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Lay Abstract

In daily life, being able to hear and understand the speech of people around us is
the basis for normal communication and life. In order to investigate how people use
different information in the speech signal to understand speech, this thesis decomposes
the speech signal into envelope and temporal fine structure, where the envelope is
the contour of the signal amplitude over time, which provides information such as
syllable rhythms and intonation patterns, while the temporal fine structure is the
fast oscillating part of the signal, which carries pitch and timbre information. In this
thesis, the envelope and temporal fine structure of different signals are combined to
produce speech chimaeras as test datas, and speech intelligibility is evaluated using
different algorithms to select the best performing model, in an effort to contribute to

the study of speech intelligibility.
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Abstract

Speech intelligibility is a measure of the human ability to understand speech signals.
While the speech signal can be decomposed into its envelope and temporal fine struc-
ture, where the envelope is the contour of the signal amplitude over time, revealing the
rhythm and intensity of the speech signal, the temporal fine structure is the rapidly
oscillating portion of the signal that carries pitch and timbre information. Studies
on speech intelligibility have shown that the acoustic envelope and the temporal fine
structure contribute to speech intelligibility and play an important role in quiet and
background noise, respectively.

In this thesis, two speech signals are selected, one signal retains the envelope, the
other signal retains the temporal fine structure, and then the envelope of one signal
is combined with the temporal fine structure of the other signal to generate different
speech chimera signals.

Three methods are applied to evaluate the speech intelligibility, namely Spectro-
Temporal Modulation Index (STMI), Neurogram Similarity Index Measure (NSIM),
and Cross-Correlation Coefficients (CCC). This thesis describes these three meth-
ods in detail, in particular the creation of physiologically based assessment matrices,
and then analyzes and compares the results by creating regression models of the

predicted values of the different algorithms with experimentally measured subjective

v



perceptions.

This thesis shows that the combination of the STMI with either the fine-timing NSIM

or the temporal fine structure CCC provides the optimal prediction model for speech

chimera signals, and provides some implications for speech intelligibility research.
Key words: speech intelligibility, envelope, temporal fine structure, mean-rate,

fine-timing, speech chimaeras
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Chapter 1

Introduction & Literature Review

1.1 Introduction

Speech is the most convenient, versatile, and important carrier of information in hu-
man society. Although the physical body can also convey information, speech is still
the most common means of public communication. This is why it is so important
to hear and understand what is being said in social interactions. Many factors can
affect our communication, such as distance, voice volume, noise level, accent, etc.

Speech intelligibility is known as a measure of how much speech information the lis-
tener perceives. It is important to note that speech quality and intelligibility are not
synonymous, good intelligibility can be achieved with degraded speech quality in some
cases. If speech quality is about the “how”, intelligibility is about the “what”. In
other words, speech quality is concerned with the “how” the speech sounds - whether
it is clear, lossless, noiseless, etc. While speech intelligibility is concerned with the

comprehensibility of speech information, that is, whether the listener can accurately
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understand the “what” in the speech signal, i.e., the conveyed messages or vocabu-
lary. After understanding the concept of speech intelligibility, this thesis investigates
various methods for predicting speech intelligibility.

The first chapter describes the importance of speech in life, lists the various factors
that may affect speech intelligibility, and leads to the criteria for predicting speech
intelligibility. Then the chapter reviews many methods about predicting speech in-
telligibility:.

Chapter 2 reviews the literature of Wirtzfeld et al. (2017) and Smith et al. (2002),
and presents the process of constructing Speech Chimaeras. And the design of the
experiment is also clarified, regarding the setting of experimental parameters, the
design of the process and the pre-determination of the results.

Chapter 3 reviews the literature of Elhilali et al. (2003), Hines and Harte (2012),
Swaminathan and Heinz (2012), and so on. Then it describes in detail three methods
of predicting the speech intelligibility, Spectro-Temporal Modulation Index, Neuro-
gram Similarity Index Measure, and Cross -Correlation Coefficients. And regression
models are then constructed to compare and evaluate among different algorithms.
Chapter 4 summarizes the conclusions of this thesis and suggests the future improve-
ments of the work.

MATLAB code produced in this thesis and additional figures are presented in the

Appendices.

1.2 Literature Review

Speech intelligibility is a measure of the ability to understand the spoken word under

given conditions. In general, speech intelligibility can be quantified by counting the
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number of correctly recognized words or phonemes. And most speech intelligibility
depends on the audibility of the signal in each frequency band.

On this basis, speech intelligibility prediction initially used the Articulation Index
(AI) (French and Steinberg, 1947), in which the Articulation Error (AE) in each fre-
quency band does not affect the other bands, so each band is independent. According
to this theory, the intelligibility index can then be expressed as a weighted sum of
the intelligibility corresponding to each frequency component of speech. And the goal
of this method is to convert the prediction of articulation into the measurement of
signal to noise ratio (SNR), which refers to the difference between the normal sound
signal and the noise signal (power) when there is no signal. The SNR is calculated
for each frequency band, where Band-important-function (BIF) is a weighting factor
for the band obtained through extensive experiments. Speech Intelligibility Index
(SII) is developed as an extension of the AI. Compared to Al, SII mainly considers
the masking effect which is that one of the sounds (masking sound) makes the other
sound (masked sound) harder to hear when calculating SNR speech in different fre-
quency bands (Taghavi, S. M. R., Mohammadkhani, G., & Jalilvand, H., 2022).
The Spectro-Temporal Modulation Index (STMI) is one predictor of speech intelligi-
bility based on a physiological model. It quantifies the differences in spectral temporal
modulations between a clean speech signal and a noisy or distorted speech signal us-
ing a physiologically-based cortical model (Elhilali et al., 2003, Wirtzfeld et al.,2017).
In addition, there are likely more centrally located auditory processes, such as lateral
inhibition networks (LINs), that may convert spike-timing cues into mean-rate cues
(Shamma and Lorenzi 2013).

An alternative predictor is the the Neurogram Similarity Index Measure (NSIM). This
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predictor is based on the structural similarity index (SSIM) (Wang et al., 2004), which
is an index for evaluating the similarity between two images and evaluates the image
quality by comparing the brightness, contrast, and structural information of images.
The main innovation of NSIM is the application of SSIM to neurograms generated by
auditory nerve (AN) models. The NSIM is calculated for the points over the patch
or windowed area, so the overall NSIM similarity index corresponding to the two
neurograms is calculated as the average of the NSIM index values over all patches.
Similar to SSIM, NSIM analyzes three factors of brightness, contrast and structure in
each individual pixel and compares the overall range of image pixel intensities (Hines
and Harte, 2012, Wirtzfeld et al.,2017). After weighted adjustments, comparisons
are made with the reference image to obtain the differences in intensity (luminance),
variance (contrast), and cross-correlation (structure). The core idea of NSIM is to
evaluate speech intelligibility by comparing the neurograms of the reference speech
signal and the degraded speech signal.

The Cross-Correlation Coefficients is another predictor of speech intelligibility based
on a physiological model. The basic idea of this method is to use auditory nerve
models to simulate the response of human hearing to speech signals, generate so-
called "spike trains”, and then evaluate speech intelligibility by calculating the cross-
correlation between these spike trains. In this methods, separate metrics for ENV
and TFS are computed using shuffled auto-correlograms (SACs) and shuffled cross-
correlograms (SCCs) (Joris, 2003; Louage et al., 2004; Joris et al., 2006). So the
cross-correlation coefficients for both TFS and ENV are extracted at the peak.

In summary, these studies emphasize the importance of ENV and TFS for speech

intelligibility, ENV is important for identifying phonemes and words in speech and
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TFS is important for identifying pitch and tonal variations in speech, both are also
complementary in speech signals and the combination of both helps to achieve high
prediction of speech intelligibility. These profoundly reveal the contribution of time
and frequency domain features to speech recognition and understanding.

Therefore, this thesis will analyze and compute the above algorithms, while comparing
and discussing the combination of the algorithms in depth and comprehensively, fo-
cusing on their complementarity and enhancement, and evaluating the optimal choice

for predicting speech intelligibility.



Chapter 2

Model building

2.1 ENV & TFS

The speech signal can be decomposed into envelope and temporal fine structure in-
formation. The envelope (ENV) represents the contour of the signal amplitude over
time, reflecting the syllable rhythm and intonation intensity, while the temporal fine
structure (TFS) refers to the rapidly oscillating part of the signal, carrying pitch and
timbre information. These two components affect various aspects of auditory percep-
tion, such as loudness, pitch, timbre perception, and spatial hearing.

In general, the envelope is sufficient for conveying speech information in a quiet en-
vironment, while the temporal fine structure provides additional speech cues in a
noisy environment. The envelope provides important information about the speech
signal’s rhythm and intensity changes in a quiet environment. Due to the low level
of background noise, listeners can more easily recognize syllable boundaries, words,
and sentence structures in speech, which is crucial for language comprehension. The

TFS carries information about the pitch and timbre of a speech signal that, unlike
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envelopes that can be masked by background noise, remains relatively clear and helps
listeners distinguish between different sound sources in complex auditory scenarios,
like identifying a specific speaker in a multi-person conversation.

In order to facilitate the calculation, Rosen (1992) proposed that the speech signal
could be divided into three fluctuation ranges temporally. He defined the fluctuation
range of about 2-50Hz as ENV, the fluctuation range of about 50-500Hz as periodic-
ity, and the fluctuation range of about 500-10kHz as TF'S. However, in many studies,
the periodicity of fluctuations in the 50-500Hz range is often categorized as either
ENV or TFS, or as a cutoff frequency within their range. Thus in this thesis, speech
signals are also divided into ENV and TFS temporally.

Due to background noise having some effect on both the ENV and TFS cues, this
thesis utilizes vocoders to manipulate the ENV and TFS of speech. Specifically, it
divides the broadband speech into a set of frequency channels and decomposes the
narrowband signals into the corresponding ENV and TFS components. On this basis
a synthesized speech signal can be generated using certain aspects of the ENV or TF'S

of the original speech signal.

2.2 Speech Chimaeras

2.2.1 Chimeras generation

Speech chimaera is a synthetic speech signal generated by combining envelope and
temporal fine structure of different speech signals and is designed to study how lis-

teners use different information (e.g., intonation, rhythm, pitch, etc.) in the speech
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signal to understand language (Smith et al., 2002).

The generation of the speech chimera is divided into the following steps, firstly, se-
lecting two acoustic signals, one for ENV and the other for TFS. The two signals are
then separated respectively, as described in Section 2.1, and manipulated by vocoders
to generate ENV-only or TFS-only versions. Finally, these signals are reorganized in
the way that the ENV of one signal is multiplied by the TFS of the other at each
frequency channel and then summed across the frequency bands.

For the experiments in this thesis, one signal is the speech signal and the other is the
noise. The noise signals selected are white Gaussian noise (WGN) and matched-noise
(MN). Matched-noise is a special type of noise whose spectral characteristics match
a given speech signal. It is generally generated based on the spectral characteristics
of the speech signal, so the matched-noise of the clean speech is done by performing
a Fast Fourier Transform (FFT) on each speech signal individually, preserving the
magnitude spectrum, randomizing the phase (preserving the antisymmetric nature of
the phase spectrum), and then taking the real part of the inverse FFT. In addition,
this thesis generates pure speech TFS (Speech TFS with Flat ENV) stimuli by ex-
tracting TFS from all frequency bands. The process of generating speech chimaeras
is shown in Figure 2.1 (Smith et al, 2002).

Hence, a total of five different types of speech chimeras are presented in this thesis,
namely Speech ENV with MN TF'S, Speech ENV with WGN TF'S, Speech TFS with
MN ENV, Speech TFS with Flat ENV and Speech TFS with WGN ENV.
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Figure 2.1: a, Two sounds are used as input. Each sound is split into N frequency
bands by a filter group. The ENVs and TFSs of the two signals are swapped to
produce a single-band chimaera. b, Example of a waveform in the chimaeraer,
where the band-limited input signal is decomposed into an ENV and a TFS by the
Hilbert transform. The product of the envelope 1 and the fine structure 2 is the
single-frequency auditory chimaeras. Reprinted from Fig. 1 of from Smith et al,
(2002) 9
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2.2.2 Experiment Design

In a word recognition experiment reported in Wirtzfeld et al. (2017), five native
English-speaking, normal-hearing subjects between the ages of 18 and 21 were asked
to identify the final word in the sentence “Say the word (test word)”. The test words
were all selected from the NU-6 word list (Tillman and Carhart 1966), which contains
a total of 200 monosyllabic consonant-nucleus-consonant (CNC) words, recorded by
an American native English speaker (Auditec, St. Louis). While Tillman and Carhart
(1966) used the term “nucleus” to describe the central phonemes because they include
diphthongs as well as vowels, to simplify the description of our results we will use the
term ”"vowel” to refer to the central phoneme. The test sentences had all undergone
auditory chimera processing as described above.

The next step is the experimental procedure. The subjects were tested in a quiet
room. All signals were generated with a high quality PC sound card at a sampling
rate of 44,100 Hz. The sound was presented to the subjects through the amplifier
and headphones. The signals were calibrated using a B & K 2260 Investigator Sound
Analyzer to adjust the target speech to a presentation level of 65 dB SPL. The test was
conducted without prior training and consisted of five 1-h sessions for each subject.
The five different chimaera types were each tested in a different session, and the
order of the chimaera types was randomized for each subject. The chimaera types
were blocked in this way to allow participants to quickly become familiar with each
type of processing, as the Speech ENV and Speech TFS chimaeras can sound very
different (Wirtzfeld et al.,2017).

For each chimaera type, seven sets of vocoder frequency bands are used. For each set

of frequency bands, 50 test words are generated. In these thesis, these 50 test words

10
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are randomly selected from the 200 available words in the NU-6 list, resulting in 1750
test words used in that study. This set of words is presented to the subjects using
the following procedure:

e Randomly select one of 350 available words (50 words for each of the 7 filter
sets) for the chimaera type being tested in that session.

e Ask the subject to repeat the word as they perceived it.

e Voice records the subject’s verbal response as well as a written record. Subjects
are told that they might not be able to understand all the test words because the
speech processing made some of them unintelligible. In the cases where a subject
could not recognize a test word, they are asked to guess to the best of their ability
(Wirtzfeld et al., 2017). The identification results measured from the perceptual

experiment are shown in Figure 2.2.

11
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Figure 2.2: Phoneme perception scores from the listening experiment as a function
of the number of vocoder filters, averaged over words and listeners. Error bars show
+ 1 standard error of the mean (SEM). The Speech ENV chimaeras retains the ENV
of the original speech signal and combines it with the WGN or MN TFS of another
signal. Similarly, Speech TFS chimaeras retain the TFS of the original speech signal
and combine it with the WGN, MN, or Flat ENV of another signal.

2.3 Neurogram Generation

For signals in speech chimaeras, the generation of the neurogram is a process of ana-
lyzing speech signals by simulating the response of the auditory periphery model. To
achieve this, this thesis uses the auditory periphery model of Bruce et al. (2018) to
simulate the response of auditory nerve (AN) fibers to stimuli of varying intensities.
In constrast, Wirtzfeld et al. (2017) used the old auditory periphery model proposed
by Zilany et al. (2009) to simulate synaptic transmission between inner ear hair cells
and auditory nerve fibers. This model is capable of producing auditory nerve fiber
model outputs that are consistent with observed data from mammalian hearing and

is used in the study of normal and impaired hearing, as well as in the development

12
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and evaluation of hearing aids.

The new model by Bruce et al. (2018) is a further improvement and development of
it. This new model introduces some new features in the simulation of the auditory
process, such as a more accurate simulation of neurotransmitter release and synaptic
dynamics, which emphasizes the importance of the limited number of neurotrans-
mitter release sites and through this feature better explains the statistical properties
of spontaneous spiking of auditory nerve fibers. The model is further extended to
sound-evoked nerve fiber responses and integrated into a comprehensive model of the
auditory periphery.

The characteristic frequency (CF) spacing is different for the STMI and the NSIM
methods. The model calculates 128 logarithmically spaced characteristic frequencies
(CFs) ranging from 180 Hz to 7040 Hz for STMI, unlike the only 40 CFs from 250
Hz to 16000 Hz required by the NSIM. For each speech signal, a post-stimulus time
histogram (PSTH) is calculated for each CF, counting them at 10 ps intervals. The
PSTHs of the different CFs are then stacked to form a spectrogram-like representa-
tion, which is called a “neurogram”.

In this thesis, the PSTH responses at each CF are generated by summing the individ-
ual PSTH responses of a set of 50 AN fibers: The set includes 30 low-threshold fibers
with high spontaneous rates (>18 spikes per second), 15 medium-spontaneous-rate
fibers (0.5 to 18 spikes per second), and 5 high-threshold fibers with low spontaneous
rates (<0.5 spikes per second). The distributions of the fibers are consistent with
previous studies (Jackson and Carney 2005; Zilany et al. 2009). This representation
visually illustrates the processing of speech signals in the auditory system.

Before inputting the speech signal to the auditory model, preprocessing is necessary
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to simulate typical auditory functions and meet the model’s requirements. This thesis
scales the stimulus signal to a 65 dB sound pressure level (SPL) presentation level,
and upsamples the signal to the model’s 100 kHz sampling rate.

The neurogram provides a research tool for analyzing and understanding the process-
ing of speech signals in an auditory model. After subsequent additional processing,
its alternative forms explicitly characterize the intrinsic mean rate and spike timing

neural cues (Wirtzfeld et al., 2017), respectively.
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Chapter 3

Methods and results

3.1 Methods

In this chapter, three methods of evaluating speech intelligibility will be discussed,
which are Spectro-Temporal Modulation Index (STMI), Neurogram Similarity Index
Measure (NSIM), and Cross-Correlation Coefficients (CCC).

3.1.1 STMI

STMI is a measure of how the output changes when noise, reverberation, or other
distortion is applied to an acoustic signal based on the physiological model. STMI
is also a cortical model that quantifies differences in spectral-temporal modulation
between clean speech signals and the noisy or distorted speech signals (Chi et al.,
1999; Elhilali et al., 2003). It is sensitive only to mean rate or mean neural activity.

A schematic of STMI generation is shown in Figure 3.1.
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Figure 3.1: A schematic illustration of the process of STMI and NSIM based on the
the AN neurograms. Reprinted from Fig. 2 of from Heinz & Swaminathan (2009).

Following the method mentioned by Wirtzfeld et al. (2017), this thesis convolves the
peristimulus time histogram (PSTH) of each characteristic frequency (CF) with a rect-
angular window of 16 ms and processes it with 50% overlap. This produces an effective
neurogram with a sampling rate of 125 Hz, which eliminates the phase-locking fea-
ture of the temporal fine structure (TFS). Subsequently, a set of spectral-temporal re-
sponse fields (STRFs) is applied to each pair of neurograms using a spectral-temporal
Gabor function (Chi et al., 1999) derived as a function of crest frequency and drift
velocity. Given the range of temporal modulation rates (2-32 Hz) and of spectral
modulation scales (0.3-8 cycles/octave), STRFs simulate how the human auditory
cortex encodes different sound features, adapts its response to temporal variations
in the speech signal, captures the rhythmic and rate variations that are important
components of time-domain modulation, and also captures the spectral information
in speech through its sensitivity to a specific range of frequencies. The STRF's act
as a cortical spectral-time domain modulation filter, simulating the way the human
auditory cortex analyzes speech sounds in the spectral-temporal domain.

The given process generates four-dimensional complex-valued matrices with dimen-

sions of scale (cycles per octave), rate (Hz), time (seconds), and frequency (Hz).

16



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

The complex-valued elements in each matrix were calculated before the cortical dif-
ferences are computed (Wirtzfeld et al., 2017). The T token is a four-dimensional
real-valued entity. It is obtained by subtracting the cortical response of the clean
speech matched-noise signal from the cortical response of the clean speech signal.
The N token is computed in the same manner using the chimaeric speech signal. The
associated matched-noise representations are the same processing that was used to
generate the matched-noise signal for the creation of speech chimaeras. So the STMI

is calculated as

1T — NP?
STMI =1 — = — 10 (3.1.1)
712
where |-| is the Euclidean-norm operator. For a matrix X with n elements indexed

by k, T token represents the cortical response to a clean speech signal, and N token
represents the cortical response for the associated chimaeric speech signal.

The STMI algorithm aims to quantify the difference in spectro-temporal modulation
between a clean speech signal and its corresponding chimaera speech signal in order
to assess the intelligibility of the speech signal. Focus on the value of STMI, which
theoretically ranges from 0 to 1, the higher the value, the higher the intelligibility of

the speech signal.

3.1.2 NSIM

The NSIM quantifies differences in neural spectro-temporal features using an image-
based processing model (Hines and Harte 2010, 2012). As shown in Figure 3.1, NSIM
works by comparing the clean speech neurogram (R) and a corresponding chimeric
speech neurogram (D).

In an auditory model of the AN fiber response, mean rate and spike timing information
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coexist in the same PSTH. This thesis first clarifies the mean rate information and
the spike timing information. The spectral features supported by neural rate position
coding and the temporal fluctuations of these features at rates below approximately
78 Hz are referred to as mean rate information, while the temporal fluctuations of
neural firings at rates above 78 Hz and the precise time at which spikes occur due to
acoustic transients are referred to as spike-timing information.

Therefore, in this thesis, the ENV-related neurogram and NSIM measurements of
Hines and Harte (2010, 2012) will be referred to as the mean-rate (MR) neurogram
and NSIMs, and since the TFS-related neurogram and NSIM measurements of Hines
and Harte (2010, 2012) convey both mean-rate and spike-timing information, we will
refer to them as the fine-timing (FT) neurogram and NSIMs.

On this basis, this thesis processes clean and chimaera speech neurograms to produce
neurograms that reflect the corresponding cues for each information source. The
mean-rate neurograms are generated by resampling the AN fiber PSTH responses
to 100-ps bins in the consonant-vowel-consonant (CVC) target word regions of the
unmodified neurograms and convolving them witha a 128-sample Hamming window.
While the fine-timing neurograms are generated by retaining the 10-microsecond box
sizes derived from the auditory periphery model and convolving them with a 32-
sample Hamming window for each PSTH.

Since the NSIM focuses on the images over a windowed area rather than just using a
simple point-to-point pixel comparison, the optimal statistics are computed within a
3 x 3 square window for both MR and FT neurograms (Hines and Harte 2010, 2012).
Thus, three factors are measured for each individual pixel comparison: luminance,

contrast, and structure. Luminance represents a comparison of the mean values of
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neurograms. Contrast is a measure of the variance of neurograms, and structure is
equivalent to the correlation coefficient between the neurograms.

Hines and Harte (2012) investigated the effect of weighting factors («, 3, ) on
phoneme discrimination in CVC word lists and found that the ‘contrast’ term (3
) had little or no effect on overall NSIM performance. When the ‘brightness’ («) and
‘structure’ () terms were set to 1 and the ‘contrast’ (§ ) term was set to 0, they
found that the results produced under these conditions had comparable accuracy and
reliability to those calculated using the optimized values, so NSIM was simplified us-
ing this set of weighting factors.

A schematic of NSIM generation is also shown in Figure 3.1. In the figure, R repre-
sents for a clean speech neurogram, while D represents for an associated chimaeric

speech neurogram. The equation for the NSIM is

2urpp + Ch
wh + pg + Ch

20p0p + (Y B orp + Cs

NSIM(R, D) =
(R, D) = 0%+ o} + Cy orop + Cs

) (

Y (3.1.2)

where C1, C2, and C3 are three constants, which are regularization coefficients that
prevent numerical instability (Wang et al. 2004). These three exponents are weighting

coefficients, adjusting the relative proportions of the three components.

3.1.3 Cross-Correlation Coefficients

The neural Cross-Correlation Coefficients (CCC) measures the similarity between
the envelope (ENV) or temporal fine structure (TFS) responses of clean speech sig-
nal and chimaeric speech signal (Heinz and Swaminathan, 2009). To obtain neural
Cross-Correlation Coefficients, first, this thesis computes shuffled auto-correlograms

(SACs), which are the shuffled all-order interval histograms calculated by counting
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all intervals from all pairs of time for a single speech signal, and they are normalized
by N(N-1)r?A7D, where N represents for all possible pairs of stimulus repetitions
within a given set of spike trains, i.e., for N repetitions, there are N x (N — 1) pairs.
AT is the binwidth, r is the average discharge rate and D is the duration of the
response window to allow a more intuitive interpretation of temporal coding. With
this normalization, the baseline value is corrected to 1. Figure 3.2 illustrates some
examples of SACs. Then the shuffled cross-correlograms (SCCs) are computed by the
shuffled all-order interval histogram based on all possible pairs between two separate
sets of speech signal or the cross-polarity speech signals. And they are normalized
by NoaNgrarg/ATD. All variables shown in this equation is calculated between two
separate sets of spike trains in response to conditions A and B.

ALL-ORDER INTERSPIKE INTERVAL HISTOGRAMS

300 CF (Hz) / SR (sp/s) :
550 /50 A 2500/ 70 B 3290/ 51 C 5000/ 70

DELAY mS

Z SHUFFLED AUTOCORRELOGRAMS

3 4 5°6
DELAY

RATE (sp/s)

NORMALIZED SHUFFLED AUTOCORRELOGRAMS

? BELAY (ms)

NORMALIZED # COINCIDENCES

Figure 3.2: Examples of all-order interspike interval histograms (top), SACs (mid-
dle), and normalized SACs (bottom) for 4 auditory nerve (AN) fibers (4 columns).
Reprinted from Fig. 3 of from Louage et al (2004).

Therefore, in this way, this thesis develops different cross-correlograms (SCCs). In
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general, the SCC is computed by cross-polarity correlogram, that means obtaining
the response to the original stimuli(A+) and its inverse polarity pair (A-), and the
result is SCC(A+, A-). Then comes the second part, the cross-stimulus for SAC is
obtained by averaging the SCC with different polarity stimuli pair of clean speech

signal and chimaeric speech signal. The equation is

SCC(A+,B+) + SCC(A—,B-)
2

SACxp = (3.1.3)

At last, the cross-stimulus cross-polarity correlogram compares the clean speech signal
with inverse chimaeric speech signal, averaged with the inverse clean speech signal
with chimaeric speech signal, the equation shows as follows

SCC(A+,B—) + SCC(A—, B+)
2

SCCap = (3.1.4)

The next step is to produce the difcors and sumcors using shuffled correlograms.
Difcors are computed as the difference between the shuffled auto-correlograms and
the shuffled cross-correlograms with same stimulus, whereas sumcors were computed
as the average of shuffled auto-correlograms and the shuffled cross-correlograms with
same stimulus. It is worth noting that with respect to the sumcors, since only neural
coding of phonemic ENV information is considered, a low-pass filter is designed in
this thesis to limit the sumcors spectra to contain only frequencies below 64 Hz.

(Swaminathan and Heinz, 2012).
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Figure 3.3: Correlogram analyses to quantify the neural coding of ENV and TFS in
noise-degraded speech. Columns 1 and 2 show temporal coding in quiet and for a 10dB
SNR, respectively. column 3 illustrates the similarity in temporal coding between
these two conditions. A-B, Normalized shuffled auto correlograms (thick line) and
cross-polarity correlograms (thin line). C, Shuffled cross-stimulus correlogram (thick
line) and cross-polarity, cross-stimulus correlogram (thin line). D-F, Difcors represent
TFS coding. G-I, Sumcors represent phonemic (0-64 Hz) ENV coding. Reprinted
from Fig. 1 of Swaminathan & Heinz (2012).

More generally, shuffled correlograms quantify cross-correlation as a function of delay
and demonstrate a peak at the characteristic delay (CD) between the two responses,
and the CD is taken as zero when a single fiber is responding to two stimuli without
a defined delay between one another (Heinz and Swaminathan, 2009). Figure 3.3
illustrates some examples of sumcors and difcors. Thus, on the basis of difcors and

sumcors, the cross-correlation coefficient for temporal fine structure is calculated as:

difcorap
V/difcorp x difcorg

PTFS = (3.1.5)
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where all the difcors are evaluated at the corresponding CD, just as described above,
the CD is the delay at which the difcor peak occurs, so the value is computed from the
dicor peak height. Likewise, the cross-correlation coefficient for envelope is calculated

from the corrected sumcors as:

sumcorapg — 1

PENV = \/(sumcora — 1) x (sumcorg — 1)

(3.1.6)

where the sumcor value is computed from the sumcor peak height (after subtracting
the baseline value of 1).

In this thesis, the range of CF is chosen to be 200 Hz-8 kHz and the number of AN
fibers in each CF is 10. Choose all CFs < 2.5 kHz for TFS (Johnson, 1980) and all
CFs < 8 kHz for ENV. The range of neural Cross-Correlation Coefficients is from
0 to 1, where 0 represents no correlation and the larger the value, the higher the
correlation between the clean speech signal and chimaeric speech signal.

To properly understand the perceptual salience of TFS cues, it is important to con-
sider that acoustic TFS generates recovered envelope cues as well as true neural
TFES cues, just as shown in Figure 3.4. The results of the present study based on
penv provide physiological evidence for recovered envelope cues in response to AN to
speech-noise chimeras (with noisy true envelope cues produced by cochlear filtering).
Model predictions confirm that recovery envelopes are also present in TFS speech
(without true envelope cues) and speech-speech chimeras (Swaminathan and Heinz,
2012). This suggests that mean-rate neural cues from the original ENV and the re-
covered ENV can explain some of the variability in subjective perceptual scores.

A brief visualization of how the speech signal transfers to neural signal. Acoustic
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TFS and Acoustic ENV are referred to as TFS and ENV, and Neural TFS and Neu-

ral ENV are Fine-timing and Mean-rate for this study.
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Figure 3.4: Difference between TFS and ENV. Reprinted from Fig. 10 of from Heinz

& Swaminathan (2009).
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3.1.4 Modulation to test Cross-Correlation Coefficients

Since the third method of predicting speech intelligibility, Cross-Correlation Coeffi-
cients, is more complex and involves more variables, the purpose of this subsection
is to verify that the correct matrix has been applied to calculate Cross-Correlation
Coefficients correctly as described in Section 3.1.3.

According to the discussion on ENV and TFS in chapter 2.1, when changing the enve-
lope information, the cross-correlation coefficient for temporal fine structure should
not change. Conversely, when changing the carrier signal information, the cross-
correlation coefficient for envelope should not change, either. Hence, in this chapter,

two signals (Signal A & B) are modulated and the equations are shown below.

s(t) = A[l + kx(t)]cos(w.t) (3.1.7)

The most common form of carrier signal is a sinusoid, e.g., Acos(w.t), where A is the
carrier amplitude, w, is the carrier frequency, x(t) is used to modulate the amplitude
of carrier signal. In this section, x(t) is also a sine function, giving a sinusoidally
amplitude modulated (SAM) signal. The modulation index k was set to a value of
1, giving 100 % modulation. When changing the modulation frequency, prrg should
not change and the envelope correlation pgyy between the two signals is strongest
when the modulation frequencies are equal. When changing the carrier frequency,
penyv should not change and the temporal fine-structure correlation prps between
the two signals is strongest when the carrier frequencies are equal. If the above
conditions are all satisfied, this thesis can be considered to have indeed calculated the

Cross-Correlation Coefficients correctly.
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3.2 Results

According to the method described in Section 2.2.1 for generating speech chimaeras,
the noise is chosen to be white Gaussian noise (WGN) or matched-noise (MN), re-
spectively, and therefore five different chimaera signals are used in this thesis, which
are ENV with MN TFS, Speech ENV with WGN TFS, Speech TFS with EGN ENV,
Speech TFS with MN ENV, Speech TFS with MN ENV, and Speech TFS only (Speech
TFS with flat ENV). The number of vocoder filters varies from 1, 2, 3, 6, 8, 16 to 32.
In order to make the predictor value dependent only on the target word and not the
proceeding phrase ”Say the word”, the thesis selects only the neurograms windowed
around the target word for processing. In the following section, the results of the
different methods are presented, and then analyzed and compared with regression
models.

Following the methods described in Section 3.1, the results obtained for assessing

speech intelligibility are presented in this section in sequence.

3.2.1 STMI Evaluation of Speech Chimaeras Intelligibility

Firstly, regarding the STMI method, Figure 3.5 shows the average STMI values ver-
sus the number of vocoder filters for the Speech ENV and Speech TFS chimaeras.
For the Speech ENV chimaeras, as the number of vocoder filters grows, the STMI
values show a clear increasing trend for different noise cases, from about 0.4 at the
beginning to more than 0.8. And compared with the MN TFS, the WGN TF'S shows
an even more obvious increase, from the initial gap of nearly 0.1 with MN to the final

point of almost the same.
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For the Speech TFS chimaeras, as the number of vocoder filters grows, the STMI
values basically show a decreasing trend for different noise cases. The difference is
that the MN ENV decreases from around 0.36 to 0.21, and the trend is more stable
and does not decrease significantly when the number of vocoder filters is less than 8,
and starts to decrease to 0.21 when the number of filters is more than 8. On the other
hand, the WGN ENV or Flat ENV, maintains a decreasing trend from around 0.55
to around 0.18, and When the number of vocoder filters is greater than 8, the fold is
steeper and the decreasing trend is accelerated, but eventually the fall point for the
different noise cases (number of vocoder filters is 32) is very close to each other, both

are around 0.2.

Figure 3.6 shows the corresponding results from Wirtzfeld et al (2017), using the
older version of the auditory periphery model of Zilany et al. (2009). Similar to that
paper, this thesis also used the STMI method to estimate the speech intelligibility
of five different speech chimaeras based on the new auditory periphery model of of
Bruce et al. (2018).

Comparing Figure 3.5 with Figure 3.6, the Speech ENV chimaeras mixed with MN
TFS and WGN TFS show better results as the number of vocoders increases, while
the Speech TFS chimaeras accuracy decreases as the number of vocoders increases,
with the slight difference that the Speech TFS chimaeras mixed with WGN ENV and
Flat ENV show a more significant decreasing trend of the results obtained in this
thesis when the number of vocoders is less than 6. It can be seen that the results
obtained from the two figures are very close to each other and the differences in the

results can be attributed to the differences in the auditory periphery models.
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Figure 3.5: Average STMI values (error bars £ 1 SEM) as a function of the number
of vocoder filters.

3.2.2 NSIM Evaluation of Speech Chimaeras Intelligibility

For the NSIM method, Figure 3.7 shows the average mean-rate NSIM values versus
the number of vocoder filters for the Speech ENV and Speech TFS chimaeras. For
the Speech ENV chimaeras, as the number of vocoder filters grows, the mean-rate
NSIM values show an upward trend for the different noise scenarios, from around 0.35
initially to close to 0.6. Compared to the MN TFS, the WGN TFS shows more of an
increase, but the trend is very similar.

For the Speech TFS chimaeras, as the number of vocoder filters grows, the mean-rate
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Figure 3.6: Average STMI values (error bars +1 SEM) as a function of the number
of vocoder filters. The horizontal dashed lines in each panel show the empirically
determined lower and upper metric bounds. The lower bound is 0.16 and the upper
bound is 0.89. Reprinted from Fig. 5a of Wirtzfeld et al (2017).

NSIM values do not change significantly for the different noise cases. The MN ENV
rises from initially around 0.37 to 0.45, that is, when the number of vocoder filters is
8, but the number greater than The Flat ENV, although fluctuates a bit, the mean-
rate NSIM values do not change significantly, numerically going from 0.44 to 0.49 and
then back to 0.44. Compared to the Flat ENV, the WGN ENV has a more obvious

decreasing trend from the initial 0.44 when the number of vocoder filters is 1 to the

final 0.38
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Figure 3.7: Average mean-rate NSIM values (error bars = 1 SEM) as a function of
the number of vocoder filters.
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Figure 3.8: Average mean-rate NSIM values as a function of the number of vocoder
filters. The horizontal dashed lines show the empirically determined lower and upper
bounds. The lower bound is 0.0090 and the upper bound is 0.41. Reprinted from Fig.
6a of Wirtzfeld et al (2017).

Figure 3.8 is also from Wirtzfeld et al (2017). Similarly, in this thesis, the NSIM
method is used to detect speech intelligibility for five different speech chimeras. Com-
paring Figure 3.7 and Figure 3.8, the values of the Speech ENV chimaeras mixed with
MN TFS and WGN TFS increases as the number of vocoders increases, while the
values of the Speech TFS chimaeras shows a decrease in a fluctuating state. It can
be seen that the trends of the polylines of both figures are very similar.

For the NSIM method, Figure 3.9 shows the average fine-timing NSIM values versus

the number of vocoder filters for the Speech ENV and Speech TFS chimaeras. For

31



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

the Speech ENV chimaeras, as the number of vocoder filters grows, the fine-timing
NSIM values do not change obviously for different noise cases, and the curve in the
figure is flat, from around 0.04 at the beginning to around 0.06 at the end.

For the Speech TFS chimaeras, as the number of vocoder filters grows, fine-timing
NSIM values also do not change obviously for different noise cases. In contrast, MN
ENV increases slightly more, from around 0.15 to 0.21, while WGN ENV or Flat
ENYV, the curve is more flat, with no significant change in the values, except that the
difference between WGN ENV and Flat ENV is slightly larger, from almost the same

to 0.03 when number of vocoder filters of 32.
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Figure 3.9: Average fine-timing NSIM values (error bars + 1 SEM) as a function of
the number of vocoder filters.
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Figure 3.10: Average fine-timing NSIM values as a function of the number of vocoder
filters. The horizontal dashed lines show the empirically determined lower and upper
bounds. The lower bound is 0.069 and the upper bound is 0.35. Reprinted from Fig.
7a of Wirtzfeld et al (2017).

Figure 3.10 also from Wirtzfeld et al (2017). Comparing Figures 3.9 and 3.10, the
Speech ENV chimaeras values remains almost unchanged at a low level as the number
of vocoders increases. While the values of the Speech TFS chimaeras has a little
increase. It can be seen that the trends of the polylines in the two figures are very

similar as well.
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3.2.3 Cross-Correlation Coefficients Evaluation of Speech

Chimaeras Intelligibility

This thesis begins by verifying the correctness of the adopted Cross-Correlation Co-
efficients (CCC) algorithm, as described in Section 3.1.4, two signals A and B are
generated, and the modulation frequency of signal A is set to 10 Hz, and the modu-
lation frequency of signal B is varied so that the test interval is 2-20 Hz, resulting in
Figure 3.11 (a), and it shows the average Cross-Correlation Coefficients ENV values
versus the modulation frequency of test signal. From the figure, it can be seen that
as the modulation frequency increases, the Cross-Correlation Coefficients ENV values
peak at 10Hz and remain around 0.2 at other frequencies, except for the increase of
the terminal.

Figure 3.11 (b) shows the average Cross-Correlation Coefficients TFS values versus
the modulation frequency of test signal. From the figure, it can be seen that as the
modulation frequency increases, the Cross-Correlation Coefficients TFS values pro-
duce a fluctuation as the modulation frequency increases, but the values are centered

around 0.8.
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Figure 3.11: Mean Cross-Correlation Coefficients values versus the modulation

frequency of test signal.

The next test is to change the carrier frequency, signal A carrier frequency is set to

1000 Hz, change the carrier frequency of signal B, the test interval is 800-1200 Hz,

so Figure 3.12 (a) is obtained, and it shows the average CCC ENV values versus the

carrier frequency. As can be seen from the figure, the CCC ENV values fluctuate as

the carrier frequency increases, but the values are around 0.9. Compared with Figure

3.10(a), the fluctuation range in this figure is smaller and the simulation shows better

performance.

And Figure 3.12(b) shows the average CCC TFS values versus the carrier frequency.

From the figure, it can be seen that as the carrier frequency increases, the CCC TFS

values peaks at 1000Hz and approaches zero at other frequencies.
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Figure 3.12: Mean Cross-Correlation Coefficients values versus the carrier frequency
of test signal.

By testing, this thesis can be considered to have indeed calculated the Cross-Correlation
Coeflicients correctly. And the simulation effect of changing the carrier frequency is
even better.

For the Cross-Correlation Coefficients method, Figure 3.13 shows the average Cross-
Correlation Coefficients ENV values versus the number of vocoder filters for the
Speech ENV and Speech TFS chimaeras. For the Speech ENV chimaeras, as the
number of vocoder filters grows, the Cross-Correlation Coefficients ENV values show
a clear increasing trend for different noise cases, with the curve increasing almost

linearly from the initial around 0.53 to close to 0.87, and the increasing trend for the
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MN TFS and WGN TFS is very similar.

For the Speech TFS chimaeras, as the number of vocoder filters grows, the Cross-
Correlation Coefficients ENV values basically show a decreasing trend for different
noise cases. The difference is that WGN ENV decreases more significantly, from the
initial 0.51 to about 0.40, and when the number of vocoder filters is greater than
2, the trend is more stable and does not decrease significantly. On the other hand,
the MN ENV has been decreasing from 0.44 to 0.39, and the Flat ENV has been

decreasing similarly to the MN ENV from 0.47 to 0.42.
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Figure 3.13: Mean Cross-Correlation Coefficients ENV values as a function of the
number of vocoder filters. Mean alues across AN fibers [all eight CFs < 2.5 kHz for
TFS (Johnson, 1980); all 10 CFs < 8 kHz for ENV] are plotted with SEM bars(error
bars £ 1 SEM).
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And Figure 3.14 shows the average Cross-Correlation Coefficients. TFS values versus
the number of vocoder filters for the Speech ENV and Speech TF'S chimaeras. For the
Speech ENV chimaeras, as the number of vocoder filters grows, the cross-correlation
coefficients. TFS values do not change significantly for different noise scenarios, and
the curve in the figure is flat and stays around 0.3.

For the Speech TFS chimaeras, as the number of vocoder filters grows, the cross-
correlation coefficients values show a slight increasing trend for different noise cases.
In contrast, the MN ENV increases more, from around 0.49 to 0.62, while the WGN
ENV or Flat ENV, both fluctuates and maintains its increase, except that the differ-
ence between the WGN ENV and the Flat ENV is slightly larger, from almost the

same to 0.05 at the final when number of vocoder filters of 32.
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Figure 3.14: Mean Cross-Correlation Coefficients TFS values as a function of the
number of vocoder filters. Mean values across AN fibers are plotted with SEM bars

(error bars £ 1 SEM).
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3.2.4 Correlations Between Predictions and Perceptions

As described in previous sections, this thesis uses three methods to predict speech
intelligibility, which are Spectra-Temporal Modulation Index, Neurogram Similarity
Index Measure, and Cross-Correlation Coefficients, respectively, and also obtains the
corresponding prediction results. And the next step is to compare and summarize
the effect of each method.

In this chapter, the establishment of a regression model between the predicted and
perceptual values from the human speech intelligibility experiment of Wirtzfeld et al.
(2017) is used for comparison. Since there are seven different numbers of vocoders, so
for each chimaera signal there are seven data points, a total of five chimaera models,
which means that each regression model uses 35 data points.

Several first-order linear regression models were constructed using the neural mea-

sures and the perceptual scores, using the general form of

where RAU(PC) are the average rationalized arcsine transformed (RAU; Studebaker
1985) fractional phonemic-level scores for the CVC target-words, and M; and M,
correspond to two neural measures (Wirtzfeld et al., 2017). The RAU transform is
a method used in speech research to mitigate the floor and ceiling effects commonly
observed in perceptual performance data.

For models with a single neural predictor, M and M; are set to zero. For models with
more than two neural measures, each measure has its own term and is combined with
each of the remaining measures to form a two-term product interaction term. When

p values are smaller than the set value, the larger the value of Adjusted R-Squared,
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the better the performance. The Adjusted R-Squared is a metric utilized in statistics
to assess the quality of fit of a linear regression model, representing an enhancement
over the conventional R-Squared. The resulting perceptual identification figure is

shown in Figure 3.15.
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Figure 3.15: RAU-transformed perceptual measure identification values as a
function of the number of vocoder filters.

The RAU-transformed perceptual measures are fitted to a linear regression model
with the predicted values obtained from the STMI algorithm, and the variation of

the obtained fitted values with the number of vocoders is shown in Figure 3.16.
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Figure 3.16: Predicted values obtained by STMI algorithm after fitting as a function
of the number of vocoder filters.

Analyzing Figure 3.15 and Figure 3.16, this thesis finds that the trends of the cor-
responding polylines are basically the same, but the range of values varies a lot.
Comparing these fitted values with the perceptual recognition values, the plot of

actual measurements versus theoretical predictions is drawn as shown in Figure 3.17.
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Figure 3.17: Fitting results of the predicted identification values obtained by the
STMI algorithm with the perceptual measured identification values. The adjusted
R? value and p value for each regression are shown in the upper lefthand corner of
its respective panel.

The diagonal line represents a one-to-one correspondence between the perceptual val-
ues and the associated predictions. For points lying under the line, the model predic-
tion is higher than the perceptual score, while for points above the line the prediction
is lower. This paper uses the p-value to determine whether the data is significant,
that is, whether it helps us decide whether the model is suitable for predicting speech
intelligibility. As shown in the figure, the adjusted R? value is 0.198 (significant at
p-value <0.05), which is not ideal, and careful inspection of the figure reveals that
the STMI-based model overpredicts speech ENV chimeras and underpredicts speech
TFS chimeras.
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The perceptual measures are fitted to a linear regression model with the predicted
values obtained from the NSIM algorithm, this thesis tries different models including
the mean-rate NSIM and fine-timing NSIM measures independently, as well as their

combination. Table 3.1 summarizes the adjusted R? value and p value obtained from

different NSIM models.

Table 3.1: Linear regression models with NSIM predictions

MR NSIM FT NSIM MR NSIM and FT NSIM
Adj.R? 0.423 Adj.R? 0.036 Adj.R? 0.486
p value <0.001 p value 0.140 p value <0.001

As can be seen from the Table 3.1, using the mean-rate NSIM individually has a
slightly higher the adjusted R? value of 0.423 (significant at p-value <0.001), while
the p-value of fine-timing NSIM is larger than the set value, so its results are not sig-
nificant, which means that fine-timing NSIM is not applicable for predicting speech
chimeras individually.

The combination of the mean-rate NSIM and the fine-timing NSIM leads to improved
predictions with an adjusted R* value of 0.486 (significant at p value <0.001). This
provides cues for this thesis about combining information, and trying different com-
binations might improve prediction accuracy.

In order to improve the prediction results, this thesis tries to use the combination

of different methods. The combination of STMI with MR NSIM and FT NSIM is
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attempted separately and a distinction is made between the presence and absence of
interactions in combination. Table 3.2 summarizes the adjusted R? value and p value

obtained from the combination of STMI and NSIM predictions.

Table 3.2: Linear regression models with the
combination of STMI and NSIM predictions

STMI and MR NSIM STMI and FT NSIM

Adj.R? 0.467 with interaction Adj.R? 0.768 with interaction

p value <0.001 p value <0.001

Adj.R? 0.407 no interaction  Adj.R? 0.776 no interaction

p value <0.001 p value <0.001

As can be seen from the Table 3.2, STMI combined with MR NSIM has a small
difference in accuracy compared to MR NSIM and FT NSIM combined, with a slight
decrease in accuracy when the interaction is removed. While the accuracy of STMI
combined with FT NSIM is significantly improved, the fitted R? value is 0.768 (sig-
nificant at p-value <0.001), and the accuracy prediction is even better when there is
no interaction. Plot the fitted predictions of the combination of STMI and FT NSIM

and compare them to the perceptual measurements.
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Figure 3.18: STMI combined with F'T NSIM Predictions obtained after fitting
considering the interaction case as a function of the number of vocoder filters.

In this thesis, a comparison of Figure 3.18 with the RAU-converted perceptual mea-
surements (Figure 3.15) reveals that the trends of the polylines in the plots are basi-
cally the same, except for the Speech TFS with MN ENV, which corresponds to the
purple line that basically shows a decreasing trend in perceptual measurements as
the number of vocoders increases, while in the prediction figure, with the number of
vocoders 8 as the turn, the front of this fold line shows an increasing trend instead,

and there is a difference in the range of values.
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Figure 3.19: Fitting results of the predicted identification values obtained by STMI
combined with FT NSIM (with interactions) and the perceptual measured
identification values. The adjusted R? value and p value for each regression are
shown in the upper lefthand corner of its respective panel.

Observing the comparison of the predicted values and the perceptual measurements

in Figure 3.19, the data points in the figure are almost around the diagonal line.

Specifically, it slightly underestimates the Speech TFS with Flat ENV and more sig-

nificantly overestimates the Speech TFS with MN ENV | but is generally closer to the

diagonal.
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Figure 3.20: STMI combined with F'T NSIM Predictions obtained after fitting
ignoring interactions as a function of the number of vocoder filters.

Figure 3.20 is the results of STMI combined with FT NSIM Predictions obtained
after fitting ignoring interactions, compared with the RAU transformed perceptual
figure(Figure 3.15), this thesis finds that the trends of the polylines in the figure are
basically the same, except for the Speech TFS with MN ENV, which has the similar

issues as Figure 3.18, and there are differences in the range of values.
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Figure 3.21: Fitting results of the predicted identification values obtained by STMI
combined with FT NSIM (no interactions) and the perceptual measured
identification values. The adjusted R? value and p value for each regression are
shown in the upper lefthand corner of its respective panel.

Observing the comparison of the predicted values and the perceptual measurements
in Figure 3.21, similar to Figure 3.19, the data points in the figure are almost around
the diagonal line, and the connecting lines of the data points are similar to the di-
agonal line, and the presence or absence of interactions does not have much effect,
which indicates that the prediction results of the combination of STMI and FT NSIM
are more in line with the perceptual measures, and that the algorithm is suitable for

predicting the intelligibility of speech chimaeras.
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This is followed by an evaluation of the third algorithm, Cross-Correlation Coeffi-
cients (CCC). Again, different models are tried in this thesis, including the individual
CCC ENV and CCC TEFS, as well as their combination. Table 3.3 summarizes the

adjusted R? values and p-values derived from the different CCC models.

Table 3.3: Linear regression models with CCC predictions

CCC ENV CCC TFS CCC ENV and CCC TFS
Adj.R? -0.0132 Adj.R? 0.018 Adj.R? 0.436
p value 0.461 p value 0.210 p value <0.001

As can be seen from the Table 3.3, the p-value of CCC ENV and CCC TFS individual
is larger than the set value, so its results are not significant, which means that neither
CCC ENV nor CCC TFS is applicable for predicting speech chimaeras individually.
As for the combination of the CCC ENV and CCC TFS, it leads to improved pre-
dictions with an adjusted R? value of 0.436 (significant at p value <0.001) compared
to applying them individually. However, compared to previous combinations, this
prediction accuracy is not as good as the combination of STMI and FT NISM, so this
thesis will continue to try more combinations of Cross-Correlation Coefficients.

In this thesis, the combination of STMI with CCC ENV and CCC TFS is attempted
separately and a distinction is made between the presence and absence of interactions
in combination. Table 3.4 summarizes the adjusted R? value and p value obtained

from the combination of STMI and CCC predictions.
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Table 3.4: Linear regression models with the
combination of STMI and NSIM predictions

STMI and CCC ENV STMI and CCC TFS

Adj.R? 0.579 with interaction Adj.R? 0.759 with interaction

p value <0.001 p value <0.001

Adj.R? 0.507 no interaction Adj. R? 0.766 no interaction

p value <0.001 p value <0.001

As can be seen from the Table 3.5, STMI combined with CCC ENV has better per-
formance in accuracy compared to CCC ENV and CCC TFS combined, with a slight
decrease in accuracy when the interaction is removed, but the accuracy is still not
high. While the accuracy of STMI combined with CCC TF'S is significantly improved,
the fitted R? value is 0.759 (significant at p-value <0.001), and the accuracy predic-
tion is even better when there is no interaction. Plot the fitted predictions of the
combination of STMI and CCC TFS and compare them to the perceptual measure-

ments.
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Figure 3.22: STMI combined with CCC TFS Predictions obtained after fitting
considering the interaction case as a function of the number of vocoder filters.

Figure 3.22 is the results of STMI combined with CCC TFS Predictions obtained af-
ter fitting considering interactions, compared with the RAU transformed perceptual
figure (Figure 3.15), this thesis finds that the trends of the polylines in the figure are
basically the same, except for the Speech TFS with MN ENV, which has the similar

issues as Figure 3.18, and there are still some differences in the range of values.
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Figure 3.23: Fitting results of the predicted identification values obtained by STMI
combined with CCC TFS (with interactions) and the perceptual measured
identification values. The adjusted R? value and p value for each regression are
shown in the upper lefthand corner of its respective panel.

Observing the comparison of the predicted values with the perceptual measurements
in Figure 3.23, the data points in the figure are almost all near the diagonal line.
Specifically, it slightly underestimates the Speech TFS with Flat ENV and more sig-
nificantly overestimates the Speech TFS with MN ENV | but is generally closer to the

diagonal.
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Figure 3.24: STMI combined with CCC TFS Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.

Figure 3.24 is the results of STMI combined with CCC TFS Predictions obtained
after fitting ignoring interactions, compared with the RAU transformed perceptual
figure(Figure 3.15), this thesis finds that the trends of the polylines in the figure are
basically the same, except for the Speech TFS with MN ENV, which has the similar

issues as Figure 3.18, and there are still some differences in the range of values.

o4



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

140
® Speech-ENV + MN-TFS
® Speech-ENV + WGN-TFS
120 ® Speech-TFS + MN-ENV
Speech-TFS + Flat-ENV L4
Speech-TFS + WGN-ENV ° ®

100 [ Adj. R? = 0.766 (p-value <0.00%) °e

STMI+CCC TFS-Neural Metric Identification

0 1 1 1 1 1 1 I
0 20 40 60 80 100 120 140

Number of Vocoder Filters

Figure 3.25: Fitting results of the predicted identification values obtained by STMI
combined with CCC TFS (no interactions) and the perceptual measured
identification values. The adjusted R? value and p value for each regression are
shown in the upper lefthand corner of its respective panel.

Observing the comparison of the predicted values and the perceptual measurements
in Figure 3.25, similar to Figure 3.23, the data points in the figure are almost around
the diagonal line, and the connecting lines of the data points are similar to the di-
agonal line, and the presence or absence of interactions does not have much effect,
which indicates that the prediction results of the combination of STMI and CCC TFS
are more in line with the perceptual measures, and that the algorithm is suitable for

predicting the intelligibility of speech chimaeras.
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In summary, by evaluating the prediction results of different algorithms, this the-
sis finds that applying a particular algorithm individually may be more concise, but
has limited accuracy in predicting speech intelligibility. After attempting to combine
the predictions of different algorithms, some combinations showed a significant im-
provement in prediction accuracy. Comparing the adjusted R? value of the different
combinations, the combination of STMI with FT NSIM and the combination of STMI
with CCC TF'S have the highest prediction accuracy, with or without interaction, the
accuracy of predicting speech intelligibility reaches 75%-76%, which means that the
combination of STMI with FT NSIM and the combination of STMI with CCC TFS
are both suitable to be applied to the speech chimaeras discussed in this thesis.

The STMI algorithm eliminates phase-locked features and generates chimaeras that
preserve the amplitude spectrum. This makes STMI more capable of capturing ENV
information. When STMI is combined with FT NSIM or CCC TFS, FT NSIM or
CCC TFS can provide TFS information of the speech signals more effectively. There-
fore, by accurately applying different information of the speech signals in this thesis,
the accuracy of these two combinations is significantly increased.

More figures of the fitted prediction results for the various combinations of cases men-
tioned in this section, as well as their comparison with the perceptual measurements,

are placed in Appendix A.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

The goal of this thesis is to evaluate the accuracy of different algorithms in predicting
speech intelligibility of speech chimaeras. To achieve this goal, this thesis studies
the decomposition of speech signals into ENV and TFS, and the combination of
these two parts in different signals to obtain the research object, speech chimaeras.
Building on the speech recognition experiments of Wirtzfeld et al. (2017), it then
investigates how mean-rate and spike-timing cues contribute to speech perception in
general, and under what circumstances the number of vocoders can significantly affect
the prediction accuracy. It is shown that the number of vocoders in a speech TFS
chimaeras does not significantly affect the TFS spike-timing response.

In conjunction with the neurograms generated by speech chimaeras, this thesis uses
STMI, NSIM and Cross-Correlation Coefficients to predict speech intelligibility for
speech chimaeras, respectively. By calculating the regression models for different

combinations, the combination of STMI with FT NSIM and the combination of STMI
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with CCC TFS perform better than the other combinations, and can better predict
the intelligibility of speech chimaeras. The above conclusions are due to the fact
that STMI is more capable of obtaining ENV features, while FT NSIM and CCC
TFS are all good at obtaining TFS features. By fully combining the ENV and TFS
information of the speech signal, this thesis can predict speech intelligibility better,

and the prediction results obtained by two good combinations are very similar.

4.2 Future Work

This thesis focuses on predicting the intelligibility of speech chimaeras under quiet
conditions, but absolutely quiet conditions are not common in reality, so future work
will first consider how to still predict speech intelligibility well under noisy conditions.
Meanwhile, how the contribution of ENV and TF'S in the prediction changes when the
background environment changes, and whether the effect of the number of vocoders
remains the same, these are also the research points for future work.

In the study of this thesis, there is a significant difference between WGN and MN
used in speech chimaeras in prediction, and the MN ENV will be more likely to
be underestimated compared to the overall flattening of Flat ENV and WGN ENV
chimaeras, so in future work, it is possible to consider the choice of other noise types

or how to use MN more reasonably, in order to achieve a more desirable effect.
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Appendix A

Fitted Combination Figures

Table A.1: Linear regression models with the
combination of MR NSIM and CCC predictions

MR NSIM and CCC ENV MR NSIM and CCC TFS
Adj.R? 0.479 Adj.R? 0.470
p value <0.001 p value <0.001

Table A.2: Linear regression models with the
combination of FT NSIM and CCC predictions

FT NSIM and CCC ENV FT NSIM and CCC TFS
Adj.R? 0.496 Adj. R? 0.345
p value <0.001 p value <0.001
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Figure A.1: MR NSIM Predictions obtained after fitting as a function of the
number of vocoder filters.
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Figure A.2: Fitting results of the predicted identification values obtained by MR
NSIM and the perceptual measured identification values. The adjusted R? value
and p value for each regression are shown in the upper lefthand corner of its
respective panel.
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Figure A.3: FT NSIM Predictions obtained after fitting as a function of the number
of vocoder filters.
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Figure A.4: Fitting results of the predicted identification values obtained by FT
NSIM and the perceptual measured identification values. The adjusted R? value
and p value for each regression are shown in the upper lefthand corner of its
respective panel.
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Figure A.5: MR NSIM combined with FT NSIM Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.6: Fitting results of the predicted identification values obtained by MR
NSIM combined with FT NSIM and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.
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Figure A.7: STMI combined with MR NSIM Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.8: Fitting results of the predicted identification values obtained by STMI
combined with MR NSIM and the perceptual measured identification values. The

adjusted R? value and p value for each regression are shown in the upper lefthand

corner of its respective panel.
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Figure A.9: CCC ENV Predictions obtained after fitting as a function of the
number of vocoder filters.

68



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

140
® Speech-ENV + MN-TFS
® Speech-ENV + WGN-TFS
120 ® Speech-TFS + MN-ENV
Speech-TFS + Flat-ENV ®
Speech-TFS + WGN-ENV 4

§ 100 Adj. R? = -0.013 (p-value = 0.461) ] L
®
O ]
=
= g0 e
(0]
o
©
2 60
o
()
o
()
o 40

20

| | |

0 20 40 60 80 100 120 140
CCC ENV-Neural Metric Identification

Figure A.10: Fitting results of the predicted identification values obtained by CCC
ENV and the perceptual measured identification values. The adjusted R? value and
p value for each regression are shown in the upper lefthand corner of its respective
panel.
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Figure A.11: CCC TFS Predictions obtained after fitting as a function of the
number of vocoder filters.

70



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

140
® Speech-ENV + MN-TFS
® Speech-ENV + WGN-TFS
120 ® Speech-TFS + MN-ENV
Speech-TFS + Flat-ENV ®
Speech-TFS + WGN-ENV L
5 100 [ Adj. R? = 0.018 (p-value = 0.210) @ o‘
®
O
= 80 )
(0]
S
©
2 60r
o
[0
o
()
o 40+t
20 +
O | | | | | | |
0 20 40 60 80 100 120 140

CCC TFS-Neural Metric Identification

Figure A.12: Fitting results of the predicted identification values obtained by CCC
TFS and the perceptual measured identification values. The adjusted R? value and
p value for each regression are shown in the upper lefthand corner of its respective
panel.
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Figure A.13: CCC ENV combined with CCC TFS Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.14: Fitting results of the predicted identification values obtained by CCC
ENV combined with CCC TFS and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.
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Figure A.15: STMI combined with CCC ENV Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.16: Fitting results of the predicted identification values obtained by STMI
combined with CCC ENV and the perceptual measured identification values. The
adjusted R? value and p value for each regression are shown in the upper lefthand
corner of its respective panel.
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Figure A.17: FT NSIM combined with CCC ENV Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.18: Fitting results of the predicted identification values obtained by FT
NSIM combined with CCC ENV and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.
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Figure A.19: FT NSIM combined with CCC TFS Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.20: Fitting results of the predicted identification values obtained by FT
NSIM combined with CCC TFS and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.

79



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

140 T T T — T T
C
S
()
L2 120
=
(0]
o
o 100
ko)
=
© 80
-]
[}
<
= 60 L -
Z
m
&)
S 40 .
+ » Speech-ENV + MN-TFS
= Speech-ENV + WGN-TFS
2 20} Speech-TFS + MN-ENV .
o Speech-TFS + Flat-ENV
= Speech-TFS + WGN-ENV
0 1 1 i i 1 i 1 i i 1 i i
1 2 3 6 8 16 32

Number of Vocoder Filters

Figure A.21: MR NSIM combined with CCC ENV Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.22: Fitting results of the predicted identification values obtained by MR
NSIM combined with CCC ENV and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.
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Figure A.23: MR NSIM combined with CCC TFS Predictions obtained after fitting
ignoring the interaction case as a function of the number of vocoder filters.
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Figure A.24: Fitting results of the predicted identification values obtained by MR
NSIM combined with CCC TFS and the perceptual measured identification values.
The adjusted R? value and p value for each regression are shown in the upper
lefthand corner of its respective panel.
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Appendix B

Codes

B.1 STMI code

% Check to see if running under Matlab or Octave
if exist (’0CTAVE_VERSION’, ’builtin’) "= 0
pkg load signal;
if exist(’rms’)<1
rms = Q@(x) sqrt(mean(x."2));
end

end

if exist(’parfor’,’builtin’) % check if the Matlab Parallel
Computation Toolbox is installed and use appropriate function
generate_neurogram_function =
@generate_neurogram_BEZ2018_stmi_parallelized;
disp(’Using parallelized version of neurogram generation
function’)

else

generate_neurogram_function = Q@generate_neurogram_BEZ2018_stmi;
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TV

disp(’Using serial version of neurogram generation function’)
end
% Set "reference" audiogram for STMI
ag_fs_ref = [0 20e3];

ag_dbloss_ref = [0 0]; 7% Normal hearing

o % Set "test" audiogram for STMI

ag_fs_test = [0 20e3];

ag_dbloss_test = [0 0]; % Normal hearing

species = 2; % human model with tuning based on Shera et al. (2002)

2.7(1:0.5:5); % cortical (temporal) modulation filter rates

rsv = 2.7(-2:0.5:3); % cortical (spectral) modulation filter scales

stimdb = 65; % speech level in dB SPL
SNR = 0; % in dB

% SNR = inf; % in dB; inf -> no background noise

load (’FS.mat’)

filter.n = [1 2 3 6 8 16 32];

numoffilter = length(filter_mn);
STMI_1=zeros(7,50);
STMI_2=zeros (7,50);
STMI_3=zeros(7,50);
STMI_4=zeros (7,50) ;

STMI_b=zeros (7,50);
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13 %

Speech-ENV + MN-TFS

14 for 1lp = 1l:numoffilte

15

16

19

60

61

for i=1:50

r

d=dir ([’E_matched_noise_TFS’ num2str(filter_n(lp)) ’filters’

> .mat’])

load ([d(i) .name])

str=d (i) .name

>

ori_str=extractAfter (str,"filters_")

load ([ori_str

D

teststim=added_filter_bands’;

refstim=x;
Fs_stim=FS;

refstim = ref

stim/rms(refstim) *20e-6%10"(stimdb/20) ;

teststim = teststim/rms(teststim) *20e-6*x10"(stimdb/20) ;

[neurogram_st

mi_ref ,t_stmi,CFs] =

generate_neurogram_function(refstim,Fs_stim,species,ag_fs_ref,

ag_dbloss_ref);

base_sig_ref

= generate_base_signal(refstim);

[neurogram_base_ref ,t_stmi,CFs] =

generate_neurogram_function(base_sig_ref ,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);

[neurogram_st

mi_test ,t_stmi,CFs] =

generate_neurogram_function(teststim,Fs_stim,species,ag_fs_test,

ag_dbloss_test);

base_sig_test

= generate_base_signal(teststim);
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63 [neurogram_base_test ,t_stmi,CFs] =
generate_neurogram_function(base_sig_test ,Fs_stim,species,
ag_fs_test,ag_dbloss_test);

64

65 response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus

66 [tmp, ind_stmi] = min(abs(t_stmi-response_endtime)); 7 Find
the corresponding time index in the stmi neurogram

67

68 % Generate the cortical responses to the reference signal
and reference base signal neurograms

69 % compute the reference "template" T matrix

70 al_stmi_ref = abs(ngram2cortex(neurogram_stmi_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

71 al_base_ref = abs(ngram2cortex(neurogram_base_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
72 T = max(al_stmi_ref - al_base_ref ,b0);
73 TT = sum(sum(T(:)."2));

75 % Generate the cortical responses to the test signal and
test base signal neurograms

76 % compute the test "noisy" N matrix
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al_stmi_test = abs(ngram2cortex(neurogram_stmi_test(:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

al_base_test = abs(ngram2cortex(neurogram_base_test (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
N = max(al_stmi_test - al_base_test ,0);
NN = sum(sum((max(T(:)-N(:),0)).~2));

STMI_1(lp,i) = 1-NN/TT
end

end

5 stmilmean=mean (STMI_1,2);

stmilstd=std (STMI_1,1,2);

% Speech-ENV + WGN-TFS
for 1p = l:numoffilter
for i=1:50

d=dir ([’E_WGN_TFS_’ num2str (filter_n(lp)) ’filter’ ’*.mat’])
load ([d (i) .name])
str=d(i) .name;
ori_str=extractAfter (str,"filter_")
load([ori_str])
teststim=added_filter_bands’;
refstim=x;
Fs_stim=FS;

refstim = refstim/rms(refstim)*20e-6%10"(stimdb/20) ;
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teststim = teststim/rms(teststim) *20e-6%10"(stimdb/20) ;

[neurogram_stmi_ref ,t_stmi,CFs] =
generate_neurogram_function(refstim,Fs_stim,species,ag_fs_ref,
ag_dbloss_ref);

base_sig_ref = generate_base_signal(refstim);

[neurogram_base_ref ,t_stmi,CFs] =
generate_neurogram_function(base_sig_ref ,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);

[neurogram_stmi_test ,t_stmi,CFs] =
generate_neurogram_function(teststim,Fs_stim,species,ag_fs_test,
ag_dbloss_test) ;

base_sig_test = generate_base_signal(teststim);

[neurogram_base_test ,t_stmi,CFs] =
generate_neurogram_function(base_sig_test ,Fs_stim,species,

ag_fs_test ,ag_dbloss_test);

response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus
[tmp, ind_stmi] = min(abs(t_stmi-response_endtime)); J% Find

the corresponding time index in the stmi neurogram

% Generate the cortical responses to the reference signal

and reference base signal neurograms and

% compute the reference "template" T matrix
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115 al_stmi_ref = abs(ngram2cortex(neurogram_stmi_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

116 al_base_ref = abs(ngram2cortex(neurogram_base_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
117 T = max(al_stmi_ref - al_base_ref ,b0);
118 TT = sum(sum(T(:)."2));

119

120 % Generate the cortical responses to the test signal and
test base signal neurograms and

121 % compute the test "mnoisy" N matrix

122 al_stmi_test = abs(ngram2cortex(neurogram_stmi_test(:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128

columns

s

al_base_test = abs(ngram2cortex(neurogram_base_test (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
124 N = max(al_stmi_test - al_base_test,0);
125 NN = sum(sum((max(T(:)-N(:),0)).~2));
126
127 STMI_2(1lp,i) = 1-NN/TT
128 end
120 end

130 stmi2mean=mean (STMI_2,2);
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stmi2std=std (STMI_2,1,2);

h

Speech-TFS + MN-ENV

134 for 1p = 1:numoffilte

139

140

144

146

149

150

for i=1:50

r

d=dir ([’ TFS_matched_noise_E’ num2str(filter_n(lp)) ’filters’

>%.mat’])

load ([d(i) .name])

str=d(i) .name

’

ori_str=extractAfter (str,"filters_")

load([ori_str
teststim=adde
refstim=x;
Fs_stim=FS;
refstim = ref

teststim = te

D

d_filter_bands ’;

stim/rms (refstim) *20e-6%10"(stimdb/20) ;

ststim/rms(teststim) *20e-6*%10"(stimdb/20) ;

[neurogram_stmi_ref ,t_stmi,CFs] =

generate_neurogram_function(refstim,Fs_stim,species,ag_fs_ref,

ag_dbloss_ref);
base_sig_ref

[neurogram_ba

= generate_base_signal (refstim);

se_ref ,t_stmi,CFs] =

generate_neurogram_function(base_sig_ref ,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);

[neurogram_st

mi_test ,t_stmi,CFs] =

generate_neurogram_function(teststim,Fs_stim,species,ag_fs_test,

ag_dbloss_test);

base_sig_test

= generate_base_signal (teststim) ;
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153 [neurogram_base_test ,t_stmi,CFs] =
generate_neurogram_function(base_sig_test ,Fs_stim,species,

ag_fs_test,ag_dbloss_test);

155 response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus
156 [tmp, ind_stmi] = min(abs(t_stmi-response_endtime)); 7 Find

the corresponding time index in the stmi neurogram

158 % Generate the cortical responses to the reference signal
and reference base signal neurograms and

159 % compute the reference "template" T matrix

160 al_stmi_ref = abs(ngram2cortex(neurogram_stmi_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

161 al_base_ref = abs(ngram2cortex(neurogram_base_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
162 T = max(al_stmi_ref - al_base_ref ,b0);
163 TT = sum(sum(T(:)."2));
164
165 % Generate the cortical responses to the test signal and

test base signal neurograms and

166 % compute the test "noisy" N matrix
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al_stmi_test = abs(ngram2cortex(neurogram_stmi_test(:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

al_base_test = abs(ngram2cortex(neurogram_base_test (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
N = max(al_stmi_test - al_base_test,0);
NN = sum(sum((max(T(:)-N(:),0)).~2));

STMI_3(lp,i) = 1-NN/TT
end

end

75 stmi3mean=mean (STMI_3,2) ;

stmi3std=std (STMI_3,1,2);

% Speech-TFS 0Only
for 1p = l:numoffilter
for i=1:50

d=dir ([’TFS_only_’ num2str(filter_n(lp)) ’filters’ ’*.mat’])
load ([d (i) .name])
str=d(i) .name;
ori_str=extractAfter (str,"filters_")
load([ori_str])
teststim=added_filter_bands’;
refstim=x;
Fs_stim=FS;

refstim = refstim/rms(refstim)*20e-6%10"(stimdb/20) ;
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teststim = teststim/rms(teststim) *20e-6%10"(stimdb/20) ;

[neurogram_stmi_ref ,t_stmi,CFs] =
generate_neurogram_function(refstim,Fs_stim,species,ag_fs_ref,
ag_dbloss_ref);

base_sig_ref = generate_base_signal(refstim);

[neurogram_base_ref ,t_stmi,CFs] =
generate_neurogram_function(base_sig_ref ,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);

[neurogram_stmi_test ,t_stmi,CFs] =
generate_neurogram_function(teststim,Fs_stim,species,ag_fs_test,
ag_dbloss_test) ;

base_sig_test = generate_base_signal(teststim);

[neurogram_base_test ,t_stmi,CFs] =
generate_neurogram_function(base_sig_test ,Fs_stim,species,

ag_fs_test ,ag_dbloss_test);

response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus
[tmp, ind_stmi] = min(abs(t_stmi-response_endtime)); J% Find

the corresponding time index in the stmi neurogram

% Generate the cortical responses to the reference signal

and reference base signal neurograms and

% compute the reference "template" T matrix
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205 al_stmi_ref = abs(ngram2cortex(neurogram_stmi_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

206 al_base_ref = abs(ngram2cortex(neurogram_base_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
207 T = max(al_stmi_ref - al_base_ref ,b0);
208 TT = sum(sum(T(:)."2));

209

210 % Generate the cortical responses to the test signal and
test base signal neurograms and

211 % compute the test "mnoisy" N matrix

212 al_stmi_test = abs(ngram2cortex(neurogram_stmi_test(:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128

columns

N

al_base_test = abs(ngram2cortex(neurogram_base_test (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
214 N = max(al_stmi_test - al_base_test,0);
215 NN = sum(sum((max(T(:)-N(:),0)).~2));
216
217 STMI_4(1lp,i) = 1-NN/TT
218 end
219 end

220 stmid4mean=mean (STMI_4,2);
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2201 stmidstd=std (STMI_4,1,2);

22

24

9

0

S}

% Speech-TFS + WGN-ENV

for 1lp = 1l:numoffilte

for i=1:50

r

d=dir ([’ TFS_WGN_E_’ num2str(filter_n(lp)) ’filter’ ’*.mat’])

load ([d(i) .name])

str=d (i) .name

>

ori_str=extractAfter (str,"filter_")

load([ori_str])

teststim=added_filter_bands’;

refstim=x;

Fs_stim=FS;

refstim = refstim/rms(refstim)*20e-6*x10"(stimdb/20) ;

teststim = teststim/rms(teststim) *20e-6%10"(stimdb/20) ;

[neurogram_stmi_ref ,t_stmi,CFs] =

generate_neurogram_function(refstim,Fs_stim,species,ag_fs_ref,

ag_dbloss_ref);

base_sig_ref

= generate_base_signal(refstim);

[neurogram_base_ref ,t_stmi,CFs] =

generate_neurogram_function(base_sig_ref ,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);

[neurogram_stmi_test ,t_stmi,CFs] =

generate_neurogram_function(teststim,Fs_stim,species,ag_fs_test,

ag_dbloss_test);

base_sig_test

= generate_base_signal(teststim);
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243 [neurogram_base_test ,t_stmi,CFs] =
generate_neurogram_function(base_sig_test ,Fs_stim,species,

ag_fs_test,ag_dbloss_test);

N
o

response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus
246 [tmp, ind_stmi] = min(abs(t_stmi-response_endtime)); 7 Find
the corresponding time index in the stmi neurogram
247
248 % Generate the cortical responses to the reference signal
and reference base signal neurograms and

249 % compute the reference "template" T matrix

¥

50 al_stmi_ref = abs(ngram2cortex(neurogram_stmi_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128

columns

N
ot
ey

al_base_ref = abs(ngram2cortex(neurogram_base_ref (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
252 T = max(al_stmi_ref - al_base_ref ,b0);
253 TT = sum(sum(T(:)."2));
254
255 % Generate the cortical responses to the test signal and

test base signal neurograms and

256 % compute the test "noisy" N matrix
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al_stmi_test = abs(ngram2cortex(neurogram_stmi_test(:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be
transposed so the response for each CF is in a column -> 128
columns

al_base_test = abs(ngram2cortex(neurogram_base_test (:,1:
ind_stmi)’,diff(t_stmi(1:2)),rv,sv)); % Neurogram needs to be

transposed so the response for each CF is in a column -> 128

columns
N = max(al_stmi_test - al_base_test,0);
NN = sum(sum((max(T(:)-N(:),0)).~2));

STMI_5(1lp,i) = 1-NN/TT
end

end

5 stmibmean=mean (STMI_5,2) ;

stmibstd=std (STMI_5,1,2);

figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

>Speech-TFS + WGN-ENV’3};

errorbar (filter_n,stmilmean,stmilstd/sqrt(50),’r’,’linewidth’,2.0)

5 hold on

errorbar (filter_n,stmi2mean,stmi2std/sqrt(50),’b’,’linewidth’ ,2.0)

hold on

; errorbar(filter_n,stmi3mean,stmi3std/sqrt(50),’m’,’linewidth’ ,2.0)

hold on
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errorbar (filter_n,stmi4mean,stmidstd/sqrt(50),’g’,’linewidth’ ,2.0)
hold on

errorbar (filter_n,stmibmean,stmib5std/sqrt(50),’c’,’linewidth’ ,2.0)
ylim ([0 11)

xlabel (’Number of Vocoder Filters?’)

ylabel (’STMI’)

x1im ([0.9 341)

set (gca, ’XTick’,filter_n)

set (gca,’xscale’,’log’)

grid on

legend (casestrs([1 2 3 4 5]),’location’,’SouthWest’)

B.2 NSIM code

% Check to see if running under Matlab or Octave
if exist (’0CTAVE_VERSION’, ’builtin’) ~= 0
pkg load signal;
if exist(’rms’)<1
rms = Q@(x) sqrt(mean(x.”2));
end

end

if exist(’parfor’,’builtin’) % check if the Matlab Parallel
Computation
% Toolbox is installed and use
appropriate
% function
generate_neurogram_function =

@generate_neurogram_BEZ2018_parallelized;

99



19

24

28

36

39

4C

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

disp(’Using parallelized version of neurogram generation
function’)

else
generate_neurogram_function = @generate_neurogram_BEZ2018;
disp(’Using serial version of neurogram generation function’)

end

% Set "reference" audiogram
ag_fs_ref = [0 20e3];

ag_dbloss_ref = [0 0]; % Normal hearing

% Set "test" audiogram
ag_fs_test = [125 250 500 1e3 2e3 4e3 8e3];

ag_dbloss_test = [0 O O 0 O O O0]; % Normal hearing

7 species = 2;

% NSIM parameters
weights.alpha = 1.0;
weights.beta = 0.0;
weights.gamma = 1.0;

window_type = 0;

win3x3 ones (3,3);

stimdb

65; % speech level in dB SPL
SNR = 0; % in dB

% SNR = inf; % in dB; inf -> no background noise

load (’FS.mat’)
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filter.n = [1 2 3 6 8 16 32];

numoffilter = length(filter_n);

NSIM_MR_1=zeros (7,50);

5 NSIM_MR_2=zeros (7,50) ;
; NSIM_MR_3=zeros (7,50) ;
7 NSIM_MR_4=zeros (7,50) ;

;, NSIM_MR_5=zeros (7,50) ;

NSIM_FT_1=zeros (7,50);

NSIM_FT_2=zeros (7,50);

NSIM_FT_3=zeros (7,50);

NSIM_FT_4=zeros(7,50);

NSIM_FT_5=zeros (7,50);

% Speech-ENV + MN-TFS

for

lp = l:numoffilter
for i=1:50

d=dir ([’E_matched_noise_TFS’ num2str(filter_n(lp)) ’filters’
>k .mat’])

load ([d(i) .name])

str=d(i) .name;

ori_str=extractAfter (str,"filters_")

load([ori_str])

teststim=added_filter_bands’;

refstim=x;

Fs_stim=FS;

refstim = refstim/rms(refstim)*20e-6*10"(stimdb/20) ;

teststim = teststim/rms(teststim) *20e-6*10"(stimdb/20) ;
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69 [neurogram_ft_ref ,neurogram_mr_ref ,neurogram_Sout_ref
, 7,7, 7L, 7] = generate_neurogram_function(refstim,Fs_stim,species,
ag_fs_ref ,ag_dbloss_ref);

70 [neurogram_ft_test,neurogram_mr_test,neurogram_Sout_test,
t_ft,t_mr,t_Sout,CFs] = generate_neurogram_function(teststim,

Fs_stim,species,ag_fs_test,ag_dbloss_test);

72 response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus

73 [tmp, ind_mr] = min(abs(t_mr-response_endtime)); 7% Find the
corresponding time index in the mr neurogram

74 [tmp, ind_ft] = min(abs(t_ft-response_endtime)); 7% Find the

corresponding time index in the ft neurogram

76 % Scaling method used by Hines and Harte (Speech Comm 2010,

2012)
77 % scl_mr = 255/max(max(neurogram_mr_ref (:,1:ind_mr)));
78 % scl_ft = 255/max(max (neurogram_ft_ref (:,1:ind_£ft)));
79
80 % New scaling method developed by M. R. Wirtzfeld (see

Wirtzfeld et al., JARO 2017)

81 scl_mr = 1/50/t_mr(2);

82 scl_ft = 1/50/t_£ft (2);

83

84 [NSIM_MR_1(lp,i), ssim_mr] = mssim_ians(scl_mrx*

neurogram_mr_ref (:,1:ind_mr), scl_mr*neurogram_mr_test(:,1:ind_mr

), weights, win3x3, window_type );
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85 [NSIM_FT_1(lp,i), ssim_ft] = mssim_ians(scl_ftx*
neurogram_ft_ref (:,1:ind_ft), scl_ft*neurogram_ft_test(:,1:ind_ft
), weights, win3x3, window_type );

86 end

g7 end

ss nsimimean_mr=mean (NSIM_MR_1,2);

g0 nsimlstd_mr=std (NSIM_MR_1,1,2);

9o nsimimean_ft=mean (NSIM_FT_1,2);

91 nsimlstd_ft=std(NSIM_FT_1,1,2);

93 % Speech-ENV + WGN-TFS

94 for 1lp = 1l:numoffilter

95 for i=1:50

96 d=dir ([’E_WGN_TFS_’ num2str (filter_n(lp)) ’filter’ ’*.mat’])

97 load ([d (i) .name])

98 str=d (i) .name;

99 ori_str=extractAfter (str,"filter_")

100 load([ori_str])

101 teststim=added_filter_bands’;

102 refstim=x;

103 Fs_stim=FS;

104 refstim = refstim/rms(refstim)*20e-6%10"(stimdb/20) ;

105 teststim = teststim/rms(teststim) *20e-6%*10"(stimdb/20) ;

106

107 [neurogram_ft_ref ,neurogram_mr_ref ,neurogram_Sout_ref
,7,7,7,7] = generate_neurogram_function(refstim,Fs_stim, species,

ag_fs_ref ,ag_dbloss_ref);
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108 [neurogram_ft_test ,neurogram_mr_test ,neurogram_Sout_test,
t_ft,t_mr,t_Sout,CFs] = generate_neurogram_function(teststim,
Fs_stim,species,ag_fs_test,ag_dbloss_test);

109

110 response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus

111 [tmp, ind_mr] = min(abs(t_mr-response_endtime)); 7% Find the
corresponding time index in the mr neurogram

112 [tmp, ind_ft] = min(abs(t_ft-response_endtime)); 7% Find the
corresponding time index in the ft neurogram

113

114 % Scaling method used by Hines and Harte (Speech Comm 2010,

2012)
115 % scl_mr = 255/max(max(neurogram_mr_ref (:,1:ind_mr)));
116 % scl_ft = 255/max(max(neurogram_ft_ref (:,1:ind_£ft)));
117
118 % New scaling method developed by M. R. Wirtzfeld (see

Wirtzfeld et al., JARO 2017)

119 scl_mr = 1/50/t_mr (2);

120 scl_ft = 1/50/t_£ft(2);

121

122 [NSIM_MR_2(lp,i), ssim_mr] = mssim_ians(scl_mrx*

neurogram_mr_ref (:,1:ind_mr), scl_mr*neurogram_mr_test(:,1:ind_mr
), weights, win3x3, window_type );

123 [NSIM_FT_2(lp,i), ssim_ft] = mssim_ians(scl_ftx*
neurogram_ft_ref (:,1:ind_ft), scl_ft*neurogram_ft_test(:,1:ind_ft
), weights, win3x3, window_type );

124 end

125 end
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nsim2mean_mr=mean (NSIM_MR_2,2);
nsim2std_mr=std (NSIM_MR_2,1,2);
nsim2mean_ft=mean (NSIM_FT_2,2);

nsim2std_ft=std (NSIM_FT_2,1,2);

% Speech-TFS + MN-ENV
for 1p = l:numoffilter
for i=1:50
d=dir ([’ TFS_matched_noise_E’ num2str(filter_n(lp)) ’filters’
>k .mat’])
load ([d(i) .name])
str=d(i) .name;
ori_str=extractAfter (str,"filters_")
load([ori_str])
teststim=added_filter_bands’;
refstim=x;
Fs_stim=FS;
refstim = refstim/rms(refstim)*20e-6*10"(stimdb/20) ;

teststim = teststim/rms(teststim) *20e-6*10"(stimdb/20) ;

[neurogram_ft_ref ,neurogram_mr_ref ,neurogram_Sout_ref
, 7,7, ,7] = generate_neurogram_function(refstim,Fs_stim,species,
ag_fs_ref ,ag_dbloss_ref);

[neurogram_ft_test ,neurogram_mr_test ,neurogram_Sout_test,
t_ft,t_mr,t_Sout,CFs] = generate_neurogram_function(teststim,

Fs_stim,species,ag_fs_test,ag_dbloss_test);

response_endtime = length(refstim)/Fs_stim+10e-3; %

Calculate end time of the neural response to the stimulus
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end

[tmp, ind_mr] = min(abs(t_mr-response_endtime)); 7% Find the
corresponding time index in the mr neurogram
[tmp, ind_ft] = min(abs(t_ft-response_endtime)); 7% Find the

corresponding time index in the ft neurogram

% Scaling method used by Hines and Harte (Speech Comm 2010,

2012)

% scl_mr 255/max (max (neurogram_mr_ref (:,1:ind_mr)));

% scl_ft 255/max (max (neurogram_ft_ref (:,1:ind_ft)));

% New scaling method developed by M. R. Wirtzfeld (see

Wirtzfeld et al., JARO 2017)

scl_mr 1/50/t_mr (2) ;

scl_ft = 1/50/t_£ft(2);

[NSIM_MR_3(lp,i), ssim_mr] = mssim_ians(scl_mrx*
neurogram_mr_ref(:,1:ind_mr), scl_mr*neurogram_mr_test(:,1:ind_mr
), weights, win3x3, window_type );

[NSIM_FT_3(lp,i), ssim_ft] = mssim_ians(scl_ftx*
neurogram_ft_ref (:,1:ind_ft), scl_ft*neurogram_ft_test(:,1:ind_£ft
), weights, win3x3, window_type );

end

nsim3mean_mr=mean (NSIM_MR_3,2);

nsim3std_mr=std (NSIM_MR_3,1,2);

nsim3mean_ft=mean (NSIM_FT_3,2);

nsim3std_ft=std(NSIM_FT_3,1,2);

% Speech-TFS Only
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170 for 1lp = 1l:numoffilter

171 for i=1:50

172 d=dir ([’TFS_only_’ num2str(filter_n(lp)) ’filters’ ’*.mat’])
173 load ([d (i) .name])

174 str=d (i) .name;

175 ori_str=extractAfter (str,"filters_")

176 load([ori_str])

177 teststim=added_filter_bands’;

178 refstim=x;

179 Fs_stim=FS;

180 refstim = refstim/rms(refstim)*20e-6%10"(stimdb/20) ;

181 teststim = teststim/rms(teststim) *20e-6*%10"(stimdb/20) ;

182

183 [neurogram_ft_ref ,neurogram_mr_ref ,neurogram_Sout_ref
,OL,7,7L, 7] = generate_neurogram_function(refstim,Fs_stim,species,

ag_fs_ref ,ag_dbloss_ref);
184 [neurogram_ft_test ,neurogram_mr_test ,neurogram_Sout_test,
t_ft,t_mr,t_Sout,CFs] = generate_neurogram_function(teststim,

Fs_stim,species,ag_fs_test,ag_dbloss_test);

186 response_endtime = length(refstim)/Fs_stim+10e-3; %

Calculate end time of the neural response to the stimulus

187 [tmp, ind_mr] min(abs (t_mr-response_endtime)); 7% Find the

corresponding time index in the mr neurogram

188 [tmp, ind_ft] min(abs(t_ft-response_endtime)); 7% Find the
corresponding time index in the ft neurogram
189

190 % Scaling method used by Hines and Harte (Speech Comm 2010,

2012)
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191 % scl_mr 255/max (max (neurogram_mr_ref (:,1:ind_mr)));

192 % scl_ft 255/max (max (neurogram_ft_ref (:,1:ind_ft)));
193

194 % New scaling method developed by M. R. Wirtzfeld (see

Wirtzfeld et al., JARO 2017)

195 scl_mr = 1/50/t_mr(2);

196 scl_ft = 1/50/t_£ft (2);

197

198 [NSIM_MR_4(lp,i), ssim_mr] = mssim_ians(scl_mrx*

neurogram_mr_ref (:,1:ind_mr), scl_mr*neurogram_mr_test(:,1:ind_mr
), weights, win3x3, window_type );

199 [NSIM_FT_4(lp,i), ssim_ft] = mssim_ians(scl_ftx*
neurogram_ft_ref (:,1:ind_ft), scl_ft*neurogram_ft_test(:,1:ind_ft
), weights, win3x3, window_type );

200 end

201 end

202 nsim4mean_mr=mean (NSIM_MR_4,2);

203 nsim4std_mr=std (NSIM_MR_4,1,2);

204 nsim4mean_ft=mean(NSIM_FT_4,2);

205 nsimd4std_ft=std (NSIM_FT_4,1,2);

206

207 % Speech-TFS + WGN-ENV

208 for 1lp = 1l:numoffilter

209 for i=1:50

210 d=dir ([’ TFS_WGN_E_’ num2str (filter_n(1lp)) ’filter’ ’*.mat’])
211 load ([d (i) .name])

212 str=d (i) .name;

213 ori_str=extractAfter (str,"filter_")

214 load([ori_str])
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215 teststim=added_filter_bands’;

216 refstim=x;

217 Fs_stim=FS;

218 refstim = refstim/rms(refstim)*20e-6*10"(stimdb/20) ;

219 teststim = teststim/rms(teststim) *20e-6*10"(stimdb/20) ;

221 [neurogram_ft_ref ,neurogram_mr_ref ,neurogram_Sout_ref
,7,7,7,7] = generate_neurogram_function(refstim,Fs_stim, species,

ag_fs_ref ,ag_dbloss_ref);

N
N
N

[neurogram_ft_test ,neurogram_mr_test ,neurogram_Sout_test,
t_ft,t_mr,t_Sout,CFs] = generate_neurogram_function(teststim,

Fs_stim,species,ag_fs_test,ag_dbloss_test);

224 response_endtime = length(refstim)/Fs_stim+10e-3; %
Calculate end time of the neural response to the stimulus

225 [tmp, ind_mr] = min(abs(t_mr-response_endtime)); % Find the
corresponding time index in the mr neurogram

226 [tmp, ind_ft] = min(abs(t_ft-response_endtime)); 7% Find the

corresponding time index in the ft neurogram

228 % Scaling method used by Hines and Harte (Speech Comm 2010,
2012)

229 % scl_mr = 255/max(max(neurogram_mr_ref (:,1:ind_mr)));

230 % scl_ft = 255/max(max(neurogram_ft_ref (:,1:ind_£ft)));

231

232 % New scaling method developed by M. R. Wirtzfeld (see

Wirtzfeld et al., JARO 2017)

233 scl_mr 1/50/t_mr (2) ;

234 scl_ft 1/50/t_£ft (2);
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236 [NSIM_MR_5(1lp,i), ssim_mr] = mssim_ians(scl_mr*
neurogram_mr_ref (:,l:ind_mr), scl_mr*neurogram_mr_test(:,1:ind_mr
), weights, win3x3, window_type );

237 [NSIM_FT_5(lp,i), ssim_ft] = mssim_ians(scl_ftx*
neurogram_ft_ref (:,1:ind_ft), scl_ft*neurogram_ft_test(:,1:ind_ft
), weights, win3x3, window_type );

238 end

239 end

210 nsimbmean_mr=mean (NSIM_MR_5,2);

241 nsimbstd_mr=std (NSIM_MR_5,1,2);

212 nsimbmean_ft=mean (NSIM_FT_5,2);

243 nsimbstd_ft=std (NSIM_FT_5,1,2);

215 figure (1)

247 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
248 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

249 >Speech-TFS + WGN-ENV’};

251 errorbar (filter_n ,nsimlmean_mr ,nsimlstd_mr/sqrt(50),’r’,’linewidth’
,2.0)

252 hold on

2535 errorbar (filter_n ,nsim2mean_mr ,nsim2std_mr/sqrt (50),’b’,’linewidth’
,2.0)

254 hold on

255 errorbar (filter_n ,nsim3mean_mr ,nsim3std_mr/sqrt(50),’m’,’linewidth’
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errorbar (filter_n ,nsimé4mean_mr ,nsimé4std_mr/sqrt(50),’g’,’linewidth’

,2.0)

: hold on

errorbar (filter_n ,nsimbmean_mr ,nsim5std_mr/sqrt(50),’c’,’linewidth’
,2.0)

ylim ([0 11)

xlabel (’Number of Vocoder Filters?’)

ylabel (’Mean-rate NSIM’)

x1im ([0.9 341)

set (gca,’XTick’,filter_mn)

set (gca,’xscale’,’log’)

grid on

legend(casestrs([1 2 3 4 5]),’location’,’NorthEast’)

figure (2)

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

>Speech-TFS + WGN-ENV’};

5 errorbar (filter_n,nsimimean_ft ,nsimlistd_ft/sqrt(50),’r’,’linewidth’

,2.0)

hold on

errorbar (filter_n ,nsim2mean_ft ,nsim2std_ft/sqrt(50),’b’,’linewidth’
,2.0)

hold on

errorbar (filter_n ,nsim3mean_ft ,nsim3std_ft/sqrt(50),’m’,’linewidth’
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281 errorbar (filter_n ,nsimé4mean_ft ,nsimédstd_ft/sqrt(50),’g’,’linewidth’
,2.0)

282 hold on

283 errorbar (filter_n ,nsimbmean_ft ,nsimbstd_ft/sqrt(50),’c’,’linewidth’
,2.0)

284 ylim ([0 1])

285 xlabel (’Number of Vocoder Filters?’)

286 ylabel (’Fine-timing NSIM’)

287 x1im ([0.9 34])

2ss set(gca,’XTick’,filter_n)

280 set (gca,’xscale’,’log’)

200 grid omn

201 legend (casestrs([1 2 3 4 5]),’location’,’NorthEast’)

B.3 CCC code

i function [CrossCorr_env,CrossCorr_tfs] = generate_crosscorr(stim_A,
stim_B,cf ,numfibers,Fs_stim,species,ag_fs,ag_dbloss)

if exist(’parfor’,’builtin’) % check if the Matlab Parallel

N

Computation Toolb ox is installed and use appropriate function

3 generate_neurogram_function =
@generate_spiketrain_BEZ2018_parallelized_test;

4 disp(’Using parallelized version of neurogram generation
function’)

5 else

6 generate_neurogram_function = Q@generate_spiketrain_BEZ2018_test;

7 disp(’Using serial version of neurogram generation function’)

s end
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[ neurogram_ft_A ,t_ft_A , CFs ] = generate_neurogram_function (

numfibers ,cf,stim_A,Fs_stim,species,ag_fs,ag_dbloss);

binWidth = t_ft_A(2)-t_ft_A(1);
binEdges = -0.1: binWidth :0.1;
[SAC_A , uniqueFibres_A ] = generate_SAC_ian( neurogram_ft_A ,

t_ft_A , binEdges );
D_A=t_ft_A(end);
nk_A=size(neurogram_ft_A,1);
k_A=0;
for kk=1:nk_A
pks= findpeaks (neurogram_ft_A(kk,:));
k_A=k_A+size (pks,2);
end

r_A=round ((k_A/nk_A)/D_A); Y%average discharged rate

; SAC_A = SAC_A /( uniqueFibres_A *(uniqueFibres_A -1) *r_Axr_AxD_Ax*

binWidth );
[ neurogram_ft_inv_A , t_ft_inv_A , CFs_inv_A ] =
generate_neurogram_function (numfibers ,cf , -stim_A , Fs_stim

species ,ag_fs , ag_dbloss )
[ SCC_LA ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_inv_A , t_ft_inv_A , binEdges );

SCC_A = SCC_A /( numfibers * numfibers *r_A*xr_A*x D_A * binWidth );

[ neurogram_ft_B ,t_ft_B , CFs_B ] = generate_neurogram_function (
numfibers ,cf , stim_B , Fs_stim , species ,ag_fs , ag_dbloss )
binWidth = t_ft_B(2)-t_ft_B(1);

binEdges -0.1: binWidth :0.1;
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[SAC_B , uniqueFibres_B ] = generate_SAC_ian( neurogram_ft_B ,

t_ft_B , binEdges );
D_B=t_ft_B(end);
nk_B=size(neurogram_ft_B,1);
k_B=0;

for kk=1:nk_B

pks= findpeaks (neurogram_ft_B(kk,:));

k_B=k_B+size (pks,2);

end

r_B=round ((k_B/nk_B)/D_B); %average discharged rate

SAC_B = SAC_B /( uniqueFibres_B *( uniqueFibres_B -1) *r_Bx*r_B*D_Bx*

binWidth );

[ neurogram_ft_inv_B , t_ft_inv_B

>

CFs_inv_B ]

generate_neurogram_function (numfibers ,cf

species ,ag_fs , ag_dbloss );

[ SCC_B ] = generate_SCC_ian( neurogram_ft_B

neurogram_ft_inv_B , t_ft_inv_

B,

binEdges );

>

-stim_B

t_ft_B

H

Fs_stim

SCC_B = SCC_B /( numfibers *numfibers*r_B*r_B*D_Bx*binWidth );

[ SAC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,

neurogram_ft_B , t_ft_B , binEdges )

[ SAC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A

, neurogram_ft_inv_B , t_ft_inv_B

SAC_AB = ( SAC_AB_templ + SAC_AB_temp2 ) /2;

D=min ([D_A D_BI1);

, binEdges );

>

SAC_AB = SAC_AB /( numfibers * numfibers *r_A*r_B*D*xbinWidth );
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52 [ SCC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_inv_B , t_ft_inv_B , binEdges );
53 [ SCC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A , t_ft_inv_A

, neurogram_ft_B , t_ft_B , binEdges )

54 SCC_AB ( SCC_AB_templ + SCC_AB_temp2 ) /2;

55 SCC_AB

SCC_AB /( numfibers * numfibers *r_A*xr_B*Dx*xbinWidth );

57 clear neurogram*

58 difcor_A SAC_A - SCC_A;

50 sumcor_A ( SAC_A + SCC_A )/2;

60 difcor_B SAC_B - SCC_B;

61 sumcor_B = ( SAC_B + SCC_B )/2;

62 difcor_AB SAC_AB - SCC_AB;

63 sumcor_AB ( SAC_AB + SCC_AB )/2;

65 fch=64;

66 fs=1/binWidth;

67 [B,A] = butter (2 ,fch/(fs/2)); % just lowpass filter

68

60 sumcor_A = filtfilt (B,A, sumcor_A );

70 % difcor_A = filtfilt (B,A, difcor_A );

71 sumcor_B = filtfilt (B,A, sumcor_B );

72 % difcor_B = filtfilt (B,A, difcor_B );

73 sumcor_AB = filtfilt (B,A, sumcor_AB );

71 % difcor_AB = filtfilt (B,A, difcor_AB );

75 CrossCorr_env = (max(sumcor_AB(9500:10500) -1) )/ sqrt ( max(
sumcor_A (9500:10500) -1 )* max (sumcor_B(9500:10500) -1 ));

76 CrossCorr_tfs = (max(difcor_AB ))/ sqrt ( max (difcor_A)* max (

difcor_B));

115



10

12

19

21

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

% Check to see if running under Matlab or Octave

if exist (’0CTAVE_VERSION’, ’builtin’) "= 0

pkg load signal ;

if exist (’rms’) <1

rms = Q@(x) sqrt(mean(x."2));

end

end

if exist(’parfor’,’builtin’) % check if the Matlab Parallel
Computation Toolbox is installed and use appropriate function
generate_neurogram_function =
@generate_spiketrain_BEZ2018_parallelized_test;
disp(’Using parallelized version of neurogram generation
function’)

else
generate_neurogram_function = Q@generate_spiketrain_BEZ2018_test;
disp(’Using serial version of neurogram generation function?’)

end

; %» Set audiogram

ag_fs = [125 250 500 1e3 2e3 4e3 8e3];

ag_dbloss = [0 O O 0 O O O0]; % Normal hearing
numfibers = 25;

cf =550;

species = 2;

> Fs_stim = 16e3;

Fm_stim_A=10
Fm_stim_B=2:2:20;
for j=1:1:1length(Fm_stim_B)

t = 0:1/Fs_stim:10;

116



34

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

Xx_ta=sin (2*pi*Fm_stim_Ax*t);
x_tb=sin (2*pi*Fm_stim_B(j)*t);

A=1;

Fc_stim_A=500;

Fc_stim_B=500;

stim_A Ax(l+ka*x_ta) .xcos (2*xpi*Fc_stim_Ax*t);

stim_B Bx(1+kb*x_tb) .*xcos (2*pi*Fc_stim_Bx*t) ;

stimdb_A = 35; 7, speech level in dB SPL

stim_A stim_A/rms(stim_A)*20e-6*10"(stimdb_A /20);
stimdb_B = 35; 7, speech level in dB SPL

stim_B = stim_B/rms(stim_B)*20e-6%*10"(stimdb_B /20) ;

[ neurogram_ft_A ,t_ft_A , CFs ] = generate_neurogram_function(
numfibers ,cf , stim_A , Fs_stim , species ,ag_fs , ag_dbloss );
binWidth = 50e-6;

binEdges = -0.1: binWidth :0.1;

[SAC_A , uniqueFibres_A ] = generate_SAC_ian( neurogram_ft_A ,

t_ft_A , binEdges );

D_A=t_ft_A(end);

nk_A=size(neurogram_ft_A,1);

k_A=0;

for kk=1:nk_A
pks= findpeaks(neurogram_ft_A(kk,:));
k_A=k_A+size(pks,2);

end

r_A=round ((k_A/nk_A)/D_A); Yaverage discharged rate
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54 SAC_A = SAC_A /( uniqueFibres_A *(uniqueFibres_A -1) *r_A*xr_Ax
D_A* binWidth );

55 [ neurogram_ft_inv_A , t_ft_inv_A , CFs_inv_A ] =
generate_neurogram_function(numfibers ,cf , -stim_A , Fs_stim ,

species ,ag_fs , ag_dbloss );

56 [ SCC_A ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_inv_A , t_ft_inv_A , binEdges );

57 SCC_A = SCC_A /(numfibers * numfibers *r_A*xr_Ax D_A * binWidth);

58 timeSeries = binEdges(l:end -1)+binWidth/2;

59

60 [ neurogram_ft_B ,t_ft_B , CFs_B ] = generate_neurogram_function
(numfibers ,cf , stim_B , Fs_stim , species ,ag_fs , ag_dbloss );

61 binWidth = 50e-6;

62 binEdges = -0.1: binWidth :0.1;

63 % binEdges = -0.025: binWidth :0.025;

64 [SAC_B , uniqueFibres_B ] = generate_SAC_ian( neurogram_ft_B |,

t_ft_B , binEdges );
65 D_B=t_ft_B(end);
66 nk_B=size (neurogram_ft_B,1);
67 k_B=0;
68 for kk=1:nk_B
69 pks= findpeaks(neurogram_ft_B(kk,:));
70 k_B=k_B+size (pks,2);
71 end
72 r_B=round ((k_B/nk_B)/D_B); %average discharged rate
73 SAC_B = SAC_B /( uniqueFibres_B *( uniqueFibres_B -1) *r_Bx*r_Bx

D_B#*binWidth );
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74 [ neurogram_ft_inv_B , t_ft_inv_B , CFs_inv_B ] =
generate_neurogram_function (numfibers ,cf , -stim_B , Fs_stim ,
species ,ag_fs , ag_dbloss );

75 [ SCC_B ] = generate_SCC_ian( neurogram_ft_B , t_ft_B ,
neurogram_ft_inv_B , t_ft_inv_B , binEdges );

76 SCC_B = SCC_B /( numfibers *numfibers*r_B*r_B*D_Bx*binWidth );

77 [ SAC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_B , t_ft_B , binEdges );

78 [ SAC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A ,
t_ft_inv_A , neurogram_ft_inv_B , t_ft_inv_B , binEdges );

79 SAC_AB = ( SAC_AB_templ + SAC_AB_temp2 ) /2;

80 D=min ([D_A D_B]);

81 SAC_AB = SAC_AB /( numfibers * numfibers *r_A*r_Bx*DxbinWidth );

82 [ SCC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_inv_B , t_ft_inv_B , binEdges );

83 [ SCC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A ,

t_ft_inv_A , neurogram_ft_B , t_ft_B , binEdges );

84 SCC_AB = ( SCC_AB_templ + SCC_AB_temp2 ) /2;

85 SCC_AB = SCC_AB /( numfibers * numfibers *r_A*r_Bx*D*xbinWidth ) ;
86 clear neurogramx*

87 difcor_A = SAC_A - SCC_A;

88 sumcor_A = ( SAC_A + SCC_A )/2;

89 difcor_B = SAC_B - SCC_B;

90 sumcor_B ( SAC_B + SCC_B )/2;

91 difcor_AB SAC_AB - SCC_AB;

92 sumcor_AB ( SAC_AB + SCC_AB )/2;
93 fcl=0.5;
94 fch=64;

95 fs=1/binWidth;
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% [B,A] = butter (2 ,[fcl fch]/(£fs/2)); % bandpass filter
[B,A] = butter (2 ,fch/(fs/2)); % just lowpass filter
% filter below 64 butter is ok
% [B,A] = butter (2 ,0.0001 , ’high’); % just highpass filter
sumcor_A = filtfilt (B,A, sumcor_A );
yA difcor_A = filtfilt (B,A, difcor_A );
sumcor_B = filtfilt (B,A, sumcor_B );
yA difcor_B = filtfilt (B,A, difcor_B );
sumcor_AB = filtfilt (B,A, sumcor_AB );
yA difcor_AB = filtfilt (B,A, difcor_AB );
% CrossCorr_env(j) = (max( sumcor_AB -1) )/ sqrt ( max(sumcor_A
(1500:2500) -1)* max (sumcor_B -1));
CrossCorr_env(j) = (max(sumcor_AB(1500:2500) -1) )/ sqrt ( max(

sumcor_A (1500:2500) -1 )* max (sumcor_B(1500:2500) -1 ));

CrossCorr_tfs(j) = (max( difcor_AB ))/ sqrt ( max (difcor_A)x
max (difcor_B));

end

hh

figure

subplot(2,1,1)

plot (Fm_stim_B,CrossCorr_env)

7 xlabel (’Modulation Frequency (Hz)’)

; ylabel (’CrossCorr-env’)

ylim ([0 1.1]1)

title (’SPL 65dB (a)’)
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subplot(2,1,2)
plot (Fm_stim_B,CrossCorr_tfs)

xlabel (’Modulation Frequency (Hz)’)

5 ylabel (’CrossCorr-tfs’)

Cylim([0 1.1])

title (’SPL 65dB (b))

% Check to see if running under Matlab or Octave

if exist (’OCTAVE_VERSION’, ’builtin’) ~= 0

pkg load signal ;

if exist (’rms’) <1

rms = @(x) sqrt(mean(x.”2));

end

end

if exist(’parfor’,’builtin’) % check if the Matlab Parallel
Computation Toolbox is installed and use appropriate function
generate_neurogram_function =
@generate_spiketrain_BEZ2018_parallelized_test;
disp(’Using parallelized version of neurogram generation
function’)

else
generate_neurogram_function = Q@generate_spiketrain_BEZ2018_test;
disp(’Using serial version of neurogram generation function’)

end

% Set audiogram

- ag_fs = [125 250 500 1e3 2e3 4e3 8e3];

ag_dbloss = [0 0 0 0 O 0 0]; % Normal hearing

numfibers 25;

cf =550;
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species

Fs_stim

Fc_stim_A=

Fc_stim_B=

for j=1:1:

16e3;
1000;
800:50:1200;

length(Fc_stim_B)

Fm_stim_A=10

Fm_stim_B=10;

Bx(1+kb*x_tb) .*xcos (2*pi*Fc_stim_B(j)*t);

stim_A/rms(stim_A) *20e-6*x10"(stimdb_A /20) ;

= stim_B/rms(stim_B)*20e-6*10"(stimdb_B /20) ;

B

generate_neurogram_function(

species

,ag_TIs

t = 0:1/Fs_stim:10;

x_ta=sin (2*pi*Fm_stim_Ax*t);
X_tb=sin(2*pi*Fm_stim_Bx*t);

A=1;

B=1;

ka=1;

kb=1;

stim_A = Ax(l+ka*x_ta).*cos (2*pi*Fc_stim_Ax*t);
stim_B =

stimdb_A = 65; 7, speech level in dB SPL
stim_A =

stimdb_B = 65; 7, speech level in dB SPL
stim_B

[ neurogram_ft_A ,t_ft_A , CFs 1]
numfibers ,cf , stim_A , Fs_stim
binWidth = 50e-6;

binEdges = -0.1: binWidth :0.1;

[SAC_A , uniqueFibres_A ] =

t_ft_A

, binEdges );

D_A=t_ft_A(end);

122

B

ag_dbloss );

generate_SAC_ian( neurogram_ft_A ,



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

13 nk_A=size(neurogram_ft_A,1);

19 k_A=0;

50 for kk=1:nk_A

51 pks= findpeaks (neurogram_ft_A(kk,:));
52 k_A=k_A+size(pks,2);

53 end

5 r_A=round ((k_A/nk_A)/D_A); Yaverage discharged rate

55 SAC_A = SAC_A /( uniqueFibres_A *(uniqueFibres_A -1) *r_A*xr_Ax
D_A*x binWidth );

56 [ neurogram_ft_inv_A , t_ft_inv_A , CFs_inv_A ] =
generate_neurogram_function(numfibers ,cf , -stim_A , Fs_stim ,

species ,ag_fs , ag_dbloss );

57 [ SCC_A ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_inv_A , t_ft_inv_A , binEdges );
58 SCC_A = SCC_A /(numfibers * numfibers *r_A*r_A*x D_A * binWidth);

59 timeSeries = binEdges(l:end -1)+binWidth/2;

60

61 [ neurogram_ft_B ,t_ft_B , CFs_B ] = generate_neurogram_function
(numfibers ,cf , stim_B , Fs_stim , species ,ag_fs , ag_dbloss );

62 binWidth = 50e-6;

63 binEdges = -0.1: binWidth :0.1;

64 [SAC_B , uniqueFibres_B ] = generate_SAC_ian( neurogram_ft_B ,
t_ft_B , binEdges );

65 D_B=t_ft_B(end);

66 nk_B=size (neurogram_ft_B,1);

67 k_B=0;

68 for kk=1:nk_B

69 pks= findpeaks (neurogram_ft_B(kk,:));

70 k_B=k_B+size (pks,2);
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71 end

72 r_B=round ((k_B/nk_B)/D_B); %average discharged rate

73 SAC_B = SAC_B /( uniqueFibres_B *( uniqueFibres_B -1) *r_Bx*r_Bx
D_B#*binWidth );

7 [ neurogram_ft_inv_B , t_ft_inv_B , CFs_inv_B ] =
generate_neurogram_function (numfibers ,cf , -stim_B , Fs_stim ,
species ,ag_fs , ag_dbloss );

75 [ SCC_B ] = generate_SCC_ian( neurogram_ft_B , t_ft_B ,
neurogram_ft_inv_B , t_ft_inv_B , binEdges );

76 SCC_B = SCC_B /( numfibers *numfibers*r_B*r_B*D_Bx*binWidth ) ;

77 [ SAC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,
neurogram_ft_B , t_ft_B , binEdges );

78 [ SAC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A ,
t_ft_inv_A , neurogram_ft_inv_B , t_ft_inv_B , binEdges );

79 SAC_AB = ( SAC_AB_templ + SAC_AB_temp2 ) /2;

80 D=min ([D_A D_B]);
81 SAC_AB = SAC_AB /( numfibers * numfibers *r_A*r_Bx*D*xbinWidth ) ;
82 [ SCC_AB_templ ] = generate_SCC_ian( neurogram_ft_A , t_ft_A ,

neurogram_ft_inv_B , t_ft_inv_B , binEdges );
83 [ SCC_AB_temp2 ] = generate_SCC_ian( neurogram_ft_inv_A ,

t_ft_inv_A , neurogram_ft_B , t_ft_B , binEdges );

84 SCC_AB = ( SCC_AB_templ + SCC_AB_temp2 ) /2;

85 SCC_AB = SCC_AB /( numfibers * numfibers *r_A*r_B*D*binWidth ) ;
86 clear neurogram

87 difcor_A = SAC_A - SCC_A;

88 sumcor_A = ( SAC_A + SCC_A )/2;

89 difcor_B = SAC_B - SCC_B;

90 sumcor_B ( SAC_B + SCC_B )/2;

91 difcor_AB = SAC_AB - SCC_AB;
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end

sumcor_AB = ( SAC_AB + SCC_AB )/2;

fcl=0.5;

fch=64;

fs=1/binWidth;

[B,A] = butter (2 ,fch/(£fs/2)); % just lowpass filter

[B,A]

butter (2 ,[fcl fchl/(fs/2));

[B,A] butter (2 ,0.0001 , ’high’);
sumcor_A = filtfilt (B,A, sumcor_A );

difcor_A = filtfilt (B,A, difcor_A );
sumcor_B = filtfilt (B,A, sumcor_B );

difcor_B = filtfilt (B,A, difcor_B );
sumcor_AB = filtfilt (B,A, sumcor_AB );

difcor_AB = filtfilt (B,A, difcor_AB );

CrossCorr_env(j) = (max(sumcor_AB(1500:2500) -1) )/ sqrt ( max
( sumcor_A(1500:2500) -1 )* max (sumcor_B(1500:2500) -1 ));
CrossCorr_env(j) = (max(sumcor_AB(1500:2500) -1) )/ sqrt ( max(
sumcor_A (1500:2500) -1 )* max (sumcor_B(1500:2500) -1 ));
CrossCorr_tfs(j) = (max(difcor_AB ))/ sqrt ( max (difcor_A)* max

(difcor_B));

figure

subplot(2,1,1)

plot (Fc_stim_B,CrossCorr_env)

xlabel (’Carrier Frequency (Hz)’)

ylabel (’CrossCorr-env’)

5 ylim ([0 1.11)

title (’SPL 65dB (a)’)
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subplot(2,1,2)

plot (Fc_stim_B,CrossCorr_tfs)
xlabel (’Carrier Frequency (Hz)’)
ylabel (’CrossCorr-tfs’)

ylim ([0 1.11)

title (’SPL 65dB (b))

% Check to see if running under Matlab or Octave
if exist (’OCTAVE_VERSION’, ’builtin’) ~= 0

pkg load signal ;

if exist (’rms’) <1

rms = @(x) sqrt(mean(x.”2));

end

end

% Set audiogram

ag_fs = [125 250 500 1e3 2e3 4e3 8e3];
ag_dbloss = [0 O O 0 O O O0]; % Normal hearing
numfibers = 10;

cf =logspace(logl0(200),1l0g10(8e3),10);
numcfs = length(cf);

cf_ind=find (cf<=2.5e3);

numwords = 50;

species = 2; % Human cochlear tuning ( Shera et al., 2002)

load (’FS.mat’)

filter.n = [1 2 3 6 8 16 32];
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numoffilter = length(filter_n);

CrossCorrl_env=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr2_env=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr3_env=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr4_env=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr5_env=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorrl_tfs=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr2_tfs=zeros (numoffilter ,numwords ,numcfs) ;
CrossCorr3_tfs=zeros (numoffilter ,numwords ,numcfs) ;

CrossCorr4_tfs=zeros (numoffilter ,numwords ,numcfs) ;

5 CrossCorr5_tfs=zeros (numoffilter ,numwords ,numcfs) ;

% Speech-ENV + MN-TFS
for 1p = l:numoffilter
for ii=1:numwords
d=dir ([’E_matched_noise_TFS’ num2str(filter_n(lp)) ’filters’
>k .mat’])
load ([d(ii) .name])
str=d(ii) .name;
ori_str=extractAfter (str,"filters_")
load([ori_str])
Fs_stim=FS;

stim_A = x;

stim_B added_filter_bands ’;

stimdb_A = 65; 7, speech level in dB SPL

stim_A stim_A/rms(stim_A)*20e-6*10"(stimdb_A /20) ;

stimdb_B = 65; J, speech level in dB SPL

stim_B stim_B/rms(stim_B) *20e-6%10"(stimdb_B /20);
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52 for jj = 1l:length(cf)

53 [CrossCorrl_env(lp,ii,jj),CrossCorrl_tfs(lp,ii,jj)] =
generate_crosscorr (stim_A,stim_B,cf(jj) ,numfibers,Fs_stim,species
,ag_fs,ag_dbloss);

5 end

55 end

56 end

58 CrossCorrl_envmean=mean(CrossCorrl_env,3);

50 CrossCorrl_tfsmean=mean (CrossCorrl_tfs(:,:,1:1length(cf_ind)) ,3);
60 CrossCorrl_envavg=mean(CrossCorrl_envmean,2) ;

61 CrossCorrl_envstd=std(CrossCorrl_envmean,1,2);

62 CrossCorrl_tfsavg=mean(CrossCorrl_tfsmean,2);

63 CrossCorrl_tfsstd=std(CrossCorrl_tfsmean,1,2);

64

65 % Speech-ENV + WGN-TFS

66 for 1lp = 1l:numoffilter

67 for ii=1:numwords

68 d=dir ([’E_WGN_TFS_’ num2str(filter_n(lp)) ’filter’ ’*.mat’])
69 load ([d(ii) .name])

70 str=d(ii) .name;

71 ori_str=extractAfter (str,"filter_")

72 load ([ori_str])

73 Fs_stim=FS;

7 stim_A = x;

75 stim_B added_filter_bands ’;
76 stimdb_A = 65; 7 speech level in dB SPL
77 stim_A = stim_A/rms(stim_A)*20e-6%10"(stimdb_A /20);

78 stimdb_B = 65; 7, speech level in dB SPL
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stim_B stim_B/rms(stim_B) *20e-6*10"(stimdb_B /20);
for jj = 1:length(cf)

[CrossCorr2_env(lp,ii, jj),CrossCorr2_tfs(lp,ii,jj)] =
generate_crosscorr (stim_A,stim_B,cf(jj),numfibers,Fs_stim,species
,ag_fs,ag_dbloss);

end

end

end

5 CrossCorr2_envmean=mean (CrossCorr2_env,3) ;

CrossCorr2_tfsmean=mean(CrossCorr2_tfs(:,:,1:length(cf_ind)) ,3);

7 CrossCorr2_envavg=mean (CrossCorr2_envmean ,2) ;

CrossCorr2_envstd=std(CrossCorr2_envmean ,1,2);
CrossCorr2_tfsavg=mean(CrossCorr2_tfsmean ,2);

CrossCorr2_tfsstd=std(CrossCorr2_tfsmean,1,2);

% Speech-TFS + MN-ENV
for 1p = l:numoffilter
for ii=1:numwords
d=dir ([’ TFS_matched_noise_E’ num2str(filter_n(lp)) ’filters’
>k .mat’])
load ([d(ii) .namel)
str=d(ii) .name;
ori_str=extractAfter(str,"filters_")
load ([ori_str])
Fs_stim=FS;

stim_A = x;

stim_B added_filter_bands ’;

stimdb_A = 65; J, speech level in dB SPL

stim_A stim_A/rms(stim_A) *20e-6%10"(stimdb_A /20);
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105 stimdb_B = 65; J, speech level in dB SPL

106 stim_B = stim_B/rms(stim_B)*20e-6*10"(stimdb_B /20);

107 for jj = 1:length(cf)

108 [CrossCorr3_env(lp,ii,jj),CrossCorr3_tfs(lp,ii,jj)] =
generate_crosscorr (stim_A,stim_B,cf(jj) ,numfibers,Fs_stim,species
,ag_fs,ag_dbloss);

109 end

110 end

111 end

112 CrossCorr3_envmean=mean (CrossCorr3_env,3) ;

113 CrossCorr3_tfsmean=mean(CrossCorr3_tfs(:,:,1:1length(cf_ind)) ,3);

112 CrossCorr3_envavg=mean (CrossCorr3_envmean ,2) ;

115 CrossCorr3_envstd=std(CrossCorr3_envmean,1,2);

116 CrossCorr3_tfsavg=mean(CrossCorr3_tfsmean,b2);

117 CrossCorr3_tfsstd=std(CrossCorr3_tfsmean ,1,2);

119 % Speech-TFS Only

120 for 1p = 1l:numoffilter

121 for ii=1:numwords

122 d=dir ([’TFS_only_’ num2str (filter_n(lp)) ’filters’ ’*.mat’])
123 load ([d(ii) .namel)

124 str=d(ii) .name;

125 ori_str=extractAfter (str,"filters_")

126 load([ori_str])

127 Fs_stim=FS;

128 stim_A = x;

129 stim_B = added_filter_bands’;

130 stimdb_A = 65; J, speech level in dB SPL

131 stim_A stim_A/rms(stim_A) *20e-6%10"(stimdb_A /20);
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stimdb_
stim_B

for jj

B

= 65; 7% speech level in dB SPL
stim_B/rms(stim_B)*20e-6*10"(stimdb_B /20) ;

1:1length(cf)

[CrossCorr4_env(lp,ii,jj),CrossCorr4_tfs(lp,ii,jj)] =

generate_crosscorr (stim_A,stim_B,cf(jj) ,numfibers,Fs_stim,species

,ag_fs,ag_dbloss);

end

end

end

CrossCorr4_envmean=mean(CrossCorr4_env,3);

CrossCorr4_tfsmean=mean (CrossCorr4_tfs(:,:,1l:length(cf_ind)) ,3);

CrossCorr4_envavg=mean(CrossCorr4_envmean ,2) ;

> CrossCorr4_envstd=std(CrossCorr4_envmean ,1,2);

; CrossCorr4_tfsavg=mean(CrossCorr4_tfsmean,2);

CrossCorr4_tfsstd=std(CrossCorr4_tfsmean,1,2);

% Speech-TFS + WGN-ENV

7 for 1lp = l:numoffilter

for ii=1:numwords

d=dir ([’TFS_WGN_E_’ num2str(filter_n(lp)) ’filter’ ’*.mat’])

load([d(ii) .name])

str=d(ii) .name;

ori_str=extractAfter(str,"filter_")

load([ori_str])

Fs_stim=FS;

stim_A
stim_B
stimdb_

stim_A

X;
added_filter_bands ’;
= 65; 7% speech level in dB SPL

stim_A/rms(stim_A) *20e-6%10"(stimdb_A /20);
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stimdb_B = 65; J, speech level in dB SPL
stim_B = stim_B/rms(stim_B)*20e-6*10"(stimdb_B /20) ;
for jj = 1l:numcfs
[CrossCorr5_env(lp,ii,jj),CrossCorr5_tfs(lp,ii,jj)] =
generate_crosscorr (stim_A,stim_B,cf(jj) ,numfibers,Fs_stim,species
,ag_fs,ag_dbloss);
end
end
end
CrossCorr5_envmean=mean(CrossCorr5_env,3) ;
CrossCorr5_tfsmean=mean (CrossCorr5_tfs(:,:,1:1length(cf_ind)) ,3);
CrossCorrb5_envavg=mean(CrossCorr5_envmean ,2) ;
CrossCorr5_envstd=std(CrossCorr5_envmean ,1,2);
CrossCorrb5_tfsavg=mean(CrossCorr5_tfsmean,2);

CrossCorr5_tfsstd=std(CrossCorr5_tfsmean,1,2);

figure (1)
casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

>Speech-TFS + WGN-ENV’};

errorbar (filter_n,CrossCorrl_envavg,CrossCorrl_envstd/sqrt(50),’r’,”’
linewidth’ ,2.0)

hold on

errorbar (filter_n ,CrossCorr2_envavg ,CrossCorr2_envstd/sqrt (50),’b’,’
linewidth’ ,2.0)

hold on

errorbar (filter_n ,CrossCorr3_envavg ,CrossCorr3_envstd/sqrt (50),’m’,’

linewidth’ ,2.0)
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183 hold on

154 errorbar(filter_n,CrossCorr4_envavg,CrossCorr4_envstd/sqrt(50),’g’,”’
linewidth’ ,2.0)

185 hold on

156 errorbar (filter_n,CrossCorr5_envavg ,CrossCorr5_envstd/sqrt (50),’c’,”’
linewidth’ ,2.0)

187 ylim ([0 11)

1ss xlabel (’Number of Vocoder Filters?’)

189 ylabel (’CrossCorr -env’)

00 x1im ([0.9 34]1)

191 set(gca,’XTick’,filter_n)

192 set(gca,’xscale’,’log’)

193 grid on

194 legend (casestrs([1 2 3 4 5]),’location’,’SouthEast’)

195

06 figure (2)

197 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

198 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

199 ’Speech-TFS + WGN-ENV’3Z};

200

201 errorbar (filter_n,CrossCorrl_tfsavg,CrossCorrl_tfsstd/sqrt(50),’r’,”’
linewidth’ ,2.0)

202 hold on

203 errorbar (filter_n,CrossCorr2_tfsavg ,CrossCorr2_tfsstd/sqrt (50),’b’,”’
linewidth’,2.0)

204 hold on

205 errorbar (filter_n,CrossCorr3_tfsavg,CrossCorr3_tfsstd/sqrt(50),’m’,”’
linewidth’ ,2.0)

206 hold on
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errorbar (filter_n ,CrossCorr4_tfsavg ,CrossCorr4d_tfsstd/sqrt(50),’g’,’
linewidth’,2.0)

hold on

errorbar (filter_n,CrossCorr5_tfsavg,CrossCorr5_tfsstd/sqrt(50),’c’,”’
linewidth’ ,2.0)

ylim ([0 11)

xlabel (’Number of Vocoder Filters?’)

ylabel (’CrossCorr-tfs’)

3 x1im ([0.9 34])

set (gca,’XTick’,filter_mn)

set (gca,’xscale’,’log’)

; grid on

legend(casestrs ([1 2 3 4 5]),’location’,’SouthEast’)

B.4 linear regression code

load(’STMIresultsl_Yujie.mat’)

load (’NSIMresultsl_Yujie.mat’)

load (’CCC_chimaera_FullResults_7Nov2023.mat’)

load (’perceptual_identification.mat’)

perceptual_res=[sampmeanofint (:,3); sampmeanofint(:,1);sampmeanofint
(:,4);sampmeanofint (:,5) ; sampmeanofint (:,2)];

perceptual _rau=rau(perceptual_res);

figure

filter_n [1 2 3 6 8 16 32];
casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

>Speech-TFS + WGN-ENV’3};

plot(filter_n ,perceptual_rau(1l:1*7),’r’,’linewidth’ ,2.0)
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hold on

plot (filter_n,perceptual _rau(1*7+1:2%7),°b’,’linewidth’,2.0)

hold on

plot(filter_n,perceptual_rau(2*7+1:3*7),’m’,’linewidth’ ,2.0)

hold on

plot (filter_n ,perceptual _rau(3*7+1:4%7),’g’,’linewidth’,2.0)

o hold on

plot(filter_n ,perceptual_rau(4*7+1:5*%7),’c’,’linewidth’ ,2.0)

xlabel (’Number of Vocoder Filters?’)

ylabel (’Perceptual Identification’)

ylim ([0 140]1)

set (gca,’XTick’,filter_n)

grid on

- set(gca,’xscale’,’log’)

legend(casestrs([1 2 3 4 5]),’location’,’SouthEast’)

%% STMI only

stmi_res=[100*stmilmean;100*stmi2mean;100*stmi3mean ;100*stmidmean

;100*stmibmean] ;

stmi_mdl = fitlm(stmi_res,perceptual_rau)

% stmi_mdl_bO=table2array(stmi_mdl.Coefficients(1,1));

% stmi_mdl_bl=table2array(stmi_mdl.Coefficients(2,1));

% stmi_mdl_x=stmi_mdl_bO+stmi_mdl_blx*stmi_res;

stmi_R2 = stmi_mdl.Rsquared.Adjusted;

stmi_pValue = stmi_mdl.Coefficients.pValue (2);

figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
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42 >Speech-TFS + WGN-ENV’3};

13 scatter (stmi_mdl.Fitted (1:1%7) ,perceptual_rau(1:1%7) ,"filled",’r’)

44 hold on

45 scatter (stmi_mdl.Fitted (1%7+1:2%7) ,perceptual _rau (1*7+1:2%x7) ,"filled
",’b?)

46 hold on

17 scatter (stmi_mdl.Fitted (2*7+1:3%7) ,perceptual_rau (2*x7+1:3%7) ,"filled
")

is hold on

v scatter (stmi_mdl.Fitted (3*7+1:4%7) ,perceptual _rau (3*7+1:4%x7) ,"filled
"oog)

50 hold on

51 scatter (stmi_mdl.Fitted (4*x7+1:5%7) ,perceptual_rau (4*7+1:5%x7) ,"filled
",c?)

2 xlabel (?’STMI-Neural Metric Identification’)

53 ylabel (’Perceptual Identification’)

54 hold on

55 plot (1:140, °k’)

56 x1im ([0 140]1)

57 ylim ([0 140])

58 grid off

50 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’off’)

s text (5, 100,

61 sprintf (’Adj. R"2 = %.3f (p-value %.3f)°, stmi_R2,
stmi_pValue),

62 >FontSize’, 10);

63

64 figure

65 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
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66 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

67 ’Speech-TFS + WGN-ENV’};

6s filter_,n = [1 2 3 6 8 16 32];

60 plot(filter_n,stmi_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)
70 hold on

71 plot(filter_n,stmi_mdl.Fitted (1*7+1:2%7),’b’,’linewidth’ ,2.0)

-

72 ' hold on

73 plot(filter_n,stmi_mdl.Fitted (2%x7+1:3%7),’m’,’linewidth’ ,2.0)

-

74 hold on

’linewidth’ ,2.0)

-

75 plot(filter_n,stmi_mdl.Fitted (3*x7+1:4%7),’g’
76 hold on

77 plot (filter_n,stmi_mdl.Fitted (4*x7+1:5%7),’c’,’linewidth’ ,2.0)

-

79 xlabel (’Number of Vocoder Filters’)

s0 ylabel (’STMI-Neural Metric Identification’)

81

s2 ylim ([0 1401]1)

83

sa set(gca,’XTick’,filter_n)

s5 set(gca,’xscale’,’log’)

g6 grid on

s7 legend (casestrs ([1 2 3 4 5]),’location’,’SouthWest’)

ss %% NSIM FT only

20 nsim_ft_res=[100*nsimlmean_ft ;100*nsim2mean_£ft ;100*nsim3mean_ft ;100%*
nsim4mean_ft ;100*nsimbmean_ft];

oo nsim_ft_mdl = fitlm(nsim_ft_res,perceptual_rau)

91 % nsim_ft_mdl_bO=table2array(nsim_ft_mdl.Coefficients(1,1));

92 % nsim_ft_mdl_bl=table2array(nsim_ft_mdl.Coefficients(2,1));

93 % mnsim_ft_mdl_x=nsim_ft_mdl_bO+nsim_ft_mdl_bl*nsim_ft_res;
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94 nsim_ft_R2 = nsim_ft_mdl.Rsquared.Adjusted;

o5 nsim_ft_pValue = nsim_ft_mdl.Coefficients.pValue(2);

96

or figure

9s casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

99 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

100 ’Speech-TFS + WGN-ENV’};

101 scatter(nsim_ft_mdl.Fitted(1:1%7) ,perceptual_rau(l:1%7) ,"filled",’r’
)

102 hold on

03 scatter(nsim_ft_mdl.Fitted (1%7+1:2%7) ,perceptual_rau (1*7+1:2%7) ,"
filled",’b’)

104 hold on

105 scatter(nsim_ft_mdl.Fitted (2%7+1:3%7) ,perceptual_rau (2*7+1:3%7) ,"
filled", ’m’)

106 hold on

107 scatter (nsim_ft_mdl.Fitted (3*7+1:4*7) ,perceptual_rau (3*7+1:4%7) ,"
filled",’g’)

108 hold on

109 scatter(nsim_ft_mdl .Fitted (4*7+1:5%7) ,perceptual_rau (4*x7+1:5*7) ,"
filled",’c’)

110 x1abel (°’FT NSIM-Neural Metric Identification’)

111 ylabel (’Perceptual Identification’)

112 hold on

113 plot(1:140,°k?)

114 x1im ([0 140])

115 y1lim ([0 140]1)

116 grid off

117 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’, ’box’,’off’)
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text (5, 100

>

sprintf (’Adj. R"2 = %.3f (p-value

nsim_ft_

pValue),

’FontSize’, 10);

figure

casestrs =

= %‘Bf)”

nsim_ft_R2

>

{’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

’>Speech -

;s filter_n =

plot(filter
hold on
plot(filter
hold on

plot(filter

2 hold on

plot(filter

hold on

5 plot(filter

_n

TFS + WGN-ENV’};

[t 2 3 6 8 16 32];

_n,nsim_ft_mdl.Fitted (1*x7+1

_n,nsim_ft_mdl.Fitted (2*x7+1

_n,nsim_ft_mdl.Fitted (3*x7+1

_n,nsim_ft_mdl.Fitted (4*x7+1:

- xlabel (’Number of Vocoder Filters?’)

ylim ([0 140])

set (gca,’XTick’,filter_mn)

set (gca,’xscale’,’log’)

grid on

,nsim_ft_mdl.Fitted (1:1%7),’r’,

12%7) ,

:3%7),

$4x7)

5%7),

’linewidth’ ,2.0)

)b)

,C,

s ylabel (’FT NSIM-Neural Metric Identification’)

H

H

H

H

’linewidth’

’linewidth’

’linewidth’

’linewidth’

legend(casestrs([1 2 3 4 5]),’location’,’SouthWest’)

%% NSIM MR

only
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146 nsim_mr_res=[100*nsimlmean_mr ;100*nsim2mean_mr ;100*nsim3mean_mr ;100x*
nsimd4mean_mr ;100*nsimbmean_mr];

147 nsim_mr_mdl = fitlm(nsim_mr_res,perceptual_rau)

148 % nsim_mr_mdl_bO=table2array(nsim_mr_mdl.Coefficients(1,1));

140 % nsim_mr_mdl_bl=table2array(nsim_mr_mdl.Coefficients(2,1));

150 % nsim_mr_mdl_x=nsim_mr_mdl_bO+nsim_mr_mdl_bl*nsim_mr_res;

151 nsim_mr_R2 = nsim_mr_mdl.Rsquared.Adjusted;

152 nsim_mr_pValue = nsim_mr_mdl.Coefficients.pValue(2);
153

154

155 figure

156 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

157 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

158 ’Speech-TFS + WGN-ENV’3Z};

150 scatter(nsim_mr_mdl.Fitted(1:1%7) ,perceptual_rau(1l:1%7) ,"filled",’r’
)

160 hold on

161 scatter (nsim_mr_mdl.Fitted (1*7+1:2%7) ,perceptual_rau (1*x7+1:2x%7) ,"
filled",’b’)

162 hold on

163 scatter(nsim_mr_mdl.Fitted (2%7+1:3%7) ,perceptual_rau (2*7+1:3%7) ,"
filled",’m’)

164 hold on

165 scatter (nsim_mr_mdl.Fitted (3*7+1:4%7) ,perceptual_rau (3*7+1:4%7) ,"
filled",’g’)

166 hold on

167 scatter (nsim_mr_mdl.Fitted (4*7+1:5%7) ,perceptual _rau (4*x7+1:5%7) ,"
filled",’c’)

168 xlabel (’MR NSIM-Neural Metric Identification?’)

140



MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

160 ylabel (’Perceptual Identification’)

170 hold on

171 plot(1:140,°k’)

172 x1im ([0 140])

175 ylim ([0 1401)

174 grid off

175 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’off’)
176 text (5, 100,

177 sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, nsim_mr_R2),

178 >FontSize’, 10);

179

10 figure

181 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

182 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

183 >Speech-TFS + WGN-ENV’3};

154 filter_n = [1 2 3 6 8 16 32];

185 plot (filter_n ,nsim_mr_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

186 hold on

157 plot (filter_n,nsim_mr_mdl.Fitted (1*7+1:2*7),°b’,’linewidth’ ,2.0)
188 hold on

150 plot(filter_n,nsim_mr_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’ ,2.0)
190 hold on

191 plot(filter_n,nsim_mr_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’ ,2.0)
192 hold on

193 plot(filter_n ,nsim_mr_mdl.Fitted (4*7+1:5%7) ,’c’,’linewidth’ ,2.0)
194

195 xlabel (’Number of Vocoder Filters’)

196 ylabel (’MR NSIM-Neural Metric Identification’)

197 ylim ([0 140])
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set(gca,’XTick’,filter_mn)
set (gca,’xscale’,’log’)
grid on

legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’)

%% NSIM FT+MR

nsim_ft_res=[100*nsimimean_£ft;100*nsim2mean_£ft;100*nsim3mean_£ft;100%*
nsim4mean_ft ;100*nsimbSmean_ft];

nsim_mr_res=[100*nsimimean_mr ;100*nsim2mean_mr ;100*nsim3mean_mr ;100%*

nsimd4mean_mr ;100*nsimbmean_mr];

207 nsim=table(nsim_ft_res ,nsim_mr_res,perceptual_rau);

209

216

nsim_mdl=fitlm(nsim,’interactions’,’ResponseVar’,’perceptual_rau’
s
’PredictorVars’,{’nsim_ft_res’,’nsim_mr_res’})

nsim_R2 = nsim_mdl.Rsquared.Adjusted;

figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’3Z};

scatter (nsim_mdl.Fitted (1:1%7) ,perceptual_rau(1:1%7) ,"filled",’r’)

7 hold on

218 scatter (nsim_mdl.Fitted (1*x7+1:2%7) ,perceptual_rau (1*7+1:2%x7) ,"filled

219

N
¥]

",’b’)
hold on

scatter (nsim_mdl.Fitted (2%7+1:3%7) ,perceptual _rau (2*x7+1:3%7) ,"filled
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scatter (nsim_mdl.Fitted (3*7+1:4%7) ,perceptual _rau (3*7+1:4%x7) ,"filled
"oog)

hold on

scatter (nsim_mdl.Fitted (4*x7+1:5%7) ,perceptual_rau (4*7+1:5%x7) ,"filled
LD

xlabel (’NSIM-Neural Metric Identification’)

; ylabel (’Perceptual Identification’)

hold on

; plot (1:140,°k’)

x1im ([0 140]1)
ylim ([0 1401)
grid off

legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’,’box’,’off’)

; text (5, 100,

sprintf (’Adj. R"2 = 7%.3f (p-value <0.001)’, nsim_R2),
>FontSize’, 10);
7 figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’};

filter_n = [1 2 3 6 8 16 32];

plot(filter_n ,nsim_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

hold on

plot(filter_n,nsim_mdl.Fitted (1*7+1:2%7),’b’,’linewidth’ ,2.0)

hold on

plot(filter_n ,nsim_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’ ,2.0)

7 hold on

plot(filter_n ,nsim_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’ ,2.0)
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240 hold on

250 plot(filter_n ,nsim_mdl.Fitted (4*x7+1:5%7),’c’,’linewidth’,2.0)

252 xlabel (’Number of Vocoder Filters’)
253 ylabel (’NSIM-Neural Metric Identification’)

254 ylim ([0 140]1)

256 set (gca, ’XTick’,filter_n)

257 set(gca, ’xscale’,’log’)

258 grid on

250 legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’)

260 %% STMI+NSIM FT

261 nsim_ft_res=[100*nsimimean_ft ;100*nsim2mean_ft;100*nsim3mean_ft ;100%*
nsim4mean_ft ;100*nsimbmean_ft];

262 stmi_res=[100*stmilmean;100*stmi2mean ;100*stmi3mean ;100*xstmidmean
;100*stmibmean];

263 stmi_nsim_ft=table(stmi_res,nsim_ft_res,perceptual_rau);

264 stmi_nsim_ft_mdl=fitlm(stmi_nsim_ft,’interactions’,’ResponseVar’,”’
perceptual_rau’,...

265 ’PredictorVars’ ,{’stmi_res’,’nsim_ft_res’})

266 stmi_nsim_ft_R2 = stmi_nsim_ft_mdl.Rsquared.Adjusted;

268

269

270 figure

271 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
272 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

273 >Speech-TFS + WGN-ENV’};
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274 scatter(stmi_nsim_ft_mdl.Fitted(1:1%7) ,perceptual_rau(1l:1%7) ,"filled
RS

275 hold on

276 scatter(stmi_nsim_ft_mdl.Fitted (1*7+1:2%7) ,perceptual _rau (1*7+1:2%7)
,"filled",’b’)

277 ' hold on

273 scatter(stmi_nsim_ft_mdl.Fitted (2*%7+1:3%7) ,perceptual_rau (2*7+1:3%7)
,"filled", ’m’)

279 hold on

280 scatter(stmi_nsim_ft_mdl.Fitted (3*7+1:4%7) ,perceptual_rau (3*x7+1:4%7)
,"filled",’g’)

281 hold omn

252 scatter (stmi_nsim_ft_mdl.Fitted (4*7+1:5%7) ,perceptual_rau (4*x7+1:5%7)
,"filled",’c’)

283 xlabel (? STMI+FT NSIM-Neural Metric Identification’)

284 ylabel (’Perceptual Identification’)

285 hold on

286 plot (1:140,°k’)

287 x1im ([0 140]1)

52 ylim ([0 140])

280 grid off

200 legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’,’box’,’off’)

201 text (5, 100,

292 sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, stmi_nsim_ft_R2),

293 >FontSize’, 10);
294
295

206 figure
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297

208 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

299 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

300 >Speech-TFS + WGN-ENV’};

300 filter_n = [1 2 3 6 8 16 32];

302 plot(filter_n,stmi_nsim_ft_mdl.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

303 hold on

304 plot(filter_n,stmi_nsim_ft_mdl.Fitted (1*7+1:2%7) ,’b’,’linewidth’
,2.0)

305 hold on

306 plot (filter_n,stmi_nsim_ft_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’
,2.0)

307 hold on

30s plot(filter_n,stmi_nsim_ft_mdl.Fitted (3*7+1:4%x7) ,’g’,’linewidth’
,2.0)

300 hold on

310 plot(filter_n,stmi_nsim_ft_mdl.Fitted (4*7+1:5%7) ,’c’,’linewidth’

,2.0)

312 xlabel (’Number of Vocoder Filters?’)

313 ylabel (? STMI+FT NSIM-Neural Metric Identification’)
314 ylim ([0 140])

315 set(geca, ’XTick’,filter_n)

316 set(gca,’xscale’,’log’)

317 grid on

315 legend (casestrs([1 2 3 4 5]),’location’,’SouthEast’)

319

321 /» without interaction
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320 stmi_nsim_ft_mdl2=fitlm(stmi_nsim_ft,’perceptual_rau”l+stmi_res+
nsim_ft_res’)

323 stmi_nsim_ft2_R2 = stmi_nsim_ft_mdl2.Rsquared.Adjusted;

325 figure

326 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

327 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

328 ’Speech-TFS + WGN-ENV’};

320 scatter(stmi_nsim_ft_mdl2.Fitted(1:1%7) ,perceptual_rau(1:1%7) ,"
filled",’r’)

330 hold on

331 scatter(stmi_nsim_ft_mdl2.Fitted (1*%7+1:2%7) ,perceptual_rau
(1*7+1:2%7) ,"filled",’b’)

332 hold omn

333 scatter (stmi_nsim_ft_mdl2.Fitted (2%x7+1:3%7) ,perceptual_rau
(2*%7+1:3%7) ,"filled",’m’)

334 hold on

335 scatter(stmi_nsim_ft_mdl2.Fitted (3*%7+1:4%7) ,perceptual_rau
(3*%7+1:4%7) ,"filled",’g’)

336 hold on

337 scatter(stmi_nsim_ft_mdl2.Fitted (4*7+1:5%7) ,perceptual_rau
(4*T7+1:5%7) ,"filled",’c’)

338 xlabel (? STMI+FT NSIM-Neural Metric Identification’)

330 ylabel (’Perceptual Identification’)

310 hold on

311 plot (1:140,°k’)

312 x1im ([0 140])

i3 ylim ([0 1401)

344 grid off
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5 legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0off’)

=

346 text (5, 100,

347 sprintf (’Adj. R"2 %.3f (p-value <0.001)’, stmi_nsim_ft2_R2),
348 >FontSize’, 10);
349

350 figure

352 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

353 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

354 ’Speech-TFS + WGN-ENV’};

355 filter_n = [1 2 3 6 8 16 32];

356 plot(filter_n,stmi_nsim_ft_mdl2.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

357 hold on

358 plot(filter_n,stmi_nsim_ft_mdl2.Fitted (1*7+1:2%7),°b’,’linewidth’
,2.0)

350 hold on

360 plot (filter_n,stmi_nsim_ft_mdl2.Fitted (2%7+1:3%7),’m’,’linewidth’
,2.0)

361 hold on

362 plot(filter_n,stmi_nsim_ft_mdl2.Fitted (3*7+1:4%x7) ,’g’,’linewidth’
,2.0)

363 hold on

364 plot(filter_n,stmi_nsim_ft_mdl2.Fitted (4*7+1:5%7),’c’,’linewidth’

,2.0)

366 xlabel (’Number of Vocoder Filters’)

367 ylabel (?STMI+FT NSIM-Neural Metric Identification’)

368 ylim([O 140])
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360 set(gca,’XTick’,filter_n)

370 set(gca,’xscale’,’log’)

371 grid on

372 legend (casestrs ([1 2 3 4 5]),’location’,’SouthEast’)

373 %% STMI+NSIM MR

374 nsim_mr_res=[100*nsimimean_mr ;100*nsim2mean_mr ;100*nsim3mean_mr ; 100%*
nsim4mean_mr ;100*nsimbSmean_mr];

375 stmi_res=[100*stmilmean;100*stmi2mean;100*stmi3mean;100*stmidmean
;100*stmibmean];

376 stmi_nsim_mr=table(stmi_res,nsim_mr_res,perceptual_rau);

377 stmi_nsim_mr_mdl=fitlm(stmi_nsim_mr,’interactions’,’ResponseVar’,”’
perceptual_rau’,...

378 ’PredictorVars’,{’stmi_res’,’nsim_mr_res’})

379 % stmi_nsim_mr_mdl=fitlm(stmi_nsim_mr,’perceptual_rau”l+stmi_res+
nsim_mr_res’) % no interaction

330 stmi_nsim_mr_R2 = stmi_nsim_mr_mdl.Rsquared.Adjusted;

381

3g3 figure

384 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

385 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

386 ’Speech-TFS + WGN-ENV’3};

387 scatter(stmi_nsim_mr_mdl.Fitted (1:1%7) ,perceptual_rau(1l:1%7) ,"filled
RS

385 hold on

330 scatter(stmi_nsim_mr_mdl.Fitted (1*7+1:2%7) ,perceptual _rau (1*7+1:2%7)
,"filled",’b’)

300 hold on
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scatter (stmi_nsim_mr_mdl.Fitted (2x7+1:3%7) ,perceptual_rau (2*7+1:3%7)
,"filled",’m’)

hold on

scatter (stmi_nsim_mr_mdl.Fitted (3*7+1:4*7) ,perceptual_rau (3*7+1:4%7)
,"filled",’g’)

hold on

scatter (stmi_nsim_mr_mdl.Fitted (4x7+1:5%7) ,perceptual_rau (4*7+1:5%7)
,"filled",’c’)

xlabel (’ STMI+MR NSIM-Neural Metric Identification’)

ylabel (’Perceptual Identification’)

hold on

plot (1:140,°k’)

x1im ([0 140]1)

ylim ([0 140])

grid off

legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

text (5, 100,

sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, stmi_nsim_mr_R2),

’FontSize’, 10);

figure
casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’};
filter_.n = [1 2 3 6 8 16 32];
plot(filter_n,stmi_nsim_mr_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

hold on

150



416

418

419

439

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

plot(filter_n,stmi_nsim_mr_mdl.Fitted (1*7+1:2%7) ,’b’,’linewidth’

,2.0)

7 hold on

plot(filter_n,stmi_nsim_mr_mdl.Fitted (2*7+1:3%7) ,’m’,’linewidth’
,2.0)

hold on

plot(filter_n,stmi_nsim_mr_mdl.Fitted (3*7+1:4%7) ,’g’,’linewidth’
,2.0)

hold on

plot(filter_n,stmi_nsim_mr_mdl.Fitted (4*7+1:5%7),’c’,’linewidth’

,2.0)

xlabel (’Number of Vocoder Filters?’)

5 ylabel (°’STMI+MR NSIM-Neural Metric Identification?’)

» ylim ([0 1401)

set (gca,’XTick’,filter_mn)

; set(gca,’xscale’,’log’)

grid on

legend(casestrs([1 2 3 4 5]),’location’,’SouthEast’)

> %% CCC ENV only

CrossCorr_env_res=[100*CrossCorr1_envavg;100*CrossCorr2_envavg;100*

CrossCorr3_envavg;100xCrossCorr4_envavg;100xCrossCorr5_envavg];

ccc_env_mdl = fitlm(CrossCorr_env_res ,perceptual_rau)
ccc_env_R2 = ccc_env_mdl.Rsquared.Adjusted;

i ccc_env_pValue = ccc_env_mdl.Coefficients.pValue(2);
figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
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440 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

141 ’Speech-TFS + WGN-ENV’};

112 scatter(ccc_env_mdl.Fitted (1:1%7) ,perceptual_rau(l:1%7) ,"filled",’r’
)

143 hold on

1114 scatter (ccc_env_mdl.Fitted (1*7+1:2%7) ,perceptual _rau (1*x7+1:2%7) "
filled",’b’)

445 hold on

16 scatter (ccc_env_mdl.Fitted (2%x7+1:3%7) ,perceptual_rau (2%7+1:3%7) ,"
filled",’m’)

147 hold on

us scatter (ccc_env_mdl.Fitted (3*%7+1:4*7) ,perceptual_rau (3*7+1:4%7) ,"
filled",’g’)

119 hold on

150 scatter(ccc_env_mdl.Fitted (4*x7+1:5%7) ,perceptual_rau (4*7+1:5%7) ,"
filled",’c’)

151 xlabel (’CCC ENV-Neural Metric Identification’)

152 ylabel (’Perceptual Identification’)

153 hold on

54 plot (1:140,°k’)

155 x1im ([0 1401)

456 ylim ([0 140])

157 grid off

158 legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

59 text (5, 100,

460 sprintf (’Adj. R"2 = %.3f (p-value = %.3f)’, ccc_env_R2,
ccc_env_pValue),

161 >FontSize’, 10);

462

152
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figure
casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
>Speech-TFS + WGN-ENV’};
filter_n = [1 2 3 6 8 16 32];
plot(filter_n,ccc_env_mdl.Fitted(1:1%7),°’r’,’linewidth’ ,2.0)
hold on
plot(filter_n,ccc_env_mdl.Fitted (1*7+1:2%7) ,’b’,’linewidth’,2.0)
hold on
plot (filter_n,ccc_env_mdl.Fitted (2*7+1:3%7),’m’,’linewidth’ ,2.0)
hold on
plot(filter_n,ccc_env_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’ ,2.0)
hold on
plot(filter_n,ccc_env_mdl.Fitted (4*7+1:5%7) ,’c’,’linewidth’,2.0)
ylim ([0 140])
xlabel (’Number of Vocoder Filters?’)
ylabel (’CCC ENV-Neural Metric Identification’)
set (gca,’XTick’,filter_mn)
set (gca,’xscale’,’log’)
grid on

legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’)

%% CCC TFS omnly

7 CrossCorr_tfs_res=[100*xCrossCorrl_tfsavg;100xCrossCorr2_tfsavg;100%*

CrossCorr3_tfsavg;100*xCrossCorr4_tfsavg;100xCrossCorr5_tfsavg];
ccc_tfs_mdl = fitlm(CrossCorr_tfs_res,perceptual_rau)
ccc_tfs_R2 = ccc_tfs_mdl.Rsquared.Adjusted;

ccc_tfs_pValue = ccc_tfs_mdl.Coefficients.pValue(2);
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491

192 figure

103 scatter(ccc_tfs_mdl.Fitted(1:1%7) ,perceptual_rau(l:1%7) ,"filled",’r’
)

199 hold on

105 scatter(ccc_tfs_mdl.Fitted (1*%7+1:2%7) ,perceptual_rau (1*7+1:2%7) ,"
filled",’b’)

4906 hold on

7 scatter (ccc_tfs_mdl.Fitted (2%x7+1:3%7) ,perceptual_rau (2*7+1:3%7) ,"
filled",’m’)

¢ hold on

100 scatter(ccc_tfs_mdl.Fitted (3*7+1:4*7) ,perceptual_rau (3*7+1:4%7) ,"
filled",’g’)

500 hold on

500 scatter (ccc_tfs_mdl.Fitted (4*7+1:5%7) ,perceptual_rau (4*x7+1:5%7) ,"
filled",’c’)

502 x1abel (°CCC TFS-Neural Metric Identification’)

503 ylabel (’Perceptual Identification’)

504 hold on

505 plot (1:140, k)

so6 x1im ([0 1401)

507 ylim ([0 140])

s0s grid off

500 legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

510 text (5, 100,

511 sprintf (’Adj. R"2 = %.3f (p-value = %.3f)’, ccc_tfs_R2,
ccc_tfs_pValue),

512 >FontSize’, 10);
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figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’3Z};

filter_n = [1 2 3 6 8 16 32];

plot(filter_n,ccc_tfs_mdl.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

hold on

2 plot(filter_n,ccc_tfs_mdl.Fitted (1*%7+1:2%7) ,°b’,’linewidth’ ,2.0)

hold on

plot (filter_n,ccc_tfs_mdl.Fitted (2*7+1:3%7),’m’,’linewidth’ ,2.0)

5 hold on

526 plot (filter_n,ccc_tfs_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’ ,2.0)

528

538

539

540

7 hold on

plot(filter_n,ccc_tfs_mdl.Fitted (4*7+1:5%x7),’c’,’linewidth’,2.0)

xlabel (’Number of Vocoder Filters?’)

ylabel (’CCC TFS-Neural Metric Identification’)
ylim ([0 1401])

set(gca,’XTick’,filter_n)

set (gca, ’xscale’,’log’)

grid on

legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’)

%% CCC ENV+TFS

CrossCorr_env_res=[100*CrossCorrl_envavg;100*CrossCorr2_envavg;100%*
CrossCorr3_envavg;100*CrossCorr4_envavg;100*CrossCorr5_envavgl;

CrossCorr_tfs_res=[100*CrossCorrl_tfsavg;100*xCrossCorr2_tfsavg;100%*

CrossCorr3_tfsavg;100*CrossCorr4_tfsavg;100*CrossCorr5_tfsavgl;
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541 CrossCorr_res=table(CrossCorr_env_res,CrossCorr_tfs_res,
perceptual_rau);

522 ccc_mdl=fitlm(CrossCorr_res,’interactions’,’ResponseVar’,’
perceptual_rau’,...

543 ’PredictorVars’ ,{’CrossCorr_env_res’,’CrossCorr_tfs_res’})

544 ccc_R2 = ccc_mdl.Rsquared.Adjusted;

546

sa7 figure

sas scatter (ccc_mdl.Fitted (1:1%7) ,perceptual_rau(l:1*7) ,"filled",’r’)

549 hold on

550 scatter(ccc_mdl.Fitted (1*x7+1:2%7) ,perceptual_rau(1*7+1:2%7) ,"filled
n s Jb))

551 hold on

52 scatter(ccc_mdl.Fitted (2*%7+1:3%7) ,perceptual_rau (2x7+1:3*7) ,"filled
ETED)

553 hold on

554 scatter (ccc_mdl.Fitted (3*x7+1:4%7) ,perceptual_rau(3*7+1:4%7) ,"filled
"oog)

555 hold on

556 scatter(ccc_mdl.Fitted (4x7+1:5%7) ,perceptual_rau (4*7+1:5%7) ,"filled
n s Jc))

557 xlabel (?’CCC-Neural Metric Identification’)

558 ylabel (’Perceptual Identification’)

559 hold on

560 plot (1:140,°k?)

s61 x1im ([0 140])

562 ylim ([0 140])

563 grid off
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564 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

565 text (5, 100,

566 sprintf (’Adj. R"2 = 7%.3f (p-value <0.001)’, ccc_R2),
567 ’FontSize’, 10);
568

569
s70 figure

571 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
572 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

573 >Speech-TFS + WGN-ENV’};

574 filter_n = [1 2 3 6 8 16 32];

575 plot (filter_n,ccc_mdl.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

576 hold on

577 plot (filter_n,ccc_mdl.Fitted (1*x7+1:2%7),’b’,’linewidth’ ,2.0)

-

573 hold on

579 plot (filter_n,ccc_mdl.Fitted (2x7+1:3%7),’m’,’linewidth’ ,2.0)

-

580 hold on

ss1 plot (filter_n,ccc_mdl.Fitted (3*x7+1:4%7),’g’,’linewidth’,2.0)

-

582 hold on

583 plot (filter_n,ccc_mdl.Fitted (4*7+1:5%7),’c’,’linewidth’,2.0)

-

585 xlabel (’Number of Vocoder Filters?’)

586 ylabel (?’CCC-Neural Metric Identification’)

ss7 ylim ([0 140])

sss set(geca,’XTick’,filter_n)

ss0 set(geca, ’xscale’,’log’)

500 grid on

501 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’)

502 %% STMI+CCC ENV
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503 CrossCorr_env_res=[100*xCrossCorrl_envavg;100xCrossCorr2_envavg;100x*
CrossCorr3_envavg;100*CrossCorr4_envavg;100*CrossCorr5_envavgl;

504 stmi_res=[100*stmilmean;100*stmi2mean;100*stmi3mean;100*stmid4mean
;100*stmibmean] ;

505 stmi_ccc_env=table(stmi_res,CrossCorr_env_res ,perceptual_rau);

506 stmi_ccc_env_mdl=fitlm(stmi_ccc_env,’interactions’,’ResponseVar’,’
perceptual_rau’,...

597 ’PredictorVars’,{’stmi_res’,’CrossCorr_env_res’})

508 % stmi_ccc_env_mdl=fitlm(stmi_ccc_env,’perceptual_rau~l+stmi_res+
CrossCorr_env_res’) % no interaction

500 stmi_ccc_env_R2 = stmi_ccc_env_mdl.Rsquared.Adjusted;

600

601 figure

602 scatter(stmi_ccc_env_mdl.Fitted (1:1%7) ,perceptual_rau(1l:1%7) ,"filled
ERED)

603 hold on

604 scatter(stmi_ccc_env_mdl.Fitted (1*7+1:2%7) ,perceptual _rau (1*7+1:2%7)
,"filled",’b’)

605 hold on

606 scatter (stmi_ccc_env_mdl.Fitted (2%7+1:3%7) ,perceptual_rau (2x7+1:3%7)
,"filled",’m’)

607 hold on

6os scatter(stmi_ccc_env_mdl.Fitted (3*7+1:4%7) ,perceptual _rau (3*7+1:4%7)
,"filled",’g’)

609 hold on

610 scatter(stmi_ccc_env_mdl.Fitted (4*7+1:5%7) ,perceptual _rau (4*7+1:5%7)
,"filled",’c’)

611 xlabel (?’STMI+CCC ENV-Neural Metric Identification’)

612 ylabel (’Perceptual Identification’)
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hold on

plot (1:140,°k?)

5 x1im ([0 140]1)

ylim ([0 140]1)
grid off

legend (casestrs ([1 2 3 4 5]),’location’,’NorthWest’,’box’,’off’)

) text (5, 100,

sprintf (’Adj. R"2

%.3f (p-value <0.001)’, stmi_ccc_env_R2),

>FontSize’, 10);

figure

5 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

’>Speech-TFS + WGN-ENV’};

;, filter_n = [1 2 3 6 8 16 32];

plot(filter_n,stmi_ccc_env_mdl.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

hold on

plot (filter_n,stmi_ccc_env_mdl.Fitted (1*7+1:2%7) ,°b’,’linewidth’
,2.0)

hold on

plot(filter_n,stmi_ccc_env_mdl.Fitted (2*7+1:3%7) ,’m’,’linewidth’
,2.0)

hold on

5 plot(filter_n,stmi_ccc_env_mdl.Fitted (3*7+1:4%7) ,’g’,’linewidth’

,2.0)

hold on
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plot(filter_n,stmi_ccc_env_mdl.Fitted (4*7+1:5%7) ,’c’,’linewidth’

,2.0)

xlabel (’Number of Vocoder Filters?’)

ylabel (’STMI+CCC ENV-Neural Metric Identification’)

ylim ([0 140]1)

set (gca,’XTick’,filter_mn)

set(gca,’xscale’,’log’)

grid on

legend(casestrs([1 2 3 4 5]),’location’,’SouthWest’)

%% STMI+CCC TFS

CrossCorr_tfs_res=[100*CrossCorrl_tfsavg;100*xCrossCorr2_tfsavg;100%*
CrossCorr3_tfsavg;100*CrossCorr4_tfsavg;100*CrossCorr5_tfsavg];

stmi_res=[100*stmilmean;100*stmi2mean;100*stmi3mean;100*stmidmean
;100*stmibmean];

stmi_ccc_tfs=table(stmi_res,CrossCorr_tfs_res,perceptual_rau);

stmi_ccc_tfs_mdl=fitlm(stmi_ccc_tfs,’interactions’,’ResponseVar’,’
perceptual_rau’,...
’PredictorVars’,{’stmi_res’,’CrossCorr_tfs_res’})

stmi_ccc_tfs_R2 = stmi_ccc_tfs_mdl.Rsquared.Adjusted;

figure

5 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

’Speech-TFS + WGN-ENV’};

» scatter(stmi_ccc_tfs_mdl.Fitted(1:1%7) ,perceptual_rau(1:1%7) ,"filled

II,)I))

hold on
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660 scatter (stmi_ccc_tfs_mdl.Fitted (1*7+1:2%7) ,perceptual_rau (1*7+1:2*7)
,"filled",’b’)

661 hold on

662 scatter (stmi_ccc_tfs_mdl.Fitted (2*7+1:3%7) ,perceptual_rau (2*7+1:3%7)
,"filled",’m’)

663 hold on

664 scatter (stmi_ccc_tfs_mdl.Fitted (3*7+1:4%7) ,perceptual_rau (3*7+1:4%7)
,"filled",’g’)

665 hold on

666 scatter (stmi_ccc_tfs_mdl.Fitted (4*x7+1:5%7) ,perceptual_rau (4*7+1:5%7)
,"filled",’c’)

667 xlabel (?STMI+CCC TFS-Neural Metric Identification’)

66s ylabel (’Perceptual Identification’)

660 hold on

670 plot (1:140,°k’)

671 x1im ([0 140]1)

672 ylim ([0 1401)

673 grid off

674 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

675 text (5, 100,

676 sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, stmi_ccc_tfs_R2),

677 ’FontSize’, 10);

678

679

630 figure

681 casestrs = {’Speech—ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
682 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

683 >Speech-TFS + WGN-ENV’3};
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6s« filter_n = [1 2 3 6 8 16 32];

655 plot(filter_n,stmi_ccc_tfs_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

686 hold on

6s7 plot(filter_n,stmi_ccc_tfs_mdl.Fitted (1*7+1:2%7) ,’b’,’linewidth’
,2.0)

st hold on

650 plot(filter_n,stmi_ccc_tfs_mdl.Fitted (2*7+1:3%7) ,’m’,’linewidth’
,2.0)

600 hold on

601 plot(filter_n,stmi_ccc_tfs_mdl.Fitted (3*7+1:4%x7) ,’g’,’linewidth’
,2.0)

602 hold on

693 plot(filter_n,stmi_ccc_tfs_mdl.Fitted (4*7+1:5%7),’c’,’linewidth’
,2.0)

694

605 xlabel (’Number of Vocoder Filters’)

606 ylabel (?STMI+CCC TFS-Neural Metric Identification’)

607 ylim ([0 140])

cos set(gca,’XTick’,filter_mn)

600 set (gca,’xscale’,’log’)

700 grid on

701 legend (casestrs ([1 2 3 4 5]),’location’,’SouthEast’)

703 %, without interaction

704 stmi_ccc_tfs_mdl2=fitlm(stmi_ccc_tfs,’perceptual_rau~l+stmi_res+
CrossCorr_tfs_res’)

705 stmi_ccc_tfs2_R2 = stmi_ccc_tfs_mdl2.Rsquared.Adjusted;

706

707
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figure
casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

>Speech-TFS + WGN-ENV’3};

scatter (stmi_ccc_tfs_mdl2.Fitted(1:1%7) ,perceptual_rau(l:1*7),"
filled",’r’)

hold on

scatter (stmi_ccc_tfs_mdl2.Fitted (1*7+1:2%7) ,perceptual_rau
(1*7+1:2%7) ,"filled",’b’)

hold on

scatter (stmi_ccc_tfs_mdl2.Fitted (2*x7+1:3%7) ,perceptual_rau
(2%7+1:3%7) ,"filled", ’m’)

hold on

scatter (stmi_ccc_tfs_mdl2.Fitted (3*x7+1:4%7) ,perceptual_rau
(3*%7+1:4%7) ,"filled",’g’)

hold on

scatter (stmi_ccc_tfs_mdl2.Fitted (4*x7+1:5%7) ,perceptual_rau
(4*7+1:5%7) ,"filled",’c’)

xlabel (’Number of Vocoder Filters’)

ylabel (’STMI+CCC TFS-Neural Metric Identification’)

hold on

5 plot(1:140,°k’)

x1im ([0 140])

ylim ([0 140])

; grid off

legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

text (5, 100,
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sprintf (’Adj. R"2 = 7%.3f (p-value <0.001)’, stmi_ccc_tfs2_R2),

>FontSize’, 10);

figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’};

filter.n = [1 2 3 6 8 16 32];

plot (filter_n,stmi_ccc_tfs_mdl2.Fitted (1:1%7),’r’,’linewidth’,2.0)

hold on

plot(filter_n,stmi_ccc_tfs_mdl2.Fitted (1*7+1:2%7) ,’b’,’linewidth’
,2.0)

hold on

plot(filter_n,stmi_ccc_tfs_mdl2.Fitted (2*7+1:3%7) ,’m’,’linewidth’
,2.0)

hold on

plot(filter_n,stmi_ccc_tfs_mdl2.Fitted (3*7+1:4%7),’g’,’linewidth’

,2.0)

747 hold on

748

749

plot(filter_n,stmi_ccc_tfs_mdl2.Fitted (4*7+1:5%7),’c’,’linewidth’
,2.0)

xlabel (’Number of Vocoder Filters?’)

ylabel (’STMI+CCC TFS-Neural Metric Identification’)

ylim ([0 1401])

set(gca,’XTick’,filter_mn)

set (gca, ’xscale’,’log’)

grid on
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5 legend(casestrs([1 2 3 4 5]),’location’,’SouthEast’)

%% MR NSIM+CCC ENV

7 CrossCorr_env_res=[100*xCrossCorrl_envavg;100xCrossCorr2_envavg;100x*

CrossCorr3_envavg;100*xCrossCorr4_envavg;100*CrossCorr5_envavg];
nsim_mr_res=[100*nsimlmean_mr;100*nsim2mean_mr ;100*nsim3mean_mr ;100x*
nsim4mean_mr ;100*nsimbmean_mr];
nsim_mr_ccc_env=table(nsim_mr_res,CrossCorr_env_res ,perceptual_rau);
nsim_mr_ccc_env_mdl=fitlm(nsim_mr_ccc_env,’interactions’,’
ResponseVar’,’perceptual_rau’, ...
’PredictorVars’,{’nsim_mr_res’,’CrossCorr_env_res’})
% nsim_mr_ccc_env_mdl=fitlm(nsim_mr_ccc_env,’perceptual_rau~1+
nsim_mr_res+CrossCorr_env_res’) % no interaction

nsim_mr_ccc_env_R2 = nsim_mr_ccc_env_mdl.Rsquared.Adjusted;

figure

scatter (nsim_mr_ccc_env_mdl.Fitted (1:1%7) ,perceptual_rau(1:1%7) ,"
filled",’r’)

hold on

scatter (nsim_mr_ccc_env_mdl.Fitted (1*7+1:2%7) ,perceptual_rau
(1%7+1:2%7) ,"filled",’b’)

hold on

scatter (nsim_mr_ccc_env_mdl.Fitted (2%7+1:3%7) ,perceptual_rau
(2*%7+1:3%7) ,"filled",’m’)

hold on

scatter (nsim_mr_ccc_env_mdl.Fitted (3*7+1:4%7) ,perceptual_rau
(3*%7+1:4%7) ,"filled",’g’)

hold on

scatter (nsim_mr_ccc_env_mdl.Fitted (4*7+1:5%7) ,perceptual_rau

(4%7+1:5%7) ,"filled",’c’)

165



780

781

782

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

75 xlabel (’MR NSIM+CCC ENV-Neural Metric Identification’)

ylabel (’Perceptual Identification’)

hold on

s plot(1:140,°k’)

x1im ([0 1401)
ylim ([0 140]1)
grid off

legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

753 text (5, 100,

784

786

sprintf (’Adj. R"2 %.3f (p-value <0.001)’, nsim_mr_ccc_env_R2)

>FontSize’, 10);

s figure

789

790

791

792

793

794

796

798

799

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’};

filter.n = [1 2 3 6 8 16 32];

plot (filter_n ,nsim_mr_ccc_env_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

hold on

5 plot (filter_n,nsim_mr_ccc_env_mdl.Fitted (1*7+1:2%7) ,°b’,’linewidth’

,2.0)

hold on

plot(filter_n ,nsim_mr_ccc_env_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’
,2.0)

hold on

plot(filter_n ,nsim_mr_ccc_env_mdl.Fitted (3*7+1:4*7),’g’,’linewidth’

,2.0)
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200 hold on

s01 plot(filter_n,nsim_mr_ccc_env_mdl.Fitted (4*x7+1:5%7),’c’,’linewidth’
,2.0)

802

s03 xlabel (’Number of Vocoder Filters’)

so4 ylabel (’MR NSIM+CCC ENV-Neural Metric Identification?’)

sos ylim ([0 140])

sos set(gca,’XTick’,filter_n)

s07 set(gca, ’xscale’,’log’)

g0o8 grid on

s00 legend (casestrs([1 2 3 4 5]),’location’,’SouthWest’)

si0 %% MR NSIM+CCC TFS

811 CrossCorr_tfs_res=[100*CrossCorr1_tfsavg;100*CrossCorr2_tfsavg;100*
CrossCorr3_tfsavg;100*xCrossCorr4_tfsavg;100*xCrossCorr5_tfsavgl;
nsim_mr_res=[100*nsimimean_mr ;100*nsim2mean_mr ;100*nsim3mean_mr
;100*nsim4mean_mr ;100*nsimbmean_mr];

si2 nsim_mr_ccc_tfs=table(nsim_mr_res ,CrossCorr_tfs_res,perceptual_rau);

813 nsim_mr_ccc_tfs_mdl=fitlm(nsim_mr_ccc_tfs,’interactions’,’
ResponseVar’,’perceptual_rau’,...

814 ’PredictorVars’ ,{’nsim_mr_res’,’CrossCorr_tfs_res’})

815 % nsim_mr_ccc_tfs_mdl=fitlm(nsim_mr_ccc_tfs,’perceptual_rau~1+
nsim_mr_res+CrossCorr_tfs_res’) % no interaction

g16 nsim_mr_ccc_tfs_R2 = nsim_mr_ccc_tfs_mdl.Rsquared.Adjusted;

817

g1z figure

s19 scatter(nsim_mr_ccc_tfs_mdl.Fitted(1:1%7) ,perceptual_rau(l:1%7),"
filled",’r’)

s20 hold on
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s21 scatter(nsim_mr_ccc_tfs_mdl.Fitted (1*x7+1:2%7) ,perceptual_rau
(1*x7+1:2%7) ,"filled",’b’)

822 hold on

s23 scatter(nsim_mr_ccc_tfs_mdl.Fitted (2*x7+1:3%7) ,perceptual_rau
(2*7+1:3%7) ,"filled",’m’)

g24 hold on

s25 scatter(nsim_mr_ccc_tfs_mdl.Fitted (3*x7+1:4%7) ,perceptual_rau
(3*%7+1:4%7) ,"filled",’g’)

g26 hold on

s27 scatter(nsim_mr_ccc_tfs_mdl.Fitted (4*x7+1:5%7) ,perceptual_rau
(4*7+1:5%7) ,"filled",’c’)

s2s xlabel (’MR NSIM+CCC TFS-Neural Metric Identification’)

s20 ylabel (’Perceptual Identification’)

830 hold omn

s31 plot (1:140,°k’)

s32 x1im ([0 140]1)

ss3 ylim ([0 140])

s34 grid off

s35 legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

g36 text (5, 100,

837 sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, nsim_mr_ccc_tfs_R2)

838 ’FontSize’, 10);

840

ga1 figure

Y

2 casestrs = {’Speech—ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
843 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

844 >Speech-TFS + WGN-ENV’3};

168



845

846

848

849

850

851

853

858

860

861

862

863

864

865

866

MASc Thesis—Yujie Li McMaster University—Electrical & Computer Engineering

filter.n = [1 2 3 6 8 16 32];

plot(filter_n ,nsim_mr_ccc_tfs_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

7 hold on

plot(filter_n,nsim_mr_ccc_tfs_mdl.Fitted (1*7+1:2%7),’b’,’linewidth’
,2.0)

hold on

plot(filter_n ,nsim_mr_ccc_tfs_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’
,2.0)

hold on

plot(filter_n ,nsim_mr_ccc_tfs_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’
,2.0)

hold on

plot(filter_n,nsim_mr_ccc_tfs_mdl.Fitted (4*7+1:5%7),’c’,’linewidth”’

,2.0)

xlabel (’Number of Vocoder Filters?’)

ylabel (’MR NSIM+CCC TFS-Neural Metric Identification’)

ylim ([0 140])

set (gca,’XTick’,filter_mn)

set (gca,’xscale’,’log’)

grid on

legend(casestrs([1 2 3 4 5]),’location’,’SouthWest’)

%% FT NSIM+CCC ENV

CrossCorr_env_res=[100*CrossCorr1_envavg;100*CrossCorr2_envavg;100*
CrossCorr3_envavg;100xCrossCorr4_envavg;100xCrossCorr5_envavgl];

nsim_ft_res=[100*nsimimean_ft;100*nsim2mean_£ft;100*nsim3mean_£ft;100%*
nsim4mean_ft ;100*nsimbmean_ft];

nsim_ft_ccc_env=table(nsim_ft_res,CrossCorr_env_res ,perceptual_rau);
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nsim_ft_ccc_env_mdl=fitlm(nsim_ft_ccc_env,’interactions’,’
ResponseVar’,’perceptual_rau’,...
’PredictorVars’,{’nsim_ft_res’,’CrossCorr_env_res’})
% nsim_ft_ccc_env_mdl=fitlm(nsim_mr_ccc_env,’perceptual_rau~1+
nsim_ft_res+CrossCorr_env_res’) % no interaction

nsim_ft_ccc_env_R2 = nsim_ft_ccc_env_mdl.Rsquared.Adjusted;

figure
scatter(nsim_ft_ccc_env_mdl.Fitted(1:1%7) ,perceptual_rau(1:1%7) ,"
filled",’r’)

hold on

75 scatter (nsim_ft_ccc_env_mdl.Fitted (1*x7+1:2%7) ,perceptual_rau

(1%7+1:2%7) ,"filled",’b’)

hold on

scatter (nsim_ft_ccc_env_mdl.Fitted (2x7+1:3%7) ,perceptual_rau
(2*%7+1:3*%7) ,"filled",’m’)

hold on

scatter(nsim_ft_ccc_env_mdl.Fitted (3*7+1:4%7) ,perceptual_rau
(3*%7+1:4%7) ,"filled",’g’)

hold on

scatter (nsim_ft_ccc_env_mdl.Fitted (4*7+1:5%7) ,perceptual_rau
(4%T7+1:5%7) ,"filled",’c’)

xlabel (’FT NSIM+CCC ENV-Neural Metric Identification’)

ylabel (’Perceptual Identification’)

hold on

plot (1:140,°k’)

x1im ([0 140])

ylim ([0 1401])

grid off
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sso legend (casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)

s00 text (5, 100,

891 sprintf (’Adj. R"2 %.3f (p-value <0.001)’, nsim_ft_ccc_env_R2)

892 >FontSize’, 10);

893

894

so5 figure

s06 casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...

897 ’Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...

898 ’Speech-TFS + WGN-ENV’};

go0 filter_n = [1 2 3 6 8 16 32];

900 plot(filter_n,nsim_ft_ccc_env_mdl.Fitted(1:1%7),’r’,’linewidth’ ,2.0)

901 hold on

902 plot(filter_n ,nsim_ft_ccc_env_mdl.Fitted (1*7+1:2%7),°b’,’linewidth’
,2.0)

903 hold on

904 plot(filter_n,nsim_ft_ccc_env_mdl.Fitted (2%7+1:3%7),’m’,’linewidth’
,2.0)

905 hold on

906 plot(filter_n ,nsim_ft_ccc_env_mdl.Fitted (3*x7+1:4*7),’g’,’linewidth’
,2.0)

907 hold on

90s plot(filter_n,nsim_ft_ccc_env_mdl.Fitted (4*7+1:5%7),’c’,’linewidth’
,2.0)

909

910 xlabel (’Number of Vocoder Filters’)

911 ylabel (’FT NSIM+CCC ENV-Neural Metric Identification’)

912 ylim ([0 1401])
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013 set(gca,’XTick’,filter_n)

914 set(gca, ’xscale’,’log’)

915 grid omn

916 legend (casestrs ([1 2 3 4 5]),’location’,’SouthWest’)

917 %% FT NSIM+CCC TFS

918 CrossCorr_tfs_res=[100*CrossCorr1_tfsavg;100*CrossCorr2_tfsavg;100*
CrossCorr3_tfsavg;100*xCrossCorr4_tfsavg;100xCrossCorr5_tfsavgl;

910 nsim_ft_res=[100*nsimimean_ft;100*nsim2mean_£ft;100*nsim3mean_£ft;100x*
nsim4mean_ft ;100*nsimbSmean_ft];

920 nsim_ft_ccc_tfs=table(nsim_ft_res,CrossCorr_tfs_res,perceptual_rau);

921 nsim_ft_ccc_tfs_mdl=fitlm(nsim_ft_ccc_tfs,’interactions’,”’
ResponseVar’,’perceptual_rau’, ...

922 ’PredictorVars’ ,{’nsim_ft_res’,’CrossCorr_tfs_res’})

923 % nsim_ft_ccc_tfs_mdl=fitlm(nsim_mr_ccc_env,’perceptual_rau”1+
nsim_ft_res+CrossCorr_tfs_res’) % no interaction

924 nsim_ft_ccc_tfs_R2 = nsim_ft_ccc_tfs_mdl.Rsquared.Adjusted;

926 figure

927 scatter(nsim_ft_ccc_tfs_mdl.Fitted(1:1%7) ,perceptual_rau(l:1%7),"
filled",’r’)

928 hold omn

920 scatter(nsim_ft_ccc_tfs_mdl.Fitted (1*%7+1:2%7) ,perceptual_rau
(1*%7+1:2%7) ,"filled",’b’)

930 hold on

931 scatter(nsim_ft_ccc_tfs_mdl.Fitted (2*x7+1:3%7) ,perceptual_rau
(2*%7+1:3%7) ,"filled",’m’)

932 hold on

933 scatter(nsim_ft_ccc_tfs_mdl.Fitted (3*x7+1:4%7) ,perceptual_rau

(3*7+1:4%7) ,"filled",’g’)
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hold on

scatter(nsim_ft_ccc_tfs_mdl.Fitted (4*7+1:5%7) ,perceptual_rau
(4*7+1:5%7) ,"filled",’c’)

xlabel (’FT NSIM+CCC TFS-Neural Metric Identification’)

ylabel (’Perceptual Identification’)

s hold on

plot(1:140,°k’)

x1im ([0 1401)

ylim ([0 140])

grid off

legend(casestrs([1 2 3 4 5]),’location’,’NorthWest’,’box’,’0ff’)
text (5, 100,

sprintf (’Adj. R"2 = %.3f (p-value <0.001)’, nsim_ft_ccc_tfs_R2)

>FontSize’, 10);

figure

casestrs = {’Speech-ENV + MN-TFS’,’Speech-ENV + WGN-TFS’,...
’>Speech-TFS + MN-ENV’,’Speech-TFS + Flat-ENV’,...
’Speech-TFS + WGN-ENV’};

filter_.n = [1 2 3 6 8 16 32];

plot(filter_n ,nsim_ft_ccc_tfs_mdl.Fitted(1:1%7),’r’,’linewidth’,2.0)

5 hold on

plot(filter_n ,nsim_ft_ccc_tfs_mdl.Fitted (1*7+1:2%7),’b’,’linewidth’

,2.0)

7 hold on

; plot(filter_n,nsim_ft_ccc_tfs_mdl.Fitted (2%x7+1:3%7),’m’,’linewidth’

,2.0)
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950 hold on

960 plot(filter_n ,nsim_ft_ccc_tfs_mdl.Fitted (3*7+1:4%7),’g’,’linewidth’
,2.0)

961 hold on

962 plot(filter_n ,nsim_ft_ccc_tfs_mdl.Fitted (4*x7+1:5%7),’c’,’linewidth’
,2.0)

963

964 xlabel (’Number of Vocoder Filters?’)

965 ylabel (’FT NSIM+CCC TFS-Neural Metric Identification’)

966 ylim ([0 1401)

967 set (gca,’XTick’,filter_n)

96s set(gca, ’xscale’,’log’)

960 grid on

970 legend (casestrs([1 2 3 4 5]),’location’,’SouthWest’)
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