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Abstract

This master thesis delves into machine learning predictive modelling to predict missing

values in loss reserving, focusing on predicting missing values for individual features (age,

accident year, etc) and annual insurance payments. Leveraging machine learning tech-

niques such as random forest and decision trees, we explore their performance for missing

value prediction compared to traditional regression models. Moreover, the study trans-

forms individual payments into run-off triangle versions. It uses the imputed dataset and

complete dataset to compare the performance of different data imputation models by the

loss reserves estimation from the Mack and GLM reserves model. By evaluating the perfor-

mance of these diverse techniques, this research aims to contribute valuable insights to the

evolving landscape of predictive analytics in insurance, guiding industry practices toward

more accurate and efficient modelling approaches.
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Chapter 1

Introduction

The insurance industry, a pillar of modern economic systems, relies heavily on robust fi-

nancial strategies to ensure stability and continuity. At the core of these strategies lies the

practice of loss reserving, which involves estimating future claim payments based on histor-

ical data [Pigeon et al., 2013]. Accurate loss reserving is essential for insurers to allocate

resources appropriately, meet financial obligations, and comply with regulatory require-

ments [Grace and Leverty, 2010]. These reserves represent the estimated amount of money

set aside by insurers to cover anticipated claim payments and associated expenses, thereby

ensuring financial solvency and stability [Berquist and Sherman, 1977]. By accurately esti-

mating loss reserves, insurers can effectively manage their liabilities, assess their financial

health, and fulfill regulatory requirements. Loss reserves encompass various categories of

claims, including those arising from property damage, bodily injury, liability lawsuits, and

other insured events. Determining adequate reserves demands a sophisticated understand-

ing of actuarial principles, statistical modeling techniques, and industry-specific factors,

as insurers strive to balance prudence and profitability. However, missing data within his-

torical claim records poses a significant challenge to generating precise and reliable loss
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reserve estimates.

Missing data can arise for various reasons, such as reporting errors, inconsistencies, or

incomplete documentation. Traditional methods developed by [Efron, 1994] of addressing

this issue, such as mean imputation or omitting incomplete records, can introduce bias and

inaccuracies into loss reserve estimates. As the insurance landscape grows in complexity

and scale, the demand for more sophisticated techniques to handle missing data has become

increasingly apparent [Zhang, 2016].

In response to these challenges, machine learning (ML) has emerged as a powerful tool

for enhancing data imputation in loss reserving processes [Jordan and Mitchell, 2015]. By

leveraging the capabilities of decision trees and random forests, among other ML tech-

niques, insurers can transform incomplete datasets into more comprehensive and accurate

resources for loss reserving analysis (see [Breiman, 1984] and [Breiman, 2001]). These

methods offer the potential to discern intricate patterns within the data and generate intel-

ligent imputations that align with the underlying distribution of the information.

This thesis aims to explore and leverage the capabilities of machine learning methodolo-

gies, specifically Random Forest and Decision Trees, to address data imputation challenges

within the domain of loss reserving. In addition to these modern machine learning tech-

niques, we employ conventional statistical methods, such as regression models, to impute

missing values in insured features [Draper and Smith, 1998]. Subsequently, we continue to

utilize these models to make predictions regarding payment indicators and annual payments

for the following five consecutive development years. We intend to apply a comprehensive

evaluation framework. For categorical missing variables, we employ the F1 score, a stan-

dard metric for assessing the quality of classification models. We utilize the mean squared

error, a prevalent measure for quantifying predictive accuracy, to gauge the performance of

2
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machine learning techniques and traditional statistical methods in the context of missing

value imputation and individual payment prediction. Furthermore, we aggregate individual

payments into a summary format, generating a run-off triangle [Kaplan and Ruback, 1995].

Each cell in these tables encapsulate the cumulative payment amount for a specific acci-

dent year and all previous development years. This aggregation process facilitate a broader

analysis and understanding of the overall payment patterns over time. In the final phase

of our investigation, we leverage the aggregate tables to make predictions for loss reserves

spanning five consecutive years. This is achieved using the established Mack and GLM

reserve models, two well-recognized actuarial methodologies for estimating outstanding

claims and loss reserves in insurance (see [Mack, 1994] and [Björkwall et al., 2011]).

In Chapter 2, we introduce the statistical tools used to do the data imputation task and the

evaluation matrices used to measure the performance of different data imputation methods.

In Chapter 3, the motivation of loss reserves, deterministic and stochastic models of loss

reserves estimation are presented; meanwhile, Section 3.5 shows how the models in Chap-

ter 2 and Chapter 3 are used. In Chapter 4, the results are interpreted for both the data

imputation and loss reserves estimation tasks.

This research seeks to contribute to actuarial and data science by exploring innovative ap-

proaches to address data imputation challenges in the context of loss reserving. It particu-

larly emphasizes the applicability and performance of machine learning techniques in this

specialized domain.

3
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Chapter 2

Statistical Tools

In this chapter, we explore data imputation techniques comprehensively, aiming to fill the

void in missing values for individual features and annual insurance payments. In Section

2.1, we delve into traditional regression models. Section 2.3 introduces the power of ma-

chine learning techniques, specifically random forest and decision trees, elevating the preci-

sion and efficiency of our predictive models. Furthermore, in Section 2.4, we meticulously

examine and compare the performance of these techniques through the lens of evaluation

metrics. The F1 score and Mean Squared Error (MSE) take center stage as our guiding

measures, providing a nuanced understanding of the efficiency and accuracy achieved by

both traditional and machine learning approaches in the complicated environment of data

imputation for insurance analytics.

2.1 The Bootstrap Method

The bootstrap, a statistical tool first introduced by [Efron, 1979], plays an essential role in

the statistical inference. Rooted in resampling with replacement, bootstrap is a powerful

4
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tool for estimating the variability and uncertainty associated with statistical estimators.

Bootstrap is also introduced to the data imputation area by [Efron, 1994].

The fundamental premise of the bootstrap method involves drawing random samples, with

replacement, from the observed data to create multiple surrogate datasets. Through these

resampled datasets, an array of new estimates is derived, enabling the construction of em-

pirical distributions for the statistic of interest; this process mimics the inherent randomness

in the data generation process, facilitating a comprehensive understanding of the sampling

variability of the estimators.

The advantage of the bootstrap method lies in its broad applicability across diverse statisti-

cal problems, providing a versatile and data-driven approach to uncertainty quantification.

Through its detailed resampling protocol, bootstrap has become an indispensable tool in

modern statistical practice, which could be used in various domains, including insurance

[Ostaszewski and Rempala, 2000], econometrics, and machine learning.

The bootstrap involves drawing samples with replacements from the original dataset. To

resample the data, we present the non-parametric bootstrap introduced by [Efron, 1982].

Let Z = {Z1, Z2, . . . , Zn} be the original random sample with size n and independent and

identically distributed observed values {z1, z2, . . . , zn}. A bootstrap sample Z∗b is drawn

by randomly selecting n observations with replacement from Z, where b = 1, 2, . . . B:

Z∗b = (Z∗1 , Z
∗
2 , . . . , Z

∗
n).

The bootstrap estimator of a statistic Θ is computed based on the resampled data:

θ̂∗b = f(z∗b ),

5
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where f(·) is a function that computes the estimator.

Then, we obtained a set a B bootstrap replicates {θ̂∗1, θ̂∗2, . . . , θ̂∗B}.

A bootstrap confidence interval (CI) [DiCiccio and Efron, 1996] for the statistic Θ is con-

structed by finding the α/2 and 1− α/2 percentiles of the bootstrap pseudo response:

CIα =
(
θ̂∗(α/2), θ̂

∗
(1−α/2)

)
.

The bootstrap bias of an estimator is calculated as:

Bias(θ̂∗b ) = E(θ̂∗b )− θ,

where θ is the true value of the statistic.

2.2 Classical Techniques

Regression is one of the most efficient and commonly used classical methods for missing

data imputation developed by [Scheffer, 2002]. They have been successfully applied in nu-

merous scenarios and are particularly effective when dealing with simple cases of missing

data. The reliability of regression-based imputation methods largely depends on the qual-

ity and relevance of the features and the underlying assumptions of the regression model

offered by [Musil et al., 2002]. Regression models can provide accurate imputations in

relatively straightforward cases with well-understood relationships between the variables.

They work well when there is a linear relationship between the variables, and the data is

missing at random or completely at random (MCAR), presented by [Heitjan and Basu,

1996]. MCAR is a strong assumption that the missingness is not systematically related to

any variable, observed or unobserved. Missing at random is a more relaxed assumption

6
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compared to MCAR. It allows the probability of missingness to depend on observed vari-

ables in the dataset but not on the unobserved values. In a scenario where missing data is

entirely random, the probability of missingness for a variable is unrelated to the observed

or unobserved values in the dataset. In these situations, regression imputation is a robust

approach. However, the reliability of regression-based imputation methods can be chal-

lenged in more complex cases, such as high-dimensionality. High-dimensional datasets,

characterized by abundant predictors relative to observations, pose substantial challenges

for regression methods. Issues encompass overfitting, multicollinearity, increased compu-

tational complexity, and difficulties in variable selection [Osman et al., 2018].

The missing values can belong to three types of variables: discrete, categorical, and con-

tinuous. For categorical variables, we employ a logistic regression model [Wright, 1995]

or multinomial logistic regression if the variables have more than two categories [Kwak

and Clayton-Matthews, 2002]. This method allows us to estimate the probabilities of each

category relative to a reference category and handle multi-class classification. For discrete

and continuous variables, we employ generalized linear models [Nelder and Wedderburn,

1972].

2.2.1 Generalized Linear Model

The generalized linear model (GLM) is a cornerstone of statistical modeling for exponen-

tial family distributions. GLM emerges as a robust and adaptable solution, amplifying our

capacity to address missing values effectively. In this context, we indicate the compu-

tational efficiency and versatility that a generalized linear model brings to the forefront,

highlighting its pivotal role in our pursuit of precision in predictive modeling.

Let Y be a random vector with dimension of n× 1, containing the response variable and X

7
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be a design matrix with dimension of n×m containing covariates (also known as features or

variables). n is the sample size and m is the number of features. Each row of X represents

a data point, and each column represents a different covariate. Moreover, a column of 1 is

inserted as the first column to model the intercept. The main formula is

g(E(Y)) = Xβ, (2.2.1)

where β is a vector with dimension of m + 1 × 1 of unknown parameters and g(·) is the

link function, describes the relationship between the expected value (mean) of the response

variable Y and the predictors X.

The choice of the link function depends on the type of response variable (e.g., Gaussian,

Poisson, Binomial) and the specific GLM being used. Yi typically represents the response

variable for the i-th observation in the dataset. Each Yi is assumed to be independently and

identically distributed according to a specific probability distribution from the GLM fam-

ily. The exponential family is a class of probability distributions that plays a fundamental

role in statistics and mathematical modeling developed by [Brown, 1986]. The exponential

family encompasses a wide range of probability distributions commonly encountered in

statistical analyses. The family is characterized by a specific mathematical form that facil-

itates elegant statistical inference and estimation procedures. From the exponential family,

the probability density function (pdf) or probability mass function (pmf) is often written in

the canonical form:

f(x|θ) = h(x) exp

(
T (x) · θ − A(θ)

C(φ)

)
where x is the observed data, θ is the parameter of interest, T (x) come up the sufficient

8
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statistic of the random variable, h(x) come up the base measure, A(θ) come up the cumu-

lant function, and C(φ) come up the dispersion parameter (if applicable).

The Gaussian family is commonly used for non-negative and continuous response variables

[Goodman, 1963]. In this family, the response assumes a normal distribution. The identity

link function establishes a direct relationship between the linear predictor ηi and the mean

µi:

Yi ∼ N (µi, σ
2) with ηi = µi,

For binary or count response variables, the Binomial family is often employed [Hilbe,

2011]. The response follows a binomial distribution. The logit link function connects the

linear predictor ηi to the probability of success pi:

Yi ∼ Binomial(ni, pi) with ηi = logit(pi),

The Poisson family is suitable for count data, assuming a Poisson distribution for the ran-

dom component [Aryal and Yousof, 2017]. The log link function establishes a connection

between the linear predictor ηi and the rate parameter λi:

Yi ∼ Poisson(λi) with ηi = log(λi).

Here is a summarized table for the link functions.

9
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Table 2.1: Link Functions for Different Exponential Family Distributions

Distribution Link Function

Binomial Logit: g(µ) = log
(

µ
1−µ

)
Probit: g(µ) = Φ−1(µ)

Complementary Log-Log: g(µ) = log(− log(1− µ))

Poisson Log: g(µ) = log(µ)

Gamma Inverse: g(µ) = − 1
µ

Inverse Gaussian Inverse Squared: g(µ) = − 1
µ2

Normal Identity: g(µ) = µ

Exponential Log: g(µ) = log(µ)

These link functions play a crucial role in connecting the linear predictor to the parameters

of the probability distribution, allowing for flexibility in modeling various types of data in

the GLM framework.

Generalized Linear Models (GLMs) involve estimating unknown parameters to model the

relationship between predictor variables and a response variable. The estimation procedure

typically relies on Maximum Likelihood Estimation (MLE) present by [Myung, 2003].

We explore the estimation process for different GLM families. MLE is a technique for

estimating statistical model parameters by maximizing the likelihood function, which de-

notes the probability of observing the given data within the assumed model. The process

involves defining the likelihood function based on the model and data, optionally taking

the logarithm for computational convenience, calculating the score function (a derivative

of the log-likelihood), setting the score function to zero, and solving for the parameters.

10
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Depending on the model’s complexity, analytical solutions or iterative methods, such as

numerical optimization algorithms, may be employed to determine parameter estimates.

The likelihood function is given by [Myung, 2003].

For a response variable follows exponential family distribution, the likelihood function is

given by:

L(θ|x) =
n∏
i=1

f(xi|θ).

The MLE estimates of θ̂ are obtained by maximizing the log-likelihood function, which

involves solving nonlinear equations.

Now, take the logarithm to obtain the log-likelihood:

`(θ|x) = logL(θ|x),

`(θ|x) =
n∑
i=1

(
T (xi) · θ − A(θ)

C(φ)
+ log h(xi)

)
.

To find the MLE estimates of θ̂, we differentiate the log-likelihood with respect to θ and

set the derivatives equal to zero. The score function, denoted as S(θ) or ∂`
∂θ

, plays a crucial

role in finding the parameter values that maximize the likelihood function [Murphy and

Van der Vaart, 2000]. Mathematically, the score function is defined as:

S(θ) =
∂`

∂θ
,

where ` is the log-likelihood function. The score function provides information about the

direction and magnitude of change in the log-likelihood function as the parameter values

11
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vary. Specifically, it indicates how the log-likelihood function changes with respect to

each parameter. In MLE, the goal is to find the parameter values that maximize the log-

likelihood function, or equivalently, set the score function equal to zero:

S(θ̂) = 0,

where θ̂ represents the maximum likelihood estimate of the parameter vector. The score

function is essential for iterative optimization algorithms, such as the Newton-Raphson

method or the Fisher scoring algorithm, which iteratively update the parameter estimates

based on the score function until convergence is achieved. By computing and analyzing the

score function, one can identify the optimal parameter values that best fit the observed data

and maximize the likelihood of observing the data given the model.

For a Poisson-distributed response variable, commonly used for count data, the likelihood

function is given by:

L(β) =
n∏
i=1

e−λiλyii
yi!

,

where λi is the rate parameter. The MLE estimates β̂ are obtained by maximizing the

log-likelihood function.

Now, take the logarithm to obtain the log-likelihood:

`(β) =
n∑
i=1

(−λi + yi log(λi)− log(yi!)) ,

To find the MLE estimates β̂, we differentiate the log-likelihood with respect to β and set

the derivatives equal to zero.

The predicted mean (rate) for a new observation is given by:

12
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λ̂new = eηnew ,

where ηnew = xTnewβ̂, and β̂ represents the estimated coefficients.

2.2.2 Logistic Regression

In the earlier Section 2.2.1, we introduced GLMs. Consequently, in this section, the empha-

sis shifts to logistic regression models, a specific type of GLM, as a more proficient solution

for classification challenges is presented by [Pearce and Ferrier, 2000]. Logistic regression

is relatively simple and interpretable compared to more complex models. It is easy to im-

plement and understand, making it a good choice for scenarios where interpretability is

preferred. Logistic regression provides probabilities rather than discrete predictions. This

is beneficial in scenarios where understanding the confidence or uncertainty associated with

forecasts is essential. This modification underscores the suitability of logistic regression in

the context of categorical missing data imputation.

Recall that Y is a random vector containing the response variable and X is a design matrix.

Now, we assume that the response variable can take only two values: 0 and 1

P (Y = 1|X) =
1

1 + e−(β0+β1x1+β2x2+...+βpxp)
,

P (Y = 0|X) =
e−(β0+β1x1+β2x2+...+βpxp)

1 + e−(β0+β1x1+β2x2+...+βpxp)
,

and 0 elsewhere. where P (Y = 1|X) represents the probability of the binary outcome

(class 1) given the predictor variables X. β0, ..., βp are the coefficients (parameters) of

the logistic regression model. The coefficients for each predictor variable represent how

13
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much the log-odds of the probability of the corresponding category being the positive class

changes with a one-unit increase in that predictor variable, assuming all other predictor

variables remain fixed.

The formula of multinomial logistic regression model is:

For k = 1, 2 . . . , K, whereK is the number of classes of the multinomial logistic regression

model,

P (Y = k|X) =
exp(βk0 + βk1x1 + βk2x2 + . . .+ βkpxp)∑K
j=1 exp(βj0 + βj1x1 + βj2x2 + . . .+ βjpxp)

, (2.2.2)

and 0 elsewhere. where P (Y = k|X) is the probability of the data point belonging to

class k given the random sample X. βk0, ..., βkp are the coefficients (parameters) for class

k. These represent the relationship between the predictor variables and the log-odds of the

data point being in class k.

For multinomial logistic regression we use a ’one vs. others’ approach to address the mul-

tiple categories. In the ”one vs. others” approach, the classification task is decomposed

into multiple binary classification sub-problems. Specifically, for each class, a separate bi-

nary classifier is trained to discriminate instances of that class from the rest of the classes

collectively. Consequently, the overall problem is transformed into a series of binary clas-

sification tasks, each addressing the identification of instances belonging to a specific class

against all other classes.

logit(P (Yi = 1)|X) = β01 + β11Xi1 + β21Xi2 + · · ·+ βM1XiM

logit(P (Yi = 2)|X) = β02 + β12Xi1 + β22Xi2 + · · ·+ βM2XiM

· · ·

logit(P (Yi = K)|X) = β0K + β1KXi1 + β2KXi2 + · · ·+ βMKXiM

(2.2.3)
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where P (Yi = k|X) is the probability of instance i belonging to category k, logit (·) is the

log-odds function, β0k, β1k, . . . , βMk are the coefficients for category k, Xi1, Xi2, . . . , XiM

are the predictor variables for instance i.

2.3 Machine Learning Techniques

The conventional techniques are generally introduced by [Donders et al., 2006], which may

include mean or median imputation and linear regression, which can be time-consuming

and less efficient, especially when dealing with large datasets. Moreover, these methods

may need to be revised to accurately capture the underlying patterns and complexities in

the data, leading to suboptimal imputation results. In response to these challenges, [Laksh-

minarayan et al., 1996] first propose the adoption of advanced machine learning techniques,

specifically random forest and decision tree algorithms, for data imputation tasks. By lever-

aging the power of these algorithms, we aim to enhance both the efficiency and accuracy

of the imputation process.

Machine Learning is a transformative paradigm in data science. Machine learning algo-

rithms autonomously learn patterns and make informed predictions, allowing for a dynamic

and adaptive modeling process. In this section, we utilize the random forests and decision

trees, two machine learning techniques, to address missing values in our insurance data.

The essence of machine learning lies in its ability to uncover the complicated relationships

within the data, enabling more accurate predictions and ushering in a new era of predictive

modeling.
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2.3.1 Decision Tree

Decision tree modeling introduced by [Breiman, 1984] is a fundamental and versatile non-

parametric predictive modeling technique that is widely employed in various academic

disciplines and practical domains. Rooted in the fields of machine learning and statistics, a

decision tree is a hierarchical structure that systematically partitions input of features into

subsets based on the values of outcome features, ultimately leading to the prediction or

classification of an outcome variable [Song and Ying, 2015]. This approach embodies a

top-down recursive methodology, where each level of the tree corresponds to a decision or

splitting point based on specific feature conditions, resulting in a tree-like structure devel-

oped by [Zimmerman et al., 1971] that embodies a sequence of logical choices.

Decision trees are valued for their interpretability, adaptability to different data types, and

capacity to handle both classification and regression tasks [Pathak et al., 2018]. The struc-

ture of a decision tree mirrors a flowchart-like representation of decision-making processes,

enabling researchers and analysts to comprehend the sequential steps leading to an out-

come. This interpretability is pivotal in domains where understanding the reasoning behind

predictions is essential, such as medicine, finance, and ecology.

One of the notable advantages of decision trees is their innate ability to handle non-linear

relationships and interactions among features without requiring explicit feature engineer-

ing. Furthermore, decision trees can be ensembled to form more sophisticated models, such

as random forests and gradient boosting, which enhance predictive accuracy and robustness

by aggregating the predictions of multiple decision trees.

Decision trees have broad applications across various domains, including medicine and

ecology. In the field of actuarial science, decision trees play a crucial role in tasks such as
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developing pricing models and detecting fraudulent activities [Sahin et al., 2013]. Re-

searchers often study decision tree algorithms to understand their properties, including

bias-variance trade-offs, scalability, and interpretability. Moreover, decision trees provide

a foundation for advanced topics like ensemble methods, tree pruning techniques, and han-

dling imbalanced datasets.

Consider a dataset D with features X and corresponding labels Y. The decision tree al-

gorithm recursively splits the dataset into subsets Dj based on feature Xi and a threshold

ti, which represents the value of a feature at which a split occurs. When constructing a

decision tree, the algorithm evaluates different values of features and thresholds to deter-

mine the best way to split the data into subsets. The threshold is the point at which the

decision is made regarding which branch to follow in the tree. For a classification task, the

decision is based on majority voting, and for a regression task, it is based on the mean of

the target values. The decision tree algorithm involves recursively binary partitioning the

dataset based on the values of features to create a tree that maximizes information gain (for

classification) or variance reduction (for regression) in the outcome.

In classification problem, [Su and Zhang, 2006] found the probability of different classes

by conditional probability and law of total probabilities.

Pr(ci|xp, x) =
Pr(ci|xp) Pr(x|xp, ci)

Pr(x|xp)
=

Pr(ci|xp) Pr(x|xp, ci)∑|C|
i=1 Pr(ci|xp) Pr(x|xp, ci)

, (2.3.1)

where xp is the value of the set of attributes along the path from the current node to the

root, ci is the class i, x is the value of attributes.

Suppose that each candidate attribute is independent of the path attribute assignment xp,

which means Pr(x|xp, c) = Pr(x|c), then we have
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Pr(ci|xp, x) =
Pr(ci|xp)P (x|ci)∑|C|
i=1 Pr(ci|xp) Pr(x|ci)

.

We also build a regression decision tree treej using the sampled data:

ŷn(x,Θj,Dn) =
∑

i∈Dn(Θj)

1xi∈Cn(x,Θj,Dn)Yi

Pn(x,Θj,Dn)
, (2.3.2)

where Dn is the training sample {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)},

Dn(Θj) is the random selected data points before the tree construction,

Cn(x,Θj,Dn) is the partition containing x,

Pn(x,Θj,Dn) is the number of points that fall into Cn(x,Θj,Dn).

Information gain is a metric used to measure the effectiveness of a particular attribute in

classifying the data. Information Gain helps decide the order in which attributes are chosen

to split the data at each node of the tree. The decision tree algorithm selects the attribute

that maximizes information gain at each step. Variance reduction, in the context of decision

trees and regression tasks, refers to a measure used to assess the quality of a split in the

dataset during the construction of the decision tree. The goal is to find splits that lead

to a reduction in the variance of the target variable within each subset. This reduction in

variance helps to create homogeneous subsets, making predictions more accurate.

In the context of decision trees for classification problems, the calculation of entropy is a

fundamental concept used to quantify the impurity or disorder within a dataset. Entropy

serves as a criterion for assessing the homogeneity of class labels in a partition of the data

resulting from a potential split. The lower the entropy values indicate higher homogeneity,

making them desirable for constructing effective decision trees.

The entropy of a dataset D is calculated using the formula:
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H(D) = −
C∑
c=1

pc log2(pc),

whereC is the number of distinct class labels in the dataset, pc is the proportion of instances

in D belonging to class c.

IG(Xi, ti) = H(D)−
k∑
j=1

|Dj|
|D|

H(Dj),

where H(D) is the entropy of the dataset, and k is the number of subsets after the split,

information gain IG is used to measure the performance of the split way.

For regression, the variance reduction V R is used:

V R(Xi, ti) = Var(D)−
k∑
j=1

|Dj|
|D|

Var(Dj).

Cross validation is a crucial technique in machine learning and statistics to deal with model

performance assessment, mitigating overfitting, and hyperparameter tuning presented by

[Kohavi et al., 1995]. K-fold cross-validation method introduced by [Rushing et al., 2015]

is employed in this study to assess the model performance.

Assume there is a dataset D of size n and we want to perform k-fold cross-validation for a

decision tree. The Algorithm 1 introduces how to do a K-fold cross-validation for decision
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tree. Algorithm 1 shows the steps of finding the accuracy of the performance.
Algorithm 1: K-Fold Cross Validation

Result: Mean Accuracy = 1
k

∑k
i=1 Acci

1 Split the Data into k Folds:

D = D1 ∪ D2 ∪ . . . ∪ Dk

while i = 1, 2, . . . , k do

2 Training Set: D(i)
train = D \ Di, the dataset excluding the i-th fold.

3 Testing Set: D(i)
test = Di, the i-th fold.

4 Train the Decision Tree: Train a decision tree model on D(i)
train.

5 Evaluate the Model: Evaluate the decision tree on D(i)
test to obtain performance

metrics.

Acci =
CPi
NPi
× 100,

where:

6 Acci is the accuracy of D(i)
test,

7 CPi is the number of correct predictions of D(i)
test,

8 NPi is the total number of predictions of D(i)
test.

9 end

Despite its utility, decision trees are susceptible to overfitting, wherein the model may ex-

cessively adapt to the training data, resulting in diminished generalization performance on

unseen instances [Kotsiantis, 2013]. To address this limitation, the random forest algorithm

emerges as a potent ensemble learning technique that leverages the strength of multiple de-

cision trees. By constructing a multitude of trees and aggregating their predictions through
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a voting mechanism, random forests mitigate overfitting tendencies and enhance predic-

tive accuracy. This ensemble approach introduces an element of robustness, as the diver-

sity among individual trees helps capture complex relationships within the data [Ali et al.,

2012]. Consequently, the transition from decision trees to random forests becomes imper-

ative in scenarios where improved generalization, resilience against noise, and heightened

predictive performance are desired, substantiating the rationale for incorporating random

forests despite the presence of decision trees.

2.3.2 Random Forest

Random forest, proposed by [Breiman, 2001], is a powerful ensemble learning method

that has gained widespread popularity in machine learning for its robustness and ability to

handle complex tasks. Random forest is an extension of decision tree algorithms. The key

innovation lies in its ensemble nature, combining the predictions of multiple decision trees

to enhance overall predictive accuracy and generalization.

A random forest consists of a collection of decision trees, each trained on a bootstrap

sample of the training data and incorporating randomness in feature selection and data

sampling. The law of large numbers and the decorrelation of trees in the ensemble mitigates

the risk of overfitting, a common challenge in individual decision trees. During training,

each tree is constructed by considering a random subset of features at each split point,

promoting diversity among the trees.

The strength of random forest lies in its ability to aggregate the predictions of diverse trees

through a process known as bagging. The bootstrap sampling method discussed in Section

2.1 is an essential component of the bagging ensemble technique. Bagging is also known
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as bootstrap aggregating, introduced by [Breiman, 1996]. Bagging is an ensemble learn-

ing method that leverages the bootstrap technique. In machine learning, bagging involves

creating multiple subsets of the original dataset by applying bootstrap resampling. Then, a

base model is trained on each subset independently. The final prediction is made by aggre-

gating the base models’ predictions. This results in a robust model that excels in handling

noise and capturing intricate relationships within the data. Furthermore, the random for-

est provides a natural measure of feature importance, aiding in identifying key variables

contributing to predictive performance. Its versatility spans various domains, from clas-

sification and regression tasks to handling missing data. As a widely employed machine

learning algorithm, random forest continues to demonstrate its effectiveness in addressing

real-world challenges and has become a staple tool for practitioners and researchers alike.

Our research systematically compare the performance of regression imputation (logistic

regression and generalized linear model) against machine learning imputation. We evaluate

the imputation accuracy and efficiency in each scenario, considering the specific nature of

the data and the distribution of missing values.

By conducting this comparative analysis, we aim to provide insights into the strengths and

weaknesses of each imputation method in handling missing values for different types of

variables. This research contributes to the literature on imputation techniques, offering

valuable guidance to researchers and practitioners in choosing the most suitable approach

for their specific missing data challenges.

Building decision trees using sample data, as outlined in equations 2.3.1 or 2.3.2, represents

the initial phase in constructing a random forest model. Random forests offer versatility,

robustness to outliers, and scalability, making them a valuable choice in scenarios where

traditional models may fall short.
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For classification problem, the mode (most frequent class) of the predictions from individ-

ual decision trees is used as the final output for the ensemble. This mode aggregation is

based on the principle of majority voting developed by [Paul et al., 2018]:

ŷT,n = mode(ŷn(x,Θ1,Db), ŷn(x,Θ2,Dn), . . . , ŷn(x,ΘT ,Dn)). (2.3.3)

To elucidate the functioning of the CART-split criterion presented by [Lewis, 2000], we

initially consider the construction of a decision tree without subsampling, utilizing the

entire and original dataset Dn. Let A represent a generic partition, p0,n(A) and p1,n(A)

be the empirical probability of a data point labeled 0 and 1, respectively, in cell A. Within

this context, a cut in A is defined as a pair (v, z), where v is a value (dimension) selected

from the set {1, . . . , p}, and z signifies the position of the cut along the v-th coordinate,

constrained within the limits of A. We denote the set of all such possible cuts in A as CA,

the classification CART-split criterion is:

Lclass,n(v, z) = p0,n(A)p1,n(A)− Nn(AL)

Nn(A)
p0,n(AL)p1,n(AL)

− Nn(AR)

Nn(A)
p0,n(AR)p1,n(AR),

where AL = {x ∈ A : x(v) < z}, AR = {x ∈ A : x(v) ≥ z}. For each cell A, the best cut

(vopt,n, zopt,n) is selected by maximizing Lclass,n(v, z) over CA.

For regression problem, the mean of the predictions from individual decision trees is used

as the final output for the ensemble. The averaging approach of prediction result could

reduce variance and improve generalization proposed by [Breiman, 2001]:
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ŷT,n =
1

T

T∑
j=1

ŷn(x,Θj,Dn), (2.3.4)

where ŷT,n is the final prediction result of random forest with T trees, and ŷn(x,Θj,Dn)

is the prediction result of Tree j. K folder cross validation algorithm 1 could be used to

validate the performance of random forest.

Let A represent a generic cell, and Nn(A) denote the number of data points falling within

A. Xi = (X1i, . . . , Xpi), for any (v, z) ∈ CA, the regression CART-split criterion takes the

form:

Lreg,n(v, z) =
1

Nn(A)

n∑
i=1

(Yi − ȲA)1Xi∈A

− 1

Nn(A)

n∑
i=1

(
Yi − ȲAL1X(v)

i <z
− ȲAR1X(v)

i ≥z

)2

1Xi∈A,

where AL = {x ∈ A : x(v) < z}, AR = {x ∈ A : x(v) ≥ z}. ȲA, ȲAL, and ȲAR) is the

average of the Yi belonging to A, AL, and AR,respectively, with the convention that the

average is equal to 0 when no point Xi belongs to A, AL, and AR, respectively. For each

cell A, the best cut (jopt,n, zopt,n) is selected by maximizing Lreg,n(j, z) over CA.

2.4 Evaluation metrics

The assessment of predictive model performance is a critical facet of our analytical frame-

work. To gauge the efficacy of imputation methods, we employ the F1 score as a metric for

models producing categorical outcomes, while Mean Squared Error (MSE) for numerical

results. Models with larger F1 scores or lower MSE values are better models.
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2.4.1 F1 Score

In a classification problem, accuracy serves as a pivotal metric to gauge the effectiveness

of a machine learning model by quantifying the proportion of correctly predicted instances

relative to the total number of cases in the dataset [Diebold and Mariano, 2002]. A higher

accuracy percentage indicates that the model has successfully made accurate predictions

across all classes, while a lower accuracy suggests less reliable compared to other mod-

els. Despite its widespread use, accuracy should be interpreted cautiously, as it does not

consider class imbalances and may not adequately reflect the model’s performance in sce-

narios with asymmetric misclassification costs. Therefore, while accuracy provides a valu-

able measure of overall predictive performance, it is often complemented with additional

metrics such as precision, recall, and F1-score to evaluate the model’s capabilities more

comprehensively.

The F1 score [Davis and Goadrich, 2006] is a widely used metric in classification tasks that

provides a balanced evaluation of a model’s precision and recall. It is particularly valuable

when the dataset is imbalanced, meaning one class dominates the other(s). The F1 score

is the harmonic mean of precision and recall, ensuring that both false positives and false

negatives are considered, making it suitable for scenarios where the cost of these errors

varies.

Precision measures the proportion of true positive predictions (correctly predicted positive

instances) out of all instances predicted as positive. Recall, on the other hand, calculates

the proportion of true positive predictions out of all actual positive instances. The F1 score

combines these two metrics, emphasizing the balance between precision and recall. It is

especially useful when striving to achieve high accuracy for both positive and negative

classes.
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F1 = 2 ∗ precision× recall
precision + recall

,

where precision = TP
TP+FP , recall = TP

TP+FN , TP is True Positive, examples correctly labeled

as positive, FP is False Positive, negative examples incorrectly labeled as positive, and FN

is False Negative, positive examples incorrectly labeled as negative.

The F1 score ranges between 0 and 1, with 1 representing perfect precision and recall.

A higher F1 score implies a better balance between precision and recall, suggesting that

the model is effective in both correctly identifying positive instances and minimizing false

positives. It indicates a more robust performance in situations where achieving a balance

between precision and recall is crucial, such as in scenarios with imbalanced class distri-

butions or when false positives and false negatives have significant consequences.

2.4.2 Mean Squared Error

Mean Squared Error (MSE) developed by [Casella and Berger, 1990] is a commonly used

metric in statistics and machine learning to measure the average squared difference between

predicted and actual values. It serves as an objective measure of how well a predictive

models outputs match the true outcomes or observations. The lower the MSE value, the

better the model’s predictions align with the actual data.

MSE is particularly useful in regression tasks, where the goal is to predict a continuous

numerical value. It is also a fundamental component in many optimization algorithms,

including those used for training machine learning models. Here is a closer look at MSE

and its significance:

Mathematically, the MSE is calculated by summing the squared differences between pre-

dicted and actual values and then dividing by the number of data points. For a dataset with
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n data points, the MSE can be expressed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2,

where n is the number of data points,

yi is the actual value of the target variable for the ith data point,

ŷi is the predicted value of the target variable for the ith data point.

In this experiment, yi is the actual values of the missing variables and annual claims. ŷi

is the predicted values of the missing variables and annual claims predicted by classical

techniques and machine learning techniques.
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Chapter 3

Loss Reserves

In Chapter 2, a comprehensive presentation was made, clarifying a selection of statistical

tools designated for utilization in the ensuing experiments. Building upon this foundation,

Chapter 3 is dedicated to explaining the methodological application of these statistical tools

within the experimental framework. The primary focus of this chapter is how these tools

are strategically employed in the critical task of computing loss reserves. Section 3.1 in-

troduces the business constraints of loss reserving in Canada and the claim development

of insurance. Section 3.2 introduces the run-off triangle, which is applied to the reserves

calculation. In Section 3.4, two loss reserves prediction models are presented. In Section

3.5, the methods of how to deal with missing values in this thesis are proposed.
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3.1 Loss Reserving

3.1.1 Motivations

Reserves in the business and legal context often refer to the practice of setting aside funds

or resources for a specific purpose, for example, addressing potential losses. In the finan-

cial sector, particularly in insurance and banking, the concept of loss reserves is crucial

for managing risk and ensuring financial stability. Loss reserves represent the estimated

amount of money that an organization sets aside to cover anticipated future losses, liabili-

ties, or claims presented by [Grace and Leverty, 2010].

The establishment of loss reserves is subject to various business and legal constraints to

ensure transparency, accountability, and compliance with regulatory standards [Berquist

and Sherman, 1977]. In Canada, robust regulatory oversight is provided by entities such

as the Office of the Superintendent of Financial Institutions (OSFI), which plays a pivotal

role in supervising federal financial institutions. Complementing this federal oversight, the

Canadian Council of Insurance Regulators (CCIR) and the Canadian Insurance Services

Regulatory Organizations (CISRO) collaborate to establish harmonized regulations for the

insurance sector. These regulatory bodies mandate specific requirements for the calculation

and reporting of loss reserves. These stringent constraints are rooted in objectives such as

ensuring the financial stability of insurance companies and financial institutions, protecting

the interests of policyholders, inspiring confidence among investors, and promoting effec-

tive risk management practices. By stipulating that companies maintain adequate reserves,

the regulatory framework seeks to create a resilient and responsible financial environment,

thereby upholding the integrity of the Canadian financial system. Additionally, account-

ing standards and principles play a significant role in governing the practices related to

29

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

loss reserves. Companies are often required to adhere to generally accepted accounting

principles (GAAP) [Epstein et al., 2009] or International Financial Reporting Standards

(IFRS) [Brown, 2013], which provide guidelines on the proper accounting treatment of re-

serves. Compliance with these standards is essential for accurate financial reporting and

maintaining the trust of shareholders and the broader financial market. These constraints

are designed to promote financial stability, protect stakeholders, and ensure that organiza-

tions adequately prepare for potential future losses and liabilities. Both overestimating and

underestimating loss reserves present significant risks for insurance companies and other

entities. Overestimating reserves can tie up capital, reduce competitiveness, and distort

financial reporting, while underestimating reserves can lead to financial instability, regula-

tory non-compliance, and reputational damage. Striking the right balance and accurately

estimating reserves is essential for maintaining financial stability, meeting regulatory re-

quirements, remaining competitive in the marketplace, and preserving stakeholder trust.

3.1.2 Claim Development

The individual development of an insurance claim involves a series of sequential stages,

each characterized by specific timelines and processes introduced by [Pigeon et al., 2013].

Payment timelines are influenced by factors such as policy terms, legal obligations, and

negotiation dynamics between the insured and the insurer. Figure 3.1 is an example of

calim development timeline.

t1: Occurrence

t2: Reporting

t3: Payment Pk,1

t4: Evaluation

Date

t5: Payment Pk,2

t6: Closure

Figure 3.1: Timeline of Claim Development.
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The first phase of Figure 3.1 is the occurrence of the event triggering the claim, such as an

accident or loss. At the onset, the policyholder files the First Notice of Loss (FNOL) with

the insurance company, serving as the initial communication of the incident. This initiates

the intricate series of steps that collectively make up the claim development process. Fol-

lowing the occurrence at time t1, the insured party is obligated to report the incident to the

insurance company within a stipulated timeframe, known as the reporting period, which is

from t1 to t2. This period is a critical aspect of claims management, as timely reporting

allows insurers to assess the situation promptly and begin the claims processing.

Once the claim is reported at time t2 in Figure 3.1, the insurance company initiates an in-

vestigation to evaluate the validity and extent of the claim. Upon receipt of the FNOL,

the insurance company assigns a claims adjuster or examiner to investigate the claim. This

skilled professional plays a pivotal role in gathering evidence, assessing damages, and de-

termining the validity of the claim. The documentation and investigation phase involves a

thorough examination of relevant information, such as police reports, medical records, and

other pertinent documents. This meticulous review ensures that the insurance company has

a comprehensive understanding of the circumstances surrounding the claim.

This investigation period varies depending on the complexity of the claim, the nature of the

incident, and regulatory requirements. Following the investigation, the insurer determines

the amount to be paid and proceeds with the payment process.

The payment random variable for the individual claim Mk is defined as Mk = Pk,1 + Pk,2,

where Pk,1 and Pk,2 are payments for the claim, made at time t3 and t5, in Figure 3.1 the

total reported but not settled (RBNS) reserves amount is predicted as

R̂RBNS =
K∑
k=1

(M̂k −mk),

31

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

where mk is the observed total paid amount at the evaluation date for this individual claim

k, M̂k is the estimated total payment for individual claim k, and K is total number of

reported but not settled claims.

The valuation date typically coincides with the financial reporting period of the insurance

company. Constructing reserves involves a meticulous analysis of each outstanding claim’s

development, considering factors like the likelihood of settlement, potential legal costs, and

adjustments for inflation. Actuaries play a central role in reserve construction, utilizing sta-

tistical models, historical data, and industry benchmarks to estimate future claim payments

accurately. The reserve is established as the projected amount needed to cover the ultimate

cost of settling all outstanding claims. Periodic adjustments are made to the reserve as new

information emerges, claims develop, or external factors impact the estimates. The valua-

tion date is a crucial reference point for constructing loss reserves, which are meticulously

calculated to ensure insurers are adequately prepared to meet their financial obligations and

maintain solvency. This intricate interplay of events and financial assessments underscores

the complexity of the insurance claims and reserve management process.

Settlement, the final stage in the claims process at time t6 in Figure 3.1, involves reaching

an agreement between the parties involved. This can involve negotiation, mediation, or

even legal proceedings. The duration of settlement negotiations is contingent on the com-

plexity of the claim and the willingness of both parties to reach a mutually agreeable res-

olution. Delays in insurance claim development can result from legal proceedings, where

the resolution involves court actions and legal disputes, often extending the timeline. Addi-

tionally, disagreements over liability and disputes regarding the appropriate compensation

amount can further contribute to prolonged claim settlement processes. These complexities
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highlight the multifaceted nature of insurance claim resolution, which may involve legal in-

tricacies and negotiations to reach a satisfactory outcome. In the context of loss reserves, a

valuation date is a pivotal point in time used to assess the financial impact of outstanding

claims and estimate the required reserves presented by [Pigeon et al., 2014].

In conventional insurance practices, data is typically organized based on accident years

and development years. The term “accident year,” denoted as i, where i = 1, . . . , I , refers

to the set of claims that transpired in the i-th year subsequent to τ , a common arbitrary

starting point applied uniformly to all claims. For a specific claim k, any payment made

during the development year j, where j = 1, . . . , I , signifies a payment executed in the

j-th year following the initial occurrence at t0. This payment is denoted as Pi,m, and it

satisfies the condition {j − 1 < tm − t1 < j}. This formulation applies to development

years j = 1, . . . , I .

P j
i =

∑
m∈Sji

Pi,m,

where Sji = {m : j− 1 < tm− t1 < j}. For a single accident year, the claim payments for

every claim is calculated as

Pij =
∑
i∈Ki

P j
i ,

where Ki is the set of all claims in accident year i and i, j = 1, 2, . . . I , the prediction of

total reserves is obtained by

R̂RBNS+IBNR =
I∑
i=2

I∑
j=I+2−i

P̂ij.

Technology is increasingly significant in streamlining and enhancing the claim develop-

ment process. Advanced analytics and artificial intelligence are employed to expedite
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claims handling, improve accuracy in valuation, and detect patterns that contribute to more

efficient decision-making. Moreover, ethical considerations and regulatory compliance re-

main paramount throughout the process, ensuring that the insurance industry maintains the

trust and confidence of policyholders and stakeholders. In essence, the claim development

process underscores insurance companies’ commitment to deliver fair, efficient, and trans-

parent resolutions in the aftermath of covered incidents.

3.2 Run-Off Triangle

The run-off triangle introduced by [De Jong, 2006], a fundamental concept in actuarial

science, serves as a graphical representation of historical insurance losses over successive

periods. The loss triangle provides a structured framework for analyzing and projecting the

development of insurance claims. The triangle’s horizontal axis typically represents acci-

dent or policy years, while the vertical axis denotes cumulative losses. As claims mature

over time, the diagonal cells of the triangle reflect the development of losses from reported

incidents to ultimate payouts. Actuaries employ the loss triangle to assess the pattern and

emergence of incurred losses, aiding in estimating future liabilities and reserves [De Felice

and Moriconi, 2003]. The loss triangle is typically created using data accumulated over dif-

ferent evaluation dates, introduced in Section 3.1.2, rather than being explicitly designed

on a single evaluation date. The triangle represents the historical development of insurance

claims over multiple periods and accident years.

The triangular format encapsulates the temporal evolution of insurance claims, enabling

practitioners to derive valuable insights into the progression and ultimate cost of risk events.
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Loss triangles are a cornerstone in actuarial reserving and risk management practices, em-

bodying a powerful tool for informed decision-making within the insurance industry. [Ab-

dallah et al., 2015].

Ci,j =

j∑
k=1

Xi,k (3.2.1)

where Ci,j represents the cumulative losses at the intersection of the i-th accident or policy

year and the j-th development period in the loss triangle. Xi,j denotes the incremental

losses reported during the i-th accident or policy year and the k-th development period.

Table 3.1 is a loss triangle, where DYj refer to development year j, AYi refer to accident

year i, Ci,j refer to the cumulative cash flow for AYi and DYj . This example is supposed

to contain data for three years.

Table 3.1: Loss Triangle.

DY1 DY2 DY3

AY1 C1,1 C1,2 C1,3

AY2 C2,1 C2,2

AY3 C3,1

Here we propose a toy example of loss triangle with three years’ data.

Table 3.2: Loss Triangle Example.

DY1 DY2 DY3

AY1 100 150 200

AY2 130 170

AY3 120
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In the provided illustration, the numerical values denote cumulative cash flows. For in-

stance, the notation C21 = 130 signifies that the cumulative cash flow for claims during the

second accident year amounts to 130. Similarly, C22 = 170 indicates that the cumulative

cash flow encompasses 170 for the second accident year. This, in turn, implies that the

cash flows attributed to claims during the second accident year are distributed as 130 for

the first development year and 40 for the second development year (170− 130 = 40). The

cumulative nature of these values reflects the aggregation of cash flows over the specified

accident and development periods.

3.3 Deterministic Models

3.3.1 Chain-Ladder Model

Chain ladder models are actuarial methods widely employed in insurance and risk manage-

ment to estimate future claims reserves. These models are rooted in statistical techniques

and are particularly valuable in situations where historical data is the primary basis for pre-

dicting future claims development. Introduced initially by [Stanard, 1985], chain ladder

models have since evolved into a cornerstone of actuarial practice due to their simplicity

and effectiveness. At its core, the chain ladder method utilizes historical claims data to

forecast future claim payments. The approach derives its name from the sequential nature

of its calculations, where estimates for each future period are derived from the known data

of prior periods, forming a ”chain” of calculations.

The basic premise of the chain ladder method involves estimating development factors,

which represent the ratio of claims paid in one period to those paid in a subsequent period.

These development factors are applied to known historical claims data to project future
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payments. The choice of development factors and the method used to estimate them can

vary depending on the specific characteristics of the insurance portfolio and the underlying

claims experience. Chain ladder models can be further refined through various techniques,

including age-to-age factors, the Bornhuetter-Ferguson method, refer to equation 3.3.1,

and other credibility adjustments to account for specific features of the data or to enhance

predictive accuracy.

The basic chain ladder method estimates the development factors fi could be calculated as

equation 3.4.1.

3.3.2 Bornhutter-Fergusson

Bornhuetter-Ferguson method is a pioneering actuarial technique utilized for estimating fu-

ture claims reserves and evaluating loss ratios in insurance portfolios. Introduced indepen-

dently by [Bornhuetter and Ferguson, 1972], this method revolutionized actuarial practice

by incorporating both historical experience and expected future development into reserve

calculations.

The B-F method combines elements of the chain ladder technique and a priori estimates of

ultimate loss ratios to produce more robust reserve estimates. It assumes that ultimate loss

ratios are a linear combination of observed historical loss ratios and a credibility factor. By

integrating this credibility weighting mechanism.

The B-F method estimates the ultimate loss ratio (R) using the formula:

R = (1− w) · R̂ + w ·
∑

iwi ·Ri∑
iwi

, (3.3.1)

WhereR is the ultimate loss ratio, R̂ is the a priori estimate ofR, w is the credibility factor,

Ri is the observed loss ratio for development year i, wi is the credibility weight assigned to
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each observed loss ratio Ri.

3.4 Stochastic Models

In the ensure section, the focus shifts to using stochastic models to estimate loss reserves.

Commencing with the aggregation of annual payments into a structured loss triangle, the

subsequent step involves the application of the Mack model introduced by [Mack, 1993].

This predictive modeling approach is systematically deployed to estimate reserves for both

machine learning imputation datasets and regression imputation datasets. By adopting a

unified approach in employing the Mack model across varied imputation methodologies,

this analytical framework aims to derive robust and comparable loss reserves.

3.4.1 Mack Model

The Mack model represents a pivotal advancement in actuarial science and insurance re-

serving methodologies. This model addresses a fundamental challenge actuaries face: pre-

dicting future claims reserves, refining the conventional Chain-Ladder method, and offering

a more sophisticated and statistically rigorous framework. One of the distinctive features

of the Mack model is its integration of a stochastic element into the traditional determin-

istic Chain-Ladder approach. The Mack model assumes that the mean of the development

factors remains constant across accident years. This implies that, on average, claims devel-

opment follows a predictable pattern over time, allowing for estimating future loss reserves

based on historical data. The model incorporates a distribution-free methodology that cap-

tures the observed development factors and quantifies their inherent variability developed

by [Mack, 1994]. This Bayesian framework aligns with the principles of credibility theory,
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thereby providing a more dynamic and insightful approach to loss reserving proposed by

[Taylor, 2015]. This adaptability enhances its applicability in real-world insurance sce-

narios where the conventional methods might fall short. Moreover, the Mack model has

influenced the evolution of actuarial practices by introducing a distribution-free standard

error calculation. This provides a more accurate assessment of the uncertainty associated

with reserve estimates and facilitates a more comprehensive understanding of the range of

possible outcomes.

In order to calculate the loss reserves, we need to estimate the development factor for

developmental year k, f̂k, first.

f̂k =

∑d+1−k
i=1 Ci,k∑d+1−k
i=1 Ci,k−1

, (3.4.1)

where Ci,k denotes the incurred losses reported during the i-th accident or policy year

and the k-th development period, which is referred to Table 3.1. d is the total number of

development years. f̂k is the unbiased estimator of fk. With the example in Table 3.2, we

get the development factor of development year 2, f̂2, is calculate as f̂2 =
∑3+1−2
i=1 Ci,2∑3+1−2
i=1 Ci,2−1

=∑2
i=1 Ci,2∑2
i=1 Ci,1

= 150+170
100+130

= 1.39

The projected loss Ĉi,k for the development year k in the accident year i could be calculated

as:

Ĉi,k = f̂k ∗ Ci,k−1, (3.4.2)

In Table 3.2, the estimation of C3,2 is Ĉ3,2 = f̂2 ∗ C3,1 = 1.39 ∗ 120 = 167.

The estimate of standard error σ̂k of the development factor f̂k is:

σ̂k =
1

d− k

d+1−k∑
i=1

Ci,k−1(
Ci,k
Ci,k−1

− f̂k)2,
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V ar(f̂k) =
σ̂k∑d+1−k

i=1 Ĉi,k−1

,

where σ̂k is the unbiased estimator of σk

The formula of standard error of total reserves is:

V ar(Ĉk+1) = hkσ̂
2
k+1 + h2

kV ar(f̂k)
2 + f̂ 2

k+1V ar(Ĉk),

where hk =
∑d

i=d−k+1 Ĉi,k.

The evaluation of various data imputation and claim prediction techniques is discerned

through the prediction of loss reserves across distinct datasets. These datasets encompass

those imputed by regression models, machine learning methodologies, and the original

dataset. This comprehensive assessment brings the performance disparities among diverse

techniques to light. This analytical framework elucidates the nuanced impact of different

data imputation strategies and predictive models on the accuracy of loss reserve estima-

tions, thereby providing valuable insights into these techniques’ overall performance and

suitability within the context of insurance risk management.

3.4.2 GLM Reserve Model

In the previous Section 3.4.1, the Mack model has been introduced to predict the loss re-

serves for loss triangles. In this section, we introduce GLM based reserves model proposed

by [Björkwall et al., 2011].

In the context of loss reserves, GLMs typically incorporate key covariates such as policy at-

tributes and other relevant variables that influence the frequency and severity of insurance

claims. By accounting for these factors, insurers can build models that better reflect the
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underlying risk and tailor their reserve estimates accordingly. GLMs also provide a mech-

anism for assessing the uncertainty associated with reserve estimates, aiding in risk man-

agement and decision-making processes. Moreover, GLMs offer interpretability, allowing

actuaries and insurance professionals to understand the impact of different variables on the

response variables [England and Verrall, 2002].

Here we introduce how GLM reserves model predict the reserves. For a random variable

Yij , which is incremental aggregate payment for accident year i and development year j,

the probability density function (pdf) or probability mass function (pmf) is often written in

the form of exponential family in Section 2.2.1

g(E(Yij)) = β0 +αi + βj , where g() is the link function that has been presented in Section

2.2.1, Table 2.1 showed the link functions for exponential families, β0 is the intercept, αi

is the accident year effect, and βj is the development year effect. Yij is predicted as

Ŷij = g−1(β0 + αi + βj), (3.4.3)

The prediction of Reserves amount is calculated as

R̂ =
I∑
i=2

I∑
J=I+2−i

Ŷij, (3.4.4)

where i, j = 1, 2, . . . , I .

Recall example Table 3.2, a incremental loss triangle Yable 3.3 with all values are notated

as Yij with I = 3, The estimated Y23, Y32, and Y33 could be calculated by equation 3.4.3,

and we find the total reserves at time 3 by equation 3.4.4.
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Table 3.3: Incremental Loss Triangle Example.

DY1 DY2 DY3

AY1 100 50 50

AY2 130 40

AY3 120

The estimator of φ is

φ̂ =
1

n− p
∑
i+j≥t

ωij
(yij − µ̂ij)2

V ar(µ̂ij)
,

where n − p is the degree of freedom of model, µ̂ij is the unbiased estimator of Yij , t is

the number of years in the balance sheet.The estimates of β0, αi, and βj could be found by

maximum likelihood, which has been introduced in Section 2.2.1.

In this study, we intend to employ two distinct methodologies, namely the Mack model

and Generalized Linear Models (GLMs), to forecast loss reserves associated with insur-

ance claims. Subsequently, we aim to employ bootstrap resampling techniques to generate

empirical distributions for the loss reserve estimates derived from both methods following

the steps in Section 2.1. The difference between Mack model and GLM reserve model is

that for Mack model, the input is Cij in Table 3.1 for accident year i and development year

j; however, for GLM reserve model, the input is Yij = Cij − Ci(j−1).

3.4.3 Risk Measures

Risk measures are quantitative metrics used to evaluate the level of risk associated with un-

certain outcomes in various domains, including finance, insurance, and engineering. These

measures provide insights into the potential losses or adverse consequences that may occur,
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allowing decision-makers to assess and manage risk effectively. Two essential properties

of risk measures are coherence and sub-additivity. A risk measure is considered coher-

ent if it satisfies desirable properties reflecting intuitive risk management principles. One

fundamental property of coherence is the law of large numbers, which states that the risk

measure of a portfolio should converge to the risk measure of its individual components

as the portfolio size increases. Coherent risk measures must also be robust, meaning they

should not be overly sensitive to extreme outcomes or minor changes in the probability

distribution. Moreover, coherent risk measures should be monotonic, meaning they should

increase as the level of risk in the underlying distribution increases.

A risk measure ρ is considered coherent if it satisfies the following properties:

1. Translation Invariance: For any random variable X and constant c, ρ(X + c) =

ρ(X) + c.

2. Monotonicity: If X ≤ Y almost surely, then ρ(X) ≤ ρ(Y ).

3. Positive Homogeneity: For any random variableX and positive constant a, ρ(aX) =

a · ρ(X).

4. Sub-additivity: For any two random variables X and Y , ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

Sub-additivity is a specific property of risk measures that reflects the idea that the risk of

a combined portfolio should not exceed the sum of the risks of its individual components.

Tail Value at Risk (TVaR) is an example of such a measure. TVaR extends the Value

at Risk (VaR) concept by considering the probability of extreme losses and the expected

magnitude of losses beyond the VaR threshold. TVaR satisfies the sub-additivity property,

unlike VaR, which makes it a coherent risk measure. The coherence of TVaR arises from
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its ability to capture the impact of extreme losses on a portfolio’s overall risk in a consistent

and mathematically rigorous manner. By considering the conditional expectation of losses

exceeding the VaR threshold, TVaR provides a more comprehensive and robust measure of

downside risk, aligning with the principles of coherence in risk management. Therefore,

while VaR may need more coherence due to its failure to satisfy sub-additivity, TVaR stands

out as a coherent risk measure that offers valuable insights into the tail risk of a portfolio.

We utilize both Value at Risk (VaR) and Tail Value at Risk (TVaR) to assess the effective-

ness of various loss reserving estimation methods introduced in Section 3.4.1 and 3.4.2.

To find the risk measures of loss reserves, we firstly use the bootstrapping method to find

the distribution of estimated loss reserves, which we have introduced in Section 2.1; it

involves repeatedly sampling from observed historical data with replacement to generate

multiple simulated datasets, from which reserve estimates are computed. This approach

allows actuaries to obtain a distribution of possible reserve values.

Value at Risk (VaR) is a widely used risk measure in finance, particularly in risk manage-

ment and investment analysis [Duffie and Pan, 1997]. It quantitatively assesses the poten-

tial loss a portfolio or investment may incur over a given time horizon within a specified

level of confidence [Basak and Shapiro, 2001]. The concept of VaR is rooted in the fun-

damental principle of risk management, aiming to quantify the downside risk associated

with an investment or portfolio. Moreover, VaR represents the maximum loss expected

from an investment with a certain probability over a predefined time horizon. For instance,

a 5% VaR over a one-day horizon at the 95% confidence level indicates a 5% likelihood

that the portfolio incur losses exceeding the VaR within the next day with a confidence

level of 95%. There are various methods for calculating VaR, the most common being the

percentile method. This method uses historical data or statistical models to estimate the
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probability distribution of portfolio returns.

VaRα(X) = inf{x ∈ R : P (X ≥ x) ≥ 1− α}

where X represents the random variable of interest, and α represents the confidence level.

Tail Value at Risk (TVaR), also known as Conditional Value at Risk (CVaR) or Expected

Shortfall, is a risk measure widely employed in finance to complement Value at Risk (VaR)

by providing additional insights into the tail behaviour of the distribution of potential losses

[Rockafellar et al., 2000]. TVaR extends beyond VaR’s focus on the magnitude of potential

losses and considers the expected value of losses exceeding the VaR threshold [Sarykalin

et al., 2008]. As such, it offers a more comprehensive assessment of downside risk, par-

ticularly in scenarios with extreme market conditions or tail events. The concept of TVaR

builds upon the foundation of VaR, which quantifies the maximum potential loss at a spe-

cific confidence level over a given time horizon. However, while VaR provides a single-

point risk estimate, TVaR goes further by estimating the average magnitude of losses be-

yond the VaR threshold. Unlike VaR, which focuses solely on the probability distribution of

portfolio returns up to the VaR threshold, TVaR considers the entire tail of the distribution.

TVaRα(X) =
1

1− α

∫ ∞
VaRα(X)

xf(x) dx

where f(x) is the probability density function of X .

3.5 Dealing with Missing Data in Loss Reserving

Missing data in insurance databases can arise due to a multitude of factors, including in-

complete policy information provided by policyholders, data entry errors during manual
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input processes, data quality issues such as duplicate records or inconsistent formatting,

policy changes and updates that may not be accurately reflected in the database, privacy and

compliance concerns leading to redaction of sensitive information, and challenges during

data migration or integration efforts. The frequency of missing data can vary widely de-

pending on the size and complexity of the dataset, as well as the effectiveness of data man-

agement practices employed by insurance companies. Despite efforts to mitigate missing

data through validation checks, error detection algorithms, and data imputation methods, it

remains a common challenge in insurance data management, highlighting the importance

of robust data governance and quality assurance measures.

In the ensuing exposition, we explain the methodological application of tools previously

introduced in Chapter 2 to address the dual objectives of imputing missing data in loss re-

serving. In the scope of this research endeavour, our approach entails supervised learning

methodologies developed by [Caruana and Niculescu-Mizil, 2006]. Consequently, it is im-

perative to acknowledge that the occurrence of missing variables is inherently constrained;

that is to say, a scenario where all variable values are absent is not feasible within the con-

fines of our supervised learning framework. The requisite presence of particular variables

is crucial for effectively applying supervised learning algorithms, ensuring the availability

of information necessary for model training and prediction tasks. This distinction eluci-

dates the practical constraints the supervised learning paradigm imposes on the extent of

missing variables within the dataset.

The initial phase of our research project involves the critical process of data imputation,

addressing missing variables across three distinct types: continuous, discrete, and categor-

ical. Each category demands a tailored approach for effective imputation. Specifically,

for categorical missing values, predictive modeling techniques are enlisted, including the
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application of logistic regression models (refer to Section 2.2.2), decision tree classifiers

(see Section 2.3.1), and random forest classifiers (see Section 2.3.2) [Kushwah et al., 2022]

[Segal, 2004]. These models are deployed to predict and impute missing values within the

categorical variable domain. Conversely, a different suite of predictive models is employed

in the case of continuous and discrete missing variables. Generalized linear models (refer

to Section 2.2.1), decision tree regressors, and random forest regressors are leveraged for

predicting and filling in the missing values. Significantly, all available predictors, exclud-

ing the variable with the missing values, are utilized as input features for these models.

The evaluation metrics F1 score and MSE introduced in Section 2.4 are used to measure

the performance of these models; the models with higher F1 scores or lower MSE values

are considered outperformed.

3.5.1 Categorical Missing Value

The initial phase of our research project involves the critical process of employing two dis-

tinct yet powerful machine learning classification methodologies: a decision tree classifier

and a random forest classifier, each thoughtfully configured to address the complexity of

our dataset and research objectives. For the decision tree classifier, we have utilized infor-

mation gain as the criterion for splitting nodes; all other hyperparameters can be found in

Appendix A. The probability of different classes could be seen by equation 2.3.1, where

ci means different classes of the categorical missing values and x refers to the value of all

variables used to predict the missing values. This strategic configuration aims to balance

model complexity and predictive accuracy, enabling us to construct an interpretable yet

practical decision tree capable of capturing intricate patterns within the data. In parallel,
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we harness the ensemble learning prowess of a random forest classifier, consisting of an en-

semble of 100 decision trees; the random forest is constructed using equation 2.3.3, where

the training sample Dn refers to all predictors as X1, X2, . . . , Xn and the known values of

categorical response variable as Y1, Y2, . . . , Yn. Each tree within the ensemble is designed

with a maximum depth of eight levels, and we maintain a minimum number of samples per

leaf node as one. This ensemble approach offers enhanced predictive robustness by aggre-

gating the insights from numerous decision trees, each contributing its unique perspective

to the classification task. These meticulously chosen configurations reflect best practices in

machine learning and align with the complexity and diversity of the data at hand. By par-

allelizing the results of the decision tree classifier and the random forest classifier, we aim

to provide a holistic understanding of the dataset’s underlying patterns and complexities,

furthering our research objectives and enriching the scientific discourse in our field.

We employ a multinomial logistic regression framework in the context of regression impu-

tation. Given four distinct categories within the categorical variable, we construct four sep-

arate and independent logistic regression models, denoted as ’Model1,’ ’Model2,’ ’Model3,’

and ’Model4.’ Each model adopt a ’one vs. all’ strategy developed by [Wu et al., 2006],

where one specific category is treated as the positive outcome. In contrast, the remaining

three categories are grouped as the composite negative outcome. Refer to equation 2.2.3,

Yi = k refers to the categorical missing value belonging to the class k, Xi1, Xi2, . . . , XiM

refers to the corresponding predictors of missing value Yi. For instance, within ’Model1,’

we have two possible outcomes: 1 representing the positive category and 2, 3, 4 encom-

passing the aggregated negative categories. The coefficients derived from these logistic

regression models encapsulate the effect of a one-unit change in a predictor variable on the
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log odds of the positive outcome occurring, i.e., category 1. Consequently, the exponenti-

ated coefficient, denoted as eβi , signifies the odds ratio associated with a one-unit increase

in the predictor variable. This odds ratio quantifies the marginal change in the odds of the

event, 1, transpiring. In practical terms, the impact of this marginal increase in odds de-

pends on the specific context of our analysis. We assess the statistical significance of these

coefficients and evaluate their practical implications, considering the nuanced relationships

between predictor variables and the categories. By establishing these four distinct logistic

regression models, we aim to comprehensively understand and quantify the influences of

predictor variables on each category.

We employ the F1 score as our primary evaluation metric to evaluate their effectiveness,

which we have introduced in Section 2.4.1. By comparing the F1 scores obtained from

the Machine Learning Imputation and Regression Imputation, we gain valuable insights

into the accuracy of each method; this comparison informs us about the robustness and

reliability of the imputed values [Davis and Goadrich, 2006]. Ultimately, the findings aid

practitioners in selecting the most suitable imputation approach when working with missing

data in categorical features, ensuring more robust and reliable analyses in various domains.

Moreover, memory usage is another performance criterion; memory usage refers to the

amount of computer memory (RAM - Random Access Memory) that a program or script

consumes during its execution [Wen et al., 2020]. Understanding and managing memory

usage is essential for writing efficient and optimized code, especially for large-scale appli-

cations or when dealing with substantial datasets.
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3.5.2 Discrete And Continuous Missing Value

We employ two distinct and robust machine learning classification methodologies: the de-

cision tree regressor and the random forest regressor. For the decision tree regressor, we

opt for variance reduction as the criterion for node splitting, where the training sample

Dn in equation 2.3.2 refers to all predictors as X1, X2, . . . , Xn and the known values of

discrete or continuous response variable as Y1, Y2, . . . , Yn. . Simultaneously, we harness

the ensemble learning capabilities of a random forest regressor, comprising 100 decision

trees, which is constructed by equation 2.3.4. Each tree in the ensemble is configured with

a maximum depth of six levels for discrete variables and seven levels for continuous vari-

ables, maintaining a minimum number of samples per leaf node as one. This ensemble

approach enhances predictive robustness by aggregating insights from multiple decision

trees, each contributing a unique perspective to the classification task. Through paralleliz-

ing the results of the decision tree regressor and the random forest regressor, our objective is

to offer a comprehensive understanding of the underlying patterns and complexities within

the dataset.

In the realm of regression imputation, our chosen methodology involves the implementa-

tion of a Generalized Linear Model (GLM) with a Poisson family, where Y in equation

2.2.1 refer to the random vector of the missing values and X refers to the design matrix

of all predictors. By employing the Poisson family within the GLM framework, we aim

to capture and model the inherent relationships in the data, ensuring a robust and statisti-

cally sound regression imputation process. This strategic selection aligns with the nature

of the data distribution and underscores our commitment to employing suitable models that

address the intricacies of the regression imputation task at hand.

To gauge the efficacy of these imputation techniques, we have elected to employ a robust
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and widely accepted evaluation metric—the Mean Squared Error (MSE). By meticulously

comparing the MSE values derived from both the Machine Learning Imputation and Re-

gression Imputation methodologies, we aim to derive profound insights into the accuracy,

reliability, and overall performance of each method. Ultimately, it positions us to make in-

formed decisions regarding the most suitable imputation strategy in scenarios characterized

by missing data, further advancing our understanding of predictive modeling in real-world

applications.

3.5.3 Loss Reserving Prediction

After finishing the missing value imputation, we aggregate the 5-year annual claims which

is predicted by GLM, where Y in equation 2.2.1 refer to the random vector of the annual

claim and X refers to the design matrix of all predictors and the imputed missing value. The

individual annual claims are aggregated into the run off triangle developed in Section 3.2,

which contains data for 5 accident years and 5 development years, where Li,k in equation

3.2.1 refers to the total annual claims for accident year i and development year k.

The Mack model introduced in Section 3.4.1 and GLM reserve model introduced in Section

3.4.2 are used to estimate the loss reserves using the loss triangle. The runoff triangle

example 3.2 could be used here to introduce how does the reserves been estimated. For

Mack model, the development factor and projected loss can be calculated as equation 3.4.1

and 3.4.2, respectively. The total loss reserves is the sum of all projected loss Ĉi,k. For

GLM reserve model, the individual loss Ŷij for accident year i and development year j can

be calculated in equation 3.4.3 and the total loss reserves can be calculated in equation

3.4.4.
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Chapter 4

Numerical Results

Chapter 2 provides a comprehensive exposition of various statistical tools. Chapter 3 de-

scribes the methodology for computing loss reserves. This chapter presents the empirical

findings derived from an experiment using simulated data as illustrated in Section 4.1. In

Section 4.2, we introduce how to deal with different kinds of missing values using methods

from Chapter 2. In Section 4.3, we introduce how to predict individual annual payments

and their corresponding payment indicators. Then, Section 4.3.3 presents how to use a

dataset with missing values to predict individual annual payments. Section 4.4 considers

two estimation methods to estimate loss reserves.

4.1 Simulated Data

In risk assessment and insurance modeling, accurately predicting individual claim history is

pivotal in pricing and underwriting decisions. The paper from [Gabrielli and V. Wüthrich,

2018] presents a novel and innovative approach to address this challenge. The authors in-

troduce a simulation machine, a sophisticated computational tool designed to model and

52



M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

simulate individual claim history (or trajectory). The paper’s innovative approach provides

a unique opportunity to access rich and realistic data that closely mirrors real-world insur-

ance scenarios.

Our research uses simulated datasets to train and rigorously test our models. By using this

dataset, we aim to develop and fine-tune our predictive model, enhancing its capacity to

make accurate predictions related to insurance claims. The advantages of employing this

simulated data are manifold. Firstly, it enables us to assess our model’s performance under

controlled and diverse conditions, encompassing various insurance contexts and scenarios.

Secondly, it provides a benchmark against which we can compare the model’s predictive

capabilities, ensuring that it aligns with the complexities of the insurance landscape. Fur-

thermore, utilizing this dataset allows us to contribute to the broader research community

by evaluating the model’s performance on a dataset that closely mimics the challenges faced

by insurance practitioners. We explore the model’s ability to accurately predict individual

claim histories, assess risk, and aid in pricing and underwriting decisions.

Table 4.1 presents some features of a simulated dataset.
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Table 4.1: Variables of simulated data.

Variable Data type Scale

Line of business categorical {1, 2, 3, 4}

Claim code categorical {1, 2, 3, 4, 5} (with possible gap)

Accident year discrete {1994, 1995, . . . , 2005}

Accident quarter categorical {1, 2, 3, 4}

Age continuous [15, 70]

Injury part categorical {1, 2, . . . , 99} (with possible gap)

Reporting delay discrete {0, 1, . . . , 11}

Annual claim amount continuous [0,∞)

Annual payment indicator categorical {0, 1}

This essay addresses missing values within three distinct categories: accident quarter, ac-

cident year, and age. Each of these categories represents a specific type of missing value,

with accident quarter as an example of a categorical missing value, accident year as an

example of a discrete missing value, and age as an example of a continuous missing value.

Furthermore, the accident quarter provides insights into temporal patterns and seasonality,

helping with resource allocation and strategic planning. Analyzing accidents over multi-

ple years through the accident year variable enables insurers to discern long-term trends,

influencing policy adjustments and pricing strategies. Age, a critical factor in driver risk

profiling, helps insurers set premiums and implement targeted safety interventions. These

variables contribute to a comprehensive understanding of risk factors, allowing insurers to

make informed decisions and optimize their insurance portfolios for profitability and risk

management.
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Moreover, our analysis encompasses claim amounts for each development year from year

1 to year 5. These claim amounts serve as individual annual payments, forming the foun-

dation for constructing the aggregate data table. It plays a pivotal role in our subsequent

analysis, enabling us to gain insights into cumulative payment trends over time. Our dataset

has 64,556 rows: we select the first 53,799 rows as the training set and the rest of the data

as the testing set.

4.2 Missing Value Prediction

This numerical example uses a multifaceted approach to address missing value imputation.

Our methodological framework encompasses two kinds of imputation methods, classical

(regression model) and machine learning approaches (decision tree and random forest), to

seamlessly handle three distinct types of missing values: categorical, discrete, and contin-

uous. As part of our study, we add the traditional ”mean imputation” approach [Donders

et al., 2006]. This inclusion enables us to evaluate and contrast these different techniques’

performance rigorously. This comprehensive experimental design positions us strategically

to assess the effectiveness and efficiency of each method in the nuanced context of missing

values imputation across diverse data types. Such a comprehensive analysis aligns with

best practices in the field, as it allows us to explore the spectrum of imputation strategies

and their implications for predictive modeling in the domain of our research [Donders et al.,

2006].
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4.2.1 Categorical Variable

In the Experiment 1 of our study, we choose the ”accident quarter” variable and aim to

predict this missing variable. We compare all 4 models using the accuracy measure and the

F1 score defined in Chapter 2. For machine learning techniques, we find optimal values for

hyperparameters over a grid search, the parameters could be found in Appendix Listing A.1.

Based on the simulated dataset, Table 4.2 presents results on the testing set.

Table 4.2: Data imputation result for Experiment 1.

Model Accuracy F1 Score Memory Usage

Regression Model 0.30 0.27 5.9 MB

Decision Tree 0.30 0.30 3.4 MB

Random Forest 0.31 0.32 4.8 MB

Mean Imputation 0.25 0.24 0.6 MB

Based on Table 4.2, it becomes evident that the regression model exhibits the highest mem-

ory utilization, which is 1.7 times the memory usage of the decision tree and 1.2 times the

memory usage of the random forest. Moreover, the regression model registers the lowest

F1 score and accuracy among the models under consideration, which only achieved 87%

F1 score for the decision tree and random forest. When assessing the performance of ”deci-

sion tree” and ”random forest” models, a notable pattern emerges: both models demonstrate

comparable levels of accuracy. However, it is essential to delve deeper into their perfor-

mance metrics to gain a more comprehensive understanding. While accuracy provides an

overarching measure of correct predictions, the F1 score offers a more nuanced perspec-

tive, especially in scenarios where dataset balance is critical. In this context, the ”random

56

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

forest” model distinctly outshines the ”decision tree” model, exhibiting a higher F1 score

of 0.02. Although the F1 scores for random forest and decision tree are similar, upon closer

examination, it is evident that the F1 score distribution across the four categories is more

balanced for random forest since the F1 score for the third category is only 0.16 for deci-

sion tree. Still, the F1 scores for all categories are all greater than 0.25. This balance across

categories indicates that random forest performs consistently across all classes, whereas

decision trees may excel in some categories while underperforming in others. Therefore,

despite the similarity in overall F1 scores, the more balanced performance across categories

suggests that random forest is more suitable for our application. The F1 score illuminates

the ”random forest” model’s prowess in delivering more robust and reliable predictions

in such challenging contexts. Furthermore, the regression and machine learning models

demonstrated superior performance compared to mean imputation. These models effec-

tively predict outcomes, showcasing their efficacy in handling the data and making more

accurate predictions than the simple mean imputation method.

4.2.2 Discrete Variable

In the second experiment of our study, we consider all 4 models to predict a missing numer-

ical discrete variable, namely, the ”accident year.” To gauge the impact of these imputation

techniques, we consider a widely accepted evaluation metric: the Mean Squared Error

(MSE), as defined in Chapter 2. Again, we find optimal values for hyperparameters over a

grid search, the parameters could be found in Appendix Listing A.2. Based on our dataset,

Table 4.3 presents results of the testing set.
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Table 4.3: Data imputation result for Experiment 2.

Model MSE Memory Usage

Regression Model 10.50 19.8 MB

Decision Tree 10.45 1.9 MB

Random Forest 10.40 3.1 MB

Mean Imputation 11.00 0.5 MB

Drawing upon the results from Table 4.3, a parallel conclusion emerges, echoing the obser-

vations made in Experiment 1. Specifically, the performance characteristics of the regres-

sion model persist in this context, notably its pronounced memory consumption, which

is 10 times the memory usage of the decision tree and 6 times the memory usage of the

random forest, concurrent with the highest Mean Squared Error (MSE) value among the

models considered, which is 0.5% higher than the MSE value for decision tree and random

forest. Although the MSE values are similar for these three models, the regression model

spends too much memory to achieve a similar MSE value. Conversely, the ”Random For-

est” model exhibits a distinct profile: a lower MSE value than the ”Decision Tree” model.

However, this achievement in predictive precision is offset by relatively higher memory

utilization, as observed in our results. This consistent trend underscores a pivotal trade-

off in our analysis. While random forest demonstrates enhanced predictive accuracy, it

concurrently necessitates a moderate increase in memory resources, distinguishing it from

the economic memory demands of the decision tree model. These empirical observations

offer valuable insights into the interplay between computational efficiency and predictive

prowess, thereby contributing to a comprehensive understanding of the model selection and

resource allocation in real-world predictive modeling scenarios.
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4.2.3 Continuous Variable

In the third experiment of our study, we consider all 4 models to predict a missing con-

tinuous variable, namely, the ”age.” Again, we use the Mean Squared Error (MSE) as our

main criterion, and optimal values for hyperparameters are shown in Appendix Listing A.3.

Table 4.4 presents results of the testing set.

Table 4.4: Data imputation result for Experiment 3.

Model MSE Memory Usage

Regression Model 170.3 27.5 MB

Decision Tree 166.7 1.9 MB

Random Forest 163.8 3.1 MB

Mean Imputation 171.0 0.59 MB

Based on the compelling findings emerging from Experiment 3, our discerning analysis

reveals a nuanced portrait when addressing missing continuous values. In this context,

both the ”Random Forest” and ”Decision Tree” models exhibit comparable performance,

notably evidenced by slight differences between their Mean Squared Error (MSE) values.

However, it is imperative to discern a notable divergence in resource utilization. While

the ”Decision Tree” model demonstrates commendable predictive accuracy, it has done

so while maintaining a relatively lower memory footprint. This characteristic is pivotal,

particularly in resource-constrained environments, and underscores the efficiency of the

”Decision Tree” approach. Conversely, the regression model, a constant presence in our
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experiments, continues to exhibit a voracious appetite for memory resources. Unfortu-

nately, this propensity for high memory consumption is compared with the model’s con-

sistently highest MSE value, reaffirming its challenges in achieving predictive accuracy in

this context.

These empirical observations further enrich our understanding of the intricate interplay be-

tween model performance, memory utilization, and predictive accuracy, shedding valuable

light on the pragmatic considerations that govern the selection of imputation techniques in

the realm of missing data. Based on the experimental results, it is evident that the random

forest performed much better than regression models for categorical variables and contin-

uous variables based on the F1 score and MSE, respectively. Meanwhile, random forest

saved much more memory than regression models for all experiments.

4.3 Response Variable Prediction

In this section, we forecast five successive claim payments based on covariates. To initiate

this prediction process, we employ payment indicators, which serve as binary flags to de-

note the occurrence of a claim payment within a specific year. These payment indicators

are essential for our analytical framework, enabling us to model and project the timing and

magnitude of claim payments over a five-year horizon. By leveraging these indicators, we

aim to gain insights into the prospective cash flows associated with each claim, which are

essential for financial planning and risk management.
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4.3.1 Payment Indicator

In this phase of our analysis, we consider all available covariates to predict the annual

payment indicator, and we use three approaches: logistic regression, random forest, and

decision tree:

Ij =


1, if there is an annual payment,

0, if there is no annual payment,

for development period j.

We assume independence between years and obtain optimal values for hyperparameters by

searching over a grid of values. Those values could be found in Appendix Listing A.4. We

compare results using the accuracy measure and the F1 Score, as in the previous section.

We aim to identify the most effective model for forecasting payment indicators. This pro-

cess contributes to obtaining valuable insights into the dynamics of claim disbursements

and enhances our capacity to make informed decisions in the realm of insurance and risk

management. Based on our dataset, Table 4.5 presents results.
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Table 4.5: Payment Indicators Prediction.

Model Accuracy F1 Score Memory Usage

First Period

GLM 0.79 0.76 14.0 MB

Decision Tree 0.85 0.84 4.5 MB

Random Forest 0.86 0.84 6.2 MB

Second Period

GLM 0.69 0.66 13.3 MB

Decision Tree 0.77 0.77 5.1 MB

Random Forest 0.78 0.79 5.9 MB

Third Period

GLM 0.96 0.94 16.6 MB

Decision Tree 0.96 0.94 4.7 MB

Random Forest 0.96 0.95 6.4 MB

Fourth Period

GLM 0.98 0.98 18.3 MB

Decision Tree 0.98 0.98 4.9 MB

Random Forest 0.98 0.98 6.6 MB

Fifth Period

GLM 0.99 0.99 19.9 MB

Decision Tree 0.99 0.99 5.1 MB

Random Forest 0.99 0.99 6.8 MB

Overall

GLM 0.88 0.86 82.1 MB

Decision Tree 0.91 0.90 24.3 MB

Random Forest 0.92 0.91 31.9 MB
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In evaluating the overall performance, it is discernible from Table 4.5 that the random

forest algorithm outperforms the decision tree method, surpassing the logistic regression

model. This observation is made concerning both accuracy metrics and memory utilization

considerations. Based on the dataset, most payments are made in the first three periods.

From the first three sub-tables of Table 4.5, we could see that the F1 score of random forest

is higher than that of regression model for 11%, 20%, and 1%, respectively, while the

memory usage of random forest is lower than that of regression model from 50% to 65%.

Although the memory usage of random forest is higher than that of decision tree from 1 MB

to 2 MB, random forest also has a higher accuracy or F1 score for 1 to 2 points. Moreover,

the for the last three indicators, the F1 score for values equal to 1 is 0.23 for random forest,

this value is 0.09 for decision tree and 0.00 for regression model, respectively. This finding

indicates that regression model only predict 0, which means no payment, for the last three

indicators; however, random forest and decision tree could correct predict some payments,

random forest outperformed decision tree in predicting payments for the last three payment

years, which had fewer payment occurrences. The enhanced performance of random forest

in this context suggests its capability to handle data with limited instances more effectively,

potentially due to its ability to reduce overfitting and capture more complex patterns in the

data.

The findings suggest that, within the scope of this analysis, the random forest algorithm

emerges as the superior choice. It demonstrates enhanced efficacy in predictive accuracy

while concurrently exhibiting more efficient memory usage compared to both the decision

tree and the logistic regression model.

63

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

4.3.2 Payment Prediction

In this section, we predict the severity of each payment, i.e., when Ij = 1, using all available

covariates and the historical record of previous payments. To achieve this predictive task,

we use three modeling techniques: Random Forest, Decision Tree, and Generalized Linear

Model (GLM) with possion family. By incorporating covariates and historical payment

information into our predictive models; we aim to unravel the complex dynamics govern-

ing claim payments. Our choice of Random Forest, Decision Tree, and Generalized Lin-

ear Model reflects a commitment to rigorously evaluating multiple modeling approaches,

enabling us to identify the most effective method for predicting payments. We assume

independence between years and obtain optimal values for hyperparameters by searching

over a grid of values. Those values could be found in Appendix Listing A.5. Based on our

dataset, Table 4.6 presents results.
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Table 4.6: Payment Prediction.

Model MSE Memory Usage

First Period

GLM 2.40× 107 303.5 MB

Decision Tree 1.82× 107 3.4 MB

Random Forest 1.60× 107 4.8 MB

Second Period

GLM 2.30× 107 351.2 MB

Decision Tree 1.8× 107 3.7 MB

Random Forest 1.18× 107 5.1 MB

Third Period

GLM 7.4× 106 330.0 MB

Decision Tree 6.3× 106 3.8 MB

Random Forest 5.0× 106 5.2 MB

Fourth Period

GLM 7.4× 105 506.8 MB

Decision Tree 2.49× 106 4.1 MB

Random Forest 4.4× 105 5.4 MB

Fifth Period

GLM 2.75× 105 506.8 MB

Decision Tree 4.21× 105 4.1 MB

Random Forest 1.77× 105 5.4 MB

Overall

GLM 1.1× 107 1998.3 MB

Decision Tree 9× 106 19.1 MB

Random Forest 6.7× 106 25.9 MB
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Upon scrutinizing the comprehensive performance evaluation presented in the results table,

it becomes evident that the random forest algorithm exhibits superior performance when

compared to the decision tree method since the MSE value of the random forest is lower

than that of the decision tree from 12% to 80% for the 5 years. Notably, the decision

tree method, in turn, surpasses the Generalized Linear Model for the MSE value of the

first three years, which are the periods when most payments are made, from 10% to 30%.

This discernment is drawn by considering both Mean Squared Error (MSE) and memory

utilization metrics, where the memory usage of the decision tree and the random forest is

no larger than 2% of a regression model. The implications of these results suggest that,

within the confines of this analysis, the random forest algorithm stands out as the optimal

choice. It showcases heightened efficacy in predictive accuracy while demonstrating more

efficient memory usage compared to the decision tree and GLM methodologies.

4.3.3 Two-Step Modeling Approach: Imputation and Response Pre-

diction

This section focuses on harnessing the predictive power of imputed missing values. Specif-

ically, we employ these imputed values to forecast the payment indicators and the sequence

of five yearly payments. To achieve this, we consider two modeling techniques: Random

Forest and Regression Models. Our overarching goal is to conduct a comprehensive perfor-

mance evaluation by comparing the predictions derived from actual values, those imputed

using random forest and those imputed using regression models. This multifaceted assess-

ment allows us to gauge our imputation strategies’ effectiveness and the selected models’

predictive accuracy. By examining the performance across these different scenarios, we

gain valuable insights into the robustness and reliability of our predictive framework.
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We use ”accident quarter” as the missing value in our example. Our simulated dataset has

no missing values: a notably pristine dataset compared to those we may have in practice.

Consequently, we randomly ”forget” 20% of the values for the ”accident quarter” covariate.

In this section, our primary endeavor is twofold: first, we consider the random forest algo-

rithm to predict the payment indicators using all covariates (as in the previous subsection).

It establishes a baseline for comparison under ideal conditions, i.e., where there are no

missing values. Then, we use the random forest imputation technique to fill in the missing

values. Subsequently, with this augmented dataset, we predict the payment indicators once

more using random forest. This dual-phase analysis not only affords us insights into the

model’s inherent predictive capabilities under optimal conditions but also demonstrates its

resilience in handling missing data through imputation strategies. Table 4.7 shows results.

They can significantly impact the insurance and risk management domain, as they under-

score the model’s adaptability and reliability characterized by both complete and partially

imputed data.

Table 4.7: F1 Score of Payment Indicators for Random Forest.

Payment Indicator I1 I2 I3 I4 I5

Actual values 0.79 0.84 0.95 0.98 0.99

Random Forest Imputation 0.76 0.80 0.94 0.97 0.98

In Table 4.8, our objective is to replicate the analytical steps previously undertaken in Ta-

ble 4.7. However, we introduce a distinct approach for addressing missing data. Specif-

ically, we employ Logistic Regression to impute the missing value within the ”accident

quarter” covariate. Subsequently, we employ Logistic Regression to predict the payment

indicators. By following this methodology, we aim to evaluate the effectiveness of Logistic
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Regression in handling missing data and compare it with the performance of random forest

employed in Table 4.7.

Table 4.8: F1 Score of Payment Indicators for Regression.

Payment Indicator I1 I2 I3 I4 I5

Actual values 0.66 0.76 0.94 0.98 0.99

Regression Imputation 0.60 0.73 0.94 0.97 0.98

In Table 4.9, our analysis takes us through a series of comprehensive steps with the primary

goal of evaluating and comparing predictive models’ performance:

1. Evaluating MSE with Actual Values: we use a random forest model with no missing

values and known payment indicators to predict the severity of each payment. This

step establishes a baseline for assessing model performance when data is complete,

and payment indicators are already known→ ”Actual values” in Table 4.9.

2. Imputation with Random Forest: we use the random forest algorithm for imputation

to predict all missing ”accident quarters.”

3. Predicting Payment Indicators: with the missing values filled in, we predict the pay-

ment indicators individually using random forest.

4. Payment Prediction with Predicted Indicators: building on the predicted payment in-

dicators, we employ random forest once again, this time incorporating the covariates,

filled-in missing values, and the predicted payment indicators → ”Random Forest

Prediction” in Table 4.9.

68

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

By systematically following these steps, we gain valuable insights into the predictive capa-

bilities of random forest models in scenarios where data completeness varies and payment

indicators may be partially imputed and predicted. This comprehensive analysis informs

us about the model’s robustness and adaptability to different data conditions, with practical

implications for risk assessment and forecasting in insurance contexts.

Table 4.9: MSE for Payment using Random Forest.

Payment P1 P2 P3 P4 P5

Actual values 1.60× 107 1.18× 107 5.0× 106 4.4× 105 1.77× 105

Random Forest Pred. 2.71× 107 3.30× 107 1.34× 107 2.62× 106 8.3× 105

In Table 4.10, we closely mirror the methodology employed in Table 4.9, but with a notable

distinction: we adopt different statistical techniques for imputation and prediction. Here is

a breakdown of the key steps and methodologies:

1. Evaluating MSE with Actual Values: we use a generalized linear model with no

missing values and known payment indicators to predict the severity of each pay-

ment. This step establishes a baseline for assessing model performance when data

is complete, and payment indicators are already known → ”Actual values” in Ta-

ble 4.10.

2. Imputation with Random Forest: we use the random forest algorithm for imputation

to predict all missing ”accident quarters.”

3. Predicting Payment Indicators: with the missing values filled in, we predict the pay-

ment indicators individually using Logistic Regression.
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4. Payment Prediction with Predicted Indicators: building on the predicted payment in-

dicators, we employ a Generalized Linear Model (GLM) with Poisson family incor-

porating the covariates, filled-in missing values, and the predicted payment indicators

→ ”Regression Prediction” in Table 4.10.

Through this comprehensive analysis, we aim to compare the performance of regression

models and random forests concerning imputation and prediction tasks. This comparative

assessment provides valuable insights into the strengths and weaknesses of different sta-

tistical techniques when dealing with missing data and payment forecasting in insurance-

related scenarios.

Table 4.10: MSE for Payment using Regression.

Payment P1 P2 P3 P4 P5

Actual values 2.40× 107 2.3× 107 7.4× 106 7.4× 105 2.75× 105

Regression Pred. 2.75× 107 3.33× 107 1.35× 107 3.21× 106 8.76× 105

4.4 Loss Reserves Estimation

In the property and casualty insurance domain, the accurate prediction of loss reserves is

paramount to upholding insurance companies’ financial viability and profitability. The pro-

cess of loss reserving, which involves estimating the monetary provisions required to meet

impending claims and obligations, serves as the linchpin of prudent financial planning and

risk management within the insurance sector. Within the scope of our research project, our

principal objective is to predict loss reserves. We consider the time-tested Mack model (see

Section 3.4.1) and some generalized linear models for loss reserving (see Section 3.4.2).
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These methods, well-known in the actuarial industry, are employed to project forthcoming

claim payments.

As a starting point, we present in Table 4.11 the run-off triangle constructed using our

simulated dataset and the end of Dev Year 5 is used as the valuation date, where Dev Year

means the development year. Using the original dataset, we calculate the actual outstanding

payment, i.e., the ”true reserve.” Then, we estimate the outstanding reserving using Mack

model.

Table 4.11: Run-off Triangle of Simulated Dataset.

Dev Year 1 Dev Year 2 Dev Year 3 Dev Year 4 Dev Year 5

Accident Year 1 3 307 5 028 5 340 5 461 5 556

Accident Year 2 3 518 5 333 5 704 5 896

Accident Year 3 3 155 4 786 5 096

Accident Year 4 3 723 5 736

Accident Year 5 3 417

In the second step, we construct two new run-off triangles using annual payments predicted

by random forest and annual payments predicted by a generalized linear model. Those two

triangles are presented in Table 4.13 and Table 4.12, respectively.
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Table 4.12: Run-off Triangle of Dataset with Regression Imputation.

Dev Year 1 Dev Year 2 Dev Year 3 Dev Year 4 Dev Year 5

Accident Year 1 3 350 4 999 5 258 5 383 5 479

Accident Year 2 3 354 5 081 5 448 5 631

Accident Year 3 3 074 4 689 4 960

Accident Year 4 3 620 5 420

Accident Year 5 3 319

Table 4.13: Run-off Triangle of Dataset with Random Forest Imputation.

Dev Year 1 Dev Year 2 Dev Year 3 Dev Year 4 Dev Year 5

Accident Year 1 3 345 4 843 5 166 5 315 5 416

Accident Year 2 3 501 5 029 5 414 5 602

Accident Year 3 3 291 4 810 5 147

Accident Year 4 3 645 5 459

Accident Year 5 3 476

We then use Mack model to calculate loss reserves. Although this situation is not realistic,

it allows us to assess better the impact of the imputation method on the reserve amount. A

future analysis using much more sophisticated models, i.e., granular models could be made

from these results [Zhu et al., 2018]. Table 4.14 presents results (expected values).
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Table 4.14: Reserves using Mack Model.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 124 100 106 103

3 217 234 265 236

4 1 043 600 689 659

5 2 245 2 236 2 245 2 389

Total 3 629 3 170 3 305 3 387

In Table 4.14, row 1 to row 5 contain annual mean values for the loss reserves, and row 6

contains the total reserves amount for the first 5 years. Based on those results, it is evident

that the values of RF reserves exhibit a closer proximity to the Original dataset than those

generated by the GLM. The RF’s ability to capture the underlying patterns and complexities

in the data may contribute to its closer alignment with the Original-Mack, offering more

reliable estimates. Conversely, the GLM’s performance may be hindered by its reliance on

simplifying assumptions or limitations in capturing nonlinear relationships within the data.

In practice, insurers are mainly interested in the predictive distribution of the reserve (for

example, to make capital allocation) and, in particular, in the high quantiles of this distri-

bution. To study those distributions, we use bootstrap resampling techniques. The primary

objective is to characterize the uncertainty in the reserve estimates and explore how well

the generated data aligns with the actual reserves. Subsequently, we visualize these dis-

tributions through plots, incorporating a red vertical line to represent the true reserves. In

Figure 4.15, the observation of the red vertical line, representing the true reserve, being

closer to the mode of the distribution of reserves for both the original data and the data
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generated from random forest imputation. This proximity suggests that the data obtained

through random forest imputation more closely resembles the actual data compared to that

obtained through regression imputation. The closeness of the true reserve to the distribu-

tion mode implies a higher accuracy and fidelity in capturing the underlying patterns and

characteristics of the original data. Random forest imputation likely preserved the key fea-

tures and variations in the true data, resulting in a distribution of reserves that closely aligns

with the actual distribution. Conversely, the distance between the true reserve and the mode

of the distribution for the data from regression imputation indicates that this method may

have introduced more variability or distortion in the dataset. This discrepancy suggests that

regression imputation may not have adequately captured the nuances and complexities in

the original data, leading to a less accurate representation of the true reserves. The ob-

servation underscores the importance of employing robust imputation techniques, such as

random forest, to enhance the accuracy and reliability of reserve estimations in insurance

risk management.

(a) Bootstrap for Original
Data

(b) Bootstrap for Random
Forest

(c) Bootstrap for Generalized
Linear Model

Figure 4.1: Bootstrap Resampling For all Simulation Data from Mack Model
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In financial risk management, calculating Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR)

for loss reserves is a critical endeavor aimed at quantifying the potential downside risk as-

sociated with these reserves. Table 4.15 presents level 90% and 95% VaR and TVaR for

our three approaches.

Table 4.15: Risk Measures for Mack Reserves.

Level GLM Imputation RF Imputation Original

90% VaR 3 431 3 515 3 580

90% TVaR 3 537 3 597 3 658

95% VaR 3 513 3 580 3 639

95% TVaR 3 605 3 648 3 708

In our quest for a detailed risk assessment, we have delved into the 95% VaR and TVaR

metrics for individual lines of business. A key observation from Table 4.16 reveals an in-

teresting dynamic: the sum of 95% VaR values for individual business lines is less than

the 95% VaR of total reserves. This insight suggests a nuanced risk landscape. While total

reserves pose a certain level of risk at the 95% confidence level, the distribution of risk

across individual business lines seems to offer a form of risk diversification. The cumu-

lative 95% VaR for individual lines of business implies a potential risk-mitigating effect,

indicating that the combined risk exposure is less pronounced than total reserves alone.

Examining individual business lines allows for identifying concentration or diversification

areas, enabling tailored risk mitigation strategies. This approach accurately portrays the

organization’s overall risk profile, offering actionable insights to enhance risk management

effectiveness.

The results presented in Table 4.15 highlight a consistent trend wherein the random forest
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model consistently outperforms other models in terms of both the 90% and 95% risk capital

measures. The comparison of the 95% confidence intervals for Original, RF Imputation,

and GLM Imputation provides valuable insights into the accuracy and reliability of reserve

estimations derived from different methodologies. For the original dataset, the 95% confi-

dence interval, which is the range from 2.5th quantile to the 97.5th quantile, [3 095; 3 693]

includes the true reserve of 3 629. It indicates a high probability (95%) that the true reserve

falls within this interval, demonstrating the effectiveness of the original dataset in providing

accurate reserve estimates. Similarly, for the RF Imputation, the 95% confidence interval

[3 002; 3 631] also includes the true reserve. It suggests that the RF Imputation produces re-

serve estimates consistent with the true value within the specified confidence level, further

validating the reliability of this approach. However, for the GLM Imputation, the 95% con-

fidence interval [2 789, 3 583] does not include the true reserve. It indicates a discrepancy

between the estimated reserves and the true value, potentially raising concerns about the

accuracy of the GLM Imputation in this particular scenario. These findings suggest that the

random forest model excels in providing estimations of risk measures, and these estimates

closely align with the actual reserves. The robust performance of random forest in this con-

text underscores its efficacy as a predictive modeling tool, especially when quantifying risk

exposure and potential financial losses. It implies that the model consistently captures and

predicts higher risk scenarios, making it a valuable asset in risk management and financial

decision-making.
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Table 4.16: Risk measures for different lines of business using Mack model

Line of Business 0 1 2 3 Sum Total Res. Gain

Risk Measure for GLM Imputation Reserves

95% VaR 481 369 1 240 1 996 4 086 3 513 14%

95% TVaR 508 415 1 372 2 053 4 348 3 605 17%

Risk Measure for RF Imputation Reserves

95% VaR 632 272 976 2 217 4 097 3 580 13%

95% TVaR 670 300 1 083 2 272 4 325 3 648 16%

Risk Measure for Original Reserves

95% VaR 525 383 1 251 2 052 4 211 3 639 14%

95% TVaR 556 422 1 370 2 103 4 451 3 708 17%

Furthermore, an insightful examination of Table 4.16 reveals noteworthy findings regard-

ing the aggregation of risk across different lines of business. The first four columns shows

the values of 95% VaR and TVaR for different lines of business, the fifth column shows

the value of sum of lines of business. Specifically, the summation of 95% VaR values

pertaining to distinct lines of business exceeds the 95% VaR of total reserves. This obser-

vation substantiates the premise that the combination of diverse lines of business yields a

mitigating effect on overall risk exposure and potential losses. Total reserves gained more

than 13% for 95% VaR and 16% for 95% TVaR compare to the sum of different line of

business. The gain for 95% TVaR is larger than 95% VaR shows that TVaR is generally

more sensitive to extreme or tail events compared to VaR and we should place emphasis on

capturing and managing extreme tail risks. It suggests that there are diversification benefits
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present in the portfolio. Diversification benefits occur when the risk of the portfolio as a

whole is lower than the sum of the risks of its individual components. In other words, by

combining different lines of business, the overall risk of the portfolio is reduced due to the

imperfect correlation or negative correlation between the risks of different lines of business.

This analysis underscores the importance of portfolio diversification as a risk management

strategy.

In this section, we also consider a Generalized Linear Model for loss reserving. Conse-

quently, we anticipate comparable outcomes to those yielded by the Mack model.

Table 4.17: Reserves using GLM.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 124 100 106 103

3 217 234 265 235

4 1 043 599 690 659

5 2 245 2 236 2 246 2 388

Total 3 629 3 169 3 307 3 385

Based on Table 4.17, results are similar to those in Table 4.14.

78

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

(a) Bootstrap for Original
Data

(b) Bootstrap for Random
Forest

(c) Bootstrap for Generalized
Linear Model

Figure 4.2: Bootstrap Resampling For all Simulation Data from GLM Reserves

Based on Figure 4.2, we could see the bootstrap result of GLM reserves model is also

similar to Figure 4.1

Table 4.18: Risk measures using GLM for loss reserving.

Level GLM Imputation RF Imputation Original

90% VaR 3 431 3 517 3 578

90% TVaR 3 540 3 596 3 655

95% VaR 3 518 3 578 3 635

95% TVaR 3 607 3 648 3 708

The values of risk measurements 90% and 95% of VaR and TVaR for GLM reserves model

have been shown in Table 4.18, which is similar results in Table 4.15: they indicate that we

could obtain the same results from GLM reserves and Mack model.
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Table 4.19: Risk measures for different lines of business using GLM Reserves

Line of Business 0 1 2 3 Sum Total Res. Gain

Risk Measure for GLM Imputation Reserves

95% VaR 483 367 1 230 1 993 4 073 3 518 14%

95% TVaR 510 417 1 366 2 053 4 346 3 607 17%

Risk Measure for RF Imputation Reserves

95% VaR 632 271 963 2 213 4 079 3 578 13%

95% TVaR 671 302 1 076 2 270 4 319 3 648 16%

Risk Measure for Original Reserves

95% VaR 524 381 1 253 2 054 4 212 3 635 14%

95% TVaR 555 421 1 371 2 103 4 450 3 708 17%

In Table 4.19, the 95% VaR and TVaR for different line of business with different datasets

(original dataset, GLM predicted dataset, and random forest predicted dataset) showed the

similar results compared to Table 4.16.

Drawing upon the outcomes derived from both the Mack model and the GLM reserves

model, it can be inferred that, given their common foundation within the GLM frame-

work, these methodologies are likely to yield similar results in terms of reserves estimation.

This similarity extends across aspects such as reserves distribution and risk measurement,

thereby substantiating a consistent outcome between the two approaches. However, the

variance of the total reserves of these two methods is different. The variance of the re-

serves with original dataset for the Mack model is 23,892, while that for the GLM Reserves

is 24,580, the variance of the reserves with random forest imputation dataset for the Mack
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model is 25,422, while that for the GLM Reserves is 26,103, the variance of the reserves

with GLM imputation dataset for the Mack model is 39,490, while that for the GLM Re-

serves is 41,162. The variance of Mack model is smaller than that of GLM Reserves, it

suggests that the predictions or outcomes produced by Mack model are more consistent or

less variable than those of GLM Reserves. Moreover, the variance for reserves of dataset

with GLM imputation is much larger that that for two other datasets, which indicate that

random forest imputation dataset is closer to the original dataset, and it is outperformed

than the GLMimputation.

The comprehensive analysis conducted on scenarios involving missing values in both con-

tinuous and discrete variables, with detailed results provided in the Appendix B, serves as a

testament to the stability and robustness of the findings presented in Section 4.4. The inclu-

sion of such extensive analyses not only validates the results obtained but also enhances the

credibility and reliability of the conclusions drawn. By examining various scenarios and

providing evidence of consistent outcomes across different data settings, the study demon-

strates the resilience of the methodologies employed in estimating reserves.
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Chapter 5

Conclusion

The present study investigates the efficacy of employing random forest for data imputation

within the domain of loss reserving. Results indicate that random forest outperforms tradi-

tional regression techniques regarding data imputation accuracy, as evidenced by achieving

higher F1 scores for categorical missing data or lower Mean Squared Error (MSE) for dis-

crete and continuous missing data while concurrently exhibiting markedly reduced memory

usage. Even though the random forest algorithm handles missing values in the input, it has

less information and is less efficiency than the imputed dataset when we predict annual

claims and loss reserves. The random forest also gains more information from the imputed

data.

Following the completion of the data imputation phase, the study utilized both random for-

est and regression models to forecast annual payment indicators and payments over five

consecutive accident years. Random forest exhibited superior performance in predictive

accuracy, achieving higher F1 scores for payment indicators prediction and lower Mean

Squared Error (MSE) for payment prediction compared to the regression model. This sug-

gests that random forest is adept at imputing missing data and also excels in predicting

82



M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

payment indicators and annual individual payments, thereby underscoring its utility and

efficacy within the domain of loss reserving.

After the payment prediction, we aggregate the individual payments into the run-off tri-

angles. The original dataset and datasets subjected to regression imputation and random

forest imputation were utilized to estimate loss reserves using the Mack and Generalized

Linear Model (GLM) reserves models. Notably, the dataset employing random forest impu-

tation closely approximated the performance of the complete simulated dataset in contrast

to the dataset employing regression imputation. Moreover, employing a bootstrap method-

ology to estimate the distribution of loss reserves across different datasets revealed that the

true reserves lie within the 95% confidence interval of the distribution of loss reserves de-

rived from both the original dataset and the dataset employing random forest imputation.

Meanwhile, the 95% VaR and TVaR of the dataset employing random forest imputation

is much closer to that of the complete simulated dataset than the regression imputation

dataset. Moreover, the results of risk measures on the entire portfolio and different lines

of businesses suggest that we could receive risk diversification benefits from aggregating

individual lines of businesses into the portfolio, which is the property of sub-additivity

holds.

This observation underscores the superiority of random forest as a data imputation method

compared to traditional regression techniques in the context of loss reserves, illuminating

its robustness in handling complex datasets characterized by missing values. Meanwhile,

regression models are struggling to capture the complex relationship between variables.

Using a simulated dataset in our study demands an acknowledgment of the potential dis-

parities it may harbour compared to real-world datasets. Recognizing the divergence be-

tween simulated and actual data is essential. While the insights obtained from our analysis
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offer valuable perspectives, they may not seamlessly align with what is inherent in real-

world scenarios. For example, some non-randomness missing values exist in real-world

data, which we do not mention in the simulated dataset. Central to our investigation were

micro-level reserving prediction methodologies, examined to clarify their efficacy within

the context of the simulated dataset. However, it is essential to acknowledge the limitations

imposed by the simulated environment and the confined scope of our findings. Subse-

quent phases of our inquiry are earmarked for a transition towards authentic datasets. This

strategic pivot serves a dual purpose: firstly, to transcend the constraints of simulation and

access the richness of real-world data, and secondly, to enable the exploration and applica-

tion of macro-level reserving techniques for predictive analytics. By delving into authentic

datasets, we aim to enrich our understanding, refine our methodologies, and, ultimately,

foster a more robust framework for predictive analysis in insurance and related domains.
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Appendix A

Coding

Figure A.1: Data Example.

Listing A.1: Categorical Missing Value

1 # Create a Decision Tree Classifier

2 tree = DecisionTreeClassifier(max_depth=15,min_samples_leaf=100)

3
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4 # Create a Random Forest model

5 ram = RandomForestClassifier(n_estimators=10, random_state=1000,

max_depth=100,min_samples_leaf=1000)

6

7

8 # Create and train the linear regression model

9 res = np.insert(xinput1, 0, 1, axis=1)

10 model = sm.MNLogit(yinput1, res)

11 result=model.fit()

Listing A.2: Discrete Missing Value

1 # Create a Decision Tree Regressor

2 tree = DecisionTreeRegressor(max_depth=1,min_samples_split=100,

min_samples_leaf=1)

3

4 # Create a Random Forest model

5 ram = RandomForestRegressor(n_estimators=100,max_depth=1,

min_samples_leaf=1)

6

7 res = np.insert(xinput1, 0, 1, axis=1)

8

9 model = sm.GLM(yinput1, res, family=sm.families.Poisson())

10 models=model.fit()

Listing A.3: Continuous Missing Value

1
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2 # Create a Decision Tree Regressor

3 tree = DecisionTreeRegressor(max_depth=3,min_samples_split=10,

min_samples_leaf=1)

4

5 # Create a Random Forest model

6 ram = RandomForestRegressor(n_estimators=100,random_state=5,

max_depth=5,min_samples_leaf=1)

7

8 res = np.insert(xinput1, 0, 1, axis=1)

9

10 model = sm.GLM(yinput1, res, family=sm.families.Poisson())

11 models=model.fit()

Listing A.4: Payment Indicator

1

2 # Payment indicator of year 1

3 # Create a Decision Tree Classifier

4 tree1 = DecisionTreeClassifier(max_depth=5,min_samples_leaf=100)

5 # Create a Decision Tree Classifier

6 ram1 = RandomForestClassifier(n_estimators=50,max_depth=15,

min_samples_leaf=1)

7

8 # Payment indicator of year 2

9 # Create a Decision Tree Classifier

10 tree1 = DecisionTreeClassifier(max_depth=10,min_samples_leaf=10)

11 # Create a Decision Tree Classifier
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12 ram1 = RandomForestClassifier(n_estimators=50,max_depth=15,

min_samples_leaf=10)

13

14 # Payment indicator of year 3

15 # Create a Decision Tree Classifier

16 tree1 = DecisionTreeClassifier(max_depth=5,min_samples_leaf=10)

17 # Create a Decision Tree Classifier

18 ram1 = RandomForestClassifier(n_estimators=50,max_depth=13,

min_samples_leaf=10)

19

20 # Payment indicator of year 4

21 # Create a Decision Tree Classifier

22 tree1 = DecisionTreeClassifier(max_depth=12,min_samples_leaf=10)

23 # Create a Decision Tree Classifier

24 ram1 = RandomForestClassifier(n_estimators=50,max_depth=15,

min_samples_leaf=5)

25

26 # Payment indicator of year 5

27 # Create a Decision Tree Classifier

28 tree1 = DecisionTreeClassifier(max_depth=15,min_samples_leaf=100)

29 # Create a Decision Tree Classifier

30 ram1 = RandomForestClassifier(n_estimators=50,max_depth=15,

min_samples_leaf=10)

Listing A.5: Individual Annual Payments

1 # Create a Decision Tree Regressor
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2 tree01 = DecisionTreeRegressor(max_depth=5,min_samples_leaf=20)

3

4 # Fit the model to the data

5 tree01.fit(xinput2, yinput2)

6

7 # Make predictions on the test data

8 y_tree01= tree01.predict(xoutput2)

9

10 # Create a Random Forest model

11 ram01 = RandomForestRegressor(n_estimators=100,random_state=7,

max_depth=15,min_samples_leaf=40)

12

13 # Train the model

14 ram01.fit(xinput2, yinput2)

15

16 # Predict using the test data

17 y_ram01 = ram01.predict(xoutput2)

18

19

20 # Create and train the GLM model

21

22 res = np.insert(xinput2, 0, 1, axis=1)

23

24 model3 = sm.GLM(yinput2, res, family=sm.families.Poisson())

25 result01=model3.fit()

26
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27 res1 = np.insert(xoutput2, 0, 1, axis=1)

28 y_pred01 = result01.predict(res1)

Listing A.6: Mack Model Loss Reserves

1 result3<- round((1/1000)*ddply(data2, .(AY), summarise, Pay00 =

sum(Pay00),Pay01 = sum(Pay01),Pay02 = sum(Pay02),

2 Pay03 = sum(Pay03),Pay04 = sum(

Pay04))[,2:6])[1:5,]

3

4 for (j in 2:5){result3[,j] <- result3[,j-1] + result3[,j]}

5

6

7 tri_dat3 <- array(NA, dim(result3))

8 reserves3 <- data.frame("true Res." = numeric(), "CL Res." =

numeric(), "MSEPˆ(1/2)" = numeric())

9

10 reserves3 <- setNames(reserves3, c("true Res.","CL Res.","MSEP

ˆ(1/2)"))

11 for (i in 0:4){

12 for (j in 0:(4-i)){tri_dat3[i+1,j+1] <- result3[i+1,j+1]}

13 reserves3[i+1,1] <- result3[i+1,5]-result3[i+1,5-i]

14 }

15

16 reserves3[6,1] <- sum(reserves3[1:5,1])

17 tri_dat3<- as.triangle(as.matrix(tri_dat3))

18
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19 dimnames(tri_dat3)=list(origin=1:5, dev=1:5)

20

21 Mack1 <- MackChainLadder(tri_dat3,est.sigma="Mack")

22

23 for (i in 0:4){reserves3[i+1,2] <- round(Mack1$FullTriangle[i

+1,5]-Mack1$FullTriangle[i+1,5-i])}

24 reserves3[6,2] <- sum(reserves3[1:5,2])

25 reserves3[1,3] <-0

26 reserves3[1:5,3] <- round(Mack1$Mack.S.E[,5])

27 reserves3[6,3] <- round(Mack1$Total.Mack.S.E)
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Appendix B

Reserves Estimation

B.1 Discrete Data

Reserves of Mack model.

Table B.1: Reserves using Mack Model.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 139 101 108 103

3 178 241 255 236

4 1 061 611 664 659

5 2 194 2 212 2 301 2 389

Total 3 572 3 165 3 328 3 387

Risk measurement of Mack model.
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Table B.2: Risk Measures for Mack Reserves.

Level GLM Imputation RF Imputation Original

90% VaR 3 429 3 530 3 580

90% TVaR 3 535 3 604 3 658

95% VaR 3 510 3 591 3 639

95% TVaR 3 600 3 669 3 708

Reserves of GLM reserves model.

Table B.3: Reserves For GLM Reserves Model.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 139 101 108 103

3 178 236 265 235

4 1 061 600 685 659

5 2 194 2 234 2 250 2 388

Total 3 572 3 171 3 308 3 385

Risk measurement of GLM reserve model.
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Table B.4: Risk Measures for GLM Reserves.

Level GLM Imputation RF Imputation Original

90% VaR 3 430 3 519 3 578

90% TVaR 3 539 3 599 3 655

95% VaR 3 520 3 581 3 635

95% TVaR 3 610 3 650 3 708

B.2 Continuous Data

Reserves of Mack model.

Table B.5: Reserves using Mack Model.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 139 100 105 103

3 178 235 258 236

4 1 061 612 666 659

5 2 194 2 221 2 298 2 389

Total 3 572 3 169 3 327 3 387

Risk measurement of Mack model.

94

http://www.mcmaster.ca/
https://math.mcmaster.ca/


M.Sc. Thesis – Y Zhai; McMaster University – Mathematics and Statistics

Table B.6: Risk Measures for Mack Reserves.

Level GLM Imputation RF Imputation Original

90% VaR 3 430 3 518 3 580

90% TVaR 3 537 3 601 3 658

95% VaR 3 509 3 588 3 639

95% TVaR 3 605 3 658 3 708

Table B.7: Risk Measures for Mack Reserves.

Reserves of GLM reserves model.

Table B.8: Reserves For GLM Reserves Model.

True Reserves GLM Imputation RF Imputation Original

1 0 0 0 0

2 139 99 106 103

3 178 237 264 235

4 1 061 598 678 659

5 2 194 2 229 2 260 2 388

Total 3 572 3 163 3 308 3 385

Risk measurement of GLM reserve model.
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Table B.9: Risk Measures for GLM Reserves.

Level GLM Imputation RF Imputation Original

90% VaR 3 431 3 522 3 578

90% TVaR 3 541 3 601 3 655

95% VaR 3 522 3 587 3 635

95% TVaR 3 611 3 654 3 708
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