also discretized

with ∆tPI/plant = 0.03̄3 hrs, or 2 minutes. The Cp matrix contains ones and zeros that

map the state space to the measurement space, effectively indicating which states are

measured. Noise is also typically applied during this step, however noise was only
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added to the associated outputs during the noise study in Section 3.5.5. To add this

noise, Gaussian random noise was applied to the outputs to simulate measurement

noise. For the plant model, both states (T and CA are measured, so Cp is the identity

matrix. The integral of error terms are also calculated and treated as measurements,

but they are added later as shown in Figure 3.3.

The efficiency parameter will not be measured; the estimator must predict this value

for the DRTO. Additionally, the plant value of efficiency in deviation form (η′) will

always be zero as the true efficiency will not change with time. Once the parameters

are grouped into their respective matrices, the plant can be described in state space

form as described in Equation Set 3.7. For implementation in an optimizer, Equation

Set 3.24 is also discretized as described in the Preliminaries section.

3.4.3 PI-Control Level

This system will utilize a PI-level controller at the plant level that changes the manip-

ulated variables 5 times between each DRTO execution. The DRTO-level optimizer

will send set-points for the next 3 time steps every 30 minutes, and the PI level will

track these targets with 15 control actions taken every 2 minutes. A figure detailing

the order these layers execute and their respective timing is given in Figure 3.5.
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Figure 3.5: A diagram depicting the timing of the CL-DRTO layer and the PI control layer

The PI-level responds to the DRTO set-points using the following PI-equations:

F = Fbias + Kc,CA(CA,sp − CA) +
Kc,CA

τI,CA

ICA

Q = Qbias + Kc,T(Tsp − T) +
Kc,T

τI,T
IT

(3.25)

where the set-points for concentration C′
A,SP and T′

SP received from the DRTO are

used to calculate the error and integral of the error. Anti reset windup keeps the

integral terms (ICA and IT) from accumulating during input saturation. The initial

values of the manipulated variables are set as the bias of their respective PI-equation.

The tuning constant values were chosen by trial and error testing to give rapid and

smooth performance and are given in Table 3.2.

Table 3.2: Tuning Constants used in the PI-Layer

Tuning Constant Inlet Flowrate (F) Heater Power (Q)

Kc 16 70

τI 0.05 0.01
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3.4.4 DRTO Layer

The DRTO layer has its own model that incorporates the behavior of the PI layer, as

shown in Equation Set 3.7. To this end, the manipulated variables in the nonlinear

plant are replaced by their respective PI-equations. The new nonlinear equations for

this case study are given in Equation Set 3.26.

dCA

dt
=

(Fbias + Kc,CA(CA,sp − CA) +
Kc,CA
τI,CA

ICA)

VR
(CA0 − CA)

− k0e−
E

RT C2
A

dT
dt

=
Fbias + Kc,CA(CA,sp − CA) +

Kc,CA
τI,CA

ICA

VR
(T0 − T)

−
∆Hk0

ρRCp
e−

E
RT C2

A

+
η(Qbias + Kc,T(Tsp − T) + Kc,T

τI,T
IT)

ρRCpVR

dICA

dt
= CA,sp − CA

dIT

dt
= Tsp − T

(3.26)

The DRTO layer model is also linearized and expressed in deviation form. The
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linearization process is given in Equation Set 3.27:

xm =


C′

A

T′

I′CA

I′T

 =


CA − CA,ss

T − Tss

ICA − ICA,ss

IT − ITss


ysp =

 C′
A,sp

T′
sp

 =

 CA,sp − CA,sp,ss

Tsp − Tsp,ss


θ =

[
η′] = [η − ηss]

dx′m
dt

=


amC′

A + bmT′ + cm I′CA
+ dm I′T + emC′

A,sp + fmTsp
′ + p1,mη′

gmC′
A + hmT′ + im I′CA

+ jm I′T + kmC′
A,sp + lmTsp

′ + p2,mη′

mmC′
A + nmT′ + om I′CA

+ pm I′T + qmC′
A,sp + rmTsp

′ + p3,mη′

smC′
A + tmT′ + um I′CA

+ vm I′T + wmC′
A,sp + zmTsp

′ + p4,mη′



In state space form, the linearized model is given by


dC′

A
dt

dT′
m

dt
dI′CA

dt
dI′T
dt

 =


am bm cm dm

gm mm sm jm
hm nm tm pm

im om um vm




C′

A

T′

I′CA

I′T

+


em fm

km lm
qm rm

wm zm


C′

A,sp

T′
sp

+


p1,m

p2,m

p3,m

p4,m


[
η
′
]

which can be expressed compactly as

ẋm(t) = Amxm + Bmysp + Dθ,mθ

ym(t) = Cmxm

(3.27)

where the entries in row r and column c of matrices Am, Bm, and Dθ,m describe the

partial derivative of the equation from row r of ẋm with respect to the state/parameter

from column c of Am, Bm, and Dθ,m. The entries in these matrices are given subscript
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m to distinguish the partial derivatives of the model from those in the plant that are

derived from different equations. Equation Set 3.27 is discretized with ∆topt = 0.16̄6

hrs, or 10 minutes. The DRTO model may be given different efficiency parameters as

mismatch and convergence change this value, so η′ in the model is not necessarily

zero as it is in the plant. The DRTO will measure all the plant states as well as the

integral of error states from the PI controller. This is represented by Cm in Equation Set

3.27. Efficiency will be predicted using the estimator or a guess value will be used, and

a bias update will compensate for the mismatch. This chapter proposes using a DRTO

layer with an estimator and DRTO-level input constraints. This DRTO structure will

be compared to several alternatives using two common objective functions. The first

is a target tracking objective:

φTgt = α1,Tgt(CA − CATgt)
2 + α2,Tgt(T − TTgt)

2 (3.28)

where ϕ is the objective value, and the goal of the optimizer is to minimize the differ-

ence between the current concentration and temperature and the specified targets for

those states (CATgt and TTgt, respectively). α1 and α2 are weighting constants used to

give priority to either temperature target tracking or concentration target tracking.

For this case study, α1,Tgt will be 1000 and α2,Tgt will be 1. These values were These

values were shown to provide a good balance to account for the differences in the

variable responses and their units. Most often, high-level optimizers are used to

achieve higher-level objectives, such as the profitability of the plant. Therefore, an

economic objective will also be used to quantify the performance between DRTO

structures. The objective function in Equation 3.29 was derived from one by Li and

Zhang to approximate the profitability of the process:

φEcon = −α1,EconF(CA0 − CA) + α2,EconQ2 (3.29)

In Equation 3.29, revenue is described by the concentration of A consumed, and

the cost is described by the power consumed by the heater. New tuning constants

are used to make revenue the main priority while still considering the costs. The
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new tuning constants α1,Econ and α2,Econ are 105 and 10−7, respectively. Together the

function is minimized to find the profitability of the plant as F, Q, and CA change

with time. The state vector (xp) for this case study also contains two integral terms

that track the integral of error for concentration (ICA) and temperature (IT). These

terms are "measured" from the PI layer, and an information flow diagram showing

these connections can be found in Figure 3.8. The DRTO layer is solved using the

optimization problem given in Equation Set 3.11.

3.4.5 Constraints

To show the effects of input saturation, the system is highly constrained. The bounds

on the process variables, DRTO set-points, and manipulated variables are given in

Table 3.3.

Table 3.3: Constraints on the states and inputs for the case study

Symbol Upper Bound Lower Bound Units

CA 3.5 0.1 kmol/m3

T 700 400 K

FTgt 13 0 m3/h

FEcon 2.8 0 m3/h

Q 400000 0 kJ/h

CA,sp 3.5 0 kmol/m3

Tsp 700 400 K

∆CA,sp 0.1 -0.1 kmol/m3

∆Tsp 30 -20 K

As this chapter will be studying the effects of input saturation, an infeasible target will

be given to the target tracking objective from Equation 3.28. To ensure input saturation

occurs when testing economic performance that lacks these specified targets, the inlet

flow rate is more heavily constrained. These two constraints are given as FTgt for the

target tracking objective and Fecon for the economic objective.
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The chosen CSTR will also need to preserve at least 0.1 kmol/m3 of the reactant for

use in a downstream process. Dropping below this level will incur a financial penalty

as the downstream process is affected. Dropping CA to 0 kmol/m3 will cost 10%

of that time step’s revenue. Dropping halfway to 0.05 kmol/m3 will incur half the

penalty, and so on. This penalty will be applied when the simulation is evaluated

at the end and the objective functions are calculated over the entire horizon. This

penalty will not occur within the DRTO as it only takes effect when the DRTO is

inaccurately predicting the plant states, however the lower bound of 0.1 kmol/m3

will be applied within the DRTO as a lower constraint on CA.

Several strategies will be compared with the proposed Kalman filter strategy, but all

will use input constrained CL-DRTO described in Section 3.2. The different strategies

are given below and described in the sections following Table 3.4.

Table 3.4: A table of strategies tested

Strategy 1 Kalman filter estimation

Strategy 2 Bias updating

Strategy 3 Full state feedback

Strategy 4 Nonlinear system and extended Kalman filter

3.4.6 Strategy 1: Kalman Filter Estimation

In this strategy, the DRTO layer will avoid the obstacle of input saturation by pre-

dicting the input actions of the PI-layer (U) and constraining them within bounds of
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feasibility.

min
Ysp

ϕ

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(3.30)

The DRTO layer for this strategy consists of Equation Set 3.30 above and is subject to

a discretization of the model in Equation Set 3.27. The estimator includes additional

estimated states and treats unknown parameters as pseudo-states, including them

in the model as if they were process variables. Under this premise, the model used

in the DRTO Equation Set 3.27 is augmented to include the pseudo-states (in this

case, η). This new estimator model is exclusively used within the estimator and feeds

states and parameters to the DRTO model.

x̃e =



C′
A

T′

I′CA

I′T
η′

ss


=



CA − CA,ss

T − Tss

ICA − ICA,ss

IT − ITss

η − ηss


ysp =

 C′
A,sp

T′
sp

 =

 CA,sp − CA,sp,ss

Tsp − Tsp,ss



dx̃e

dt
=



amC′
A + bmT′ + cm I′CA

+ dm I′T + emC′
A,sp + fmTsp

′ + p1,mη′

gmC′
A + hmT′ + im I′CA

+ jm I′T + kmC′
A,sp + lmTsp

′ + p2,mη′

mmC′
A + nmT′ + om I′CA

+ pm I′T + qmC′
A,sp + rmTsp

′ + p3,mη′

smC′
A + tmT′ + um I′CA

+ vm I′T + wmC′
A,sp + zmTsp

′ + p4,mη′

p5,eC′
A + p6,eT′ + p7,e I′CA

+ p8,e I′T + p9,eC′
A,sp + p10,eTsp

′ + p11,eη
′


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In state space form, the linearized model is given by



dC′
A

dt
dT′

m
dt

dI′CA
dt

dI′T
dt

dη′

dt


=



am bm cm dm p1,m

gm mm sm jm p2,m

hm nm tm pm p3,m

im om um vm p4,m

p5,e p6,e p7,e p8,e p11,e





C′
A

T′

I′CA

I′T
η′


+



em fm

km lm
qm rm

wm zm

p9,e p10,e


C′

A, sp

T′
sp



which can be expressed compactly as

˙̃xe(t) = Aex̃e + Beysp

ỹe(t) = Cex̃e

(3.31)

As described in detail in Section 3.1.6, the model from Equation Set 3.27 is expanded

to include an unknown parameter (η) in a larger state vector x̃e. In Equation Set

3.31, the estimator model linearizes an additional nonlinear equation: the dynamics

of pseudo-state η. While most of the matrix entries can be reused from the model,

the estimator model requires an additional row of entries. However, since the true

efficiency is assumed a constant value, dη
dt = 0, thus dη′

dt = 0 and p5,e = p6,e = p7,e =

p8,e = p9,e = p10,e = p11,e = 0. The estimator receives measurements of process

variables CA and T from the plant and the integral of error terms ICA and IT from the

PI-layer. The efficiency η is not measured. The state space model matrices used here

are built by expanding the state space model matrices from the model as explained

in section 3.1.6. Equation Set 3.31 is also discretized with ∆topt = 0.16̄6 hrs, or 10

minutes. The observability of measuring CA, T, ICA , and IT to predict the efficiency

η was tested using the observability test in Section 3.1.7. The rank of the resulting

matrix was 5, which is equal to the dimension in this estimator, thus the estimator

should be able to estimate the unknown efficiency parameter. Figure 3.6 shows a

block flow diagram of the control strategy proposed here.

51



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

Figure 3.6: Information flow diagram for DRTO with Kalman filter

The structure shown in Figure 3.6 is consistent with Kalman filter implementations

with CL-DRTO in accepted literature with one key difference: this formulation has

constraints on PI-actions at the DRTO-level. These inputs are calculated using the PI

control laws shown in Equation Set 3.25, and the states and parameters come from

the estimator. The estimator handles measurement noise and unknown parameter

values to allow a prediction of what the PI-controller will do with the set-points given

from the DRTO layer. This makes DRTO optimization able to reduce and avoid input

saturation by sending reasonable set-points to the plant controllers.

3.4.7 Strategy 2: Bias Updating

This strategy will also constrain DRTO set-points within feasible reach of the PI layer,

but will be unable to estimate the unknown parameter η or to filter noise like the

Kalman filter. Instead, bias updating corrects for plant-model mismatch by adjusting

the constraints and objective function, as described in detail in Section 3.1.5. This is

the typical approach for dealing with mismatch, and will be used as a reference for

how the proposed solution improves on current practice in CL-DRTO.

For this case study, a bias term is created for each measured state: in this case, βCA ,

βT, β ICA
, and β IT . These terms are the difference between the measured state and the
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value expected by the model. The bias updating step uses Equation Set 3.27, the same

model used in the DRTO optimizer, which was discretized with ∆topt = 0.16̄6 hrs, or

10 minutes. The bias terms affect the optimizer as follows:

xUB − βbias,(k+1)

xLB − βbias,(k+1)

(3.32)

φTgt = α1,Tgt ((CA,k + βbias,k,CA)− CA,SP,k)
2

+ α2,Tgt ((Tk + βbias,k,T)− TSP,k)
2

(3.33)

φEcon = −α1,EconF(CA0 − (CA + βbias,k,CA)) + α2,EconQ2 (3.34)

Where the lower and upper states are shifted by the bias term so the constraints reflect

the same degree of bias. Any constraints that do not involve a measured output

variable (i.e. the DRTO set-points, efficiency, etc.) are not adjusted by a bias. The

objective function for target tracking, (Equation 3.33) and the objective function for

economic evaluation (Equation 3.34) are adjusted to reflect the true value by adding

the bias term. The block flow diagram for this control strategy is shown in Figure 3.7:
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Figure 3.7: Information flow diagram for DRTO with bias updating

Note in Figure 3.7 that a copy of the model used in the DRTO layer is used in the

bias updating step to predict the model values of the measured states. This strategy

makes no attempt to estimate the efficiency but will instead use a nominal value for

the efficiency and correct for the mismatch using the bias terms.

3.4.8 Strategy 3: Full state feedback

While it is unlikely that any real system would be able to measure every parameter

and state in its model, it gives an accurate best-case scenario to compare the other 3

strategies to. Under the best circumstances the other 3 strategies cannot achieve this

level of performance, and in practice measuring all values is usually near impossible

or very expensive. The control architecture for this process is simple, as no estimators

or corrections are needed for it to achieve optimal performance. As with the other

strategies, the DRTO will be constrained such that only feasible set-points are sent to

the PI layer to avoid input saturation. The plant is described by Equation Set 3.24 and

the model is described by the discretization of Equation Set 3.27. Just as in the other
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strategies, the DRTO model is discretized with ∆topt = 0.16̄6 hrs, or 10 minutes, and

the plant is discretized with ∆tPI/plant = 0.03̄3, or 2 minutes.

Figure 3.8: Information flow diagram for DRTO with full state feedback, where the true value
of the efficiency parameter is known

In this strategy, the true value of the efficiency parameter η is known at the DRTO

level, so constraints on PI actions in the DRTO-layer are particularly effective because

the DRTO-layer can accurately predict plant behavior to reduce input clipping. This

ideal will serve as a baseline for the other 3 methods.

3.4.9 Strategy 4: Nonlinear System and Extended Kalman

Filter

Linearization significantly reduces the computational expense of optimization allow-

ing for increased sampling frequency of the model and optimizer. This linearization

uses a truncated taylor series expansion, neglecting higher order terms. However in

some cases neglecting these components lead to a poor representation of the nonlinear

system’s behavior. These higher order components of the Taylor series are particu-

55



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

larly important for precisely determining the mean and covariance of the estimates

for nonlinear systems. Therefore as nonlinearity increases, estimation performance

degrades under a linear Kalman filter [7]. More detail on the need for EKF can be

found in Section 3.1.8.

To validate the Kalman filter with DRTO input constraints, its performance will also

be tested in a nonlinear setting. To accomplish this, the linear plant will be replaced

with a nonlinear one, the DRTO will use a nonlinear model to capture the behavior,

and the Kalman filter will be extended to include nonlinearity as well. The generic

formulas governing these changes are given in the Preliminaries section, and the

formulas specific to this case study are given here.

Step testing indicated the nonlinear system was better able to reach targets than

its linear counterpart. The target tracking constraints used in the linear system did

not produce input saturation in the nonlinear system, so to ensure the nonlinear

case could be evaluated in the presence of input saturation, further restrictions were

needed. Experimental tests showed that restricting the step in temperature by 50%

made it more difficult for the nonlinear system to achieve higher concentrations, so

these restricted temperature targets were used to ensure input saturation could be

studied in the nonlinear case.

While using the nonlinear plant found in Section 3.4.1, new tuning parameters will be

needed for the PI controller, which are listed in Table 3.5.

Table 3.5: New tuning constants for the controller of the nonlinear plant

Tuning Constant Inlet Flowrate (F) Heater Power (Q)

Kc 6 70

τI 0.01 0.001

The DRTO for the nonlinear strategies will still optimize the best set-points to send

to the PI layer, however in this strategy, the DRTO layer will predict the control

action in an auxiliary function instead of including the formulas directly in the model.

Equation 3.25 will be used to predict the control action based on the DRTO set-points,
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then those predictions will be used in Equations 3.22 and 3.23 to predict the next set

of states.

Constraints and objective functions used in the linear strategies will be the same in

the nonlinear strategies. As in Strategy 1, this strategy will constrain the predicted

PI-level action to ensure only feasible set-points are sent to the PI-control level.

min
Ysp

ϕsp

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

Ysp = [yT
sp,k, yT

sp,(k+1), . . . , yT
sp,(k+M−1)]

T

Xm,(k+1|k) = [xT
m,(k+1|k), xT

m,(k+2|k), . . . , xT
m,(k+P|k)]

T

(3.35)

The DRTO layer will be comprised of Equation Set 3.35 and subject to a discretization

of the model in Equation Set 3.27. The formulas governing the DRTO model and

the plant will both be Equation Set 3.36. See Equation Section 3.4.1 for a detailed

description of the variables within it.

dCA

dt
=

F
VR

(CA0 − CA)− k0e−
E

RT C2
A

dT
dt

=
F

VR
(T0 − T)− ∆Hk0

ρRCp
e−

E
RT C2

A +
ηQ

ρRCpVR

dICA

dt
= CA,sp − CA

dIT

dt
= Tsp − T

dη

dt
= 0

(3.36)

The EKF will also use the nonlinear equations above to increment the states in Step

1 of Equation Set 3.20. However, as mentioned at the end of Section 3.1.8, it is still
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necessary to derive all the discretized and linearized state space model matrices

Ae,d,(t), Be,d, Ce,d, for the remaining steps of the EKF algorithm.

These state space model matrices will be structured identical to Equation Set 3.31,

however the formulas being linearized here (shown in Equation Set 3.36) will not

contain PI-level dynamics. The matrices will be discretized using ∆topt = 0.16̄6 hours,

or 10 minutes.

In Step 1 of the Kalman filter algorithm, instead of using Equation Set 3.31 to increment

the states, the nonlinear model will increment the states instead. The state space

model matrices of Equation Set 3.31 will instead be used to update the extended

Kalman filter tuning matrices.

The nonlinear setup also passed the same observability testing done in Strategy 1,

indicating that the observability is sufficient to control the system. However this

was done with the nominal value of the A matrix, which updates each time step

(see Section 3.1.6 for details). While in theory this could affect observability, it is

assumed here that the system will remain observable within the operating range

of the simulations performed. Figure 3.9 shows a block flow diagram showing the

structure of the control strategy proposed here.

Figure 3.9: Information flow diagram for Nonlinear DRTO with Kalman filter

The hierarchy above is similar to Strategy 1 except the models used in the plant
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(PlantP), the DRTO model (Modelm), and the estimator model (ModelEKF) are now

all nonlinear. The state space model matrices used in the EKF approximate the plant

using derivatives of Equation Set 3.36, however the actual integral of error terms ICA

and IT are additively calculated at each iteration as shown in Figure 3.9. The difference

between these methods is negligible, and the additive calculation is a simpler method

more likely found in industrial practice. A lower level of noise is applied here as

with the other strategies to better distinguish between the performance of various

strategies.

3.5 Results and Discussion

3.5.1 SP-Plant Based DRTO

Typically, DRTO uses a model of the plant that does not take into account the PI

controller, however this work proposes using a DRTO model that incorporates both

the plant and PI controller. Including the controller in the model in this way makes the

model a function of the set-point. To verify this set-point based plant (SP-Plant), the

plant in Strategy 3 with full state feedback is run with and without this PI-integrated

DRTO model. Ideally the DRTO should behave the same whether the PI model is

incorporated into the model or calculated alongside the model (PI-Plant), however

discretization and linearization of the PI-layer may affect dynamics, so the SP-Plant

was tested to verify unchanged dynamics. In the test shown in Figure 3.10, the targets

for both controllers were stepped so the transient dynamics of each could be observed.
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Figure 3.10: A parallel comparison of DRTO with and without a combined model and PI-layer

Figure 3.10 shows the two plants produce nearly identical results. As such it is safe

to assume that using a combined model of the plant and PI-layer will predict the

same values as a model of the plant alone. There is an important caveat to these

findings however: the results will only match if input saturation of the PI layer does

not affect plant behavior. A DRTO model that does not include the PI layer would

have mismatch when the inputs saturate as it would be blind to PI-level constraints.

For this reason, a DRTO model that includes the PI layer is more robust, as described

in the proposed solution.

3.5.2 CL-DRTO

By incorporating the PI layer prediction into the DRTO layer, the DRTO can constrain

set-points to within the feasible region of the PI controller. This minimizes input

saturation during convergence of the estimator, and after convergence or with full

state feedback, this method should avoid input saturation altogether. For estimators

in particular this is critical, as input saturation can have a serious impact on estimator

performance if not approximated. The issue can be particularly problematic in this

implementation as the controller dynamics are embedded into the estimator. This

effect is demonstrated in the figure below, where Strategy 1 is tested using input

constrained CL-DRTO and using CL-DRTO without input constraints.
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Figure 3.11: A parallel comparison of input constrained CL-DRTO and CL-DRTO without
input constraints.

Figure 3.11 shows the estimated parameter η and the three states used to determine

profitability (F, CA, and Q). Under the economic objective from Equation 3.29, the

need to approximate input saturation with an estimator is very apparent. As the

flowrate (F) is constantly saturated, the estimator immediately fails to approximate

the efficiency parameter without predicting and constraining PI set-points using

the input constrained CL-DRTO. As a result, the lower bound CA constraint of 0.1

kmol/m3 is violated and suboptimal heater values are chosen. This is reflected by a

14.8% drop in economic performance and a 23.4% drop in target tracking performance.

This demonstrates the need to approximate input saturation in some manner within

the DRTO, especially when using an estimator that also considers the closed-loop

behavior.

There are also alternative methods of dealing with input saturation. Instead of avoid-
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ing the event, it can be rigorously captured using methods such as complimentarity

constraints, however these methods are more complex to implement, and their ef-

ficacy compared to the proposed method is a subject for future research. For the

purposes of this study, the input constrained CL-DRTO will be considered adequate

in achieving control amidst saturated inputs, and the architecture will instead be

evaluated on its estimator performance compared to alternative disturbance handling

techniques such as bias updating. Estimating input saturation in the DRTO (either

through input constrained CL-DRTO or other input saturation handling methods) is

critical to achieving superior performance.

3.5.3 Economic Performance

The primary function of an optimization strategy is to improve the economic perfor-

mance of the plant. With estimators this is of particular interest, as there are regions

of poor control while the estimator converges to the true value. The same economic

objective used to verify the input constrained CL-DRTO in Figure 3.11 will be used

here.

This work proposes an adjustment to a current technique: embedding the PI layer

dynamics within Kalman filter estimator. With this adjustment, the models of the

optimizer and estimator will take controller dynamics into account. The CL-DRTO

will also use constraints to avoid input clipping, a vulnerability of the Kalman filter

technique prior to this work.

In this economic evaluation, the goal will be to achieve the economic optimum as

quickly as possible and with the fewest deviations from the optimal path as possible.

This evaluation also pushes the inlet flowrate (F) to saturate at its maximum value of

3 kmol/m3 for the entire simulation.
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Figure 3.12: Efficiency estimation and revenue input trajectories of the new Kalman filter
strategy against bias updating and full state feedback

Figure 3.12 agrees with expectations; the full state feedback scenario (Strategy 3)

performs best, reaching optima fastest and smoothest and with smaller deviations.

The KF estimator performs substantially better than bias updating, even while the

estimator is converging. Eventually all three strategies converge to the same steady

state values. These findings indicate the Kalman filter outperforms bias updating

with the added benefit of having access to the unmeasured parameter, efficiency. If

any further calculations based on the unmeasured states/parameters are needed, bias

updating would be unable to provide these values. This makes the Kalman filter

particularly valuable for unmeasurable parameters that need to be monitored for

safety or profitability. Notably, the DRTO using a Kalman filter performed well even

before the efficiency parameter fully converged. One hurdle for input-constrained
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CL-DRTO is the use of predictions based on estimated states that have not converged

yet; however these findings indicate that even before convergence, these estimates

can be used for effective control. Recall that while not shown in Figure 3.12, the

integral terms ICA and IT are also being estimated by the Kalman filter here, and their

success in predicting the PI controller limits indicates that the Kalman filter is also

capable of estimating states as well as parameters even before complete convergence.

The quantitative difference in economic performance between the 3 linear strategies

is given in Table 3.6. The objective value was calculated by integrating the economic

objective function over the length of the simulation.

Table 3.6: Economic objective value of the linear DRTO strategies

Strategy Method Objective Value

1 Kalman filter estimation $27,024

2 Bias updating $26,293

3 Full state feedback $27,130

Note here that the objective value in Equation 3.29 minimizes a negative value,

however for demonstration the sign of this value is reversed and reported as a "$"

value, as it represents the profitability of the process. As expected, the plant performs

best when all states and parameters are measurable. However the proposed strategy

shows a 2.8% increase in profitability compared to bias updating, and only a 0.3%

decrease in performance from full state feedback; this is especially significant as input

saturation tends to cause significantly worse performance in estimator setups. Given

these economic results, the proposed estimator can be expected to perform at least

as well as bias updating with the added benefit of solving for missing states and

parameters for use in monitoring elsewhere in the plant.
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3.5.4 Target Tracking Performance

While the proposed strategy may be able to reach economic optima efficiently, in

practice the optimal value will change as a function of business goals, supply and

demand, and many other factors. The robustness of the strategy must be verified,

and to this end the ability of the proposed strategy to track changing targets will

be demonstrated alongside the other strategies. Equation 3.33 will be used as the

target tracking objective function, requiring the plant to meet targets for temperature

and concentration. To test how each strategy performs under changing goals, the

concentration targets are stepped above the nominal values, then below the nominal

values, before returning the target to nominal values. This "doublet test" consists

of 3 connected step tests and should demonstrate system dynamics above and be-

low nominal conditions. As the temperature drops when concentration rises, the

temperature targets will step in the opposite direction of the concentration targets

for the doublet test. To demonstrate the effect of input saturation, the first step of

concentration targets is significantly larger and unreachable for the system. This will

cause inputs to saturate, and the CL-DRTO will need to predict these limits within

the optimizaton problem to avoid mismatch issues.
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Figure 3.13: Efficiency estimation and target trajectories comparing the proposed Kalman
filter with other methods

The dynamics of the three strategies above were remarkably similar. To observe the

minor differences, the Figure 3.13 only shows the first step of the doublet test which

contains the infeasible target. The full doublet test is not included as the dynamics of

the three strategies were nearly identical for the remainder of the simulation. Even

looking at this subsection there are only minor differences in the control strategies.

The Kalman filter with CL-DRTO performed well even undergoing its vulnerability

of saturated inputs. As with the economic performance, the objective function was

integrated over the length of the simulation for each control strategy and is given in

Table 3.7 for a quantitative comparison.

Table 3.7: Target tracking objective value of the linear DRTO strategies

Strategy DRTO Method Objective Value

1 Kalman filter estimation 16,413

2 Bias updating 16,434

3 Full state feedback 16,391
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The objective values in Table 3.7 confirm that this proposed version of Kalman filter

estimation performs nearly as well as full state feedback, and outperforms bias

updating by a narrow margin. Large changes in targets, and even input saturation is

unable to deter the convergence of the estimator on its estimated states. As expected,

full state feedback performed best, but the narrow margin of improvement in Table

3.7 is likely due to bias terms and estimates converging to their true values relatively

quickly over the longer simulation time used here. These findings demonstrate that

even in a highly constrained system with frequent target changes the Kalman filter

can still exhibit stable dynamics using a CL-DRTO that constrains the predicted PI

control actions.

This rapid convergence time is a useful feature of the proposed solution; a significant

drawback of estimation techniques is the poor dynamics during convergence of the

estimated states and parameters, particularly when the changing targets perturb the

estimated values. However these findings indicate that the Kalman filter can converge

rapidly, and under these conditions the effects of mismatch during convergence are

minimal.

Thus far the proposed Kalman filter has modestly outperformed bias updating in

economic and tracking performance. While the use of estimated states and parameters

may be desirable in certain circumstances, there is a significant financial benefit to

using the Kalman filter over bias updating: filtering noise.

3.5.5 Handling Noise

Bias updating corrects for plant model mismatch in each iteration, but if the process is

significantly noisy, these corrections are unable to converge to a single value effective

for the whole process, and as a result bias updating handles noisy processes poorly.

The Kalman filter, on the other hand, has information about the noise covariance, and

is able to correct the model prediction using that information. In this case study where

the model describing the plant dynamics is perfectly known (even if the values of
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certain states/parameters are not) the Kalman filter is especially effective at filtering

out noisy measurements. To investigate these issues, four noise tests were run on

the economic objective setup. The amplitude of the noise factor for these four tests is

multiplied by 1, 5, 10, and 50, respectively. Each data point on Figure 3.14 represents a

complete simulation, with the economic objective function integrated over the entire

length of the simulation.

Figure 3.14: The effect of noise on the economic objective

Figure 3.14 shows as noise increases, the Kalman filter uses the predetermined noise

covariance to filter out increasing levels of noise. The percent change for the Kalman

filter from the first to the last test was only 1.03%. By contrast, bias updating nearly

tripled its minimized value over the four noise tests. Under a low degree of noise, the

Kalman filter with DRTO input constraints performs very similarly to bias updating

with the same constraints. However, as noise is increased, the benefit of a Kalman
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filter becomes apparent as it filters out even significant levels of noise while the

bias updating strategy struggles to respond to the noise. Bias updating can address

significant noise by calculating the bias using the noisy measurements, then filtering

the bias using an exponential filter on the noise [12].

3.5.6 Nonlinear Verification

Linear models are excellent at approximating conditions near steady state, however

as the system moves further from these conditions, the approximation becomes less

accurate. To verify that the proposed solution functions in systems with nonlinearity,

or when linear approximations are infeasible, a nonlinear system was evaluated that

uses nonlinear models, a nonlinear plant, and an extended Kalman filter (EKF) that

takes into account nonlinearity.

As mentioned in Section 3.1.8, the KF can be inadequate in approximating nonlinear

systems, and an EKF can help improve performance in these cases by approximating

the nonlinear behavior of the plant.

Figure 3.15 demonstrates that the proposed solution can also effectively control

a nonlinear plant using nonlinear models and an EKF estimator. This control was

achieved despite input saturation. As was observed in the linear system, the nonlinear

system demonstrated poor control while the efficiency parameter was converging,

however it only took less than 2 minutes in the simulation to converge, suggesting

that the effect of this poor control would be minimal. Most importantly, notice that

even before the estimator converges the lower bound constraint on CA is satisfied.

This suggests that even in nonlinear systems, and even before the estimator converges,

the proposed solution can effectively achieve optimal results even in the presense of

saturated inputs.

69



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

Figure 3.15: Efficiency estimation and revenue input trajectories of the EKF and nonlinear
models controlling a nonlinear plant

Here the nonlinear optimum runs the system at a lower temperature (using the heater

less) and does not produce as much of the product as the linear setup. As this setup

controls a nonlinear plant, a quantitative comparison between these results and those

of the linear plant may not be meaningful. Several qualitative comparisons can be

drawn though, such as the rapid convergence time, accurate parameter estimation,

and stable optimal values chosen by the economic DRTO objective. In these areas, the

results in Figure 3.15 suggest that the proposed solution performs well in a nonlinear

framework.

As with the linear system, it is desirable to confirm that the estimator’s dynamics are

favorable under changing targets, as this more closely represents practical economic

operation with transient goals and constraints. The nonlinear system is tested under
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the same conditions as the linear one, with the exception of a slight change to the

temperature targets to force input saturation to occur.

Figure 3.16: EKF and nonlinear models controlling a nonlinear plant under a target tracking
objective

As shown in Figure 3.16, DRTO using an extended Kalman filter demonstrates excel-

lent control even during input saturation. Instead of being thrown off the estimated

value like the system without a Constraint Aware DRTO in Figure 3.11, the proposed

solution is unaffected by the input saturation and maintains excellent control and

estimation during and after the input saturation. See Equation 3.28 for the target

tracking objective function used here. These findings suggest the proposed solution

can be expected to track targets well under input saturation even in a nonlinear

framework.

3.6 Vulnerabilities

While adding input constraints to the DRTO offers several advantages to Kalman filter

estimation, there are also instances where it may not be an appropriate addition. For
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example, DRTO input constraints rely on a model of the PI-level behavior to predict

how the PI-level responds to set-points from the DRTO. Therefore the efficacy of this

method is a function of how good the PI-level model is. The estimator is also only

effective if the estimated states and unknown parameters are observable using the

given measurements. Systems without sufficient measurements may need alternative

strategies to compensate for estimated states and unknown parameters that aren’t

observable. Additionally, Kalman filter estimation requires a linearized model and

good nominal values for P(0|0), W, and V to properly converge on estimated states

and parameters. If significant changes are made to constraints or the dynamics of the

process have significantly changed, the Kalman filter may need a new P(0|0) and the

linear KF may need a new linear model to use. In systems where this is a common

occurrence this can become economically and computationally prohibitive. For these

reasons the Kalman filter with DRTO input constraints should be considered for

systems with high noise, missing states/parameters, and a reliable model of plant

dynamics and PI-control dynamics.

3.7 Chapter Summary

This chapter explores the performance of Kalman filter estimation coupled with

CL-DRTO and a PI controller on a simple CSTR. The proposed solution mitigated

the effects of input saturation by constraining the predicted response of the PI con-

troller within the CL-DRTO. Including the controller dynamics in the DRTO offers

an alternative method to achieving closed loop control with DRTO, and including

controller dynamics in the Kalman filter allows the estimator the new feature of

including controller behavior in its predictions. These effects were also studied on

a nonlinear plant, controlled using nonlinear control architecture and an extended

Kalman filter, and demonstrated a technique for achieving good control of a highly

nonlinear process. The performance of the estimator was compared to bias updating;

one method of dealing with plant-model mismatch in traditional DRTO and the stan-

dard approach in CL-DRTO. Not only did the Kalman filter outperform bias updating
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in both economic and target tracking objectives, the Kalman filter also obtained the

true value of the unknown parameter: a result unachievable by bias updating. This

chapter also demonstrated how performance rapidly declines in bias updating as

noise increases, while the Kalman filter was able to achieve good control despite

significant noise.
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4.1 Preliminaries

4.1.1 Background

Control architecture typically uses a linearized version of nonlinear systems, as these

approximations tend to be accurate enough for practical use. These nonlinear systems

take the form shown in Equation 4.1

ẋnl =
dxnl
dt

= f (xnl(t), unl(t))

ynl(t) = g(xnl(t))
(4.1)

where the change in the state vector (ẋnl) is a function of the current state values xnl(t)

and the current value of the inputs unl(t), which tend to be controller actions. The

current state values are also mapped to an vector of the measured outputs (ynl(t)).

The subscript "nl" is used to denote the nonlinear vector is not in deviation form. As

the majority of this work deals with linearized matrices and vectors in deviation form,

this will be considered the default condition when "nl" is not added a subscript. In

practice this nonlinear model can be computationally expensive to simulate, and it is

desirable to approximate its behavior using a linearized state space model, shown in

Equation Set 4.2.

ẋ = Ax(t) + Bu(t)

y = Cx(t)
(4.2)

Here the nonlinear model in Equation 4.1 is approximated using state space model

matrices A, B, and C. These matrices convey how the current states, controller values,

and measurements affect system dynamics. An additional equation is added to only

select the measured states and apply any measurement noise where applicable. The

resulting vector of measured states (y) is used as feedback in closed-loop control. The
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equations are linearized using a steady state value, and their approximation is most

accurate while the system remains close to that steady state condition. However, the

difference in dynamics when the system steps away from steady state is typically

acceptable, and this error tends to be worth the simplicity of a linear model.

4.1.2 Deviation Form

When generating the state space model matrices shown in Equation Set 4.2, a steady

state condition must be chosen to linearize around. When using these state space

model matrices in a linear equation such as Equation 4.2, the state (x(t)), input (u(t)),

and any other associated vectors must be in deviation variable form, where the steady

state values have been subtracted from the actual values. For example, in a system

with a state vector containing n states and an input vector containing m inputs, the

vectors are placed in deviation form following the formulas in Equation Set 4.3.

x(t) =


x′1
x′2
...

x′n

 =


x1

x2
...

xn

−


x1,ss

x2,ss
...

xn,ss

 u(t) =


u′

1

u′
2
...

u′
m

 =


u1

u2
...

um

−


u1,ss

u2,ss
...

um,ss

 (4.3)

It is common in this setting to place an apostrophe over the vector to denote it as

being in deviation variable form, however as virtually all vectors in this study will be

in this form, that notation will not be used here. Instead it can be assumed that any

vectors interacting with state space model matrices can be assumed to be in deviation

variable form unless stated otherwise.

4.1.3 Plant and Model

A model of the plant will be used in control layers to predict future behavior. Model

vectors will be denoted with the subscript “m” as in Equation Set 4.4, and the actual
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plant dynamics will be simulated using the linear model of Equation Set 4.5 and

subscript “p”. To observe the effect of an estimator on the system, Equation Set 4.4

and 4.5 will be slightly modified so they are functions of the estimated parameters

as well. The new component added (Dθθ(t))) depicts the effect of the estimated

parameter(s) (θ(t)) on the states using matrix Dθ.

ẋm = Amxm(t) + Bmu(t) + Dθ,mθ(t)

ym = Cmxm(t)
(4.4)

Here xm and ym represent the states and their measured values respectively. Matrices

Am, Bm, Cm and Dθm will be used to model the plant dynamics. The linearization that

creates these matrices is described in Section 4.2. For the purposes of demonstrating

the control architecture, a linear plant will be used to receive measurements and apply

control actions.

ẋp = Apxp(t) + Bpu(t) + Dθ,pθ

yp = Cpxp(t)
(4.5)

For the purposes of this case study, the true values of the parameters will not change

with time, and thus the parameter vector θ will be treated as constant. This is not

always the case, but for this study the value will be treated constant within the plant.

When simulating control architecture, it is often desirable to convert the continuous

models above into discretized models that can be tracked iteratively. To this end,

Equation Set 4.4 is discretized using the same time interval as the DRTO optimization

interval (∆topt). Choosing this optimization interval requires careful consideration, as

the optimizer is greatly affected by the choice of this interval length. Tosukhowong

et al. [1] suggests a method for choosing an effective ∆topt to use in DRTO. The

DRTO will keep set-points constant across the optimization interval. The equations
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describing the model are given in their discretized form in Equation set 4.6 below.

xm,(k+1) = Am,dxm,k + Bm,duk + Dθm,dθk

ym,(k+1) = Cm,dxm,(k+1)

(4.6)

In this study, separate time steps will be denoted with “k” and the subscript “d” will

be applied to any components that have been discretized. Plants and controllers

typically require much faster decisions than the complex DRTO layer is capable of

reasonably supplying. To address this, the DRTO is often run at a lower frequency

than the MPC control level. This becomes important in the discretization step, as the

discretization interval chosen for the plant and MPC layers will be smaller than the

disretization interval chosen for the DRTO layer. To address this, the MPC model

and plant equations are discretized using ∆tmpc/plant, which is equal to ∆topt
N where N

represents the the number of control actions taken for a given DRTO set-point. The

discretized form of the plant from Equation Set 4.5 is given below in Equation Set 4.7.

xp,(k+1) = Ap,dxp,k + Bp,duk + Dθp,dθk

yp,(k+1) = Cp,dxp,(k+1)

(4.7)

The MPC handles mismatch using a disturbance term instead of estimated values,

and as such its model requires special consideration.

4.1.4 MPC

Model predictive controllers pose several advantages over simple PI control. MPC

predicts future dynamics across a set horizon length, using predictions to calculate

optimal control actions. In multi-input multi-output (MIMO) systems this is especially

useful, as the MPC can consider multi-variable interaction in the model and avoid the

need for multiple PID controllers and the need for controller pairings. MPC can also

include constraints in its optimization. The MPC controller also uses a disturbance

term to update its control actions, allowing it to adjust for plant-model mismatch in
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real-time. This work will use the MPC equations proposed by Li and Swartz [2]. In

this setup, the disturbance term is added as a separate term in the MPC calculations,

Incorporating the disturbance terms directly into the model ensures the effect of the

disturbance is included in predictions, MPC control, and DRTO predictions of the

MPC model.

To accomplish this, this study will modify the implementation by Li and Swartz

[2] using augmented state space model matrices described in Maciejowski [3]. The

conventional state vector xk will include an additional row for each disturbance term,

resulting in a new vector x̃MPC,k. By using the Maciejowski implementation, this

work can apply the disturbance term in model predictions. The disturbance terms are

assumed constant in future predictions, and this is accomplished by adding identity

matrices and zero matrices to the state space model matrices. Note that unlike the

DRTO model, the MPC model does not receive estimated parameters from the Kalman

filter. Instead, the MPC model starts with nominal values of those parameter values

and uses its disturbance term to correct for offset. The Maciejowski implementation

of the model is shown in Equation Set 4.8.

x̃mpc,(k+1) =

xm,(k+1)

d(k+1)

 =

Ad 0

0 I

xm,k

dk

+

Bd

0

 uk

ỹmpc,(k+1) =
[
Cd I

] xm,(k+1)

d(k+1)


Here the model from Equation Set 4.4 is expanded to include disturbance terms and

matrices that describe how they affect the states of the model. The above equations

can be expressed as Equation Set 4.8 below.

x̃mpc,(k+1) = Ampc,dx̃mpc,k + Bmpc,duk

ỹmpc,(k+1) = Cmpc,dx̃mpc,k

(4.8)
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Here the model states (xm,k) combine with the disturbance terms (dk) to form the

state vector used in the MPC algorithm (x̃mpc,k). This augmentation can be performed

after the discretization step, as the disturbance values are defined in discrete terms

[3]. This is not always the case however, and using different matrix values can

induce mismatch. This situation will be studied later in this work. The augmented

shape of these new state space model matrices is determined by the number of

disturbance terms (nd). The identity matrix (I) within Ampc,d is of shape nd × nd,

and the identity matrix within Cmpc,d is shaped nm × nd; as all measured states are

assigned a disturbance term, this matrix must be square. This changes the shapes of

the state space model matrices Ad, Bd, and Cd to (nx + nd)× (nx + nd), (nx + nd)× nu,

and nm × (nx + nd), respectively. In this context, nx, nu, and nm represent the number

of states, inputs, and measured states, respectively. Once a model is developed, the

new state space model matrices are used to initialize the matrices used in the MPC

algorithm.

The unconstrained MPC problem can be analytically solved for control actions over

the entire prediction horizon at once using a composite matrix. This composite matrix

takes the matrices defined in Equation Set 4.8 and adds an additional dimension of

time, adding additional rows of matrices for each step in the horizon. This method-

ology, described in Li and Swartz [2], is more complex to build, but many of the

components can be built before the optimization problem begins, reducing the com-

putational expense. As these matrices can be large and intricate, their exact structures

and descriptions are detailed in the Appendix. The appendix also details the algo-

rithm the MPC uses to take these matrices and compute a set of control actions based

on the states, set-points, and control actions. The change in control actions calculated

for the algorithm above are determined using the formulation from Li and Swartz [2]

given in Equation 4.9.

∆uk = K1(y
SP
k

− (B1Xk + B2uk−1))) (4.9)

Composite matrices are marked with an underbar, denoting a larger shape that
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accounts for how the values evolve over the prediction and control horizons. Equation

4.9 describes how the change in controller values is calculated for the MPC algorithm

detailed in the Appendix.

The change in input action (∆uk) is updated every time step and is a function of the set-

points ((ySP
k

), the states (Xk), and the control actions (uk−1)). The constant components

used in Equation 4.9 (K1,B1,B2) and the other constants used in the algorithm (Q, R, IL,

A) are calculated once before the simulation begins and determine the attributes of the

MPC layer. The Appendix contains a detailed description of each of these components

as well as a description of Equation 4.9 and the other equations governing the MPC

algorithm.

The MPC algorithm can be used to track set-points, but cannot optimize higher-level

objectives such as profitability. This higher-level control can be achieved using a

DRTO layer.

4.1.5 CL-DRTO

Tosukhowong et al. [1] proposed a DRTO architecture which utilizes an open-loop

prediction of the plant dynamics. The DRTO used by Tosukhowong et al. [1] op-

timized a set of controller actions, but as the MPC formula for uk is built into the

optimizer, and uk is a function of the set-points, the DRTO can optimize the set-points

directly. This poses several advantages, including the ability to constrain both the

set-points and the control actions that result from them. This enables the DRTO to

overcome mismatch issues during input saturation, a subject which will be covered in

more detail in Section 4.1.9. A closed-loop DRTO strategy of this type was proposed

by Jamaludin and Swartz [4] in which input-constrained MPC was considered. To

simply control structure, all states, inputs (including the parameters that change with

time) are placed in deviation variable form. This is done by subtracting the steady

state conditions used in linearization from the current values. A similar closed-loop

DRTO strategy is followed in the present study, utilizing an unconstrained MPC
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formulation.

min
Ysp

ϕ(Ysp)

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

U =
[
uT

k uT
(k+1) . . . uT

(k+M−1)

]T

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(4.10)

The DRTO layer consists of Equation Set 4.10 and the model in Equation Set 4.6.

The DRTO layer has been discretized using the larger time interval ∆topt. Here the

objective value (ϕ) is minimized by changing Ysp, a composite vector containing

set-point vectors chosen across the control horizon. In the MPC subproblems, the

set-points in ySP
k

are held constant across the control horizon, however in the DRTO

subproblems, the set-points in Ysp are changed across the control horizon using the

larger DRTO layer time intervals to minimize the objective function. This gives the

MPC N control actions between the set-points chosen by the DRTO. See Section 4.1.3

for more detail. Equation Set 4.10 is governed by several composite vectors, which

span the prediction or control horizons. Composite vectors Xm,(k+1|k), Ysp, and U

contain the model states, set-points, and control actions, respectively. The control

horizon is set at length M, and in setups where the length of the prediction horizon P

is greater than M, u is considered constant for predictions beyond the control horizon.

The control actions within the composite matrix U are calculated using Equation 4.9

which is explained in more detail in Section 4.2. These values are calculated within the

DRTO layer allows the optimizer to predict the controller’s response to the set-points

chosen by the DRTO. For example, in a CL-DRTO with P = 3 and M = 2, Figure 4.1
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shows how the CL-DRTO would be structured to achieve closed-loop optimization

with integrated MPC control.

Figure 4.1: Example CL-DRTO internal structure with MPC prediction

In Figure 4.1, the states from the MPC layer (x̃mpc,k), the disturbance between the MPC

prediction and the plant measurements (dk), the estimated states from the Kalman

filter (x̃e,k), and the previous control action chosen by the MPC (u(k−1)) are all used

to initialize the DRTO layer. They become x̃mpc,0, d0, xm,0, and u−1, respectively. In

the example from Figure 4.1, these states initialize a set of five time steps targeting

the fixed set-point ySP
0 . The DRTO layer uses the equations from all the integration

blocks to build an NLP and they are sent to the solver for simultaneous optimization.

Within the integration block, the MPC model calculates u and updates x̃mpc, the DRTO

model updates xm, and the difference between each model updates d. After the fifth

time step, the final values are sent to initialize the next integration block using a

new set-point from the optimizer. Note here that although the DRTO receives a state

vector from the estimator containing the estimated parameter values, these are not

updated within the DRTO layer. These are treated as constant values throughout the

integration blocks, and as such xm only contains the estimated states.

Using the internal structure from Figure 4.1, the optimizer given in Equation Set 4.10
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can optimize Ysp for a given set of initial inputs. The states within this prediction

horizon are stored in the composite matrix Xm,(k+1|k). The notation (k + 1|k) used in

Equation Set 4.10 denotes that the variable contains values at time step k + 1 and was

based on values from time step k. Typically, some states and parameters are unknown

when developing control architecture; an estimator can then be used to predict the

true value of these unknown components and enable effective control of the system

despite unknowns.

4.1.6 Kalman filter Estimation

Kalman filter estimation can calculate the estimated states and unknown parameters

of a model, a helpful tool in systems where not all desired states are measurable

or where measurements may be inaccurate due to noise or other disturbances. The

estimator treats unknown parameters as pseudo-states, adding them as additional

rows to the nonlinear equations in Equation Set 4.2. This new, larger state vector (x̃e)

is able to update its estimation of the states and unknown parameters as described in

the algorithm of Equation Set 4.14. This augmented setup is given in Equation Set

4.11.

˙̃xe = Aex̃e(t) + Beu(t)

ỹe = Cex̃e(t)
(4.11)

where x̃e represents the values of the known states as well as the estimated pseudo-

states. The additional rows to these matrices mean the state space model matrices

Ae,Be,Ce are also larger to describe how these changing pseudo-states interact with

the states and inputs. As the dynamics of estimated values are tracked using these

additional rows, the Dθm θ(t) component found in Equation Set 4.4 is not needed. This
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new structure is given in more detail in Equation Set 4.12 below. ẋm

ẋps

 =

 Am Aps1

Aps2 Aps3

xm

xps

+

Bm

Bps

 u

ym

yps

 =

Cm 0

0 Cps

xm

xps

 (4.12)

Here the model from Equation Set 4.4 is expanded to include the pseudo-states, given

a notation of "ps" here. The new matrices and vectors included in Equation Set 4.12

describe how the estimated states and parameters affect the other states. The vector

of states used in the model (xm) combine with the pseudo-states estimated by the

Kalman filter (xps) to form the new larger vector used in the estimator (x̃e). After

creating a model of estimated states and parameters, Equation Set 4.11 is discretized

using ∆topt, just as in the DRTO layer, resulting in the discrete implementation in

Equation Set 4.13.

x̃e,(k+1) = Ae,dx̃e,k + Be,duk

ỹe,(k+1) = Ce,dx̃e,k

(4.13)

This work will also use the Kalman filter algorithm described by Welch and Bishop

[5]. This algorithm is given in Equation Set 4.14.

1. x̃e,(k+1|k) = Ae,dx̃e,(k|k) + Be,duk

2. P(k+1|k) = Ae,dP(k|k)AT
e,d + Vk

3. K f ,(k+1) = P(k+1|k)C
T
e,d

(
W(k+1) + Ce,dP(k+1|k)C

T
e,d

)−1

4. x̃e,(k+1|k+1) = x̃e,(k+1|k) + K f ,(k+1)

(
yp,(k+1) − Ce,dx̃e,(k+1|k)

)
5. P(k+1|k+1) = P(k+1|k) − K f ,(k+1)Ce,dP(k+1|k)

(4.14)
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The algorithm above is solved iteratively, using a time step notation of “k to distin-

guish between executions of the Kalman filter. However the Kalman filter, like the

DRTO, executes less often than the MPC and plant layers, running once every N

executions of the MPC and plant layers. All values are assumed constant until the

next execution of the DRTO and Kalman filter layers. The algorithm starts in Step 1

by calculating the predicted states of the plant for the next time step k + 1. One advan-

tage of the Kalman filter in addition to its estimation of unknown values is its ability

to filter noise by means of tuning the Kalman filter gain using the process and mea-

surement noise covariance (V and W, respectively). Loosely, if V >> W, the Kalman

gain is typically higher and the estimates tend to conform to the current measurement

(yp,(k+1)). On the other hand, if W >> V, the filter places more weight on the model

predictions (x̃e,(k+1|k)) when updating the estimates. As a consequence, such tuning

will smooth out measurement noise but decrease the filter responsiveness.

This also calculates the updated values for estimated states and the parameters treated

as pseudo-states in the augmented state vector x̃e. In Step 2 the filter updates the

covariance of the estimates (P) and uses this matrix to update the Kalman filter gain

(K f ) in Step 3. These steps also account for the process and measurement noise (V and

W, respectively). The new gain is used to improve the estimate of the next iteration’s

states in Step 4. In Step 5 the new gain gives an improved estimation of the covariance

matrix for the next iteration. Over time, P and K f converge to steady-state values

and x̃e approaches the true values, including the estimated states and unknown

parameters.

4.1.7 Observability

To infer if the states and parameters can be reliably estimated from the knowledge on

the past measurements, we check if the resulting model is observable or not by using
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the rank of the observability matrix shown in Equation Set 4.15.

Oe =



Ce

Ce Ae

Ce A2
e

...

Ce An−1
e


(4.15)

where Oe represents the observability matrix of the system and is used to assess the

observability of the estimator setup. Here n represents the combined number of states

and pseudo-states. For example, in a system with 3 states, 1 estimated state and

2 estimated parameters, n would be 6. If the rank of Oe equal to n, the system is

considered observable using an estimator [6].

4.1.8 Nonlinear Adaptations

DRTO and MPC predictions rely heavily on the accuracy of their model predictions,

and many plants display at least some degree of nonlinearity. However it may still

be desirable to use simplified linear models in the control structure, which poses

an interesting challenge. The nonlinear dynamics of the plant will induce plant-

model mismatch in the prediction steps of these control layers, and this work will

demonstrate how the control structure handles such an inconsistency. To that end,

the linearized control structure will not be altered when applied to a nonlinear plant,

and instead the disturbance term of the MPC and the Kalman filter will need to

adapt to the mismatch inherent in this control scenario. Ideally this will pose a

practical method for implementing this architecture when nonlinear predictions are

computationally expensive or otherwise infeasible to use. To apply nonlinear control

layers to a nonlinear plant in a DRTO setting, an Extended Kalman filter may be

needed, and an example of this can be found in [7].
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4.1.9 Input Saturation

When the MPC is attempting to reach a large set-point change, the controller actions

chosen may exceed their limits permitted by the plant. In this case the MPC layer will

clip the inputs resulting in input saturation. Input clipping can involve boolean logic,

and incorporating it into DRTO optimizers will result in mixed-integer optimization

formulations. Without accounting for this behavior, the DRTO predicts behavior not

possible at the plant level, and plant-model mismatch occurs. Plant-model mismatch

in general can perturb and derail the estimator from its true value, resulting in poor

control, as illustrated in Figure 4.2.

Figure 4.2: Issues with estimators and input saturation

Input saturation is common in practice, and accounting for its effect on system

dynamics is critical, especially in highly constrained systems or economic objectives

that drive the system to its limits. Several approaches to incorporate this Boolean

behavior have been made, such as complementarity constraints in the DRTO setup

used by Jamaludin and Swartz [4], however this method is complex and difficult to

implement in CL-DRTO. Instead, this chapter uses CL-DRTO to predict the effect of

the optimized set-points within the DRTO, and simply constrains at the DRTO level

the inputs determined by the unconstrained MPC subproblems. By predicting how

the MPC layer responds to a given set-point, the controller response is constrained in

the DRTO so only feasible set-points are sent to the MPC layer. This input constrained
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DRTO was used throughout the chapter to handle input saturation and its effects on

the estimator. It is important to note that any time plant-model mismatch occurs there

can be poor control and constraint violation as the optimizer sends poor set-points

to the MPC layer. This suggests that while the estimator is still converging to its

steady-state value, the resulting plant-model mismatch may cause input clipping.

However if the Kalman filter converges relatively quickly, this method may still result

in control superior to DRTO without MPC constraint knowledge. Relying on these

findings, this work will use input constrained CL-DRTO to minimize the effects of

plant-model mismatch due to estimator convergence.

4.2 Proposed Solution

While the individual control elements used here (DRTO, MPC, Kalman filter Esti-

mation, etc.) are not novel on their own, using them together is indeed novel for

CL-DRTO. See Section 3.2 for an explanation of the studies done on these control

elements elsewhere in literature. Adding state and parameter estimation to DRTO

can improve its robustness in practical use where not all variables are measurable.

MPC offers a predictive optimizer, offering improved control over PI control layers.

The DRTO can make more accurate predictions if the MPC dynamics are predicted

within the DRTO layer. The predicted value of the MPC disturbance vector is also up-

dated within the DRTO to improve the accuracy of the DRTO optimization. All these

elements together pose a control architecture particularly robust to noise, unknown

values, and input saturation.
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Figure 4.3: Information flow diagram of proposed control architecture using DRTO, MPC,
and Kalman filter Estimation

Figure 4.3 above illustrates the flow of information in the proposed control architec-

ture. A clock icon is used to indicate a time step increment in real-time. Note three

distinct models of the process. These linear models with the superscript “DRTO”,

“MPC”, and “KF”, represent the linearized state space models for the DRTO, MPC

and Kalman filter Estimation layers respectively. They are similar but have slight

structural differences. For example, the Kalman filter model treats estimated parame-

ters as pseudo-states, and the MPC model treats disturbance terms as pseudo-states.

These additional rows cause slightly different structure in the linear models, but they

all originate from a linearization of Equation Set 4.1.

A critical component of this solution is the incorporation of the MPC model into

the DRTO layer. This allows the DRTO to simulate the expected response of the

MPC to its chosen set-points. With access to this predicted response, the DRTO can

constrain its set-points to the feasible region of the MPC and avoid input clipping.

This is accomplished by using the calculation for uk from Equation Set 4.33 of the

MPC algorithm. For this task, the DRTO utilizes only the first time step of the MPC

response, so the composite matrices used to calculate uk are modified slightly to only

select the data linked to the first control action. By substituting Equation 4.31 into the

equation for ∆uk, then substituting the equation for ∆uk into uk, a formula is obtained
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for expressing the MPC response as a function of the DRTO set-point.

uk = uk−1 + SILK1

[
ySP

k
− (B1Xk + B2uk−1)

]
S =

[
Is 0

] (4.16)

Equation set 4.16 is used to predict the MPC controller action within the CL-DRTO,

and is a crucial component of the CL-DRTO structure demonstrated in Figure 4.1.

Note uk and uk−1 only contain the control actions of the first step in the control

horizon, this differs in structure from the formula for uk in the MPC algorithm. This

is accomplished by the addition of a selection matrix S, which only selects the first nu

rows: the rows corresponding to the first step of the control horizon. S contains an

identity matrix Is of shape nu x nu, and the ”0” matrix is of shape nu × [(M − 1) ∗ nu].

Now by obtaining the current states, control actions, and disturbance values, the

DRTO can estimate the response of the MPC layer to a set-point of its choice, and the

resulting uk value can be constrained within the DRTO optimization problem. The

proposed architecture will be validated by under conditions challenging to estimators

and optimizers. Significant input saturation, a nonlinear plant, and linearization

mismatch will be used to evaluate this methodology in terms of its robustness and

capability of controlling economic and target tracking objectives.

4.3 Case Study

4.3.1 Nonlinear Plant

The case study used here is a multiple-input multiple-output CSTR. The parameters

governing the system dynamics were obtained from Li et al. [8]. A schematic of the

CSTR used here is given in Figure 4.4 below.
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Figure 4.4: A diagram of the CSTR controlled by the proposed architecture

The inlet flowrate (F) and heat to the reactor (Q) are the manipulated variables and the

reactant concentration in the CSTR (CA) and reactor temperature (T) are the controlled

variables. To test the estimator, a heater efficiency term (η) has been added to the

forumulas from Li et al. [8]. The nonlinear equations governing the CSTR are given

in Equation Sets 4.17 and 4.18.

dCA

dt
=

F
VR

(CA0 − CA)− k0e−
E

RT C2
A (4.17)

dT
dt

=
F

VR
(T0 − T)− ∆Hk0

ρRCp
e−

E
RT C2

A +
ηQ

ρRCpVR
(4.18)

An open-loop test of the equations above was performed to determine a viable steady-

state condition to use for future linearization. These steady state values (set as the

initial values of the simulation) along with the parameters from Li et al. [8] and a

nominal efficiency value of 0.9 compose Table 4.1 below.
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Table 4.1: Parameters used to simulate a CSTR for the case study

Symbol Description (Initial) Value Units

CA Conc. of A in CSTR 0.339 kmol/m3

T Temperature of CSTR 545 K

F Inlet Flowrate 5 m3/h

Q Heater Power 99,840 kJ/h

t time 0 h

CA0 Inlet Conc. of A 3.5 kmol/m3

T0 Inlet Temperature 300 K

k0 Pre-exponential rate factor 8.46 × 106 m3/kmol-h

E Activation Energy 5 × 104 kJ/kmol

R Ideal Gas Constant 8.314 kJ/kmol-K

ρR Density of fluid in CSTR 1000 kg/m3

Cp Heat capacity of fluid in CSTR 0.231 kJ/kg-K

VR Reactor fluid volume 1.0 m3

∆H Heat of reaction −1.16 × 104 kJ/kmol

η Heater efficiency 0.9 ——

The efficiency value of 0.9 will be used to simulate the true response of the plant, but

this value will be considered unknown to the control architecture, and it will be the

estimator’s task to converge on this true value given an initial guess of 0.85. Nonlinear

models tend to describe the true behavior of the plant most accurately; however,

control architectures typically utilize linear models for simplicity and computational

considerations.

4.3.2 Linearized Plant

The plant model will linearized and expressed in deviation form by subtracting the

current value from the nominal/steady state value given in Table 4.1. This linear

model for the system is given below.
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x =

 C′
A

T′

 =

 CA − CA,ss

T − Tss


u =

 F′

Q′

 =

 F − Fss

Q − Qss


θ = [η′] = η − ηss

dxp

dt
=

apC′
A + bpT′ + epF′ + fpQ′ + p1,pη′

gpC′
A + hpT′ + kpF′ + lpQ′ + p2,pη′


The linearized model in state space form is given by

 dC′
A

dt

dT′
dt

 =

 ap bp

gp hp

 C′
A

T′

+

 ep

fp

 F′

Q′

+

 p1,p

p2,p

 [
η′]

which may be compactly expressed as

ẋp = Apxp + Bpu + Dθ,pθ

yp = Cpxp

(4.19)

In Equation Set 4.19, ap, bp, ep, fp and p1,p represent the partial derivatives of dC′
A

dt

with respect to each variable. Similarly, gp, hp, kp, lp, and p2,p represent the partial

derivatives of dT′
dt with respect to each variable. This linearization is done at the

nominal values given in Table 4.1 and using a time interval of ∆tMPC/plant = 0.03̄3 hrs,

or 2 minutes. The resulting Ap, Bp, Cp and Dθ,p will be the state space model matrices

used to simulate the actual response of the plant. Subsequent model linearizations will

take similar matrix structure and will not be characterized elementwise for brevity. In

this case study, the true value of the unmeasured parameter will be assumed constant,

but this may not always be the case, and so the plant is structured to accommodate

dynamic values as well.
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4.3.3 MPC Control Layer

In this case study, the MPC uses the state space setup in Equation Set 4.8, where

disturbance terms are added as pseudo-states and incorporated into the state space

model matrices. This larger state vector (x̃MPC) is exclusively used for the MPC model,

and takes the form below.

x̃MPC,(k+1) = AMPC,dx̃MPC,k + BMPC,duk

ỹMPC,(k+1) = CMPC,dx̃MPC,k

Where in this case, the formula for x̃MPC,(k+1) is


CA,(k+1)

T(k+1)

dCA,(k+1)

dT,(k+1)

 = AMPC,d


CA,k

Tk

dCA,k

dT,k

+ BMPC,d

 Fk

Qk

 (4.20)

These matrices are shaped using the parameters given in Table 4.2. These parameters

govern the contruction of the matrices used in thet MPC algorithm. Table 4.2 can be

applied to the generic MPC algorithm in the Appendix to produce the matrices used

in this case study.

Table 4.2: Parameters governing the shape of the MPC matrices

Symbol Description Value

nu Number of Inputs 2

nx Number of Outputs 2

nd Number of Disturbance Terms 2

ny Number of Outputs with Set-Points 2

P Prediction Horizon Length 3

M Control Horizon Length 2
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To see the exact contents of the matrices used in this case study, see the Case Study

Specific MPC Algorithm in the Appendix. Once these matrices are initialized, the

MPC controls the system using the algorithm in Section 4.1.4. At the end of the

algorithm, the MPC will clip any inputs that exceed the plant input bounds. This

clipping may result in suboptimal results, as the MPC equations used in this layer

are derived from the analytical solution of an unconstrained MPC. These bounds for

the target tracking and economic objective functions (denoted by "Tgt" and "Econ",

respectively) are given in Table 4.3.

Table 4.3: Bounds set for input clipping

Value Lower Bound Upper Bound (Tgt) Upper Bound (Econ) Units

F 0 13 2.8 m3/hr

Q 0 4 × 105 4 × 105 kJ/hr

Here the MPC layer provides an analytical solution for the entire prediction horizon

explicitly using the composite matrices proposed by Li and Swartz [2], avoiding the

need for optimizer generated solutions at the higher MPC frequency, significantly

reducing computational expense.

4.3.4 DRTO Control Layer

The DRTO layer will need to predict the behavior of the plant as it chooses optimal

set-points to send to the MPC layer. The model used in the DRTO to predict the plant

is shown in Equation Set 4.21 and follows the generic structure of Equation Set 4.6

xm,(k+1) = Am,dxm,k + Bm,duk + Dθ,m,dθk

98



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

where in this case, the equation for xm,(k+1) is

C′
A,(k+1)

T′
(k+1)

 = Am,d

C′
A,k

T′
k

+ Bm,d

 F′
k

Q′
k

+ Dθ,m,d

[
η′

k

]
(4.21)

For this Case Study, the DRTO model will be derived by linearizing the same equa-

tions as the linearized plant model. The DRTO model will take the same form as the

plant model with two key differences. First, the DRTO operates at a lower frequency

than the plant, and thus the time interval to discretize the DRTO model will be larger

than that of the plant, with ∆topt = 0.16̄6 hrs, or 10 minutes. The second difference

will be the effect of the unknown parameter vector θk. Without access to the true

value of the parameters, the DRTO will have to simulate the plant using estimated

values. This will cause plant-model mismatch while the estimator converges and any

time the estimation deviates from the true value during the simulation. In addition to

predicting the plant dynamics with a model, this architecture also includes an MPC

model within the DRTO. The DRTO uses the same model as Equation Set 4.20 to

increment the simulated MPC response, but to calculate the control action chosen by

the MPC the DRTO layer will use Equation 4.16. Here a selection matrix S selects the

first two rows of Equation 4.16, corresponding to the F and Q values of the first step in

the control horizon. Solving explicitly in this way bypasses the need for optimization

to simulate the MPC, and instead the DRTO optimization problem becomes quite

simple. The optimization setup of Equation Set 4.10 is applied here, and the DRTO

is tested under an economic and a target tracking objective function. A copy of the

optimization problem used in this case study is included as Equation Set 4.22 for

reference.
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min
Ysp

ϕ(Ysp)

s.t. Xm,min ≤ Xm,(k+1|k) ≤ Xm,max

Ysp,min ≤ Ysp ≤ Ysp,max

Umin ≤ U ≤ Umax

U =
[
uT

k uT
(k+1) . . . uT

(k+M−1)

]T

Ysp =
[
yT

sp,k yT
sp,(k+1) . . . yT

sp,(k+M−1)

]T

Xm,(k+1|k) =
[
xT

m,(k+1|k) xT
m,(k+2|k) . . . xT

m,(k+P|k)

]T

(4.22)

The DRTO layer is comprised of Equation Set 4.22 and and subject to the model in

Equation Set 4.21. The optimization problem above can either track an economic or

a target tracking objective. Constraints for the case study are provided in the next

section. The target tracking objective is provided as Equation 4.23.

φTgt = α1,Tgt(CA − CATgt)
2 + α2,Tgt(T − TTgt)

2 (4.23)

where minimizing the objective value φTgt will drive the system towards the predeter-

mined targets for concentration and temperature (CATgt and TTgt, respectively). This

objective function is used iteratively by the DRTO to choose a set of optimal set-points

to send to the MPC layer. The function is also integrated across the entire simulation

to determine the performance of the control setup as a whole. In most cases, the

ultimate purpose of optimization is to achieve efficient and profitable performance

from the process. This control structure will test its economic performance using an

objective function proposed by Li et al. [8] to approximate profitability.
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φEcon = −α1,EconF(CA0 − CA) + α2,EconQ2 (4.24)

In Equation 4.24, the amount of reactant A converted to product B is given a weight-

ing parameter α1,Econ to indicate the revenue of the process. A second weighting

parameter α2,Econ was applied to the heat input to approximate the cost of the system.

By minimizing φTgt or φEcon, the DRTO can obtain different objectives. The weighting

parameters α1 and α2 were adjusted for both functions to achieve balanced emphasis

between both components.

Table 4.4: Objective function weights used in this Case Study

Weights Values

α1,Tgt, α2,Tgt 103, 1

α1,Econ, α2,Econ 105, 10−7

The DRTO is subject to several constraints, including constraints on the predicted

response from the MPC layer. These constraints are given in Table 4.5.

Table 4.5: Constraints applied to the DRTO

State Upper Bound Lower Bound Units

CA 3.5 0.1 kmol/m3

T 700 400 K

FTgt 13 0 m3/h

FEcon 2.8 0 m3/h

Q 400000 0 kJ/h

CA,sp 3.5 0 kmol/m3

Tsp 700 400 K

∆CA,sp 0.1 -0.1 kmol/m3

∆Tsp 30 -20 K
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Note in Table 4.5 two different constraints for the inlet flowrate F depending on

the objective function. While input saturation could be induced using an infeasible

target in target tracking, the same could not be done for an economic objective. To

test the performance of the control structure under input saturation, the constraints

were instead severely tightened. This will cause the inlet flowrate to saturate for the

entire simulation, thoroughly testing how the estimator handles this condition. By

predicting MPC dynamics, the DRTO can estimate the F and Q chosen by the MPC

as a result of the set-point. This is how the DRTO can constrain these manipulated

variables.

Special care must be taken when implementing the economic objective function

during input saturation. While the inputs are saturated, the poor control caused by

plant-model mismatch can cause constraint violation as the DRTO incorrectly predicts

the effects of its set-points. During this time, CA could be driven below its lower

bound of 0.1 kmol/m3, making it seem as if the system is performing better than it

truly is. In reality, violating constraints is associated with a cost, such as separation

problems downstream. To approximate this reality, the controller will be penalized

for violating this lower bound. The penalty was set to be 1% of revenue for every .01

kmol/m3 below the lower bound, for a maximum penalty of 10% revenue. In practice

these bounds may be required to meet regulatory or product specification targets.

The lower bound on the concentration is applied as a constraint within the DRTO,

however the penalty for violating this constraint is only applied when evaluating

the objective functions over the entire time horizon and not within the optimization

problem, as it only takes effect when the DRTO is unable to accurately predict the

states of the plant.

The performance of the control architecture is affected by the value of the efficiency

parameter used in the model, which is not measurable in this case. The Kalman Filter

will make this possible.
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4.3.5 Kalman filter Estimation Layer

The Kalman filter will attempt to estimate the true efficiency value of 0.9 given an

initial guess of 0.85. Several perturbations of this initial guess were tested and had

negligible impact on results. The states space model for the Kalman filter is given in

Equation Set 4.25.

x̃e,(k+1) = Ae,dx̃e,k + Be,duk

ỹe,(k+1) = Ce,dx̃e,(k+1)

Where in this case, the formula for x̃e,(k+1) is


C′

A,(k+1)

T′
(k+1)

η′
(k+1)

 = Ae,d


C′

A,k

T′
k

η′
k

+ Be,d

 F′
k

Q′
k

 (4.25)

Equation Set 4.25 treats the estimated efficiency parameter η as a pseudo state, and

updates its value using the Kalman filter algorithm given Equation Set 4.14. The

Kalman filter will provide the estimated values of these states and pseudo-states to

the DRTO layer, and use its own states in the next iteration. The extended Kalman

filter can be used to better approximate nonlinearity, but for this case study Equation

Set 4.25 will be used to estimate both linear and nonlinear setups.

The aforementioned setup will be tested in several environments that are classically

challenging for estimators. For economic and target tracking objectives, the pro-

posed solution will be tested under input saturation in three scenarios: a base case,

linearization mismatch, and nonlinear mismatch.
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4.3.6 Scenerio 1: Base Case

In the base case scenario, the proposed solution will be implemented on a linear

plant without any additional changes made. The system will be tested during input

saturation in both the economic and target tracking objectives. In this setup, there are

no additional sources of disturbance. This will serve as a baseline for determining the

effectiveness of the control structure in the more challenging scenarios to follow.

Figure 4.5: Information flow diagram of the base case for the case study

Figure 4.5 shows the control architecture along with the states, inputs, and set-points

involved. However, the diagram does not show the pseudo-states found in the MPC

and estimator matrices. The state vector used in the Kalman filter Estimation (x̃e) will

also include one pseudo-state of the estimated efficiency value (η).

The rank of the observability matrix Oe for the estimator was 3, which matches the

dimensionality of the ỹe vector, indicating that the efficiency can be estimated by

measuring the concentration and temperature.

This scenario tests the control structure when no plant-model mismatch is present,

however this mismatch is a significant weak point of estimators, so it is critical to test

the structure’s robustness to this type of obstacle.
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4.3.7 Scenario 2: Linearization Mismatch

In the base case, all the state space model matrices for the plant, MPC, Estimator,

and DRTO models were linearized at the same steady state conditions. This creates

a level of model agreement that may be overly ideal for practical use. In practice,

updates may be performed on some layers and not others, such as only updating

models in lower-risk control layers. Disagreement between the models used in control

layers may occur, and testing how the proposed solution handles this situation will

be important.

In this scenario, the MPC will be linearized at a different steady state condition

than the plant, estimator, and DRTO models. Each layer will need to adapt to

accommodate the linearization mismatch resulting from linearizations at different

nominal conditions. The MPC will need to use its disturbance term to correct for the

mismatch between the plant and the MPC model. The DRTO also simulates the MPC

response, using an internal disturbance term to measure the difference between the

DRTO’s model of the plant and the DRTO’s model of the MPC layer. This internal

disturbance term will also need to correct for the mismatch created in this scenario.

The estimator must also overcome the mismatch as it converges on the true value of

the efficiency, and this scenario will test if plant-model mismatch makes this more

difficult.

Another open-loop simulation of the nonlinear system in Equation Set 4.1 was per-

formed to select an additional steady-state condition to linearize around. The steady

state values are given in Table 4.6.

Table 4.6: Steady State values used to linearize the MPC model in Scenario 1

Variable Value Units

CA 0.373 kmol/m3

T 516 K

F 3.27 m3/hr

Q 44,697 kJ/hr
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The MPC state space model matrices are linearized around this new steady state

condition and discretized following the same procedure outlined in Section 4.1.4. This

creates three new state space model matrices for the MPC layer: AMPC2,d, BMPC2,d,

and CMPC2,d, with the subscript “MPC2” indicating identical structure but a new

set of steady state values. These changes required an experimental retuning of the

nominal values used in the Kalman filter to better estimate the new system. As this is

a test of the proposed solution, no additional changes will be made to how control is

achieved, and Figure 4.5 serves as an accurate reference for how this scenario will be

set up.

4.3.8 Scenario 3: Nonlinear Mismatch

Ideally when controlling a nonlinear plant, a nonlinear model would be used in the

DRTO, MPC, and Estimator layers. This often does not occur for several reasons;

nonlinear models are more computationally expensive and complex than linear

models, and if the control layers can handle the mismatch, this provides a feasible

approach to controlling a nonlinear process.

Alternatively, the nonlinearity of the plant may not be fully understood. In more

complex processes, an accurate nonlinear model may not be available to fully describe

the plant: in this case linear models must be used despite the inaccuracy.

This scenario poses a different type of mismatch than Scenario 2. By using a nonlinear

plant there will be plant-model mismatch in every layer, and in this scenario even the

estimator will have inaccuracies in its predictions.

Plant-model mismatch within the DRTO and estimator layers is a particular vulner-

ability for estimator based architectures [9]. One issue with plant-model mismatch

in estimator based architectures is the ability to ensure plant optimality. Even when

the estimates have converged to their stationary values, the DRTO solution using the

model updated with these values may still be unable to achieve plant optimality if

plant-model mismatch exists [10]. As these layers are unable to accurately predict
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the response of the plant, infeasible set-points may be sent to the MPC layer and

input saturation and constraint violation may occur. This in turn creates dynamics the

DRTO and estimator cannot predict, and the suboptimal performance of the optimizer

can entirely derail control over the system.

However, this system constrains MPC control action within the DRTO, suggesting

that even while the disturbance terms and estimator parameters converge, the DRTO

will be constrained against providing infeasible set-points to the MPC, improving

the performance of the optimizer. This scenario will also demonstrate a user-friendly

approach to applying complex control architecture in practice: using linear models on

a nonlinear plant and handling the difference with the built-in disturbance vectors.

This scenario is a modification of the base case, and the only change made for this

scenario will be changing the plant response from the linear model used in Equation

Set 4.19 to nonlinear equations 4.17 and 4.18. The MPC and DRTO layers will continue

using linear models linearized around the same conditions, as in the base case. States

will be predicted using the integrator described in Section 3.3 and use the same time

interval of ∆tmpc/plant = 0.03̄3, or 2 minutes. Here again Figure 4.5 provides an

accurate reference of how this scenario will be controlled.

4.4 Results and Discussion

4.4.1 MPC Dynamics in the DRTO Layer

Input saturation is problematic for optimizers as the boolean logic results in a more

difficult optimization problem, and the resulting mismatch from input saturation

makes estimation difficult as well. The proposed solution suggests dealing with

this issue by predicting MPC behavior in the DRTO layer. The DRTO can then

prevent input saturation by adding the input bound constraints to the DRTO layer’s

optimization problem.
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Before proceeding with testing the performance of the proposed solution in general,

this input constrained CL-DRTO was verified against CL-DRTO without input con-

straints from the MPC layer. Typically, dealing with input saturation requires an

accounting of this behavior in the optimizer, such as complementarity constraints,

but proving integrated MPC predictions against alternative strategies falls outside

the scope of this chapter. This work seeks only to demonstrate that a CL-DRTO can

avoid the obstacles presented by input saturation.

Figure 4.6: Efficiency estimation and input trajectories using input constrained CL-DRTO
under an economic objective

Figure 4.6 shows the variables (F, Q, CA) used in the objective function from Equa-

tion 4.24 and the performance of the estimator on its estimated parameter (η). The

flowrate F remained saturated for nearly the entire simulation. Despite constant input

saturation, the CL-DRTO system used here converged on the true efficiency value

of 0.9, and obeyed the CA lower bound constraint of 0.1 kmol/m3. Without input

bounds in the DRTO, there was mismatch between the DRTO model and the plant

response. As a result, the constraint was violated, and the estimator was unable to
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converge on its estimated values. The profitability for both strategies were calculated

using Equation 4.24 and are reported in Table 4.7.

Table 4.7: Economic results of using input constrained CL-DRTO

Strategy Result

Input constrained CL-DRTO $26,625

CL-DRTO without input constraints $22,963

The true objective values for Table 4.7 were negative and minimized by the DRTO, but

as they represent profitability they are reported as positive dollar values correspond-

ing to profit maximization. In dealing with input saturation, adding input bounds as

constraints to the DRTO layer improved profitability by 15.9%. Similar results were

observed using the target tracking objective, reported in Table 4.8.

Table 4.8: Target tracking results of using input constrained CL-DRTO

Strategy Result

Input Constrained CL-DRTO 11,959

DRTO without input constraints 12,887

Using input constrained CL-DRTO improved target tracking performance by 7.2%

compared to CL-DRTO without input constraints and was able to converge on the

estimated parameter despite input saturation. These results confirm that integrating

the MPC behavior into the DRTO layer adequately mitigated the effects of input

saturation in this case.

4.4.2 Economic Performance

Improving economic performance is a major goal of advanced control objectives, so

the three scenarios were tested in their ability to meet an economic objective. The

base case will demonstrate the proposed solution’s ideal function on a linear plant

and minimal disturbance. The robustness will then be tested by replacing the linear
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plant with a nonlinear one and keeping the linear models. The proposed solution will

also be tested by linearizing the MPC around a different steady-state than the rest of

the system.

Figure 4.7: Efficiency estimation and input trajectories of the proposed solution under various
types of disturbance under an economic objective

The performance displayed in Figure 4.7 indicates several interesting findings. First,

all three strategies eventually converge to the correct economic optimum given

sufficient time. This time is relatively fast (< 3 min.) for the given case study and

suggests that even given significant levels of disturbance this proposed solution

should be able to control systems with frequent set-point changes. Second, the use

of the disturbance term appears to slow down the convergence of the estimator.

This effect may be due to an interaction between two different layers attempting to

converge on true values simultaneously. As the Kalman filter gain K f converges on

a steady state value, the disturbance terms within the MPC and DRTO layers are

also converging to their appropriate values, introducing interactions that may affect

convergence time. Third, constraint violation still occurred briefly during the base
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case. The CA value decreased below the lower bound briefly at t ≈ 0.2 min. This

aligns with the time the parameter estimate of the base case was furthest from the true

value, and is an expected side effect of estimators. During convergence, constraint

violation is briefly possible, however as shown in these results, this effect is minimal,

and eventually the estimator converges and this no longer becomes a risk.

Table 4.9: Economic results of the proposed solution under various types of disturbance

Scenario Result

Base Case $26,625

Control w/ Nonlinear Plant $25,947

Control w/ Linearization Mismatch $26,101

The proposed solution was able to handle both types of disturbance very well (the

disturbance induced by linearization mismatch and the disturbance induced by

controlling a nonlinear plant with linear models), and achieved the same steady-

state optimum as if these disturbances were not present. Therefore differences in

performance will be most noticeable during the transition periods of a plant, and while

these transitions here were brief (< 3 min.), in systems with frequent changes these

differences in dynamics can become incredibly important. Both disturbance scenarios

performed similarly, the difference reported in Table 4.9 being less than 1%, and

they each only affected the objective function by about 2.5%. This suggests that the

proposed solution can be implemented in scenarios with significant disturbance and

can be expected to perform nearly as well as the base case with minimal disturbance.

While these results are significant, the time to achieve steady state is relatively short,

and testing the system under multiple changes in steady state would be valuable.

4.4.3 Target Tracking Performance

Using a target tracking objective, the proposed solution is tested over a longer dura-

tion and for multiple changes in steady state conditions.
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Figure 4.8: Efficiency estimation and target trajectories of the proposed solution under
various types of disturbance under an target tracking objective

In Figure 4.8, the temperature target is stepped above the nominal value, below the

nominal value, and then are returned to nominal value. The concentration targets are

stepped in the opposite direction, and the second step change of the concentration

target is intentionally infeasible to induce input saturation. This simulation is also

run over a longer period of time than the economic simulation as there are several

transient periods to observe in the target tracking simulation.

The behavior shown in Figure 4.8 shows that set-point changes perturb the estimator

temporarily, though the estimator recovers from these perturbations quickly. As with

the economic objective, all three scenarios can be expected to converge to the same

value given sufficient time, however there are variations in how these scenarios reach

these values. The estimator takes longer to converge as the disturbance term becomes

more active. This results in a slightly longer time to reach steady state values and

nonideal behavior during transitions between steady states.

112



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

Table 4.10: Target tracking of the proposed solution under various types of disturbance

Scenario Result

Base case 11,959

Control w/ Nonlinear Plant 13,037

Control w/ Linearization Mismatch 12,412

With a longer simulation length, the differences between the two scenarios became

more apparent. The performance of the linear achitecture dropped when using a

nonlinear plant by 9.0% but only by 3.8% when handling linearization mismatch.

This can be observed in Figure 4.8 where the nonlinear plant deviated significantly

from the ideal path, especially immediately after a target change. Interestingly,

the estimator converged better under the nonlinear scenario than the linearization

mismatch scenerio, but the effect of poor control may be more severe when the plant

does not respond as expected.

Despite these findings, the performance observed may be within acceptable deviations

given the advantage of using linear models on a nonlinear process, and the results of

this experiment confirm the proposed solution can adequately handle even significant

sources of disturbance.

4.4.4 Kalman filter Performance

Across economic and target tracking objectives, the Kalman filter was successfully

able to converge on the true efficiency value despite various types of model mismatch

and significant input saturation. Overcoming these weaknesses without the need

for complex complementarity constraints or overly conservative control also made

the Kalman filter easier to implement in this study, and explicitly calculating the

MPC response in the DRTO layer avoided the nested optimization that makes control

architecture so taxing to use. The rapid convergence time of the Kalman filter also

suggests that this implementation would also perform well had the system had
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highly dynamics behavior, and the adequate control during convergence suggests the

proposed solution may even be useful during start-up operations that occur entirely

out of steady-state conditions. Kalman filter estimation has demonstrated its ability

to handle multiple sources of disturbance as well as input saturation while obtaining

states and parameters that would have been unavailable to alternative methods such

as bias updating.

4.4.5 Controlling Nonlinearity

Although this chapter doesn’t explore a rigorous implementation of nonlinearity

(such as nonlinear models and an extended Kalman filter), this work showed that

good overall control of a nonlinear plant can be achieved by proper parameterization

of the linear control architecture. Controlling a nonlinear plant with linear control

architecture offers significant advantages, particularly for scalability. The case study

chosen in this chapter was simple compared to industrial applications. Scaling

up the proposed solution would be problematic if the models were nonlinear and

became increasingly complex. To control a large-scale process without burdening

the computer, linearization of the nonlinear behavior becomes crucial, provided the

control architecture can handle the resulting plant-model mismatch.

This chapter shows that the DRTO, MPC and Kalman filter layers can all use linear

models on a nonlinear process without significant performance issues. Attempting

to control a nonlinear plant with these linear models demonstrated excellent per-

formance despite the plant-model mismatch. While plant-model mismatch tends

to derail Kalman filter estimators, these results indicate the estimator can handle

the mismatch relatively easily, recovering in only a few minutes, with only minor

deviations from ideality during the convergence.

114



Masters Thesis - Andrew Solano McMaster University - Chemical Engineering

4.5 Vulnerabilities

While the proposed control solution offers many advantages, there are also significant

vulnerabilities to the approach. The structure relies heavily on knowledge of plant

dynamics. While the structure was able to handle a nonlinear plant using linear

models, these two models still have relatively similar dynamics and gains near

steady state conditions. If the chosen model poorly represented actual plant behavior,

the disturbance terms may not be sufficient in compensating for the plant-model

mismatch. This case study’s missing variables are also all observable by the plant

measurements. This may not always be true, and for plants with unobservable

hidden states, the estimator may not be sufficient to obtain critical values. Results

also indicated that target changes perturb the estimator and cause nonideal dynamics

while the estimator recovers. In plant that takes frequent or large steps away from

steady state conditions, these issues may become more serious. In a system with rapid

dynamics the Kalman filter may not have a chance to converge, causing nonideality

throughout plant operation. The Kalman filter also needed to be retuned when a new

steady state value was chosen for linearization. If this is a frequent occurrence (such

as in refineries with multiple operating modes) this may increase the complexity of

use.

4.6 Chapter Summary

This chapter explores the performance of the Kalman filter estimator using CL-DRTO

and MPC control layers. In this study, both the MPC and Kalman filter use pseu-

dostates in augmented state vectors. The proposed solution is studied under input

saturation for economic and target tracking objectives, and is placed under several

sources of disturbance. By linearizing the MPC at a different state than the remaining

control layers and plant, mismatch is induced between the MPC model and the re-

mainder of the system. In another scenario, the base case is altered by replacing the
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linear plant with a nonlinear plant, inducing mismatch between the linear models

and the nonlinear process. Despite these sources of disturbance, the Kalman filter

overcame all perturbations from the steady state value of the the unknown parame-

ter. However, if the MPC input bounds were not added to the DRTO optimization

problem, the Kalman filter could not converge on the steady-state parameter values,

and the system demonstrated poor control. The MPC algorithm involves several

composite matrices, and a generic guide for sizing these matrices for a given system

is given in this chapter as well.

4.7 Appendix

4.7.1 Generic MPC Algorithm

The matrices employed in the model predictive control (MPC) algorithm are designed

to incorporate the effects of disturbances on the system states throughout the entire

prediction horizon. This is achieved by utilizing composite matrices, as detailed in

Section 4.3.3, to compute the predictions for the full extent of the horizon. Here under-

bar notation (e.g. X) denotes a composite matrix composed of component matrices

that describe how these component matrices interact across the prediction/control

horizon. Time will still be described with the notation k, but the horizon time step

will be given a notation i. To structure the matrices used here, the control action and

disturbance terms u0 and d are initialized with values from the previous iteration

of the MPC. The MPC will weight the target tracking and input move suppression

using matrices Q and R respectively. Q is of shape ny × ny where ny represents the

number of states with targets being tracked. R is of shape nu × nu. The structure of
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these matrices is given below.

Q =


q1 0 · · · 0

0 q2 · · · 0
... 0 . . . ...

0 · · · · · · qny

 R =


r1 0 · · · 0

0 r2 · · · 0
... 0 . . . ...

0 · · · · · · rnu

 (4.26)

where q1 represents the weight corresponding to the first output and r1 represents the

movement penalty on the first input. These weight matrices Q and R are then used to

construct composite matrices Q, R, and IL, as shown in Equation Set 4.27. The shapes

of Q, R and IL are (P ∗ ny)× (P ∗ ny), (M ∗ nu)× (M ∗ nu), and (M ∗ nu)× (M ∗ nu),

respectively. As mentioned earlier, P and M represent the prediction and control

horizon lengths, respectively.

Q =


Q 0 · · · 0

0 Q · · · 0
... 0 . . . ...

0 · · · · · · Q

 R =


R 0 · · · 0

0 R · · · 0
... 0 . . . ...

0 · · · · · · R

 IL =


I 0 · · · 0

0 I · · · 0
... 0 . . . ...

0 · · · · · · I


(4.27)

The A composite matrix is then calculated from the model matrices. In this context,

A, B, and C are the AMPC,d, BMPC,d, and CMPC,d matrices. These state space model

matrices become the new composite matrix A using Equation 4.28.

A =



CB · · · 0
... . . . ...

∑M−1
i=0 CAiB · · · CB

∑M
i=0 CAiB · · · CAB + CB

... . . . ...

∑P−1
i=0 CAiB · · · ∑P−M

i=0 CAiB


(4.28)

There is a row of matrices for each step in the prediction horizon, and a column for
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each step in the control horizon giving A a shape of (P ∗ ny)× (M ∗ nu). Finally, the

matrices above can be used to calculate the K1 matrix used for the MPC algorithm

using Equation 4.29.

K1 = (ATQA + R)−1(ATQ) (4.29)

The K1 matrix will have a final shape of (M ∗ nu)× (P ∗ nx). The MPC layer uses a

composite vector bk to update the control action, and two matrices used to construct bk

can also be constructed outside the control loop. These matrices are given in Equation

Set 4.30.

B1 =



CA
...

CAm

CAm+1

...

CAp


B2 =



CB
...

∑m−1
i=0 CAiB

∑m
i=0 CAiB

...

∑
p−1
i=0 CAiB


(4.30)

The following components must be updated within the control loop, but they can

reference the constant values of Equations 4.27-4.30 to reduce computational expense.

When the MPC runs, it first constructs a composite matrix (bk) used for calculating

controller action.

bk = B1Xk + B2uk−1 (4.31)

Equation 4.31 computes the value of bk based on the value of the composite state

vector (Xk) and the previous control action (uk−1). In the application of Li and Swartz

[2], the disturbance terms are applied additively to bk. However, as the dynamics are

built into the state space model matrices within B1 and B2, this is not necessary.

At this stage of the process, the MPC algorithm will receive a set-point from the DRTO

layer. This set-point is fixed across the MPC’s prediction horizon as it operates at a
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higher frequency than the DRTO. The new composite vector for set-points is given in

Equation 4.32.

ySP
k =


ySP

i,k

ySP
i+1,k
...

ySP
P,k


ySP

i,k = ySP
i+1,k = · · · = ySP

P,k

(4.32)

Here ySP
k has a shape of (M ∗ ny)× 1. The change in controller values (∆uk) can now

be calculated and used to predict the next set of states (y
(k+1)

) and suggested control

actions (uk) as shown in Equation Set 4.33.

∆uk = K1(ySP
k

− bk)

y
(k+1)

= A∆uk + bk

uk = uk−1 + IL∆uk

(4.33)

This derivation and further explanation of its components can be found in Li and

Swartz [2]. The first ny rows of y(k+1) are the predicted plant response from that

control action and are labeled as yMPC,(k+1). The first nu rows of uk are the control

actions of the first time step, and these are clipped as needed and sent to the plant for

implementation, labeled as uk. The actual response of the plant to uk is measured, and

the difference between the measured plant response (yp,(k+1)) and the predicted plant

response (yMPC,(k+1)) is used to calculate a disturbance term as in Equation 4.34.

dk = yp,(k+1) − yMPC,(k+1) (4.34)

Using the equations of the appendix given so far, the MPC algorithm can be executed

as shown in Li and Swartz [2] and given below: Init. Calculate constant components
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(Q, R, IL, A, K1) once outside of the control loop.

1. Calculate bk, a function of the states and inputs.

2. Form a composite matrix of set-points ySP
k

from the DRTO set-points received.

3. Calculate the change in controller values, ∆uk.

4. Use these controller actions to generate a predicted plant response, y
(k+1)

.

5. Select the first ny rows of y
(k+1)

to select the first response in the prediction

horizon, ympc,(k+1).

6. Select the first nu rows of ∆uk and use it to determine the next set of control

actions uk.

7. Send uk to the plant and compare the measured response yp,(k+1) with the

predicted response ympc,(k+1).

8. Update Xk with the disturbance dk between the measured and predicted re-

sponses.

The disturbance term is then used as an input in the next iteration of the MPC along

with the composite state vector (Xk) and the previous control action (uk−1). At this

point the loop is restarted.

4.7.2 Case Study Specific MPC Algorithm

Several initial values are needed to govern the behavior of the MPC layer. The values

used in this case study are given in Table 4.11 for reference.
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Table 4.11: Weights and penalties used in constructing MPC matrices

Symbol Description Value

q1 Target tracking weight for CA 100

q2 Target tracking weight for T 1

r1 Input Movement penalty for F 0.01

r2 Input Movement penalty for Q 0

Using these values, Q and R are constructed, then used to build Q and R as shown in

Equation Set 4.35.

Q =

 q1 0

0 q2

 R =

 r1 0

0 r2

 I =

 1 0

0 1



Q =


Q 0 0

0 Q 0

0 0 Q

 R =

R 0

0 R

 IL =

I 0

0 I

 (4.35)

The sizes of these matrices are governed by the nature of the case study, based on

the values in Table 4.2 and following the procedure in the General MPC Algorithm

section of the Appendix. The A matrix is then constructed, shown in Equation 4.36.

A =


CB 0

CAB + CB CB

CAAB + CAB + CB CAB + CB

 (4.36)

The state space model matrices used here are the AMPC,d, BMPC,d and CMPC,d matrices

declared in the Preliminaries section. The matrices in Equation Sets 4.35 and 4.36

can now be used to calculate the K1 value using Equation 4.29. The final two time-

independent matrices needed for the MPC algorithm are calculated below
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B1 =


CA

CAA

CAAA

 B2 =


CB

CAB

CAAB

 (4.37)

where the state space model matrices used are the same as those used in Equation

4.36. After the time-independent components of the MPC algorithm are constructed

outside the control loop, the loop can begin and several matrices must be recalculated

each iteration. These steps are covered in Section 4.3.3.
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This study proposes Kalman filter (KF) estimation with CL-DRTO and studies both

MPC and PI control layers. The research’s significance lies in its ability to handle input

saturation and various disturbance sources, particularly under nonlinear conditions

and frequent target changes. This work implements input constrained CL-DRTO to

address input saturation challenges. Traditional methods of handling input saturation

rely on Boolean logic and are complex and difficult to scale. By incorporating input

bounds from the controller into the DRTO layer’s optimization problem, the proposed

solution effectively prevents input saturation, overcoming this obstacle. Chapters 3

and 4 test the proposed Kalman filter with PI and MPC control layers, respectively,

and their findings are given here.
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5.1 Findings for KF with CL-DRTO and PI Control

In a PI controlled system, controller dynamics can be directly incorporated into the

model, giving the Kalman filter additional information in its prediction step. This

strategy was compared with the standard Kalman filter strategy (using a model with-

out controller dynamics) as well as the standard for handling plant-model mismatch:

bias updating. In the MPC controlled system, the proposed strategy was tested han-

dling under various sources of disturbance. An ideal scenario of full state feedback

was also run in parallel for comparison. All these strategies sent their DRTO set-

points directly to the control layer. In the PI controlled system, the proposed Kalman

filter strategy demonstrated excellent economic and target tracking performance,

slightly outperforming bias updating even during input saturation. The proposed

Kalman filter significantly outperformed bias updating when measurement noise was

increased. The resulting addition to the Kalman filter strategy makes the framework

more robust, more profitable, and more practical. The proposed strategy was also

tested on a nonlinear system using an extended Kalman filter, demonstrating excellent

performance even under input saturation. While linearization is often desirable for

efficiency and simplicity, it may not be feasible in highly nonlinear or transient sys-

tems. This approach demonstrated an example of how to control a nonlinear process

using nonlinear models and nonlinear estimators, further increasing the scope of the

proposed solution. This work has sought to improve on recently proposed Kalman

filter estimation techniques in DRTO, specifically in highly constrained systems. Fu-

ture work on the subject may be to approximate the behavior of input clipping a the

DRTO level using smoothed switching functions to approximate Boolean logic in

continuous optimization setting. Determining how well these smoothing functions

linearize and can be manipulated by an optimizer requires more study. Additionally,

there are many applications where PI-control is insufficient, and an MPC layer is

needed to control the PI-layer. Expanding this methodology on a MPC-based system

would expand its scope for practical use.
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5.2 Findings for KF with CL-DRTO and MPC Control

The Kalman filter also performed well in an MPC controlled system, with input

constrained CL-DRTO adhering to constraints and accurately converging on the true

values of the states and unknown parameter. The Kalman filter was tested under

various sources of plant-model mismatch. By linearizing the MPC around a different

steady state than the DRTO model and plant were linearized, there was mismatch

between the control layer models and between the MPC model and plant. This

chapter also used linear architecture to control a nonlinear plant, inherently introduc-

ing plant-model mismatch between the plant and all the control layers. On top of

these mismatch sources, the architecture was given infeasible targets to induce input

saturation, a particular difficulty for estimators. Despite these sources of mismatch

and input saturation, the MPC layer and estimator were both able to overcome their

obstacles; the control architecture was able to achieve effective control and accurate

state and parameter estimation in under all these conditions. The findings did suggest

that as plant-model mismatch increases, the estimator is further perturbed from the

steady state value and takes longer to converge. However, this effect is shown to

be negligible in the case study tested. The integration of the Kalman filter in this

architecture is a significant advancement. It successfully converged on true values

despite model mismatches and input saturation. The CL-DRTO relies on these esti-

mated states and parameters to accurately predict the behavior of the controller and

plant throughout the prediction horizon. Without an accurate estimation of model

values, the CL-DRTO would send set-points that drive the controller beyond its

bounds. This enhancement is particularly relevant for dynamic systems and start-up

operations, where rapid convergence and accurate control during transitions are

crucial. By controlling nonlinear plants using linear control architecture, the study

demonstrates that the DRTO, MPC, and Kalman filter layers can manage nonlinear

behavior with minimal performance degradation, a crucial capability for scalability in

larger, more complex systems. Further research is needed to explore the full potential

of this approach, particularly in systems undergoing multiple steady-state changes.
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The scalability of this approach to larger, more complex systems remains an area for

future exploration. This work also focuses mainly on estimating a single unknown

parameter. The effect of converging on multiple unknown values and their potential

interaction requires further study. Input constrained CL-DRTO outperformed the

DRTO without input constraints, but it would be more valuable to compare this

methodology to rigorous handling of input saturation, for example through Boolean

representations using complementarity constraints.

5.3 Final Insights

These research areas and the strategy proposed here represent promising potential

for estimators to become more robust and accessible to industry, where noise, missing

measurements and input saturation are a common occurrence. By testing the estima-

tion technique in both PI and MPC controlled systems, this research offers a robust,

efficient, and scalable solution for controlling nonlinear plants and dynamic systems,

laying a solid foundation for future research and practical applications in various

industries.
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