
VEHICLE PERCEPTION SYSTEM BASED ON HETEROGENEOUS
NEURAL NETWORK SENSOR FUSION

VEHICLE PERCEPTION SYSTEM BASED ON HETEROGENEOUS

NEURAL NETWORK SENSOR FUSION

By

Ash(Chang) Liu, B.Eng.

Supervisors: Dr. Martin von Mohrenschildt and Dr. Saeid Habibi

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the

Degree Doctor of Philosophy

McMaster University

© Copyright by Ash(Chang) Liu 2024

McMaster University DOCTOR OF PHILOSOPHY (2024) Hamilton, Ontario (Software Engineering)

TITLE: Vehicle Perception System Based on Heterogeneous Neural Network Sensor Fusion

AUTHOR: Ash Liu, B.Eng. (McMaster University)

SUPERVISOR: Dr. Martin von Mohrenschildt, Dr. Saeid Habibi

NUMBER OF PAGES: ix, 230

ii

Abstract

Previous research conducted in the CMHT lab at McMaster University led to the successful development

of a Light detection and ranging (LiDAR)-based vehicle perception system, notable for its highly accurate

detection of highway objects and moderate classification capabilities. This thesis builds upon that founda-

tion, enhancing the existing system by incorporating sensor fusion with Infrared (IR) cameras and standard

cameras. The implementation of sensor fusion significantly augments the system’s performance, enabling it

to detect and classify objects effectively under adverse weather conditions and in poor lighting.

Key contributions of this research include:

• The development of a hardware-synchronized sensor system, blending LiDAR, IR cameras, and cam-

eras.

• The creation of a comprehensive sensor calibration process and a novel multi-sensor dataset, the first

of its kind to include annotations under various lighting and weather conditions.

• The development of an innovative ground segmentation technique using the Savitzky-Golay filter and

peak detection, significantly improve the speed of ground point elimination.

• The introduction of a novel optimizer cm-reSVSF for complex-valued neural networks, demonstrating

superior performance compared to traditional algorithms like ADAM and SGD.

Keywords:

Deep Learning, ADAS, Vehicle Perception system, CNN, CVNN, Hybrid Neural Network, SVSF, cm-

reSVSF, Sensor Calibration, Dataset.

iii

Acknowledgements

Firstly, I want to express my heartfelt thanks to my advisors, Dr. Martin von Mohrenschildt and Dr. Saeid

Habibi, for their exceptional support and guidance throughout my doctoral studies. Their knowledge, pa-

tience, and commitment have been crucial in shaping both my research and academic development. Dr.

Martin von Mohrenschildt has been incredibly supportive technically and always ready to address any chal-

lenges I faced, while Dr. Saeid Habibi has consistently provided pivotal guidance throughout my research

project and offered encouragement and support whenever needed.

I also owe a special thanks to Dr. Douglas Down, a key member of my Ph.D. committee, whose insightful

feedback and encouragement played a significant role in my successful defense. His expertise and thoughtful

critiques have significantly enhanced my research.

I am deeply grateful to my parents for their constant support and love, which have been the cornerstone of

my endurance through the rigors of Ph.D. studies. Their sacrifices and support have been a continuous source

of motivation.

Additionally, I appreciate Cam Fischer, an industry expert and lab coordinator, for his essential assistance

with laboratory equipment and logistics. His readiness to assist and meticulous attention to detail have greatly

smoothed my experimental processes.

Finally, I acknowledge all the members and staff of the CMHT team. Their teamwork and support have

fostered a nurturing and productive research atmosphere.

This journey would not have been possible without all of you. Thank you.

iv

Contents

1 Introduction 1

1.0.1 Advanced driver-assistance systems (ADAS) . 2

1.1 Motivation . 5

1.1.1 Past Research . 6

1.2 Problem Description . 7

1.3 Novelty of the Research . 8

1.4 Overview of the Thesis . 9

2 Sensors 10

2.1 Introduction . 10

2.2 Sensing Technology . 14

2.2.1 Camera . 14

2.2.2 LiDAR . 15

2.3 Sensor System Setup . 18

2.3.1 Velodyne HDL-32E LiDAR . 21

2.3.2 The Camera System . 22

2.4 Sensor System Implementation . 24

2.4.1 System output . 24

2.5 Real-Time System Implementation . 30

2.6 Results . 32

2.6.1 Stereo Camera System Performance Test . 32

2.6.2 System Performance Stability Test . 33

2.7 Conclusion . 34

v

3 Sensor Fusion 35

3.1 Introduction . 35

3.2 Sensor Fusion . 36

3.3 Sensor Calibration . 41

3.4 Overview . 42

3.5 LiDAR to Camera Spatial Alignment . 43

3.5.1 Camera Calibration . 44

3.5.2 Camera and LiDAR Spatial Coordinates Estimation 51

3.5.3 Result . 72

3.6 Conclusion . 78

4 CMHT Dataset 79

4.1 Introduction . 79

4.2 Data Labelling . 84

4.2.1 Labelling Tool . 84

4.2.2 Labelling Format . 85

4.2.3 Labelling Results . 86

4.3 SDKs . 86

4.3.1 PointCloudData Set . 88

4.3.2 Utility Tools . 88

4.4 Conclusion . 90

5 Road Object Detection 91

5.1 Introduction . 91

5.2 Related Research . 93

5.2.1 Ground Segmentation . 93

5.3 Implementation . 98

5.3.1 Ground Detection Using Savitzky-Golay Filter . 98

5.4 Results . 104

5.5 Conclusion . 108

6 Road Object Classification 109

6.1 Introduction . 109

vi

6.2 Related Works . 111

6.2.1 Object Classification In Vehicle Perception . 111

6.2.2 Neural Networks . 112

6.3 Implementation . 114

6.3.1 Pre-processing . 114

6.3.2 Convolutional neural network (CNN) . 117

6.3.3 Layers . 120

6.3.4 Training . 125

6.3.5 Autoencoder . 128

6.4 Complex-valued neural network (CVNN) Implementation and Algorithm 130

6.4.1 Overview . 130

6.4.2 Complex-valued neural network (CVNN) Layers 130

6.4.3 Kernel Initialization . 141

6.4.4 Input Normalization . 141

6.4.5 Forward-propagation . 141

6.4.6 Error Function . 143

6.4.7 Loss Function . 143

6.4.8 Hybrid Neural Network . 144

6.4.9 Training Dataset . 152

6.5 Results . 156

6.5.1 Autoencoder . 156

6.5.2 Object Classification By Individual Sensors . 156

6.5.3 Full Integration and Performance Test . 161

6.6 Conclusion . 164

7 Complex-Valued Neural Network Training 165

7.1 Introduction . 165

7.2 Implementation . 166

7.2.1 Complex Activation Function . 166

7.2.2 Back-propagation . 170

7.3 Optimizer . 174

7.3.1 Complex Extended Kalman Filter . 174

vii

7.3.2 Smooth Variable Structure Filter . 176

7.3.3 Complex-Valued Stochastic Gradient Descent . 177

7.3.4 Complex-Modified Reduced-Smooth Variable Structure Filter 179

7.3.5 Complex Adam . 181

7.4 Result . 183

7.4.1 Setup . 183

7.4.2 Complex-Valued Activation Functions . 186

7.4.3 Clipping VS Non-Clipping . 186

7.4.4 cm-reSVSF vs Stochastic Gradient Descent (SGD) vs Adam 187

7.4.5 Repeatability and Stability of cm-reSVSF . 188

7.5 Conclusion . 189

8 Conclusion and Future Research 190

8.1 Conclusion . 190

8.2 Future Works . 192

8.2.1 SLAM and Localization . 192

8.2.2 Centralized Information Exchange . 192

8.2.3 Sensor Utilization . 192

A Ground Segmentation Performance Diagram . 194

A.i Processing Time . 194

A.i Precision . 197

A.i Recall . 200

B Accuracy and Confusion matrix . 203

B.ii Performance Measurement . 204

C Derivative of Complex-Valued Layers . 205

C.iii Convolutional Layer Back Propagation . 205

C.iii Dense(Full-Connected) Layer and Derivative . 207

C.iii Pooling Layer and Derivative . 209

C.iii Complex-valued Modified Softmax Function and Derivative 210

viii

List of Figures

1.1 Total number of vehicle registrations in Canada[125] . 2

1.2 Total number of vehicle registrations in United State[31] 2

1.3 Number of fatalities from the vehicle accidents in Canada[29] 3

1.4 Number of injuries from the vehicle accidents in Canada[29] 3

1.5 Total deaths and population rates from vehicle accidents in United State[41] 4

1.6 Level of autonomous driving[141] . 5

1.7 LiDAR image appears differently from distances. 7

1.8 Rain significantly diminishes the visibility of LiDAR, causing it to drop to levels as low as

5-10 meters where normally the maximum viable detection range is at 15 meters. 8

2.1 Camera performance drop under simulated weather conditions, graph source:[116] 12

2.2 IR frequency spectrum, Image source:[47] . 15

2.3 3D rotating scan LiDAR illustration, image source:[140] 16

2.4 Partial rotating scan LiDAR, also known as Risley prism optical steering LiDAR, image

source:[26] . 17

2.5 Solid state LiDAR, image source:[4] . 18

2.6 Vehicle sensor location . 19

2.7 Vehicle configuration . 20

2.8 Vehicle coordinate system . 21

2.9 Velodyne HDL-32E LiDAR . 22

2.10 Optical sensors on the vehicle . 23

2.11 Visualization of LiDAR outputs . 28

2.12 Spherical dense representation illustration . 29

2.13 Imaging sensor outputs example. 29

ix

2.14 System design illustration . 31

2.15 Capture synchronization test setup . 32

2.16 Capture synchronization test result sample . 33

2.17 Jitter measurement . 34

3.1 Original US Joint Directors of Laboratories (JDL) fusion level diagram 36

3.2 Data level sensor fusion model . 38

3.3 Neural network based sensor fusion approach general process pipeline (Feature level sensor

fusion) . 39

3.4 Feature level sensor fusion model . 39

3.5 Decision-based sensor fusion model . 40

3.6 Fusion characteristics at different levels, table source:[61] 41

3.7 LiDAR to camera spatial alignment procedure . 42

3.8 Coordinate system illustration . 43

3.9 Coordinate system illustration . 44

3.10 Fisheye view example. [10] . 45

3.11 Example of a barrel distortion, image is artificially distorted for demonstration purpose. . . . 45

3.12 Example of a pincushion distortion, image is artificially distorted for demonstration purpose. 46

3.13 Example of a moustache distortion, image is artificially distorted for demonstration purpose. 46

3.14 Distortion Illustration. Left: pincushion distortion, Right: barrel distortion. 46

3.15 Tangential distortion illustration. 47

3.16 Example of a tangential distortion, image is artificially distorted for demonstration purpose. . 47

3.17 Pin hole camera illustration . 48

3.18 A calibration example with the checkerboard close to the centre of the sensor, image to the

left is the RGB camera, and image to the right is the IR camera. 50

3.19 Another calibration example with an off-center checkerboard position. It’s important to note

that LiDAR sensor data is also collected during this time, resulting in the utilization of the

same set of image data for computing both intrinsic and extrinsic parameters, as well as dis-

tortion. 51

3.20 Overview of camera and LiDAR spatial alignment pipeline. 52

3.21 LiDAR feature detection pipeline. 53

3.22 Checkerboard vertices marked by red circles . 57

x

3.23 Plane formed by enclose vertices . 58

3.24 Camera feature detection pipeline. 62

3.25 Harris corner detection . 64

3.26 Baking the checkerboard sheet . 65

3.27 A cross section illustration of the checkerboard . 66

3.28 Matching corner features . 67

3.29 Levenberg–Marquardt algorithm (LM) algorithm steps . 70

3.30 Camera overlay example . 72

3.31 IR camera overlay example . 72

3.32 Calibration Samples . 73

3.33 Camera deadzone in the calibration area, marked in red. Left: camera, Right: IR camera. . . 74

3.34 Pixel errors . 74

3.35 IR Camera pixel errors . 75

3.36 Camera pixel errors in relation to the X-position . 76

3.37 Camera pixel errors in relation to the Y-position . 76

3.38 IR Camera pixel errors in relation to the X-position . 77

3.39 IR Camera pixel errors in relation to the Y-position . 77

4.1 A data sample from the parking lot. 80

4.2 A data sample from the down town dataset . 80

4.3 A data sample from the residential area dataset . 81

4.4 Scenario 2: Urban, downtown, after rain and dark. 82

4.5 Scenario 2: Highway, after rain and dark.. 82

4.6 Scenario 3: Local, dark and after rain. 83

4.7 Labelling software interface . 84

4.8 Json file data structure . 85

4.9 ROS2 interface, visualized with rviz2 . 87

4.10 Matlab Visualization . 87

4.11 Directory structure, boxes are the folders. front.json file contains intrinsic matrix and extrinsic

matrix(LiDAR-to-camera). 88

5.1 Overview . 92

xi

5.2 Example of LiDAR data converted into range image, x,y,z data is embedded into R,G,B chan-

nels, thus it creates a coloured image . 97

5.3 A process overview of modified grid-based ground detection method 98

5.4 Sectioning the LiDAR cluster points into grids. 100

5.5 Vandermonde matrix v generated from window matrix w with window size m, polynomial

degree n. 101

5.6 Apply Savitzky-Golay coefficients to the input to calculate the first derivative. 102

5.7 Apply a N-point moving average filter with window size m to the input y j. 102

5.8 Detected ground points (coloured in red). 104

5.9 Training log . 107

5.10 Example of unusable one-stage detector . 108

6.1 An overview of the Hybrid Neural Network . 110

6.2 Object clustered. 114

6.3 KITTI data: camera original view. 115

6.4 Various object ROIs cropped from the original image (figure 6.3). 115

6.5 Extreme down sampling comparison: Figure 6.5a is the original 400 × 400 pixels image.

Figure 6.5b is a 20 × 20 pixels image from the inverses 2D Fourier transformation of the

down sampled complex values. Figure 6.5c is a 20 × 20 pixel image down sampled in spatial

domain by max pooling. 116

6.6 View projection . 116

6.7 Side view LiDAR image. 117

6.8 Convolving Process . 118

6.9 CNN structure diagram . 118

6.10 Full-connected layer illustration . 123

6.11 Transpose convolutional layer examples[54]. Green colour output, and blue colour is the input. 125

6.12 Training Process . 126

6.13 Autoencoder model . 129

6.14 Convolutional layer filter illustration . 131

6.15 Max pooling by projecting the complex number onto the real axis (Equation 6.32) 132

6.16 Complex number projection(Equation 6.32) . 133

6.17 Example of a non-padding short layer . 137

xii

6.18 A toy example of convolutional neural network . 142

6.19 A simple example of 2 hidden layers complex-valued classifier 143

6.20 LiDAR autoencoder . 145

6.21 Autoencoder example: Left: Original LiDAR scan; Middle: artificially distorted scan; Right:

Autoencoder fixed scan. 145

6.22 LiDAR object classifier . 146

6.23 Camera Region of Interest (ROI) classifier . 148

6.24 Camera Region of Interest (ROI) classifier . 149

6.25 IR camera Region of Interest (ROI) classifier . 150

6.26 Voter class relation diagram . 151

6.27 Example of labelled LiDAR inputs. 153

6.28 NaV example . 154

6.29 Example of labelled image classes . 155

6.30 Example of labelled IR image classes . 155

6.31 Example of the full system integration and visualization . 162

6.32 Example of YoloV8 missed detection, the pedestrian to the left was not detected. But purposed

vehicle perception caught the jaywalking person. 164

7.1 Amplitude and phase of separated hyperbolic tan function. 166

7.2 Amplitude and phase of hyperbolic tan function. 167

7.3 Amplitude and phase of tan function. 167

7.4 Amplitude and phase of sigmoidal function with visible singularities. 168

7.5 Amplitude and phase of split-sigmoid function (Equation 7.3). 168

7.6 Amplitude and phase of Holomorphic modified leaky Rectified linear unit (ReLU) function. 169

7.7 Amplitude and phase of Complex-modified Rectified linear unit (ReLU) function[7] (Equa-

tion 7.5). 169

7.8 Amplitude and phase of Georgious function[57] (Equation 7.6) 170

7.9 Amplitude and phase of Hitzer activation function[70](Equation 7.7). 170

7.10 Calculation . 171

7.11 A example of max pooling layer. 172

7.12 Extended Kalman filter (EKF) Training process . 175

7.13 Smooth variable structure filter (SVSF) boundary layer width 181

xiii

7.14 Testing complex-valued Convolutional neural network (CNN) setup for Modified National

Institute of Standards and Technology (CIFAR) dataset . 185

7.15 Testing complex-valued Convolutional neural network (CNN) setup for CIFAR-10 dataset[92] 185

7.16 Testing complex-valued Convolutional neural network (CNN) setup for CIFAR-100 dataset[93]185

7.17 Clipping Benchmark . 187

7.18 cm-reSVSF vs Adam in CiFAR 100 . 188

7.19 Repeatability plot of cm-reSmooth variable structure filter (SVSF). Left: Validation accuracy;

Right: Validation loss. 189

7.20 Tolerance plot of cm-reSmooth variable structure filter (SVSF). Left: Validation accuracy;

Right: Validation loss. 189

1 Benchmark time on sequence 00 . 194

2 Benchmark time on sequence 01 . 195

3 Benchmark time on sequence 02 . 195

4 Benchmark time on sequence 03 . 196

5 Benchmark time on sequence 04 . 196

6 Benchmark time on sequence 05 . 197

7 Benchmark precision on sequence 00 . 197

8 Benchmark precision on sequence 01 . 198

9 Benchmark precision on sequence 02 . 198

10 Benchmark precision on sequence 03 . 199

11 Benchmark precision on sequence 04 . 199

12 Benchmark precision on sequence 05 . 200

13 Benchmark recall on sequence 00 . 200

14 Benchmark recall on sequence 01 . 201

15 Benchmark recall on sequence 02 . 201

16 Benchmark recall on sequence 03 . 202

17 Benchmark recall on sequence 04 . 202

18 Benchmark recall on sequence 05 . 203

xiv

List of Tables

2.1 Table of common sensors and their properties[117] . 12

2.2 List of sensor-equipped vehicles from open-data and sensor configuration. Note: Apollo does

not mention the actual sensor used in data acquisition, but rather listed all the supporting

sensor models. 13

2.3 Comparison between rotating scan LiDAR and solid state LiDAR 18

2.4 Camera specifications . 23

2.5 Table of capturing system information, *Radio detection and ranging (Radar) outputs varies

depending on number of object scanned. 24

2.6 Input table . 25

2.7 LiDAR Pointcloud2 message format. Please note that at Centre for Mechatronics and Hybrid

Technologies (CMHT), the standard XYZI pointcloud2 msg was not used. Instead, a custom

XYZIR pointcloud2 msg was created that embedded LiDAR ring ID information. 27

3.1 Corner matching table . 55

4.1 Dataset statistic . 83

4.2 Number of unique objects in the scenario . 86

5.1 Average processing time . 105

5.2 Standard deviation of the average processing time . 105

5.3 Average recall . 106

5.4 Average precision . 106

6.1 Autoencoder Layer Configuration . 145

6.2 LiDAR Classifier Layer Configuration . 147

xv

6.3 Image classifier layer configuration . 148

6.4 Complex-valued image classifier layer configuration . 149

6.5 IR image classifier layer configuration . 150

6.6 Augmentation applied to each sensor classification training data 153

6.7 LiDAR training samples . 153

6.8 Image training sample count . 155

6.9 IR Image training sample count . 155

6.10 LiDAR classification confusion table . 157

6.11 LiDAR classification result . 157

6.12 Real-Valued Image classification confusion table . 158

6.13 Real-Valued Image classification result . 159

6.14 Complex-Valued Image classification confusion table . 159

6.15 Complex-Valued Image classification result . 160

6.16 IR image classification result . 161

6.17 Image classification result . 161

6.18 Benchmark dataset . 162

6.19 Fusion result . 163

6.20 YoloV8 result . 163

7.1 EKF Parameters . 176

7.2 SVSF Parameters . 178

7.3 Stochastic Gradient Descent (SGD) Parameters . 179

7.4 reSVSF Parameters . 180

7.5 Adam Parameters . 183

7.6 Training machine specification . 184

7.7 Best Validation Accuracy of each activation function . 186

7.8 Training result on CiFAR-100 . 188

xvi

Acronyms

ADAS Advanced driver-assistance systems

CCD Charge-coupled device

CIFAR Modified National Institute of Standards and Technology

CIFAR Canadian Institute For Advanced Research

CMHT Centre for Mechatronics and Hybrid Technologies

CMOS Complementary metal oxide semiconductor

CNN Convolutional neural network

CVCN Complex-valued convolutional network

CVNN Complex-valued neural network

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DNN Deep Neural Network

EKF Extended Kalman filter

FNN Fourier neural networks

FOV Field of view

FPA Focal plane array

GLE Ground Likelihood Estimation

GP-INSAC Gaussian Process Incremental Sample Consensus

xvii

GPR Gaussian Process Regression

GPS Global positioning system

IC Integrated circuit

IMU Inertial measurement unit

IoU Intersection-Over-Union

IR Infrared

JDL US Joint Directors of Laboratories

LiDAR Light detection and ranging

LM Levenberg–Marquardt algorithm

LWIR Long-wave infrared

MEMs Microelectronechanical systems

MRF Markov Random Field

MWIR Medium-wave infrared

NN Neural network

NSC National Safety Council

PCA Principal Component Analysis

R-CNN Region-Based Convolutional Neural network

Radar Radio detection and ranging

RANSAC Random Sample Consensus

ReLU Rectified linear unit

ROI Region of Interest

RVNN Real-valued neural network

SAE Society of automotive engineers

xviii

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

SGD Stochastic Gradient Descent

SOC System on Chip

SOM System on Module

SVM Support Vector Machines

SVSF Smooth variable structure filter

SWIR Short-wave infrared

WHO World Health Organization

xix

Chapter 1

Introduction

The World Health Organization (WHO) reports that each year, road traffic crashes are responsible for 1.25

million deaths and 50 million injuries globally [128]. Of the many contributing factors, human error stands

out as the predominant one, as recognized by the WHO and many other studies[132][156][147]. A statis-

tical survey shows 94% of crashes involve driver error[123]. Interestingly, despite the increase in vehicles

throughout period of 2012-2018, with a rise of about 12% in Canada (Figure 1.1) and 7.87% in the United

States (Figure 1.2), a remarkable decline in traffic accidents was observed in both countries. Specifically,

Canada experienced approximately a 15% reduction in fatalities and injuries (Figure 1.3, Figure 1.4), while

the United States saw a reduction of about 19%. The National Safety Council (NSC) attributes this promising

trend to changes in driver attitudes, behaviours, and the substantial progress made in vehicle safety technolo-

gies, especially the development and use of Advanced driver-assistance systems (ADAS) and its associated

technologies. ADAS stands for Advanced Driver Assistance Systems. It is a technology that utilizes a variety

of sensors to perceive the environment and the driver’s condition. It then responds proactively to augment the

driver’s situational awareness and alleviate fatigue by automating specific monotonous vehicle controls. Such

a system is very crucial for today’s busy and complex traffic scenarios.

Numerous studies support the effectiveness of ADAS in enhancing driving safety and reducing human

errors. For instance, Masello’s research [112] highlights that implementing six common ADAS in the United

Kingdom led to a remarkable 23.8% reduction in accidents. This decrease amounted to an annual total

of 18,925 fewer accidents. Moreover, investigations conducted by Zoghi et al. [181] demonstrated that

simulated experiments saw a potential reduction of up to 19% in traffic accidents through the use of ADAS.

These findings collectively emphasize the significant contribution of ADAS in enhancing road safety and

1

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 1.1: Total number of vehicle registrations in Canada[125]

Figure 1.2: Total number of vehicle registrations in United State[31]

minimizing accidents.

1.0.1 ADAS

ADAS plays a crucial role in ensuring safe driving by providing immediate support and essential informa-

tion about a vehicle’s immediate surroundings. According to the National Safety Council (NSC)[114], ADAS

incorporates numerous pivotal features, including Adaptive Cruise Control, Anti-Lock Braking System, Auto-

matic Emergency Braking, Automatic Parallel Parking, Automatic Reverse Braking, Back-up Camera, Back-

up Warning, Bicycle Detection, Blind Spot Warning, Brake Assist, Forward Collision Warning, Lane Depar-

ture Warning, Lane Keeping Assist, Left Turn Crash Avoidance, Obstacle Detection, Pedestrian Detection,

2

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 1.3: Number of fatalities from the vehicle accidents in Canada[29]

Figure 1.4: Number of injuries from the vehicle accidents in Canada[29]

3

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 1.5: Total deaths and population rates from vehicle accidents in United State[41]

among others. These features can be generalized into two groups: vehicle perception and vehicle control, as

shown in the table below.

Vehicle Perception Vehicle Control

Back-up Camera

Back-up Warning

Bicycle Detection

Blind Spot Warning

Forward Collision Warning

Lane Departure Warning

Left Turn Crash Avoidance

Obstacle Detection

Pedestrian Detection

Adaptive Cruise Control

Anti-Lock Braking System

Automatic Emergency Braking

Parallel Parking

Automatic Reverse Braking

Brake Assist

Lane Keeping Assist

The successful commercialization of ADAS brings forth two main advantages in the path towards au-

tonomous driving. First and foremost, it progressively instills confidence among consumers[62], fostering

widespread acceptance of fully autonomous vehicles. Secondly, the functionalities of ADAS serve as fun-

damental building blocks for autonomous driving. As technology advances, ADAS modules can seamlessly

integrate into the autonomous vehicle’s ”Perception-Plan-Action” cycle. Society of automotive engineers

(SAE) has released levels of driving automation first in 2016, followed by the revision in 2018(Figure 1.6).

4

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 1.6: Level of autonomous driving[141]

As of the thesis writing, the autonomous level of most newly commercialized vehicles is primarily cate-

gorized between level 2 and level 3.

1.1 Motivation

Although vehicle perception is progressing quickly, reaching high accuracy in restricted scenarios, the

pursuit of research to improve the reliability and robustness of vehicle perception systems persists. Even

5

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

with many level 3 autonomous vehicles on the market that focus on camera technology and are equipped

with advanced image processing, many fatalities linked to false detection[20] have exposed the concerning

reality that achieving a fully reliable vehicle perception system, especially when relying solely on camera-

based solutions, remains a distant goal. Consequently, the search for suitable sensors for vehicle perception

applications continues.

One strong candidate in this endeavour is the LiDAR sensor. From a sensor perspective, LiDAR possesses

several advantages over cameras. Notably, it is not affected by environmental light sources, and its ability to

generate 3D scans makes it an excellent sensor option for vehicle perception. Historically, a major drawback

of LiDAR sensors was their exorbitant cost. However, with advancements in technology, the cost of LiDAR

sensors has significantly decreased, making them market-ready for commercial use.

Another sensor of choice is the IR camera. Instead of detecting visible spectrums, the IR camera only

detects frequencies in the IR range. As a result, the sensor is also immune to human perceptive lighting

conditions and excellent at detecting anything that generates heat because of IR radiation. In vehicle percep-

tion applications, important objects often emit heat, such as a car’s engine, pedestrians, or animals. Even in

complete darkness, thermal imaging is still capable of detecting these objects.

While individual sensor research for vehicle perception applications has been ongoing for some time, at

the start of this research, a comprehensive methodology for fusing heterogeneous sensors in a sensor fusion

system for vehicle perception needed to be improved. However, with advancements in computing hardware

and the adoption of neural network approaches, it became possible to leverage different sensors and effectively

fuse them to enhance vehicle perception capabilities.

1.1.1 Past Research

McMaster University Centre for Mechatronics and Hybrid Technologies (CMHT) (Centre of Mechatronics

and hybrid technology) lab has begun the vehicle perception research in the year 2012. The study was led

by Dr. Luo during his time pursuing Ph.D. degree and made significant progress in the LiDAR-based vehicle

perception system for highway driving[108], specifically on ground detection and object detection. This thesis

is the continuation of his work with the addition of multi-sensors fusion to improving the overall system

performance in different complex-driving scenarios.

6

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

1.2 Problem Description

Previous research[108] has attempted to address the vehicle perception problem using a comprehensive

LiDAR-based vehicle perception system for road object detection, classification, and tracking. While the

detection results have been considered good, the classification recall rate remains relatively poor.

In the previous study[108], a basic Convolutional neural network (CNN) was trained to recognize object

shapes by converting LiDAR inputs from vectors to a dense range image and then performing classification

based on this representation. The resolution problem gets worst when an object is further away from the

sensor: The number of scans on an object rapidly decreases as it is further away from the LiDAR(Figure 1.7),

causing discontinuities in the grid maps and resulting in misclassification of the object.

(a) Close object (b) Far object

Figure 1.7: LiDAR image appears differently from distances.

A notable concern with the preceding research is its exclusive reliance on the LiDAR sensor, a technology

that is particularly susceptible to the effects of weather conditions. The effective visibility range of the LiDAR

sensor appears to be compromised in instances of rainfall and its aftermath, with an observable increase in

noise levels due to the divergence of the laser beam on the water accumulated on the road surface.

Given these intrinsic limitations to LiDAR-based data acquisition and its vulnerability to adverse weather,

the idea that sensor fusion may offer a promising path for significant improvements in vehicular perception

arises. By merging data from various sensors, it is possible to enhance the overall reliability and robustness

of the perception system. This approach effectively reduces the impact of individual sensor limitations and

improves the vehicle’s ability to accurately perceive its surroundings across different weather conditions.

7

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

(a) Camera view (b) LiDAR view

Figure 1.8: Rain significantly diminishes the visibility of LiDAR, causing it to drop to levels as low as 5-10

meters where normally the maximum viable detection range is at 15 meters.

1.3 Novelty of the Research

In the context of this research initiative, the collaborative potential offered by LiDAR, camera, and IR

camera is leveraged, seamlessly integrated within the vehicle. This effort leads to the creation of a hetero-

geneous sensor-fusion vehicle perception system, capable of performing real-time segmentation and object

classification. The main contributions of this study can be summarized as follows:

• Implementation of a hardware-synchronized sensor system comprising LiDAR, IR camera, camera,

Radio detection and ranging (Radar), and Inertial measurement unit (IMU).

• A meticulously devised comprehensive procedure for sensor calibration and spatial fusion, aimed at

integrating data from LiDAR, IR camera, and camera sources.

• The creation of a novel synchronized multi-sensor labelled dataset. As of the composition of this thesis,

this dataset marked a pioneering endeavor, being the first open-source repository inclusive of all these

sensors, and possessing annotations under varying lighting and weather conditions.

8

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

• The development of a high-speed novel ground segmentation technique, which harnesses the Savitzky-

Golay filter and peak detection mechanisms to effectively eliminate ground points.

• The introduction of an novel optimizer for complex-valued neural networks, a novel cm-reSVSF filter

optimizer, exhibiting superior performance in comparison to ADAM and SGD algorithms.

1.4 Overview of the Thesis

The thesis is organized in the following manner: Chapter 1 provides an introduction. Chapter 2 introduces

the sensors used and installed on the vehicles, along with an outline of the state of the art for each sensor.

Chapter 3 details the sensor calibration and rectification for the sensor fusion procedure, including hand-

picked algorithms for the automated spatial sensor alignment parameter estimation process, specifically for

CMHT. Chapter 4 introduces the CMHT dataset, acquired by utilizing the system featured in Chapters 2 and

3. Chapter 5 and Chapter 6 describe the processing pipeline for the vehicle perception system, with ground

segmentation and object detection featured in Chapter 5, and object classification using a heterogeneous

neural network in Chapter 6. Chapter 7 specifically focuses on complex-valued neural network training, and

presents unique findings that utilize the Smooth variable structure filter (SVSF) filter for fast training. Lastly,

Chapter 8 contains the conclusion and comments on the continuation of the research.

9

Chapter 2

Sensors

2.1 Introduction

Sensors are vital components of autonomous vehicles and ADAS, serving as the eyes of the car and ADAS.

Therefore, the appropriate selection and placement of sensor hardware on the vehicle are of paramount impor-

tance. Current technological advancements offer several options to choose from, a marked contrast to the last

decade when autonomous driving was first explored. However, even today, a ”perfect” sensor does not exist,

as each sensor comes with its own advantages and disadvantages. The following chapter delves into currently

available sensors in detail, enumerating their pros and cons. Additionally, sensor applications are examined

to understand how sensors perform their designated roles within the vehicle perception system. Finally, the

CMHT vehicle sensor system setup and software implementation are introduced. At CMHT, a sensor fusion

system has been developed that leverages multiple sensors to bolster the robustness of the vehicle perception

system, enhancing classification performance in challenging lighting or weather conditions.

Defining a “perfect” sensor is critical to the understanding of its functionality in autonomous driving.

Ideally, a “perfect” sensor has all of the following traits:

• High resolution: a sensor must be able to provide high fidelity data capture to detect the surrounding

objects accurately. Low resolution sensors are more likely to miss capturing small objects such as

fire hydrants, poles and other relatively smaller objects, and thus sensors must possess high resolution

properties.

10

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

• Low cost: Cost is another major factor in the commercial aspect of vehicle production. Increasing the

cost price to produce vehicles due to expensive sensor hardware may not make it economically feasible

in the quest for the adoption of autonomous driving.

• Passive: a passive sensor (such as a camera, IMU, Global positioning system (GPS) and so forth)

only detects and responds to the inputs from the physical environment. It does not interact with the

environment when performing the measuring functions. On the other hand, active sensors like Radar,

LiDAR systems often provide their own input source. Studies[87][136] have shown that multiple active

sensors of the same kind can interfere with each other when working simultaneously, due to one sensor

inputs coincidently feeding into another sensor, thus creating a sensor interference. For this reason,

passive sensors are often preferred over active sensors.

• High sampling rate: The higher the frequency, the more information a sensor can acquire within a

period of time. An ideal sensor sampling rate would be no less than 10Hz.

• Weather and light condition insensitive: Weather and daylight are natural phenomena that can often

present a challenge to sensors . Rain, snow and fog will directly affect the performance of the sensors.

Sensors that work in visible light frequencies are susceptible to light conditions. In some extreme cases,

even shadows or light reflections can cause the sensor to fail.

The aforementioned factors play a key role in selecting the right sensors, with the task they are intended to

perform taken into account. Regarding sensor selection, previous research[108] has determined that LiDAR

can be very useful in detecting surroundings and accurately acquiring information in 3D space. However

LiDAR lacks the ability to detect fine details and is weather-sensitive, making LiDAR unsuitable for use

as the only only sensor type for any autonomous driving applications. Therefore, almost all LiDAR-based

autonomous driving research vehicles are equipped with more than one kind of sensor to compensate for

LiDAR drawback.

Besides LiDAR, a camera is almost a must-have sensor on autonomous driving vehicles. Cameras posses

high resolution, high sampling rates, and are cost-effective, as shown in popular autonomous vehicle open data

sets, where almost all the vehicles feature one or more cameras as its primary sensor[1][14][56][74][133][155][58][71][28][36].

Despite the aforementioned advantages, cameras are nowhere near perfect, due to high sensitivity to light and

weather conditions and the limited capability of acquiring 3D information. Michaelis et al.[116] presented

how camera can be easily affected by different weather conditions (figure 2.1).

11

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.1: Camera performance drop under simulated weather conditions, graph source:[116]

Current research on camera variants, such as IR camera, remains insufficient[36][76]. IR cameras are cur-

rently used to detect pedestrians in a low-light environment[76]. IR camera, particularly Long-wave infrared

(LWIR) cameras, have the advantage of being weather insensitive[85] and are not subject light conditions,

making them suitable sensors for generating 2d images in general. However, compared to a regular camera,

it is relatively low resolution (typically under 640 × 480 pixels, versus a regular camera that has a minimum

of 1280 × 720 pixels), in addition to being quite expensive.

Other sensors like IMU and GPS are commonly installed autonomous driving vehicles as additional sen-

sors. These sensors are mainly used for odometry and vehicle positioning, and some are also used in LiDAR

data correction.

Resolution Costs Sensor Type Sampling Rate Weather Sensitive Light Sensitive

Camera High Low Passive High Yes Yes

Stereo Camera High Low Passive High Yes Yes

RADAR Low High Active Low No No

LiDAR Low High Active Low Yes No

Ultrasonic Low Low Active Low No No

IR Camera High High Passive High Yes No

Table 2.1: Table of common sensors and their properties[117]

In summary, Table 2.1 lists standard sensors installed in-vehicle applications and their pros and cons.

Also, table 2.2 has a list of sensor models installed on the vehicles that were used to collect the dataset. Based

12

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

on that information, LiDAR, RADAR, camera, IR camera, and IMU/GPS was included to be part of sensor

system at CMHT.

Camera LiDAR Radar IR Camera GPS/IMU

CMHT
PointGray 3

Logitech Brio
Velodyne HDL32E Need Info FLIR A65 Need Info

Ford Avdata[1]
Flea3 GigE Point Grey Camera 5MP

Flea3 GigE Point grey Camera 1.3 MP
Velodyne HDL32E Navtech CTS350-X - Applanix POS LV

Oxford [14]
Point Grey Bumblebee XB3

Point Grey Grasshopper2

Velodyne HDL32E × 2

SICK LMS-151 × 2
- - NovAtel SPAN-CPT ALIGN

Kitti [56]
PointGray Flea 2grayscale × 2

PointGray Flea 2 colour × 2
Velodyne HDL64E - - Velodyne on board

Apollo* [74]

Velodyne VLS-128

Scala2

M16-LSR

LEDDARVU

Velodyne HDL64E

Ulra Puck VLP32C

Pandora

C16 Leishen

Rs-LiDAR-16 (Robosense)

MARS

Wissen Technologies

LI-USB30-AR023ZWDR

ARS408-21

B01HC
-

ProPak6

PwrPak 7D

NV-GI120

Newton-M1

CADCD [133] Velodyne VLP-32C Ximea MQ013CG-E2 - -

NovAtel OEM638

Sensonor STIM300 IMU

Xsens

MTi-300-AHRS

MTi-30-AHRS

Waymo OD [155] Not mentioned Not mentioned - - Not mentioned

A2D2 [58] Velodyne VLP-16 × 5
Sekonix SF3325-100

Sekonix SF3324-100 × 5
- - Velodyne Onboard

Lyft Lv5 [71] Not mentioned Not mentioned - - Not mentioned

nuScenes[28] Not mentioned Not mentioned - - Not mentioned

KAIST[36] Velodyne HDL32E PointGrey Flea3 - FLIR A655Sc OXTS RT2002

Table 2.2: List of sensor-equipped vehicles from open-data and sensor configuration. Note: Apollo does not

mention the actual sensor used in data acquisition, but rather listed all the supporting sensor models.

13

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

2.2 Sensing Technology

2.2.1 Camera

Camera research is dates as early as the 1700s. Early camera development included the use of light-sensitive

materials. For centuries, the working principle behind the camera has never changed, but the media that saves

the photon has evolved since then. The first digital camera was invented in 1969[79] by Willard S. Boyle and

George E. Smith at Bell Labs. Boyle & Smith developed a Charge-coupled device (CCD) image sensor to

replace the light-sensitive materials as the capture media for the intended image. A CCD sensor is composed

of an Integrated circuit (IC) with transistorized light sensor array. When lights reflect onto the sensor matrix,

it generates a signal and allows the image to transfer into a memory. Each individual transistorized light

sensor on the matrix is called a pixel. A CCD’s size and the number of pixels determine the image quality,

the general principle being the larger the surface area of a CCD, and the higher the density of the pixels it has,

the better the image quality[53].

Complementary metal oxide semiconductor (CMOS) sensor is a more recently developed light-sensitive

sensor technology used in a modern digital camera. The working principle behind the CMOS is the same

as CCD, both featuring a light-sensitive sensor matrix to capture the light and convert it into a digital signal.

Compared to CCD cameras, CMOS cameras can be configurated to wavelengths besides the visible spectrum,

and allow manufacturing in materials other than silicon such as germanium to extend its sensitivity to a

different wavelength. Another advantage is that a CMOS sensor costs less than CCD sensors. Currently,

however, as CMOS sensing technology is more susceptible to noise, CCD sensors are usually considered

superior than CMOS sensors in terms of imaging quality[166][105], but CMOS’s conversion of images to

digital data is faster than CCD.

IR Camera IR cameras are special camera that use a microbolometer sensor matrix. As infrared radiation

strikes the sensor, the sensor gets heated up and generates electrical resistance to create an image. Unlike

cameras that work in the visible light frequency, IR camera works with a wavelength between 7.5 - 14 µm

which is outside the visible spectrum.

14

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2.2: IR frequency spectrum, Image source:[47]

IR cameras can be classified into three categories based on the frequency wavelength they work on:

• Short-wave infrared (SWIR) cameras: SWIR sensors have the advantage of seeing through fog and

haze, and SWIR sensor equipped IR cameras are the only IR cameras that are capable of penetrating

clouds. Since the detecting wavelength(between 1.4 µm to 3 µm, figure 2.2) is relatively close to the

visible spectrum, the benefit that SWIR sensor provides is relatively limited when compared to other

IR sensor options.

• Medium-wave infrared (MWIR) cameras: a MWIR sensor provides similar benefits like a SWIR

sensor by detecting wavelength between 3 µm to 5 µm. However, the main focus of a MWIR sensor is

to provide optical imaging enhancement and gas detection rather than detecting the temperature of an

object.

• LWIR cameras: LWIR sensors are the most common IR sensor type used in measuring an object’s

surface temperature. LWIR works in the spectrum wavelength between 8 µm to 14 µm, thus it can be

used in a no-light environment, under bad weather conditions, and is able to see through smoke or thick

fog. Moreover, a LWIR sensor can detect humans efficiently, making it very compelling in autonomous

driving applications.

2.2.2 LiDAR

As discussed previously, LiDAR is an active sensor technology that can provide its own input, in addition

to accurately detecting the surrounding environment in 3D. Based on the technology employed, 3D scanning

LiDAR can be classified into two main categories: Rotating scan LiDAR and Solid-state LiDAR.

15

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Rotating Scan LiDAR Rotating scan LiDAR is defined as a range finder that measures the point distance .

The working principle relies on a 500nm to 1100nm wavelength laser diode (depending on the application)

firing a laser beam towards the desired measuring point, which is reflected (bounces) back towards the laser’s

point of origin. Thereafter, by deducing the duration of time incurred from firing until the laser receiver reads

the bounced laser signal, the distance from the laser diode to the desired measuring point can be computed. A

rotating-scan LiDAR(figure 2.3) is designed based on this idea that the addition of a tilting mirror to control

the laser firing angle, coupled with spinning the mirror to control the laser beam firing azimuth in an intricately

controlled manner, allows the sensor to generate an accurate 3D point cloud scan .

Figure 2.3: 3D rotating scan LiDAR illustration, image source:[140]

Rotating-scan LiDARs have underwent several design variations and iterations, such as in the case of the

partial rotating mechanical LiDAR(figure 2.4, also called Risley prism optical steering) that does not possess

a movable mirror, and instead, the mirror is replaced by a prism that spins at a high frequency to control

laser azimuth. In this particular setup, the tilting mirror can stay fixed within the LiDAR’s body. This design

variation allows a reduction in LiDAR unit size and an increase in accuracy over conventional rotating-scan

LiDARs. However, due to the inherent mechanical limitations, such a partial rotating mechanical LiDARs

have a smaller Field of view (FOV) and a shorter lifespan.

16

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2.4: Partial rotating scan LiDAR, also known as Risley prism optical steering LiDAR, image

source:[26]

Solid State LiDAR LiDAR is an advanced technological concept, featuring Microelectronechanical sys-

tems (MEMs)[168], wherein the LiDAR uses micro mirrors mounted on an IC to deflect laser beams. Com-

pared to a rotating scan LiDAR,

A solid-state LiDAR is much smaller and size, and does not contain any complicated rotating systems.

Thus, a solid-state LiDAR has the advantage of higher accuracy and significantly reduced costs. But also

compared to a rotating-scan LiDAR , MEMs LiDAR technology is not product-ready for autonomous driving

vehicles due to two main issues:

• Reduced Life-span: Due to the high-frequency vibrations sustained by the micro mirror (typically

more than 100 Hz), the lifespan of these IC do not meet satisfactory standards.

• Small FOV: Using a single mirror results in a limited FOV. In order to increase the FOV to levels com-

parable with spinning-scan LiDAR , multiple IC need to be stacked together in order to capture a larger

FOV. However, this process faces several technical challenges, including scan angles and projection

distortions, that present further conceptual challenges for the post-processing algorithms.

It is postulated that the reasons mentioned above hindered the use of any well-known solid-state LiDAR

products in autonomous driving applications up to the time of conducting this research. This would further

explain why, in terms of LiDAR products, published datasets contain information on spinning-scan LiDAR

only.

17

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.5: Solid state LiDAR, image source:[4]

Attributes Solid State LiDAR Rotating Scan LiDAR

Accuracy + +

Robustness + ++

Costs +++ +

Detection Range + +++

FOV + +++

Table 2.3: Comparison between rotating scan LiDAR and solid state LiDAR

2.3 Sensor System Setup

CMHT lab has the following sensors installed on the vehicle:

18

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2.6: Vehicle sensor location

• A top mount LiDAR (Velodyne HDL32)

• A top mount front-facing RGB camera (Logitech Brio) (Interchangeable with Greypoint Grasshopper3)

• A top mount front-facing thermal camera (FLIR A65)

• A front mount (bumper) radar

19

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.7: Vehicle configuration

This research emphasizes the utilization of cameras and LiDAR. Figure 2.7 illustrates the entire vehicle

configuration and the locations of sensors. A local coordinate system is established with LiDAR as the origin,

where the XYZ axes are defined as shown in Figure 2.8.

20

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

(a) Vehicle top view (b) Vehicle side view

Figure 2.8: Vehicle coordinate system

2.3.1 Velodyne HDL-32E LiDAR

Velodyne HDL-32E LiDAR (Figure 2.9) was placed on the top of the vehicle. This relatively compact LiDAR

uses 32 lasers aligned from +10◦ to -30◦ with an effective vertical field of view from +10.67◦ to -30.67◦,

scanning 695,000 points per second (or 1,390,000 points per second in dual return mode) to supply the point

cloud data in the sensor system. Its main purposes are 3D space object detection, classification, tracking and

assisting other sensors in lane tracking. In addition, as LiDAR is an accurate sensor, it also provides ground

truth measuring in object positioning for benchmarking other sensors.

21

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.9: Velodyne HDL-32E LiDAR

2.3.2 The Camera System

Logitech Brio USB Camera In additional to a LiDAR, the vehicle was equipped with a Logitech USB

camera (Figure 2.10c) on the top mount. a very high-performance and low cost imaging sensor. This camera

is the main imaging sensor for acquiring 2D image readings, and its main purpose is lane detection, license

plate detection, sign detection, in addition to and object detection, classification, and tracking. The camera

has a large 82.1 horizontal FOV, and 52.2 degree vertical FOV, can capture at 30, 60 FPS at 720P or 1080P.

It can also capture videos in 4K mode at 30 FPS.

Greypoint Grasshopper3 The Greypoint Grasshopper3 camera was selected to serve as the the stereo-

vision camera with dual cameras setup, for which synchronized capture driver was developed for it. Table 2.4

shows the specs of the RGB cameras on the vehicle. This camera is a backup option for the main camera with

the capability of capturing stereo vision with dual setups, and it is functions the same as the main camera.

22

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Attributes Logitech Brio Greypoint Grasshopper 3

Resolution HD, FHD, 4K HD, FHD, 2K

Frame rate 30/60Hz 7∼60Hz

Costs + ++

Diagonal FOV 65, 78, 90 degree 60 degree

Output mode Mono/RGB Mono/RGB

Sensor type CCD CMOS

Megapixels 13MP 2.8MP

Driver UVC 2.0 UVC 2.0 / GigE

Table 2.4: Camera specifications

FLIR A65 Thermal Camera FLIR A65 Thermal Camera: The FLIR A65 thermal imaging tempera-

ture sensor is a high-end LWIR thermal camera that uses Focal plane array (FPA) and uncooled VOX mi-

crobolometers (Figure 2.10a). FLIR A65 has a 25◦ × 20◦ horizontal and vertical FOV with a maximum

resolution of 640 times 512 pixels @ 30Hz, in addition to a capturing spectrum range between 7.5µm to

13µm. Due to the built-in functionality of thermal drift correction to prevent temperature drifting, which was

recommended to remain enabled by the manufacturer’s recommendations, one to two frame losses from the

rest of the sensor would occur. FLIR A65 thermal camera is a supplementary camera in the system, where its

output data is utilized in object detection, classification and tracking,

(a) FLIR A65 IR camera (b) Grasshopper3 (c) Logitech Brio

Figure 2.10: Optical sensors on the vehicle

23

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

2.4 Sensor System Implementation

A capture system was carefully designed to ensure that all sensors are synchronized. The capture system

was initially implemented in C++ with the Qt framework and a custom proprietary build data transfer link

system. Thereafter, the code was merged into the ROS2 system.

The trigger system was designed around the LiDAR system, based on the requirement that all sensors run

at 10Hz and are synchronized. As LiDAR cannot be controlled due to the nature of its mechanical spinning,

LiDAR was used as the system capture trigger; that is, whenever the LiDAR encoder reads across 0 degrees,

the system will send a capture trigger to other sensor threads and create a hardware capture trigger.

2.4.1 System output

Table 2.5 shows a summarized information about the system output, and table 2.6 provides the detailed output

format.

Frequency Synchronization
Sync delay

δt
Data rate Format FOV

Camera 10 Hz Yes <8.33 ms 27 MBytes/s 1280 × 720 RGB Image 90

IR Camera 10 Hz Yes (Software trigger) <15 ms 6.7 MBytes/s 640 × 480 Greyscale Image 25 x 20

LiDAR 10 Hz Trigger 0 ms 17 MBytes/s ∼58000 points scan, XYZIR Point cloud 360

Radar* 10 Hz Yes <8.33 ms - MBytes/s - points scan, XYZD Point cloud 60

Table 2.5: Table of capturing system information, *Radar outputs varies depending on number of object

scanned.

24

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Sensor Type Data

Camera XCAM = {R =


r11 . . . r1n

.

rm1 . . . rmn

 ,G =


g11 . . . g1n

.

gm1 . . . gmn

 ,B =


b11 . . . b1n

.

bm1 . . . bmn

}

IR Camera XIRCAM =


x11 . . . x1n

.

xm1 . . . xmn


LiDAR XLiDAR = {αi,θi,ri,di},0 < i≤ n

RADAR XRADAR = {θi,di,vi},0 < i≤ n

Table 2.6: Input table

2.4.1.1 LiDAR

LiDAR polar coordinate to Cartesian coordinate conversion LiDAR captures the reflectivity and dis-

tance of reflected point alone with the decoder recording azimuth and ring ID. Each ring ID associated an

angle with the laser head. For convenience, polar representation inputs were converted to Cartesian represen-

tation by using equation 2.1 before the data streaming.

Pk
LiDAR = {


xk

yk

zk

}= {


dk
θ
cos(αk)sin(θk)

dk
θ
cos(αk)cos(θk)

dk
θ
sin(αk)

 ,1≤ j ≤ n;0≤ θ≤ 2π} (2.1)

d j is the distance measured by the jth laser scanner, θ j is the angle of rotation for the scan, and α j is the angle

of pivot for the scan, and n is total number of scans.

Converted LiDAR output is represented in point clouds, a set pk
M of LiDAR sequence k containing the total

M number of tuples {x,y,z, i,r}: {x,y,z} is the coordinate of the returned laser scan with respect to the LiDAR

sensor position in the real world, unit in meters. i ∈ {0,255} is the corresponding laser reflection intensity,

and r ∈ {0,31} is the ring number associated with the returned laser scan ID. On Velodyne HDL32E, there are

32 laser heads. Therefore the ring number ranges between 0 and 31. The firing sequence is pre-determined

and arranged in a particular order, and please refer to the appendix for the Velodyne HDL32E LiDAR laser

firing timing table. Each tuple {x,y,z, i,r} representing a return scan of laser beam, also consider as a point.

25

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Unprocessed LiDAR output data is in polar coordination from the capture system. Raw LiDAR data are

packed in ROS Pointcloud2 format(table 2.7).

26

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Data type Name Default Value Note

Header header

uint32 seq

time stamp

string frame id ”map”

PointField[] fields

string name ”x” x position of a reflected point

uint32 offset 0

uint8 datatype 7

uint32 count

string name ”y” y position of a reflected point

uint32 offset 4

uint8 datatype 7

uint32 count

string name ”z” z position of a reflected point

uint32 offset 8

uint8 datatype 7

uint32 count

string name ”i” Intensity of a reflected point

uint32 offset 12

uint8 datatype 7

uint32 count

string name ”r” ring number, velodyne laser ID

uint32 offset 16

uint8 datatype 2

uint32 count

bool is bigendian

uint32 point step

uint32 row step

uint8[] data

bool is dense yes

Table 2.7: LiDAR Pointcloud2 message format. Please note that at CMHT, the standard XYZI pointcloud2

msg was not used. Instead, a custom XYZIR pointcloud2 msg was created that embedded LiDAR ring ID

information. 27

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.11: Visualization of LiDAR outputs

Convert LiDAR Cartesian Representation into Spherical Dense Representation LiDAR data are com-

monly stored in {x,y,z, i} set, where x,y,z is the set of coordinate in Cartesian plane respect to the LiDAR

sensor coordinate system, and i is the respect reflectivity (or intensity in come context) associated with the

respect data point. This representation is normally unpacked, therefore not suitable for 2D-inputs Neural net-

work (NN) to process. Spherical dense representation is a way to 2D visualize 3D LiDAR data, thus for this

research, all LiDAR data inputs are converted to spherical dense representation.

In order to convert spherical dense representation, a ring number×data count×number of channels ten-

sor was first created to store the LiDAR data. In this research, there are four channels: x, y, z, i, and the

ring number is 32 because of the number of laser IDs from the Velodyne HDL32e LiDAR. When data are

streaming in, the tensor starts filling from left to right, where the row position is based on ring id r, and the

datum is filled according to the channel x, y, z, i(See Figure 2.12 for the data structure illustration).

28

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2.12: Spherical dense representation illustration

2.4.1.2 Camera and IR Camera

Both RGB camera and IR camera outputs are in pixel coordinate {u,v}. Standard ROS2 image messages was

used to embed image information, and data are captured in RGB uncompressed format.

(a) Camera outputs (b) IR camera outputs

Figure 2.13: Imaging sensor outputs example.

29

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

2.5 Real-Time System Implementation

The primary capture system is developed in C++ with the QT framework. There are two distinct versions

of its implementation. Initially, the system was constructed using boost TCP and UDP protocol libraries,

including a TCP server that managed all connected devices and processing nodes, and P2P UDP to handle

the extensive data transfer between nodes. Later, a modification was made to make it compatible with the

ROS2 system. This ROS2 version maintains the original triggering system design but adds a ROS2 wrapper

to facilitate data transfer. It continues to be maintained because its API is more accessible to researchers in

labs. However, the ROS2 version’s performance is slightly inferior to the custom-built TCP/UDP version.

Moreover, future development on the boost protocol version might be challenging due to limited support and

complexity in the node data transfer process. In contrast to the difficulties posed by the custom build, ROS2

has made this process more transparent and streamlined, even though its performance might be slightly worse.

Figure 2.14 provides an illustration of the triggering system design where the LiDAR sensor is used as the

trigger generator. Whenever the rotary angle reaches the 0-degree mark, the LiDAR class dispatches a signal

to all other sensors to synchronize their capture.

The vehicle’s camera uses a GiGE interface, containing an internal hardware trigger API that precisely

controls when the camera shutter captures an image. Similarly, the IR camera possesses this feature, making

the entire system revolve around the LiDAR sensor. All sensor capture and interfacing classes operate on the

highest-priority threads, and the data capturing process is embedded within a critical section.

The data captured by the sensors are temporarily stored in the main PC and transferred to a recorder class

for processing. This recorder class runs on a thread with less priority than the main sensors, and it only

processes data during the off time when sensors are not capturing. Once the sensor data is copied from the

capturing buffer to a stack buffer for processing, the remaining CPU time is utilized to compress the data and

send it to other nodes via either UDP or ROS2 interface.

Communication between nodes (from different machines) employs TCP protocol for reliability, while

data sending uses P2P UDP with hardware compression. Then, the message (sensor data) is reconstructed in

the destination nodes for further processing.

In Figure 2.14, there is an additional System on Module (SOM) (Nvidia Jetson TX2) utilized to control

the IR camera. This SOM was later removed in the ROS2 version, and the controlling class was transferred

to the main processing unit. This shift was made possible due to an upgrade in the main controlling PC’s

30

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

specifications, where an improved CPU with hardware compression support and an increased number of

processing cores stabilized the system’s throughput, eliminating the need for additional SOM support.

Figure 2.14: System design illustration

31

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

2.6 Results

2.6.1 Stereo Camera System Performance Test

A simple experiment was designed to estimate the two cameras’ capturing time difference δtcapture. First,

a cellphone with a screen refresh rate of 120Hz was placed, and both cameras were pointed at it (Figure

2.15). Then, a timer counter was started on the phone’s screen. After the capture system was triggered, the

difference between the two capture instances was measured by reading the number off both camera captures

(Figure 2.16).

δtcapture was estimated under the following assumptions:

• Phone screen is running at 120Hz, approximately 8.33 ms per number change.

• If the number reading is the same, then the result difference is within 8.33 ms.

Figure 2.15: Capture synchronization test setup

32

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2.16: Capture synchronization test result sample

By performing this simple experiment and sampling it n=100 times, it was concluded that both cameras

have a capture δtcapture ≤ 8.33ms. Since the system is running at 10Hz, this result is considered satisfactory.

2.6.2 System Performance Stability Test

A system delay measurement test was conducted to assess the stability of the system’s throughput. During the

test, the timestamps of all received input packets were recorded, and the time difference(δt) between consec-

utive frames was analysed. The experiment was run for 350 samples, lasting 35 seconds. The implementation

demonstrated an impressive average system delay of 99.83 ns, with a maximum delay of 121.21 ns and a

minimum delay of 77.24 ns. The observed jitter in the system was remarkably low, measuring only about

0.000001% relative to the frame time interval, which was 100 milliseconds. This minuscule jitter can be

considered negligible, indicating a highly stable system.

33

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 2.17: Jitter measurement

2.7 Conclusion

In conclusion, sensors are essential components of the smart vehicle, and picking only one sensor is

unlikely to compose a robust, weatherproof sensing system. Therefore, it is always ideal to pick multiple

sensors, taking advantage of the attributes of different sensors to cover the weaknesses of a system that

depends on one type of sensor. However, simple sensor stacking would not work, which demonstrates the

need for a process called “sensor fusion” to utilize the full potential of a multi-sensor approach. The next

chapter will discuss the fusion of multiple sensors and the data processing entailed .

34

Chapter 3

Sensor Fusion

3.1 Introduction

Sensor fusion enhances the overall reliability and performance of the system but introduces some inherent

challenges: high cost, intensive processing, and data alignment. Modern technological advancements have

enabled the mass production of sensors at relatively low costs, and powerful processors allow for the real-time

computation of complex systems. However, data alignment remains an issue: each sensor operates in its own

coordinate system because it originates from the sensor’s installation location, and sensors are installed on

different parts of the vehicle. Additionally, LiDAR captures data in 3D space, while the camera captures data

in 2D space. To unify the coordinate systems, alignment techniques must be applied. This chapter discusses

the fusion techniques specifically tailored and implemented for aligning the CMHT sensors. Furthermore, an

introduction to the CMHT dataset is provided. This complementary dataset combines LiDAR, IR camera,

camera, GPS, and Radar readings captured at different times of the day, under various weather and lighting

conditions, in urban and highway driving scenarios.

35

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

3.2 Sensor Fusion

The first sensor fusion functional model was defined in the mid of 1980s by US Joint Directors of Labo-

ratories (JDL)[23]. The very first model defined a five-level data fusion model that was designed for military

and intelligence service, later the model was redefined for general purpose[152] in 1998, and expanded into a

six-level data fusion model (Figure 3.1) in 2003[24][22].

Figure 3.1: Original JDL fusion level diagram

Refined JDL six-level sensor fusion functional model:

• Data alignment (Level 0): data alignment ensures that sensor data are synchronized and aligned cor-

rectly. This alignment includes time synchronization, spatial alignment and dynamic alignment. Time

synchronization synchronizes the sensor base on time; spatial alignment aligns the sensor by its relative

position; and dynamic alignment aligns different sensors based on their dynamics.

• Entity assessment (Level 1): extracting and characterizing object features from the data such as shapes,

size, classification and more.

• Situation assessment (Level 2): situation assessment is the process of using sensor data information

to understand the relation amoung the entities[21]. For example understanding if the vehicle is on a

highway.

• Impact assessment (Level 3): estimating or predicting the effects of the object on the user.

• Process refinement (Level 4): process refine is by using existing data information to improve the entire

process for better performance/results.

• User refinement (Level 5): user/human fine tuning the process to improve the performance.

36

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

• Mission refinement (Level 6): mission-based fine tuning process to complete the objective better.

JDL sensor fusion model provides a very general abstraction of the sensor fusion process, and despite it

originating from the military, the model is now extended into multiple domains such as autonomous driv-

ing[145][115][106] and robotics[86][146][153] for tasks like localization and perception.

Sensor fusion in autonomous driving has a specific goal: autonomous driving vehicle takes the homoge-

neous or heterogeneous sensor inputs, combine and refine the inputs for a better understanding of the sur-

rounding (i.e. object classification, object tracking, vehicle localization), and improve the sensor data quality.

There are a lot of sensor fusion autonomous driving research, and based on the architecture of system, those

sensor fusion techniques are commonly categorized into three categories[48][163]:

• Data level sensor fusion(figure 3.2): the fusion process happens at the sensor data level. At this level,

the sensor data is first associated, then perform the information extraction. Data level sensor fusion

is the most straight forward sensor fusion, also simple to implement and relatively less computational

complexity. Some data-level fusion models[83][16][113] are focusing on solving vehicle position and

localization problems by IMU with GPS. Additionally, research has been conducted on implementing

data level sensor fusion in low computing power devices, for example Suhr et al.[154] implemented

a low-cost vehicle localization system fusing GPS, IMU, wheel encoder, map and pre-processed front

camera information at data level on the Intel®Edison System on Chip (SOC), a very low-power atom

chip. Data-level sensor fusion models can also apply to solve complex problems like object tracking,

for example Zhen Jiaet al.[80] proposed two camera data-level sensor fusion model to track moving

targets. However data level sensor fusion also comes with a few disadvantages: sensor fusion model

needs to be precise to have the result accurate; and data level sensor fusion model usually does not deal

with sensor failures, where failed sensor inputs can affect the fusion outcomes;

37

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.2: Data level sensor fusion model

• Feature level sensor fusion(figure 3.4): multiple sensor data are feature extracted first, then associated

and processed. The advantage of feature level sensor fusion is the model correlates different features

from the sensor and generate a set of salient features for the final sensor outputs, also because the feature

extraction happened after the data collection, therefore it uses less bandwidth to transfer the data when

compared to data level sensor fusion. The model is very popular in autonomous driving research and

especially common within works that fuses high-resolution sensors such as LiDAR and cameras[35];

for example Qingquan Li et al.[102] developed a feature level heterogeneous sensor fusion model where

features such as RGB information are extracted from the camera, and road information with depth from

the LiDAR, then combine the features together to detect lanes; Thao Dang et al.[42] work developed

a feature level homogeneous sensor fusion, where the research extract features from multiple stereo

cameras to create a stereo image to retrieve depth and stereopsis information, then by using Kalman-

filter on the features to track objects on the road; Other heterogeneous sensor fusion network works like

Radar to camera [84][124][98] also well researched. Another expanding field within feature level sensor

fusion for autonomous driving focuses on neural network-based research[84],[124],[98]. This specific

area is rapidly advancing due to two primary factors: the availability of open-source dataset (Ford drive,

KITTI and others) becomes more accessible for the neural network to train on; and succession of image-

based segmentation and classification neural network architecture such as Region-Based Convolutional

Neural network (R-CNN), fast R-CNN, and YOLO. Those autonomous driving NN based decision

level sensor fusion follows a general pipeline (shown in figure 3.3, and the pipeline can be modelled by

the feature level sensor fusion model.

38

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.3: Neural network based sensor fusion approach general process pipeline (Feature level sensor fu-

sion)

Figure 3.4: Feature level sensor fusion model

• Decision level sensor fusion(figure 3.5): each sensor information is feature extracted and processed

39

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

individually,and the results are associated and produce the final output. The process is similar to human

biological making decisions, thus named decision level sensor fusion. Comparing to other sensor fusion

models, decision level sensor fusion for autonomous vehicle is mostly focusing on NN based solutions,

for example Sang-Il Oh et al.[127] proposed a LiDAR with camera sensor fusion model: LiDAR and

camera are regional proposed separately, then feed the Region of Interest (ROI) into two different

CNN, and lastly fused the results together; Alireza Asvadi et al.[8] proposed a similar but slightly more

advance heterogeneous decision level sensor fusion model where LiDAR features dense and reflection

are fed into two separated YOLO networks for vehicle detection, and camera RGB information is feed

into another YOLO network, then results from three YOLO networks are combined and going through

a detection fusion to complete the sensor fusion process. Michael Manzet al.[110] work is taking a

traditional approach, where he fuses LiDAR with a camera to determine the drivability of the road for

the vehicle.

Figure 3.5: Decision-based sensor fusion model

There is no definitive answer to which sensor fusion model is superior, there are still a lot more to explore

in the research area. Works done by Gravina et al.[61] has a table summary of the characterises of each sensor

fusion level (figure 3.6).

40

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.6: Fusion characteristics at different levels, table source:[61]

3.3 Sensor Calibration

Sensor calibration is required to optimize the data capture and minimize measurement error. The work

focuses on calibrating the optical sensors, mainly meditating the distortion effect from the different types of

lenses. The accuracy of the object coordinate in the image affects the overlay performance in the following

data-level sensor fusion process.

On the other hands,LiDAR calibration is not as common as camera calibration due to it usually happens

during manufacturing through empirical and proprietary procedures. Also, the calibration models are highly

manufacturing-dependent and difficult to create a generalized model. There are some works[63], [120], [9]

done on this topic, though most of them are for aviation, and the methodology is difficult to transfer to the

autonomous driving vehicle LiDAR calibration.

41

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

3.4 Overview

At CMHT, a feature-level sensor fusion pipeline was designed to extract features from LiDAR, camera,

and IR camera, and then correlate these sensor features using spatial data alignment. This chapter focuses on

discussing the data alignment, while the next chapter will concentrate on feature extraction. The LiDAR to

camera alignment process pipeline is shown in Figure 3.7 with three steps after taking the sensor inputs: After

acquiring sensor data, camera calibration was performed on the camera inputs to correct any image distortion;

at the same time, the LiDAR to camera projection was calculated; finally, both results were combined to

compute the LiDAR to camera spatial alignment. The process of aligning LiDAR to IR camera is exactly the

same as for an RGB camera, thus they are discussed in the same manner.

Figure 3.7: LiDAR to camera spatial alignment procedure

42

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

3.5 LiDAR to Camera Spatial Alignment

Expanding the camera onto a bird-eyes view or any other similar 2D to 3D prediction requires a strong

assumption. The result is often less accurate because the depth is approximated/citemiethig2019leveraging.

Thus for this research, LiDAR was projected onto the camera coordinate for better position estimation.

Figure 3.8 shows the overview of the projection process. The LiDAR to camera projection requires the follow

steps:

• Translate the LiDAR coordinate into world coordinate.

• Translate the world coordinate into camera 3D space coordinate

• Project the camera 3D space coordinate onto pixel coordinate

Now the LiDAR point clouds in [x,y,z] coordinate is mapped onto camera pixel coordinate [u,v]. For the

camera part, it only needs one step which is mapping the camera distorted coordinate to the camera pixel

coordinate(Detail in section 3.5.1).

Figure 3.8: Coordinate system illustration

43

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Since the world coordinate was defined to be the same as the LiDAR coordinate in this work, the first step

can be omitted. Figure 3.9 shows the actual process of LiDAR to camera in this work.

Figure 3.9: Coordinate system illustration

Transformation equation 3.1 is used to convert the LiDAR coordinate (X ,Y,Z) into the camera coordinate

(U,V). In this equation, the rotation matrix is represented by R and the translation matrix by t. (fu, fv,u0,v0)

is the camera intrinsic parameter.


u

v

1

=


fu 0 u0

0 fv v0

0 0 1


R t

0 1




x

y

z

1


(3.1)

3.5.1 Camera Calibration

Modern cameras use lenses to improve the imaging capturing quality and provide various utilities. For ex-

ample, most robotic and autonomous vehicle applications use fish-eye lenses simply because it allows the

camera to capture a larger field of view with limited light-sensitive sensor surface area.

However, the fish eye also came with a significant drawback where the convex-shape lenses distort the

captured images (Figure 3.10).

44

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.10: Fisheye view example. [10]

The distortion introduced by the concavity of the lens is called radial distortion. Barrel, pincushion, and

moustache distortion are three kinds of radial distortions.

• Barrel distortion: the lens has a concave shape. The affected image’s center is stretched, and the edge

of the image is compressed in the outer direction from the centre. The image appears to be mapped on

a spherical surface.

Figure 3.11: Example of a barrel distortion, image is artificially distorted for demonstration purpose.

• Pincushion distortion: the lens has a convex shape, and resulting image compressed around the centre,

and stretching out on the edge. Fisheye lens is a common application for this kind of distortion.

45

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.12: Example of a pincushion distortion, image is artificially distorted for demonstration purpose.

• Moustache distortion: the lens is deformed, and image result is a mix of both distortions together.

Figure 3.13: Example of a moustache distortion, image is artificially distorted for demonstration purpose.

Figure 3.14: Distortion Illustration. Left: pincushion distortion, Right: barrel distortion.

Tangential distortion(also called de-centred distortion) is introduced from the camera sensor is not being

perfectly parallel to the lens (figure 3.15), thus skewing the image.

46

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

(a) Image distortion (b) Camera section view

Figure 3.15: Tangential distortion illustration.

Figure 3.16: Example of a tangential distortion, image is artificially distorted for demonstration purpose.

A developed model can un-distort this distortion effect by carefully tuning the parameters, and the param-

eter tuning process is called camera calibration. Early camera calibration method was developed by Duane

C. Brown et al.[27] in the early 1970s. The calibration method used plumb-lines to compute the parameters

in a non-linear collinearity equation model. But the first adopted method was developed by Roger Y. Tsai

et al.[160], his work introduced a two-stage process by combining linear and non-linear techniques, and the

method is refined by the later works[100], [169], and [66]. Zhang et al.[179] improved the calibration method

by allowing the camera and planar pattern to move around freely while still being able to accurately model

the distortion, and due to its simplicity and autonomy, this is one of the most popular calibration methods

used by this day.

47

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.17: Pin hole camera illustration

3.5.1.1 Pinhole Camera Model

Before discussing Zhang’s calibration technique, it is essential to understand the relation between the pixel

position of an image captured by a camera and its real-world spatial information. An m×n resolution image

contains many points, and denote each point position
[
u v

]T
. u and v are the pixel indices in the computer

system, and
[
x y z

]T
denotes the point in the real-world 3d coordinate. Based on the figure 3.17, equation

3.2 and equation 3.3 can be formulated by using trigonometry.

u =− f x
z

(3.2)

v =− f y
z

(3.3)

Equation 3.4 can be derived by combining both equations 3.2 and 3.3, and equation 3.4 shows the relation

between 3D real world coordinate
[
x y z

]T
and pixel coordinate

[
u v

]T
in the image, where f is the

focal length of the camera.

u

v

=− f
z

x

y

 (3.4)

48

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

3.5.1.2 Brown-Conrady Radial and Tangential Un-disortion Model

Brown-Conrady model[39] was used to reverse the camera lens distortion effect.

xu = xd +(xd− xc)(K1r2 +K2r4 + . . .)+ [p1(r2 +2(xd− xc)
2)

+2p2(xd− xc)(yd− yc)](1+ p3r2 + p4r4 . . .)

(3.5)

yu = yd +(yd− yc)(K1r2 +K2r4 + . . .)+ [2p1(xd− xc)(yd− yc)

+p2(r2 +2(yd− yc)
2)](1+ p3r2 + p4r4 . . .)

(3.6)

r =
√

(xd− xc)2 +(yd− yc)2 (3.7)

• xu and yu is the undistorted pixel coordinate of the point.

• xd and yd is the distorted pixel coordinate of the point.

• xc and yc is the centre of the distortion.

• Kn is the nth radial distortion coefficients.

• pn is the coefficient of the nth tangential distortion.

The model contains two power series: first power series (xd − xc)(K1r2 +K2r4 + . . .) is the radial distortion,

and second power series [p1(r2 +2(xd − xc)
2)+2p2(xd − xc)(yd − yc)](1+ p3r2 + p4r4 . . .) is the tangential

distortion.

3.5.1.3 Zhang’s Calibration Technique

Zhang’s calibration method can compute both distortion variables, extrinsic variable for the setup by utilizing

checker board inputs (Figure 3.18, 3.19).

Zhang’s calibration method uses the following procedure[178]:

• A special checkerboard was created and used for both camera and IR camera calibration. Details on the

checkerboard can be found in the next section.

• Capture several images of the model plane using different angles by either moving the camera or the

plane.

• Detect the feature points in the images. This step can be done manually or using feature extraction

techniques. In this case, Canny edge extraction method was used.

49

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

• Using the closed-form solution as described, determine both five intrinsic parameters and extrinsic

parameters.

• Calculate the coefficients of the radial distortion by solving the linear least-squares.

• Minimizing all the parameters.

To estimate the distortion, Zhang proposed a simple differential estimation: Zhang assumes only the first

two distortion factors K1 and K2 are having major impact to the image, and can ignore the rest of K terms. By

expanding the equation 3.5 and 3.6 with equation 3.4 to get an approximation relation equation 3.8 and 3.9.

û = u+(u−u0)[K1(x2 + y2)+K2(x2 + y2)2] (3.8)

v̂ = v+(v− v0)[K1(x2 + y2)+K2(x2 + y2)2] (3.9)

Then the equation can be rewritten into linear form (equation 3.10) and finally solve the linear system to

get K distortion coefficients.

(u−u0)(x2 + y2) (u−u0)(x2 + y2)2

(v− v0)(x2 + y2) (v− v0)(x2 + y2)2

K1

K2

=

û−u

v̂− v

 (3.10)

Figure 3.18: A calibration example with the checkerboard close to the centre of the sensor, image to the left

is the RGB camera, and image to the right is the IR camera.

50

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.19: Another calibration example with an off-center checkerboard position. It’s important to note that

LiDAR sensor data is also collected during this time, resulting in the utilization of the same set of image data

for computing both intrinsic and extrinsic parameters, as well as distortion.

3.5.2 Camera and LiDAR Spatial Coordinates Estimation

Aligning the spatial coordinates of LiDAR and camera sensors involves capturing data and images of the

same objects and surroundings with both sensors, detecting features in the images, and correlating them to

calculate intrinsic and extrinsic parameters. Current research on automatic spatial alignment of LiDAR and

camera is mainly focused on identifying the most appropriate objects for feature matching and developing the

optimal feature extraction algorithm.

Early works[12][143] work on feature matching on common daily objects, then using various minimizing

techniques to find the extrinsic parameters. Qilong Zhang et al.[178] used checkerboards as calibration objects

to estimate the camera’s extrinsic parameters in relation to the ranger finder sensor. After capturing the sensor

data, they used the checkerboard to identify feature points and performed Levenberg-Marquardt method to

minimize the error function and finally estimate the extrinsic parameters. Notably, the calibration process is

very close reassembles to popular LiDAR to camera calibration methods today[180].

3.5.2.1 Overview

At CMHT, a customized automated calibration pipeline was employed for the equipment used to determine

the extrinsic and transform parameters for aligning the vehicle LiDAR and other sensors. In the preparation

process, calibration data sets were captured by placing the checkerboard at various locations.

51

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.20: Overview of camera and LiDAR spatial alignment pipeline.

3.5.2.2 Feature Detection

In this work, a checkerboard is employed for calibrating both the LiDAR and the camera. The LiDAR is

responsible for detecting the surface plane of the checkerboard and identifying its corners. On the other hand,

the camera detects the corners of the checkerboard pattern as features. Through matching these detected

features in the camera and LiDAR, the extrinsic parameters can be computed to achieve spatial alignment

of the two sensors. This approach guarantees precise calibration and alignment of the two sensors, a critical

requirement for dependable data fusion and perception tasks. The utilization of the checkerboard simplifies

the calibration process and enhances the accuracy and robustness of the entire system.

LiDAR Featured Extraction The process (Figure 3.21) of detecting a featured calibration plane involves

several steps. Firstly, LiDAR data is captured and clustered using Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) algorithm[50] . Once the clusters have been identified, each one is subjected

to filtering to remove any noise or outliers, which is done using Random Sample Consensus (RANSAC) algo-

rithm[52]. The resulting clusters are then checked to determine if their surface area is close to the computed

checkerboard surface area within certain tolerances. If a cluster passes this test, it is deemed to be the correct

calibration plane and is output as such. By following these steps, it is possible to accurately identify and

calibrate a featured plane using LiDAR data.

52

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.21: LiDAR feature detection pipeline.

DBSCAN To account for the possibility of background objects being mistakenly identified as checker-

board planes during the calibration process, the research utilized the DBSCAN algorithm (Algorithm 1) to

determine the number of clusters present in the scene. This clustering algorithm does not require prior knowl-

edge of the number of clusters and thus allows for more accurate identification of relevant objects. Following

this process, the algorithm produced a set of N {x,y,z} coordinates, where N represents the number of objects

detected.

RANSAC Employing a modified RANSAC algorithm, the process outlined in Algorithm 2 is utilized

for removing outliers from a given cluster. Assumption is made that there are no duplicate LiDAR points

within the cluster. The approach involves random selection of three points to establish a plane by calculating

the normal vector, denoted as N⃗ =< A,B,C >. Subsequent step involves computation of the distance offset,

dk, from the input LiDAR point < xk,yk,zk > for all other points, utilizing Equation 3.11. Points for which dk

exceeds the designated distance threshold, T hdistance, are filtered out. Lastly, the error function expressed in

Equation 3.12 is employed to determine the optimality of the current plane set.

Axk +Byk +Czk +dk = 0 (3.11)

53

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Algorithm 1 DBSCAN

Require: points list P, minimum distance ε, minimum number of LiDAR points τ

ID = 0

for i = 1,2, ..., P.length do

if P[i].label ̸= undefine then

Find list of neighbour points N in P with ε

end if

if N.length < τ then

P[i].label = Noise

continue

end if

ID = ID +1

P[i].label = ID

S = N

for j = 1,2, ..., S.length do

if S[j].label = Noise then

S[j].label = ID

end if

if S[j].label ̸= undefined then

continue

end if

S[j].label = ID

Find list of neighbour points N in S with ε

if N.length ≥ τ then

S.add(N)

end if

end for

end for

54

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Corner Condition 1 Condition 2

Bottom Left Min(x) Min(z)

Upper Left Max(z) Min(x)

Upper Right Max(x) Max(z)

Bottom Right Min(z) Max(z)

Table 3.1: Corner matching table

ε =
∑ |dk|

n
, where k = 1,2, ...,n (3.12)

Vertex Detection Once the points belonging to the checkerboard plane are identified, the process can

proceed to locate the vertices (corners) of the checkerboard in the LiDAR scans.

One significant assumption is that the checkerboard always faces towards the observer and is closely

aligned with the LiDAR’s x and z planes. To detect the vertices, the following strategy is employed:

• To locate the bottom-left corner of the board, the plane point < x,y,z > with the minimum x value

is sought. If there are multiple points within a threshold value tr with close ranges, the one with the

minimum z value is selected.

• For locating the remaining corners, please refer to Table 3.1. Despite the previous filtering step, certain

scan points may still lie on the plane of the checkerboard but not necessarily belong to the checkerboard

scan. In the subsequent step, these points must be eliminated.

55

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Algorithm 2 RANSAC Outlier Filtering

Require: points list P, distance threshold T hdistance, iteration threshold k,

minimum number of inlier n, point list Inlier, list D, point list Inlierbest,

best error εbest

while iteration < k do

Randomly pick 3 points from P to form a 3-tuple T

if points in T is collinear then

continue

end if

Compute the norm N⃗ =< A,B,C > from T

for all point p in P do

Substitute p =< x,y,z > with N⃗ into Equation 3.11 to compute d

if d ≤ T hdistance then

Inlier.add(p)

end if

end for

if Number of points in Inlier≥ n then

for all points m in Inlier do

Substitute m =< x,y,z > with N⃗ into Equation 3.11 to compute d

D.add(d)

end for

Substitute D into Equation 3.12 to compute ε

if εbest ≥ ε then

εbest = ε

Inlierbest = Inlier

end if

end if

iteration = iteration+1

end while

56

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.22: Checkerboard vertices marked by red circles

Given equation the line in 3D space is:

[x,y,z] = [x0,y0,z0]+ t[a,b,c] (3.13)

Which represents all the points on the line passing through the point [x0,y0,z0] and in the direction of the

slope vector r⃗ = [a,b,c]. t is an arbitrary real value.

With knowledge of the approximate starting vertex’s location, it becomes possible to define four lines

representing the four sides of the LiDAR-scanned checkerboard plane. For the four corners C1,C2,C3,C4, the

four sides are constructed by substituting values into Equation 3.13, resulting in equations for the four sides

S12,S23,S34,S41.

S12 =


C1x +(C2x−C1x)t

C1y +(C2y−C1y)t

C1z +(C2z−C1z)t

 ,S23 =


C2x +(C3x−C2x)t

C2y +(C3y−C2y)t

C2z +(C3z−C2z)t



S34 =


C3x +(C4x−C3x)t

C3y +(C4y−C3y)t

C3z +(C4z−C3z)t

 ,S41 =


C4x +(C1x−C4x)t

C4y +(C1y−C4y)t

C4z +(C1z−C4z)t


57

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

For a given point pk =< xk,yk,zk >, the shortest distance dk,i j from the point pk to the side Si j can be

computed using Equation 3.14.

d2
k,i j = [(Cix− xk)+(C jx−Cix)t]2 +[(Ciy− yk)+(C jy−Ciy)t]2 +[(Ciz− xz)+(C jz−Ciz)t]2 (3.14)

where t can be computed using the equation 3.15.

t =−
(Cix− xk) · (C jx−Cix)

|C jx−Cix|2
(3.15)

Substituting equation 3.15 back into equation 3.14, the final equation 3.16 is obtained. The distance dk,i j

is kept in squared form because this number will be used to determine if the corners {C1,C2,C3,C4} actually

align with the checkerboard.

d2
k,i j =

|(C jx−Cix)× (Cix− xk)|2

|C jx−Cix|2
(3.16)

Figure 3.23: Plane formed by enclose vertices

To determine the scan points that enclose the checkerboard shape, the Quickhull algorithm[13] is em-

ployed to construct a convex hull of the checkerboard. To simplify the process, only the x and z coordinates of

58

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

the LiDAR data are considered, assuming that the depth y has a negligible impact on the result and avoiding

the need to deal with hyperplanes.

ax+by+ c = 0 (3.17)

Given a standard form of linear equation (Equation 3.17), and two points Ci,C j. Coefficient a, b and c can

be computed with the following equation.

a = (Ciy−C jy)

b = (C jx−Cix)

c = (CixC jy−C jxCiy)

(Ciy−C jy)x+(C jx−Cix)y+(CixC jy−C jxCiy) = 0 (3.18)

To determine the half-plane in which a point t =< x,z > lies with respect to the line lCiC j , Equation 3.18

can be utilized. If the equation equals 0, then t is collinear with the points Ci and C j. Otherwise, t resides

in one of the two half-planes. To ascertain which half-plane t is positioned on, it is examined whether the

left side of the equation is greater or less than 0. If it is greater than 0, then t lies on the half-plane to the

left of the line; if it is less than 0, then t lies on the half-plane to the right of the line. Importantly, it should

be noted that in this computation, the y value has been swapped with the z value, effectively treating all 3D

points < x,y,z > as 2D points < x,z >.

Barycentric coordinates were employed to establish whether a point t =< x,y > lies within a triangle

constituted by the points Ci,C j,Ck. If λ1, λ2, and λ3 are all positive, then the point resides inside the triangle;

conversely, if any of them are not positive, the point lies outside the triangle.

λ1 =
((C jy−Cky)∗ (x−Ckx)+(Ckx−C jx)∗ (y−Cky))

((C jy−Cky)∗ (Cix−Ckx)+(Ckx−C jx)∗ (Ciy−Cky))
(3.19)

λ2 =
(Cky−Ciy)∗ (x−Ckx)+(Cix−Ckx)∗ (y−Cky))

((C jy−Cky)∗ (Cix−Ckx)+(Ckx−C jx)∗ (Ciy−Cky))
(3.20)

λ3 = 1−λ1−λ2 (3.21)

With the foundational calculations in place, the application of the Quickhull algorithm to the LiDAR scan

points can be undertaken, following the steps delineated in Algorithm 3.

After the convex hull points have been extracted, the previously identified corners can be validated. In

particular, Equation 3.16 is employed to calculate the distance of each point from its corresponding line

segment. This is followed by the computation of the error using Equation 3.22.

59

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Algorithm 3 Quick Convex Hull

Require: line start point Cs, line end point Cd , point list P

Require: left points list U , right points list D, hull points list H = {Cs,Cd}

for all points t in P do

if t is on the left side of line lCs,Cd then

U .add(t)

else

D.add(t)

end if

end for

Findhull (U ,Cs,Cd)

Findhull (D,Cd ,Cs)

Return H

Function Findhull(point list pl , starting point ls, end point le)

if pl = /0 then

Return

end if

Find the furthest point f using equation 3.14

H.add(f)

Remove all the points lies inside the triangle < ls, le, f > from pl

In pl , put points from left side of the line lls, f into set s1

In pl , put points from right side of the line lle, f into set s2

Findhull (s1,ls, f)

Findhull (s2, f ,ld)

End

60

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Determining the corresponding convex hull points for a given side is a relatively straightforward task.

Specifically, a search is conducted to identify points lying within the value range of each corner, guided by

the condition Si j = ((pk|six ≤ pkx ≤ s jx)∧(siy ≤ pky ≤ s jy)). Subsequently, a fitting test is performed to assess

the capacity of the initially selected corner points to encompass all the points identified along the side. This

test involves calculating the distance of point k from line Si j using Equation 3.16, and then aggregating the

error using Equation 3.22. If the resulting error ε surpasses the threshold value thside, the set is considered

inadequate, prompting a restart of the process.

ε = ∑d2
k,i j (3.22)

Finally, leveraging the physical dimensions of the checkerboard enables us to promptly assess the suitabil-

ity of the detected plane. This is achieved by computing the percentage error, as described in Equation 3.23,

between the actual side length Skreal and the estimated side length Sk, following the approach outlined in the

work by Yoonsu Park et al.[131]. Subsequently, the computed error εk is compared against a chosen threshold

value Tk. If the error is below the threshold, it is inferred that the set of LiDAR scan points corresponds to the

checkerboard intended for calibration. Conversely, if the error surpasses the threshold, the set is discarded,

initiating a new search for an alternative set of image and LiDAR data for calibration purposes.

εk =
|Sk|real−|Sk|
|Sk|real

(3.23)

Camera Feature Extraction Identifying the black and white corners on a checkerboard is a pivotal task in

camera calibration, given their utilization in both Zhang’s calibration, as explained in the earlier section, and

the extrinsic estimation process. In this study, the Harris corner detection method [65] has been adopted for

this purpose. The camera’s input image is first transformed into grayscale, and subsequently, the Harris filter

is employed on the processed image to discern the corners of significance.

61

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.24: Camera feature detection pipeline.

Gray Scale Conversion In this research, weighted grayscale conversion (as specified in Equation 3.24)

was employed to transform the RGB camera from its native RGB colour space <R,G,B> to grayscale colour

space, thereby reducing the number of channels from 3 to 1. It should be noted that this conversion process

was deemed superfluous for the IR camera, as the latter was already generating an image that resembled

grayscale.

gray = 0.2989×R+0.5870×G+0.1140×B (3.24)

Harris Corner Detection After obtaining the filtered grayscale image, the next step involves deter-

mining its partial derivatives with respect to the horizontal and vertical axes, denoted as Ix(x,y) and Iy(x,y),

respectively. For this purpose, the Sobel operator is employed, a widely recognized technique in digital im-

age processing for edge detection. By applying the Sobel operator to the filtered grayscale image, accurate

computation of the partial derivatives in both directions is achieved. Importantly, it should be noted that the

Gaussian smoothing inherent in the Sobel operator obviates the need for extra smoothing using a Gaussian

filter to suppress image noise.

In the research, a 3× 3 Sobel vertical filter (Equation 3.25) and a 3× 3 Sobel horizontal filter (Equation

3.26) are employed to convolve with the image I (Equation 3.27 and Equation 3.28). The outcome of this

operation is the creation of a vertical partial derivative matrix Iy and a horizontal partial derivative matrix Ix.

62

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

V =


−1 −2 −1

0 0 0

1 2 1

 (3.25)

H =


−1 0 1

−2 0 2

−1 0 1

 (3.26)

Ix = I∗H (3.27)

Iy = I∗V (3.28)

In the subsequent stage, Harris corner detection method was employed by using Equation 3.29. In this

equation, the matrix M represents the structure tensor, while w(x,y) is the window function of size a×b, with

a rectangular shape selected for this study (as indicated in Equation 3.31).

E(u,v)≈ [u,v]M

u

v

 (3.29)

M = ∑
(x,y)∈w

w(x,y)

IxIx IxIy

IxIy IyIy

 (3.30)

w(x,y) =


1, if |x|< a

2 and |y|< b
2

0, otherwise
(3.31)

The Harris corner detection method utilizes the response function R, as defined in Equation 3.32, to

compute the score of the window. The free parameter k is empirically determined to lie within the range of

[0.04, 0.06] for the Harris detector.

R = det(M)− ktrace(M)2 (3.32)

det(M) = λ1λ2 (3.33)

trace(M) = λ1 +λ2 (3.34)

63

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

The response function is simplified by substituting Equation 3.33 and Equation 3.34 into Equation 3.32.

The resulting expression is shown in Equation 3.35.

R = λ1λ2− k(λ1 +λ2)
2 (3.35)

Subsequently, the corner pixels are determined by comparing the response value R with a predetermined

threshold value Tcorner, considering the point to be a corner if the response value exceeds this threshold.

Furthermore, the type of region to which the point belongs can be identified based on the following conditions:

• if |R| is small, λ1 and λ2 are small, then the region is flat.

• if R < 0, λ1 >> λ2 or λ2 >> λ1, then the region is an edge.

• if R is large, λ1 ≈ λ2 and both large, then the region is a corner.

The above conditions are summarized in Figure 3.25.

Figure 3.25: Harris corner detection

A list of corners has been obtained using the aforementioned method, which can be utilized for both

Zhang’s camera calibration for intrinsic calibration, and for the subsequent step of estimating the vertex of

the checkerboard. This process involves feature matching with LiDAR data to extract extrinsic parameters.

64

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Vertex Detection A similar methodology, when applied to LiDAR data, can also be used for camera

vertex detection. However, since the projection from the camera to real-world coordinates is currently un-

known, the application is restricted to using DBSCAN, RANSAC, and a fitting process only. It’s noteworthy

that suitability tests based on real dimensions are not applicable to the camera vertex detection process.

3.5.2.3 IR Camera Extrinsic Parameter

The IR camera employs a feature detection method similar to that of a regular camera. However, the capture

of a different light frequency requires certain precautions to be taken during the calibration process. Specifi-

cally, the IR camera is not sensitive to the visual light spectrum, necessitating that the surrounding temperature

difference be relatively greater than that of the checkerboard during calibration. Therefore, during summer-

time calibration, the checkerboard is exposed to direct sunlight for approximately 30 minutes to allow it to

heat up. Conversely, during wintertime calibration, a heater is used to warm the board (Figure 3.26). The

checkerboard’s square size is 81mm.

Figure 3.26: Baking the checkerboard sheet

The checkerboard pattern used in this study is composed of three layers (Figure 3.27). The first layer is

a black pattern, followed by a white pattern, and the final layer is a hard wooden board. This design reduces

65

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

surface bending and flexing when the checkerboard is moved around. The black and white pattern layers

are mounted on the hard wooden board to minimize heat exchange and interference during the calibration

process. This way the checkerboard is specially designed to absorb heat differently on black and white

patterns, generating the checkerboard pattern that the IR camera captures. Even when both surfaces are

uniformly heated, the white pattern always remains at a lower temperature than the black pattern, enabling us

to proceed with the calibration process similar to that of a regular camera.

Figure 3.27: A cross section illustration of the checkerboard

3.5.2.4 Estimating the Extrinsic Parameter

After extracting features from both the camera and LiDAR, the first step to compute the extrinsic parameter

is to match the corners obtained from the two sources. This is accomplished by spatially matching the co-

ordinates based on the (u,v) image coordinates and (x,z) LiDAR coordinates. Given a set of image corner

coordinates (< u1,v1 >,< u2,v2 >,< u3,v3 >,< u4,v4 >) and LiDAR corner coordinates (< x1,y1,z1 >,<

x2,y2,z2 >,< x3,y3,z3 >,< x4,y4,z4 >), the pairs are matched as follows:

• MIN(x) matches MIN(u)

• MIN(z) matches MIN(v)

• MAX(x) matches MAX(u)

• MAX(z) matches MAX(v)

66

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.28: Matching corner features

The result of is a calibration dataset S contains n samples of calibration data si =< xi,yi,zi,ui,vi >, i =

1,2,3,4...n.

Projection Matrix Rewrite the equation 3.1, projection matrix M (Equation 3.37) was obtained.


u

v

1

=


fu 0 u0

0 fv v0

0 0 1


R t

0 1




x

y

z

1


= M



x

y

z

1


(3.36)

M =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 (3.37)

By rearranging and multiplying the equation, two distinct equations (Equation 3.38 and Equation 3.39)

can be derived to calculate the dot product of u and v. Using these equations in conjunction with a sufficient

number of input pairs, the problem can be effectively transformed into a non-linear least squares problem.

This transformation facilitates the estimation of projection matrix parameters.

u =
m11x+m12y+m13z+m14

m31x+m32y+m33z+m34
(3.38)

v =
m21x+m22y+m23z+m24

m31x+m32y+m33z+m34
(3.39)

A variety of algorithms are available for resolving the non-linear equations under consideration. In this

study, the Levenberg–Marquardt algorithm (LM) technique was chosen over other frequently employed op-

timizers such as Newton’s method. This selection is motivated by the fact that the initial estimation approx-

imation tends to be relatively inaccurate on the first attempt. Moreover, the calibration dataset possessed is

67

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

relatively limited, and the optimization procedure is conducted only once, with performance not considered

the foremost priority.

Levenberg-Marquardt Algorithm The multivariable function f (si,M) (Equation 3.40) can be derived

by transforming Equation 3.38 and Equation 3.39 into matrix form. Here, si ∈ S represents the calibration

sample, and M represents the projection matrix. This transformation is based on the work of Park et al.[131].

By vertically stacking the matrices in Equation 3.40, a non-linear system can be constructed between the

dataset S = {si|i = 1,2,3,4...n} and the function f (si,M).

 f1(si,M)

f2(si,M)

=

xi yi zi 1 0 0 0 0 −uixi −uiyi −uizi −ui

0 0 0 0 xi yi zi 1 −vixi −viyi −vizi −vi

M (3.40)

MT =
[
m11 m12 m13 m14 m21 m22 m23 m24 m31 m32 m33 m34

]
(3.41)

In order to find an optimal projection matrix M, minimize the sum of squares by obtaining a set of values

Moptimal is required. Ideally, if sum of squares of all f (si,M) approximates a zero matrix (Equation 3.42),

optimal projection matrix M was found.

Moptimal ∈ argminM

n

∑
i=1

[f (si,M)]2 (3.42)

f (si,Mk+1 +δk)≈ f (si,Mk)+Jk,δk (3.43)

The LM algorithm (Algorithm 4) can be applied to Equation 3.40 to estimate the projection matrix pa-

rameters m11,m12, ...m34. LM approximates the linearization of the function f (si,M) using Equation 3.43. To

use the algorithm, several parameters must be predefined:

• An initial value M0, which in this research was set to M0 = 1,1,1...,1 using a uniform distribution to

initialize M.

• A damping parameter l

• A max iteration itmax

• A stopping threshold ε

68

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Once these parameters have been defined, the algorithm procedure shown in Figure 3.29 can be used to

approximate the optimal projection matrix value M. The variables required for the algorithm are computed us-

ing Equation 3.44, 3.45, and 3.46, while Equation 3.47 is used to update the variables during the optimization

process.

Jk =



∂ f1(s1,Mk)
∂m11

∂ fi(s1,Mk)
∂m12

. . . ∂ f1(s1,Mk)
∂m34

∂ f2(s1,Mk)
∂m11

∂ f2(s1,Mk)
∂m12

. . . ∂ f2(s1,Mk)
∂m34

∂ f1(s2,Mk)
∂m11

∂ fi(s2,Mk)
∂m12

. . . ∂ f1(s2,Mk)
∂m34

∂ f2(s2,Mk)
∂m11

∂ f2(s2,Mk)
∂m12

. . . ∂ f2(s2,Mk)
∂m34

...
...

. . .
...

∂ f1(sn,Mk)
∂m11

∂ fi(sn,Mk)
∂m12

. . . ∂ f1(sn,Mk)
∂m34

∂ f2(sn,Mk)
∂m11

∂ f2(sn,Mk)
∂m12

. . . ∂ f2(sn,Mk)
∂m34



(3.44)

(JT
k Jk +λkI)δk = JT

k [f (si,Mk)] (3.45)

σk =
n

∑
i=1

[f (si,Mk)]
2 (3.46)

Mk+1 = Mk +δk (3.47)

69

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.29: LM algorithm steps

3.5.2.5 Sensor Alignment

Once the projection matrim M is obtained, it becomes possible to project LiDAR data onto cameras, as

demonstrated in Figure 3.30 and Figure 3.31.

70

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Algorithm 4 Levenberg-Marquardt Algorithm

Require: Initial value M0, damping parameter l, dataset S

Require: max iteration itmax, stopping threshold ε

while k ≤ itmax do

Compute Jk(Equation 3.44), δk(Equation 3.45), and σk (Equation 3.46)

if σk < ε then

Return Mk

else

if σk < σk−1 then

Mk+1 = Mk +δk

λk+1 =
λk
l

else

λk+1 = λkl

end if

end if

k = k+1

end while

71

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.30: Camera overlay example

Figure 3.31: IR camera overlay example

3.5.3 Result

To evaluate the algorithm’s performance, 40 calibration samples (Figure 3.32) were hand-selected from a pool

of over 1500 captured frames. These samples were collected at different ranges and angles, approximately

3m, 5m, and 7m away from the vehicle, and were manually labeled as ground truth measurements. Due to

the limitations posed by the field of view (FOV) and the presence of a vehicle mounting rack, the part of

the vehicle engine in the camera’s FOV had to be cropped out. Consequently, the original camera image

dimensions were adjusted to 1280× 500, while the IR camera image had effective dimensions 640× 425

(Figure 3.33). For better results and faster processing times, the self-vehicle cluster (2.5m×5m×2.5m) and

72

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

its surroundings were trimmed to generate only the captured ROI for LiDAR inputs.

To evaluate the algorithm’s performance, 40 calibration samples (Figure 3.32) were hand-selected from

a pool of over 1500 captured frames. These samples were collected at different ranges and angles, approx-

imately 3m, 5m, and 7m away from the vehicle, and were manually labeled as ground truth measurements.

Due to the limitations posed by the field of view (FOV) and the presence of a vehicle mounting rack, the

vehicle engine part from the camera’s FOV had to be cropped out. Consequently, the original camera image

dimensions were adjusted to 1280× 500, while the IR camera image had effective dimensions 640× 425

(Figure 3.33). For better results and faster processing times, the self-vehicle cluster (2.5m×5m×2.5m) and

its surroundings were trimmed to generate only the captured Region of Interest (ROI) for LiDAR inputs.

Figure 3.32: Calibration Samples

73

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

(a) Camera (b) IR Camera

Figure 3.33: Camera deadzone in the calibration area, marked in red. Left: camera, Right: IR camera.

The error ε of each sample is computed by taking the average pixel distance of each vertex (Equation

3.48).

ε =
1
4

4

∑
i=1

√
(Ui−ui)2 +(Vi− vi)2 (3.48)

where < u,v > represents the projected vertex, and <U,V > represents the ground truth.

Figure 3.34: Pixel errors

74

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.35: IR Camera pixel errors

Due to the IR camera having a much lower resolution (640×425) compared to the regular camera (1280×

500), the camera calibration result is actually worse for the regular camera. The error for the regular camera

is approximately 0.66% with respect to the horizontal pixel counts and 1.70% with respect to the vertical

pixel counts, while the IR camera has errors of 0.61% horizontally and 0.91% vertically, respectively. This

discrepancy is expected due to the IR camera’s lower resolution, resulting in higher error tolerances. Figure

3.34 and figure 3.35 shows the error in pixels of each sample.

On the other hand, both the IR camera and the regular camera exhibit a trend where the pixel error

increases as the object moves further away from the camera. This trend is likely caused by a slightly inaccurate

approximation of the focal length f .

Additionally, both cameras display higher errors in the top-left corner, which may be attributed to their

setup being off-center from the LiDAR and biased towards the right side. To improve this, it is advisable to

explore the possibility of moving the camera closer to the LiDAR for better alignment and reduced errors in

that region.

75

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 3.36: Camera pixel errors in relation to the X-position

Figure 3.37: Camera pixel errors in relation to the Y-position

76

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 3.38: IR Camera pixel errors in relation to the X-position

Figure 3.39: IR Camera pixel errors in relation to the Y-position

77

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

3.6 Conclusion

In this chapter, a multi-step process for calibrating camera-LiDAR systems is presented and evaluated.

The procedure begins with the correction and calibration of the camera lens, followed by the automatic de-

tection of features in both the LiDAR and the cameras. For LiDAR feature detection, the DBSCAN and

RANSAC algorithms are utilized for clustering and identifying the checkerboard clusters used in the cali-

bration process. Additionally, the vertex is detected using spatial relations. For the cameras, the image is

converted to greyscale if needed, and then Gaussian filtering is performed. The Harris corner detection al-

gorithm is employed to identify the checkerboard pattern and detect the vertices. Subsequently, the features

detected by the LiDAR and camera are matched, and the projection matrix is approximated using the LM

algorithm. An experiment was conducted to conclude that the outcome of this detailed procedure can achieve

a relative pixel error performance of less than 2%, a result that is deemed successful. The main contributions

of this chapter are the tailored calibration and fusion process pipeline design for the CMHT sensors and the

implementation of the discussed pipeline.

78

Chapter 4

CMHT Dataset

4.1 Introduction

Using the vehicle and system discussed in previous chapters, datasets were collected in both urban and

highway settings in Hamilton. The synchronized sensor capture system with ROS2 support enabled the

capture of data from five distinct sensor types: LiDAR, IR camera, camera, IMU, and Radar. The resulting

datasets were manually labeled and showcase several notable features:

• CMHT dataset is the first open-source research dataset for synchronized autonomous vehicles that

includes IR images and Radar data captured under a variety of weather, road, and light conditions.

• The dataset has been manually labelled, including the labelling of IR camera, camera, and LiDAR,

which provides object class and bounding box information for use in neural network training.

• The dataset showcases the performance of the sensors under different weather and light conditions.

CMHT dataset captures three distinct scenarios:

• A busy local mall parking lot captured during the rain at dusk, with overcast clouds and significant

water accumulation on the ground.

79

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 4.1: A data sample from the parking lot.

• A mixed scenario segment captured in two parts, with the first part taking place on a busy city street at

night with numerous vehicles, and the second part taking place on a highway with fewer vehicles. Both

segments were captured after complete darkness, with the only light sources being vehicle headlights

and road lights. Additionally, the capture was done after heavy rainfall, resulting in water accumulation

on the road.

Figure 4.2: A data sample from the down town dataset

• A dense residential area at night with no moonlight and many parked vehicles on the side.

80

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 4.3: A data sample from the residential area dataset

This research selected specific locations and weather conditions for several reasons. Firstly, the scenarios

in the selected locations comprised a high number of vehicles with some pedestrians, providing a diverse

range of samples. Additionally, the weather conditions and lighting were not optimal, which was different

from other datasets. This unique characteristic allowed for a comprehensive investigation of how weather

impacts sensor readings. Furthermore, the study examined the differences in infrared (IR) readings between

parked and running vehicles. Parking lots were deemed to be a suitable location for this comparison as they

contain a mixture of stationary and moving cars. The chosen locations and conditions provide a valuable

dataset for researchers to explore and gain insights into the impact of weather and vehicle status on sensor

readings.

The data collection process involves a team of two: a car driver and an operator who manages the equip-

ment. Before beginning, the team drafts a driving plan. Once the vehicle reaches the data collection location,

the operator will start the sensor perception system in data capture mode, as described in the previous section.

This step is necessary because the immense volume of raw data captured per second exceeds the hard drive’s

write speed. To manage this, the system is designed with a buffer to temporarily hold the data in memory.

After the perception system is stopped in recording mode, it may take a few minutes to process all the stored

buffer and write it to the hard drive. Therefore, due to the memory configuration of the processing laptop

running the capturing system, there is a limit on the capturing time per run, which, in our configuration, is up

to 20 minutes.

81

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 4.4: Scenario 2: Urban, downtown, after rain and dark.

Figure 4.5: Scenario 2: Highway, after rain and dark..

82

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 4.6: Scenario 3: Local, dark and after rain.

Table 4.1 showed the detailed statistic of the dataset, table 4.2 shows the statics on labelled objects from

different driving scenario.

Scenarios Scenario 1 Scenario 2 Scenario 3

Traffic Info N/A Busy Quiet

Time 8:00PM 9:00PM 8:30PM

Data Size 2.4GB 8.7GB 3.7GB

Road Way Parking Lot Urban&Highway Residential Area

Number of Labelled Objects 234 188 84

Type of Unique Objects 49 71 61

Number of Frames 1498 4100 2071

Number of Labelled Frames 85 56 24

Average Vehicle Speed 20km/h 60km/h 40km/h

Weather Condition After Rain Raining After Rain

Daylight Condition Dark Dark Dark

Table 4.1: Dataset statistic

83

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

4.2 Data Labelling

4.2.1 Labelling Tool

The dataset used in this study was labelled using the SUSTechPOINTS tool, as described in [101]. However,

it should be noted that this labelling software employs a coordinate orientation that differs from that of the

CMHT vehicle configuration. As such, a coordinate shift was necessary in order to align the two coordinate

systems. This involved swapping the x and y axes, and defining the negative y axis as the front of the vehicle.

Figure 4.7: Labelling software interface

84

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

4.2.2 Labelling Format

Figure 4.8: Json file data structure

The object is stored in a JSON file, and all coordinates are in the LiDAR coordinate system. Each JSON

file name matches its corresponding frame ID. The JSON data format is in Figure 4.8. obj id is the unique

identifier of the object, and they are unique in a set, which meants all the objects from different frames that

contains the same id are the same object. obj type is the object class in a string, and psr is the bounding box

attribute associated with an object within the frame.

85

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

4.2.3 Labelling Results

Scenario 1 Scenario 2 Scenario 3

Car 182 133 71

Truck 11 15 5

Van 10 2 0

Pedestrian 31 15 4

Long Vehicle 0 6 0

Bus 0 6 1

Cyclist 0 4 1

Table 4.2: Number of unique objects in the scenario

4.3 SDKs

ROS2 and Matlab SDK packages is also included with the package with the following capabilities:

• Synchronized sensor data loader

• LiDAR and other sensor overlays

• Access to labelled object information includes bounding box and class ID.

• Bounding box projection onto the camera image

• Visualization

86

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 4.9: ROS2 interface, visualized with rviz2

Figure 4.10: Matlab Visualization

87

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

4.3.1 PointCloudData Set

This non-serialized package comprises the data structures illustrated in Figure 4.11. Camera and IR camera

data are stored in the standard PNG file format, while LiDAR data is stored in PCD format, which can be

easily read by many other standard tools or libraries.

Figure 4.11: Directory structure, boxes are the folders. front.json file contains intrinsic matrix and extrinsic

matrix(LiDAR-to-camera).

4.3.2 Utility Tools

4.3.2.1 Training Data Extractor

The development of a training data extractor for CNN training that included both image and LiDAR object

inputs was a critical component of this research. The extractor was designed to crop out image data with

5% padding to the actual size to compensate for errors that may arise from the projection matrix used in

88

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

LiDAR to camera projection. Additionally, the extractor was able to extract LiDAR object clusters from the

training data and store them in .PCD format. The extracted files were organized in a folder structure that

made them easy to use, specifically for import by machine learning packages such as Tensorflow and Pytorch.

This organizational structure facilitated the integration of the extracted data into the training pipeline and

streamlined the training process.

4.3.2.2 Bounding Box Projection

A bounding box projection tool was included, developed using Python and Matlab. This tool was designed to

translate bounding box objects from the 3D LiDAR coordinate to the 2D camera (u,v) coordinate. To achieve

this, a series of calculations were necessary to project the bounding box object correctly onto the camera

coordinate space.

Specifically, given a bounding box object with coordinates p = {x,y,z}, r = {x,y,z}, and s = {x,y,z},

first calculated the corresponding LiDAR coordinate corners. This involved using a set of geometric trans-

formations to rotate and translate the bounding box object, such that its edges were aligned with the LiDAR

coordinate axes. With the corners of the bounding box now defined in LiDAR space, then the calculation

projected them onto the 2D camera coordinate space using a perspective transformation matrix.

ptx,y,z = {px±
sx

2
, py±

sy

2
, pz±

sz

2
} (4.1)

Then the cuboid centre was moved to the origin.

ptde-centred
x,y,z = ptx,y,z−p (4.2)

Compute the rotation matrix R.

R =


cos(ry)cos(rz) sin(rx)sin(ry)cos(rz)− cos(rx)sin(ry) cos(rz)sin(ry)cos(rz)+ sin(rx)sin(rz)

cos(ry)sin(rz) sin(rx)sin(ry)sin(rz)− cos(rx)cos(ry) cos(rz)sin(ry)sin(rz)− sin(rx)cos(rz)

−sin(ry) sin(rx)cos(ry) cos(rx)cos(rz)


(4.3)

Then rotate the corner set along the origin, and shift it back to the original position.

ptde-centred & rotated
x,y,z = ptde-centred

x,y,z ·R (4.4)

ptrotated
x,y,z = ptde-centred & rotated

x,y,z +p (4.5)

89

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Thus ptrotated
x,y,z is the computed coordinate points for the corners of the bounding box, and by using projection

matrix M, the coordinate can be projected to the camera coordinate U = {ui,vi}, i ∈ {0,7}. And final corners

of the bounding box Ucorners is computed using equation 4.6.

Ucorners =



max(u),max(v)

min(u),max(v)

min(u),min(v)

max(u),min(v)


(4.6)

4.4 Conclusion

This chapter introduced the novel CMHT dataset, explaining its labelling process and the format in which

it is used. Additionally, the SDKs that work with the dataset for research purposes were also introduced.

90

Chapter 5

Road Object Detection

5.1 Introduction

This chapter and the following chapter presents a sensor fusion approach for the development of a road

object detection and classification system. The methodology used in this research introduces a novel ground

segmentation method, which facilitates efficient ground removal and object detection, and a hybrid neural

network approach for object class identification. The proposed approach demonstrates promising results for

road object detection and classification tasks.

An overview of the processing pipeline for the vehicle perception system is illustrated in Figure 5.1. The

system comprises three main modules: the input module, which accepts synchronized sensor inputs; the

pre-processing module, where each sensor undergoes specific pipelines for pre-processing; and the classifier

module. In the pre-processing pipelines, the LiDAR data is initially segmented and clustered to derive object

point clouds. Through the rectification process, the {x,y,z} coordinates of each object point cloud are ex-

tracted to obtain the pixel coordinates on the image and IR image. An optional greyscale conversion can be

applied to the camera images. Before transmitting the LiDAR object point cloud to the classifier, the 3D point

cloud is transformed into a 2D side view. Following the side view mapping, an autoencoder is employed to

fill gaps in the object, creating a dense 2D view.

All pre-processed sensor data is then input to the classifier. The LiDAR dense 2D view feeds into a

modified VGG-like real-valued convolutional network. The camera sensors and IR camera sensors are fed

into a special complex-valued neural network. The results from the different classifiers are then fed into a

91

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

voter for the final class prediction. For implementation details on the classification modules, please refer to

Chapter 6 of this thesis.

Figure 5.1: Overview

As its name suggests, the pre-processing phase is tasked with preparing the input data for further anal-

ysis. This phase encompasses seven procedures: sensor rectification, data filtering, and coarse-level feature

extraction, among others.

Subsequently, the classification phase utilizes the output from the pre-processing phase. It employs a

novel hybrid neural network to identify the object’s class.

92

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

5.2 Related Research

5.2.1 Ground Segmentation

Ground segmentation is a widely researched area in the field of LiDAR. Its primary objective is to identify

and segment the ground points within LiDAR point clouds data. The importance of this research lies in its

ability to provide crucial information about the surrounding terrain to autonomous vehicles or other automated

systems equipped with LiDAR. The information obtained through ground segmentation has many practical

applications, including but not limited to path planning, object detection, SLAM, and road boundary detection.

The increasing accessibility of LiDAR sensors due to their decreasing costs has contributed to the grow-

ing popularity of this research area. As a result, researchers continue to investigate new approaches and

algorithms to improve the accuracy and efficiency of ground segmentation methods. Popular ground segmen-

tation methods can be classified into five categories based on their approaches:

• Elevation Map Approaches: The elevation map technique depends on the relationships between adja-

cent points to identify whether a specific point is a ground point or not, giving rise to the name ”eleva-

tion map approach.” Sebastian Thrun et al.’s study[157] was the first to develop a ground segmentation

method using elevation maps. During that period, sensors were not as sophisticated as current Li-

DAR technology; nevertheless, the research ingeniously implemented five single-lane laser rangefind-

ers mounted on the vehicle’s roof, effectively mimicking the capabilities of modern LiDAR sensors.

The ground points were identified by calculating the vertical distance between two nearby points; if

the value exceeded a threshold, an obstacle was detected. This straightforward method had several

drawbacks, particularly due to the sensor array’s mounting on the vehicle; if the vehicle tilted, the

readings could produce significant errors, resulting in misidentification. However, the study offered a

solution to this problem by employing a first-order Markov model to enhance detection accuracy. B.

Douillard et al.[45] utilized state-of-the-art LiDAR devices in their research, specifically focusing on

ground segmentation. By utilizing the increased density of the point cloud produced by advanced Li-

DAR technology, the study introduced voxelization as an innovative approach to represent objects. In

this method, objects were represented as intricate 3D voxels within a 2D cell of the terrain grid. This

technique offers the advantage of generalizing the ground segmentation method and is applicable to

high-resolution point clouds, allowing for the differentiation of objects from the ground. Zhihao Shen

93

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

et al.[148] made significant advancements in the speed of ground segmentation using modern LiDAR

devices with 64 or 128 beams and higher resolutions. They proposed a novel approach called Jump-

Convolution-Process, which optimized the ground segmentation process. This method transformed the

volumetric LiDAR ground segmentation problem into a 2D planar problem, thereby reducing the com-

putational complexity. Additionally, by introducing the jump operation, the researchers were able to

further decrease the computational load by solely processing the low-confidence points. Consequently,

the proposed method achieved pseudo real-time performance, enhancing the efficiency of ground seg-

mentation on high-resolution LiDAR systems.

• Methods of Occupancy Grid Maps: These were initially introduced by H. Moravec et al.[119] dur-

ing the 1980s. Although the original work used wide-angle sonar sensors, the same methodology is

applicable to modern LiDAR sensors. In their study, Moravec and his team created detailed grids to

illustrate both occupied and free space within a noisy environment. This technique paved the way for

the representation of terrestrial characteristics using grid-based occupancy maps, which are relevant to

both traditional sonar sensors and current LiDAR sensors. Notably, Luo et al.[109] conducted research

falls under this category. He utilized various features from the LiDAR sensor in his work to calculate

the likelihood of a grid pertaining to the ground plane, and his methodd achieve highly accurate ground

segmentation in real-time.

• Ground Modelling Method: This strategy views the ground as a planar surface and utilizes one of the

three relationships to construct a model of the terrain: plane fitting, line extraction, or Gaussian Process

Regression (GPR).

Plane Fitting: the study conducted by Hu et al.[73] commences with the application of the

RANSAC algorithm for plane estimation. Subsequently, a Gaussian model is employed on the pro-

jected LiDAR and mono-colour image to generate a predictive road probability map. Hu’s work ex-

hibits strength in robust road detection through the use of sensor fusion. However, due to the two-stage

segmentation process and extensive data processing, its practical implementation in real-time scenarios

poses a challenge. Patchwork [104] by Lim et al. and its subsequent variants [97] demonstrate real-

time processing with relatively high accuracy. The method initially employs a concentric zone model

by dividing LiDAR inputs into smaller fan-shaped regions. It then performs region-wise ground plane

fitting on the divided regions using Principal Component Analysis (PCA), followed by the application

of Ground Likelihood Estimation (GLE) to enhance estimation accuracy. In the Patchwork++ variant,

94

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

the final stage of GLE is replaced with adaptive GLE to further improve performance. It is worth not-

ing that in their paper [104], the authors specifically discuss the rationale behind choosing PCA over

RANSAC for the GLE process. They draw the conclusion that although PCA slightly underperforms

compared to RANSAC, it offers a significant speed advantage (up to two times faster) and is therefore

a worthwhile trade-off for real-time applications.

Line Extraction: Himmelsbach et al.’s method [67] initially divides LiDAR data into smaller

sections based on polar coordinates. Subsequently, for each ”pie” section, the method performs local

ground plane estimation, followed by clustering on the segmented objects. Stamos et al.’s work [151]

focuses on ground segmentation using the scan line generated by the LiDAR sensor. This approach

employs sets of rules to classify points into vegetation, horizontal surfaces, and vertical surfaces in

a coarse classification. Finally, the results are refined using object relative position to the curbs to

determine the classification of the object.

GPR: GPR is a well-developed and popular research topic in LiDAR ground segmentation. This

method requires fine parameter tuning and often relies on specific sample sets for improved results.

Several papers [46][32][95][82][158] showcase the use of GPR in the ground segmentation process.

GPR is very close to the NN method, which requires a supervised training process. Lang et al.’s work

[95] proposes a non-stationary covariance function to improve the ground detection accuracy in smooth

or flat ground surfaces while preserving edges and corners, which sometimes is challenging to detect

from naive GPR. Douillard et al.’s work [46] proposes two novel segmentation metrics in the process

to improve its real-time performance and retain good accuracy. In his work, he introduced Gaussian

Process Incremental Sample Consensus (GP-INSAC), an improvement to the GPR which improves the

outlier rejection capability. Works like[32][82][158] are proposed to reducing computational complex-

ity or introduce other features during the GPR process in order to improve the performance of ground

segmentation.

• Methods based on the relationship between the adjacent points: Relation-based method utilizes the

relation between local regions and features. Based on the LiDAR features, there are three approaches:

Channel-Based: The Channel-Based approach utilizes the relationship between each laser head-

/channel to perform ground segmentation. An example of this can be found in the work of Chu et al.

[37], where they employ a divide-and-conquer technique. Initially, the point cloud is partitioned into

smaller groups based on the vertical line/LiDAR channel. Subsequently, each group is subjected to

95

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

analysis based on gradient, lost threshold point, and abnormalities features. This iterative process is

repeated for each group until the entire LiDAR frame is effectively segmented. Moreover, the Channel-

Based approach can be effectively combined with other methodologies. For example the research con-

ducted by Jimenez et al. [81], who propose a novel strategy termed Channel Based Markov Random

Field (MRF). Their approach integrates channel-based techniques with the MRF approach, resulting in

a synergistic fusion of methodologies for better segmentation accuracy. Works such as [99][38] also

belong to this category. While such a method is relatively fast and applicable in real-time applications,

it naturally comes with a flaw. If the data comes from multiple LiDAR sensors or mixed sources, the

channel relation would not exist, rendering the method inapplicable.

Region-Growing: Methods in this category often employ graph search algorithms and explore

the relationship between adjacent points. The work by Moosmann et al. [118] suggested transforming

the LiDAR scan into an undirected graph, where the LiDAR scan points in Cartesian notation serve

as vertices. After constructing the graph, they proposed performing a search on the graph to segment

the LiDAR scan based on local convexity. Na et al. [121] proposed a similar, albeit slightly different,

approach. Firstly, they projected the LiDAR data onto a range image. Then, they applied features

such as normal difference, height difference, and gradient to partition the LiDAR points, starting from

a randomly selected seed point. Lastly, they refined the segmentation by considering average normal

vectors and average position features. Works such as [88][164] also falls into this category.

Clustering: The clustering method is another approach to tackle the segmentation problem, em-

ploying a divided-and-conquer strategy similar to the Region-Growing method. However, unlike the

Region-Growing method, which primarily relies on exploring the relationships between neighboring

points, the clustering method is not solely dependent on such relationships. For instance, in Sagi Filin’s

work [51], a point clustering algorithm based on point position, tangent plane parameters, and rela-

tive height difference features is proposed to extract homogeneous segments from aerial LiDAR data.

Biosca et al.’s work [19] suggests the use of fuzzy clustering methods on LiDAR data to eliminate

the need for defining samples or predefined clusters. Their algorithm also operates effectively with

ground-captured LiDAR data. Yang et al.’s work [173] follows a similar approach, wherein LiDAR

data is initially grouped by features, followed by Support Vector Machines (SVM) classification of the

LiDAR points.

Range Images: Typically presented in Cartesian coordinates, LiDAR data takes the form p =<

x,y,z >. However, an alternative representation exists in polar form as p =< φ,θ,d >. This polar

96

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

representation is a direct outcome of the data acquisition process. Analyzing the inherent relationships

between data points allows visualization of this polar representation as range images (see Example 5.2).

Several works [25][33] fall within this category.

• MRF: The MRF approach leverages the spatial continuity among adjacent LiDAR points. It employs

the MRF model to categorize points into either ground or non-ground classes. Notable works in this

domain include [175] and [81].

• Neural Network Approach: In recent years, there has been a significant increase in research on neural

networks (NN), leading to their widespread application in LiDAR ground segmentation. The prevalent

approach in LiDAR ground segmentation involves converting LiDAR sparse data into LiDAR-image,

LiDAR-image-like channel-based feature maps, or other 3D to 2D transformations. Subsequently,

convolutional neural networks (CNN) are employed, treating the transformed data as images. Several

works, including [162] [3] [130] [162] [150] [75], have adopted this approach. Often, NN ground

segmentation methods also include object classification for single-stage classification tasks. However,

due to the limitations of the depth of neural networks and computational constraints, these methods

often lack generalizability and require specific training to achieve satisfactory results.

Figure 5.2: Example of LiDAR data converted into range image, x,y,z data is embedded into R,G,B channels,

thus it creates a coloured image

97

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

5.3 Implementation

5.3.1 Ground Detection Using Savitzky-Golay Filter

This research utilizes a modified version of the grid-based ground detection method. The ring-shaped charac-

teristic of LiDAR scans is exploited, leading to the creation of trapezoid zones within each segment. Through

identification of local maximum and minimum points within each section, efficient projection of a ground

plane and differentiation between object points and ground points is achieved. The main goal of ground seg-

mentation is prompt detection of an object serving as the region of interest (ROI) for subsequent classification.

As a result, the method prioritizes computational speed over attaining high accuracy.

Figure 5.3: A process overview of modified grid-based ground detection method

• The first step involves segmenting the input into trapezoid-shaped grids(Figure 5.4).

• The scan set is then projected onto a 2D plane , resulting in a new set of coordinates
[
x′ y

]
.

• Next, a novel peak detection algorithm is applied to each trapezoid region. The identified peak regions

correspond to objects, while non-peak points are considered as estimates of the ground.

• After removing all the identified peaks from the section set, the remaining points are assumed to be

ground points. A ground plane is then constructed based on the remaining points of the adjacent regions.

• For each point within the grid, a pre-defined ground plane is employed to ascertain whether the point

belongs to the ground or an object.

98

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

5.3.1.1 Point Sectioning

This choice of shape segmentation is rooted in the inherent nature of LiDAR scans, where scans taken at closer

distances tend to exhibit higher density than those obtained from further distances. By employing trapezoid

grids, this density variation is taken into consideration, ensuring that the size of each grid area is smaller for

closer scans in comparison to those at greater distances. Define θ is the number of sectors per ring, and δ is

the distance per ring sector.

dθ =
360.0

θ
(5.1)



xi, j,1 yi, j,1

xi, j,2 yi, j,2

xi, j,3 yi, j,3

xi, j,4 yi, j,4


=



−dδ× (j)× cos(dθ× (i)) dδ× (j)× sin(dθ× (i))

−dδ× (j+1)× cos(dθ× (i)) dδ× (j+1)× sin(dθ× (i))

−dδ× (j+1)× cos(dθ× (i+1)) dδ× (j+1)× sin(dθ× (i+1))

−dδ× (j)× cos(dθ× (i+1)) dδ× (j)× sin(dθ× (i+1))


(5.2)

Equation 5.2 defines 4 boundary points to create the trapezoid grid.

99

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 5.4: Sectioning the LiDAR cluster points into grids.

After defining the planer grids, the cluster points (x,y,z) are placed into a defined trapezoid grid.

[
Gi, j

]
=



xi, j,1 yi, j,1 zi, j,1

xi, j,2 yi, j,2 zi, j,2

xi, j,3 yi, j,3 zi, j,3

xi, j,4 yi, j,4 zi, j,4


(5.3)

Gi, j is the set of coordinates to define the grid plane. To calculate the height zi, j,k, use equation 5.4. In the

case of a missing grid due to lack of scan points, LiDAR placement height zcamera will be used.

zi, j,1

zi, j,2

zi, j,3

zi, j,4


=



min(zcluster points inside Gi, j)

min(zcluster points inside Gi, j+1)

min(zcluster points inside Gi+1, j+1)

min(zcluster points inside Gi+1, j)


(5.4)

100

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

5.3.1.2 Peak Detection

Once all the points have been partitioned into grids, the peak detection method is applied to identify any

peak points concerning the z-axis. In the absence of any detected peak point coordinates, the value zpeak is

substituted with the adjusted z-value. Before peak detection, all values are first converted to their absolute

values to enable the identification of local minima using the same general approach simultaneously.

A method to extract the peaks was developed using four steps: 1) The first derivative was approximated by

filtering the data through Savitzky-Golay coefficients[142] ; 2) The result was filtered by using the N-points

average filter; 3) all local maxima and minima were located and grouped; 4) The location of peaks were found

using the maxima and minima.

Savitzky-Golay Filter The filter uses Savitzky-Golay coefficients to perform the convolution by fitting data

into a low degree polynomial by the method of linear least squares. It can effectively reduce white noises in

the power spectrum while maintaining the correct shape of the curve. Savitzky-Golay coefficients can be pre-

computed, but the steps are long. However, they only need to be computed once per different window size

m and polynomial degree n. Once they are calculated, they can be reused many times until new parameters

are set. To get the Savitzky-Golay coefficients, a special (2m+1)× (n+1) Vandermonde matrix v (5.6) was

computed. Note this matrix is extremely ill-conditioned and one should be cautious when using it under IEEE

double precision system.

wi =−M+ i,∀i ∈ {0,1, ...,2M} (5.5)

vi, j =


1, if j = 0.

wi× vi, j−1, if j ̸= 0.
,∀i ∈ {0,1, ...,2M},∀ j ∈ {0,1, ...,N} (5.6)

Figure 5.5: Vandermonde matrix v generated from window matrix w with window size m, polynomial degree

n.

After the upper triangular matrix has QR de-composited from the Vandermonde matrix v using the Gram-

Schmidt process, the coefficient matrix C = vR−1(R−1)′ was calculated. One unique feature about the

Savitzky-Golay coefficients is the first row of the coefficient matrix C will compute filtered Y of the input

function y(x), the second row of the coefficient matrix C will compute the first derivative of Y with respect to

101

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

x and then the third row of the coefficient matrix C will compute the second derivative of Y with respect to x,

and so on.

The second row was used from pre-computed Savitzky-Golay coefficients to calculate the filtered first

derivative value of the elevation with respect to the distance.

Yj =

m−1
2

∑
i=−m−1

2

Ci,2y j+i,
m+1

2
≤ j ≤ n− m−1

2
(5.7)

Figure 5.6: Apply Savitzky-Golay coefficients to the input to calculate the first derivative.

N-point Moving Average Filter At this stage, the first derivative of the power spectrum is not “smooth”

enough for locating the maximum and minimum, therefore a N-point moving average filter was used to

“smooth” the input.

Yj =

m−1
2

∑
i=−m−1

2

y j+i

m
,

m+1
2
≤ j ≤ n− m−1

2
(5.8)

Figure 5.7: Apply a N-point moving average filter with window size m to the input y j.

Local Maxima and Minima Grouping The next step is looking for all the local maxima and minima.

In this context, a maximum is the value that is higher than the previous and next values, and a minimum

is the value that is less than the previous and next values. Ideally, the maximum and minimum would be

easy to identify on a smoothed-out curve, but it is not always a guarantee the N-points moving average filter

can smooth the curve to such a degree. Nevertheless, it is still useful since it greatly reduces the number of

calculations in this step. All detected maximum and minimum were grouped together, otherwise excessive

numbers of minimum and maximum in a small area would have resulted in same peak detected multiply

times.

In this grouping algorithm, it is the sequence X which contains all the maximum or minimum within the

range σ. The first x1 is always the first maxima or minima detected from the previous part, then moving alone

all detected local maxima and minima. This grouping method ensures there are no two adjusting peaks within

a distance less than σ.

102

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

X is a sequence, contains {(x1,y1),(x2,y2)...(xn,yn)}

with order xi < xi+1, and range xn− x1 ≤ δ

(xi,yi) is either a detected local maximum or a local minimum

If exist |yi− yi+1| ≤ δ in X

then remove (xi,yi) from X , replace (xi+1,yi+1) with (1
2 (xi + xi+1),

1
2 (yi + yi+1))

Repeat the process until no more (xi,yi), |yi− yi+1| ≤ δ exist in X

Locating Peaks Once all the local maxima and minima were found, the peaks were located using the

following rules: if a maximum is followed by a minimum and (ymaximum− yminimum) > ψ, then the peak is

located at 1
2 (xmaximum + xminimum). Threshold ψ is the value required to be determined as a valid peak. The

idea behind this peak detection method is to look for a steep change of the first derivative to determine if it is

a valid peak.

5.3.1.3 Creating Ground Planes

A ground plane is a hyper-plane defined by three points, P,Q,R, where these points are randomly selected

from the remaining points within the same trapezoidal grid Gi, j. It is mathematically described by the follow-

ing equations:

PQi, j =
[
xi, j,1− xi, j,2 yi, j,1− yi, j,2 zi, j,1− zi, j,2

]
(5.9)

PRi, j =
[
xi, j,1− xi, j,3 yi, j,1− yi, j,3 zi, j,1− zi, j,3

]
(5.10)

Ni, j = PQi, j×PRi, j (5.11)

Normal vector Ni, j is calculated from the pre-defined plane coordinates.

5.3.1.4 Determine the Ground Points

To determine if point (xk,yk,zk) inside a grid Gi, j is a ground point, check if the point is below the plane by a

threshold σ amount.

r =
[
xi, j,4− xk yi, j,4− yk zi, j,4− zk

]
·Ni, j (5.12)

Thus if r > σ, then the point (xk,yk,zk) is an object point, otherwise it is a ground point.

103

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 5.8: Detected ground points (coloured in red).

5.4 Results

In this research, the timing of Ground Segmentation is crucial for achieving real-time performance. The

system is constrained to a 100ms processing time, meaning that the quicker the ground is segmented and

objects are clustered, the better the overall performance will be. With this constraint in mind, the benchmark

prioritizes speed over accuracy, recognizing that reduced processing time is key to the success of thesystem.

In this benchmark test, a performance similar to the setup in the work conducted by Oh et al.[126] was

achieved. Specifically, a total of 10 different ground segmentation methods were evaluated, including the

proposed one, across 5 driving scenarios. Among these scenarios, 3 were residential, 1 highway, and 2 city

captures. The data used for the benchmark came from the KITTI semantic benchmark[56]. The result is

shown in Table 5.1, 5.2, 5.3, and 5.4, with details on the benchmark run provided in the figures from the

Ground Segmentation Performance Diagram section in the Appendix.

104

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Sequence 00

Residential

Sequence 01

Highway

Sequence 02

City

Sequence 03

Residential

Sequence 04

City

Sequence 05

Residential

chen2014gaussian[32] 14.42ms 15.26ms 16.20ms 17.02ms 17.98ms 14.79ms

githubplaneground[165] 14.43ms 12.93ms 16.00ms 15.18ms 15.83ms 15.48ms

githubransac[44] 67.54ms 38.18ms 69.61ms 67.56ms 57.02ms 68.80ms

himmelsbach2010fast[67] 9.60ms 8.05ms 9.11ms 9.50ms 10.38ms 11.29ms

lim2021erasor[103] 23.93ms 20.40ms 24.02ms 25.61ms 24.87ms 26.80ms

lim2021patchwork[104] 21.07ms 17.95ms 21.13ms 21.80ms 21.65ms 23.60ms

narksri2018slope[122] 69.38ms 57.39ms 72.18ms 77.56ms 74.96ms 78.85ms

proposedmethod 11.28ms 8.32ms 12.93ms 11.53ms 12.17ms 11.67ms

shen2021fast[148] 14.15ms 13.29ms 15.06ms 13.45ms 13.40ms 13.83ms

zermas2017fast[175] 15.19ms 13.01ms 15.27ms 16.70ms 16.25ms 15.90ms

Table 5.1: Average processing time

Sequence 00

Residential

Sequence 01

Highway

Sequence 02

City

Sequence 03

Residential

Sequence 04

City

Sequence 05

Residential

chen2014gaussian[32] 1.99ms 2.79ms 2.52ms 2.24ms 2.66ms 2.50ms

githubplaneground[165] 1.74ms 1.71ms 1.68ms 1.39ms 1.44ms 1.91ms

githubransac[44] 7.06ms 19.51ms 7.24ms 8.88ms 12.60ms 9.58ms

himmelsbach2010fast[67] 2.10ms 1.98ms 1.97ms 1.82ms 2.54ms 4.27ms

lim2021erasor[103] 2.59ms 3.54ms 2.13ms 2.00ms 1.90ms 2.70ms

lim2021patchwork[104] 2.30ms 3.03ms 1.90ms 1.79ms 1.42ms 2.43ms

narksri2018slope[122] 12.10ms 19.89ms 10.91ms 10.65ms 8.68ms 10.72ms

proposedmethod 2.73ms 3.14ms 2.66ms 2.33ms 2.75ms 2.63ms

shen2021fast[148] 2.33ms 1.77ms 2.12ms 1.99ms 1.55ms 1.63ms

zermas2017fast[175] 1.80ms 2.22ms 1.50ms 1.93ms 1.77ms 1.80ms

Table 5.2: Standard deviation of the average processing time

105

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Sequence 00

Residential

Sequence 01

Highway

Sequence 02

City

Sequence 03

Residential

Sequence 04

City

Sequence 05

Residential

chen2014gaussian[32] 95.94 89.59 96.33 96.43 93.41 96.35

githubplaneground[165] 96.19 65.71 91.00 92.73 95.32 95.83

githubransac[44] 93.85 95.91 90.37 89.83 96.61 93.46

himmelsbach2010fast[67] 83.05 74.22 84.13 80.87 80.07 85.37

lim2021erasor[103] 96.57 89.70 96.77 97.61 93.43 96.83

lim2021patchwork[104] 94.61 89.07 93.58 95.69 91.25 95.54

narksri2018slope[122] 70.69 73.45 69.39 68.36 72.51 68.02

proposedmethod 94.74 84.98 88.16 89.80 92.78 93.78

shen2021fast[148] 40.61 64.29 58.52 61.71 75.81 57.36

zermas2017fast[175] 79.03 23.52 74.80 75.25 72.55 87.58

Table 5.3: Average recall

Sequence 00

Residential

Sequence 01

Highway

Sequence 02

City

Sequence 03

Residential

Sequence 04

City

Sequence 05

Residential

chen2014gaussian[32] 81.03 92.47 83.99 83.18 94.99 80.53

githubplaneground[165] 91.87 91.06 93.81 93.93 95.70 88.43

githubransac[44] 88.03 96.46 91.03 92.80 95.68 85.75

himmelsbach2010fast[67] 98.15 98.89 97.96 95.38 99.51 96.65

lim2021erasor[103] 59.21 89.71 69.03 74.47 84.56 60.45

lim2021patchwork[104] 92.34 95.89 93.24 90.45 97.43 89.22

narksri2018slope[122] 91.66 97.10 91.89 92.45 98.17 86.35

proposedmethod 80.77 91.03 88.34 88.25 91.93 78.78

shen2021fast[148] 95.25 98.28 96.89 97.33 98.74 89.74

zermas2017fast[175] 94.96 92.06 96.21 97.71 95.42 93.62

Table 5.4: Average precision

From the table, the proposed method ranks as the 2nd fastest among all tested methods, only slightly

falling behind the method by Himmelsbach et al.[67]. However, in terms of accuracy, the proposed method

boasts a superior recall rate compared to Himmelsbach’s method with a slightly lower precision. Since the

work centres on the ROI, and the extraction of the ground serves as a form of noise filtering (since the ground

regions are not required), partially misidentified object points are not overly concerning. This lack of concern

106

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

arises from the presence of an autoencoder to repair and reconstruct objects with missing points further down

the pipeline, making recall more valuable than precision in this context. Consequently, the proposed method

is deemed the most appropriate for the research application. In situations where false detection of objects has

occurred, they will be addressed in the classification chapter. Often, these false detections will be labeled as

the NaV (not a vehicle) class.

In addition to the main study, exploration into one-stage ground-segmentation and object classification

methods was conducted, such as the work by Wu et al.[172]. Unfortunately, after numerous attempts, better

results were not obtained by applying their method to the dataset. The outcome of these efforts is depicted in

Figure 5.10, where it is apparent that many detections have large chunks of the ground section missing from

the detection. Furthermore, achieving the training accuracy stated by the original paper proved unattainable,

as shown in Figure 5.9.

Figure 5.9: Training log

107

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

(a) Result from the precision (b) Ground truth

Figure 5.10: Example of unusable one-stage detector

5.5 Conclusion

In this chapter, a rapid ground segmentation method is introduced by utilizing a novel peak detection

approach that leverages the Savitzky-Golay filter. The proposed method was applied to the KITTI bench-

mark dataset and compared with 9 other top-tier ground-segmentation methods. This technique succeeded in

achieving a swift processing time while maintaining a high recall rate, fulfilling the expectations and require-

ments for this vehicle perception research.

108

Chapter 6

Road Object Classification

6.1 Introduction

This chapter continues the vehicle perception process, focusing on the clustering and classification of the

ground-removed LiDAR data that was introduced in the previous chapter. By using the transform matrix

obtained from Chapter 3, the LiDAR cluster data is projected onto the camera and IR camera data to isolate

the ROI. Following the processing of the ROI, the data is then input into a hybrid neural network (Figure 6.1)

for the purpose of classification. Finally, the data is passed through a voter to determine the object class.

In addition to the above, this chapter provides a detailed exposition of the neural network utilized in the

research. It thoroughly explains the composition of the individual layers, and elaborates on the supervised

training process. Finally, it exhibits the benchmark performance of each classifier individually, as well as the

overall performance of the entire perception system using the captured data from Chapter 4.

109

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.1: An overview of the Hybrid Neural Network

110

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

6.2 Related Works

6.2.1 Object Classification In Vehicle Perception

LiDAR-based classification LiDAR-based vehicle classification is not as prevalent as camera-based clas-

sification. This is primarily due to the limited resolution of LiDAR sensors, which hampers their ability to

achieve high-performance results. Additionally, the cost of LiDAR sensors restricts their widespread avail-

ability. LiDAR-based classification papers [138, 139] mostly focus on leveraging the 3D features unique to

LiDAR, distinguishing them from 2D camera images. 3D neural networks have been developed to tackle this

task, but their effectiveness is limited due to scaling issues. However, not all approaches rely solely on 3D

features. Some papers [89] segment the LiDAR 3D point clouds into camera-like images and apply CNN on

these LiDAR-images. This method treats the 3D LiDAR clusters as low-resolution, noiseless images, yield-

ing only satisfactory results. A notable paper [139] takes advantage of the 3D input by creating multi-views

based on the 3D data and feeding them into a classifier. This technique achieved outstanding results and

outperformed volumetric CNN approaches. However, implementing the method described in the paper is not

entirely feasible in this research due to the practical limitation of acquiring complete 3D scans of specific ob-

jects. Nonetheless, the paper compared its approach with volumetric methods and reported faster processing

times and improved prediction rates.

Camera-based classification The standard procedure for camera-based classification involves first remov-

ing the background and shadows to extract the region of interest (ROI), followed by applying various clas-

sification techniques on the extracted ROI to predict the class of the object. Unlike LiDAR-based ground

detection, extracting the ROI from camera images requires additional steps to filter out shadows. This shadow

removal algorithm is still under development and introduces instability to the system. A paper by Hsieh et

al. [72] introduced a feature-based classification method using camera images. The paper proposed a method

that eliminated the shadow regions in the image by utilizing lanes as references and predicting shadows based

on the differences observed. Another paper by Zhang et al. [176] employs a simplified classifier to determine

the class of a vehicle based on its physical properties. The method involves counting the pixel length of the

vehicle and classifying it as either a large or small vehicle. This approach is useful to some extent but cannot

determine the detailed class of the car.

111

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Sensor fusion classification Vehicle classification through sensor fusion is currently concentrated primarily

on data-level sensor fusion. The more intuitive approach is to correlate data, often done by employing a

rectification process, and then feeding the rectified data into a neural network. This process pipeline is far

from perfect: features may be redundant, and missing information from specific sensors can lead to complete

failure.

A paper published in 2018 by Waltner et al.[167] proposes the idea of using an autoencoder to reconstruct

LiDAR 3D points with camera images to form a mixed-depth view. This approach remedies the problem of

sometimes having incomplete scans of a vehicle, with the potential for improved classification rates. However,

a drawback of this reconstruction is that it comes only from one angle, which can be limiting in certain

situations, such as when the input data is corrupted to the extent that it cannot be reconstructed correctly.

Another paper by Giering et al.[59], employs a traditional approach by utilizing optical flow to detect the

ROI, and creates a fused input of ROI that combines RGB from a camera, UV from optical flow, and L (depth)

from the LiDAR. The object is then fed into a classifier.

Alternatively, Asvadi et al.’s research[8] presents a unique fusion approach: the ROI is detected through

ground detection followed by object extraction, unlike the previous paper where a camera was used. This

paper then suggests combining image and LiDAR point clouds to form a depth-based image, which is subse-

quently fed into an NN.

6.2.2 Neural Networks

6.2.2.1 Complex-valued neural network (CVNN)

CVNN network defines a very similar structure as a Real-valued neural network (RVNN) counter part, with

exception that inputs are usually complex-valued, or converted into the complex domain from the real domain

through various method (for example Fourier transform.)

Intuitively, CVNN were initially developed mainly for applications in signal processing, as highlighted

in [69] and [30], where the focus is predominantly on complex numbers. Recent studies, such as [49] and

[34], have extended the application of CVNN to broader fields, including MRI and radar detection. Research

works like [6] and [5] have shown that shallow CVNN can outperform RVNN in applications beyond those

inherently associated with complex numbers, mainly excelling in faster convergence.

A paper[161] published by Tygert et al. in 2016 gives mathematics motivation and proper definition for

a possibility of applying CVNN specifically Complex-valued convolutional network (CVCN) in real-world

112

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

applications, for example, image processing and signal processing. This paper describes CVCN as a form of

calculating non-linear multi-wavelet packets, thus defining the network structure as a variant of ”multi-wavelet

transform”. Inspiring by Mark Tygert and others’ work, another paper[134] published in 2017 contributed

to the line by deriving first order backpropagation training (gradient descent) for such CVCN. However, the

paper is proposing to accept a real-value image as input, yet not testing nor working on a complex-value input.

Never the less, the article still found CVCN performs better than Deep Neural Network (DNN) in MINST

and CIFAR-10, and conclude that CVCN can greater outperform DNN in a larger network.

Fourier neural networks (FNN) Paper[129] discuss the possibility of using Fourier or wavelet transform

results to form descriptors as the input for the neural network. The experiment in the paper is very significant

as it describes the possibility of using such techniques on images.

Paper[107] propose a FNN structure for pattern matching. The novelty of the paper is its interesting

k-neural define: an input is decomposed into a sequence of sine and cosine terms, learning coefficients are

the different frequencies of the sine and cosines. The paper shows the experiment was a success and FNN

structure not only fast to train, but also has better accuracy.

Fourier Convolutional Neural Networks In their work [137], Harry et al. defined Fourier Convolutional

Neural Networks (FCNN). This paper advocates for the incorporation of the Fast Fourier Transform (FFT)

within the convolutional layer, aiming to reduce computational demands. Furthermore, it introduces the novel

concept of high-pass pooling. The authors argue that the high-frequency band holds more critical information

than the low-frequency band. By implementing high-pass pooling, the neural network is able to retain more

information compared to the traditional spatial max-pooling method.

A distinct structured Fourier Convolutional Neural Network is proposed in [135], differing from the FCNN

described above. This paper is a continuation of work based on the previous year’s paper by the same author

[134]. In this version of the FCNN, a 2D Fourier transform is performed on the input, and the remaining

aspects are inherited from the previous work. Unlike the application of a holomorphic activation function in

the earlier structure, this paper applies the Rectified linear unit (ReLU) activation function separately to the

real and imaginary components of the input, and then combines them.

113

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

6.3 Implementation

6.3.1 Pre-processing

6.3.1.1 Clustering

Density-based Spatial Clustering of Applications with Noise DBSCAN[50] is a clustering algorithm that

groups points based on their distance to neighboring points. Unlike other methods that require knowledge of

the number of clusters, DBSCAN has a complexity of O(n2), making it suitable for the given application. In

previous research[108], Luo utilized the K-means algorithm for segmentation. However, after comprehensive

testing, it was determined that DBSCAN yielded better results, albeit at the cost of slightly slower speed.

Advancements in CPU processing power have significantly mitigated this computational delay, compensating

for the increase in computational complexity. The algorithm itself is detailed in Chapter 3.

(a) Front only LiDAR-view. (b) Clustered objects (removed ground points)

Figure 6.2: Object clustered.

After removing all the ground points from the LiDAR input set, remaining points are assumed to be

object points. Grouping those points into smaller clusters which are likely belonging to one object allows

us to extract position and dimensional features such as length, width, and height of the object. By carefully

tweaked thresholds, the result is visually shown in figure 6.2.

6.3.1.2 ROI Cropping

Utilizing the object clusters detected by the LiDAR, the ROI within the image can be identified by employing

the transform matrix computed in Chapter 3. To account for potential errors in projection, a bounding box

114

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

slightly larger than the designated cluster points of the LiDAR is drawn on the image. Subsequently, the

image is segmented into various ROIs, as illustrated in Figure 6.4, to facilitate further analysis. The decision

to draw an expanded bounding box is made to offset the synchronization discrepancies between the camera

and LiDAR systems.

Figure 6.3: KITTI data: camera original view.

(a) objects (b) objects (c) objects (d) objects (e) objects (f) objects

Figure 6.4: Various object ROIs cropped from the original image (figure 6.3).

6.3.1.3 Down Sampling

In instances where the extracted ROI is excessively large, it may be necessary to downsample it to a more

manageable size through the application of a 2D Fourier transform. When downsampling the image in the

spatial domain via max pooling, it becomes apparent that a substantial amount of information is likely to

be lost, a phenomenon visually demonstrated in Figure 6.5. Conversely, performing downsampling within

the frequency domain confers two notable advantages. Firstly, frequency-based downsampling preserves a

more visually recognizable image compared to spatially downsampled representations, thereby implying a

greater retention of information throughout the process. Secondly, as the subsequent procedure necessitates

115

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

a complex-valued input, this method of downsampling facilitates the conversion of real-valued data into a

meaningful complex-valued form, aligning with the requirements of the next processing stage.

(a) (b) (c)

Figure 6.5: Extreme down sampling comparison: Figure 6.5a is the original 400 × 400 pixels image. Figure

6.5b is a 20 × 20 pixels image from the inverses 2D Fourier transformation of the down sampled complex

values. Figure 6.5c is a 20 × 20 pixel image down sampled in spatial domain by max pooling.

6.3.1.4 Projection

The LiDAR point cloud cluster is projected into three different views, top, side, and rear (Figure 6.6), thus

creating three 2D-LiDAR clusters. Then they are projected on a grid to form a range image.

Figure 6.6: View projection

For example, the side view will take y-z points (Equation 6.1) and projects them onto a plane(Figure 6.7).

116

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Pside = {y j
k,z

j
k |1≤ j ≤ 32;0≤ k < 2π} (6.1)

Figure 6.7: Side view LiDAR image.

In the context of vehicular navigation at intersections, discrepancies in orientation may be detected by

LiDAR scans. To rectify these orientation differences, a specific approach is implemented when an object

exhibits a width w greater than its length l, and a measurement exceeding 2.2 meters. Specifically, the x axis is

employed for side view projection rather than the y axis. This decision rests on the underlying assumption that

no vehicle will exceed a width of 2.2 meters, thus ensuring a consistent framework for orientation alignment.

6.3.2 CNN

A Convolutional Neural Network (CNN) [94] is a particular structure of neural network that incorporates

local connectivities within its defining convolutional layer, as illustrated in Figure 6.8. By sharing kernel

parameters across different regions of the input, this layer enables the neural network to handle larger inputs

with a reduced number of neurons. This property not only contributes to the efficiency of the model but also

significantly diminishes the overall size of the neural network.

117

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.8: Convolving Process

Figure 6.9 shows a typical CNN layout.

Figure 6.9: CNN structure diagram

118

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

6.3.2.1 Input Normalization

Usually, inputs require normalization to achieve the best result. In this context,a zero-mean normalization

was used and after normalizing the input, the average of the input became zero.

x′ =
(x− x̂)

σx
(6.2)

Normalization (Equation 6.2) is applied to all the inputs X , with each input calculates with means x̂ and

standard derivation σx individually. x is the input.

6.3.2.2 Activation Functions

An activation function serves as a gating mechanism, controlling whether to enable or disable the input from

the preceding layer. In certain literature, the activation function is delineated from the convolutional layer and

classified into a distinct activation layer. It may also be referred to by its specific function name, such as the

ReLU layer.

Ideally, an activation function should possess specific characteristics. It must be either bounded or locally

bounded, ensuring that its output remains within a specified range. Furthermore, it should exhibit mono-

tonic behaviour, meaning that it either consistently increases or decreases across its domain. Lastly, it must

be differentiable at every point within the bounded region, allowing for the application of gradient-based

optimization techniques.

ReLU Function The Rectified Linear Unit (ReLU) function, described by Equation 6.3, is a widely used

activation function within the hidden layers, specifically in the feature extraction stage. This function is

characterized by a hard threshold at the value of 0, retaining all positive values while nullifying the negative

ones. However, a limitation of the ReLU function is that it can sometimes lead to the vanishing gradient

problem. This occurs because the gradient is 0 for negative input values, which can result in ”dead neurons”

where the corresponding weights are never updated due to the zero gradient. To address this issue, a variant

known as Leaky-ReLU (Equation 6.4) was introduced. Unlike the standard ReLU, the Leaky-ReLU function

assigns a small positive value to negative inputs during the gradient computation. This modification helps to

mitigate the problem of dead neurons by ensuring that the weights can still be updated even when the input

falls into the negative region, thus preventing complete stagnation in those parts of the network.

ReLU(x) = max(0,x) (6.3)

119

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Leaky-ReLU(x) = max(0.01x,x) (6.4)

6.3.2.3 Kernel Initialization

The initialization of the kernels was performed using the well-established Glorot initialization method, as

elaborated in the seminal work of Glorot and Bengio [60]. This approach is widely adopted for kernel initial-

ization, due to its nuanced strategy in selecting initial values that carefully balance between being too small

or too large.

The importance of this method can be highlighted through the following considerations. When initializing

a kernel, excessively small starting values may cause the gradients to vanish or exert an insignificant impact

on the output. This could, in turn, lead to a protracted training process. Conversely, excessively large values

for kernel initialization can induce instability within the entire artificial neural network (NN), causing the

gradients to explode. The Glorot initialization method mitigates these issues by selecting the initial values

based on the number of input and output connections, thereby ensuring that the chosen values are neither too

small nor too large.

Ki j ∼U
[
− 1√

n
,− 1√

n

]
(6.5)

U
[
−a,a

]
is the uniform distribution, and n is the number of outputs from the previous layer.

6.3.3 Layers

6.3.3.1 Convolutional Layer

A convolutional layer cross-correlates the inputs with kernels to extract information. The resulting output is

then selectively fed into the next layer by an activation function. If the input size is not divisible by the kernel

size (convolving window), it is zero-padded to match the required length.

ConvKl ,bl (x) = F(
d−1

∑
i=0

Kl
i ∗ xi +bl) (6.6)

∗ is the cross-correlation operation, Kl
i is the layer l ith kernel, x is the input, bl is the layer l bias, and F is

the selected activation function.

120

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Cross-correlation Cross-correlation (Equation 6.7) takes the most calculations inside a convolutional neu-

ral network. Performing cross-correlation in the spatial domain is a costly computational process with com-

plexity O(n2). Note in neural network, cross-correlation is often loosely called convolution.

yi, j = f
⌊mk/2⌋

∑
l1=⌊−mk/2⌋

⌊nk/2⌋

∑
l2=⌊−nk/2⌋

xi
l1,l2k j

k1−l1,k2−l2
+bi, j (6.7)

mk,nk are the convolving matrix size, x,k are the input matrices, and y is the result.

Parameters r is the row of the receptive field, and c is the column of the receptive field. sr stride is number

of row element skips between each convolutional iteration. Respectively, sc stride is number of column

element skips between each convolutional iteration, and f fibre is the depth of the receptive field. pc is the

number of padding zeros added to the input.

Stride Stride is a parameter that allows the filter to skip inputs in order to downsample and speed up the

calculation process. Parameters are (sr,sc), which is the number of inputs skipped during row calculation.

Respectively, sc is number of inputs skipped during the column calculation.

Padding When inputs cannot be evenly divided by the receptive field, it will produce cyclic wrap-around

effect. This undesired behaviour could be fixed by adding zeros to the input, thus the process is called padding.

Typically in a CNN, same-padding technique are deployed to make the output dimension the same as input.

Output The output of the convolutional layer will be a new tensor with size (m′×n′×d′) calculated from

the equations 6.8.

m′ =
m− r+2× p

sr
+1

n′ =
n− c+2× p

sc
+1

d′ = d− f

(6.8)

6.3.3.2 Inverse-Convolutional Layer

An inverse-convolutional layer is an opposite of convolutional layer (which thus having the name inverse

convolutional layer), it features cross-correlating the inputs with kernels to expand the information. The

obtained output is then selectively fed into the next layer by an activation function. If the input size is not

dividable by the kernel size(convolving window), then it is zero-padded to match the required length.

121

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

ConvKl ,bl (x) = F(
d−1

∑
i=0

Kl
i ∗ xi +bl) (6.9)

∗ is the cross-correlation operation, Kl
i is the layer l ith kernel, x is the input, bl is the layer l bias, and

F is the selected activation function. Inverse-Convolutional layer uses the exactly the same arithmetic as

convolutional layer, but the calculation application is slightly different.

6.3.3.3 Pooling Layer

Pooling layer reduces the size of the input. Usual downsize methods in spatial domain are average pool-

ing(Equation 6.11) and max pooling(Equation 6.10)

x′ = arg max
x

(x)) (6.10)

x′ =
∑x
n

(6.11)

x′ is the result, x is the input, and n is number of input elements.

Outputs A m′×n′×d tensor is produced after pooling the input.

m′ =
1+(m− r)

sr

n′ =
1+(n− c)

sc

d = d

(6.12)

The input depth remains unchanged.

6.3.3.4 Dense Layer

In a CNN, a dense (or fully-connected) layer is typically positioned at the conclusion of the neural network,

serving as a pivotal high-level decision-making component. Figure 6.10 presents an illustration depicting a

fully-connected layer with 3 inputs and 2 outputs.

122

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.10: Full-connected layer illustration

FCKl ,bl (x) = F∗(
m×n×d−1

∑
i=0

(Kl
i · xi)+bl) (6.13)

The input tensor x is linearised first. Kl is the kernel vector, and bl is the bias. They both shared the same

length as linearised input vector. F* is the activation function.

Output The output vector is pre-defined by the parameter N.

6.3.3.5 Dropout Layer

Dropout Dropout is a regularization technique typically inserted in fully-connected layers during training

to mitigate overfitting by inhibiting the co-adaptation of neurons [68]. During this process, a random subset

of neurons within the layer is deactivated by setting their weights to zero. In the context of this research, the

proportion of deactivated neurons was fixed at 50

123

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

6.3.3.6 Softmax Layer

The softmax layer is a common choice for the terminal layer in a neural network designed to address classi-

fication problems. Its purpose is to normalize the input vector into a new vector of the same length, where

the sum of all elements is equal to 1. The length of the input vector to this layer is determined by the number

of classes to be classified, with the output vector retaining this length. The essential function of the softmax

layer is to transform the input values into a proportional representation, thereby signifying the probability

associated with each class.

softmaxN(xi) =
ex j

∑
N
j=1 ex2

j
(6.14)

Where N is the total number of classes need to be classified.

6.3.3.7 Transposed Convolutional Layer

Transposed convolutional layer is mainly used for up-sampling the input(or a feature map). It is no different

from the convolutional layer mathematically wise. Unlike the convolutional layer, transposed convolutional

layer pads and insert zeros in the input, then perform the same convolutional calculation on the new sparse

input with a kernel.

ConvT
Kl ,bl (x) = F(

d−1

∑
i=0

Kl
i ∗ xi +bl) (6.15)

124

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

(a) Zero stride and no-padding (b) Centred padding and 1 stride

Figure 6.11: Transpose convolutional layer examples[54]. Green colour output, and blue colour is the input.

6.3.4 Training

NN training is a term used to describe how an NN takes processed data and, through a training process,

updates the NN’s internal parameters. The training process is considered complete once it reaches a prede-

fined stopping condition, preparing the NN for predictions. Common stopping conditions include reaching a

predetermined number of training epochs or achieving a specific loss threshold.

In this research, supervised mini-batch training was utilized to train the neural network. This method

is favoured in scenarios with hardware constraints. Mini-batch training involves processing smaller subsets

of the training data in each learning step, which not only reduces VRAM usage but also helps to prevent

overfitting, a common issue in neural network training.

Figure 6.12 shows the standard mini-batch training procedure.

The training process begins by feeding a randomly selected set of training samples into the NN. The NN

then generates results and computes the loss function based on these samples. If the loss value meets the

stopping condition, or if the number of training epochs reaches its limit, the training concludes. If not, the

NN’s parameters are recalculated using back-propagation and an optimizer. After updating these parameters,

the NN receives a new set of training samples, and the process repeats.

Loss Function

125

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.12: Training Process

Cross-entropy Loss The cross-entropy loss stands as a prominent choice among loss functions, partic-

ularly revered for its utility in various domains. This function imposes penalties on predictions that deviate

from the ground truth, rendering it particularly advantageous within the context of classification-oriented

neural networks.

−
M

∑
c=1

yi,c log(pi,c) (6.16)

Where M is the number of classes, p is the predicted probability of input i, and y is the target class

indicator of the input i and its value can only be 0 or 1.

There is a modified version of the cross-entropy function (Equation 6.17) with added weights to balance

the difference across different number of training samples.

−
M

∑
c=1

yi,c log(pi,c)wc (6.17)

Where wc is the weight of the class, computed by the following equation:

wc =
N

CNc
(6.18)

N is the total number of training samples, Nc is the number of training samples in class c, and C is the total

number of classes.

126

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

For mini-batch gradient descend, the loss function is the mean of all outputs.

Loss =−1
n

n

∑
c=1

M

∑
c=1

yi,c log(pi,c) (6.19)

Where n is the number of samples per batch.

Mean Square Error The MSE loss calculates the average squared difference between the ground truth

values and the predicted values. This loss function is frequently employed in regression tasks to gauge the

disparity between predicted values and the actual targets. In this research, this loss function is utilized to

assess the performance of the autoencoder.

MSE =
∑yi− pi

2

M
(6.20)

Where M is the number of classes, p is the predicted value of input i, and y is the ground truth of the input i.

Updating Parameters Parameter update can be generalize in equation 6.21 and equation 6.22.

K(l+1) = K(l)−η
∂L
∂K

(6.21)

b(l+1) = b(l)−η
∂L
∂b

(6.22)

Kl is the kernel of the layer l, and bl is the bias of the layer l. η is the learning rate, set to 1 in the naive

method. Computing the gradient ∂L
∂K and ∂L

∂b uses full chain rule. This involves all the layers after the layer l.

Optimization Adam optimization[91] is a recent developed popular optimization strategy in training a neu-

ral network. Adam optimization is designed to take an advantage of scaling the learning rate and movements,

thus making it a superior method of optimizing the training.

m = β1m+(1−β1)g (6.23)

v = β2v+(1−β2)g2 (6.24)

m̂ =
m

(1−βt
1)

(6.25)

v̂ =
v

(1−βt
2)

(6.26)

K′ = K−η
m̂

v̂
1
2 + ε

(6.27)

127

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

m̂ and v̂ are the moving averages, g is the current computed gradient and K is the kernel. Parameters for the

are: η is the learning rate, β1, β2 are the parameter sets for the exponential decay rate for the first and second

moment estimates respectively, ε is a small value to prevent dividing by zero.

Training Condition When feeding the validation dataset(which is different from the training dataset) into

the neural network and the result from the loss function is smaller than a pre-determined value, then stop the

training. This process is called validation.

6.3.5 Autoencoder

An autoencoder is a type of neural network architecture that is designed to replicate its input at the output. This

model primarily serves two distinct purposes in this research: dimensionality reduction and noise removal or

input reconstruction.

An autoencoder can be considered a specialized variant of a convolutional neural network (CNN), distin-

guished by the presence of an inverse-convolutional layer. Such a structure is instrumental in transforming a

lower-order input through a deconvolutional process into a higher-order output. When appropriately config-

ured, an autoencoder has the capacity to perform unsupervised training.

There exists a substantial body of research that substantiates the effectiveness of autoencoders in the

de-noising process and the restoration of partially missing image data [149][18][174]. These studies have

employed diverse autoencoder architectures to achieve promising results across various applications. The

exploration of autoencoders has extended beyond image processing into domains such as natural language

processing (NLP).

6.3.5.1 Network Structure

The structure of an autoencoder is bifurcated into two main components: the encoder and the decoder, as

depicted in Figure 6.13.

The encoder receives an input and processes it into a feature map, which essentially represents a dimen-

sionally reduced form of the original input. The decoder, in turn, accepts this feature map and reconstructs

the corresponding input from it. The synergy of these two components enables the autoencoder to carry out

its specialized tasks, such as noise reduction or input reconstruction, thereby rendering it a valuable tool in

various fields of research and application.

128

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.13: Autoencoder model

129

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Encoder Encoder features input layer, convolutional layer(which then it is classified as convolutional au-

toencoder if it features this kind of layer in its structure), pooling layer, and full-connected layer.

Decoder Decoder features transposed convolutional layer (figure 6.11) and up sampling layer.

6.4 CVNN Implementation and Algorithm

6.4.1 Overview

CVNN is a complex variant of NN that accepts complex values as inputs. This NN follows a similar process

to its real counterpart. The mini-batch training flow is exactly the same as its real counterpart.

6.4.2 CVNN Layers

6.4.2.1 Convolutional Layer

Like a RVNN, convolutional layer in CVCN follows the similar calculation except with modified activation

function.

ConvK,b(z) = F∗(
d

∑
i=1

Ki ∗ zi +b) (6.28)

∗ is the convolution operation, z is a m×n×d complex tensor input, zi is the corresponding m×n complex

matrix. Kl
i is the corresponding size p×q kernel, and b is m×n bias. F∗ is an activation function applied to

the matrix element wise.

Convolution ∗ can be defined by summation in equation 6.29.

(
d

∑
i=1

Ki ∗ zi)r,s =
d

∑
j=1

q−1

∑
k=0

p−1

∑
l=0

K j,k,l · zr+m,s+n,c (6.29)

130

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.14: Convolutional layer filter illustration

Parameters Similiar to the real valued CNN, CVCN convolutional layer is also accepting a few parameters

for the receptive field. The row of the receptive field r, the column of the receptive field c, and sr stride

is number of row element skips between each convolutional iteration. Respectively, sc stride is number of

column element skips between each convolutional iteration, and f fibre is the depth of the receptive field. pc

is the number of padding zeros added to the input.

Stride Stride is a quicker method to down-sampling and skip calculations. Skip calculations are based

on the preset parameters (sr,sc). It is worth noting that some literatures[55][11] proposed Complex-Valued

neural network without pooling layer and instead they used strides to achieve the down-sampling effect.

Padding Similarly to the real-valued counter part, the same padding strategy is used again in here.

Output The output produced by the convolutional layer will be a new tensor with size (m′×n′×d′).

m′ =
m− r+2× p

sr
+1

n′ =
n− c+2× p

sc
+1

d′ = d− f

(6.30)

131

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

6.4.2.2 Pooling Layer

Pooling layer decreases the size of the input to reduce the amount of calculations. This strategy is commonly

adapted in the CNN by known its capability of increasing the network performance. In this study, the pooling

operation is specifically executed using max pooling. Figure 6.15 illustrates the pooling process, which

involves moving a sliding window across the input tensor and selecting the largest value within that window.

In the complex domain, the selection of the maximum value can follow either Equation 6.31 or Equation

6.32[111].

Figure 6.15: Max pooling by projecting the complex number onto the real axis (Equation 6.32)

132

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.16: Complex number projection(Equation 6.32)

z′ = arg max
z

(|Re(z)|+ |Im(z)|) (6.31)

z′ = arg max
z

(Re(z)) (6.32)

Parameters Parameters for pooling layer includes strides (sr,sc) and window size (r,c).

Output The output of the pooling layer will be a new tensor with size (m′× n′× d) calculated from the

following equation:

m′ =
1+(m− r)

sr

n′ =
1+(n− c)

sc

d = d

(6.33)

Input depth remain unchanged.

6.4.2.3 Full-Connected Layer

Similar to the real-valued counter part, full-connected layer in CVCN is proposed in one of the last few layers

for the high level decision making.

133

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

FCKl ,bl (z) = F∗(
m×n×d−1

∑
i=0

(Kl
i · zi)+bl) (6.34)

The input complex tensor z is linearised first. Kl is the kernel vector, and bl is the bias. They both shared

the same length as linearised input vector. F* is the activation function.

Output The output vector is pre-defined by the parameter N.

Dropout Similar dropout mechanic is proposed in here too.

6.4.2.4 Softmax Layer

A modified softmax function[144] is used to deal with complex values in the network. This layer will project

all the complex values inputs into real axis.

softmaxN(zi) =
eRe(zi)

2+Im(zi)
2

∑
N
j=1 eRe(z j)2+Im(z j)2 (6.35)

Input The input Z,zn ∈ Z for the layer is a length N vector, where N is total number of classifying classes.

Output The output Z′ of the layer is a normalized length N vector, where ∑
N
i=1 z′i = 1,z′i ∈ Z′,Z′ ∈ℜ.

6.4.2.5 Dropout Layers

The concept of a dropout layer was first proposed by Krizhevsky et al. [94]. In this layer, a random selection

of p of the total elements is omitted, typically set to 50%. This approach is effective in addressing the problem

of overfitting DNN.

Dropoutr(z) = z′ = B · (z
r
) (6.36)

The input z is scaled by dividing by the dropout rate to compensate for the zero features resulting from the

dropout process.

Input z is the m× n× d input tensor, B is a m× n× d binary tensor that only contains 0 or 1. r ∈ [0,1] is

the drop out rate, between 0 to 100%.

Output Output tensor z′ shape will be m×n×d, which the same as input tensor.

134

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

6.4.2.6 Normalization Layers

A normalization layer is typically used to adjust the input tensor based on the tensor’s mean and standard

deviation. This adjustment can help mitigate the phenomenon known as internal covariate shift, where the

standard distribution of each output from the previous layer shifts due to changes in the layer’s parameters

during the training process.

µβ =
1
m

m

∑
i=1

zi (6.37)

σ
2
β
=

1
m

m

∑
i=1

(zi−µβ)
2 (6.38)

ẑi =
zi−µβ√

σ2
β
+ ε

(6.39)

Normalγ,β(zi) = γẑi +β (6.40)

Input zi ∈ z is the m×n×d input matrix, γ,β are the trainable parameters, and ε is the a small constant to

prevent dividing by 0.

Output Output tensor z′ is a normalized input tensor z, where the shape is m×n×d which is the same as

input tensor.

6.4.2.7 Fourier Transform Layers

Discrete Fourier Transform (DFT) transforms discrete input from the spatial domain into the frequency do-

main.

1D FFT 1D FFT is common in signal processing, transforms signal from the time domain to the frequency

domain.

Xi =
N

∑
j=1

e−(
i2π
N)i jx j (6.41)

2D FFT This process transform 2D inputs from spatial domain to frequency domain. Computing 2D Dis-

crete Fourier Transform(Equation 6.42) requires O(n2), and there are Fast Fourier Transforms (FFT) algo-

rithms those can improve the speed to O(n log n).

Xi1,i2 =
mx

∑
j1=1

nx

∑
j2=1

e−2iπ(i1 j1nx+i2 j2mx
mxnx)x j1, j2 (6.42)

135

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Input

1D FFT z is the m×d input real-valued matrix.

2D FFT z is the m×n×d input real-valued tensor.

Output

1D FFT z′ is the Fourier transformed m×d complex-valued matrix.

2D FFT z′ is the Fourier transformed m×n×d complex-valued tensor.

6.4.2.8 Split Real Layers

One of the utility layers that output the real part of the complex-value.

LReal(z) = ℜ(z) (6.43)

Input z is the m×n×d input complex-valued tensor.

Output z′ is the a real-valued tensor m×n×d, and it is the real part of the input z

6.4.2.9 Split Complex Layers

Another utility layer separates the complex part from the complex value. Similar to a split real layer, this

layer is useful in specialized CVNN neural networks for the purpose of splitting complex values.

LComp(z) = ℑ(z) (6.44)

Input z is the m×n×d input complex-valued tensor.

Output z′ is the a real-valued tensor m×n×d, and it is the complex part of the input z

136

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

6.4.2.10 Short Layers

A short layer is used to connect two layers directly without performing any calculations. This layer is primar-

ily utilized to mitigate vanishing gradient issues in very deep DNNs. Additionally, this layer speeds up the

training process of such NNs.

Figure 6.17: Example of a non-padding short layer

Input zl are the ml×nl×dl input tensors.

Output

Padding Output matrix z′ will be maxm×maxn×maxd, taken the max dimension size amount all the

input tensors.

Non-padding Output matrix z′ will be minm×minn×mind, taken the smallest dimension size amount

all the input tensors, corp

6.4.2.11 Reshape Layers

An Utility layer that changes the input tensor shape to a designated one, this is useful in many complex neural

network structures.

137

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Input z is the m×n×d input tensor, given new parameters to reshape the tensor.

Output z′ in the new shape specified.

6.4.2.12 Upsampling Layer

The incorporation of an upsampling layer finds its primary application within neural networks tailored for

image processing. In contrast to downsampling, this layer facilitates an expansion of the input dimensions

through the utilization of interpolation techniques. As such, it is often regarded as a complementary compo-

nent to the pooling layer. Within the realm of upsampling, a variety of interpolation techniques are at one’s

disposal. For the sake of simplicity, this research employs the bilinear interpolation method, as depicted in

Equation 6.45.

f (x,y)≈ 1
(x2− x1)(y2− y1)

[
x2− x x− x1

] f (x1,y1) f (x1,y2)

f (x2,y1) f (x2,y2)

y2− y

y− y1

 (6.45)

Where x,y is the coordinate of the interpolated value, x1,y1 is the bottom left reference point, x2,y2 is the top

right reference point, x2,y1 is the bottom right reference point, and x1,y2 is the top left reference point.

6.4.2.13 Kernel Initialization

A complex-variant Glorot initialization method[159] (equation 6.64) is used to initialize the kernel Ki j for

CVCN.

σK =
1√

nin +nout
(6.46)

Ki j = Guassian(µ = 0.0,σK) (6.47)

Where nin is the layer input and nout is the layer output, and in the form of Gaussian distribution.

6.4.2.14 Validation and Measurement

Validation is the same as CNN since the output from the CVCN is also real values, therefore real value

validation measurement techniques are applied in this case. For the measurement, please refer to the CNN

validation chapter.

138

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

6.4.2.15 Back Propagation Training

CR-Calculus effectively defines all operations, functions, and their derivatives for complex numbers within

the neural network. As a result, backpropagation training is applicable to the network.

Training Procedure Training procedure follows the real-valued CNN counterpart, with slightly modified

steps to compute complex-valued derivative.

CR-Calculus Any function(Equation 6.48) that takes complex value input is considered as a Holomorphic

function only if it satisfied Cauchy-Riemann conditions(Equation 6.49 and Equation 6.50). And this means

the function is analytic in the given domain, otherwise it is considered as an non-holomorphic function.

f (z) = u(x,y)+ iv(x,y) (6.48)

∂u
∂x

=
∂v
∂y

(6.49)

∂v
∂x

=−∂u
∂y

(6.50)

Wirtinger Calculus Wirtinger Calculus is developed for generalizing derivatives in complex domain pro-

viding a method to deal with derivative of non-holomorphic function in the complex domain by mapping

complex number in conjugate coordinate system(Equation 6.51).

 z

z∗

=

1 i

1 −i

x

y

 (6.51)

A pair of partial derivatives R-derivative (Equation 6.52) and conjugate R-derivative (Equation 6.53) are

defined for a function f (z,z∗) based on the mapping.

∂ f
∂z

=
1
2
(

∂ f
∂x
− i

∂ f
∂y

) (6.52)

∂ f
∂z∗

=
1
2
(

∂ f
∂x

+ i
∂ f
∂y

) (6.53)

139

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Complex Gradient Descent Algorithm First there is a real value output function f (Equation 6.54), which

is the neural network function.

f : Cn =⇒ R (6.54)

e = y′− y (6.55)

e is the error, y is the system output, and y′ is the desired output.

A real value loss function(Equation 6.56) is defined, where z is the parameter vector, and H is the Hermi-

tian transpose operation.

−∇z∗ξ

−∇zξ

=

 Jz Jz∗

(Jz∗)
∗ (Jz)

∗

H  e

e∗

 (6.56)

The complex gradient (Equation 6.56) and its complex conjugate are defined in Wirtinger Calculus, e is

the error (Equation 6.55), z is the parameter vector, Jz is the Jacobian with respect to z, and Jz∗ is the Jacobian

with respect to z∗.

Jz =
∂y

∂zT (6.57)

J∗z =
∂y

∂zH (6.58)

The bias, kernel update, and Jacobian calculation are performed in accordance with the design of the

neural network. The general rules for calculating the update values of the bias b (as shown in Equation 6.57)

and the kernel K (as shown in Equation 6.58) are as follows:

∆blayer = µ(JH
layerb

e+(JH
layerb∗

e)∗) (6.59)

∆Klayer = (δlayerb)vH
previous layer output (6.60)

Where µ is the learning rate.

Since the neural network is sharing the kernel and bias, therefore updating them are slightly different from

conventional neural networks. Each bias and kernel must be treated independently, and calculate the update

value (Equation 6.59 and Equation 6.60), then the actual update is the summation (Equation 6.61 and 6.62)

of all update values where the kernel or bias appeared.

140

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

b = ∑∆b (6.61)

K = ∑∆K (6.62)

6.4.3 Kernel Initialization

A complex-variant Glorot initialization method[159] (equation 6.64) is used to initialize the weight wi j for

CVNN.

σw =
1√

nin +nout
(6.63)

wi j = Guassian(µ = 0.0,σw) (6.64)

Where nin is the layer input and nout is the layer output, and in the form of Gaussian distribution.

6.4.4 Input Normalization

Usually, inputs require normalization to achieve the best result. In this proposal, zero-mean normalization

was used and therefore, after normalizing the input, the average becomes zero.

z′ =
(z− Ẑ)

σZ
(6.65)

Normalization (Equation 6.65) is applied to all the inputs Z, with each input calculates with means Ẑ and

standard derivation σZ individually. Z is the 2D Fourier transformed image inputs.

6.4.5 Forward-propagation

Section 6.4.2 lays out the equations for each individual layer in the network and specifies the behavior of each

layer. These equations are systematically arranged to simplify the calculation of the final output. Refer to the

illustrative figure shown in 6.18, which presents a toy example to show the concept of layer-wise cascading.

141

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.18: A toy example of convolutional neural network

In the given example, with input X, each layer is expressed as follows, noting that the convolutional layer

is divided into two layers using the unrolling method. The full forward propagation calculation of the neural

network is shown from Equation 6.66 to Equation 6.70. New layers can be easily added to the neural network

by simply cascading layer equations into the appropriate spot.

Ystep
Conv(X) = ∑x · kconv (6.66)

YConv(Y
step
Conv) = φ(∑ystep

Conv +bconv) (6.67)

YMax(YConv) = ∑(yConv · fmax) (6.68)

YFC(YMax) = ∑(yMax · kFC)+bFC (6.69)

Y(YFC) =
eyFC

∑ey2
FC

(6.70)

Given another example with a two layers complex-valued classifier fCVNN(z) : C→ R:

fCVNN(z) = φSM(∑W2φActivation(∑W1z+b1)+b2) (6.71)

φActivation is a holomorphic activation function, φSM is a complex valued softmax function. W1,W2 is the

kernel of respect layers, and b1,b2 is the bias of the respect layers.

142

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.19: A simple example of 2 hidden layers complex-valued classifier

Using Figure 6.19 NN breakdown, W1 = [w11,w12,w13,w14] and W2 = [w21,w22,w23,w24] is formulated.

h1 = φActivation(w11Z1 +w13Z2 +b1) (6.72)

h2 = φActivation(w12Z1 +w14Z2 +b1) (6.73)

y1 = φSM(w21h1 +w23h2 +b2) (6.74)

y2 = φSM(w22h1 +w24h2 +b2) (6.75)

Thus forward propagation of the neural network has defined.

6.4.6 Error Function

The selection of the Mean Square Error (MSE), denoted by Equation 6.76, was employed as the error function

for the autoencoder architecture. This particular function holds considerable prominence, being extensively

utilized to gauge the performance benchmark of the autoencoder model.

MSE =
∑

n
i=1(xi− t p

i)
2

n
(6.76)

Where xi is the predicted value, and ti is the target value, n is the total number of predictions.

6.4.7 Loss Function

MSE Loss Function The Mean Square Error (MSE), represented by Equation 6.77, constitutes a symmetric

quadratic function centered around the target value. This loss function finds common application in regression

tasks, serving as a pivotal metric for assessing the accuracy of predictive models.

MSE =
∑

n
i=1(zi− t p

i)
2

n
(6.77)

143

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Cross-entropy Cross-entropy loss is the most popular method measuring the performance of single class

classification model due to its navery

−
M

∑
c=1

yi,c log(pi,c +C) (6.78)

Where M is the number of classes, p is the predicted probability of input i, and y is the target class indicator

of the input i and its value can only be 0 or 1. C is a close to zero constant (In my case C = 0.1× 10−6) in

place to prevent computing log(0).

6.4.8 Hybrid Neural Network

The Hybrid Neural Network (Figure 6.1) is the core component for classifying objects after receiving its

LiDAR clusters, IR camera, and camera data. Each sensor’s data is prepared through a different channel and

fed into a distinct part of the neural network. The entire structure of the network comprises an autoencoder for

LiDAR data processing, a CNN for LiDAR classification, a CVNN for camera classification, and a CNN for

the IR camera classifier. All predictions from each classifier are then fed into a voter for the final prediction.

6.4.8.1 Autoencoder

The acquisition of LiDAR scans on objects often yields incomplete data due to various contributing factors,

including the object’s distance, surface reflectivity, and potential obstructions. However, a promising avenue

for addressing this challenge involves the utilization of autoencoders in conjunction with curated training

samples. This strategy presents the potential to partially or even comprehensively restore the integrity of Li-

DAR clusters and rectify gaps within said clusters. This restorative approach bears the capacity to markedly

refine object detection capabilities by effectively compensating for the absent or erroneous data points that

result from the inherent constraints of the LiDAR scanning process. The employed autoencoder architec-

ture consists of two convolutional layers in the encoding phase, and two inverse convolutional layers along

with a single convolutional layer in the decoding phase (refer to Figure 6.20, Table 6.1). This configuration

encompasses a total of 61,761 trainable parameters.

The projection of all LiDAR data as binary range images onto a 32×32 grid is a fundamental step in the

process. In this representation, each slot within the grid corresponds to a pixel, which is assigned a value of 1

if data exists within the corresponding LiDAR slot, and 0 otherwise. However, directly mapping the maximal

value of 1 to display intensity on a computer screen is not conducive to effective visualization. Therefore,

during the visualization phase, all pixel values are multiplied by 255 and converted to integers, ensuring

proper representation of the monochromatic image for display purposes. Given the relatively simple input

144

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

data, the neural network architecture does not necessitate a deep autoencoder structure to proficiently learn

the side view configuration of the vehicle and accurately predict its original form.

Figure 6.20: LiDAR autoencoder

Input Shape Kernel Window # of Filters Strides # of Kernels # of Bias Activation Function

Conv1 [32,32,1] [3,3] 64 [2,2] 576 64 ReLU

Conv2 [15,15,64] [3, 3] 32 [2,2] 18432 32 ReLU

InvConv1 [7,7,32] [3,3] 32 [2,2] 9216 32 ReLU

InvConv2 [15,15,32] [4,4] 64 [2,2] 32768 64 ReLU

Conv3 [32,32,64] [3,3] 1 [1,1] 576 1 Sigmoid

Table 6.1: Autoencoder Layer Configuration

Figure 6.21: Autoencoder example: Left: Original LiDAR scan; Middle: artificially distorted scan; Right:

Autoencoder fixed scan.

6.4.8.2 LiDAR Classifier

Previous research conducted jointly with Luo has studied and demonstrated that CNN is robust and effective

in recognizing vehicle classes using simple LiDAR projection data. However, due to the sparse nature of

LiDAR scans, it is unlikely that LiDAR can be useful in recognizing and classifying relatively small objects

145

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

like pedestrians or cyclists at a distance. Thus, in this research, the LiDAR sensor is mainly used to search

for objects and vehicle classifications. All other subjects such as pedestrians, cyclists will be labelled as

NaV (Not a Vehicle). In continuation of the previous research[108], several modifications have been made to

achieve better performance:

• The previous research did not fully utilize dropout and other training techniques, and therefore the

training results often showed signs of overfitting (evidenced by practically high recall rates on the Van

and SUV classes, even though both classes are arguably very similar in spatial appearance).

• The previous research neither balanced the training classes nor added weights to the loss function to

help combat the high single class overfitting situation. In this research, the training was balanced by

adding weights according to the number of samples during the loss calculation (equation).

• The input size was reduced for better performance. As previously input size of 128×128 is not neces-

sary for the simplified classification.

The neural network structure utilized in this research is a conventional CNN configuration, incorporating

filters for feature extraction, and a dense layer for classification based on the extracted features. Figure 6.22

illustrates the neural network proposed in this study. Autoencoder utilize MSE(Equation 6.20) loss function

during the training.

Figure 6.22: LiDAR object classifier

146

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Input Shape Kernel Window # of Filters Strides # of Kernels # of Bias Activation Function

Conv1 [32,32,1] [3,3] 64 [2,2] 576 64 ReLU

Conv2 [15,15,64] [3, 3] 32 [2,2] 18432 32 ReLU

InvConv1 [7,7,32] [3,3] 32 [2,2] 9216 32 ReLU

InvConv2 [15,15,32] [4,4] 64 [2,2] 32768 64 ReLU

Conv3 [32,32,64] [3,3] 1 [1,1] 576 1 Sigmoid

Table 6.2: LiDAR Classifier Layer Configuration

NaV Object Classification In previous research[108], Luo utilized a specific class to denote the ’Not a

Vehicle’ (NaV) category, which comprised samples of non-vehicle items. However, despite this method, both

recall and precision were relatively low. Luo highlighted in his thesis that these studies lacked sufficient

NaV class samples for the neural network to effectively recognize this category. Training a NaV class with

adequate samples can be costly. Since prior research primarily focused on highway driving, the NaV class

likely included items like bushes and other objects found near highways. In contrast, this thesis encompasses

research in both highway and urban driving environments, introducing a more complex array of objects such

as road advertisement signs, street signs, fire hydrants, and shopping carts (noted in one parking lot dataset).

This increased complexity alone significantly challenges the creation of dedicated NaV classes.

Thus, in this thesis, the problem is solved by checking the output of the neural network. Since the pre-

diction is normalized with either the sigmoid function (for binary classification) or the softmax function (for

multi-class classification), the result often comes close to a probabilistic prediction. A hard threshold can

be implemented to determine if the prediction for a certain class is confident enough to be classified as that

class. For example, if the prediction result is [0.3,0.25,0.45] after softmax activation across three labelled

classes, but the threshold value for a successful prediction is 0.8, then this object can be classified as neither

of the classes in the classifier, because class 3, which has a prediction of 0.45, is below the threshold value of

0.8.This approach effectively addresses the issue of insufficient NaV objects in the training dataset.

6.4.8.3 Camera ROI Classifier

For experimental purposes, a camera classifier was implemented in both CVNN and RVNN. The RVNN

was implemented using the Keras package, while the CVNN version was implemented from scratch. For

experimental comparison, an RVNN version of the NN was implemented using the same package as that used

by CVNN, thus eliminating differences in programming efficiency and optimization.

147

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

RVNN Version This version of the neural network was implemented in TensorFlow using the Keras pack-

age, making it lightweight and portable across different machines running it. Additionally, since the package

is officially maintained, the code is well-optimized, and the trained weights are easily portable for use. The

network is composed of 7 main layers with a total of 1,777,829 trainable parameters. The first 3 layer blocks

consist of convolutional layers with pooling layers for feature extraction, while the last 4 layer blocks are

dense layers with dropout layers for classification purposes. All layers utilize the ReLU activation function,

except for the last layer, which uses the softmax activation function for class prediction. The version imple-

mented from scratch with CVNN packages has the exact same layout as the Keras version for experimental

purposes. Dropout layers have been configured to have a 20% dropout ratio. Inputs can either be greyscale or

colour. Using greyscale will reduce the channel to 1 and greatly reduce the number of trainable parameters,

but during the experiment, it was found that greyscale performs slightly worse than the coloured version.

Thus, this section will use the coloured version for the write-ups.

Figure 6.23: Camera ROI classifier

Input Shape Kernel Window # of Filters Strides # of Kernels # of Bias Activation Function

Conv1+Maxpool [56,56,3] [3,3] 16 [1,1] 432 16 ReLU

Conv2+Maxpool [28,28,16] [3, 3] 32 [1,1] 4608 32 ReLU

Conv3+Maxpool [14,14,32] [3,3] 64 [1,1] 18432 64 ReLU

Dense1+Flatten 3136 - 512 - 1605632 512 ReLU

Dense2+Dropout 512 - 256 - 131072 256 ReLU

Dense 3+Dropout 256 - 64 - 16384 64 ReLU

Dense 4 64 - 5 320 5 Softmax

Table 6.3: Image classifier layer configuration

148

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

CVNN Version The CVNN version is implemented from scratch and utilizes the TensorFlow package with

Nvidia CUDA package. The CVNN version has exactly the same layer setup as its RVNN counterpart,

except that the activation functions are modified to be complex-valued. Due to the identical network setup,

the number of trainable parameters is exactly the same, except that these parameters are complex-number

trainables.

Figure 6.24: Camera ROI classifier

Input Shape Kernel Window # of Filters Strides # of Kernels # of Bias Activation Function

Conv1+Maxpool [56,56,3] [3,3] 16 [1,1] 432 16 ReLU

Conv2+Maxpool [28,28,16] [3, 3] 32 [1,1] 4608 32 ReLU

Conv3+Maxpool [14,14,32] [3,3] 64 [1,1] 18432 64 ReLU

Dense1+Flatten 3136 - 512 - 1605632 512 ReLU

Dense2+Dropout 512 - 256 - 131072 256 ReLU

Dense 3+Dropout 256 - 64 - 16384 64 ReLU

Dense 4 64 - 5 320 5 Complex Softmax

Table 6.4: Complex-valued image classifier layer configuration

6.4.8.4 IR Camera ROI Classifier

The IR camera ROI classifier has a fewer number of trainable parameters, even though the network structure

remains similar with a 7-layer block setup. Since the IR image is monochrome, it only has 1 channel for the

input, resulting in a resized input size of 56×56×1. The number of filters was reduced by half, as determined

by the experiment, showing that IR camera data does not benefit much from having more trainable parameters.

The dropout ratio is 20% as well, the same as the camera image CNN counterpart.

149

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.25: IR camera ROI classifier

Input Shape Kernel Window # of Filters Strides # of Kernels # of Bias Activation Function

Conv1+Maxpool [56,56,1] [3,3] 8 [1,1] 72 8 ReLU

Conv2+Maxpool [28,28,16] [3, 3] 16 [1,1] 1152 16 ReLU

Conv3+Maxpool [14,14,32] [3,3] 32 [1,1] 4608 32 ReLU

Dense1+Flatten 1568 - 512 - 802816 512 ReLU

Dense2+Dropout 512 - 256 - 131072 256 ReLU

Dense 3+Dropout 256 - 64 - 16384 64 ReLU

Dense 4 64 - 3 192 3 Softmax

Table 6.5: IR image classifier layer configuration

6.4.8.5 Voter

Since all three sensors output different classes, the voter design is no trivial task here. First, LiDAR is effective

at detecting whether an object is a vehicle or not, and it is robust in most situations (unless the object is really

far away from the sensor). The IR camera, on the other hand, can accurately detect pedestrians regardless

of lighting conditions, so if it detects a pedestrian, then it is very confident that the object is a pedestrian.

The camera in this context is limited by many factors, such as lighting conditions and glares, all of which

can affect classification and cause false detection. However, out of all three equipped sensors, the camera is

the one that can distinguish subclasses (note that the IR camera’s car class includes all kinds of vehicles, as

sometimes it is nearly impossible to detect the vehicle type from the IR camera sensor alone). Figure 6.26

shows the relationship between each classifier class prediction and the final voter class prediction. LiDAR has

a hyper class which contains ”Car”, ”Van”, ”Truck”, and ”NaO”. LiDAR’s initial classifier does not contain

”NaO”, thus this hyper class is computed in Equation 6.79. When pNaO is not zero, all other hyper LiDAR

150

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6.26: Voter class relation diagram

classes will have a prediction value of 0. The voter design was initially done through training, but the result

was disastrous due to sensor reliability changes when scenario conditions change, thus neither of the sensors

can be reliable in all situations without prior knowledge about the driving scenario, and not enough special

weather condition data to train for a general model. In this work, those weights w are manually assigned based

on trial and error. The final prediction PF can be computed from Equation 6.86 by summing all computed

prediction of each individual classes.

pLiDAR
NaO =


1 if max(PLiDAR))< thLiDAR

0 if max(PLiDAR)≥ thLiDAR

(6.79)

Where PLiDAR
LiDAR is the prediction of LiDAR classifier, and thLiDAR is the threshold value to determine if the

object is not a value.

151

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

pLiDAR
Car = pLiDAR

Sedan + pLiDAR
Sport + pLiDAR

SUV (6.80)

pLiDAR
Car is equal to the summation of the corresponding classes. Thus the computing is like the following:

pF
Car =

1
3

wIR
Car pIR

Car +wLiDAR
Car pLiDAR

Car +wCAM
Car pCAM

Car (6.81)

pF
Van =

1
3

wIR
Car pIR

Van +wLiDAR
Van pLiDAR

Van +wCAM
Van pCAM

Van (6.82)

pF
Truck =

1
3

wIR
Car pIR

Truck +wLiDAR
Truck pLiDAR

Truck +wCAM
Truck pCAM

Truck (6.83)

pF
Pedestrian = wIR

Pedestrian pIR
Pedestrian +

1
2

wLiDAR
NaO pLiDAR

Pedestrian +wCAM
Pedestrian pCAM

Pedestrian (6.84)

pF
NaO = wIR

NaO pIR
NaO +

1
2

wLiDAR
NaO pLiDAR

NaO +wCAM
NaO pCAM

NaO (6.85)

PF = SOFTMAX([pF
Car, pF

Van, pF
Truck, pF

Pedestrian, pF
NaO]) (6.86)

6.4.9 Training Dataset

6.4.9.1 Data Augmentation

In this research, data augmentation was implemented to expand the training set. Data augmentation leverages

the fact that a CNN can handle inputs with distortions, rescaling, changes in orientation, or flipping. By

artificially distorting, flipping, or rotating the training samples, these transformations can be utilized during

the training process to help the CNN generalize better.

A list of augmentation was implemented in the process:

• Rotation: Rotate the image alone the centre.

• Shearing: deform the image alone one side.

• Zoom: Zooming in the image.

• Shifting: shifting the image pixel.

152

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

• Adding Noise: artificially adding Gaussian noise onto the training sample.

LiDAR Camera IR Camera

Rotation ±10% degree ±25% degree ±25% degree

Shearing 20% shearing angle 20% shearing angle 20% shearing angle

Zoom < 10% zoom in < 10% zoom in < 10% zoom in

Horizontal Shifting ±5% horizontal pixels ±10% horizontal pixels ±10% horizontal pixels

Vertical Shifting ±5% vertical pixels ±5% vertical pixels ±5% vertical pixels

Noise White noise White noise White noise

Table 6.6: Augmentation applied to each sensor classification training data

6.4.9.2 LiDAR Autoencoder Training

Autoencoders employ unsupervised training, which simplifies the preparation process as it does not involve

labeling. A total of 2343 samples were prepared, encompassing 5 different vehicle classes, as illustrated in

Table 6.7. Training was conducted in batch with size of 32, and training/validation split is set to 30%.

Pickup Sedan Sports SUV Van Total

Sample Counts 223 660 410 769 281 2343

Table 6.7: LiDAR training samples

(a) Pickup class (b) Sedan class (c) Sports class (d) SUV class (e) SUV class

Figure 6.27: Example of labelled LiDAR inputs.

6.4.9.3 LiDAR Classifier Training

The training dataset employed for the LiDAR autoencoder is also utilized to train the LiDAR classifier. The

dataset was augmented during the training preparation. The LiDAR CNN was implemented in Keras for its

portability and ease of deployment in the vehicle.

153

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

During the experimental process, the effectiveness of LiDAR data was found to be less than ideal for

the fine classification of objects, such as pedestrians. Moreover, it demonstrated a lack of sensitivity in

distinguishing between larger and smaller vehicles. Consequently, this portion of the NN was explicitly

designed for the binary classification of vehicle objects. For example, if a prediction does not match either

of the classes, like an object illustrated in Figure 6.28, the neural network’s output was [0.26, 0.11, 0.08,

0.23, 0.33], with the maximum prediction of 0.33 relating to the ”van” class. However, this object clearly

does not fall into any vehicle class and is instead classified as a ”NaV” class. Weight balancing techniques

were employed during the training of the classes to correct the imbalance between samples. Training was

conducted in batch with size of 32, and training/validation split is set to 30%.

Figure 6.28: NaV example

6.4.9.4 Camera Classifier Training

To train the NN, a set of resized image inputs with labels has been prepared. To augment the training dataset,

this research incorporated the KITTI semantic dataset[17] into the CMHT dataset. The original KITTI seman-

tic dataset was labelled and intended for semantic training, but it can easily be converted into a classification

training dataset using a cropping script. There are five classes currently labelled, including Not-an-Object

(NaO), which means it is a detected object by LiDAR, but the class is not of concern. Normally, these are

miscellaneous objects such as road signs and other random items. The reasoning behind this class is that

during the experiment, it was found that even a well-trained NN has difficulty discarding objects-not-in-class

due to the complexity of image training. Often, objects detected are associated with high confidence values,

making it hard to discard them like LiDAR classifiers. Therefore, to combat this issue, a NaO class has been

added to improve the generalization of the network. Training was conducted in batch with size of 32, and

training/validation split is set to 30%.

154

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Car NaO Pedestrian Truck Van Total

Sample Numbers 12214 602 2413 367 929 16525

Table 6.8: Image training sample count

(a) Car (b) Pedestrian (c) Cyclist (d) Van (e) NaO

Figure 6.29: Example of labelled image classes

6.4.9.5 IR Camera Classifier Training

The IR camera dataset is another rare-to-find dataset. Aside from the CMHT dataset, FLIR data was also

incorporated into the training samples. A weight balancing strategy was also deployed during the training.

The IR ”Car” label includes sub-categories like ”Sedan”,”Van”, and ”SUV”. Training was conducted in batch

with size of 32, and training/validation split is set to 30%.

Car Pedestrian NaO Total

Sample Numbers 69560 47122 1542 118224

Table 6.9: IR Image training sample count

(a) Car (b) Pedestrian (c) NaO

Figure 6.30: Example of labelled IR image classes

155

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

6.5 Results

For the score marks and calculations, please refer to Appendix section B.

6.5.1 Autoencoder

Autoencoder performance can be determined by using a loss function from the validation; the smaller the loss

is, the closer the reassembled object is to the original form. Testing was conducted in two ways: the first

test was to simulate if the object is partially blocked by other objects, thus part of the object was randomly

removed, up to 30%, of the object’s points. The second test was to determine if the object is further away

from the sensor, thus points on the object were randomly removed, up to 50% to simulate a sparse scan from

a distance.

Due to the simplicity of the projected LiDAR images, the autoencoder captured the features really well

and achieved an average loss of 0.151 across 200 testing samples, with a worst loss of 0.274, and a best loss

value of 0.122 in the first test. In the second test, the average loss value is 0.129 across 200 training samples,

with a worst loss of 0.235 and a best loss of 0.121. Both results are considered satisfactory.

6.5.2 Object Classification By Individual Sensors

6.5.2.1 LiDAR Classification

The LiDAR classification performs as expected; even when the neural network is downsized, the accuracy

is not substantially hindered, maintaining a level of 83.20% when tested with a completely different testing

dataset. When tested with randomly cropped clusters, the network prediction often results in a leading class

prediction with confidence below 0.7. Therefore, the NaV detection threshold is set to 0.85. Any incoming

cluster object that does not pass this leading cluster threshold will be classified as the NaV class in the output

to feed into the voter.

Another significant aspect of the approach is the use of weights during training, which notably enhances

the generalization of the NN. This strategy is particularly important given that the dataset is imbalanced,

primarily consisting of the ”sedan” or ”SUV” classes. Without this balancing act, the trained NN could easily

skew towards those two classes by mere random guessing, yet still achieve very acceptable accuracy, even

with a 7:3 training to validation slice. The ”SUV” class has a fairly low recall rate due to natural difficulty

156

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

to detect; from the shape, it’s just a slightly smaller van, thus the ”Van” class and ”SUV” class have lower

precision and recall, also many FP predictions between the two classes. This was observed during the previous

studies. However, since the LiDAR classifier is primarily used for identifying the object and determining if it

is a vehicle, the detailed sub-classification rate can be enhanced by employing the camera sensor. The testing

dataset is different from the training data; therefore, the result is considered satisfactory.

Output\Target Pickup Sedan Sports SUV Van

Pickup 162 1 13 2 5

Sedan 12 192 10 5 5

Sports 18 5 171 11 3

SUV 5 2 5 147 27

Van 3 0 1 35 160

Table 6.10: LiDAR classification confusion table

Class Name Precision 1-Precision Recall 1-Recall f1-score

Pickup 0.8852 0.1148 0.8100 0.1900 0.8460

Sedan 0.8571 0.1429 0.9600 0.0400 0.9057

Sports 0.8221 0.1779 0.8550 0.1450 0.8382

SUV 0.7903 0.2097 0.7350 0.2650 0.7617

Van 0.8040 0.1960 0.8000 0.2000 0.8020

Accuracy 0.8320

Misclassification Rate 0.1680

Macro-F1 0.8307

Weighted-F1 0.8307

Table 6.11: LiDAR classification result

157

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

6.5.2.2 Camera Classification

RVNN Result The camera sensor stands out among the three sensors as the only one capable of visually

identifying all different subclasses. However, it is also the least robust of the sensors, being sensitive to

weather, lighting conditions, and other environmental factors. The subsequent section, which tests the pro-

posed neural network against the state-of-the-art YOLO V8 detector using only a camera in dark or rainy

conditions, underscores this data. Image classification is a well-studied area, and there is no doubt about the

power of CNN image classifiers. With a performance of 94.32% on a mixed image dataset, the camera proves

to be a strong performer, making it the ideal object classifier for general use when compared to LiDAR and

IR cameras.

Output\Target Car NaO Pedestrian Truck Van

Car 3952 15 53 102 92

NaO 10 556 32 3 1

Pedestrian 45 12 2327 0 29

Truck 8 1 0 358 0

Van 75 1 5 0 848

Table 6.12: Real-Valued Image classification confusion table

158

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Class Name Precision 1-Precision Recall 1-Recall f1-score

Car 0.9378 0.0622 0.9663 0.0337 0.9518

NaO 0.9236 0.0764 0.9504 0.0496 0.9368

Pedestrian 0.9644 0.0356 0.9628 0.0372 0.9636

Truck 0.9755 0.0245 0.7732 0.2268 0.8627

Van 0.9128 0.0872 0.8742 0.1258 0.8931

Accuracy 0.9432

Misclassification Rate 0.0568

Macro-F1 0.9216

Weighted-F1 0.9426

Table 6.13: Real-Valued Image classification result

CVNN Result The CVNN implementation, on the other hand, performs closely to another neural network

but slightly worse (92.74% vs RVNN 94.32%). One hypothesis for this discrepancy is that the relationship

between phase and magnitude raises difficulty during training, making it more challenging to converge. For

more discussion related to CVNN and training, please refer to the next chapter of the thesis.

Output\Target Car NaO Pedestrian Truck Van

Car 3913 11 141 53 96

NaO 10 546 45 1 0

Pedestrian 41 19 2333 0 20

Truck 19 0 3 345 0

Van 156 0 4 0 769

Table 6.14: Complex-Valued Image classification confusion table

159

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Class Name Precision 1-Precision Recall 1-Recall f1-score

Car 0.9286 0.0714 0.9454 0.0546 0.9369

NaO 0.9070 0.0930 0.9479 0.0521 0.9270

Pedestrian 0.9668 0.0332 0.9236 0.0764 0.9447

Truck 0.9401 0.0599 0.8647 0.1353 0.9008

Van 0.8278 0.1722 0.8689 0.1311 0.8479

Accuracy 0.9274

Misclassification Rate 0.0726

Macro-F1 0.9115

Weighted-F1 0.9276

Table 6.15: Complex-Valued Image classification result

6.5.2.3 IR Camera Classification

Testing with the IR classifier was performed on 1000 randomly selected instances from each class. Undoubt-

edly, the IR camera excels in detecting pedestrians, achieving close to 90% recall and precision, along with

a 0.9045 F1 score. However, vehicle detection presents a more complex picture due to various factors. The

appearance of a vehicle under IR imaging can dramatically differ depending on its state: a driving vehicle

generally shows hot spots on the wheels, exhaust, and engine area, whereas an electric vehicle displays hot

spots mainly on the battery compartment and tires. Parked vehicles add another layer of complexity; their

temperature readings can vary greatly depending on exposure to sunlight and the length of time they have

been stationary. These observations hint that the IR camera might be used to determine a vehicle’s state, a

potential area for future research. The myriad possible states and forms of vehicle imaging create challenges

for a simple classifier in identifying car classes.

160

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Output\Target Car Pedestrian NaO

Car 754 15 157

Pedestrian 6 895 78

NaO 240 90 765

Table 6.16: IR image classification result

Class Name Precision 1-Precision Recall 1-Recall f1-score

Car 0.8143 0.1857 0.7540 0.2460 0.7830

Pedestrian 0.9142 0.0858 0.8950 0.1050 0.9045

NaO 0.6986 0.3014 0.7650 0.2350 0.7303

Accuracy 0.8047

Misclassification Rate 0.1953

Macro-F1 0.8059

Weighted-F1 0.8059

Table 6.17: Image classification result

6.5.3 Full Integration and Performance Test

CMHT dataset was used to show the true strength of sensor fusion and showing how regular camera based

detection can failed under challenging weather and lighting condition. In this research, a state of the art

camera based detection algorithm yolov8 is put into the test again the proposed method. Dataset contains

total 165 labelled frames with the following unique objects:

161

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 6.31: Example of the full system integration and visualization

Scenario1 Scenario2 Scenario3

Parking Lot Urban&Highway Residential Area Total

Car 182 133 71 386

Truck 11 15 5 31

Van 10 2 0 12

Pedestrian 31 15 4 50

Table 6.18: Benchmark dataset

It’s worth noting that due to the proposed work, detection is conducted through the LiDAR sensor and

projected onto the image. This leads to natural projection error, making the Intersection-Over-Union (IoU)

(commonly used to benchmark pure image-based classifiers) score inapplicable here. The justification for

this is that with sensor fusion, the LiDAR sensor can accurately provide the detected object’s real-world

coordinate, which is far more precise than image-to-3D-coordinate projection. As a result, the IoU loses its

value in benchmarking this particular algorithm.

162

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Output\Target Car Truck Van Pedestrian NaO

Car 305 2 1 0 27

Truck 13 24 4 0 2

Van 15 0 6 0 0

Pedestrian 7 0 0 36 2

NaO 25 0 0 12 230

Detection 0.9456 0.8387 0.9167 0.9400 N/A

Table 6.19: Fusion result

Output\Target Car Truck Van Pedestrian NaO

Car 227 2 5 0 28

Truck 16 12 3 0 3

Van 32 0 2 0 2

Pedestrian 0 0 0 21 5

NaO 12 2 0 15 560

Detection 0.7435 0.5161 0.8333 0.7200 N/A

Table 6.20: YoloV8 result

Yolo V8 YoloV8 exhibited significantly fewer detections due to its limitation as a camera-only detector.

However, the proposed method’s LiDAR can only generate valid clusters up to 15 meters away from the

sensor, and beyond this distance, the object is likely discarded as noise during the clustering process due to

too few scans presented. Thus, the proposed work cannot detect objects beyond 15 meters, whereas YoloV8

can detect objects much further away. Within a 15-meter range, the proposed work can achieve a notably

high recall and detection range, particularly a 94.56% ”Car” class detection rate, and a 91.67% ”Pedestrian”

detection rate, with which YoloV8 struggles in frames with bad weather or dark environments. Figure 6.32

shows an example of a YoloV8 missed detection, where the jaywalking pedestrian completely blended into

163

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

the scene and became extremely difficult to capture with a camera only, and cases like this can be fatal if the

vehicle was autonomously controlled. There are many other examples like this, further proves the robustness

of sensor fusion during bad weathers.

(a) YolovV8 (b) Camera (c) IR Camera

Figure 6.32: Example of YoloV8 missed detection, the pedestrian to the left was not detected. But purposed

vehicle perception caught the jaywalking person.

6.6 Conclusion

This chapter introduces a hybrid neural network designed to process heterogeneous sensor data inputs. By

training with augmented data and individually tuning each part of the network, the system achieves greater

accuracy than state-of-the-art single sensor detectors such as YoloV8, especially in dark environments or

adverse weather conditions. This success has proven the effectiveness of sensor fusion in improving vehicle

perception under non-ideal driving conditions. The chapter goes further to detail the implementation of real-

valued neural networks, offering an in-depth examination of the layers that comprise both the CNN and

autoencoder neural network used in the research. Furthermore, the implementation of CVNN is explained

in this chapter, and the performance of a RVNN is compared with CVNN using a standard convolutional

classifier setup and image inputs. However, due to application-specific issues, the results are inconclusive,

and there is no evidence to show that one network performs better than another.

164

Chapter 7

Complex-Valued Neural Network

Training

7.1 Introduction

The previous chapter introduced CVNN and its layer composition, while this chapter focuses on the

training aspect of the CVNN. The first part of the chapter explains common complex-valued activation func-

tions used in CVNN and details three common approaches in dealing with complex-valued functions. It also

includes a small example of how to perform back-propagation to compute the gradient in CVNN mathemati-

cally.

The second part of the chapter concentrates on exploring different optimizers for the CVNN during train-

ing, discussing the findings, and introducing a novel first-order gradient-based optimizer called cm-reSVSF.

This optimizer aims to train CVNN both quickly and accurately. Through experimentation, it was demon-

strated that the cm-reSVSF optimizer performs exceptionally well in training CVNN in terms of both accuracy

and speed.

165

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

7.2 Implementation

7.2.1 Complex Activation Function

In the complex domain, an activation function necessitates additional characteristics. A bounded entire func-

tion refers to a complex function that is both bounded and holomorphic at all finite points across the entire

complex plane. Liouville’s theorem asserts that a complex function must be constant throughout the entire

complex plane to qualify as a bounded entire function. This constancy contradicts the requirement for the

function to be monotonic. Theoretically, there is no bounded entire function suitable for use as a complex

activation function. Various research studies are exploring alternative solutions, primarily focusing on four

different approaches.

Using a split function is a common approach. This method splits the complex number into real and

imaginary counterparts, then performs activation based on the computed results. It avoids the unboundedness

of the complex function, but the split function itself could never satisfy the Cauchy-Riemann equations. For

example, separated hyperbolic tangent function (Figure 7.1, equation 7.1) mentioned in the book[69], split-

Sigmoid function (Figure7.5, Equation 7.3).

f(z) = tanh(Re[z])+ itanh(Im[z]) (7.1)

Figure 7.1: Amplitude and phase of separated hyperbolic tan function.

Another approach suggested using elementary transcendental functions[90] as a complex activation func-

tion. Figure 7.2 shows the plot of the hyperbolic tan function; notably, the function itself is semi-flat across

166

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

the imaginary plane, yet retains the desired ”monotonic” shape across the real domain. Figure 7.3 shows the

plot of the tan function, similar to the hyperbolic counterpart, with an expected flip in phase and amplitude.

Despite the periodic singularities in the function, the research[90] suggests it still achieved better performance

than split functions.

Figure 7.2: Amplitude and phase of hyperbolic tan function.

Figure 7.3: Amplitude and phase of tan function.

A third approach is using holomorphic complex functions, such as the sigmoid function (Figure 7.4,

equation 7.2) [40]. Regardless, this approach did not solve the issue with singularities.

167

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 7.4: Amplitude and phase of sigmoidal function with visible singularities.

f(z) =
1

1+ e−z (7.2)

Figure 7.5: Amplitude and phase of split-sigmoid function (Equation 7.3).

split-sigmoid(zk) =
1

(1+ e−ℜ(zk))
+ j

1
(1+ e−ℑ(zk))

(7.3)

Lee et al.’s work[96] suggests using Wirtinger calculus[171] to bypass the problem. In the paper, leaky

ReLU function is modified to holomorphic leaky ReLU function(Equation 7.4)(Figure 7.6). Although the

modified function itself retains nice monotonic shape, but as seen in the graph, the function will modify the

phase of the input.

168

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 7.6: Amplitude and phase of Holomorphic modified leaky ReLU function.

HLReLU(z) =
1
2
{
(1+α)+(1−α)erf(

z√
2σ

)
}

z (7.4)

Figure 7.7: Amplitude and phase of Complex-modified ReLU function[7] (Equation 7.5).

Complex-ReLu(zk) =
max(0, |zk|+b)zk

|zk|+ c
,b = 0.1,c = 0.001 (7.5)

169

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 7.8: Amplitude and phase of Georgious function[57] (Equation 7.6)

f (zk) =
zk

c+ |zk|r−1 (7.6)

c is a hyper parameter default to 1, and r is a hyper parameter default to 1.

Figure 7.9: Amplitude and phase of Hitzer activation function[70](Equation 7.7).

Hitzer(zk) =
1

1+ expRe(zk)Im(zk)
+ i

1
expRe(zk)Im(zk)

(7.7)

There are also a few creative attempts at finding the optimal activation functions like CVNN [70][57][7].

Throughout testing, those functions perform very similarly to their closely reassembled counterparts.

7.2.2 Back-propagation

When computing the back-propagation of a complex-valued neural network, the same sets of total chain rules

are followed for all the holomorphic functions. First, define the loss function E(Y,T), which is a real-valued

170

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

function that is differentiable. Here, Y = f (z) is the output from the previously defined CVNN, and T is the

training target. With the example set, the back-propagation process can be started. The goal is to find the

partial derivatives of all the trainable variables in the network with respect to the loss function E(Y,T). Using

Figure 6.19 as a reference, the following items need to be computed:

∂E
∂w11

, ∂E
∂w12

, ∂E
∂w13

, ∂E
∂w14

, ∂E
∂w21

, ∂E
∂w22

, ∂E
∂w23

, ∂E
∂w24

, ∂E
∂b1

, and ∂E
∂b2

.

For example, to compute ∂E
∂w21

:
∂E

∂w21
=

∂E
∂y1

∂y1

∂φSM

∂φSM

w21
(7.8)

Since φSM is a CR-function, by using Wirtinger Calculus chain rule:

∂E
∂w21

=
∂E
∂y1

[(
∂y1

∂w21
◦φSM)

φSM

∂w21
+(

∂y1

∂w̄21
◦φSM)

φ̄SM

∂w21
] (7.9)

◦ is the composition function symbol:

g◦ f = g(f (z, z̄), f̄ (z, z̄)) (7.10)

Unfortunately, just as shown above, back-propagation for CVNN does not produce sequential-like equations,

unlike back-propagation for any sequential RVNN models.

7.2.2.1 Special Layers

Pooling Layer This layer can be simplified with element-wise operation. Figure 7.10 shows an illustration.

Figure 7.10: Calculation

matrix X is the input from the previous layer, matrix F is the filter.



y11

y12

y21

y22


=



x11 f11 + x12 f12 + x21 f21 + x22 f22

x13 f13 + x14 f14 + x23 f23 + x24 f24

x21 f21 + x22k22 + x41k41 + x42k42

x23 f23 + x24k24 + x43k43 + x44k44


(7.11)

171

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Generalization:

yk,l =
km+m

∑
i=km

ln+n

∑
j=ln

xi, j fi, j (7.12)

(m,n) is the pooling window size.

This generalization turns max-pooling layer into an pseudo convolutional layer with only element-wise

multiplication and summation. Now it is easy to compute the back-propagation from this generalization.

Figure 7.11: A example of max pooling layer.

Full-Connected Layer Full-connected layer is previously defined in equation 6.13 as a simple summation

function F(x).

Softmax Layer Softmax layer can be also treated as a simple summation function F(x) where previously

defined in equation 6.14.

7.2.2.2 Gradient

The gradient of CVNN is similar to RVNN.

∂E
∂w,b

=
[

∂E
∂w

∂E
∂b

]
(7.13)

172

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

In the implementation, Tensorflow computes the gradient with automatic differentiation[170].

∂E
∂w,b

=
[

∂E
∂w1

∂E
∂b1

∂E
∂w2

∂E
∂b2

]
(7.14)

When using tf.GradientTape() from Tensorflow, computed gradient is in zipped format and requires flatten to

make it a vector with size of m, where m is number of trainable variables.

7.2.2.3 Parameter Updates

The weights updating process follows RVNN, equation 7.15 is the general form.

Wn+1 =Wn +η∆Wn (7.15)

bn+1 = bn +η∆bn (7.16)

η is the learning rate.

7.2.2.4 Complex Modified Gradient Clipping

In the context of neural network training, the phenomenon of gradients either exploding or vanishing is a

well-recognized challenge. The vanishing gradient problem occurs when a neural network is excessively

deep, comprising numerous layers, resulting in the relative impact of the derivative becoming too minuscule

to influence the kernel significantly. Conversely, the exploding gradient phenomenon is characterized by an

abnormally large gradient that propels the kernel too swiftly towards a minimum, standing in contrast to the

vanishing gradient issue.

Addressing the problem of exploding gradients can be approached through a seemingly simplistic strat-

egy: constraining the gradient’s value to a specific range when it becomes excessively large. This approach,

referred to as gradient clipping, has been explored and detailed in prior works[177]. Within real-valued neural

networks, gradient clipping typically involves suppressing the gradient by dividing it by its norm. Intriguingly,

this concept can be extended and applied to complex-valued neural networks as well.

To perform this extension, one can compute the complex norm using equation 7.17. Utilizing the complex

norm is advantageous since it yields a scalar quantity without altering the gradient’s angle. Upon computation

of this norm, it must be ascertained whether the norm surpasses a constant real value c (which is generally

preset to 1). Should the norm exceed c, the gradient is scaled down by dividing it by the norm, as delineated

in equation 7.18, mirroring the procedure employed in its real-valued analogue.

dk =
√

R(||Hk||)2 +C(||Hk||)2 (7.17)

173

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Hclip
k =


Hk,dk < c

Hk·c
dk

,dk ≥ c
(7.18)

Hk is the gradient normalizing to the constant value c.

7.3 Optimizer

7.3.1 Complex Extended Kalman Filter

Extended Kalman filter (EKF) is a variant of the Kalman filter method, which approximates the system as a

linear system. When modelling the Neural Network as a nonlinear system, EKF can be a powerful tool to

train and optimize the neural network [77].

The EKF trainable weights update process follows the figure 7.12.

174

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 7.12: EKF Training process

When applying the EKF to train CVNN, the first step involves treating the CVNN as a nonlinear system,

as delineated in Equations 7.19 and 7.20. In this framework, Ŵ represents the system state vector, which

corresponds to the weights of the CVNN (Equation 7.28). The system output, denoted as ẑ, is the prediction

generated by the NN, and uk−1 is the system input, referring to the training data. The function h(Ŵ) is

described as a nonlinear output function of the CVNN. Q is the covariance of the process noise, F is the

jacobian of function f with respect to the weights W(Equation 7.26).

Ŵk|k−1 = f (Ŵk−1|k−1,uk−1) (7.19)

ẑk|k−1 = h(Ŵk|k−1) (7.20)

Pk|k−1 = Fk−1Pk−1|k−1FH
k−1 +Qk−1 (7.21)

Equations 7.22 to 7.25 illustrate the update process. The residual ξk is computed from the NN prediction

ẑk|k−1 and the target output zk. The Kalman Gain K is computed using the covariance of the measurement

noise R, the covariance estimate P, and the Jacobian matrix H (Equation 7.27). Equation 7.24 is utilized to

compute the update of the weights, while Equation 7.25 is responsible for updating the covariance estimate.

175

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

ξk = zk− ẑk|k−1 (7.22)

Kk = Pk|k−1HH
k [HkPk|k−1HH

k +Rk−1]
−1 (7.23)

Ŵk|k = Ŵk|k−1 +Kkξk (7.24)

Pk|k = (I−KkHk)Pk|k−1 (7.25)

Fk−1 =
∂ f
∂W

∣∣∣
Ŵk−1|k−1,uk−1

(7.26)

Hk =
∂h

∂W

∣∣∣
Ŵk|k−1

(7.27)

W =


W 1

1,1
...

W Layers−1
NLayers,NLayers−1

 (7.28)

F = I (7.29)

Table 7.1: EKF Parameters

Parameter Memory Usage

P O(n2)

Q O(n2)

R O(n2)

H O(n2)

K O(n)

Ŵ O(n)

ξ O(n)

7.3.2 Smooth Variable Structure Filter

Smooth variable structure filter (SVSF)[64] is a variant of a linear estimator that creates a confined boundary

on the estimated state trajectory. Compared to EKF, SVSF relaxes the constraint on the uncertainty assump-

tions made by the Kalman filter. There are studies[64, 78] on applying the SVSF to neural network training

176

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

and proving its superior performance. Paper[2] proposed the SVSF-training method on perception by feeding

the loss value and tracking kernel as its state, and the work showed a variant of SVSF performs superior to

Adam or Stochastic Gradient Descent (SGD) in a real-valued neural network.

Algorithm: SVSF follows the same EKF-style update.

1. Initialize all the tuning parameters:γ,ψ,η. Wk is initialized with complex-modified Glorot initialization.

2. Compute the forward propagation by feeding a training variable zk into the CVNN, then the output yk.

k is the step number.

3. Loss ŷk is computed from a selected loss function, in my MINST test this is computed with cross-

entropy loss.

4. Perform the backward propagation and obtain the derivative matrix Hk, computed by Jacobian of loss

respect to all the trainable variables.

5. Compute the Moore–Penrose inverse of the derivative matrix H+
k =

Ht
k

∑
n
i=1(Hk(i))2 .

6. Obtain the SVSF Gain Kk = H+
k (η∥ŷk∥abs + γ∥ŷk−1∥abs)◦ sat(ŷk

ψ
)

7. Update the state vector Ŵk+1 = Ŵk +Kk. This also updates all the trainable in the CVNN.

8. Update the tuning parameter ψ based on the following conditions:

9. Repeat from the Step 2 until the training condition is met: ξk is below a threshold or reaching maximum

number of epochs.

Saturation function sat(ŷk
ψ
) is defined in equation 7.30

sat(
ŷk

ψ
) =


−1, for ŷk

ψ
≤−1

ŷk
ψ
, for −1≤ ŷk

ψ
≤ 1

1, for 1≤ ŷk
ψ

(7.30)

7.3.3 Complex-Valued Stochastic Gradient Descent

Complex-valued SGD follows exactly the same procedure as its real-valued counterpart, as shown in Algo-

rithm 5. The algorithm uses batch training across multiple samples and randomized training sample orders,

177

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Table 7.2: SVSF Parameters

Parameter Memory Usage

H O(n2)

K O(n)

W O(n)

lr O(1)

cv O(1)

Algorithm 5 CVNN SGD Training

Require: lr, cv

while k ≤ number of epochs do

k← k+1

Compute the gradient

Hk = ∇Wloss(Wk)

Compute the clipped gradient

||Hk||= ∑
n
i=1

√
hih̄i

dk =
√

ℜ(||Hk||)2 +ℑ(||Hk||)2

Hclip
k =


Hk,dk < cv

Hk·c
dk

,dk ≥ cv

Update the weights and bias

Wk+1 = Wk− lr ·Hclip
k

end while

return Wk

178

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

thus earning the name Stochastic. Just like the counterpart, this randomness is developed to counter over-

fitting and allows the training to escape local minima.

Table 7.3: SGD Parameters

Parameter Memory Usage

H O(n2)

K O(n)

W O(n)

lr O(1)

cv O(1)

7.3.4 Complex-Modified Reduced-Smooth Variable Structure Filter

reduced-SVSF SVSF is a second-order optimization algorithm that relies on the Hessian matrix. It faces

a similar issue as the EKF method, using a substantial amount of VRAM to track state variables and com-

pute second-order derivatives through auto-differential. Consequently, Ismail et al.’s work[78] introduced a

streamlined version of the SVSF optimizer to rival other first-order optimizers in terms of performance and

speed. In contrast to the original SVSF, the modified reSVSF approach conducts optimization using gradi-

ents instead of the Hessian matrix. This version of the algorithm focuses on scalar output for the non-linear

system and shares scalar values for tuning parameters. Consequently, the algorithm significantly reduces

VRAM usage during the training process. However, the initial reSVSF implementation was not applicable to

complex-valued neural networks, displaying instability and resulting in exploding gradients. As a solution,

this study introduces modifications to the reSVSF algorithm as follows:

• A complex-modified gradient clipping strategy was adopted to prevent exploding gradients in CVNN.

• An additional learning rate variable was introduced for fine-tuning the training.

• Constants were modified to accommodate the larger magnitude of complex numbers.

sat(
yk|k−1

ψ
) =


1, yk|k−1 ≥ 1

yk|k−1, −1 < yk|k−1 < 1

−1, yk|k−1 ≤−1

(7.31)

179

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Algorithm 6 complex-modified reduced SVSF Training

Require: γ, ψ, η, lr:

while k ≤ number of epochs do

k← k+1

yk|k−1 = 1− loss(Wk)

Hk = ∇Wloss(Wk)

Compute the update parameter

||Hk||= ∑
n
i=1

√
hih̄i

dk =
√

R(||Hk||)2 +C(||Hk||)2

Hclip
k =


Hk,dk < c

Hk·c
dk

,dk ≥ c

Kk = Hclip
k (η|yk|k−1|abs + γ|yk−1|k−1|abs) · lr · sat(

yk|k−1
ψ

)

Update the weights and bias

Wk+1 = Wk + lr ·Kk

if Decay then

ψ = max(ψ

1+0.48k −1,10−2ψ)

end if

end while

Table 7.4: reSVSF Parameters

Parameter Memory Usage

H O(n)

ŷk O(1)

ŷk−1 O(1)

ψ O(1)

η O(1)

γ O(1)

cv O(1)

180

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

(a) Decaying boundary layer width

(b) Fixed boundary layer width

Figure 7.13: SVSF boundary layer width

Boundary Decay The saturation function (Equation 7.31) was used to suppress the chattering of Kk in the

tracking trajectory. The original reSVSF work proposed two approaches for suppression (Figure 7.13a and

Figure 7.13b). The first was to have a decaying boundary layer width, where, for each iteration, the boundary

width ψ is modified so the boundary shrinks. The other approach is to have a fixed boundary width ψ. The

cm-reSVSF follows the same approach with the options of decaying boundary width or fixed boundary width

during the training.

7.3.5 Complex Adam

Adam is a very popular optimizer used in NN training. The algorithm is designed to adaptively change the

learning rate throughout the training process by utilizing moments computed from gradients and squared

gradients. Adam in RVNN has a reputation for performing better than SGD in training, and it is often the first

optimizer of choice for training the NN. This optimizer has been implemented and deployed in this study to

benchmark and compare the performance of Adam in CVNN.

181

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Algorithm 7 CVNN Adam Training

Require: l0, cv, β1,β2,ε

while k ≤ number of epochs do

k← k+1

Compute the gradient

Hk = ∇Wloss(Wk)

Compute the clipped gradient

||Hk||= ∑
n
i=1

√
hih̄i

dk =
√

ℜ(||Hk||)2 +ℑ(||Hk||)2

Hclip
k =


Hk,dk < cv

Hk·c
dk

,dk ≥ cv

Compute the momentum

mk = β1 ·mk−1 +(1−β1) ·Hclip
k

vk = β2 ·vk−1 +(1−β2) · (Hclip
k)2

Compute the Learning Rate

lk = lk−1 ·
√

1−βk
2

(1−βk
1)

Update the weights and bias

Wk+1 = Wk− lk·mk√
v+ε

end while

return Wk

182

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Table 7.5: Adam Parameters

Parameter Memory Usage

m O(n)

v O(n)

W O(n)

H O(n)

l O(1)

β1 O(1)

β2 O(1)

ε O(1)

cv O(1)

7.4 Result

7.4.1 Setup

The experiment was performed on three different PCs, and specs are shown in the table 7.6. Since the

implementation utilizes CUDA GPU calculations, therefore all testing machines are equipped with Nvidia

GPUs. CPU is equally important in the specifications, as there are many operations done in the CPU, which

affect the computing time, more discussion on this later on.

183

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Desktop 1 Desktop 2 Laptop 1

CPU Intel i7 9700K AMD Ryzen 5900X AMD Ryzen 4900HS

CPU Cores 8 12 8

CPU Threads 8 24 16

RAM 32GB 32G 16G

GPU Nvidia RTX 2080Ti Nvidia RTX 3090 Nvidia RTX 2060 MAXQ

VRAM 11GB 24GB 6GB

Cuda Cores 4352 10752 1920

CUDA Ver. 10.1 11.7 11.7

Driver 450.00.00 515.65.01 515.65.01

HDD Samsung 970Pro Samsung 980Pro Samsung OEM SSD

OS Ubuntu 20.04 LTS Ubuntu 20.04 LTS Ubuntu 20.04 LTS

Table 7.6: Training machine specification

Second-order training algorithms were incorporated into the CVNN package. Nevertheless, due to their

exceedingly high memory requirements and lengthy computation times, these methods lack feasibility for

practical applications. The utilization of second-order differentiation through auto-differentiation entails that

even a miniscule complex perception cannot be accommodated on the laptop owing to the constraints of

limited VRAM. The sole experiment feasible with second-order training encompasses fewer than two hidden

layers of perception or a complex-valued CNN. Given the aforementioned reasons, all second-order training

has been omitted from the conducted experiments.

The goal of the experiment is to test the performance on different training methods on CVNN, perfor-

mance are measured based off the following measurements: validation accuracy, loss, and training time. For

the experiment, 3 complex-valued NN were deployed (Figure 7.14) for Modified National Institute of Stan-

dards and Technology (CIFAR), Canadian Institute For Advanced Research (CIFAR)-10, and CIFAR-100

dataset.

For the training dataset, the CIFAR dataset[43] was utilized. The dataset is composed of 28×28 greyscale

images of 10 classes, representing numbers from 0 to 9, with a total of 10k training samples. The dataset

offers a good balance of complexity and relatively small input size, making it an excellent benchmark testing

dataset for classification tasks. To prepare the data for CVNN, the spatial representation of handwritings was

184

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 7.14: Testing complex-valued CNN setup for CIFAR dataset

Figure 7.15: Testing complex-valued CNN setup for CIFAR-10 dataset[92]

Figure 7.16: Testing complex-valued CNN setup for CIFAR-100 dataset[93]

185

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

MINST CIFAR10 CIFAR100

Split Tanh 0.947854 0.925235 0.793214

Split ReLU 0.943669 0.925814 0.798926

cm-ReLU 0.952068 0.926417 0.795441

Tanh 0.947195 0.92868 0.791218

Georgious 0.939633 0.926358 0.795249

Table 7.7: Best Validation Accuracy of each activation function

pre-converted into 2D frequency bins through the 2D Fourier transform process. Thus, the input tensor for

each sample is a [28,28,1] complex float tensor. Since mini-batch training is being used, and the batch size

is set to 64, the input tensor for each training instance is [64,28,28,1]. CIFAR-10 dataset[92] and CIFAR-

100 dataset[93] are other sets of more complex classification benchmark databases. The CIFAR-10 consists

of 60,000 [32× 32] coloured images that belong to one of the 10 classes, thus giving it the name CIFAR-

10. CIFAR-100, on the other hand, has 60,000 [32× 32] coloured images but with 100 classes, making it

more challenging for a classifier than CIFAR-10 due to having fewer samples per class. Both datasets are

popular among neural network researchers. In this research, images were preprocessed and converted to the

frequency domain with 2D-FFT performed on each channel, and with a batch size of 32, the input size of the

NN is [32,32,32,3] complex tensor.

7.4.2 Complex-Valued Activation Functions

A few selected Complex-Valued activation functions were tested, as shown in the Table 7.7. The first obser-

vation is that singularities in the function do not affect the performance of the function; this is mainly due to

value clipping and normalization applied between layers. Another observation is that there is no significant

performance difference across different functions; it is safe to assume that small variations in results are due

to training variations.

7.4.3 Clipping VS Non-Clipping

Through the experiment, it can be concluded that training a complex-valued neural network does require

clipping the gradient. The experimental result showed that training with clipped gradients performs better

than with non-clipped gradients. This observation further indicates that CVNN is more sensitive compared to

RVNN[15]. Figure 7.17 displayed the clipped cm-reSVSF optimizer with clipping versus SGD, Adam, and

186

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

keras-implemented Adam, where the latter optimizers do not have clipping. The diagram shows significant

fluctuation in training if clipping was not applied.

Figure 7.17: Clipping Benchmark

7.4.4 cm-reSVSF vs SGD vs Adam

Cm-reSVSF not only converges significantly faster when compared to Adam and SGD with the same number

of epochs, but it also exhibits substantially reduced computing time (around 10% less training time) com-

pared to Adam. All three algorithms were implemented using the same coding style to avoid differences in

computing time arising from coding efficiency. Additionally, Adam from the KERAS package with CUDA

support was tested against the implemented Adam implementation, and both versions of Adam ran at approx-

imately the same speed. This further confirms that the computational speed advantage of cm-reSVSF is not

attributed to programming deficiencies in the implementation. Table 7.8 shows the training result of CiFAR-

100 dataset, and clearly cm-reSVSF is faster than other two algorithms in comparison with higher accuracy

and less training time.

187

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 7.18: cm-reSVSF vs Adam in CiFAR 100

Validation Loss Validation Accuracy Time Learning Rate Clipping

complex-Adam 0.2132 0.8834 25m 25s 0.001 Yes

cm-reSVSF 0.2105 0.8959 22m 44s 0.002 Yes

SGD 0.2253 0.8405 23m 13s 0.001 Yes

Table 7.8: Training result on CiFAR-100

7.4.5 Repeatability and Stability of cm-reSVSF

Figure 7.19 shows the repeatability of cm-reSVSF training with fixed parameters and 50 times testing on the

CIFAR dataset with ±0.52% validation accuracy. The result exhibits similar results on CiFAR-10 ±0.76%

and CiFAR-100 ±1.22%, showing excellent repeatability of the training algorithm. CiFAR-10 and 100 have

larger variance in validation due to deeper network structure and larger training dataset (where training data

slicing is done at random, this contributes very little to the validation accuracy variance).

Figure 7.20 shows the stability test with cm-reSVSF, by adjusting training parameters’ learning rate start-

ing from 0.010 all the way to 0.060, with an increment of 0.01 each time. The result demonstrates exceptional

robustness in accepting the changes in training parameters, as the system remains stable within the testing

range (Validation accuracy ±0.58%).

188

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 7.19: Repeatability plot of cm-reSVSF. Left: Validation accuracy; Right: Validation loss.

Figure 7.20: Tolerance plot of cm-reSVSF. Left: Validation accuracy; Right: Validation loss.

7.5 Conclusion

First part of this chapter discusses in depth the activation functions and optimizers for CVNN. The chapter

begins by explaining three common approaches to activation functions: split functions, transcendental func-

tions, and holomorphic functions. Throughout the experiment, there is no significant performance difference

among the activation functions for classification tasks. The second part of the chapter details optimization

strategies in training and introduces the novel optimizer cm-reSVSF. Through experimental benchmarking of

the strategy with other various training optimizers using the MNIST, CIFAR-10, and CIFAR-100 datasets, the

superiority of cm-reSVSF in training the CVNN is demonstrated.

189

Chapter 8

Conclusion and Future Research

8.1 Conclusion

This chapter covers the primary findings and contributions resulting from the study, followed by sugges-

tions for prospective research for the future that can complement this research.

In the introductory part of the thesis, the technological characteristics of the sensors integrated into the

vehicle were detailed. A comprehensive explanation of the implementation of the real-time synchronized

sensor capturing system was provided, followed by a proposition of the calibration methodology for the

sensors. This involved customizing a tailored sensor automatic rectification process to calibrate the LiDAR,

camera, and IR camera affixed to the vehicle. The results were subsequently benchmarked, achieving an

accuracy of under 2% pixel error. The ensuing chapter detailed the data amassed with the aforementioned

sensor system, furnishing a unique and novel hand-labeled dataset incorporating all three sensors, particularly

under adverse weather conditions. This dataset stands as an invaluable resource for autonomous driving

studies, especially pertaining to secure driving during nocturnal hours or in rainfall. Additionally, the software

development kit (SDK) implemented in conjunction with the dataset was elucidated.

Chapter 5 expounded a novel ground segmentation and peak detection method that leverages the Savitzky-

Golay filter for peak detection. When compared with nine other leading ground segmentation techniques, the

results were remarkable. The method ranked second in speed, just marginally trailing the fastest method, but

outperformed in recall rate, rendering the algorithm an ideal selection for the tasks needed in this research.

Chapter 6 delved into the implementation of preprocessing ROI post ground segmentation on LiDAR

190

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

data, along with the neural networks designated for classification. Particularly, the autoencoder utilized to

reconstruct partially obscured or sparse data missing from LiDAR object clusters was detailed. Further eluci-

dation of the CNN and CVNN neural networks implemented for each sensor input led to terming the system

a hybrid neural network. An in-depth explanation of the training of each section of the neural network, the

dataset employed during training, and the voting mechanism for testing was provided. The neural network

was subsequently subjected to tests with the captured data, affirming the success of the system.

Chapter 7 chronicled the studies conducted on the CVNN, with a primary emphasis on optimization

research. This included detailing various activation functions, comparing them, and then shifting focus to the

optimization of the NN. In these studies, the SVSF filter, along with a modified version known as reduced-

SVSF filter, was harnessed, culminating in the introduction of cm-reSVSF, a complex-valued variant of the

reduced SVSF optimizer, designed specifically for CVNN training. The results were extraordinary, with a

notable performance enhancement over ADAM, particularly in CVNN.

In summation, the thesis presented the implementation of a real-time vehicle perception system based on

heterogeneous neural network sensor fusion. It articulated the strategies and methodologies employed at each

stage of the processing pipeline. Through testing of each segment and a final system test, it was demonstrated

that the system is functional and constitutes a potential component of autonomous driving vehicles. This

research has suggested that heterogeneous sensor fusion is critical to road safety, especially as it mitigates the

issues associated with the liability of homogeneous sensor fusion under specific environmental and weather

conditions. It should become standardized in future ADAS systems. Furthermore, the datasets produced from

this research provide excellent material for future research, serving both research and testing purposes.

191

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

8.2 Future Works

8.2.1 SLAM and Localization

By leveraging a dependable vehicle perception system that combines both 3D and 2D environmental data, the

implementation of simultaneous localization and mapping (SLAM) for precise vehicle positioning becomes

feasible. This capability could potentially be seamlessly integrated into a more comprehensive mapping

framework, facilitating the creation of a real-time map updating and navigation system. Additionally, in con-

junction with GPS and road information, vehicles could attain a heightened localization performance, nearly

pinpointing their exact location. With such an accurate localization system in place, a plethora of applications

become possible. For instance, it could enable autonomous vehicle parking or even the automation of vehicle

parking within a designated area, essentially allowing vehicles to be parked or retrieved without the need for

human intervention.

8.2.2 Centralized Information Exchange

Current research is focused on self-surrounding awareness; thus, each vehicle relies on its own sensor for

surrounding detection, without exchanging information with other sensor-equipped vehicles. It is possible

to establish a control centre to process and exchange the collected vehicle information. In ongoing smart

city projects in numerous countries such as Singapore and China, this sensor information can offer real-time

feedback, supplementing existing smart-city infrastructure. These vehicles effectively function as the eyes of

a smart city.

Furthermore, when compared to the considerable investments made in smart city IoT infrastructure, these

mobile vehicle sensors come with financial advantages (lower costs on the public side), mobility, and high

availability. Nonetheless, challenges in constructing such a system can be foreseen, particularly concerning

the real-time transmission of a significant volume of data and the creation of optimal algorithms for processing

this data. Nevertheless, this research project has the potential to be economical beneficial over the long run.

8.2.3 Sensor Utilization

Due to the length of the studies, this research did not fully utilize the properties of all the sensors, and the

system detection range was limited to only 15 meters which is capped by the LiDAR. On the other hand, a

192

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

camera is very effective at detecting objects from close to far distances under ideal lighting conditions. It is

possible to utilize a camera as an incoming object detector focusing on medium to far range by employing a

YOLO detector, and using LiDAR as a close-range detector to further enhance object detection. This approach

has the potential to reach close to zero detection failure, as multiple sensors operating at different distances

and overlapping regions can be used to enhance detection.

193

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

A Ground Segmentation Performance Diagram

The figures in this section show the benchmark results of each ground segmentation method.

A.i Processing Time

This section presents a series of diagrams that show the processing time per frame for each benchmark ground

segmentation algorithm.

Figure 1: Benchmark time on sequence 00

194

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 2: Benchmark time on sequence 01

Figure 3: Benchmark time on sequence 02

195

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 4: Benchmark time on sequence 03

Figure 5: Benchmark time on sequence 04

196

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 6: Benchmark time on sequence 05

A.i Precision

This section presents a series of diagrams that show the precision per frame for each benchmark ground

segmentation algorithm.

Figure 7: Benchmark precision on sequence 00

197

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 8: Benchmark precision on sequence 01

Figure 9: Benchmark precision on sequence 02

198

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 10: Benchmark precision on sequence 03

Figure 11: Benchmark precision on sequence 04

199

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 12: Benchmark precision on sequence 05

A.i Recall

This section presents a series of diagrams that show the recall per frame for each benchmark ground segmen-

tation algorithm.

Figure 13: Benchmark recall on sequence 00

200

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 14: Benchmark recall on sequence 01

Figure 15: Benchmark recall on sequence 02

201

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Figure 16: Benchmark recall on sequence 03

Figure 17: Benchmark recall on sequence 04

202

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

Figure 18: Benchmark recall on sequence 05

B Accuracy and Confusion matrix

For the accuracy measurement, the binary classification method is utilized, starting with the measurement

of the following:

True Positives (tp) : These are cases in which the point is correctly predicted as ground.

True Negatives (tn) : These are cases in which the point correctly predicted as non-ground.

False Positives (fp) : These are cases in which the point incorrectly predicted as ground.

203

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

False Negatives (fn) : These are cases in which the point incorrectly predicted as non-ground.

Precision Precision is measuring how accurate the result is on identifying one particular object without

misidentification.

Precision =
tp

tp+ fp
(1)

Recall Recall on the other hand is measuring how accurate the result can identify one particular objects out

of all objects.

Recall =
tp

tp+ fn
(2)

B.ii Performance Measurement

Performance benchmarking for the classification task is mainly measured in the following scales: precision,

recall, f1 and f2 scores.

Fbeta-measure Fbeta-measure score is another popular measurement for analysing the effectiveness of

classification neural network.

F1 =
2×Precision×Recall

Precision+Recall
(3)

Computed result will indicate the performance of the network scoring from the worst 0.0 to the perfect 1.0.

F2 =
5×Precision×Recall
4×Precision+Recall

(4)

F2 score is developed to give a better view on the effect of false negative over the false positive.

204

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

C Derivative of Complex-Valued Layers

This section presents some examples of computing the derivative of complex-valued neural network layers

and performing an analytic check on holomorphic functions.

C.iii Convolutional Layer Back Propagation

Convtr ,tc,tl
K,b (Z) =

f

∑
w=tl

q−1

∑
v=0

p−1

∑
v=0

Ku,v,wz(trsr+u),(tcsr+v),(tl+w)+btr ,tc,w (5)

Z is a m×n× l complex tensor, K is a p×q× f complex tensor, b is a r× s× f complex tensor. tr, tc, tl

is the target output position.

r =
m− p+2×Padding

sr
+1 (6)

s =
n−q+2×Padding

sc
+1 (7)

d = l− f +1 (8)

Derivative of the Function:

Analytic Check

Conv(x+ iy) = ∑∑∑K(x+ iy)+b (9)

Conv(x+ iy) = ∑∑∑Kx+b+ i∑∑∑Ky (10)

u(x+ iy) = ∑∑∑Kx+b (11)

v(x+ iy) = i∑Ky (12)

∂um

∂xn
=


Kn if condition is met.

0 else
(13)

205

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

∂vm

∂yn
=


Kn if condition is met.

0 else
(14)

∂v
∂x

= 0 (15)

∂u
∂y

= 0 (16)

∂um

∂xn
=

∂vm

∂yn
,

∂vm

∂xn
=−∂um

∂yn
(17)

∴ Conv is an analytic function

To understand the derivative of the specific element in the gradient, given a toy example below:

x =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 , k =

k11 k12

k21 k22

 (18)

o =

x11k11 + x12k12 + x21k21 + x22k22 x12k11 + x13k12 + x22k21 + x23k22

x21k11 + x22k12 + x31k21 + x32k22 x22k11 + x23k12 + x32k21 + x33k22

 (19)

So, otr ,tc = ∑
q−1
u=0 ∑

p−1
v=0 xtrsr+u,tcsc+vku,v, when given a target output otr ,tc and the input xα,β, the respected

kernel is related to its position in the filtering window.

So the corresponding kernel is k
tr−⌊ α

sr ⌋+1,tc−⌊ β

sc ⌋+1
.

For example: o2,2, and x2,3. The respect k should be k(2−⌊ 2
1 ⌋+1)(3−⌊ 2

1+1⌋), which is k1,2.

dConv
dz

=
∂u
∂z

+ i
∂v
∂z

(20)

∂Convtr ,tc,tl
K,b

∂zα,β,γ
=


K

tr−⌊ α
sr ⌋+1,tc−⌊ β

sc ⌋+1,tl− f
if 0 < tr−⌊ α

sr
⌋+1≤ p , 0 < tc−⌊ β

sc
⌋+1≤ q , 0 < tl− f ≤ f

0 else
(21)

Compute the derivative respect to K

Proof is similar to z, therefore it is skipped.

Similarly, following the example provided earlier, it is necessary to find out
∂Conv

tr ,tc ,tl
K,b

∂Kα,β,γ

206

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

∂Conv
∂K

=


Zn if condition is met.

0 else
(22)

Given output otr ,tc , and the kernel kα,β, the respected input z is ztr+αsr−1,tc+βsc−1

∂Convtr ,tc,tl
K,b

∂Kα,β,γ
=


ztr+αsr−1,tc+βsc−1,tl+γ if 0 < tr +αsr−1≤ m , 0 < tc +βsc−1≤ n , 0 < tl + γ≤ l

0 else
(23)

Compute the derivative respect to b

∂Convtr ,tc,tl
K,b

∂bα,β,γ
=


1 if α = tr,β = tc

0 else
(24)

C.iii Dense(Full-Connected) Layer and Derivative

FCKl ,bl (z) =
m×n×d−1

∑
i=0

(Kl
izi)+bl (25)

Back propagation:

Analytic check:

FC(x+ iy) = ∑K(x+ iy)+b (26)

FC(x+ iy) = ∑Kx+b+ i∑Ky (27)

u(x+ iy) = ∑Kx+b (28)

v(x+ iy) = i∑Ky (29)

∂um

∂xn
=


Kn if n = m

0 else
(30)

207

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

∂vm

∂yn
=


Kn if n = m

0 else
(31)

∂vm

∂xn
= 0 (32)

∂um

∂yn
= 0 (33)

∂um

∂xn
=

∂vm

∂yn
,

∂vm

∂xn
=−∂um

∂yn
(34)

∴ FC is an analytic function

dFC
dz

=
∂u
∂z

+ i
∂v
∂z

(35)

∂FCKl ,bl (zm)

∂zn
=


Kl

n if n = m

0 else
(36)

∇FCKl (z) =



Kl
1 0 . . . 0

0 Kl
2 0

...
. . .

...

0 0 . . . Kl
n


(37)

Compute dFC w.r.t. K

Analytic proof follows the same procedure as dFC
dz .

∇FCz(K) =



zl
1 0 . . . 0

0 zl
2 0

...
. . .

...

0 0 . . . zl
n


(38)

Compute dFC w.r.t b

Analytic proof skipped.

208

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

∇FCz(b) =



1 0 . . . 0

0 1 0
...

. . .
...

0 0 . . . 1


(39)

C.iii Pooling Layer and Derivative

Pooling layer acts differently when perform back propagation.

Given a function f (z) for the input zi j, the function writes fst = amnzi j, where

a =


1 if conditions are met

0 else
(40)

Based on the given example, during the max pooling computing process, another tuple-matrix is saved to

record the position where the input is taken. For this example, the tuple-matrix appears as follows:

So given above, the condition for a to be 1 is when tuple (m,n) matches the Ast , else will be 0.

fst = zi j is analytic, proof has been done, the derivative is ∂ fst
∂z = 1

Given a simple example below:

z =



1+ i 2+ i 3+ i 4+ i

5+ i 6+ i 7+ i 8+ i

9+ i 10+ i 11+ i 12+ i

13+ i 14+ i 15+ i 16+ i


(41)

Say there is a max pooling with stride of 1, and pooling window 2×2.

o =


6+ i 7+ i 8+ i

10+ i 11+ i 12+ i

14+ i 15+ i 16+ i

 (42)

A =


2,2 2,3 2,4

3,2 3,3 3,4

4,2 4,3 4,4

 (43)

209

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

C.iii Complex-valued Modified Softmax Function and Derivative

SoftmaxN(zi) =
eRe(zi)

2+Im(zi)
2−s

∑
N
j=1 eRe(z j)2+Im(z j)2−s

(44)

Since the function is defined as f : C→ R, therefore, it can be treated as a real number function with

2-tuples inputs using Wirtinger Calculus. To simplify the calculation, the partial derivative is applied to the

real part and imaginary part of the complex number separately, and then they are combined together. s is

Max(∥z∥2).

∇Softmax(zr,zi) =

 ∂Softmax(zr,zi)
∂zr

∂Softmax(zr,zi)
∂zi

 (45)

∂Softmax(zrm,zim)

∂zrn
=

∂
ez2

rm+z2
im−s

∑
N
j=1 e

z2
r j+z2

i j−s

∂zrn
(46)

Using Quotient rule:

f (x) =
g(x)
h(x)

(47)

f ′(x) =
g′(x)h(x)−h′(x)g(x)

[h(x)]2
(48)

gm = ez2
rm+z2

im−m (49)

hm =
N

∑
j=1

ez2
r j+z2

i j−m (50)

∂Softmax(zrm,zim)

∂zrn
=

g′∑N
j=1 ez2

r j+z2
i j−s− ez2

rn+z2
in−sez2

rm+z2
im−s

[∑N
j=1 ez2

r j+z2
i j−s

]2
(51)

∂g(z2
rm + z2

im)

∂zrn
=


2zrnez2

rn+z2
in−s if n = m

0 else
(52)

Now consider 2 cases:

When (n = m)

210

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

∂Softmax(zrm,zim)

∂zrn
=

2zrnez2
rn+z2

in−s
∑

N
j=1 ez2

r j+z2
i j−s− ez2

rm+z2
im−sez2

rm+z2
im−s

[∑N
j=1 ez2

r j+z2
i j − s]2

(53)

∂Softmax(zrm,zim)

∂zrn
=

ez2
rn+z2

in−s(2zrn ∑
N
j=1 ez2

r j+z2
i j−s− ez2

rm+z2
im−s)

[∑N
j=1 ez2

r j+z2
i j−s

]2
(54)

∂Softmax(zrm,zim)

∂zrn
=

ez2
rn+z2

in−s

∑
N
j=1 ez2

r j+z2
i j−s

(2zrn ∑
N
j=1 ez2

r j+z2
i j−s− ez2

rm+z2
im−s)

∑
N
j=1 ez2

r j+z2
i j−s

(55)

∂Softmax(zrm,zim)

∂zrn
=

ez2
rn+z2

in−s

∑
N
j=1 ez2

r j+z2
i j−s

[
(2zrn ∑

N
j=1 ez2

r j+z2
i j−s

∑
N
j=1 ez2

r j+z2
i j−s

− ez2
rm+z2

im−s)

∑
N
j=1 ez2

r j+z2
i j−s

] (56)

∂Softmax(zrm,zim)

∂zrn
= Softmax(zrn,zin)[2zrn−Softmax(zrm,zim)] (57)

When (n ̸= m)

∂Softmax(zrm,zim)

∂zrn
=
−ez2

rn+z2
in−sez2

rm+z2
im−s

[∑N
j=1 ez2

r j+z2
i j−s

]2
(58)

∂Softmax(zrm,zim)

∂zrn
=
−ez2

rn+z2
in−s

∑
N
j=1 ez2

r j+z2
i j−s

ez2
rm+z2

im−s

∑
N
j=1 ez2

r j+z2
i j−s

(59)

∂Softmax(zrm,zim)

∂zrn
=−Softmax(zrn,zin)Softmax(zrm,zim) (60)

So using kronecker delta δmn

δmn =


1 if n = m

0 else
(61)

∂Softmax(zrm,zim)

∂zrn
= Softmax(zrn,zin)[δmn2zrn−Softmax(zrm,zim)] (62)

As for the imaginary part, the derivative is similar.

∂Softmax(zrm,zim)

∂zin
= Softmax(zrn,zin)[δmn2zin−Softmax(zrm,zim)] (63)

Plug everything back

211

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

∂SM(zr,zi)

∂(zr)
=


SM(zr1,zi1)[2zr1−SM(zr1,zi1)] · · · SM(zr1,zi1)[−SM(zrN ,ziN)]

...
. . .

...

SM(zrN ,ziN)[−SM(zr1,zi1)] · · · SM(zrN ,ziN)[2zrN−SM(zrN ,ziN)]

 (64)

∂SM(zr,zi)

∂(zi)
=


SM(zr1,zi1)[2zi1−SM(zr1,zi1)] · · · SM(zr1,zi1)[−SM(zrN ,ziN)]

...
. . .

...

SM(zrN ,ziN)[−SM(zr1,zi1)] · · · SM(zrN ,ziN)[2ziN−SM(zrN ,ziN)]

 (65)

Put in complex form

∂Softmax(zm)

∂zn
= Softmax(zn)[δmn2ℜ(zn)−Softmax(zm)]+ iSoftmax(zn)[δmn2ℑ(zn)−Softmax(zm)] (66)

212

Bibliography

[1] Siddharth Agarwal, Ankit Vora, Gaurav Pandey, Wayne Williams, Helen Kourous, and James McBride.

Ford multi-av seasonal dataset, 2020.

[2] Ryan Ahmed, Mohammed El Sayed, S. Andrew Gadsden, Jimi Tjong, and Saeid Habibi. Artificial neu-

ral network training utilizing the smooth variable structure filter estimation strategy. Neural Computing

and Applications, 27(3):537–548, April 2016.

[3] Eren Erdal Aksoy, Saimir Baci, and Selcuk Cavdar. Salsanet: Fast road and vehicle segmentation in

lidar point clouds for autonomous driving. In 2020 IEEE intelligent vehicles symposium (IV), pages

926–932. IEEE, 2020.

[4] AllaboutCircuits. Solid-state lidar is coming to an autonomous vehicle near you -

news, https://www.allaboutcircuits.com/news/solid-state-lidar-is-coming-to-an-autonomous-vehicle-

near-you/.

[5] Md. Faijul Amin, Md. Monirul Islam, and Kazuyuki Murase. Ensemble of single-layered complex-

valued neural networks for classification tasks. Neurocomputing, 72(10–12):2227–2234, June 2009.

[6] Md. Faijul Amin and Kazuyuki Murase. Single-layered complex-valued neural network for real-valued

classification problems. Neurocomputing, 72(4–6):945–955, January 2009.

[7] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In

International conference on machine learning, pages 1120–1128. PMLR, 2016.

[8] Alireza Asvadi, Luis Garrote, Cristiano Premebida, Paulo Peixoto, and Urbano J Nunes. Multimodal

vehicle detection: fusing 3d-lidar and color camera data. Pattern Recognition Letters, 115:20–29,

2018.

213

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[9] Gerardo Atanacio-Jiménez, José-Joel González-Barbosa, Juan B. Hurtado-Ramos, Francisco J.

Ornelas-Rodrı́guez, Hugo Jiménez-Hernández, Teresa Garcı́a-Ramirez, and Ricardo González-

Barbosa. Lidar velodyne hdl-64e calibration using pattern planes. International Journal of Advanced

Robotic Systems, 8(5):59, November 2011.

[10] Bob Atkins. Fish eye example. 2017.

[11] Pierre Baldi and Zhiqin Lu. Complex-valued autoencoders. Neural Networks, 33:136–147, September

2012.

[12] Haris Baltzakis, Antonis Argyros, and Panos Trahanias. Fusion of laser and visual data for robot

motion planning and collision avoidance. Machine Vision and Applications, 15:92–100, 2003.

[13] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex hulls.

ACM Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.

[14] Dan Barnes, Matthew Gadd, Paul Murcutt, Paul Newman, and Ingmar Posner. The oxford radar robot-

car dataset: A radar extension to the oxford robotcar dataset. arXiv preprint arXiv: 1909.01300, 2019.

[15] Jose Agustin Barrachina, Chenfang Ren, Christele Morisseau, Gilles Vieillard, and J-P Ovarlez.

Complex-valued vs. real-valued neural networks for classification perspectives: An example on non-

circular data. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 2990–2994. IEEE, 2021.

[16] Jan C Becker. Fusion of heterogeneous sensors for the guidance of an autonomous vehicle. In Pro-

ceedings of the Third International Conference on Information Fusion, volume 2, pages WED5–11.

IEEE, 2000.

[17] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall. SemanticKITTI:

A Dataset for Semantic Scene Understanding of LiDAR Sequences. In Proc. of the IEEE/CVF Inter-

national Conf. on Computer Vision (ICCV), 2019.

[18] Siavash Arjomand Bigdeli and Matthias Zwicker. Image restoration using autoencoding priors. Pro-

ceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications, 2018.

214

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[19] Josep Miquel Biosca and José Luis Lerma. Unsupervised robust planar segmentation of terrestrial

laser scanner point clouds based on fuzzy clustering methods. ISPRS Journal of Photogrammetry and

Remote Sensing, 63(1):84–98, 2008.

[20] Sebastian Blanco. Report: Tesla autopilot involved in 736 crashes since 2019, June 2023.

[21] Erik Blasch, Ivan Kadar, John Salerno, Mieczyslaw M Kokar, Subrata Das, Gerald M Powell, Daniel D

Corkill, and Enrique H Ruspini. Issues and challenges of knowledge representation and reasoning

methods in situation assessment (level 2 fusion). Signal Processing, Sensor Fusion, and Target Recog-

nition XV, 6235:355–368, 2006.

[22] Erik Blasch, Alan Steinberg, Subrata Das, James Llinas, Chee Chong, Otto Kessler, Ed Waltz, and

Frank White. Revisiting the jdl model for information exploitation. In Proceedings of the 16th Inter-

national Conference on Information Fusion, pages 129–136. IEEE, 2013.

[23] Erik P Blasch and Susan Plano. Jdl level 5 fusion model: user refinement issues and applications in

group tracking. In Signal processing, sensor fusion, and target recognition XI, volume 4729, pages

270–279. SPIE, 2002.

[24] Erik P Blasch and Susan Plano. Level 5: user refinement to aid the fusion process. In Multisensor,

Multisource Information Fusion: Architectures, Algorithms, and Applications 2003, volume 5099,

pages 288–297. SPIE, 2003.

[25] Igor Bogoslavskyi and Cyrill Stachniss. Fast range image-based segmentation of sparse 3d laser scans

for online operation. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 163–169. IEEE, 2016.

[26] Ryan G. Brazeal, Benjamin E. Wilkinson, and Hartwig H. Hochmair. A rigorous observation model

for the risley prism-based livox mid-40 lidar sensor. Sensors, 21(14):4722, July 2021.

[27] Duane C Brown. Close-range camera calibration. page 12.

[28] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush

Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for au-

tonomous driving. arXiv preprint arXiv:1903.11027, 2019.

[29] Transport Canada. Canadian motor vehicle traffic collision statistics: 2018, December 2020.

215

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[30] Hubert Cecotti and Axel Graeser. Convolutional neural network with embedded fourier transform for

eeg classification. In 2008 19th International Conference on Pattern Recognition, page 1–4. IEEE,

December 2008.

[31] CEIC. United States Number of Registered Vehicles. 2023.

[32] Tongtong Chen, Bin Dai, Ruili Wang, and Daxue Liu. Gaussian-process-based real-time ground seg-

mentation for autonomous land vehicles. Journal of Intelligent & Robotic Systems, 76:563–582, 2014.

[33] Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, and Cyrill Stachniss. Range image-based

lidar localization for autonomous vehicles. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 5802–5808. IEEE, 2021.

[34] Hyun-Woong Cho, Sungdo Choi, Young-Rae Cho, and Jongseok Kim. Complex-valued channel atten-

tion and application in ego-velocity estimation with automotive radar. IEEE Access, 9:17717–17727,

2021.

[35] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj Rajkumar. A multi-sensor

fusion system for moving object detection and tracking in urban driving environments. In 2014 IEEE

International Conference on Robotics and Automation (ICRA), pages 1836–1843. IEEE, 2014.

[36] Yukyung Choi, Namil Kim, Soonmin Hwang, Kibaek Park, Jae Shin Yoon, Kyounghwan An, and In So

Kweon. Kaist multi-spectral day/night data set for autonomous and assisted driving. IEEE Transactions

on Intelligent Transportation Systems, 19(3):934–948, 2018.

[37] Phuong Chu, Seoungjae Cho, Sungdae Sim, Kiho Kwak, and Kyungeun Cho. A fast ground segmen-

tation method for 3d point cloud. J. Inf. Process. Syst., 13(3):491–499, 2017.

[38] Phuong Minh Chu, Seoungjae Cho, Jisun Park, Simon Fong, and Kyungeun Cho. Enhanced ground

segmentation method for lidar point clouds in human-centric autonomous robot systems. Human-

centric Computing and Information Sciences, 9(1):1–14, 2019.

[39] A. E. Conrady. Decentred lens-systems. Monthly Notices of the Royal Astronomical Society,

79(5):384–390, March 1919.

[40] Diana Thomson La Corte and Yi Ming Zou. Newton’s method backpropagation for complex-valued

holomorphic multilayer perceptrons. arXiv:1406.5254 [math], June 2014. arXiv: 1406.5254.

216

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[41] National Safety Council. Injury Facts. April 2023.

[42] T. Dang, C. Hoffmann, and C. Stiller. Fusing optical flow and stereo disparity for object tracking.

In Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems, pages

112–117, 2002.

[43] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal

Processing Magazine, 29(6):141–142, 2012.

[44] James F. Dougherty. Ransac gpf, 2019.

[45] Bertrand Douillard, J Underwood, Narek Melkumyan, S Singh, Shrihari Vasudevan, C Brunner, and

A Quadros. Hybrid elevation maps: 3d surface models for segmentation. In 2010 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 1532–1538. IEEE, 2010.

[46] Bertrand Douillard, James Underwood, Noah Kuntz, Vsevolod Vlaskine, Alastair Quadros, Peter Mor-

ton, and Alon Frenkel. On the segmentation of 3d lidar point clouds. In 2011 IEEE International

Conference on Robotics and Automation, pages 2798–2805. IEEE, 2011.

[47] Infiniti Electro-Optic Infiniti Electro-Optic. electromagnetic spectrum. Infiniti Electro-Optics, Novem-

ber 2021.

[48] Wilfried Elmenreich. An introduction to sensor fusion. Vienna University of Technology, Austria,

502:1–28, 2002.

[49] Hossam El-Rewaidy, Ahmed S. Fahmy, Farhad Pashakhanloo, Xiaoying Cai, Selcuk Kucukseymen,

Ibolya Csecs, Ulf Neisius, Hassan Haji-Valizadeh, Bjoern Menze, and Reza Nezafat. Multi-domain

convolutional neural network (md-cnn) for radial reconstruction of dynamic cardiac mri. Magnetic

Resonance in Medicine, 85(3):1195–1208, March 2021.

[50] Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Knowledge discovery in large spatial databases:

Focusing techniques for efficient class identification. Advances in Spatial Databases Lecture Notes in

Computer Science, page 67–82, 1995.

[51] Sagi Filin. Surface clustering from airborne laser scanning data. In ISPRS Commission III, Symposium

2002 September 9-13, 2002, Graz, Austria, 2002.

217

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[52] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–

395, 1981.

[53] Eric R Fossum and Donald B Hondongwa. A review of the pinned photodiode for ccd and cmos image

sensors. IEEE Journal of the electron devices society, 2014.

[54] fvisin. Transposed convolution animations. 2019.

[55] Jingkun Gao, Bin Deng, Yuliang Qin, Hongqiang Wang, and Xiang Li. Enhanced radar imaging

using a complex-valued convolutional neural network. IEEE Geoscience and Remote Sensing Letters,

16(1):35–39, January 2019.

[56] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets robotics: The kitti dataset. The International

Journal of Robotics Research, 32(11):1231–1237, September 2013.

[57] George M Georgiou and Cris Koutsougeras. Complex domain backpropagation. IEEE transactions on

Circuits and systems II: analog and digital signal processing, 39(5):330–334, 1992.

[58] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi, Xavier Ricou, Rupesh Durgesh, Andrew S

Chung, Lorenz Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebastian Dorn, et al. A2d2:

Audi autonomous driving dataset. arXiv preprint arXiv:2004.06320, 2020.

[59] Michael Giering, Vivek Venugopalan, and Kishore Reddy. Multi-modal sensor registration for vehicle

perception via deep neural networks. 2015 IEEE High Performance Extreme Computing Conference

(HPEC), 2015.

[60] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. page 8.

[61] Raffaele Gravina, Parastoo Alinia, Hassan Ghasemzadeh, and Giancarlo Fortino. Multi-sensor fusion

in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35:68–80,

2017.

[62] Pamela M Greenwood, John K Lenneman, and Carryl L Baldwin. Advanced driver assistance systems

(adas): Demographics, preferred sources of information, and accuracy of adas knowledge. Transporta-

tion research part F: traffic psychology and behaviour, 86:131–150, 2022.

218

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[63] Ayman Habib, Ki In Bang, Ana Paula Kersting, and Jacky Chow. Alternative methodologies for lidar

system calibration. Remote Sensing, 2(3):874–907, March 2010.

[64] Saeid Habibi. The smooth variable structure filter. Proceedings of the IEEE, 95(5):1026–1059, 2007.

[65] Chris Harris, Mike Stephens, et al. A combined corner and edge detector. In Alvey vision conference,

volume 15, pages 10–5244. Citeseer, 1988.

[66] J. Heikkila and O. Silven. A four-step camera calibration procedure with implicit image correction.

In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

page 1106–1112, San Juan, Puerto Rico, 1997. IEEE Comput. Soc.

[67] Michael Himmelsbach, Felix V Hundelshausen, and H-J Wuensche. Fast segmentation of 3d point

clouds for ground vehicles. In 2010 IEEE Intelligent Vehicles Symposium, pages 560–565. IEEE,

2010.

[68] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhutdinov.

Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580 [cs],

July 2012. arXiv: 1207.0580.

[69] Akira Hirose. Complex-Valued Neural Networks: Advances and Applications. 2013.

[70] Eckhard Hitzer. Non-constant bounded holomorphic functions of hyperbolic numbers-candidates for

hyperbolic activation functions. arXiv preprint arXiv:1306.1653, 2013.

[71] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, A. Jain, S. Omari, V. Iglovikov, and P. Ondruska. One

thousand and one hours: Self-driving motion prediction dataset. https://level-5.global/level5/

data/, 2020.

[72] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu. Automatic traffic surveillance system for vehicle

tracking and classification. IEEE Transactions on Intelligent Transportation Systems, 7(2):175–187,

2006.

[73] Xiao Hu, F Sergio A Rodriguez, and Alexander Gepperth. A multi-modal system for road detection

and segmentation. In 2014 IEEE Intelligent Vehicles Symposium Proceedings, pages 1365–1370. IEEE,

2014.

219

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[74] Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou, Qichuan Geng, and Ruigang Yang. The

apolloscape open dataset for autonomous driving and its application. IEEE transactions on pattern

analysis and machine intelligence, 42(10):2702–2719, 2019.

[75] Thu Nguyen Huu and Sejin Lee. Development of volumetric image descriptor for urban object classi-

fication using 3d lidar based on convolutional neural network. In 2022 22nd International Conference

on Control, Automation and Systems (ICCAS), pages 984–989. IEEE, 2022.

[76] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, and In So Kweon. Multispectral pedestrian

detection: Benchmark dataset and baseline. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.

[77] Y. Iiguni, H. Sakai, and H. Tokumaru. A real-time learning algorithm for a multilayered neural network

based on the extended kalman filter. IEEE Transactions on Signal Processing, 40(4):959–966, 1992.

[78] Mahmoud Ismail, Mina Attari, Saeid Habibi, and Samir Ziada. Estimation theory and neural networks

revisited: Rekf and rsvsf as optimization techniques for deep-learning. Neural Networks, 108:509–526,

2018.

[79] James R Janesick, Tom Elliott, Stewart Collins, Morley M Blouke, and Jack Freeman. Scientific

charge-coupled devices. Optical Engineering, 26(8):692–714, 1987.

[80] Zhen Jia, A. Balasuriya, and S. Challa. Sensor fusion based 3d target visual tracking for autonomous

vehicles with imm. In Proceedings of the 2005 IEEE International Conference on Robotics and Au-

tomation, pages 1829–1834, 2005.

[81] Vı́ctor Jiménez, Jorge Godoy, Antonio Artuñedo, and Jorge Villagra. Ground segmentation algorithm

for sloped terrain and sparse lidar point cloud. IEEE Access, 9:132914–132927, 2021.

[82] Xianjian Jin, Hang Yang, Xin Liao, Zeyuan Yan, Qikang Wang, Zhiwei Li, and Zhaoran Wang. A

robust gaussian process-based lidar ground segmentation algorithm for autonomous driving. Machines,

10(7):507, 2022.

[83] Kichun Jo, Keounyup Chu, and Myoungho Sunwoo. Interacting multiple model filter-based sensor

fusion of gps with in-vehicle sensors for real-time vehicle positioning. IEEE Transactions on Intelligent

Transportation Systems, 13(1):329–343, 2011.

220

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[84] Vijay John and Seiichi Mita. Rvnet: Deep sensor fusion of monocular camera and radar for image-

based obstacle detection in challenging environments. In Pacific-Rim Symposium on Image and Video

Technology, pages 351–364. Springer, 2019.

[85] Kelsey M Judd, Michael P Thornton, and Austin A Richards. Automotive sensing: Assessing the im-

pact of fog on lwir, mwir, swir, visible, and lidar performance. In Infrared Technology and Applications

XLV, volume 11002, pages 322–334. SPIE, 2019.

[86] Moshe Kam, Xiaoxun Zhu, and Paul Kalata. Sensor fusion for mobile robot navigation. Proceedings

of the IEEE, 85(1):108–119, 1997.

[87] Gunzung Kim, Jeongsook Eom, and Yongwan Park. An experiment of mutual interference between

automotive lidar scanners. In 2015 12th International Conference on Information Technology-New

Generations, pages 680–685. IEEE, 2015.

[88] Je Seok Kim and Jahng Hyon Park. Weighted-graph-based supervoxel segmentation of 3d point clouds

in complex urban environment. Electronics Letters, 51(22):1789–1791, 2015.

[89] Jihun Kim, Dong Seog Han, and Benaoumeur Senouci. Radar and vision sensor fusion for object

detection in autonomous vehicle surroundings. 2018 Tenth International Conference on Ubiquitous

and Future Networks (ICUFN), 2018.

[90] T. Kim and T. Adali. Complex backpropagation neural network using elementary transcendental acti-

vation functions. In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.

Proceedings (Cat. No.01CH37221), volume 2, page 1281–1284. IEEE, 2001.

[91] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980

[cs], January 2017. arXiv: 1412.6980.

[92] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced research).

[93] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced re-

search).

[94] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-

tional neural networks. Communications of the ACM, 60(6):84–90, May 2017.

[95] Tobias Lang, Christian Plagemann, and Wolfram Burgard. Adaptive non-stationary kernel regression

for terrain modeling. In Robotics: Science and Systems, volume 6. Citeseer, 2007.

221

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[96] HyeonSeok Lee and Hyo Seon Park. A generalization method of partitioned activation function for

complex number. arXiv:1802.02987 [cs, math], February 2018. arXiv: 1802.02987.

[97] Seungjae Lee, Hyungtae Lim, and Hyun Myung. Patchwork++: Fast and robust ground segmentation

solving partial under-segmentation using 3D point cloud. In Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst., pages 13276–13283, 2022.

[98] Vladimir Lekic and Zdenka Babic. Automotive radar and camera fusion using generative adversarial

networks. Computer Vision and Image Understanding, 184:1–8, 2019.

[99] Zhixin Leng, Shu Li, Xin Li, and Bingzhao Gao. An improved fast ground segmentation algorithm for

3d point cloud. In 2020 Chinese Control And Decision Conference (CCDC), pages 5016–5020. IEEE,

2020.

[100] R Lenz. Lens distortion corrected ccd-camera calibration with co-planar calibration points for real-time

3d measurements. Prodding of ISPRS, Fast Processing of Photogrammetric Data, 1987, pages 60–67,

1987.

[101] E Li, Shuaijun Wang, Chengyang Li, Dachuan Li, Xiangbin Wu, and Qi Hao. Sustech points: A

portable 3d point cloud interactive annotation platform system. In 2020 IEEE Intelligent Vehicles

Symposium (IV), pages 1108–1115, 2020.

[102] Qingquan Li, Long Chen, Ming Li, Shih-Lung Shaw, and Andreas Nüchter. A sensor-fusion drivable-

region and lane-detection system for autonomous vehicle navigation in challenging road scenarios.

IEEE Transactions on Vehicular Technology, 63(2):540–555, 2013.

[103] Hyungtae Lim, Sungwon Hwang, and Hyun Myung. Erasor: Egocentric ratio of pseudo occupancy-

based dynamic object removal for static 3d point cloud map building. IEEE Robotics and Automation

Letters, 6(2):2272–2279, 2021.

[104] Hyungtae Lim, Oh Minho, and Hyun Myung. Patchwork: Concentric zone-based region-wise ground

segmentation with ground likelihood estimation using a 3d lidar sensor. IEEE Robotics and Automation

Letters, 2021.

[105] Dave Litwiller. Ccd vs. cmos. Photonics spectra, 35(1):154–158, 2001.

[106] Jingjing Liu, Shaoting Zhang, Shu Wang, and Dimitris N Metaxas. Multispectral deep neural networks

for pedestrian detection. arXiv preprint arXiv:1611.02644, 2016.

222

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[107] Shuang Liu. Fourier neural network for machine learning. 2013 International Conference on Machine

Learning and Cybernetics, 2013.

[108] Zhongzhen Luo. LiDAR Based Perception System: Pioneer Technology for Safety Driving. PhD thesis,

2017.

[109] Zhongzhen Luo, Martin V Mohrenschildt, and Saeid Habibi. A probability occupancy grid based

approach for real-time lidar ground segmentation. IEEE Transactions on Intelligent Transportation

Systems, 21(3):998–1010, 2019.

[110] Michael Manz, Michael Himmelsbach, Thorsten Luettel, and Hans-Joachim Wuensche. Fusing lidar

and vision for autonomous dirt road following: Incorporating a visual feature into the tentacles ap-

proach. In Autonome Mobile Systeme 2009: 21. Fachgespräch Karlsruhe, 3./4. Dezember 2009, pages

17–24. Springer, 2009.

[111] Akram Marseet and Ferat Sahin. Application of complex-valued convolutional neural network for next

generation wireless networks. In 2017 IEEE Western New York Image and Signal Processing Workshop

(WNYISPW), page 1–5. IEEE, November 2017.

[112] Leandro Masello, German Castignani, Barry Sheehan, Finbarr Murphy, and Kevin McDonnell. On the

road safety benefits of advanced driver assistance systems in different driving contexts. Transportation

research interdisciplinary perspectives, 15:100670, 2022.

[113] Fredrik Matsson. Sensor fusion for positioning of an autonomous vehicle, 2018.

[114] media@nsc.org. My car does what, https://mycardoeswhat.org/, February 2023.

[115] Gledson Melotti, Cristiano Premebida, Nuno MM da S Gonçalves, Urbano JC Nunes, and Diego R

Faria. Multimodal cnn pedestrian classification: a study on combining lidar and camera data. In 2018

21st International Conference on Intelligent Transportation Systems (ITSC), pages 3138–3143. IEEE,

2018.

[116] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos, Evgenia Rusak, Oliver Bringmann, Alexan-

der S Ecker, Matthias Bethge, and Wieland Brendel. Benchmarking robustness in object detection:

Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484, 2019.

223

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[117] Ben Miethig, Ash Liu, Saeid Habibi, and Martin v Mohrenschildt. Leveraging thermal imaging for

autonomous driving. In 2019 IEEE Transportation Electrification Conference and Expo (ITEC), pages

1–5. IEEE, 2019.

[118] Frank Moosmann, Oliver Pink, and Christoph Stiller. Segmentation of 3d lidar data in non-flat urban

environments using a local convexity criterion. In 2009 IEEE Intelligent Vehicles Symposium, pages

215–220. IEEE, 2009.

[119] Hans Moravec and Alberto Elfes. High resolution maps from wide angle sonar. In Proceedings. 1985

IEEE international conference on robotics and automation, volume 2, pages 116–121. IEEE, 1985.

[120] N Muhammad and S Lacroix. Calibration of a rotating multi-beam lidar. In 2010 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, page 5648–5653, Taipei, October 2010. IEEE.

[121] Kiin Na, Jaemin Byun, Myongchan Roh, and Bumsu Seo. The ground segmentation of 3d lidar point

cloud with the optimized region merging. In 2013 International Conference on Connected Vehicles

and Expo (ICCVE), pages 445–450. IEEE, 2013.

[122] Patiphon Narksri, Eijiro Takeuchi, Yoshiki Ninomiya, Yoichi Morales, Naoki Akai, and Nobuo

Kawaguchi. A slope-robust cascaded ground segmentation in 3d point cloud for autonomous vehicles.

In 2018 21st International Conference on intelligent transportation systems (ITSC), pages 497–504.

IEEE, 2018.

[123] NHTSA. Critical reasons for crashes investigated in the national motor vehicle crash causation survey,

2015.

[124] Felix Nobis, Maximilian Geisslinger, Markus Weber, Johannes Betz, and Markus Lienkamp. A deep

learning-based radar and camera sensor fusion architecture for object detection. In 2019 Sensor Data

Fusion: Trends, Solutions, Applications (SDF), pages 1–7. IEEE, 2019.

[125] Statistics Canada. Government of Canada and Statistique Canada. Gouvernement du Canada. Statistics

canada: Canada’s national statistical agency / statistique canada : Organisme statistique national du

canada, December 2012.

[126] Minho Oh, Euigon Jung, Hyungtae Lim, Wonho Song, Sumin Hu, Eungchang Mason Lee, Junghee

Park, Jaekyung Kim, Jangwoo Lee, and Hyun Myung. TRAVEL: Traversable ground and above-

224

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

ground object segmentation using graph representation of 3D LiDAR scans. In IEEE Robotics and

Automation Letters, 2022. Submitted.

[127] Sang-Il Oh and Hang-Bong Kang. Object detection and classification by decision-level fusion for

intelligent vehicle systems. Sensors, 17(1):207, 2017.

[128] World Health Organization. Save lives: a road safety technical package. 2023.

[129] Stanislaw Osowski and Do Dinh Nghia. Fourier and wavelet descriptors for shape recognition using

neural networks—a comparative study. Pattern Recognition, 35(9):1949–1957, September 2002.

[130] Anshul Paigwar, Özgür Erkent, David Sierra-Gonzalez, and Christian Laugier. Gndnet: Fast ground

plane estimation and point cloud segmentation for autonomous vehicles. In 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 2150–2156. IEEE, 2020.

[131] Yoonsu Park, Seokmin Yun, Chee Sun Won, Kyungeun Cho, Kyhyun Um, and Sungdae Sim. Cal-

ibration between color camera and 3d lidar instruments with a polygonal planar board. Sensors,

14(3):5333–5353, 2014.

[132] Richard G. Pearson. Human factors aspects of lightplane safety. PsycEXTRA Dataset, 1963.

[133] Matthew Pitropov, Danson Evan Garcia, Jason Rebello, Michael Smart, Carlos Wang, Krzysztof Czar-

necki, and Steven Waslander. Canadian adverse driving conditions dataset. The International Journal

of Robotics Research, 40(4-5):681–690, 2021.

[134] Calin-Adrian Popa. Complex-valued convolutional neural networks for real-valued image classifica-

tion. 2017 International Joint Conference on Neural Networks (IJCNN), 2017.

[135] Calin-Adrian Popa and Cosmin Cernazanu-Glavan. Fourier transform-based image classification using

complex-valued convolutional neural networks. Advances in Neural Networks ? ISNN 2018 Lecture

Notes in Computer Science, page 300?309, 2018.

[136] Gerald B Popko, Thomas K Gaylord, and Christopher R Valenta. Geometric approximation model of

inter-lidar interference. Optical Engineering, 59(3):033104, 2020.

[137] Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convolutional neural

networks. Machine Learning and Knowledge Discovery in Databases Lecture Notes in Computer

Science, page 786?798, 2017.

225

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[138] Danil V. Prokhorov. Object recognition in 3d lidar data with recurrent neural network. 2009 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2009.

[139] Charles R. Qi, Hao Su, Matthias Niebner, Angela Dai, Mengyuan Yan, and Leonidas J. Guibas. Volu-

metric and multi-view cnns for object classification on 3d data. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[140] Renishaw. Image of a rotating LiDAR unit. Image courtesy of Renishaw. February 2018.

[141] SAE. Sae international releases updated visual chart for its ”levels of driving automation” standard for

self-driving vehicles, December 2018.

[142] Abraham. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by simplified least

squares procedures. Analytical Chemistry, 36(8):1627–1639, 1964.

[143] Davide Scaramuzza, Ahad Harati, and Roland Siegwart. Extrinsic self calibration of a camera and a

3d laser range finder from natural scenes. In 2007 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 4164–4169. IEEE, 2007.

[144] Simone Scardapane, Steven Van Vaerenbergh, Amir Hussain, and Aurelio Uncini. Complex-valued

neural networks with non-parametric activation functions. arXiv:1802.08026 [cs], February 2018.

arXiv: 1802.08026.

[145] Joel Schlosser, Christopher K Chow, and Zsolt Kira. Fusing lidar and images for pedestrian detec-

tion using convolutional neural networks. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 2198–2205. IEEE, 2016.

[146] Steve Shafer, Anthony Stentz, and Charles Thorpe. An architecture for sensor fusion in a mobile robot.

In Proceedings. 1986 IEEE International Conference on Robotics and Automation, volume 3, pages

2002–2011. IEEE, 1986.

[147] Adnan Shaout, Dominic Colella, and S. Awad. Advanced driver assistance systems - past, present

and future. In 2011 seventh International Computer Engineering Conference (ICENCO’2011), page

72–82. IEEE, December 2011.

[148] Zhihao Shen, Huawei Liang, Linglong Lin, Zhiling Wang, Weixin Huang, and Jie Yu. Fast ground seg-

mentation for 3d lidar point cloud based on jump-convolution-process. Remote Sensing, 13(16):3239,

2021.

226

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

[149] Tomoyoshi Shimobaba, Yutaka Endo, Ryuji Hirayama, Yuki Nagahama, Takayuki Takahashi, Takashi

Nishitsuji, Takashi Kakue, Atsushi Shiraki, Naoki Takada, Nobuyuki Masuda, and et al. Autoencoder-

based holographic image restoration. Applied Optics, 56(13), 2017.

[150] Wei Song, Lingfeng Zhang, Yifei Tian, Simon Fong, Jinming Liu, and Amanda Gozho. Cnn-based 3d

object classification using hough space of lidar point clouds. Human-centric Computing and Informa-

tion Sciences, 10:1–14, 2020.

[151] Ioannis Stamos, Olympia Hadjiliadis, Hongzhong Zhang, and Thomas Flynn. Online algorithms for

classification of urban objects in 3d point clouds. In 2012 Second International Conference on 3D

Imaging, Modeling, Processing, Visualization & Transmission, pages 332–339. IEEE, 2012.

[152] Alan N Steinberg and Christopher L Bowman. Revisions to the jdl data fusion model. In Handbook of

multisensor data fusion, pages 65–88. CRC press, 2017.

[153] Ashley W Stroupe, Martin C Martin, and Tucker Balch. Distributed sensor fusion for object position

estimation by multi-robot systems. In Proceedings 2001 ICRA. IEEE international conference on

robotics and automation (Cat. No. 01CH37164), volume 2, pages 1092–1098. IEEE, 2001.

[154] Jae Kyu Suhr, Jeungin Jang, Daehong Min, and Ho Gi Jung. Sensor fusion-based low-cost vehicle

localization system for complex urban environments. IEEE Transactions on Intelligent Transportation

Systems, 18(5):1078–1086, 2016.

[155] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James

Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao,

Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon

Shlens, Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving:

Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020.

[156] Zehang Sun, G. Bebis, and R. Miller. On-road vehicle detection: a review. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(5):694–711, May 2006.

[157] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel,

Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark

Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Chris-

tian Koelen, Charles Markey, Carlo Rummel, Joe van Niekerk, Eric Jensen, Philippe Alessandrini,

227

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara Nefian, and Pamela Mahoney. Stanley:

The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9):661–692, September

2006.

[158] Chen Tongtong, Dai Bin, Liu Daxue, Zhang Bo, and Liu Qixu. 3d lidar-based ground segmentation.

In The First Asian Conference on Pattern Recognition, pages 446–450. IEEE, 2011.

[159] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Felipe

Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J. Pal. Deep complex

networks. arXiv:1705.09792 [cs], May 2017. arXiv: 1705.09792.

[160] R. Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using

off-the-shelf tv cameras and lenses. IEEE Journal on Robotics and Automation, 3(4):323–344, August

1987.

[161] Mark Tygert, Joan Bruna, Soumith Chintala, Yann Lecun, Serkan Piantino, and Arthur Szlam. A math-

ematical motivation for complex-valued convolutional networks. Neural Computation, 28(5):815?825,

2016.

[162] Martin Velas, Michal Spanel, Michal Hradis, and Adam Herout. Cnn for very fast ground segmentation

in velodyne lidar data. In 2018 IEEE International Conference on Autonomous Robot Systems and

Competitions (ICARSC), pages 97–103. IEEE, 2018.

[163] Gustavo Velasco-Hernandez, De Jong Yeong, John Barry, and Joseph Walsh. Autonomous driving

architectures, perception and data fusion: A review. In 2020 IEEE 16th International Conference on

Intelligent Computer Communication and Processing (ICCP), page 315–321, Cluj-Napoca, Romania,

September 2020. IEEE.

[164] Anh-Vu Vo, Linh Truong-Hong, Debra F Laefer, and Michela Bertolotto. Octree-based region growing

for point cloud segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 104:88–100,

2015.

[165] Walter. Plane fit ground filter, 2019.

[166] Nick Waltham. Ccd and cmos sensors. In Observing photons in space, pages 423–442. Springer, 2013.

[167] Georg Waltner, Michael Maurer, Thomas Holzmann, Patrick Ruprecht, Michael Opitz, Horst Posseg-

ger, Friedrich Fraundorfer, and Horst Bischof. Deep 2.5d vehicle classification with sparse sfm depth

228

McMaster University — Software Engineering PhD Thesis — Ash(Chang) Liu

prior for automated toll systems. 2018 21st International Conference on Intelligent Transportation

Systems (ITSC), 2018.

[168] Dingkang Wang, Connor Watkins, and Huikai Xie. Mems mirrors for lidar: a review. Micromachines,

11(5):456, 2020.

[169] Juyang Weng, Paul Cohen, Marc Herniou, et al. Camera calibration with distortion models and ac-

curacy evaluation. IEEE Transactions on pattern analysis and machine intelligence, 14(10):965–980,

1992.

[170] R. E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,

7(8):463–464, 1964.

[171] Wilhelm Wirtinger. Zur formalen theorie der funktionen von mehr complexen ver anderlichen. Math-

ematische Annalen, pages 357–75, 1927.

[172] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer. Squeezeseg: Convolutional neural nets

with recurrent crf for real-time road-object segmentation from 3d lidar point cloud. In 2018 IEEE

international conference on robotics and automation (ICRA), pages 1887–1893. IEEE, 2018.

[173] Bisheng Yang and Zhen Dong. A shape-based segmentation method for mobile laser scanning point

clouds. ISPRS journal of photogrammetry and remote sensing, 81:19–30, 2013.

[174] Kun Zeng, Jun Yu, Ruxin Wang, Cuihua Li, and Dacheng Tao. Coupled deep autoencoder for single

image super-resolution. IEEE Transactions on Cybernetics, 47(1):27–37, 2017.

[175] Dimitris Zermas, Izzat Izzat, and Nikolaos Papanikolopoulos. Fast segmentation of 3d point clouds: A

paradigm on lidar data for autonomous vehicle applications. In 2017 IEEE International Conference

on Robotics and Automation (ICRA), pages 5067–5073. IEEE, 2017.

[176] Guohui Zhang, Ryan P. Avery, and Yinhai Wang. Video-based vehicle detection and classification

system for real-time traffic data collection using uncalibrated video cameras. Transportation Research

Record: Journal of the Transportation Research Board, 1993(1):138–147, January 2007.

[177] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates train-

ing: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019.

229

PhD Thesis — Ash(Chang) Liu McMaster University — Software Engineering

[178] Qilong Zhang and R. Pless. Extrinsic calibration of a camera and laser range finder (improves camera

calibration). In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(IEEE Cat. No.04CH37566), volume 3, page 2301–2306. IEEE, 2004.

[179] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(11):1330–1334, November 2000.

[180] Lipu Zhou, Zimo Li, and Michael Kaess. Automatic extrinsic calibration of a camera and a 3d lidar us-

ing line and plane correspondences. In 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 5562–5569. IEEE, 2018.

[181] Hassan Zoghi, Kianoush Siamardi, and Morteza Tolouei. Ada systems application for traffic safety

improvement on roadways. In 2010 The 2nd International Conference on Computer and Automation

Engineering (ICCAE), volume 2, pages 629–634. IEEE, 2010.

230

