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Lay Abstract

The contemporary landscape of computing systems witnesses a surge in compute

elements, often juggling multiple concurrent workloads. These workloads present a

kaleidoscope of memory access patterns and diverse memory requirements. Despite

this, main memory architectures persist in employing a uniform approach, treating

all requests alike. This approach is exemplified in memory mapping, where a singular

mapping strategy is applied across various parallelism levels. However, this blanket

approach neglects performance nuances inherent in individual application memory

access patterns. Departing from conventional methods that attempt dynamic map-

ping changes, this thesis proposes a novel perspective: treating main memory as a

federation of independent resources, or ”islands.” It presents a methodology to opti-

mize address mapping for each application, an optimization framework for defining

these memory islands, and a software-aware codesign strategy to configure mem-

ory controllers accordingly. Extensive evaluation across a spectrum of workloads

demonstrates substantial performance enhancements compared to other mapping ap-

proaches.
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Abstract

Modern computing systems are exhibiting increasing computing elements with several

co-running workloads. These workloads exhibit highly diverse memory access patterns

and have different memory requirements. Nonetheless, main memory architectures

are still oblivious to this diversity handling all requests with the same set of rules.

Memory mapping is a clear example of this failing one-size-fits-all memory approach.

Encompassing several parallelism levels (channels, ranks, groups, and banks), the

memory performance of an application depends heavily on its particular memory

access pattern and how it is mapped to these levels. In contrast, current memory

controllers (MCs) deploy a fixed address mapping for all applications, which leaves

significant performance opportunities if each application is serviced with the suited

mapping.

Instead of following the prior approach of attempting to dynamically change the

address mapping, which has significant limitations due to the need for data migra-

tions, this thesis promotes the idea of considering main memory as an independent

federated set of resources, which we call islands. Based on this idea, it introduces

1) a methodology to decide the address mapping that maximizes the performance of

each application; 2) an optimization framework to statically define this federation of

iv



islands for each set of co-running workloads; 3) and finally, a software-aware code-

sign methodology to configure the MC with the various memory islands and their

corresponding address mappings.

Our extensive evaluation with a diverse set of more than 80 workloads and several

single- and multi-core system setups show a significant performance improvement over

the best compared static mapping when deploying the proposed technique.
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Chapter 1

Introduction

The rapid advancement of logic processing units, such as CPUs and GPUs, has signif-

icantly improved computational power in computing systems. However, the progress

in memory subsystem bandwidth and latency has been comparatively limited. Con-

sequently, the rate at which data can be transmitted within memory components

may not keep up with the data consumption speed of processing units, giving rise

to a phenomenon known as the ”Memory wall,” which hinders overall system perfor-

mance and efficiency [18]. This challenge has spurred extensive research efforts aimed

at enhancing memory performance within computer architecture design.

Efficient memory allocation stands as a pivotal factor in optimizing memory us-

age and, by extension, application performance in contemporary computing systems.

Modern off-chip Dynamic Random Access Memories (DRAMs) are composed in the

form of a hierarchy of segments. DRAM channels comprise one or more ranks, a rank

has several bank groups, each of which has several banks. A DRAM bank comprises

a matrix of 2D cells in the form of rows and columns. The address mapping module

in memory controllers (MCs) is the one responsible for determining how a memory
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address is mapped to these segments. Three key observations motivate this thesis.

Observation 1 : The memory performance of an application depends heavily on its

particular memory access pattern and how it is mapped into the aforementioned main

memory segments. Observation 2 : Modern MPSoCs execute multiple applications

that exercise diverse memory access patterns. Additionally, in heterogeneous MPSoCs

(like those with both GPUs and CPUs), it has been shown that typical GPU and CPU

workloads exhibit different behavior that mandates different memory mappings [19].

Observation 3 : State-of-the-art MCs deploy application-agnostic fixated techniques

that are universally applied to all incoming requests. These techniques typically

favor a very particular access pattern, for example, these exhibiting high locality.

Nonetheless, even if they are tailored to favor another access pattern, they remain

focused only on one pattern at the expense of hurting applications not exhibiting such

a pattern. Taking address mapping as an example, current MCs deploy one address

mapping for all applications. However, we observe that the application’s performance

significantly varies with different mappings. Figure 1.1 shows this observation for two

of the SPEC2006 benchmarks with two different mappings. While GemsFDTD seems

to have high locality and benefit from having the DRAM column bits (Co) at the

least significant bits in map4, cactus exhibits better performance when the mapping

is interleaving-oriented and maps channel (Ch), rank (Ra), and bank (Ba) bits to the

lower address bits in the mapping in map2.

As the figure illustrates, there is a big performance variation based on the se-

lected address mapping (Observation 1 ), and the two applications exhibit better

performance using different mappings (Observation 2 ). Finally, in a multi-core SoC,

2
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Figure 1.1: Comparing application’s performance (execution cycles) with two
different mappings; map2: RoCoBaRaCh, map4: RoBaRaChCo.

where the two applications execute together, the MC has to choose only one map-

ping. As Figure 1.1 also shows, deploying either mapping in this case, one of the two

applications suffers significant performance degradation (Observation 3 ). Some ef-

forts have been proposed to dynamically change the address mapping during run-time

to adapt to this variation (e.g. [15, 18, 1]). However, dynamically changing address

mapping mandates data migration in DRAM, which is a highly costly operation that

diminishes the performance improvement in addition to custom circuitry to enable

the migration that these works depend on. Recently, SDAM [39] proposed a software-

defined approach, where it extends the malloc dynamic memory allocation, and the

physical page OS allocator to enable programmers to define the address mapping for

particular memory pages (chunks). 1) SDAM focuses on 3D memories, which enter-

tain a large number of channels; hence, focuses mainly on mapping address bits with

large bit flips to the channel bits. Compared to 3D memories, commodity DRAMs

(e.g. (LP)DDR4/5) exhibit way less number of channels (usually four or fewer), which

limits the applicability of SDAM to these memories. 2) SDAM requires several mod-

ifications to both software (dynamic memory allocator), and OS (virtual-to-physical

3
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mapper), in addition to the hardware modifications. 3) its approach in determining

best mapping depends on the bit-flip metric, which is an indirect metric that was

found to fail to take into account DRAM timing constraints and does not generalize

easily to a more complex DRAM organization hierarchy [18].

Instead of facing the complexity of dynamically changing the address mapping

and its associated expensive data migration, this work looks into a modern off-chip

memory as a federation of islands, where each island has its own address mapping.

We believe that shifting the perception of off-chip memory in modern MPSoCs from

a monolithic resource into a heterogeneous collection of resources has the potential to

address many of the challenges of these systems. Toward that goal, this thesis makes

the following contributions.

1) A methodology to decide address mapping. This methodology applies

two distinct techniques. The first one is targeting applications with stream access

patterns. A stream is a well-defined memory access pattern, which can be as simple

as the form of A[i] or has level(s) of indirection such as A[B[i]] [36]. In addition

to its widespread in multimedia[29] and data analytics [3], streams are also very

common in general-purpose compute workloads [35]. This one leverages the well-

defined pattern of the stream to guide the selection of the address mapping. The

second one is a profile-based approach, where we propose to run the workload with

several address mappings under investigation and observe the impact on performance

to guide the choice of the mapping providing the best performance. Despite its

simplicity, we find the profile-based approach to be more efficient than techniques

aiming at indirect metrics such as analyzing the bit flip rates [40] or even using

machine learning techniques [18]. This is because first, while these techniques suffer

4
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an overlooked gap between these metrics and the actual performance of the workload

with a particular address mapping, profiling provides such a direct answer. Second,

from our extensive evaluations for different benchmarks, we find that generally, a

handful of simple mappings prove to be effective in providing the highest performance

boost for workloads without the need to try all possible address permutations. This

makes profiling a reasonable task.

2) A general approach to consider main memory as independent feder-

ated regions (we call islands). Each island is composed of one or more memory

banks and has its characteristics (e.g. size) and the MC handles it differently (e.g. de-

ploys a different address mapping, page policy, or even scheduling techniques) without

any required modifications to the DRAM devices themselves.

3) An optimization framework to statically define this federation of

islands for each set of co-running workloads The challenge we address here

is how to distribute the whole memory resources among the federated islands to

optimize overall systems memory performance. As we discuss in detail in Chapter 4,

we observe that applications show a drastic disparate behavior when they are assigned

more memory resources. We formulate this as an optimization problem in Section 5.2.

4) A software-aware co-design methodology to configure the MC with

the various memory islands and their corresponding address mappings This

methodology does not require any changes to the software-hardware interface (i.e.

Instruction Set Architecture), to the programming model, or to the OS (i.e. physical

page allocators), which simplifies the adoption of the methodology. This methodology

depends on two main components. 1) A software-managed scratchpad SRAM memory

(SPM) at the MC that holds all the configurable registers to determine island and

5
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mapping configurations; and 2) A reverse Translation Lookaside Buffer (rTLB) that

resolves incoming requests’ physical addresses to their original virtual addresses to

be able to associate them to the configuration in the SPM (since it is encoded in

a virtual domain). A detailed discussion about the architecture and the proposed

methodology is in Chapter 5.

Our detailed evaluation in cycle-accurate simulations with 1, 2, 4 and 8 core sys-

tems show that the proposed approach achieves a significant performance improve-

ment (up to 50% in some cases) over the best compared static address mapping.

6
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Chapter 2

Related Work

Address Mapping Techniques. Zhang et al. [40] introduced an address mapping

scheme based on permutations. This scheme involves XOR operations between a

bank bit and a row bit to enhance the flip ratio of bank address bits. Chatterjee

et al.[6] extended the permutation-based address mapping by incorporating channel

bits into XOR operations, particularly designed for irregular GPU applications. both

of these approaches employ only trace-based application features, compared to our

approach which employs application-based features. DReAM[15] monitors memory

requests and dynamically adjusts the mapping based on changes in physical address

bits. Adavally and Kavi[1] proposed a similar but more accurate approach for paral-

lelism and conflict estimation compared to Dream. However, both of these approaches

need data migration. none of the above papers support multiple address mappings si-

multaneously for different applications. Liu et al.[19] utilize an entropy-based indirect

method. Their proposed method lacks support for multiple address mappings. Ad-

ditionally, it focuses on indirect features, while our approach considers actual direct

features of the application, especially for strided access patterns. The fact that they

7
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also take power as a metric into account is impressive. Chen et al.’s study [8] presents

an alternative dynamic entropy-based approach for general-purpose GPUs. Not only

is this method primarily tailored to GPUs, but it also places a heavy emphasis on

entropy-based features, which may not possess the necessary awareness to generate

an appropriate address mapping. Congen[12] defines the challenge of optimizing row

buffer hits as a graph-cut problem. In addition to being more complex than our

approach, Congen lacks features such as partitioning for interference reduction and

support for multiple address mappings. Flatfish[18] adopts an adaptive reinforcement

learning method, eschewing indirect methods like bit entropy. However, in compari-

son to our approach, Flatfish lacks partitioning as a means to reduce interference, and

it employs a single, albeit adaptive, address mapping. Moreover, its reinforcement

learning method is more complex, leading to migration overhead in online mode.

Recently, SDAM [39] proposed a software-defined approach, where it extends the

malloc dynamic memory allocation, and the physical page OS allocator to enable

programmers to define the address mapping for particular memory pages (chunks).

SDAM can be considered one of the closest works to this thesis; however, there

are several key differences. 1) SDAM focuses on 3D memories, which entertain a

large number of channels; hence, focuses mainly on mapping address bits with large

bit flips to the channel bits. Compared to 3D memories, commodity DRAMs (e.g.

(LP)DDR4/5) exhibit way less number of channels (usually four or fewer), which

limits the applicability of SDAM to these memories. Our proposed federated islands

approach considers all the complexity of a modern main memory including banks,

groups, ranks, and channels, which makes it applicable to both traditional DDR

memories as well as 3D ones. 2) SDAM requires several modifications to both software

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – F. Derakhshani; McMaster University – Electrical and Computer

Engineering

(dynamic memory allocator), and OS (virtual-to-physical mapper), in addition to the

hardware modifications. Other than the framework required to configure the SPM,

we require no modifications at all to legacy software or OS. 3) SDM approach in

determining best mapping depends on the bit-flip metric, which is an indirect metric

that was found to fail to take into account DRAM timing constraints and does not

generalize easily to a more complex DRAM organization hierarchy [18]. We instead

adopt either a profiling-based approach for non-structured access patterns or the

stream-aware approach for streaming-based patterns.

Memory Partitioning. Main memory resource partitioning has been adopted

at different levels: at bank [38, 11, 28, 34], at rank [2, 41], and at channel levels [21].

It has been deployed to address a diverse set of goals including 1) minimizing inter-

core interference [21, 38], providing strong real-time latency guarantees [28], and

addressing side-channel security vulnerabilities [34]. Instead of obliviously mapping

banks to cores or applications, we formulate an optimization problem to grant every

application on the island with the number of bank resources such that overall system

performance is improved.

Memory and Bank-Level Parallelism Several prior works aimed at estimat-

ing the amount of memory (e.g. [26, 33]) or bank-level parallelism (e.g. [16, 31]) an

application leverages. The former usually is measured in terms of the average num-

ber of outstanding requests of the application (e.g. through Memory Status Registers

(MSHRs) sizes), while the latter uses the number of requests concurrently serviced

from the application as an indication of bank parallelism. Recently, [10] proposed an-

other metric, bank parallelism utilization as a representation of the average number of

9
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banks being concurrently used. These metrics were effectively used in runtime track-

ing and dynamically adapting solutions. Nonetheless, similar to the bit-flip ratio, we

find all these metrics, despite their effectiveness, as an indirect way that does not

fully capture the impact of how many banks are offered to an application on its per-

formance. Since our address mapping determination is an offline process, we lean to

profiling as a methodology to demystify this relationship as explained in Section 5.2.

10
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Chapter 3

Background

3.1 DRAM Architecture

The diagram in Figure 3.1 illustrates a typical DRAM architecture, wherein DRAM

cells are organized into a 2-D memory array known as a DRAM bank. Each bank

incorporates a sense amplifier (SA) array, which acts as a local buffer (also called row

buffer) for a DRAM row during data access. Multiple DRAM banks form a DRAM

rank, and multiple ranks constitute a channel. Ranks within the same channel share a

physical link to the processor. In DDR4/GDDR5 SDRAM, an additional level called

”bank group” is introduced between the bank and rank[18][9][4].

3.1.1 DRAM Address Mapping

Consequently, to locate a specific DRAM cell, one must provide the corresponding

Channel ID, Rank ID, Bank Group ID, Bank ID, Row ID, and Column ID. Designing

11
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Figure 3.1: A general illustration of DRAM architecture.

an optimal scheme to map the physical address to these IDs poses a significant chal-

lenge. One of the challenges is the row buffer hit ratio. Typically, when accessing a

DRAM cell, the DRAM first charges the associated DRAM row containing the target

cell into the row buffer. Subsequent column accesses are then performed based on

the Column ID. As a result, if subsequent requests attempt to access DRAM cells

within the same row, they can directly access the desired cells within the row buffer.

This scenario, commonly known as a ”row buffer hit,” reduces latency and power

consumption by circumventing the need for DRAM precharge and charge operations.

Therefore, maximizing the row buffer hit ratio can substantially enhance DRAM per-

formance. Another challenge is the utilization of bank parallelism to enhance memory

access throughput, as each bank can independently handle a distinct request. Pre-

vious studies have aimed to distribute memory requests across multiple banks to

12
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maximize parallelism [19]. However, this simplistic distribution method proves in-

adequate due to the intricate timing constraints imposed by the DDR protocol, an

aspect that previous works have overlooked despite its significance[18].

3.2 Streams and Strides

we can define a ”stream” generally as a continuous sequence of memory accesses with

a constant direction and a ”stride” as the constant address delta between consecu-

tive memory accesses[17]. Observations show that there can be a pattern between two

consecutive load addresses for the same program counter (PC). Applications can have

different memory access patterns, including straightforward reuse and strides, as well

as more intricate calculations involving memory indirection like linked lists[5]. In our

study, we categorized the applications into two distinct groups based on their memory

access patterns. Strided applications are characterized by having main streams with

a fixed stride size, where data accesses follow a regular pattern. In these applications,

memory accesses occur at uniform intervals known as strides, facilitating predictable

memory access patterns. Examples of strided applications include matrix multipli-

cation algorithms, image processing routines, and data streaming applications. Con-

versely, non-strided applications exhibit irregular or unpredictable memory access

patterns. In these applications, either the main streams are not easily identifiable, or

their main streams do not adhere to a fixed stride size. As a result, memory accesses in

non-strided applications lack regularity, posing challenges for memory management

and optimization techniques. Examples of non-strided applications include certain

database workloads, web servers, and multimedia applications. Understanding the

distinction between strided and non-strided applications is essential for developing

13
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efficient memory management techniques tailored to the specific characteristics of

each application category.

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


Chapter 4

Motivation

4.1 Diverse Behavior of Applications

The selection of an appropriate mapping scheme holds paramount significance as it

profoundly impacts both the system’s execution time and power consumption. To

validate the criticality of the mapping scheme, we conducted multiple comprehensive

investigations. Figure 4.1 presents a heatmap illustrating the frequency of bitflips,

calculated as the number of bitflips divided by the total number of requests, across

various benchmarks.

15
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Figure 4.1: Heatmap of bit-flip patterns for strided and non-strided benchmarks
(The y-axis represents the benchmark)

While we emphasize that we do not rely solely on bit-flip occurrences as the sole

determinant of mapping decisions, they still provide valuable insight. The heatmap

reveals distinct bit-flip patterns among the benchmarks, suggesting that a single,
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fixed mapping strategy cannot be adequate for all of the benchmarks. For instance,

the bit-flip patterns of different benchmarks vary significantly, indicating the need for

adaptable mapping strategies tailored to individual application characteristics.

Notably, while examining the heatmap of non-strided benchmarks (SPEC bench-

marks [30]), depicted in Figure 4.1(a), we do not discern any specific pattern or

correlation among different benchmarks. However, the strided heatmap, illustrated

as in Figure 4.1(b), reveals a clear pattern between various stride sizes within a single

application. This visualization adeptly showcases the relative bit-flip patterns across

different stride sizes of a benchmark. Understanding these discernible patterns is

imperative as we endeavor to harness this insight in crafting optimal mappings for

stream-based applications.

4.2 Impact of Address Mapping

In another experiment, we utilized four distinct pre-defined mapping schemes. Our

experimentation encompassed a diverse set of benchmarks as shown in Figure 4.2.

Figure 4.2 presents the execution time for various applications under four different

memory mappings: map1 (Ro-Ch-Ra-Ba-Co), map2 (Ro-Co-Ba-Ra-Ch), map3 (Ro-

Ch-Ba-Ra-Co), and map4 (Ro-Ba-Ra-Ch-Co).

The empirical results demonstrate substantial variations in the execution time be-

tween different mapping schemes, with relative differences reaching as high as 45.57%

for particularly mapping-sensitive benchmarks such as Sphinx3 from the Spec bench-

mark suite (on average it would be 13.53% across all of the tested benchmarks).

However, it is essential to note that, in general, benchmark applications can be

categorized into two distinct groups based on their sensitivity to mapping, namely
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Figure 4.2: Comparison of the execution cycles for single-core systems over
non-stream-based application

mapping-sensitive and mapping-insensitive benchmarks. For instance, benchmarks

like Sphinx3, Leslie3d, and GemsFDTD exhibit execution time relative differences of

45.57%, 43.77%, and 38.36%, respectively. On the other hand, benchmarks such as

netperf tcprr, GCC, and Libquantum display considerably lesser mapping sensitivity,

at least in our conducted tests. Furthermore, our experimental findings indicate that

different applications can experience significant performance disparities under various

mappings as previously highlighted for CactusADM and GemsFDTD in Figure 1.1.

These experiments underscore a critical observation: an application’s performance

can vary significantly depending on the mapping strategy employed and a single,

fixed mapping cannot serve the needs of all applications.

4.3 Partitioning Memory into Independent Feder-

ated Islands

Concurrently running applications on a multicore chip compete for access to main

memory, which has a restricted bandwidth. Inadequate management of this limited

memory bandwidth can lead to harmful interference among different applications,
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causing significant degradation in both system and individual application perfor-

mance. Various studies have been done to enhance system performance by addressing

memory interference issues among applications[13, 14, 20, 22–24, 27, 37] but these

proposals primarily treat the problem as a memory access scheduling challenge, focus-

ing on the development of novel memory request scheduling policies. These policies

prioritize the requests of different applications, aiming to reduce interference among

them. However, implementing such application-aware scheduling algorithms necessi-

tates non-negligible changes to the existing system. Additionally, we have another

study that uses Memory channel partitioning along with Scheduling[21]. The idea is

to categorize applications based on their memory intensity, to low and high memory

intensity groups. Further, subdivide high memory-intensity applications into low and

high row-buffer hit rate groups; then partition the available memory channels among

the three application groups. Within each group, partition the assigned channels

among the applications and designate a preferred channel for each application. Addi-

tionally, they combine this partitioning method with scheduling which means priori-

tizing low-memory-intensive applications over the others. This particular study and

similar research endeavors motivate the notion of enhancing application performance

and minimizing interference among different applications through the implementation

of partitioning. Our innovative approach involves partitioning at a more refined level,

specifically at the bank level, recognizing the potential limitation of available chan-

nels for all concurrently running applications on our multi-core (or heterogeneous)

system. In our work, we integrate the partitioning concept with a static method for

application-aware address mapping to further optimize performance.
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4.4 Importance of Application-Aware Memory Al-

location.

Another important aspect of this thesis is configuring the number of bank resources

for each island based on the application behavior and requirements. Normally, all

applications can use the entire memory space, but to make sure they perform well

and to allow for different mapping strategies for each, we suggest dividing memory

wisely. This memory division is crucial because it greatly affects how fast the appli-

cations run. A simple way to divide memory, such as fair splitting does not provide

application awareness. So, one application might not benefit from its allocated re-

sources (underutilization), while another can be greatly penalized because allocated

resources are not enough. To show the importance of application-aware memory re-

source allocation, we show in Figure 4.3 an example of four benchmarks and how their

performance is impacted when allocated a variable number of memory banks. Results

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 5 4 7 6 9 8 10 11 14 12 13 15 16

N
or

m
al

ize
d 

Ex
ec

ut
io

n 
Ti

m
e

Number of banks

gcc
gems
libquantum
zeus

Figure 4.3: Normalized execution cycles by bank number for four benchmarks of
Spec.

are execution times normalized to the case of 16 banks. As the figure illustrates, while
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some applications’ performance (e.g. Gcc and Libquantum) is indifferent to the allo-

cated resources, others show significant differences with different numbers of banks:

3.5x for gems and 2.8x for Zeusmp. As a result, when these benchmarks co-execute

in a system, allocating more banks to the latter two is expected to improve overall

system performance without a considerable impact on the former.
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Chapter 5

Methodology

5.1 Overview and Illustrative Example

The presented methodology revolves around an innovative approach to memory allo-

cation, focusing on a static method that customizes memory mapping for individual

applications and assigns a tailored partition to each application. this approach starts

with the application analysis. This stage involves a detailed examination to identify

key features influencing optimal memory mapping, using the stride size of the strided

applications. Static profiling is employed when stride size is not evident, ensuring per-

sonalized mapping for each application’s needs. By profiling we refer to the analysis

of application characteristics during compile time as well as running it with various

mappings to study its memory performance.

Following memory mapping, the approach delves into fine-grained partitioning,

breaking down memory into small units (islands) and assigning them to applications

22



M.A.Sc. Thesis – F. Derakhshani; McMaster University – Electrical and Computer

Engineering

based on their requirements. This strategy prevents interference between applica-

tions and optimizes parallelization during partition assignments. Through an opti-

mization process, the methodology determines the optimal memory division for each

application, aiming to minimize execution time while efficiently utilizing resources.

Overall, the methodology provides a robust and efficient solution to memory alloca-

tion optimization in heterogeneous computing systems, emphasizing static analysis

for enhanced performance. Figure 5.1 illustrates a higher-level design of our proposed

solution.
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Figure 5.1: A high-level design of our island-based approach

Our approach begins by conducting a thorough analysis of the application to pin-

point features that significantly influence the selection of optimal memory mapping.

These identified features play a crucial role in tailoring the memory allocation strategy

for improved performance. One key feature that emerged from various experiments

is the stride size of the main (memory-intensive) stream or streams. This critical
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feature, representing the distance between consecutive elements accessed in the main

data stream, directly influences the efficiency of memory access patterns. Building

upon this insight, our approach generates a set of mapping schemes corresponding to

each stream within an application. This static mapping approach allows for personal-

ized mapping for individual streams, enhancing adaptability to diverse characteristics

within a single application.

The main idea is to assign the channel bits to the address bits starting from

the bit corresponding to the stride of the stream as it toggles the most as noted in

Figure 4.1(b). The subsequent higher-order bits after that are assigned to ranks,

then groups, then banks. For example, for a system with 2 channels, 2 ranks per

channel each of which has 4 bank groups and each group encompassing 4 banks, in

Figure 4.1(b) for dscal-256, bit 11 will be assigned to the channel, bit 12 is for rank,

etc.

This ensures these toggles cause maximum parallelism. Another potential map-

ping is to assign the hot bits to columns to maximize locality. One key takeaway

from understanding this pattern of the stream is to assign the lower address bits that

do not toggle at all to the lower row bits (which is usually avoided by commodity

address mappings). This will increase row hits, and hence improve performance. In

the case of the previous dscal-256 example, these will be bits 6 to 10.

For applications where the stride size is not readily apparent or the program is not

necessarily strided, static profiling is applied to the entire or a part of the program.

This involves experimenting with a pool of potential base mappings to identify the

best option. Incorporating partitioning (each partition would be called an island)

guarantees that different applications or streams do not interfere with each other.
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Figure 5.1 illustrates the architecture of our innovative proposed solution, a piv-

otal component integrated within the memory controller. Preceding the processing

of any request, our system relies on a critical resource known as the TLB inverse

(rTLB) table. This table serves as a gateway to retrieve the virtual address. The

virtual address is indispensable for accessing the island ID, as all the data stored in

the configurable SRAM table during compile time is intricately linked to the virtual

address.

Each of the main streams and applications possesses a specific identifier, which is

stored within a configurable SRAM table (denoted as the left table of Configurable

SRAM in Figure 5.1). For non-strided applications, this ID corresponds to the thread

ID, whereas for strided applications, it comprises a combination of the thread ID and

the stream’s name. Additionally, in the case of strided applications, the start and

end addresses of the streams are retained to facilitate stream differentiation. Our

objective is to allocate each of these applications and streams to distinct memory

partitions, referred to as ”islands,” each assigned a unique island ID. The mappings

obtained from the application analysis, along with its Island ID, are stored in another

table, which is denoted as the right table of Configurable SRAM in Figure 5.1.

Upon receiving a request, the Island ID Lookup Logic utilizes the rTLB and the left

table of Configurable SRAM (in Figure 5.1) to extract the corresponding island ID.

This step uniquely requires the virtual address. Following this crucial stage and the

subsequent extraction of the island ID, our operations will exclusively rely on the

physical address.

With the island ID determined, we employ the right table of Configurable SRAM (in

Figure 5.1) to identify the appropriate mapping for the given address and retrieve its
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corresponding mapping in ”Per Island Address Mapper”.

Let’s consider a scenario where we receive a request from the stream ”A” with a

physical address of 0x24C6A40E43F8 and the corresponding virtual address retrieved

from the rTLB as 0x7FFD819DE008. Let’s say in Figure 5.1, stream ”A” is stored

with the island ID ”5” and starts from address 0x7FFD819DD010 to 0x7FFD819DE048.

Using the ”Island ID Lookup Logic” and then ”Per Island Address Mapper” and its

corresponding table in Configurable SRAM, we find the suitable mapping, which, for

this example, let’s say is ”ROW-COL-BNK-RNK-CH”.

Considering we have 15 bits for rows, 6 bits for columns, 2 bits for banks, 2 bits

for bank groups, 1 bit for rank, 1 bit for channel, and 6 bits for the cache line size, we

can determine the corresponding numbers for this request physical address. In this

case, the channel would be 1, the rank would be 1, the bank group would be 3, the

bank would be 0, the column would be 36, and the row would be 10499.

Noteworthy is our reliance on static mapping, eliminating the need for dynamic

adjustments or data migration. This static nature enhances predictability and re-

liability in memory mapping optimization. The strength of our approach lies in its

application-aware, static nature. Unlike methods based on trace features like bit flips,

our approach offers superior precision and promise in optimizing memory mappings

for enhanced performance. By integrating detailed application analysis with a static

and adaptive memory mapping design, our methodology aims to provide a robust

and efficient solution to the memory allocation optimization challenge.

Continuing from our memory mapping design, the next step in our approach in-

volves fine-grained partitioning (bank-level partitioning). This partitioning is crucial
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for dividing the entire memory into small, distinct partitions (islands), with one bank

serving as the smallest possible unit in our case. Each application or stream then

claims one or more partitions based on its specific requirements, thereby preventing

other applications or streams from using these partitions. Our fine-grained parti-

tioning strategy isn’t just about isolation and reducing interference; it’s also finely

tuned to enhance parallelization across different levels, from channel to bank, when

assigning banks to applications.

The number of banks required for each application is determined through an opti-

mization process, discussed in detail in the next chapter. This optimization ensures

efficient resource utilization while enhancing application performance. Our unique

model of parallelization, especially during the bank assignment process, results in

a high degree of parallelization. This approach assigns corresponding banks across

different channels, then ranks, and then bank groups, facilitating efficient parallel

processing. Interestingly, in many benchmark tests, our findings indicate that using

our methodology the base mapping favoring locality often outperforms the mapping

favoring parallelization, thanks to our method’s inherent ability to increase paral-

lelization levels.

As depicted in Figure 5.1, to assign each memory request to its correct location in

the newly partitioned memory, the first step involves determining the bank (smallest

partition) number. This is achieved by removing the row and column from the re-

quest address and rearranging the remaining memory levels in the order Ba-Bg-Ra-Ch

(from Most Significant Bit to Least Significant Bit). This specific order ensures that

banks are allocated across different channels, ranks, bank groups, and, if necessary,

within the same bank group.
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The generated bank number, however, does not account for partitioning and may

correspond to any location in the entire memory. However, from previous steps, we

know that this request belongs to a specific island with a unique island ID. Now, we

use the right table of the Configurable SRAM which contains the start and end bank

numbers, defining a region that needs to be mapped to the generated bank number.

The”Island Remapper” computes the modulo of dividing the generated bank number

by the corresponding island size and adds the result to the start bank number. The

resulting new bank number is then rearranged to its original order based on its orig-

inal mapping. Finally, in this step, we reattach the row and column, resulting in the

final location of the request.

Continuing our example, using the ”Island Remapper”, we would compute the bank

number, which in our example would be 0b001111 or 15. Assume that the start and

end bank numbers for island 5, stored in the SRAM table, are 7 to 18. Using the

mathematical logic which happens in the ”Island Remapper”, we would compute the

new bank number as 7+(15%(18−7+1)) or 10. Then, we would extract the original

channel, rank, bank group, and bank from this new bank number; row and column

remain unchanged. According to this, the channel would change to 0, rank would

stay 1, bank group would change to 2, and bank would stay 0. Row would remain

10499 and column would remain 36. This is the new location that our approach maps

the request to, which is more application-aware and leads to more optimized memory

mapping.

Our optimization results demonstrate that this approach allows for the use of even

fewer resources while achieving better execution outcomes. The success lies in the

observation that increased resources can sometimes lead to decreased parallelization
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and unnecessary data distribution. By carefully considering the assignment of banks

and adopting a fine-tuned partitioning strategy, our methodology achieves a balance

between resource usage and parallelization, contributing to enhanced application per-

formance.

5.2 Optimization

To determine the optimal memory allocation for various streams and applications,

we undertake a thorough evaluation process. Initially, each stream or application un-

dergoes execution with varying numbers of banks, ranging from the minimum to the

maximum available. The resulting data is then fitted into a function fi(x), where xi

represents the number of banks that this application island comprises from and fi de-

notes the fitted function achieved from the corresponding execution cycles. Figure 5.2

illustrates the outcome of this fitting process for selected Spec and MemBen bench-

marks. This fitting function represents the execution time of an application when

assigned an island with a particular number of bank resources. Subsequently, we

formulate an optimization problem that encompasses all the fitting functions for the

available streams and applications. The objective is to minimize the total execution

time(cycles) for each application. Thus, our goal is to determine the optimal number

of banks (x1, x2, ..., xn) comprising the island for each application, minimizing the av-

erage execution time of all running applications. We use the Matlab genetic algorithm

as our optimization function which is a function that finds the local minimum and

can search non-continuous spaces. We need to consider the system constraints (e.g.

total number of available banks) as well as constraints imposed by each application.

The memory portion of each application must exceed its minimum required physical

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – F. Derakhshani; McMaster University – Electrical and Computer

Engineering

Figure 5.2: Fitting process chart for selected Spec and Memben benchmarks

memory footprint (e.g. to avoid excessive page swaps), calculated as the number of

banks assigned to the application multiplied by the size of each bank. This ensures

that the assigned memory portion is sufficient to meet the application’s requirements.

Target Function: We formulate the optimization problem based on the fitting

functions of available streams/applications:

min

(
F (x) =

n∑
i=1

fi(xi)

)
(5.2.1)
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as Equation 5.2.1 shows, The objective is to minimize the total execution time/cycles

for each application which leads to minimizing the average execution time of these

applications since n is simply a constant input to the optimizer.

Input Parameters: Each stream/application (or a region of interest within that

stream/application) is executed with varying numbers of banks, ranging from the

minimum to the maximum. The resulting data is then fitted into the function fi(x),

where xi represents the number of banks and fi which is our input parameter denotes

the execution cycles.

Variable Parameters: In this optimization problem, the variable parameters

represent the number of banks allocated to each application. The variable parameters

are denoted by xi for each application i in the range of [1, ..., n], and n is the total

number of applications and/or streams that will run in the system.

Constraints: To address this optimization problem, we must consider the con-

straints imposed.

1. Total number of available memory banks: We incorporate the total num-

ber of banks as a constraint, ensuring that the sum of all allocated banks remains

fixed:
n∑

i=1

xi = Total number of banks (5.2.2)

2. Memory Allocation Constraints: The memory allocation for each appli-

cation must exceed the application’s minimum required physical memory foot-

print:

xi × size of each bank ≥ footprinti (5.2.3)

This ensures that the assigned memory portion is sufficient for the application’s
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requirements.

These parameters determine the allocation of banks to each application, directly

influencing their performance within the system.
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Chapter 6

Evaluation

In this chapter, we present the evaluation of our memory mapping methodology.

To assess our solution, we employed Ramulator, a standalone memory simulator.

Table 6.1 outlines the base configuration utilized for our evaluations. However, it’s

important to note that we tested our solution across various configurations to ensure

comprehensive testing. Additionally, we utilized an Intel Pin-based tool integrated

into Ramulator as a trace generator to produce traces for different benchmarks under

evaluation. Our experiments encompass both single-core and multi-core scenarios

across five distinct benchmark suites, namely Spec, MemBen, Polybench [25], Rodinia

[7], and Linpack [32].

The evaluation chapter is divided into two main parts: one focusing on non-

stream-based applications and the other on stream-based applications.
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Table 6.1: Memory system overview

Description Value

Memory Type DDR4
Capacity 4Gb
Speed 2400MHz
No. of Channels 2
Ranks per Channel 2
Bank Groups per Rank 4
Banks per Bank Group 4
Rows per Bank 32768
Cache Line Size 64B

6.1 Profile-based approach

For non-stream-based applications, we conducted experiments to assess the impact

of static profiling and different memory mappings on execution time. The evaluation

consists of two parts: one for single-core systems (which is presented in Chapter 4)

and another for multi-core systems that we present next.

Following our assessment of suitable mapping achieved through profiling, we in-

vestigated the combined impact of mapping and partitioning on multi-core systems,

encompassing 2-core, 4-core, and 8-core configurations, across Spec and MemBen

benchmarks. These evaluations, illustrated in Figure 6.1, comprised 10 experiments

analyzing execution times under different base mappings (mapping1, mapping2, map-

ping3, mapping4) without partitioning. The system we are testing on would be similar

to Table 6.1.
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Figure 6.1: Comparison of the effect of suitable mapping on execution cycles for
multi-core systems over non-stream-based application

Subsequently, we compared these results with those obtained after a fair, non-

optimized division between applications using their best mapping obtained from static

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece
https://www.eng.mcmaster.ca/ece


M.A.Sc. Thesis – F. Derakhshani; McMaster University – Electrical and Computer

Engineering

profiling. For each experiment, we selected a set of benchmarks that, in their single-

core tests, demonstrated the best execution results with different base mappings.

The results reveal compelling insights: when comparing the relative difference

of our method against the best of base mappings for each experiment, we observed

an average improvement of 8.3% for 2-core, 10.5% for 4-core, and 0.51% for 8-core

configurations. Moreover, these improvements can be as high as 23.82% for 2-core,

19.61% for 4-core, and 5.81% for 8-core configurations, underlining the effectiveness

of our methodology in enhancing performance across multi-core systems.

Notably, Table 6.2 and Table 6.3 offer detailed insights into the benchmarks and

their utilization within the application combinations showcased in Figures 6.1, 6.2,

and 6.4. While Table 6.2 provides benchmark IDs alongside their respective Applica-

tion Suites, Table 6.3 presents the benchmark IDs used in each application combina-

tion. Together, these tables provide a comprehensive reference for understanding the

benchmark combinations across Figures 6.1, 6.2, and 6.4.

Table 6.2: Benchmark names and the corresponding IDs

ID Benchmark Suite ID Benchmark Suite ID Benchmark Suite ID Benchmark Suite
p1 2mm-256 PolyBench p17 lu-256 PolyBench h1 grep-map0 Hadoop y1 ycsb-workloada-server YCSB + Redis
p2 adi-256 PolyBench p18 mvt-2048 PolyBench h2 grep-map1 Hadoop y2 ycsb-workloadb-server YCSB + Redis
p3 atax-2048 PolyBench p19 nussinov-512 PolyBench h3 grep-map2 Hadoop y3 ycsb-workloadc-server YCSB + Redis
p4 bicg-2048 PolyBench p20 symm-128 PolyBench h4 grep-map3 Hadoop y4 ycsb-workloadd-server YCSB + Redis
p5 cholesky-512 PolyBench p21 syrk-256 PolyBench h5 grep-reduce0 Hadoop s1 astar SPEC2006
p6 correlation-256 PolyBench l1 daxpy-128 Linpack h6 sort-map0 Hadoop s2 cactusADM SPEC2006
p7 covariance-256 PolyBench l2 ddot-128 Linpack h7 sort-map2 Hadoop s3 gcc SPEC2006
p8 deriche-512 PolyBench l3 dscal-128 Linpack i1 iozone 64m r4k 0 IOzone s4 GemsFDTD SPEC2006
p9 doitgen-64 PolyBench l4 scusumkbn-128 Linpack i2 iozone 64m r4k 6 IOzone s5 leslie3d SPEC2006
p10 fdtd-256 PolyBench r1 lud-512 Rodinia i3 iozone 64m r4k 8 IOzone s6 libquantum SPEC2006
p11 floyd-256 PolyBench r2 needle-1024 Rodinia i4 iozone 64m r4k 9 IOzone s7 mcf SPEC2006
p12 gemver-512 PolyBench r3 srad-1024 Rodinia i5 iozone 64m r4k 10 IOzone s8 milc SPEC2006
p13 gesummv-1024 PolyBench n1 netperf tcprr v4 Netperf i6 iozone 64m r4k 11 IOzone s9 omnetpp SPEC2006
p14 gramshmidt-256 PolyBench n2 netperf tcpstream v4 Netperf i7 iozone 64m r4k 12 IOzone s10 soplex SPEC2006
p15 heat3d-64 PolyBench n3 netperf udprr v4 Netperf s11 sphinx3 SPEC2006
p16 jacobi-2d-512 PolyBench n4 netperf udpstream v4 Netperf s12 zeusmp SPEC2006

We conducted a series of new multi-core experiments, encompassing 2-core, 4-core,

and 8-core configurations, each comprising 12 experiments. These experiments aimed

to compare the performance of optimized mapping and partitioning, leveraging the
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Table 6.3: Benchmark ID of combinations

Cmb Exp BMs Cmb Exp BMs Cmb Exp BMs Cmb Exp BMs
cmb1 Fig 6.1(a) s4, s2 cmb20 Fig 6.1(b) y3, s2, s12, s4 cmb39 Fig 6.2(a) i3, n1 cmb58 Fig 6.2(c) s5, y3, s10, s8, i1, i4, n1, h7
cmb2 Fig 6.1(a) s11, s2 cmb21 Fig 6.1(c) s1, h5, i3, i4, s6 , s12, s4, s11 cmb40 Fig 6.2(a) i5, n3 cmb59 Fig 6.2(c) s11, s4, s2, s8, i2, h6, h1, s3
cmb3 Fig 6.1(a) y2, s6 cmb22 Fig 6.1(c) s1, h5, s10, s2, s6 , s12, s4, s11 cmb41 Fig 6.2(a) s8, h7 cmb60 Fig 6.2(c) s2, s12, y1, n2, i6, h7, h4, n3
cmb4 Fig 6.1(a) i3, s2 cmb23 Fig 6.1(c) s1, i3, i4, n2, y2, s12, s4, s11 cmb42 Fig 6.2(a) i1, h4 cmb61 Fig 6.2(c) y4, y2, s7, i1, i3, s3, n3, h6
cmb5 Fig 6.1(a) n2, s2 cmb24 Fig 6.1(c) s1, i2, i3, n2, y3, s2, s6 , s12 cmb43 Fig 6.2(b) s4, s10, s8, s3 cmb62 Fig 6.2(c) s5, s10, y3, i7, i4, h2, h3, n4
cmb6 Fig 6.1(a) i2, s12 cmb25 Fig 6.1(c) s1, i2, y3, s2, s6 , s12, s4, s11 cmb44 Fig 6.2(b) y4, s2, n2, n4 cmb63 Fig 6.2(c) s4, y1, s8, s9, i4, s3, n3, h6
cmb7 Fig 6.1(a) y1, s11 cmb26 Fig 6.1(c) i2, y2, y4, s2, s6 , s12, s4, s11 cmb45 Fig 6.2(b) s7, y2, i5, h1 cmb64 Fig 6.2(c) s10, s7, n2, i6, i7, h7, n4, n1
cmb8 Fig 6.1(a) s10, s6 cmb27 Fig 6.1(c) i3, i4, s5, y4, s2, s12, s4, s11 cmb46 Fig 6.2(b) s5, s12, i1, h2 cmb65 Fig 6.2(c) s11, y4, i2, i3, i5, h1, h3, s3
cmb9 Fig 6.1(a) s12, s4 cmb28 Fig 6.1(c) i3, i4, s10, n2, s2, s6 , s12, s4 cmb47 Fig 6.2(b) s7, i6, s9, s3 cmb66 Fig 6.2(c) s5, s12, i1, i2, i3, h2, h4, s6
cmb10 Fig 6.1(a) s1, s2 cmb29 Fig 6.1(c) i3, s10, y1, y2, s2, s12, s4, s11 cmb48 Fig 6.2(b) s11, i4, i1, n1 cmb67 Fig 6.4 p13, p15, r1, p19
cmb11 Fig 6.1(b) s1, s6, s12, s11 cmb30 Fig 6.1(c) s5, n2, y2, s2, s6 , s12, s4, s11 cmb49 Fig 6.2(b) s12, s8, i2, n3 cmb68 Fig 6.4 p4, l1, l4, r3
cmb12 Fig 6.1(b) s2, s6, s12, s11 cmb31 Fig 6.2(a) i2, s12 cmb50 Fig 6.2(b) y1, n2, i3, h6 cmb69 Fig 6.4 p3, p18, p20, p21
cmb13 Fig 6.1(b) s2, s12, s4, s11 cmb32 Fig 6.2(a) n2, s2 cmb51 Fig 6.2(b) y3, s8, s6, h7 cmb70 Fig 6.4 p2, p5, p6, p9
cmb14 Fig 6.1(b) h5, y4, s2, s11 cmb33 Fig 6.2(a) s11, i7 cmb52 Fig 6.2(b) s4, i2, n3, h2 cmb71 Fig 6.4 l2, p14, p17, r2
cmb15 Fig 6.1(b) i2, y1, s6 , s4 cmb34 Fig 6.2(a) y1, i4 cmb53 Fig 6.2(b) s5, i3, h3, s3 cmb72 Fig 6.4 p3, p6, p18, p19
cmb16 Fig 6.1(b) i4, s2, s12, s4 cmb35 Fig 6.2(a) s3, s4 cmb54 Fig 6.2(b) s10, n2, h4, n1 cmb73 Fig 6.4 p3, p8, p14, r2
cmb17 Fig 6.1(b) s5, s6 , s12, s11 cmb36 Fig 6.2(a) s5, n4 cmb55 Fig 6.2(c) s4, s10, y4, s8, i2, i6, h6, h1 cmb74 Fig 6.4 l3, p11, p10, p16
cmb18 Fig 6.1(b) s10, s2, s6 , s12 cmb37 Fig 6.2(a) y4, h6 cmb56 Fig 6.2(c) s12, y1, s7, i5, s9, i3, h2, h3 cmb75 Fig 6.4 p7, p12, p14, p20
cmb19 Fig 6.1(b) n2, s2, s6 , s12 cmb38 Fig 6.2(a) s10, h2 cmb57 Fig 6.2(c) s2, y2, s11, i4, i7, n2, n3, h4 cmb76 Fig 6.4 p1, p5, l2, p19

optimization aspect of our methodology, against scenarios employing only the best

mapping with fair partitioning. The results of these comparisons are presented in

Figure 6.2. To ensure a comprehensive evaluation, benchmarks for each experiment

were carefully selected based on the criteria outlined in Table6.4. The benchmarks

were categorized into three groups: Group 1 exhibited the most normalized relative

difference in their single-core experiments when varying bank numbers from 1 to

16, Group 2 fell within the medium range, and Group 3 showed the least variation.

To maintain fairness, different benchmarks from each group were chosen for each

experiment. Our experimental setup mirrored that of Table 6.1, with a single channel

and rank. The analysis revealed an average relative difference of 4.4% for 2-core,

2.84% for 4-core, and 2.2% for 8-core configurations. Notably, these differences could

peak at 8.66% for 2-core, 6.36% for 4-core, and 6.74% for 8-core configurations.

Table 6.4: Classificaton of non-strided benchmarks based on the partitioning benefit

Group Benchmarks

Group 1 s2, s4, s5, s7, s10, s11, s12, y1, y2, y3, y4

Group 2 i1, i2, i3, i4, i5, i6, i7, n2, s8, s9

Group 3 h1, h2, h3, h4, h6, h7, n1, n3, n4, s3, s6
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Figure 6.2: Comparison of the effect of optimized partitioning on execution cycles
for multi-core systems over non-strided application
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6.2 Stream-aware approach

6.2.1 Single-Core Systems

For our evaluation of the stream-based application, we utilized well-known bench-

marks such as Poly (all), Rodinia (Hotspot, Lud, Needle, Srad), and Linpack (Daxpy,

DDot, Dscal, Scusumkbn), configured with varying stride sizes, to assess the effective-

ness of our approach (see Figure 6.3). In these experiments, we employed the same

system configuration as described in Table 6.1. Notably, the numbers accompanying

the benchmark names denote the stride size of the loops, indicating their respective

configurations (before considering the data type’s byte size). Similar to our analysis

of non-stream-based applications, we compared the execution time across different

scenarios: the best base mappings without partitioning, the best mappings obtained

through analyzing application strides with fair partitioning, and the best mappings

with an optimized partitioning scheme. The results from these experiments indi-

cate that by solely focusing on finding the best mapping for each stream (based on

the stride size) and implementing fair partitioning compared to the best base map-

pings, we can achieve an average improvement in execution time of 10.66%, reaching

as high as 50.55%. Furthermore, incorporating the optimized partitioning aspect of

our method yields additional improvements. When comparing optimized partitioning

with fair partitioning, we observe an average improvement of 0.2%, reaching up to

9.35%. Comparing optimized partitioning with the base mappings, we see an average

improvement of 11.07%, reaching as high as 47.48%. (A detailed analysis of stride

sizes and suitable mappings of our tested strided benchmarks has been brought in

Appendix A)
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Figure 6.3: Comparison of the execution cycles for single-core systems over
stream-based application

6.2.2 Multi-Core Systems

In our examination of stream-based applications on multi-core systems, we expanded

our analysis to include four-core setups. Using random benchmarks from the same

pool as the single-core strided benchmarks, we conducted 10 experiments to gauge

the impact of our approach (refer to Figure 6.4). We compared the time taken to ex-

ecute tasks across various setups: base mappings without partitioning (map2, map4),

best mappings identified through analyzing application strides with fair partitioning,

and best mappings with an optimized partitioning scheme using the genetics algo-

rithm from Matlab. The findings reveal that by implementing the first part of our

approach (suitable mapping) and comparing fair partitioning to the best base par-

titioning, we could expect an average improvement of 21.19%, reaching as high as

27.56%. Additionally, by incorporating the optimized partitioning aspect of our ap-

proach, compared to fair partitioning, we could see an average improvement of 1.12%,

reaching up to 3.61%. Moreover, when comparing optimized partitioning (with suit-

able mapping) to the best base mappings, we could observe an average improvement

of 22.10%, reaching as high as 27.79%.
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Figure 6.4: Comparison of the execution cycles for multi-core (4-core) systems over
stream-based application

The evaluation aims to demonstrate the efficacy of our memory allocation method-

ology across different types of applications and system configurations. Through com-

prehensive experiments and analysis, we provide insights into the benefits of static

profiling, choosing suitable memory mappings, and optimized partitioning in improv-

ing system performance.
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Chapter 7

Conclusion

In this thesis, we introduce a novel methodology for optimizing memory allocation in

heterogeneous computing systems. Our approach emphasizes static analysis during

compile time to achieve predictability and reliability in memory mapping, thereby

eliminating the need for dynamic adjustments. By conducting detailed application

analysis, focusing on key features such as stride size, our methodology enables person-

alized memory mapping tailored to individual application requirements. Moreover,

we propose fine-grained partitioning techniques to prevent interference between ap-

plications and optimize resource utilization, leading to enhanced parallelization and

improved application performance.

Our evaluation results demonstrate significant improvements in execution time

across diverse application scenarios and system configurations. Through comprehen-

sive experiments, we observed average gains of up to 13.53% and peaks of 47.48% in

execution time reduction. These findings underscore the effectiveness of our methodol-

ogy in addressing memory allocation challenges in complex computing environments.

Furthermore, our work highlights the importance of static profiling and personalized
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memory mapping techniques in achieving robust and efficient memory allocation op-

timization. While our approach shows promising results, future research could be

explored.
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Table A.1: Strided benchmark detailed analysis

BM Explanation Constants Streams Stride Size Mapping

2mm-256 BM with mix of 2-D streams

NI=256
NJ=256
NK=256
NL=256

A-2D
B-2D
C-2D
D-2D
tmp-2D

DT
DT*NJ
DT*NJ
DT
DT

Base mapping
DT*NJ mapping
DT*NJ mapping
Base mapping
Base mapping

3mm-256 BM with mix of 2-D streams

NI=256
NJ=256
NK=256
NL=256
NM=256

A-2D
B-2D
C-2D
D-2D
E-2D
F-2D
G-2D

DT
DT*NJ
DT
DT*NL
DT
DT
DT

Base mapping
DT*NJ mapping
Base mapping
DT*NL mapping
Base mapping
Base mapping
Base mapping

adi-256 BM with single 2-D stream N=256

u-2D
v-2D
p-2D
q-2D

DT
DT*N
DT
DT*N

Base mapping
Base mapping
Base mapping
Base mapping

atax-2048 BM with mix of 2-D stream and 1-D stream
M=2048
N=2048

A-2D
x-1D
y-1D
tmp-1D

DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping

bicg-2048 BM with mix of 2-D stream and 1-D stream
M=2048
N=2048

A-2D
p-1D
s-1D
q-1D
r-1D

DT
DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping
Base mapping

cholesky-512 BM with single 2-D stream N=512 A-2D DT Base mapping

corr-256 BM with mix of 2-D stream and 1-D stream
M=256
N=256

data-2D
corr-2D
mean-1D
stddev-1D

DT
DT*M
DT*N
DT

Base mapping
Base mapping
Base mapping
Base mapping

cov-256 BM with mix of 2-D stream and 1-D stream
M=256
N=256

data-2D
cov-2D
mean-1D

DT
DT*M
DT*N
DT

Base mapping
Base mapping
Base mapping

daxpy-128 BM with multiple 1-D streams
arrSize=1280000000
strideX=128
strideY=128

X-1D
Y-1D

DT*strideX
DT*strideY

DT*strideX mapping
DT*strideY mapping

Ddot-128 BM with multiple 1-D streams
arrSize=1280000000
strideX=128
strideY=128

X-1D
Y-1D

DT*strideX
DT*strideY

DT*strideX mapping
DT*strideY mapping

deriche-512 BM with mix of 2-D stream and 1-D stream
W=512
H=512

imgIn-2D
imgOut-2D
y1-2D
y2-2D

DT
DT
DT*H
DT
DT*H

Base mapping
Base mapping
Base mapping
Base mapping
Base mapping

doitgen-64
BM with mix of 3-D stream and 2-D stream
and 1-D stream

NQ=64
NR=64
NP=64

A-3D
C4-2D
sum-1D

DT
DT*NP
DT

Base mapping
DT*NP mapping
Base mapping

dscal-128 BM with a single stream
arrSize=1280000000
strideX=128

X-1D DT*stride DT*stride mapping

durbin-2048
BM with multiple 1-D streams
each has its own stride

N=2048
r-2D
y-2D
z-2D

DT
Base mapping
Base mapping
Base mapping

fdtd-256 BM with mix of 2-D stream and 1-D stream
NX=256
NY=256

ex-2D
ey-2D
hz-2D
fict-1D

DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping

floyd-256 BM with single 2-D stream N=256 path-2D
DT
DT*N

Base mapping
Base mapping

gemm-256 BM with mix of 2-D streams
NI=256
NJ=256
NK=256

A-2D
B-2D
C-2D

DT
DT
DT

Base mapping
Base mapping
Base mapping
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gemver-512 BM with mix of 2-D stream and 1-D stream N=512

A-2D
w-1D
x-1D
y-1D
z-1D
u1-1D
u2-1D
v1-1D
v2-1D

DT
DT*N
DT
DT
DT
DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping

heat3d-64 BM with a mix of 3-D streams N=64
A-3D
B-3D

DT
DT

Base mapping
Base mapping

hotspot-1024 BM with multiple 1-D streams
grid rows=1024
grid cols=1024

temp-1D
power-1D
result-1D

DT
DT
DT

Base mapping
Base mapping
Base mapping

jacobi-1d-2048 BM with multiple 1-D streams N=2048
A-1D
B-1D

DT
DT

Base mapping
Base mapping

jacobi-2d-512 BM with a mix of 2-D streams N=512
A-2D
B-2D

DT
DT

Base mapping
Base mapping

lu-256 BM with single 2-D stream N=256 A-2D
DT
DT*N

Base mapping
Base mapping

lud-512 (Rodinia) BM with single 1-D stream matrix dim=512 a-1D
DT
DT*N

Base mapping
Base mapping

ludcmp-512 BM with mix of 2-D stream and 1-D stream N=512

A-2D
b-1D
x-1D
y-1D

DT
DT*N
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping

mvt-2048 BM with mix of 2-D stream and 1-D stream N=2048

A-2D
x1-1D
x2-1D
y 1-1D
y 2-1D

DT
DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping
Base mapping

needle-1024 (nw) BM with multiple 1-D streams
max rows=1024
max cols=1024

input itemsets-1D
referrence-1D
output itemsets-1D

DT
DT
DT

Base mapping
Base mapping
Base mapping

nussinov-512 BM with single 2-D stream N=512
table-2D
seq-1D

DT
DT*N

Base mapping
Base mapping

scusumkbn-128 BM with multiple 1-D streams
arrSize=1280000000
strideX=128
strideY=128

X-1D
Y-1D

DT*strideX
DT*strideY

DT*strideX mapping
DT*strideY mapping

srad-1024 BM with mix of 2-D stream and 1-D stream
rows=1024
cols=1024

I-1D
J-1D
c-1D
dN-1D
dS-1D
dW-1D
dE-1D
iN-1D
iS-1D
jW-1D
jE-1D

DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT

Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping
Base mapping

seidel2d-512 BM with single 2-D stream N=512 A-2D DT Base mapping

symm-128 BM with mix of 2-D streams
M=128
N=128

A-2D
B-2D
C-2D

DT
DT*M
DT
DT*N

Base mapping
Base mapping
Base mapping

syr2k-256 BM with mix of 2-D streams
M=256
N=256

A-2D
B-2D
C-2D

DT
DT*N
DT
DT*N

Base mapping
Base mapping
Base mapping
Base mapping

syrk-256 BM with mix of 2-D streams
M=256
N=256

A-2D
C-2D

DT
DT*N
DT

Base mapping
Base mapping

trisolv-2048 BM with mix of 2-D stream and 1-D stream N=2048
L-2D
b-1D
x-1D

DT
DT
DT

Base mapping
Base mapping
Base mapping

trmm-256 BM with mix of 2-D streams
M=256
N=256

A-2D
B-2D

DT*M
DT
DT*N

DT*M-mapping
Base mapping
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