BRANCHING PROCESS
REPRESENTATION OF POISSONIZED
CHINESE-RESTAURANT PROCESS
(OCRP(a, 0)]



BRANCHING PROCESS REPRESENTATION OF
POISSONIZED CHINESE-RESTAURANT PROCESS
[OCRP(a, 0)]

BY
SOUMYAJYOTI KUNDU, B.Math

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES IN THE
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
MASTER OF SCIENCE

(© Copyright by Soumyajyoti Kundu, April 26, 2024
All Rights Reserved



Master of Science (2024)

McMaster University

(Department of Mathematics & Statistics) Hamilton, Ontario, Canada

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Branching Process Representation of Poissonized
Chinese-Restaurant Process [oOCRP(a, 0)]

Soumyajyoti Kundu

Dr. Noah Forman

vi, 46

11



Abstract

The Chinese Restaurant Process (CRP) is a stochastic process on partitions.
One of its importance lies in Markov chain Monte Carlo algorithm for Bayesian
non parametric clustering. This thesis is built in the realm of a special type
of CRP called Poissonized up-down CRP. Inspired by Roger’s work in [RW22]
to recover CRPs from a continuous-time stochastic process called a Lévy pro-
cess, we study a branching process construction that we show is equivalent
to Poissonized up down CRP. This study touches on discrete trees, continu-
ous trees namely chronological trees, Jumping Chronological Contour Process
(JCCP) and Skewer process. In the course of this study we explored interesting
identities involving conditional exponential distribution.
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Chapter 1

Introduction

1.1 Basic ingredients and branching process
construction

This thesis takes place in the realm of Birth and Death chain constructions,
an active field in Probability Theory that emerges from Branching Processes.
Imagine a group of herds of bison originating from a single herd and under-
going the following transition scheme: birth, increasing the bison population
of a herd by 1; death, decreasing the bison population of a herd by 1; and
branching, where a bison branches off to form a new herd. This is the discrete
analogue of the setup studied by Forman et.al. in [For+20a; For+20b].

We introduce a few basic notations that we will be following throughout
this thesis. Let

U= fj N" (1.1.1)
n=0

with the convention N = {()}. The herds will be indexed by Y. We view
U as an infinite tree rooted at () and if u,v € U and u is a prefix of v,
then w is an ancestor of v. For example, (3,1) is an ancestor of (3,1,4,4,1).
We define the generation or genealogical height of u = (u!,u? --- u") as
lu| = n. If v = (vl 0?2, .-+ v™), then the concatenation of u and v is defined
as wv = (ul,--- ,u™, vl -+ ™). The mapping 7 : U \ {0} — U is defined by
m(ul u? - u) = (uhu? - - ut). We refer to m(u) as the mother of u.

Definition 1.1 (Continuous time Markov chain). A stochastic process (X¢),s,
with discrete state space S is called a continuous time Markov chain if for all
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t>0,s>0,72€ S and j € S we have the Markov property

P(X(s+1t)=j|X(s) =4, {X(u):0<u<s})=P(X(s+1t)=j|X(s) =1)

For each t > 0 there is a transition matrix

P(t) = (Pi(t))-

Proposition 1.2. Let (X;),5, be a continuous time Markov chain with state
space §. Consider x € §. Given X (0) = z, define T, by

T,:=inf{t >0: X(t) #z}.
Then there ezists a scalar A, > 0 such that T, ~ Exp()\,). Let

Then the matriz Q = (Q),. s Satisfies

z,ye
P'(t) = QP(1).
We say @Q is the intensity matriz of (X),,-

Definition 1.3 (Q, Markov chain). A continuous time Markov chain (X),-,
is called a @, Markov chain if the non-zero off diagonal entries of the intensity
matrix @) are given by g(m,m + 1) = m — a and ¢(m,m — 1) = m for all
m > 1. For example, if ) is a 3 x 3 matrix then

0 1-«a 0

Q=11 0 2—-«
0 2 0

We now present a construction of the process that is the main subject

of this thesis. We proceed in two stages: first, we describe the changing

population in a single generic bison herd, then we use this as an ingredient

to describe a family tree of herds branching off of each other. Throughout

this document « € (0,1) is fixed. We construct a single continuous time

Markov chain (Z;, K;),-, on N* with
Zo=n€eN, Ky=0.
e We will view Z; as the number of bison at time ¢ and K () as the number

of herds that branched off of upto time ¢. We will construct a branching
process (Z;),, that is eventually absorbed at 0.

2
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o Let (7});>, denote the sequence of random times when (Z, K') makes a
transition. Given (Zy, Kt)ycpo, 1, (T — T™) is conditionally Exp (2Z7+).
In the notation of Proposition 1.2, A, ;) = 2n.

e K and Z stay constant on each interval [Ty, T%), then at Ty one of
the following transitions takes place.

1
Birth: Z7, ., = Z7,+1 and K1, , = Kr, with probability 3 (1 - ZC; )
k

1
Death: Zr, , = Z7, — 1 and K7y, = Kr, with probability 7

Branch: Z, ., = Z7, and Kr,,, = Kr, + 1 with probability (2; )
Tk

We now construct our full process with multiple herds. Let
((ZAt(w), K t(w)) ,wel ) be independent copies of the previously constructed
t>0

chain with
70 =neN, 2" =1for w# 0 and K{* =0 for all w.

We will use these chains as ingredients in our construction. Define the absorp-
tion time of each herd w by

¢y = inf {t >0: 7™ = 0} . (1.1.2)
Recursively we define 7 := {0} and

7= | {(wi)ENn‘lxN: 1§¢§K§jj>}. (1.1.3)

WwETn—1

Define
T=T. (1.1.4)
n=0

Note 7 denotes the set of all herds w that arise in the process.

Define (@) to be the birth time of herd (). We will denote by S(w) the
time when herd w first appears in our process branching off of its parent herd
m(w). For wi € T, (so w € T,_1), recursively we define

B(wi) = Blw) + inf{t >0: K™ > z} (1.1.5)
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Adopt the convention f(w) = oo for w € U \ T. Define

0,0 if t < Bw
(290), KW(@)) = {10 : o)
(20 (¢ = Blw)), K@ (¢ = Bw)) if ¢ = Blw)
(1.1.6)
Our interest is in the process
((Zt(w), Kt(w)> Cwe T).
>0
Let
wit):={weu: z" >0} (1.1.7)
oCRP(,0) refers to the ordered Chinese Restaurant process (CRP), a
Markov chain in the state space C := {(ny,ng, -+ ,ng) : k > 0,nq,--- ,np > 1}
consists of finite length of integer compositions and ni,ns, - ,ng are inter-

preted as the number of customers at an ordered list of k tables in a restaurant.
A new transition state is reached each time a customer joins a table or opens
up a new table or leaves a table. Relevant literature about CRPs can be found
in the textbook Combinatorial Stochastic Processes [Pit06] and [PW09].

1.2 Main theorem and some results of this
thesis

In section 2.1.2, we will define a Poissonized up-down ordered CRP as a contin-
uous time Markov chain in which customers leave and join tables. In chapter
2, we define a total order <, on U.

Theorem 1.4. Let ¢, : {1,2,--- ,#W(t)} — W(t) denote the order pre-
serving bijection such that ©i(1) <y, @1(2) <ur -+ <ur ot (FW(t)). The
process I, = (Z91U)(t), 1 < j < #W(t)),., is a Poissonized up-down ordered
CRP(«,0).

t>0

The main work of Roger’s PhD Thesis ([RW22]) was to recover a Ray-Knight
theorem which recovers CRPs from the heights of Lévy processes with jumps,
attempting to determine the scaling limits of both the Lévy process and the
integer-valued paths that denote its jumps, with the goal of aligning with the
framework introduced by Forman et al. [For+20a; For+18; For+20b].

The following lemmas may or may not be novel, but their usefulness lies in
their contribution to understanding the branching process of the bison herds
through the insights of the associated Jumping Chronological Contour Process

4
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(JCCP) which has been discussed in chapter 2. Our goal of understanding
JCCPs inspired us to ask interesting questions about Exponential random
variables.

Lemma 1.5 (Lemma 3.3). Consider a time T which is independent of the
Poisson process (N(t),t > 0) of rate X\. Let, Sy =0 < S; < Sy < --- denote
the arrival times of the Poisson process. Let,

Sh it 4 >T
T_SN(T) if 51<T

Then, Y ~ Exp(A). (Note that Sy(ry denotes the last arrival time before T).

A simplified explanation of Lemma 1.2 is that if you have a random time,
T, which is independent with respect to the Poisson process, then the gap
between T and the last arrival before T follows an Exp(A) unless 7' < 5.
The interesting fact about this lemma is that the inter-arrival times of the
Poisson process (N(t)),~, follow Exp(A) but the time gap between 7" and the
last arrival before T is shorter than the inter arrival time S N(T)+1 — Sn(r) and
still follows Exp(\).

Lemma 1.6 (Lemma 3.5). Let (T});>1 be a positive sequence of real numbers
with 372, T = 00, and (X;);>1 be IID Exp(a). Define J =min{j € N: X; <
Tp}. LetY =37\ Tj+ Xy, and Y =0 if J = co. ThenY follows Exp(c).

Lemma 1.7 (Lemma 3.6). Consider a Poisson process (J1(t))i>o with rate a.
Let T be a stopping time of (Ji(t))i>0. Let K denote the last arrival before
T, and Sk be its arrival time. Let, D; = S; — S;_1 ¥V j > 1 be the inter-
arrival time of (J1(t))i>o0. Let (Yj);>0 be IID Exp(a) and be independent of
the Poisson process. Let

D; if1<j<K
Dj=7—Sk+Y, ifj=K+1
Yk ifj>K+2

A

Then, (D;);>o are 11D Exp(c).

Proposition 1.8 (Proposition 3.7). Let (J(t))i>0 be a Poisson process of rate
a and T be an independent time w.r.t the process. Then Syry+1—T ~ Exp(a).

It states that for an independent time 7" w.r.t the Poisson process, the time
gap between the next arrival after T follows Exp(a).

Theorem 1.9. (Zt) is a Qo Markov chain. [Refer to Definition 1.3].

t>0

5
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The proof of the above theorem centers on the fact that the probability of

a non-branch event is ( 2’;—;") at each Poissonian event.

1.3 Overview

In Chapter 2, we lay out most of the definitions. We start by discussing a
few types of Chinese Restaurant processes, then move on to the Lévy process
and results associated with it. Next we explore chronological trees, beginning
with discrete ones and moving towards R-trees. Finally, we discuss the con-
cept of the Jumping Chronological Contour Process (JCCP) and its relation
to chronological trees. We end by stating Lambert’s theorem.

Chapter 3 focuses on dependent findings of the Exp(«) based on the JCCP
of the bison herds. The findings of this chapter are mainly based on theorem
1.8, as previously mentioned. The results of the chapter are closely linked to
our theorem, but in probabilistic models, conditioning on an event disrupts
the entire framework. We conclude by illustrating an example where the inter-
arrival of a Poisson process time no longer follows Exp(a) when conditioned
by an event.

In Chapter 4, we briefly discuss the constructions of birth and death chains
and provide the proof of the main results.



Chapter 2

Basis for the thesis

In this chapter, we begin by introducing fundamental definitions and concepts
essential for understanding the thesis. Section 2.1 introduces CRP models
that will be taken into account. Section 2.2 outlines the concepts and results
related to Lévy processes, specifically within the context of this thesis. Then
we move on to the discussion about chronological trees in Section 2.3. We
begin by discussing a discrete tree, then a few ways of coding the tree, the
most important of which is the height function, where the elements of the tree
are considered in lexicographical order. Then we state the CMJ process before
defining a chronological tree and its genealogy, and finally, in Section 2.4, the
contour process obtained from a chronological tree is termed JCCP.

2.1 Chinese Restaurant Process [CRP(a, )]

The Chinese restaurant process is analogous to seating customers at tables in
a restaurant. The Chinese restaurant process is closely connected to Dirichlet
processes and Pdlya’s urn scheme by some means of exchangeability. A minor
objective of this thesis is to study a continuous time up-down oCRP(«,0)
where 0 < a < 1 and # > 0, discussed in subsection 2.1.1. This CRPs evolve
from the Dubins-Pitman two-parameter CRP [Pit] with the additional ordered
CRP of Pitman-Winkel [PW09]. We will also discuss in subsection 2.1.2 the
discrete time CRP(«,#) which is an exchangeable partition-valued Markov
chain introduced by Pitman, which will be called an unordered CRP(«,0)
since this doesn’t specify the location of the new tables. Finally, we will end
our discussion on CRPs by defining the ordered CRP(«,#) as introduced by
Pitman-Winkel.
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2.1.1 Discrete-time Chinese Restaurants

We will start by stating an unordered CRP(a, ) which is an exchangeable
partition valued Markov chain studied by Pitman. This model of unordered
CRPs begins with a fixed number of customer, say n, and a fixed number of
tables, say k, and the transition occur when the (n + 1) customer joins or
opens up a new table.

Definition 2.1 (Exchangeable partitions, [Pit]). A random partition of II,,
of [n] is said to be exchangeable if for any partition {A;, Ay, -+, Ay} of [n],
P({Hn = {Ay, Ay, -+ 7Ak}}) = p(‘Al‘a [Aal, -+, |Ak‘)a Wherep(nl,nQ, T ,nk)
is a symmetric function of compositions of [n] termed as the exchangeable par-
tition probability function.

Imagine each subset of a partition as a table and each element of one of
these subsets as a customer. The following transitions and rates are equipped
with this model with the following bounds 0 < a <1 and § > —a or a < 0
and # = —ma where m € Z*:

o P({(n+ 1)—th customer joins i—th table where 1 <4 < k}) o (n; —a).
o P({(n -+ 1)—th customer opens up a new table}) o (6 + ka).

This model doesn’t give any idea about the location of the tables, hence it
is termed as unordered CRP(«, ). We will end our discussion by stating an
ordered CRP(a, 6).

Definition 2.2 ([RW22], oCRP(a, 6)). We will follow the same insertion rule
of the customers as described in the above model. The following transitions
and rates are equipped with this model with the following bounds 0 < o <1
and 6 > 0:

o P({a new table opens up to the right of all tables}) oc 6.
. IP’({a new table open up to the left of table z}) x Q.

Following this constructions, some more results related to exchangeable
partitions and exchangeable compositions can be found in [RW22].

2.1.2 Continuous-time Chinese Restaurants [oCRP(«, 6)]

This is a class of continuous time Markov chain in the state space C :=
{(nl,ng,--- ng) k>0, nj € Nforall 1 < j < k:} The sequence
ni,ng, - -+ ,ny denotes the number of customers at an ordered list of k tables.
The following transitions and rates are equipped with this model:
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o P({a new customer joins the i—th table}) o< n; — a and the transition
for this event leads to state (ny, - ,n;—1,n; +1,--+ ;ng) for 1 <i < k.

. P({a new customer inserts a new table to the left of the :—th table}) o
a and the transition for this event leads to state (nq,--- ,m;_1, 1,n;, 1441,
,ng) for 1 <i <k.

. IP’({a new customer inserts a new table in the right-most position}) ox 6
and the transition for this event leads to state (ny,- -, ng, 1).

o For 1 <1<k, P({one of the customers at table ¢ leaves}) o« n; and the
transition for this event leads to either (nq, -+ ,n;_1,n;—1,n;00, -+, ng)
if n; >2o0r (ny, -+ ,mi_1, Mg, ,ng) if ng =1

These transition rates give rise to a C—valued continuous-time Markov
chain if 0 < a < 1 and ¢ > 0, which we call a Poissonized up-down or-
dered Chinese Restaurant Process with parameters («,#), or just up-down
oCRP(a, 8). The last part of this thesis shows the construction in the intro-
duction is equivalent to Poissonized up-down oCRP(«;, 0).

2.2 Lévy processes

In this section, we introduce basic concepts of Lévy processes, and we will
restrict ourselves to discussing Lévy processes on R. The following definitions
and the literature can be found in [Ber96].

Definition 2.3 (Infinitely divisible distributions). Let u be a probability mea-
sure on R and its characteristic function is given by ¢, (0) = [, " p(dz) for all
6 € R. We say p is infinitely divisible if for all n € N there exists a probability
measure ¢, (6) such that (p,,(0))" = ¢.(0) for all # € R. An alternate
definition for infinitely divisible distribution, an R—valued random variable
Z is said to be infinitely divisible, if for all n > 1, there exist R—valued 1ID

random variables Y} ,,, Y5, - -+, Y, , such that Z 4 Yipn+Yon,+- -+ Y,

Example 2.4 (Poisson distribution is a infinitely divisible distribution). Let
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X ~ Poisson(A) where A > 0. Then its characteristic function,
S0(9) _ E[eiOX}
= 3 ER(X = k)

keNy

—A\E
_ o€ A
_Ze —

keNy

. (eie/\)k
=)
k!
keNy
_ i0
e )\ee A

; {eg(eiefl)}n
= (n(0))",

A 62‘971)

where ¢,,(0) = en' , which is the characteristic function of Poisson(2).

Definition 2.5 ([Ber96], Lévy process). Consider the probability space (Q, F, IP)
with IP({C = oo}) =1 Wesay X = {Xt}t>o is a Lévy process for (Q,]—", P)

if ]P({XO = O}) =1 and for all s,t >0, X;, s — X, < X, and is independent of

the process (Xu)0<u<t'
In other words, a Lévy process is a stochastic process X = {X; : t > 0}

that has the following properties:

[): Xo = 0 almost surely.

II): Forany 0 <3 <tg < ---t, <00, Xy, — Xy, Xoy — Xop, oo+, Xy, — Xy

are mutually independent,

I11): For any s < t, X; — X, < X,_,,

IV): For any € > 0 and ¢ > 0 it holds that lim,_,oP (| X35 — Xi| > €) = 0.

n—1—1

Remark 2.6. A Lévy process has right-continuous sample paths for § € R
the functions t — ¢y, (#) are right-continous, where ¢y, () denotes the char-
acteristic function of X;.

Example 2.7 (An easy construction of a Lévy process). Consider a one di-

mensional Brownian motion (Bt) 4> Which is independent of a Poisson process

10
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(Nt),., of rate X. Define X (t) = B(t) + N(t). Note that X (t) is right contin-
uous with left limits. Then,

X(t+s) = X(t) = (B(t+s) + N(t +5)) = (B(t) + N (1))
(Bl +3) = B() + (NV(t+9) = N )
independent of (B(u) ) 0<u<t and (N( ) independent of (N (u))ogugt and (B(u))uzo
£ B(s) + N(s)
Thus (Xt)t>0 is a Lévy process.

Remark 2.8. More generally, sum of any finite number of independent Lévy
processes is also a Lévy process. Note that since Lévy processes have stationary
independent increments, they can be thought of as analogues of random walks
in continuous time.

Lemma 2.9. Let X be a Lévy process. Fort > 0, X; is an infinitely divisible
distribution.

Proof. Recall that, Xy = 0 almost surely. Observe that for t > 0,

Xy = Z {Xkt/n — Xp—1)eyn }
k=1
= {Xt/n - XO} + {XQt/n - Xt/n} R {Xnt/n - X(n—l)t/n} .

Now by property of independence of increments (I) and stationary increments
(IT) in Definition 1.5, we have for all n > 1, the random variables { X;/, — 0},
{th/n — Xt/n} R {Xnt/n — X(n—l)t/n} are independent and identically dis-
tributed. Hence, by using the alternate definition of infinitely divisible distri-
butions, X; is infinitely divisible for all ¢ > 0.

O

Remark 2.10. One common example of a Lévy process is a Poisson pro-
cess. The next lemma shows that if (Xt) +>0 18 @ counting Lévy process, then

(Xt) >0 18 a Poisson process. Before that we would to like state a result on
the memorylessness property of continuous random variables.

Lemma 2.11 (Memorylessness). Let X be a continuous random variable.
Then for allt,s > 0 it satisfies IP’({X > t—l—s}) = ]P’({X > t})IP’({X > s}) if
and only if X has Exponential distribution.

Proof. Let X be a continuous random variable which satisfies the memoryless-
ness property. Then,

logP({X >t+s}) =logP({X > t})P({X > s})

11
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Consider g(t) = logP({X > t}), then g satisfies g(t + s) = g(t) + g(s) for all
t,s > 0. Thus g is a additive function on RT = ¢ is Q—linear — g(q) = cq for
all ¢ € Q and ¢ > 0. Note that g is right-continuous. Consider r € Q¢. Then
there exists a sequence (g, )n>1 € Q such that g, > r and g, — r. By right con-
tinuity of g, we have g(q,) — g(r). Again, g(g,) — cr. Thus g(r) = cr, which
shows g(t) = ct for all t € Rt = logP({X > t}) = ct = P({X > t}) = e
This shows that X follows an Exponential distribution.

Conversely, note that an Exponential distribution satisfies the memoryless-
ness property. ]

Theorem 2.12. There is a bijection between the class of Lévy processes and
the class of infinitely divisible distributions.

Lemma 2.13 ([Ber96], Lévy process follows strong Markov property). For
every finite stopping time T, (XS)3<T is independent of (Xs = Xsir —XT)

< s>07
and the latter has the same distribution as (Xu)

u>0"

Lemma 2.14. Let (Xt) be a Lévy process which 1s also a counting process.

Then (Xt)

t>0

>0 1S @ Poisson process.

Proof. Consider D; to be the first time of jump of (X;);>p. Then P({D; >
t+sH{D1 > t}) = P({ Xips = O}{ Xy = 0}) = P({Xps — Xy = O}{X; = 0}).
Now by independence and stationary of increments,

P({prs - Xy = 0}|{Xt = 0}> = P({Xs = O})
=P{D; > s})

Thus D; has an Exponential distribution, say with rate a. Next we show that
(Xpy4t — Xp, )50 is independent of D; and has the same distribution as that
of (Xt)t>0' Consider the filtration F;, = {X () > 1} for all ¢ > 0. Note that
{D, <t} € {X(t) > 1}. Thus D, is a stopping time. Again note that D; is a
function of (Xs)s _p,- Thus by strong Markov property, (XDytt — Xpy)ys 18
independent of D; and has the same distribution as that of (Xt) 0" This gives
D5 has Exponential distribution with rate «. In a similar way, one can show
that (Xp,+ — Xp,),s¢ is independent of Dy and has the same distribution as

that of (X;) ., hence inductively (D;) _, is IID Exp(a). O

t>0’ i>1

Theorem 2.15 (Lévy-Ito decomposition). Every Lévy process can always be
represented as an independent sum of upto a countably infinite number of other
Lévy processes out of which at most one will be a linear Brownian motion and
the remaining processes will be compound Poisson processes with drift.

12
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2.3 Chronological tree

In order to understand more about chronological trees, we begin our discus-
sion from discrete to continuous trees. The following literature can be found
explicitly in [Gal05] and [Lam10].

Definition 2.16. A (discrete) rooted plane tree 7 is a finite subset of U that
satisfies the following properties:

o ) c T;
e For all u € T\ {0}, we have w(u) € T;

e For all uw € T, there exists an integer k,(7) > 0 such that for every
jeEN, ujeTifand only if 1 < j < k,(T).

(1,2,1)

1) (2,2)

Figure 2.1: Tree T

We present some discussions about the discrete function mainly used to
code a discrete tree and its relation with Lukasiewicz paths as mentioned in
[Gal05], in Appendix A. There are yet other ways to code a discrete tree, one
of them being the contour function, which we shall state while discussing the
JCCP later in Chapter 2.

We now state the definition of the Galton-Watson Branching process and
the construction of Galton-Watson trees.

Definition 2.17 (Galton-Watson Branching process). A stochastic process
{ X, }n>0 which follows the recurrence relation Xy = 1 and X, = Zf"l Yr,

where {Y* : n,j € N} is a set of IID N—valued random variables. Then

13
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{X,}n>0 is a Galton-Watson process. In contrast, X, can be thought of as
the number of descendants of the n'" generation, while Y" can be thought of
as the number of children of the ;' of these descendants. The probability of
final extinction is given by

nh—>nolo P(X, =0).
Proposition 2.18 ([Gal05], Proposition 1.3). Let p be a probability measure

on Zt such that Y o ku(k) < 1. Let (k, : uw € U) be a collection of IID
random variables with distribution p and U being the label set. Define

0={u=(u" v’ u)eU:w <kpiye. oyV1<j<n} (23.1)

Then 0 is a.s. a finite tree. Again, if X,, = [{u € 0 : |u| = n}|, then {X,}n>0
1s a Galton-Watson process with probability .

Definition 2.19. Tree 6 constructed in Proposition 2.18 is called a Galton-
Watson tree.

Next, we state an informal definition of the Crump-Mode-Jagers (CMJ)
branching process. For a formal definition, one can refer to [Kom16].

Definition 2.20 (CMJ). In a CMJ model, each individual exists for an ran-
dom duration and reproduces randomly throughout their lifespan. Their off-
spring undergo independent evolution, following the same process. Addition-
ally, every individual possesses a characteristic that can be observed over time.
The characteristic of an individual ¢ at a certain age s could serve as an indi-
cator of whether the individual lives beyond that age s, or it could represent
the individual’s fitness at age s.

Before we move on to the definition of chronological tree, we discuss the
notion of a R—tree. A chronological tree is a particular type of a R—tree that
can be viewed as the set of edges of a discrete rooted plane tree where each
edge length denotes a lifespan. More generally, each element in the discrete
structure is characterized by a starting point, denoted by «, and an ending
point, denoted by w, where 0 < a < w. Additionally, each element may have
offspring whose birth times fall within the range («,w) with the possibility of
these times being zero.

Definition 2.21 ([Gal05], R—tree). A compact metric space (7,d) is a real
tree if the following properties hold:

e Forall a,b € T there exist an unique isometry f,; : [0,d(a,b)] — T such
that f,4(0) = a and f,,(d(a,b)) = 0.

14
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e For all a,b € T if g is a continuous injective map from [0, 1] into 7 such
that g(0) = a and ¢g(1) = b, then ¢([0, 1]) = f.4([0, d(a,b)]).

Definition 2.22 ([Lam10], Chronological tree). Let U = U x [0,00) and
p:=(0,0). Let T C U and consider the projection

T :=p(T)={uel: 3o >0such that (u,0) € T} (2.3.2)
Then T is a chronological tree if the following holds:
e The root p € T;

e 7 is a (discrete) rooted plane tree;

e For all u € T, there exist 0 < a(u) < w(u) < oo such that (u,o) € T iff
o € (a(u),w(u)] except for u = 0,0 = 0;

For all w € T and j € N such that uj € T, then a(uj) € (a(u),w(u));

For all w € T and 7, j € N such that wi,uj € T, then for 1 < j we have
a(ui) < a(uy).

We call a(u) the birth time of v and w(u) its death time. The lifespan is
denoted by

C(u) :=w(u) — au).

/ (2,2)

(1,1)

Figure 2.2: Chronological tree T

15
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2.4 Genealogical and metric structure of chrono-
logical trees

A detailed study can be found in [Lam10].
Let <y, denote the ordering by ancestry in a discrete rooted plane tree.
In Figure 2.1, 0 <y, 1 and 0 <4 (2,1) but 1 Ay. (2,1).

Definition 2.23 (Reverse-chronological depth-first search order, <z ,). We
order U by reverse-chronological depth-first search order defined as follows,

o If wisaprefixof w', e.g. w=(2,1) and w' = (2,1, 1,3,2) then w <y,
(ancestors before descendants).

e If neither w = (ny,ng,---,n;) nor w' = (ny,--- ,n;c,) is a prefix of
the other, then there is some ¢ = min {j >0:n; # n;} Then either
w <y, w iff n; > n} or w <y, wiff n; < n; (lineage of the last born
before lineage of the first born).

Definition 2.24 (Most recent common ancestor). . We define the most recent
common ancestor in a discrete tree 7. Let u = (uy,ug, - ,uy) and v =
(v1,v9,+ - ,v,) €T then

(wr,ug, -+ yug) i Fk=min{j: ujp1 # vj41}
U u is an ancestor of v
uNv = .
v v is an ancestor of u
0 otherwise

Similarly we define the most recent common ancestor in a chronological tree
T. Let x = (u,0),y = (v,7) € T. Let N = min{j : uj41 # v;j41} then
uAv=(uy,us, - ,uy) = (v1,v9, -+ ,vn). Define

r Ay = (uAv,a((uAv)min(uyit, vns1))) (2.4.1)

Definition 2.25 (Partial order by ancestry in a chronological tree, <t ,). Let
z = (u,0),y = (v,7) € T, similar to discrete trees we denote x <1, y meaning
x is an ancestor of y if either:

e yu=v,and o < 7 or,

o u <y, v, and 0 < a(uj), where j is the unique integer such that uj <y,
.

Definition 2.26 (Segments in chronological trees). . We define [p, z] to denote
the set of ancestors of z i.e., [p,z] = {y €T :y <r,4 x} Observe that z Ay

16
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is the unique point in T such that

lo.x] Nlpyl = lp,x ANyl (24.2)

Clearly, x Ay is the point of maximum height in T such that * Ay <r,  and
x Ay <14 y. The segment [x,y] is defined as

[z, y] = [p, ] U lp,y] \ [p,x Ay) (2.4.3)

The natural distance d on T can be defined in the context of a second projection
po onto the second coordinate,

d(x,y) = p2(x) + p2(y) — 2p2(z AN y) (2.4.4)

The map ps can also be viewed as distance to the root.

Definition 2.27 (Degree in a chronological tree T). In the context of chrono-
logical tree set T, the degree of a point x is defined as the number of connected
components of T \ {z}. This count can be 1, 2, or 3. Excluding the root p,
points with a degree of 1 are termed as death points or leaves, and they are
characterized by having coordinates (u,w(u)). Points with degree 2 are termed
as simple points. Points with degree 3 are labeled as birth points, and they
possess coordinates (u, «(uj)) for some integer j where 1 < j < K.

Definition 2.28 (Total order in a chronological tree, <r,). Let z,y € T. For
any z € T denote by 6(z) the descendant of z, i.e. (z) ={w e T: z <, w}.
The descendants of = can be split into left and right descendants namely, 0,(z)
and 0,.(z). Their definitions depends on whether z is a branching point or not.
If 2 is not a branching point, then 6;(x) = 0(x) and 0,.(z) = () and if z = (u, 0)
is a branching point ¢ = a(uyj) for some j < K, and

0(x) = U O(u, o+ €) and 0.(x) ={x} U U O(uj,oc+e¢€)  (2.4.5)

e>0 e>0

Assume that x Ay ¢ {z,y}. Then either y € 0,.(z A y) and = € 0;(z A y) or
z€0.(xANy)and y € 6,(x Ay). Define

T <11y > [y <10 T Or € OT AY)]
[y <razory€bp(zAy)

Thus the relation <r,; defined on T is a total order whereas <t , only defines
a partial order.

Note that if 7 C U is the discrete tree underlying a chronological tree T
then for u,v € T, u <y, v is the reverse chonological depth first search order
iff (u,w(u)) <r; (v,w(v)) in the linear order.

17
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Note that the Borel o—field of a chronological tree T can be defined as the
o—field generated by segments. Denote the measure A(S) of a Borel subset S
of T. The total length of the tree

=> ((u) <00 (2.4.6)

u€eT

2.5 Jumping chronological contour process

(JCCP)

Theorem 2.29 ([Laml10]). Let T be a chronological tree and | = A\(T) <
oo. Consider the measure space ([0, 1], B([0,1]), 1) equipped with the Lebesque
measure p. For all x € T define S(z) = {y € T : y <p; x}. Consider the
mapping ¢ : T — [0,1] given by o(z) := A(S(x)) for all z € T. Then ¢ is the
unique order-preserving and measure-preserving bijection from T onto [0,1].

Remark 2.30. Recall that 7 is countable and the set of leaves of T are in
bijection with 7. S(z) \ {z} is the union of segments of the form [z, y] where

z=yAz,y€Tandy <g; x, which shows S(z) \ {z} is a countable union of
Borel sets, thus S(x) € B(T).

Lemma 2.31. For any z,y € T such that x <r, y, we have \([z,y]) <
p(x) —o(y).

Proof. Note that S(y) [z,y] € S(x), thus by monotonicity of measure we
have A (S(y) U ) < A(S(z)). Thus,

A@MMAQ o) = A(S() N .4]) < AS@))
Now A(S(y) N [z, y]) = A({y}) = 0. This gives A([z,y]) < p(z) —@(y). O

Definition 2.32. The exploration process is defined as <<p_1(t) :t € 0, l]>

The jumping chronological contour process (JCCP) is defined as
X, :=pyop (t), t€]0,1],
where p, again denotes projection onto the second coordinate.

Theorem 2.33 ([Lam10], Theorem 3.3). The JCCP (Xt :t €10, ) has a
cadlag path and the height of each jump is the lifespan of one individual. Also,

Xp=—t+ Y G forall0<t<l
p(vw(v))<t

18
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Figure 2.3: JCCP of the chronological tree T in figure 2.2

2.5.1 Splitting tree

The following is the discrete case of Lambert’s definition in [Lam10].

Given a probability measure z on (0,00) and A > 0. Let (Cu),ez gy e 1ID
1 and let (p be a positive random variable independent of this sequence. Let
((Nu(t),t > 0)),, be IID Poisson processes of rate A, independent of (¢,)
We define

ueU”

To= J {vi:1<7< NG}

VETn-1
0o
T = U T,
n=0

Fix (a(0),w(D)) := (0,{p). For u =vj € T,, n > 1, define

a(u) = a(v) +inf {t > 0: N,(t) > j}
)

w(u) == a(u) + ¢,
Let T = J,er{u} x (a(u),w(u)]. This is a random chronological tree, in the
sense of definition 2.22.

Definition 2.34. [Splitting tree] A chronological tree with the probability
distribution of T constructed above is called a splitting tree with birth rate A
and lifetime distribution pu.

Theorem 2.35 ([Laml10], Theorem 4.3). The JCCP of a splitting tree is a
Lévy process.
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Chapter 3

A dependent study of Exp()\)

As discussed in chapter 1, we present the findings that were explored while
understanding JCCPs. We begin with a key proposition which states that if
we consider the sum of M IID copies of Exp()), where M ~ Geom(p) and M
is independent of the copies, then the conditional sum follows Exp(Ap).

Proposition 3.1. Suppose Q1,Qs, -+ follows IID Exp(X) and M follow Geom(p)
which is independent of (Q;)2,, then Y1, Qi ~ Exp(\p), with the convention
that support of M starts with 1.

Proof. Take S = 3>V @;. Recall that the sum of n IID copies of Exp()\) gives
Gamma(n, A). Then S has probability density function given by,

Ts(s) = fspuu(s|m)Pas(m)

meN

A™ m—1_—M\s m—
:%<—(m_1)!3 ‘e A)(1—19) 'p
me
s At .
= Ape ™) m[s(l —p)"
meN )
— )\pe(—)\s—i-)\s—)\sp)

= )\pe”\ps.

This is the PDF of the claimed Exp(Ap) distribution. O

The next two lemmas are well-known and we will use them in Chapter 4.

Lemma 3.2 (Competing exponential clocks). If X ~ Exp(\;), Y ~ Exp(A2)
and are independent of each other. Then,

o / = min{X, Y} ~ Exp(A\; + Ag),

° ]P’({X < Y})/\l’:j)q, and
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e 7 is independent of {X < Y}.

Proof.

P({Z <)) = P({min{X. v} < k})
=1-P({min{X,Y} > k})
=1-P{X >k} n{Y >k})
=1-P({X >k})P({Y >k}) (since X and Y are independent)
] Cuth)k

This shows, Z ~ Exp(A\; + \2).

P({z <K}{X <Y}) =1-P({z>k}|{x <Y})
CP({Z>kjn{X<Y})

P{X <Y})
Now,
P{X <Y}) =X\ / / e M dydr
0 T
= )\1)\2 </ €_>\1$ |: — (1//\2>€_>\2y:| )dI
0 T
= )\1/ e~ MTe T ]y
0

DYDY

Next,

P({Z>k}n{X <Y)}) = /OOOIP’({k; <X < y))hee vy

= e Mk /OO o€ Yy — Ny /OO e~traly gy,
k k

— 6_(/\1+>‘2)k _ )\2 6()\1+>\2)k
A1+ A2
— o~ M1tk At '
AL+ Ao
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Thus,
P({Z < K}|{X < ¥}) = 1-P({Z > K} {X < ¥})
R L
~P({z<H))
Hence, Z is independent of {X < Y}. O]

Based on Lemma 3.2, we provide a similar result on Geometric random
variables.

Lemma 3.3 (Competing geometric clocks). Let (X,),~,; be an IID sequence
with ]P’({Xn = a}) = Pa, IP’({Xn = b}) = pp and IP({X” = c}) = p. with
Pa+pp+p.=1. Let N, = inf{n X, = a} ~ Geom(p,) and N, = inf{n :
X, = b} ~ Geom(py). Let Ny = min{Na, Nb}. Then,

o Ny ~ Geom(p, + ps),

e N, is independent of {Na < Nb}, and

« P({Na < Nij) = ;22

T patpy

Lemma 3.4 (Strong Markov property of IID sequences). Suppose (Xi)z.>1 and
(Y;)Dl are IID sequences from the same distribution as each other and the two
sequences are independent of each other. Let G be a o—algebra independent

of both sequences. Suppose J is a N—valued random variable with {J = n} €
U(Xl,XQ e ,Xn,g) for all n € N. Define,

W X, ifi< J
Y, otherwise

Then (W;) ., < (X;)
Proposition 3.5. Suppose (X;);>1 follows IID Exp(a), (Yi)i>1 follows IID
Exp(b) and (Z;)i>1 follows IID Exp(a), all are independent of each other.
Then, G = min{i >1:X;,< Yi} ~ Geom(a%b). Define,

i>1 i>1°

i‘:

Z; otherwise

% {X,- if i <G

Then (X;),., is IID Exp(a).

i>1

Proof. Note that this proposition is just a special case of the Lemma 3.4. [J
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Lemma 3.6. Consider a time T that is independent of the Poisson process
(N(t),t > 0) of rate X\. Let, Sp =0 < Sy < Sy < --- denote the arrival times
of the Poisson process. Let

v S if $;>T
TSy i S <T

Then, Y ~ Exp(A). (Note that Sy(ry denotes the last arrival time before T')

Proof. For t € [0,T], let

Ny(t) := N(T) — lim N((T — t) — h)

h—0

(An example illustrating Ny : If 7= 10, and N has arrivals at 3, 8 and 9, then
N; has arrivals at times 1, 2 and 7) and for ¢ > 0, let

Na(t) = N(T +t) — N(T).

By the time-reversibility of the Poisson process (N (t))i>0, (N1(t))i<r is also a
Poisson process stopped at an independent random time 7.

<P

9
Figure 3.1: Poisson processes N; and Ny

Note that Ni(T) = N(T) — N(T' — T) = N(T). By the Lévy process
property of (N(t))i>0, (NV1(t))i<r is independent of (Ny(t))i>0, and the latter
is also a Poisson process of rate A. Therefore by concatenating the increments
of these two parts,

K o 4 ) if0<t<T
(t) = No(t) + Ny(T) if t >T

is also a Poisson process of rate \. Now observe that Y is the first arrival time

in (N(t))i>0, thus Y ~ Exp()).
[l
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I
|
;

Figure 3.2: Concatenation of the increments of Ny and Ns

Lemma 3.7. Suppose Z : Q2 — S and T : Q2 — Sy are independent random
variables and f : S1 x So — S3 is a measurable function. Let L denote the
law of T on Sy and let yy = Lyzy) denote the law of f(Z,t) on Ss for all
t € Sy. If there is some law p on Ss such that py = p for Lr—a.e. t € Sy then

f(Z,T) ~ .
Proof. Refer to [Kal97] Lemma 8.6. O

Lemma 3.8. Let (T});>1 be a positive deterministic sequence with ) 72, T =
0o, and let (X;)j>1 be IID Exp(a). Define J = min{j € N: X; < Tj;}. Let
Y = Zj;ll T;+ Xy, andY =0 if J =o00. ThenY follows Exp(«).

Proof. Let S; = ZLITZ- and N,, = min{k :SE > m} for all m € R*. First
let’s compute the distribution of J. Note that,

{J = k:} = {X]’-s are greater than Tj forall 1 <j <k — 1}ﬂ {X;C < Tk}.

Now since (Xj);>1 follows IID Exp(«),

P({J=k})=P({X:>T} [ {X>DT} () [V { X1 > Thca } [ | {Xe < T}

— e—aSk_l (1 _ G_aTk)

Observe that {Y < m} = |_|§V:m1 ({Sj_l + X, < m} N {J = j}), thus
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Py <mh) = SB((8+ % <ml{ = P =)

Z ({J =3P({X; + Sz < m}|{7 = 4})

+P({J = N} )P({ X, <m0 = S, }[{ X, < T, }).

Now V1 <j <N, —1,wehave m— 5,1 >T; <= m>S5;_1 +T; =5,
thus we have an immediate inclusion {Xj < T]} - {Xj <m— Sj_l}, hence

P({Sim -+ < m}{7 = 1)) =B, <=5} (5> B UG < 1))

Next,
B({ X, < — S 1} = N DB = M)
P({ X, <~ S 1)JP({ = N )
F([Xn, < )
{1 o efa(mfst_l)}<1 . @*aTNm) {e*a(T1+T2+"'+TNm—1)}
- )
— e_O‘SNmfl — emam.
Finally,
Py <m})
Nm—1
CB((I= 1))+ 3 B({T = P+ (X, € m— Sy 1T = N} B = N })
=2
Nm—1
_ . —aT1 _|_ —a (Ti+To+- A+ 1) o 6—0&(T1+T2+'“+Tj):| + e—aSNm_l _ e—Oém
2, b
—1—¢ —aT} +e —aTy e a(T1+To++TN,,—1) + e*aSNm—l — e am
=1—e"
Thus Y follows Exp(«). O

Lemma 3.9. Let (TJ i1 be a sequence of positive random wvariables with
IP’({ Z;’;T] = oo}) = 1. Let (X) be a sequence of IID Exp(«) which
15 independent of( ]) . Define Y = (Z‘] 1T) +X;0rY =0if J = o0.
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ThenY ~ Exp(a). Also, P({J =o0}) =0.
Proof. Let X ~ Exp(a). Define k : (0,00)" x B(R) — [0,1] given by,

B((1)5,04) = {M{XEA}); 51— o

i) j=17 :
=1 0; otherwise

where (tj)j>1 is a positive sequence. Note that k is the regular conditional
distribution for Y given (Tj)j>1 by Lemma 3.8. In other words, given (Tj)j21

is conditionally Exp(a), thus Y is overall Exp(a) distributed. O

Throughout the remainder of the chapter, (J(t)),, denotes a Poisson pro-
cess of rate a and 0 = Sp < 57 < Sy < --- its sequence of arrival times with
Dj = Sj — Sj—l for allj Z 1.

Lemma 3.10. Consider a Poisson process (Ji(t))i>o of rate a. Let T be the
stopping time of (J1(t))i>0. Let K = Ji(7). Let (Y;);>1 be IID Exp(«) and be
independent of the Poisson process. Let

D; if1<j<K
Dj={7-Sk+Y, if j=K+1
Yi_k if j > K +2

Then (D;);>1 is IID Exp(a).
Proof. Let (J2(t)i>0) be another Poisson process of rate o whose inter-arrival
times are Y. Define

5 L Jl(t) lfOStST

Clearly (J2(t))t>0 is independent of (J;(t)):<, and has the same distribution
as that of (Ji(t))i>0. Thus by the Lévy process property, concatenating the

increments, we have that (J(t));>o is also a Poisson process of rate a. Observe
that D’s are the inter-arrival times of (J(t))i>o.

A

Thus (D;);>1 follows IID Exp(a). O

Proposition 3.11. Let (J(t))i>0 be a Poisson process of rate a, then for any
t>0, S](t)+1 —tr~ Exp(a).

Proof. Let t > 0. Write L = Sj4)41 —t. Note that for any given ¢ > 0,
there exists k € N such that Sy <t < Si.1, and we shall condition the event
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(£ 1) by {J(8) = k.
By definition Dy ~ Exp(«) which is independent of Sy. Again,

k
Sk - Z Dj,
j=1

where (D;);5, is TID Exp(a). Thus, Sy ~ Gamma(k, o). Given {J(t) = k},
the first arrival time after ¢ is the first arrival after the arrival at Sy, which
gives {L’ > l} = {Dk+1 >+t — Sk}, thus,

P({L>1}[{J(t) =k}) =P({Dir1 > L+t = S} |{Drsr > t = S} () {S < t}).

Let A= {Dk+1 > l+t—Sk},B = {Dkﬂ > t—Sk} and C' = {Sk < t}. Note
that A C B, thus AN B = A.

P({Di1 > 1+t — S} [{ D1 >t = S} [(){Se < t}) =P(A|BNC)
P(ANC)
~P(BNO)

Since S}, is independent of Dy, we have

t o)
0 I+t—x
t o)
:/ (/ ka+1(y)f5k(l‘)dy)dl’
0 l+t—x
t [e's) akxk—le—am )
= ae Y ————dy |dx
/0 (/ k=D
&kxk—le—aw 00
—ay
SE M
(e
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b/ ok pk—1p—ali+t)
= / dx
0 (k—1)!

akefa(lth) t 1
= — i dx
0

(k—1)!
ake—a(l-i-t) Tk ;
T (k-1)! 7o
— <0‘_t)te—a<z+t>
k! ’
and
P(BNC) =P({J(t) =k}) [J(t) ~ Poisson(at)]
. (Oét)k —at
TR
Thus

P({Di1 > 1+t — S} {Des >t = S} [(){Se < t}) = e

which is independent of k. This shows that Sju41 —t ~ Exp(a).
[

Lemma 3.12. Let (J(t))i>0 be a Poisson process of rate ac and T' be an inde-
pendent time w.r.t the process. Then Sy — T ~ Exp(a).

Proof. The proof of this lemma follows in a similar way to that of Lemma
3.9. O

Example 3.13. Illustration of a fact that conditioning by an event messes up
the whole model

Let (NV;):>0 be a Poisson process of rate A\, N(0) = 0 and (Y);>1 be the inter-
arrival times. Define Z(t) = 1 —mt+ N(t) and 7 = inf{t > 0: Z(t) = 0}. For
1<j<N(r),Dj =Y, and j > N(7), D; = c0.

Note that P({D; = c0}) = P({N(7) < 1}) = P({N(7) = 0}). By definition of
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7, we have Z(7) = 0.

Now for u < +,
m

P({D1 < u} [{ D1 #00}) = P({D}f{gfig}? o})

_B({Di <u}. (D £oc})
1 P({D, = )

_ P({Di<u})
(Y

B 1 — e M

B 1—ewm

This shows that given {D; # oo}, Dy no longer follows Exp(A).
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Chapter 4

The Main Result

The main aim of this chapter is to show that the skewer process of the contour
obtained from the splitting tree, which in turn is derived from our construction,
follows 0CRP(«,0). This will provide oCRP(a, 0) with a branching process
representation.

4.1 Branching Process construction

We now repeat the two stage construction from the introduction for the read-
ers convenience. This setup deals with countably many herds, which branched
off of from a starting herd and the transitions are birth, death and branch
events. This setup introduces a parameter o € (0, 1), which is also eventually

absorbed.
We construct a single continuous time Markov chain (Z;, K;),, on N? with
Zo=n€eN, Kog=0.

e We will view Z; as the number of bison at time ¢ and K (t) as the number
of herds that branched off of upto time ¢. We will construct a branching
process (Z;),, that is eventually absorbed at 0.

o Let (T;);~, denote the sequence of random times when Z makes a tran-
sition. Given (7)o, 7,0 (T"*" = T*) is conditionally Exp (2Z7+). In
this notation of Proposition 1.2, A(n, j) = 2n.

e K and Z stay constant on each interval [Tjyq, T}), then at Ty, any of
the following transitions occurs.

1
Birth: Zp,, = Zg,+1and K, = Kr, with probability - (1 - ZO; )
k
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k

1
Death: Zr, , = Z5, — 1 and K7y, = K7, with probability 3

Branch: Zr, = Z7

k

and Ky, | = Ky, + 1 with probability (22 )
k

We now construct our full process with multiple herds. Let
((wa), K t(w)> , welu ) be independent copies of the previously constructed
t>0
chain with

Zé@) —neN, Z" =1for w0 and K" =0 for all w.

We will use these chains as ingredients in our construction. Define the absorp-
tion time of each herd w by

¢, = inf {t >0: 72 = 0} . (4.1.1)
Recursively we define 7 := {0} and

7= | {(wi)ENn‘lxN: 131'3}%&”)}. (4.1.2)

wWETn—1

Define

T = G T (4.1.3)
n=0

Note 7 denotes the set of all herds w that arise in the process.

Define 5(0) to be the starting time of herd . We will denote by B(w) the
time when herd w first appears in our process branching off of its parent herd
m(w). For wi € T,, (so w € T,_1), recursively we define

B(wi) == Bw) + inf {t >0: K™ > z} . (4.1.4)
Adopt the convention f(w) = oo for w € U \ T. Define

w w . (0,0) if ¢ < B(w)
(Z20), K1) = {(z<w> (t = Blw)). K (6= B(w)) it ¢ > Blw)
(4.1.5)
Our interest is in the process

((Zt(w), K§w>>t>0, w e T) .
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Let

W(t) : {w cu: 7z > 0}. (4.1.6)

4.2 Alternative construction

Given {Zr, = m}, let D}, ~ Exp(m — a), D;;, ~ Exp(m) and DY, ~
Exp(a). Define D, = min {D},,, D;;, }, Diy1 = min {D;, |, D/ ,, D} and
Ti11 =T; + D;y1. The transitions are given by,

Death if Dz_+1 = Di—}—l

Birth if D;:—l = Di+1

Branch if DY, = D;;,

This is an alternative construction of (Z;, K;),~, for a single herd. Extension
to multiple herds is same as before.

4.3 Rogers & Winkel’s theorem

Recall the definition of @), Markov chains from Chapter 1.

Theorem 4.1 ([RW22]). Fiz « € (0,1) and ng > 1. Let Z" be independent
Qa- Markov Chains with Z°(0) = ng and Z*(0) =1 fori > 1. Let ¢; = inf{s >
0: 7 = O} be the absorption times. Let (Jt) be an independent Poisson

>0
process of rate o and

Jt
Xt:—t+ZQ,tZOandT:inf{t>0:Xt:O}.

=0

Let (Ti);», denote jump times of X. Consider the process

(X,Z2) = ((Xe)o<e<r (Zi)ogigJT)

with Z* as the mark of the i-th jump of X. Denote the set of indices of jumps
that cross level y by

Iy)={i: X(T;-) e (y—{.y]}-
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Define the Skewer of (Z;)y o and (Xi),5o by

>

Skewer (X, ((Z;, y > 0) , 1> 0)) (y) == (Zi (y — X(Tz_)))

€I(y) *

)

)

Figure 4.1: JCCP and its corresponding skewer process

Then the Skewer process of (X, Z) is up-down oCRP(«, 0).

Finally, we start with the main work of the thesis, showing that the branch-
ing process construction is equivalent to the process described in the Theorem
4.1.

4.4 Steps for the equivalence

The following three propositions prove the main theorem:

Proposition 4.2. (Zt) 15 @ Qo Markov chain.

t>0

Proposition 4.3. Let ¢ : {1,2,--- ,#T} — T be the reverse chronological
depth first search order preserving bijection. Define the splitting tree [refer to
subsection 2.5.1] of bison herds by

T:= UT{w} x (B(w), B(w)+ Cu].

There exists a Poisson process (Jt)tZO of rate a such that the JCCP of the
splitting tree in the sense of definition 2.29 is given by

Ji
Xp=—t+Y G, t>0and T =inf{t >0: X, =0} (4.4.1)

1=0

and (<¢(i))z‘>1 is independent of (Jt)tZO? where Cg(;y denotes the absorption time
of herd ¢(i).
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Proposition 4.4. ((2#@(t), 1 <i <W(t)), t > 0) is up-down oCRP(«,0).

4.5 Proof of Proposition 4.2

Define 7,, := the time when the n'”* transition occurs for all n > 1. Then

(Tn+1 — T |(Zt)tep, Tn]) ~ Exp (2Z7,) .

First we prove that the time gaps between two non-branch events follow
Exp(2m — «) distribution. For a fixed w, let

Jo=0, Jpiq :=inf {j > Jp 2y =+ ZTJn} for all n > 0.

i.e., if J,41 = k, then the (n + 1) change in population of herd w occurs at
time T}. Define X,, := (T,,11 — Ty,) for all m > 0.

We show that given {ZT = m}, the conditional distribution of ZJ”“ X, =

j=Jn+1<%i
Zijzfl_‘]" X, +i follows Exp(2m — «) for all n > 0.

Lemma 4.5. Suppose L, and Lo are probability distributions on R. Suppose
(I/VZ-)Z.>1 and (}/;)i>1 are both IID L4, (Xi)i>1 and (Zi)i>1 are both IID L,
and all four are jointly independent. Let T be a N—valued stopping time for
both sequences of pairs ((WZ,Y;)) and ((XZ», Zz)) Define

i>1 i>1"

Y, ife>T

and

<. X, if¢<T
Zi ifti>T

Then ((VAVZ,)AQ)) - has the same distribution as that of ((Yi, Zi))i>1'

i

Proof. By Lemma 3.4, (W;) ., follows IID £; and (X;),., follows IID L.
The sequence (W;, Xi)i21 is IID with (Wl, Xl) ~ L1 ® L. Likewise (Yi, ZZ-)D1
has the same IID distribution. By the strong Markov property of IID se-
quences, given (I/I/i,Xi)l cicT the process ((WT+i7XT+i>),»>1 is conditionally
IID £; ® L5. Thus (VV“Xi)KKT is independent of ((WT+i7XT+i))i>1' Like-
wise ((YT+Z-, ZT+i))i>1 is conditionally £1®L,, which is independent of (I/Vi, XZ-)

O

> 1<i<T”
This completes the proof.
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Proposition 4.6. Given {ZTJn = m}, define

ﬁno - DZ}SH if 7 < GnJFl
i Y if i > Goa

and

B DY . if i < Gop
Y ifi> G

where (ano)j; follows IID Exp(2m—«) independent of (Yibr)zl which follows
IID Exp(«), and both are independent of everything in our construction and
Gni1r = Jps1 — Jn. Then ((D;“’, Dﬁ”"))pl has the same distribution as that of

((Yino7 Y'ibr))iZI )

Proof. Note that this is a special case of Lemma 4.5. m

Proposition 4.7. Let (Y;)2, be IID Exp(2m) independent of everything in
the construction. Define

X, iti<aG,
W, = Jpti LTS . +1
Y, otherwise

where Gpy1 = Jpy1 — Jn. Then Goyq is conditionally independent of (W;)32,
given {Zr, =m} and (Wi)is, s 1ID Exp(a).

Proof. Recall that X; = min{Dé"", D?O} = T;+1 — T;. Now, observe that given
{ZTJn = m}, Gpi1 = (Jn+1 - Jn) equals the number of branch events between
two non-branch events which follows Geom (1 — %), since we are waiting for
a non-branch event, the probability of which is (1 — %) at each Poissonian
event.

Consider as defined in Proposition 4.6,

Dno — D?:Z-H if i < Gn+1
i Yo ifi> Gy

and
o [ D i< G
Y7 if i > Goo
where (Y;*)._, follows IID Exp(2m—a) independent of (Y;’") _, which follows

IID Exp(a), and both are independent of everything in our construction.
Then W; := min{D}°,D!"} is as in the statement of Proposition 4.7. Let
Y; = min{¥/, Y’} for all i > 1. Then (V;)._, follows IID Exp(2m) and is
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independent of everything except (Yim’, yrr and

i )izl

W, — min{D?jH, D?IZH} =Xy 11 < Gpa
T min{Y, V) =Y, if i > Gpi

Let >3, = a({ﬁfo,ﬁf’"},i > 1) and ), = a(min{f??o,f)ﬁ”’},i > 1). Note
that by Proposition 3.5 given {Zr, =m}, (ZA)ZTW)i>1 follows 11D Exp(2m — «)
and is independent of (ﬁf’")iN which follows IID Exp(«a) (note that the inde-
pendence follows by Lemma 4.5). Thus (W;)._, conditionally follows Exp(2m).
Moreover G411 = min{z’ > 1 ﬁfo < ﬁf”"} which follows from G, =
min{i > 1: D7, < D¥ 4. Hence given {Zy, =m}, G,1 is conditionally
independent of (I/VZ) by Lemma 3.2. n

i>1

Proposition 4.8. Fizn € Nj.

<(Xj)j€[Jn+1,Jn+1] | {Zr,, =m} . T, Jn+1> ~ (Exp(2m))/+ =

Proof. This is an easy consequence of Proposition 4.7. [

We know that J, 1 — J, has conditional distribution Geom(z’;—%”‘) given

{Zr, = m}. Combining Proposition 3.1 with A = 2m and p = (*2=%) and

Proposition 4.7 we get, Z;Zf_‘]” X, +i follows Exp(2m — «) for all n. In
general, <Z;]§rl_‘]" XJn+7;> is an IID sequence.
n>1

Note that in a similar way, we can show that time gaps between two branch
events follow Exp(a) which can be showed in a similar way as in the above
claim. A heuristic idea behind it is that the number of non-branch events be-

tween two branch events follow Geom(5%), since we are waiting for a branch
8]

event, the probability of which is (5%) at each Poissonian event.

Given {Zr, =m}, let
N,=min{j>0: Zp,  =2Zr,, ,+1}
and
Ny=min{j>0: Zy, ., =Zp, ., , — 1}

Let Ny = min{N,, N,}. By our construction we have Ny, = J,41 — J,, and

{N, < N} = {ZTJHH = Zr, + 1} thus by Lemma 3.3 (competing geometric
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clocks) we get,

and

C2m—a

Upon rescaling the above probabilities by multiplying with (2m — «) since
Exp(2m — «) are the holding times in context of Proposition 4.6 and refer
back to Proposition 1.2, we get the respective rates to be (m — «) and m.
Thus (Z;),-, is a Qo Markov chain.

4.6 Proof of Proposition 4.3

Recall Definition 2.32 of the JCCP. By Theorem 2.33, the JCCP is given by
Xy = —t+ th(%w(v))gt (, for all 0 < t < [. The JCCP obtained from the
splitting tree of the bison herd population can be written as

Jt
Xt = —¢ + Zg(b(l) and Jt - # {U S T: QO(UN;U('U)) S t}
i=1

where ¢ is the reverse chronological depth first search order preserving sur-
jection. By Theorem 2.35, (Xt) g 18 a Lévy process. Thus by Lévy-Ito
decomposition, for 0 <t < Zi21 %) we have

Jt
Xe= L+ Z )
drift component 1=0

compound Poisson component

This gives that (Jt) +~o 18 & Poisson process and is independent of (C¢(i))i>1'
Let Uy == {t >0: J; > 1} be the first arrival time of (.J;),»,. We will show
that U; ~ Exp(a). -

I would like to thank my advisor Dr. Noah Forman for providing the proofs
of Lemma 4.9 and Proposition 4.10.
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Lemma 4.9. Let (Z,,t > 0) be a Q, Markov chain and let (K(t),t > 0) be
an independent Poisson process with rate o.. Let ¢ denote the absorption time
of Z. Then

(2, k@A), 12 0) £ (2, K.t > 0), (46.1)
where the latter is the process constructed at the start of this chapter.

Proof. Both are continuous-time Markov processes, so it suffices to show that
they have the same intensity matrix. Fix s > 0. Let

Ty=inf{t >s: Z(t) # Z(s)}, Tx =inf{t >s: K(t) # K(s)}.

Let R X
E={(Z(s),K(s)) = (n,])}

for some fixed n > 1, 7 > 0. Note tha’g, by construction and the Poisson
property, Tk is jointly independent of (Z (t),t > 0) and the event E, with
Tk ~ Exp(a). On the other hand, given E, the variable T, has conditional
distribution Exp(2n — «), by definition of @), Markov chains. Thus, given
E, the variable T' = T, A Tk is conditionally Exp(2n), by the principle of
competing exponentials, Lemma 3.2, and

P({K(T) = K(s) +1}| B) =P({Tx < T,}| E) = .-
On the other hand,

P ({Z(T) — 7(s) + 1}| E> —P({Ty < Ts}| E)P({Z(T) = 7(s) + 1} | En{T, < TE}>

2n — o n—o«o n—aouo

2n 2n — « 2n

)

and likewise,

2n — o n 1

P({Z(T):Z(s)+1}|E) - x = 3.

2n 2n — «

Moreover, by the Markov properties of Z and K , the same holds if we condition
on the histories of these processes up to time s.
Finally, if we condition on

B = {(Z(s), K(s)) = (0,5)}

~

K (EA )) remains constant on all ¢ > s. Thus, we conclude
)), t > 0) has the same intensity matrix as ((Z;, K;), t > 0),

instead, then ( (t

A

)
that ((Z(t), K (tAC
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as desired. n

Now let (J;):>0 be the Poisson process discussed previously. Let U; denote
the first arrival time in this process and 7" = inf{t: X(¢) = 0} as discussed
previously.

Proposition 4.10. U; ~ Exp(a).

Proof. Let -
U = inf{t > 0: JTJ,-t > JT};

so U ~ Exp(a) and this is independent of (X (t), ¢ € [0,T]).
By Lemma 4.9 (on a sufficiently large probability space) we may assume
the existence of a Poisson process (K (t), t > 0) of rate «, independent of

(Zt(@), ¢t > 0) such that Kt(m — K(t A () for all ¢. In particular, K is indepen-
dent of ¢y. Let (S;);>1 denote the arrival times for K. Note that

{U > T} ={T = (0} = { K& =0} = {8 > G} (4.6.2)

By definition of the JCCP X,

U, — Cp — Sf{(c@) if Uy <.T
T+U otherwise.

However in the event U; > T we get T' = (p. Thus,

U, — G — '?K(Cw) if 51 < ¢y
! G+ U otherwise

d {C(Z) - Sf((g@) if 51 < ¢y

St otherwise,

with the last line following from the memorylessness of S; given S; > (j.
Finally, we conclude by Lemma 3.6 that U; ~ Exp(«), as desired. O

4.7 Proof of Proposition 4.4

Recall that ¢ : {1,2,--- ,#T} — T is the reverse chronological depth first
search order preserving bijection. By Proposition 4.2, (Zf) (i)) is a Qq,
£>0

Markov chain for all ¢ > 1. By Proposition 4.3, there exists a Poisson process
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(Jt);>o of rate a such that JCCP of T is given by

Jt
Xe=~t+ G
i=0
where (C¢(i))i>1 is independent of (J;),5, and there exists T such that T =
inf {t > 0: X; =0}. Recall o, from Theorem 1.4. We want to show that

(z#00), 1<i < W), 12 0)

< ((Z'(y — X(T;—)) : i satisfies X(T;—) <y < X(T3)), y > 0).

Observe that
prli) = min {5 # (W) Np({1,2,--5}) =i}).
or equivalently if (i) € TW(t) then
0(0) = o1 (# (W) N p({1,2,++ ).

Thus
(z#O(t), 1<i<W(), t>0)

= (296 = Ble() 10 < HT t € [Be0), Be(0) + o)) £20).
By our construction

(2790 - Be@)) : 1<i < #T 1€ [Bp0), (D) + o)) ¢ 2 0)

L ((Zi(y — X(T;-)) : i satisfies X(T,—) <y < X(T3)), y > 0).

Now by Theorem 4.1,

(2790 = Blel) : 1< < #T .t € [Bp0)), Bo0)) + Coiw)) 12 0)
is up-down oCRP(«,0). Thus

(229, 1<i<W(D), t20)

is up-down oCRP(«, 0). Hence proved.
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Appendix A

Additional properties of Lévy
processes

Lemma A.1. Let {X;},5, be a Lévy process. Let x, be the characteristic
function of X, . Then for any s,t > 0, px,,,(u) = ¢x,(u)px,(u).

Proof. Let’s begin with the characteristic function of X, .

E[equH_t]

’L’M(Xs+t XtJrXt :|

SOXs+t( )

e
[em(Xbth —Xt) 2quj|
[e

I
ﬁﬁﬁ

u(Xape=Xe)] Ele™*] [by property (II) in Definition 2.5]

= E[e"* | E[e"¥] {by property (I) in Definition 2.5]

= ox, (u)px, (u)
O

Lemma A.2. Let {Xt}tzo be a Lévy process. Then there exists a continuous,
complex-valued function ¥(0), where 6§ € R such that for allt >0 and 0 € R,

PX, (0) = €t¢(0)

Proof. By Lemma A.1 ¢x,, (u) = ¢x,(u)px,(u) for all t,s > 0. Again X
has right-continuous sample paths, thus for v € R the function t — ¢y, (u)
is right-continuous. @x,(u) = E[ei“XO] = 1. Since gy, is right-continuous,
thus lim;_,o+ ¢x,(u) = 1. Consider f(t) = ¢x,(u) for all ¢ > 0. Thus f is a
function on R™ and f(t +s) = f(t)f(s) for all t,s € R*. It’s easy to note
that for any rational 2* where p,,q, € N, we have f(2) = f(1)a . Now
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consider r € Q1 and r > 0, then there exists a sequence (¢,)n,>1 € Q such
that ¢, > r and ¢, — r. By right-continuity of f, we have f(¢,) — f(r).
Again, f(g,) — f(1)". Thus f(r) = f(1)". Clearly f(t) = f(1)" for all ¢t > 0.

Thus for u € R, px,(u) = e2ex1®  Take ¢)(u) = logpx,(u) which is a
continuous complex valued function. O

Theorem A.3 ([Ber96], Lévy-Khintchine representation). Consider an in-
finitely divisible distribution p on R. Then there exists a,b € R and a measure
v on R satisfying

v({0}) =0 and /(1 A 2?)v(dz) < oo

R

such that the characteristic function of p is given by

1
©,(0) = exp {ia@ - §b26’2 +/ (e —1—i0xL y<1) (dx)}
R

for all 8 € R.

Example A.4. (Compound Poisson process)
Let N = (N(t))t>0 be a Poisson process of rate A and let (;);>1 be a sequence

of IID random variables which is independent of (N (t)) 1~o- Consider the com-

pound Poisson process given by X; = Zi]i(f) & for all t > 0.

Notg that fqr t>s>0, we can write X; = XS+Z%E?)+1 fz Now <N(t))7;20
has stationary independent increments and is also mutually independent with
(&)i>1, thus X; can be expressed as a sum of X, and independent copy of

el E e £

N(t+h) N(t)

Z & — Z@

h—0

hmIP’({'XHh —X,| >

N(H—s)
({5
N(t)+1

=0 (since N is right continuous, thus N(t) +1 > }llirr(l] N(t+h)).
—

This shows (X¢):>o is a Lévy process. Let F' be the distribution function of
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the IID variables.
¢x,(0) =E {ewzﬁv(lt) 51}

< A"
= Z E [e‘e Ziﬂgz} e’\—' [by law of total expectation]
n!

n>0

S ([epan)

n>0

AL ew”‘F(dm))

= €_>\6 ( :

— ek (1-ei2) ) [since / F(dz) = 1}
R

Thus the Lévy Khintchine formula for a compound Poisson process takes the
form ¢(0) = X [ (1 — €*) F(dz).
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Appendix B

Additional path representations
of trees

Recall U = |J;_,N™. Let 7 C U denote a discrete rooted plane tree.

Definition B.1 (Height function). Let the elements of 7 be denoted as
0, u1,ug, -+, uger—1 in lexicographical order. Define, hr(n) = |u,| for all
0 <n < #(T). hy. Thus hr is the sequence of the generations of the indi-
viduals of 7, when these individuals are listed in the lexicographical order.

Proposition B.2 ([Gal05], Proposition 1.1). Let A denote the set of all dis-
crete trees and S denote the set of all finite sequences of non-negative integers
ar,ag, -+ ,a, such that a; +as+---+a; >4 for alli € {1,2,--- ,p— 1} and
art+az+-Fa,=p—1. Then ®: T = (ky(T), kuy (T), s Kuyyy_,(T)) is
a bijective map from A onto S.

Proof. Refer [Gal05]. O

Definition B.3 (Lukasiewicz path). Let 7 € A and p = #(7). Consider
the sequence given by =, = Y " (m; — 1) for all 0 < n < p, where ®(t) =
(m1,ma,- - ,my) and (x,)o<n<, Which satisfies the following properties:

e 7o =0and z, = —1;
e 1, >0forevery 0 <n<p-—1;
o v, —x;,_1 > —1forevery 1 <i<p.
Then (z,)o<n<p is termed as a Lukasiewicz path.

Now we are in a position to state the relation between height function and
Lukasiewicz path.
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Proposition B.4 (|Gal05], Proposition 1.2). The height function hr of a tree
T is related to the Lukasiewicz path of T by the formula,

hT:#{jE{O,l,"‘>n_1}:xj: inf SE[}

J<I<n
for everyn € {0,1,--- [ #(T) — 1}.
Proof. Refer [Gal05]. O

In order to state next theorem, we need to define the notion of Skorokhod
space. We begin with the definition of Cadlag functions, more generally Cadlag
paths. Some literature about Cadlag paths can be found in [CPS23].

Definition B.5 (Cadlag functions). Consider a metric space (X,d), and let
A CR. A function f : A — X is termed as Cadlag function if f is right-
continuous with left limits i.e.

e for all z € X, the left hand limit f(t—) = lim,_,,~ f(s) exists;

e for all x € X, the right limit f(t+) = lim, 4+ f(s) exists and equals
f(t).

Definition B.6 (Skorokhod space). The set of all Cadlag functions from A to
X is denoted by D(A, X) and is termed as the Skorokhod space. For a general
construction of the Skorokhod metric space refer [Bil68].

Theorem B.7 ([Gal05], Theorem 1.8). Let 6,0s,--- be a sequence of Galton-
Watson trees with probability measure p and finite variance o* and let (H, :

n > 0) be the associated height process. Then (\%)H[pt],t > 0) converges weakly
to (%'yt,t > 0) on the Skorokhod space D(RT,R™), where v is a reflected Brow-

nian motion.
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