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ABSTRACT

Due to the cost and difficulty of conducting direct tensile and compression creep 

testing on engineering ceramics, four-point bending creep test methods are often used as 

an alternative. Stress distribution in the bending specimen is nonlinear, so a proper 

interpretation method is needed to get creep properties from data produced by four-point 

bending creep tests. The method of Hollenberg et al. and the method of Chuang are 

among the methods to predict the creep parameters from bending creep test data. 

However, bending creep test methods are often doubted for quantitative creep analysis 

with reasons like uncertainties from contact point shift or frictional effects in four-point 

bending creep tests.

Finite element simulations of the four-point bending creep tests were performed 

to evaluate the limitations and abilities of four-point bending creep tests and the methods 

to predict creep parameters from bend test data. Material model for asymmetric creep 

behavior (different creep rate in tension and in compression) of ceramics material were 

developed by modifying the existing symmetric creep model and implemented in the in­

house non-linear finite element code. Explicit finite element method (dynamic relaxation) 

was successfully used to consider both, the frictional effects between loading rollers and 

specimen, and asymmetric creep properties of ceramics material. The developed 

asymmetric creep material model was verified by the simulation of C-ring compression 

creep test and comparison with published experimental data.
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It was found that when friction between loading rollers and specimen was not 

applied in the simulations, both Hollenberg’s and Chuang’s methods well predicted creep 

parameters from bend creep simulation data. But, when friction was high as in normal 

bend creep tests, the pre-exponent (A) was highly underestimated. Prediction of stress 

exponent (n) was not affected much by friction.

Bend test set-up with rolling-pins in ASTM C 1211 was recommended to reduce 

the frictional effects in bend creep tests and a proof simulation was performed. The 

simulation showed that the test set-up in ASTM C 1211 effectively removed the frictional 

effect of the frequently used creep test set-up and the effect of bending moment increase 

due to the rolling of loading pin was minor.
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CHAPTER 1

INTRODUCTION

1.1 Creep in Engineering Ceramics

Engineering Ceramics have high strength and oxidation and corrosion resistance 

at elevated temperature. Ceramics are promising material for high temperature load­

bearing applications. So, predicting creep behavior of ceramics is vital in design to avoid 

failure due to creep because the excessive creep deformation can adversely affect the 

dimensional stability of the part.

Because of the complexity of creep behavior, the analysis of creep problems is 

often based on equations obtained from the curve-fitting of tensile creep test data. In the 

equations the creep strain εc or creep strain rate ἐc is represented as a functions of stress 

σ, temperature T, and time t. One of the common equations is the Bailey-Norton 

equation which has the power form (Bailey, 1929) (Norton, 1929)

ἐc = Atk-1σn; 0 < k < 1, n > 1 (1-1)

which is widely used for creep strain in transient creep range.

For long-term applications in steady state and at isothermal conditions, 

engineering ceramics usually show power-law creep behavior in a form

ἐcs=Aσn (1-2)

where ἐcs is the steady state creep strain rate, A is a pre-exponent constant depending 
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only on the test temperature and the material’s properties, n is a stress exponent which 

may or may not depend on stress (Chuang, 1986).

Another important creep behavior of engineering ceramics is asymmetric creep 

property. Many ceramics shows much higher creep strain rate in tension than in 

compression (Seltzer, 1977) (Morrell et al., 1973). It can be expressed with the following 

two equations.

ἐsc = Acσnc σ in compression (l-3a)

ἐst=Atσnt σ in tension (l-3b)

where ἐs is steady-state creep strain rate; A and n are material constants, σ is the normal 

stress. The subscripts c and t refer to the case in compression and in tension respectively 

(Chuang, 1986).

1.2 Four-Point Bending Creep Test vs. Direct Tensile & Compressive Creep Test

The most common method of creep testing is to apply a constant load directly in 

tension or compression to a specimen. For engineering ceramics, preparing tensile 

specimen is expensive and the fixturing required to grip the specimen is also expensive. 

Also, researchers are experiencing premature failure at the neck or head region (Wang et 

al., 1997) (Krause et al., 2001). For a compressive test, specimen has less expensive 

geometry and loading is much simpler. But, alignment between the specimen and loading 

rams is difficult and it can lead to high bending stress.

Researchers and engineers often resort to four-point bending creep tests because 

specimens are inexpensive rectangular bars, and loading and fixturing are simple and 
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stable. However, the stress distribution in the bending specimen is nonlinear, so a proper 

interpretation method is needed to extract the power-law creep parameters from the 

steady state bend test data. Hollenberg et al. (1971) developed a method to get creep 

parameters from bend test data with assumption that neutral axis is not moving, creep 

rates in tension and compression are same. This method is easy to apply because it has a 

closed-formed solution. But, application is restricted to ceramics which have symmetric 

creep properties ( At = Ac ,nt = nc). Significant errors can occur if this method is applied 

to asymmetric creep where the neutral axis can migrate towards compression side of the 

specimen.

Finnie (1966) and Talty and Dirks (1978) partially generalized this method for 

asymmetric creep case with some restrictions like At ≠ Ac , but nt = nc = 1 or At ≠ Ac, 

but nt = nc = n . Chuang (1986) completely generalized the method for the asymmetric 

creep case where At ≠ Ac , and nt ≠ nc. In Chuang’s method the equations are highly 

nonlinear, so a numerical iteration and graphic solution scheme is used to solve the 

equations.

1.3 Validity of the Methods to Extract Creep Parameters from Bend Test Data

Quinn and Morrell (1991) reviewed the problems of using bend test data for 

design purposes. They doubted bending creep test for quantitative creep analysis on the 

basis of Jakus and Wiederhom’s observation (1988) on curvatures of crept bend 

specimens and experimental errors in bending creep test such as load point friction. Jakus 

and Wiederhorn (1988) measured the surface curvature of a bend specimen after the four-
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Figure 1.1 Curvature as a function of distance along the bend bar (Jakus et al, 
1988)

point bending creep test. In the mid-span, one would expect the radius of curvature to be 

constant because the bending moment is constant However from the experiment the 

curvature was greatest under the inner loading points and not constant in the mid span 

(see Figure 1.1). This result deviates from expectation of simple beam theory which 

assumes that the moment and therefore the radius of curvature of the beam are constant 

between the load points.

Both Hollenberg’s and Chuang’s analyses use the simple beam theory at one point 

to relate the curvature rate to load-point displacement rate. Curvature rate is the 

appropriate parameter to measure the creep response of a bend specimen, but curvature 

rate is difficult to measure. Instead, it is general practice to measure the load-point 

displacement rate. Hollenberg et. al (1971) and Chuang (1986) begin the analysis with 

curvature rate and at the final stage they relate curvature rate to load-point displacement 
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rate by the assumption that bending moment is constant in the mid-span and linearly 

reduces to zero in the outer span.

So questions arise here if the methods of Hollenberg et al. (1971) and Chuang 

(1986) are still valid in spite of Jakus and Wiederhorn’s observation and how friction 

affects the estimations of the methods.

1.4 Finite Element Analysis for Verification of Hollenberg’s and Chuang’s Methods

The best way to verify the methods of Hollenberg et al. and Chuang ,while 

avoiding limitations of testing and measurement, is to perform tension, compression, and 

bend creep tests together, and to compare creep parameters measured from tension and 

compression tests with the parameters extracted from bending creep test data by the 

methods. At this time there is very little literature which has tension, compression and 

bend creep test data together. Ferber et al. (1990) performed tension, compression and 

bend creep tests together, but the estimation by Chuang’s method didn’t agree well with 

experimental results because in his bend creep tests the specimens at the two highest 

applied stresses failed before they reached the steady state. Chen and Chuang (1990) 

performed compression and bend creep tests together and showed his estimated 

compression creep strain rate is in fair agreement with compression creep test result.

To fully test the methods of Hollenberg et al. (1971) and Chuang (1986), finite 

element analysis can be effectively applied. Four-point bending creep test simulations can 

be performed with tensile and compressive creep parameters ( At, nt and Ac , nc) as 

inputs. The data collected from simulations such as load-point displacement rates are 
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used to estimate the tensile and compressive creep parameters by the methods of 

Hollenberg et al. and Chuang. The estimated parameters can be compared with original 

input parameters and the validity of the methods be evaluated.

1.5 Explicit Finite Element Method for Ceramics Creep Test Simulation

To make simulations meaningful for comparison, contact and friction between 

loading rollers and specimen must be considered in the simulation, and material model 

for asymmetric behavior (different creep rate in tension and compression) of ceramics 

material be applied in the simulation. To handle material non-linearity (creep) and sliding 

of material interfaces (contact between loading rollers and specimen), explicit finite 

element method is the prefered choice because traditional implicit methods can encounter 

difficulties solving this problem.

The ceramics creep test simulation where both contact conditions between 

loading rollers and specimen and asymmetric creep properties of ceramics are considered 

together has not appeared in the literature so far. Chuang et al. (1992) simulated 

ceramics C-ring compression creep test with asymmetric creep properties but without 

contact conditions between specimen and loading rod considered. Concentrated nodal 

loads were applied in their simulations. Wang et al. (1997) performed ceramics tensile 

creep test simulations with contact between specimen and loading pin considered but 

assuming symmetric creep properties for the ease of calculation. Lim et al. (1997) 

performed four-point bending creep test simulations and ceramics C-ring compression 

creep tests with asymmetric creep properties considered but only point loads were 
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considered in the simulations.

It seems intractable to perform ceramics creep test simulation by implicit methods 

with both contact conditions and asymmetric creep properties considered together 

because in implicit solutions, equilibrium iterations must be performed at each load level 

and the contact conditions cause abrupt changes in the stiffness of system and 

asymmetric creep properties make the solution unstable.

Therefore, in this thesis the explicit finite element method was used to simulate 

ceramics creep tests with both contact conditions and asymmetric creep properties 

considered together.

1.6 Objectives of This Thesis

The main objectives of this thesis are :

1) To develop asymmetric creep material model and to implement into the 

explicit module of the in-house general purpose finite element code.

2) To verify the developed asymmetric creep material model

3) To perform four-point bending creep simulations with contact 

conditions and asymmetric creep properties considered

4) To evaluate the methods of Hollenberg et al. and Chuang by comparing 

with simulation data

Also, in the course of pursuing the above points the various aspects of four-point 

bending creep tests which are hard to see in the experiments are to be investigated 

from simulations.
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1.7 Outline of Methodology

The following points summarize the methodology of this thesis.

1) The methods of Hollenberg et al. (1971) and Chuang (1986) to extract 

creep parameters from bend test data are studied for their use in a later 

chapter. (chapter 2)

2) Modifications are done on material constitutive routine of the in-house 

general purpose finite element program for simulation of asymmetric 

creep behavior of ceramics. (chapter 3)

3) To verify the modified program, ceramics C-ring compression test is 

simulated and the result is compared with published experimental data. 

(chapter 4)

4) The bend creep experiment of Jakus and Wiederhorn (1988) is 

simulated, and the reason for the non-uniform curvature distribution in 

the mid-span is searched. (section 5.2)

5) A set of bend creep simulations are performed with symmetric creep 

property ( At = Ac = A , nt = nc = n ) at different loads. Load-point 

displacement rate is collected from simulation at each load. From this 

data, creep parameters (A and n) are estimated by using the method 

of Hollenberg et al. (1971). By comparing the estimated creep 

parameters with simulation input creep parameters, validity of the 

Hollenberg’s method is discussed. The mid-span curvature rates are 

also collected from simulations and compared with the estimation of the 
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method. Validity of measuring load-point displacement rate (which is 

simple and common) instead of curvature rate is discussed. (section 5.3)

6) A set of bend creep simulations are performed with asymmetric creep 

properties (At ≠ Ac,nt ≠ nc) at different loads. Mid-span curvature rate 

is collected from simulation at each load. Also, mid-span curvature rate 

for each load is estimated by Chuang’s method. By comparing the 

curvature rates from simulations with the curvature rates estimated by 

Chuang’s method, validity of Chuang’s method is discussed. (section 

5.4)

7) Simulations in steps 5) & 6) above are repeated with friction between 

loading rollers and specimen and how friction affects bending creep test 

and estimation of creep parameters is discussed. (sections 5.3 & 5.4)

8) Simulation is performed to establish a better bend creep test set-up to 

reduce friction. (chapter 6)



CHAPTER 2

METHODS TO EXTRACT CREEP PARAMETERS FROM CREEP

TEST DATA

This chapter introduces methods to extract creep parameters from creep test data. 

First how to decide creep parameters from direct tension/compression creep tests is 

explained as reference. Two methods to extract creep parameters from bend creep test 

data which will be evaluated in this thesis are explained in detail. For each method an 

example is given to demonstrate how to use the method to extract creep parameters.

2.1 Direct Tension and Compression Creep Tests

Creep is time-dependent inelastic deformation under sustained load and elevated 

temperature. A typical creep curve (see Figure 2.1) shows four main features; 1) initial 

elastic, plastic deformation which happens instantaneously with applied load, 2) a period 

of decreasing deformation rate (transient creep), 3) a period of constant deformation rate 

(steady-state creep), 4) a period of increasing deformation rate (tertiary creep) (Dowling, 

1993).

For long-term applications in steady state, engineering ceramics usually show 

power-law creep behavior in a form ἐs = Aσn , where ἐs is steady state creep strain rate 

and A is a pre-exponent and n is a stress exponent (Chuang, 1986).

10
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Fig. 2.1 Strain vs. time behavior during creep under constant 
load (Dowling, 1993)

In simple tension or compression, tests are performed at different stress levels 

under constant temperature. Strain is directly measured from axial displacement of 

specimen, while steady state creep strain rate is collected at each stress level. Table 2.1 

and Figure 2.2 are typical examples of such data.

Table 2.1 Sample uniaxial creep test data

Specimen No. Stress σ(MPa) Creep rate ἐ(sec-1)

1 100 9.261xl0-10

2 150 15.269xl0-10

3 200 17.875xl0-10
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Figure 2.2 Strain vs. time curves for several stress levels 
(Dowling, 1993)

Taking the natural log of both sides of creep power law equation gives

log ἐs = log Aσn 

or

log ἐs = n log σ + log A

The creep strain rate (ἐs) vs. the applied stress (σ) on a log-log plot is approximated with 

a line by least squares fit so that the slope becomes stress exponent (n) and intercept with y 

axis becomes log of pre-exponent (A).
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Figure 2.3 Log-log plot of applied stress vs. strain rate

Linear regression analysis with the above data gives n = 0.97 and A = 1.111 x 10-11. So, the 

steady state creep equation for this material is ἐs = 1.111 x 10-11 σ0.97 . Therefore, the creep 

parameters are obtained directly from tensile or compressive creep test data.

2.2 Four-Point Bending Creep Test (Hollenberg’s Method)

Creep tests on engineering ceramics are often performed in four-point bending to 

avoid the problems of gripping and alignment associated with direct tensile and 

compressive tests. However, stress distribution in the bending specimen is nonlinear and 

a proper interpretation method is needed to get creep parameters from bend test data.

Hollenberg et al. (1971) developed a method with assumptions that the neutral 
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axis is not moving, creep rates in tension and compression are same (symmetric creep). 

This method (from now on, the method will be called as Hollenberg’s method) can be 

easily applied to ceramics which has symmetric creep properties because it has a closed- 

formed solution. The following sub-sections 2.2.1, 2.2.2 and 2.2.3 are the summaries of 

procedures from Hollenberg’s paper (Hollenberg et al., 1971).

2.2.1 Stress Equations

At steady-state the stress distribution in a bending specimen is nonlinear and the 

stress state is not changing with time. And the strain rate ( ἐs ) is linearly dependant on Y , 

the distance away from the neutral axis where ἐs = 0. In this analysis, the neutral axis is 

assumed to be at the center of the beam.

ἐs = Y/ρ = KY and ἐs = KY (2-1)

where p is radius of curvature and K is curvature rate.

Figure 2.4 Diagram of four-point bending bar (Keller et al., 
1991)
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As mentioned previously, the material is assumed to behave in the steady state according to 

a power law of the form

ἐs = Aσn (2-2)

Combining Equation (2-1) and Equation (2-2), the nonlinear stress distribution over the

cross-section of is

σ(Y) = (YK/A)1/n
 

(2-3)

For a rectangular beam of width B and H, the bending moment about the neutral axis is

M = ∫H/2-H/2 
YσBdY (2-4)

Substitution of Equation (2-3) into Equation (2-4) and a subsequent integration give

M = In/(A/K)1/n (2-5a)

with

2B [H/2]

(2n+l)/n

(2-5b)In

(2n+1)/n

In is defined as the complex moment of inertia. By solving Equation (2-5) in terms of K, 

substituting into Equation (2-3), and remembering the definition of In, the following 

expression is obtained for the stress, σ (Y), at a distance Y from the neutral axis:
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σ(Y) = (Y1/n((2n+1)/n)M)/(2B[H/2](2n+1)/n) (2-6)

The stress in the outer fiber (σmax), i.e. at Y=H/2, is 

(2-7)

(2-8a)

where σe is the stress in the outer fiber from elastic bending with the same applied load.

σe = 3(L-a)P/BH2
(2-8b)

2.2.2 Strain Equations with Curvature Rate

Although special devices are required, techniques are available to measure 

curvature rate in laboratory (Fett et al., 1991). The following procedure relates the 

curvature rate K to outer-fiber elastic stress σe.

In Equation (2-1), strain rate was related to curvature rate, which is

ἐs =KY (2-1)

where Y is the distance from the neutral axis. Therefore the strain rate in the outer fiber

(ἐs,max), i.e. at Y=H/2, is

ἐs,max = K H/2 (2-9)

σmax=3(L-a)P/BH2 (2n+ 1)/3n

 

σmax = σe (2n+1)/3n 

or
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Substituting Equations (2-8) and (2-9) into Equation (2-2) and solving for K gives

K = σen 2A/H  [(2n+1)/3n]n (2-10)

Taking the natural log to both sides,

logK = n log σe+Cl (2-11)

The constant C1 = log 2A/H [(2n+1)/3n]n . Thus the creep exponent (N) can be evaluated in

steady-state creep test by plotting the curvature rate (K) vs. the applied elastic stress (σe) 

on a log-log plot. The slope of the line is n and the intercept is C1, which will lead to the 

estimation of creep pre-exponent ( A).

2.2.3 Strain Equations with Load-Point Displacement Rate

As shown in the preceding section, curvature rate (K) is the proper parameter to 

measure the creep behavior of bend bar. But, measuring load-point displacement rate is 

easier than measuring curvature rate of a beam. Quite often load-point displacement rate 

is measured instead of curvature rate and applied to estimate creep parameters.

To determine the relationship between the load-point displacement rate and the 

outer fiber strain rate, the curvature rate must be determined in terms of the beam 

deflection. For small deflection, the common assumption is that

K = d2y/dx2 and K = d2y/dx2 (2-12)

where y is the displacement rate at a position x along the beam. The load-point
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displacement rate (yL) can be solved by integration of K along the beam length x, with 

linear moment distribution in the outer span and a constant maximum moment in the inner 

span. Setting the origin of the coordinate system at the mid-span of the deformed beam, the 

boundary conditions are y(o) = 0 and y(0) = 0 due to symmetry. After the deformed 

shapes y = y(x) are solved, the load-point displacement rate is given by 

yL = y(L / 2) - y(a / 2) where L and a are the lengths of major and minor spans 

respectively. The solution of Equation (2-12) is

K=4(n + 2)/((L-a)[L + a(n + 1)]) yL                  (2-13)

Substitution of Equation (2-13) into Equation (2-9) gives

ἐs,max = 2H(n + 2)  /((L-a)[L=a(n+1)]) yL                      (2-14)

Substituting Equations (2-8) and (2-14) into Equation (2-2) and solving for yL gives

yL =  σen A(L-a)[L+a(n+a)]/2H(n + 2) [(2n+1)/3n]n (2-15)

Finally, taking the natural log of both sides,

log yL =n log σe + C2 (2-16a)

where

C2 = log A(L-a)[L=a(n+1)]/2H(n+2) [(2n+1)/3n]n
 

(2-16b)

The creep exponent (n) can be evaluated by plotting the load-point displacement rate (yL) 

vs. the applied elastic stress (σe) on a log-log plot. The slope of the line is n and the 
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intercept is C2, which will lead to the estimation of creep pre-exponent (A).

2.2.4 Example (Hollenberg’s Method)

Table 2.2 is the example bending creep test data, which shows applied outer-fiber elastic 

stresses and load-point displacements. Geometric data are given as: Beam height H=2.770 

mm, Outer-span L =40 mm, mid-span a =10 mm.

If we plot the load-point displacement rate (yL) vs. the applied outer-fiber elastic stress 

(σe) on a log-log plot and draw a line with least squares fit, the slope becomes stress 

exponent (n) and intercept with y axis becomes C2 of Equation (2-16) (see Figure 2.5). 

From the plot n =1.185, C2 = -25.04, and from C2 we get A = 1.35xl0-10. So, the steady 

state creep equation for this material is ἐs = 1.35 x 10-10 σ1.185.

Table 2.2 Sample bend creep test data (load-point displacement)

Specimen No. Outer-Fiber Elastic 
Stresses σ(MPa)

Load-Point Displacement 
Rates yL(m sec-1)

1 20 5.185xl0-10

2 20 4.719xl0-10

3 30 6.311xl0-10

4 30 6.656xl0-10

5 40 11.50xl0-10

6 40 11.57xl0-10
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Figure 2.5 Log-log plot of outer-fiber elastic stress vs. load-point 
displacement rate
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2.3 Four-Point Bending Creep Test (Chuang’s Method)

Many engineering ceramics show higher creep rate in tension than in 

compression. As we saw in the previous section, method of Hollenberg et al. (1971) 

assumed that the neutral axis is invariant, while creep rates in tension and compression 

are the same (symmetric creep). Significant errors can occur if this method is applied to 

asymmetric creep case where neutral axis migrate towards compression side of the 

specimen.

A more generalized method for asymmetric creep which was developed by 

Chuang (1986) is introduced, and the following sub-sections 2.3.1, 2.3.2 and 2.3.3 are the 

summaries of the procedures.

2.3.1 Analysis

For ceramics which show asymmetric creep properties, the steady-state strain rate 

and the applied stress can be related by the following two power-law creep equations.

ἐsc=Acσnc σ in compression (2-17a)

ἐst=Atσnt σ in tension (2-17b)

where A and n are creep constants and the subscripts c and t refer to the case in 

compression and in tension respectively. Assuming that planar sections remain planar 

during bending, the strain (ε) is linearly dependent on the distance Y from the neutral 

axis; ε = KY where K is curvature.
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Figure 2.6 Schematic sketches of four-point bend beam 
(asymmetric creep)

And the strain rate is deduced to ἐ = KY + KY. The second term is generally negligible 

because during steady-state, the neutral axis migration rate is very small.

ἐ = KY (2-18)

Thus, Equations (2-17a) and (2-17b) become

σ(Y) = (YK/A)1/n (2-19)

regardless of the sign of the stress. From the equilibrium requirement, the total force acting
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on the compression side of the cross-section must be balanced by the total force on the

tensile side. This means Fc= Ft or B∫Hc0 σdY = B∫Ht0 σdY where B is the beam width and
 

H(=HC + Ht) is the beam height. By integrating σ using Equations (2-19) and (2-17), 

and after some mathematical manipulations, this force balance equation finally reduces to

R1[KH/Ac]C1(Hc/H)C2+(HC/H) = 1            (2-20a)

where

R1 = (At/Ac)[1/1+nt][(nc+ncnt)/(nt+ncnt)][nt/(1+nt)] (2-20b)

C1=[(nt-nc)/(nc+ncnt)] (2-20c)

C2 = [(nt + ncnt )/(nc + ncnt)] (2-20d)

Equation (2-20a) is a nonlinear algebraic equation which can be used to predict the location 

of the neutral axis.

In addition, the requirement that the total summation of moments produced by 

local tractions be equal to the external moment (M ) forms the second governing 

equations, 

 M= ∫Hc0 σYBdY + ∫Ht0 σYBdY 

Substitution of Equation (2-19) and recognition of Ht + HC=H result in the equation

M/(BH2 ) = [KH / Ac]C3 {[KH / Ac]C4 (R3 /C5)(1-Hc / H)C5 + (1 /C6)(HC / H)C6}

(2-2la) 

where

R3 =1/(At/Ac){1/nt) (2-2 lb)
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C3=1/nc (2-21c)

C4=(1/nt-1/nc) (2-21d)

C5 =(2nt+1)/nt (2-21e)

C6 =(2nc +l)/nc (2-21f)

Equations (2-20a) and (2-2la) constitute a system of algebraic equations for the 

two unknowns Hc and K, while the remaining parameters such as the applied moment 

M and the values of the materials parameters A and n are being treated as given. These 

two coupled non-linear algebraic equations can be solved numerically. A computer 

program is used which contains the following tasks: first to solve Hc from Equation (2- 

20a) by a Newton-Raphson iteration scheme. Inputs to this subroutine are At / Ac, nt, nc 

and K. Once Hc is successfully solved, it can then be used as input, together with the 

K, to Equation (2-2la) for the computation of M. At the end, a total of three one- 

dimensional arrays are generated for M, K, Hc. The solutions are then displayed in 

graphical form for K against M and Hc against M with any given values of A and n .

More details and examples are on Chuang’s paper (Chuang, 1986) (Ferber et al., 

1990).

2.3.2 Example (Chuang’s Method)

To demonstrate how to use Chuang’s method, a computer program to do 

numerical iterations and graphic solutions is needed. In this thesis, instead of following 

whole iteration steps of Chuang’s method, Equations (2-20) and (2-21) were used to 



25

calculate curvature rates from given creep constants (At,Ac,nt,nc) and applied moments 

(M), and finite element simulations were performed with the same given creep constants 

(At,Ac,nt,nc) and applied moments (M) as input. The curvature rates from Equations 

(2-20a) and (2-2la) and the curvature rates from finite element simulations were 

compared, and the validity of Chuang’s method was evaluated.

Following is an example to demonstrate how to calculate curvature rates from 

given creep constants and applied moments by using Chuang’s equations (Feber et al, 

1990). Specimen size is 3 mm Height x 4 mm Width x 50 mm Long. Inner loading 

span (l) is 20 mm and outer span (L ) is 40 mm. Creep constants are shown below.

Table 2.3 Power-law creep parameters (asymmetric creep)

n A (ε/sec)

Tension 5.6 2.972xl0-17

Compression 1.7 5.555xl0'13

By using Equations (2-20a) and (2-2la) it is possible to predict neutral axis location and 

curvature rate at steady state. First Hc/H is chosen, which is in the rage of 

(0 < Hc / H < 1), and K is calculated from Equation (2-20a) and then with Hc/H and K 

as input the moment M is calculated from Equation (2-2la). The Hc/H is then varied 

until the calculated moment is equal to the applied moment. For example, given moment of 

510 N-mm, a value of 0.3 for Hc/H was chosen and substituted into Equation (2-20a). 

This yields a value of 1.065x10-9 for K, and then these two values were substituted into
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Equation (2-2la) to find a moment of 306.8, which differs from the applied moment 510 

N-mm. More iterations were repeated with different Hc / H values and finally we get 

Hc / H =0.197 and K=8.00xl0-9 for M=510. Table 2.4 shows the calculated results for 5 

different applied moments and these results will be used later in comparison with finite 

element simulation results.

Table 2.4 Predicted values of neutral axis location and curvature rate

Specimen 
No.

Applied Moment 
M(N mm)

Neutral Axis
Location Hc/H

Curvature 
Rate K

1 510 0.197 8.00E-9

2 453 0.220 4.88E-9

3 340 0.278 1.57E-9

4 282 0.319 7.82E-10

5 220 0.374 3.28E-10

2.4 Summary

In this chapter, the methods of Hollenberg et al. (1971) and Chuang (1986) to 

extract creep parameters from bend test data were studied in detail. Both of these 

methods provide a practical means to determine creep properties from bend test data. The 

methods will be used later to estimate creep parameters from creep test simulation data 

and their validity will be discussed by comparing the estimated creep parameters with the 

input creep parameters in simulations.



CHAPTER 3

A FINITE ELEMENT MODELING OF ASYMMETRIC CREEP

BEHAVIOR OF CERAMICS

In order to simulate four point bending creep tests of ceramics, the following 

should be considered in the finite element modeling.

1) The asymmetric creep behavior of ceramics should be included in the

creep material model.

2) Instead of using simplified concentrated load, loading rollers with

specimen should be modeled like in Figure 3.1 so that friction between 

loading rollers and specimen, and contact point shift during creep 

bending can be considered in the simulation.

PUSHING ROLLERS

Figure 3.1 Geometric model for four-point bending creep test simulation
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Although creep analysis is routinely done with so called implicit finite element method, the 

explicit finite element method is the best choice to handle the material non-linearity (creep) 

and sliding of material interfaces (contact between loading rollers and specimen) with 

friction. This is because traditional implicit methods can encounter difficulties solving 

problems where contact conditions cause abrupt change in the stiffness of the system.

In this chapter explicit finite element method is introduced first and formulation 

of the material model for asymmetric creep is explained in detail.

3.1 Explicit Finite Element Method

Th finite element method is a numerical method for formulating a system of 

equations which models physical problems mathematically. Nonlinear problems which 

include material non-linearity like creep and plasticity or geometric non-linearity like 

large deformation and contact can be solved effectively by explicit finite element 

methods. Typically, explicit methods concern only transient dynamic problems. 

However, an explicit finite element method applies to non-linear static problems viewed 

as steady state condition of critically damped dynamic problem. This approach is often 

called Dynamic Relaxation, and the procedures of its use are described by (Underwood, 

1983) (Sauve and Metzger, 1995).

3.1.1 Dynamic Relaxation Algorithm

The following explanation of the dynamic relaxation algorithm, which is 

extracted from a paper of Sauve and Metzger (1995), is consistent with its general 

implementation.
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The equations of dynamic motion are given as

Mü + Ců + Fint(u) = Fext (3-1)

At steady state, the terms Mü and Ců damp away and static solution is obtained.

Fint(u)=Fext (3-2)

Therefore, for non-linear static problem M and C are chosen artificially so that the static 

solution can be reached as fast as possible.

In explicit method central difference operator is used to approximate velocity and 

acceleration.

ůk+1=(uk+1-uk)/Δt, 
ük=(ůk+1/2-ůk-1/2)/Δt

(3-3)

where At is a constant time increment and k is time step. The average value of velocity is 

taken as

ůk = (ůk+1/2 + ůk-1/2 ) / 2

Substituting Eqs. (3-3) and (3-4) into Eq. (3-1) yields

M/Δt (ůk+1/2-ůk-1/2) + C(ůk+1/2+ůk-1/2)/2 + Fkint =Fextk

(3-4)

(3-5)

or

ůk+1/2=(M/Δt + C/2)-1×[ (Fextk-F intk)+(M/Δt - C/2)ů k-1/2] (3-6)

To make the mode associated with the applied loading distribution critically damped, a 

critical damping matrix C is used which is

C = 2ɷM (3-7)

where ɷ is undamped natural frequency corresponding to the participating mode of 
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loading and M is the diagonal lumped mass matrix.

The equation (3-6) can be simplified to

ůk+1/2 = 1/(1+ɷΔt) [ΔtM-1 (Fkext - Fkint )+ (1 - ɷΔt)ůk-1/2] (3-8)
 

The current displacements are obtained as

uk+1 = uk +Δtůk+1/2 (3-9)

In dynamic relaxation algorithm the ɷ, At and M are chosen judiciously so that 

the transient response disappears fast, resulting in static solution to

Fint=Fext (3-10)

The following flow chart shows the dynamic relaxation algorithm and the 

algorithm is the main structure of in-house non-linear finite element code H3DMAP 

(Sauve, 1999) which will be used for four-point bending creep simulation. Step 7) is 

highlighted because in this step the material model is included and modification is to be 

done for asymmetric creep model. The H3DMAP code has modular structure and the 

dynamic relaxation algorithm is included in the module named CEXPRES which is 

dynamic relaxation solution module for creep analysis.
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Module: CEXPRES

Figure 3.2 Dynamic Relaxation Algorithm for Load Increment i
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The step 7) of the dynamic relaxation algorithm (Figure 3.2) is one module named 

SOLDEX and it is shown in detail below. The step b) and c) of Figure 3.3 comprise a 

material constitutive module which is a sub-module of SOLDEX and in Figure 3.3 elastic 

material model is shown as example.

Module : SOLDEX

Step 7) Calculate Internal Element Forces (Elastic Material)

For cycle k +1 at load step i

Figure 3.3 Procedure for element internal force calculation (elastic material)
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3.1.2 Stability of Dynamic Relaxation Algorithm

Explicit method is easy to apply in finite element code but this method is 

conditionally stable. If the time step exceeds the critical value Δtcr, converged solution is 

not obtained. It has been mathematically shown that the time step must be less than or 

equal to two divided by the highest natural frequency (Bathe, 1982) that is Δt ≤ 2/ɷmax. 

The highest natural frequency and therefore the critical time step Δtcr depend on element 

size and material properties. In the dynamic relaxation algorithm the mass is chosen so 

that ɷmax = 2, Δt = 1 (Sauve and Metzger, 1995), the details of which are not shown in 

the above flow chart of Figure 3.2.

3.2 Finite Element Modeling for Asymmetric Creep Behavior of Ceramics

In order to implement an asymmetric creep model, a material model for 

symmetric creep and the algorithm for creep calculation, which already exist in a material 

constitutive module named MAT 14 of in-house code H3DMAP, is considered first. Then, 

modification to the existing material model for asymmetric creep is addressed.

3.2.1 Material Model for Symmetric Creep

In the analysis of creep, the response of the system is dependent both on external 

loading and the strain time history. In general, the creep is governed by a creep law which 

relates effective creep strain rate ἐc in terms of stress σ, time τ , temperature T, etc., 

temperature T , etc. (Sauve et al, 1992) which is
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dεc/dτ = ἐc = f(σ,τ,T,etc.) (3-11)

In this research, power law equations (ἐc=Aσn) were assumed for ceramics 

creep behavior, and time τ and temperature T terms were not included in the creep 

equations because only the steady state creep is studied here and the simulation is 

conducted with constant temperature. Therefore at the current cycle the creep strain rate 

is given by

ἐck=f(σ)=A(σk)n (3-12)

The creep strain increment is obtained using a creep time increment Δτ as

Δεck+1=Δτἐck (3-13)

The element stress σk+1 is obtained as

σk+1 = σk + c(Δτἐk+1/2 -Δτεck+1 + Δεkc) (3-14)

Thus, at dynamic relaxation cycles within one creep time increment, the revised creep 

strain increment Δεc is continually updated and the solution proceeds to equilibrate the 

unbalanced stress due to creep.

The above creep model is included in material constitutive module named 

MAT14 which is called by internal force calculation module named SOLDEX of 

dynamic relaxation algorithm (see Figure 3.2). The internal force calculation module 

SOLDEX with creep material module MAT 14 is shown on the following flow chart 

(compare with Figure 3.3). The highlighted step c) is a sub-module which is called by 

MAT 14 and this module is modified to model the asymmetric creep behavior of ceramics 

for this research.
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Module: SOLDEX

Step 7) Calculate Internal Element Forces (Symmetric Creep Material)

For cycle k +1 at load/creep step i

Figure 3.4 Procedure for Element Internal Force Calculation 
(Symmetric Creep Material)
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3.2.2 Stability of Dynamic Relaxation for Creep Calculation

As can be seen from the flow chart of Figure 3.4, in the creep calculation 

algorithm there are two kinds of time steps Δt and Δτ. The time step Δt is for dynamic 

relaxation cycles (iterations in solving a set of non-linear algebraic equations) and Δτ is 

a real time interval for creep deformation. As explained in section 3.1.2, Δt is artificially 

set to unity (like iteration counter) by the code via automatically adjusting the mass to 

keep the stability of solution, but Δτ is given manually as load steps. Within one 

load/creep step, iterations goes on while Δεc is continually updated and the converged 

state is the solution of the given load/creep time step. In the Figure 3.5, dynamic 

relaxation cycle vs. displacement of four-point bending creep test simulation is shown. 

During iterations within each load/creep step, the displacement continually changed and 

reached converged solution and based on the converged condition, iteration goes on with 

next load/creep step.

As cycle time step Δt does, creep time step Ar affects the solution stability. If 

Ar is greater than critical value Δτcr, the solution diverges. A rule of thumb for stable 

creep time step calculation is that the creep strain increment should not exceed one half 

of the total elastic strain (Zienkiewicz, 1991). For simulations in this thesis, the critical 

creep time step was calculated from the following formula which is from (Cormeau, 

1975) (Sauve et al, 1989)

Δτcr≤ 2σ/EAnσn (3-15)

where Δτcr is critical creep time step, E is modulus of elasticity, σ is effective stress, and
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A and n are creep constants from steady state power law equation ἐc=Aσn. Thus, 

stability conditions with respect to the dynamics relaxation transient and creep response can 

be obtained.

Figure 3.5 Four-point bending creep-80,000 sec 
creep-dynamic relaxation cycles
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3.2.3 Material Model for Asymmetric Creep

The modifications to the creep material model used to perform bending creep test 

simulations in this thesis need to be addressed.

For ceramics which show asymmetric creep behavior, with respect to different 

creep rates in tension and in compression, the creep is governed by the following two 

equations.

ἐsc = Acσnc σ in compression (3-16a)

ἐst=Atσnt σ in tension (3-16b)

A and n are creep constants and the subscripts c and t refers to the case in compression 

and in tension respectively

In the existing code the step c) Compute Creep Strain Rate and Creep Strain 

Increment is a module named CRLAW2 which is called by creep material constitutive 

module MAT 14 and this module calculates and returns creep strain increment based on 

current stresses using a given power law creep equation ἐ = Aσn . To model the 

asymmetric creep behavior, a simple modification was performed in this subroutine. 

Instead of using the single creep equation, the two equations of (3-16a) and (3-16b) were 

used selectively to calculate creep strain. The hydrostatic stress was initially used to 

decide compression/tension condition of the element. The modified module CRLAW2 

for asymmetric creep is shown in Figure 3.6.
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Module: CRLAW2 (MODIFIED)

c) Compute Creep Strain Rate and Creep Strain Increment 
(Asymmetric Creep Material)

For cycle k + 1 at load/creep increment i

Figure 3.6 Procedure for creep strain increment 
calculation (asymmetric creep)
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3.2.4 Stability of Dynamic Relaxation for Asymmetric Creep Calculation

Instability problems were encountered in the asymmetric modification when 

current hydrostatic stress was used to decide compression/tension condition of elements. 

In bending creep simulation, at elements near neutral axis the hydrostatic stresses 

fluctuate between tension and compression during dynamic relaxation iterations. 

Different creep law equations are used for tension and compression and the creep rate 

abruptly changes when the hydrostatic stress changes from tension to compression or 

from compression to tension during iterations.

Figure 3.7 Diagram for creep law equations (asymmetric 
creep) showing distinct behaviors between tension and 
compression (Chuang 1986)
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This problem was solved when the converged hydrostatic stress of last load/creep 

time step was used to decide compression/tension condition of the element. That means 

during iterations within one load/creep time step, a single creep law is applied 

(ἐsc = Acσnc or ἐst = Atσnt depending on stress condition of previous load/creep time 

step) for creep strain increment.

3.2.5 Stable Creep Time Step Δτ Calculation

As explained in section 3.3.2, Δτ should be selected and given manually in the 

simulations as load steps and theoretical formula for critical creep time step is given as

Δτcr ≤ 2σ/EAnσn (3-17)

But in actual applications one-tenth of the calculated value by the formula was 

stable for creep simulation. In some simulation cases, the creep exponent was big and the 

stable time step was too small. For example, in one case the parameters were

E = 300 GPa, n = 5.6, A = 2.972xl0-17 (1/sec), σ=90MPa 

and the calculated stable creep time step is

Δτcr = 2(90)/(300E3)(2.972E-17)(5.6)(90)5.6 x0.1 = 4 sec

which is too small to practically simulate the duration of a useful creep test. Therefore the 

implicit creep time stepping scheme option was used for creep strain increment calculation. 

In the in-house code, creep strain increment Δεc in creep time interval Δτ is calculated 

using time stepping scheme such as

Δεc = [(l-γ)ἐcτ+γἐcτ+γἐcτ+Δτ]Δτ (3-18)
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If γ = 0 option is used, it is the explicit creep time stepping scheme because the 

creep strain increment is determined from conditions at step τ . If γ = 1 option is used, it 

becomes implicit creep time stepping scheme because the creep strain increment is 

determined using the creep strain rate corresponding to the end of the time interval. With 

γ = 1 option, the scheme is unconditionally stable theoretically. The detailed procedures 

to use these time stepping schemes were not shown in the algorithms of Figure 3.4 but 

have been previously established in the finite element code (Sauve et al., 1992).

To use longer creep time step, γ = 1 option was used for the simulations in this 

thesis. But not to lose accuracy by using too longer creep time step, the calculated value 

from the formula (3-13) was used as creep time step. By doing this, 10 times longer creep 

time step could be applied in simulations than by using explicit creep time stepping 

scheme.



CHAPTER 4

VERIFICATION OF ASYMMETRIC CREEP MATERIAL MODEL

The asymmetric creep material model which is implemented in the finite element 

method must be tested and verified before it is used in the bending creep test simulations 

of this research. For this purpose C-ring compression creep test simulation is performed 

with modified code and the result is compared with published experimental data and 

simulation.

4.1 Si-SiC C-Rings Compression Creep Test

The mechanics of C-ring tests have been of interest to researchers because the C- 

ring specimen geometrically bridges the gab between simple one-dimensional lab test 

specimens and the three-dimensional structural components. C-ring specimens are cost 

effective because specimens can be cut directly from a tube, and experimental design is 

simple because a simple push rod can be used to apply the load directly to the specimen 

(Chuang et al., 1992).

Chuang et al. (1991) performed compression creep tests with siliconized silicon 

carbide (Si-SiC) C-rings and the load-point displacements were continually monitored as 

a function of time.

43
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(a) Before Creep (b) After Creep

Figure 4.1 Schematic diagram of the C-ring compression creep test 
(Chuang et al., 1991)

Si-SiC is two-phase ceramic composite containing metallic silicon matrix with 

SiC grains. It is promising material for load-bearing applications such as turbine engines 

and heat generation systems. The main feature of the creep response for this two-phase 

composite is its asymmetric property in tension and compression (Chuang, 1992). In their 

tests, a number of Si-SiC C-ring specimens were cut from tubular components. The C- 

ring was placed between two SiC push rods inside a furnace, a constant compression load 

was applied at 1300 °C in air, and the long-term creep behavior of specimen was 

investigated. The separation distance of C-ring opening slit was measured 

(Δy = Δy1 - Δy2) as a function of time, using a traveling optical microscope (Chuang et

al., 1991).
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The table 4.1 shows the dimensions and applied load for one C-ring specimen 

which will be the object of comparison for the verification. B is the specimen width and 

σe is the theoretically predicted elastic stress developed at the out edge of the ring apex.

Table 4.1 Specimen dimensions and applied load (Chuang et al., 1991)

Specimen
B 

(mm ) R1 (mm )
R2 

(mm )
P 

(N)
σe 

( MPa)
KX01-C4 6.38 15.950 19.050 117.89 200

The Figure 4.2 is the measured deflection of the C-ring vs. time where the stages 

of transient, steady state, and tertiary creep are shown. But, for engineering ceramics at 

mild service load, the transient and tertiary stages are short, and thus not important. The 

steady state stage (steady state creep rate) is the main concern of researchers and 

designers. The measured creep deflection rate for this specimen is 11.55 μm/h at steady

Time (h)

Figure 4.2 Creep curve of a C-ring (Chuang et al., 1992)
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4.2 Asymmetric Creep Laws for Siliconized Silicon Carbide (Si-SiC)

Uniaxial tension and compression creep test had been performed for Si-SiC and 

the corresponding creep laws were established previously (Wiederhom et al., 1988). This 

material showed asymmetric creep response in tension and compression, which means 

creep rates in tension and in compression are different. Also, bi-linear behavior for both 

tension and compression were investigated. The creep law is given as follows.

ἐs = At(σ/σ0)n for σ ≤ σ0

for σ > σ0 in tensile creep

(4-la)

(4-lb)

where ἐs is effective creep strain rate at steady state, σ is effective stress and σ0 is

threshold stress. At 1300°C creep parameters have the following values.

At = 5 × 10-9 s-1, σ0 = 100 MPa, N = 10, n =4, β =2 and λ = 0.1 (Wiederhom et al., 1988)

ἐs = λAt (σ/σ0)n for σ ≤ βσ0 (4-lc)

= λAt(σ/σ0)N for σ > βσ0 in compressive creep               (4-1 d)

= At(σ/σ0)N
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Applied Stress (MPa)

Figure 4.3 Uniaxial tension and compression creep tests at 
1300°C (Wiederhom et al., 1988)
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4.3 C-Ring Compression Creep Test Simulation by Chuang et al.

With the creep laws and specimen dimensions given in the previous sections, 

Chuang et al. (1992) performed a finite element simulation of C-Ring Compression 

Creep Test. They used a two-dimensional finite element model with plane strain 

conditions as shown in Figure 4.4. 240 8-node quadratic elements were used to model the 

C-ring and concentrated load was applied to one node on top.

From the finite element solution, the load-point displacement, Δp vs. time t, and 

displacement rate, Δp vs. time t, were plotted together with experimental data which 

were introduced in section 3.2 as in Figure 4.5.

Figure 4.4 The two-dimensional finite element model of C-ring 
(Chuang et al., 1992)



49

4000

3000

2000

1000

0
0 20 40 60 80 100

Time (h)

Figure 4.5 Comparison of Chuang’s simulation and Experiment 
(Chuang et al., 1992)
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From the displacement curve it can be seen that total deflections of simulation and 

experiment differ considerably. This is because the input creep law equations were for 

steady state creep, so the transient term was not included in creep law. As explained 

already steady state creep rate is the main concern of researchers. If one considers the 

creep rate as a function of time, the effect of primary creep becomes insignificant 

(Chuang et al., 1992) (Zhu and Weng, 1989). The displacement rate from the simulation 

was 11.00 μm/h at t = 100 h which is in good agreement with the experimental data of 

Δp = 11.55 μm/h although some discrepancies are apparent (Chuang et al., 1992).

4.4 C-Ring Compression Creep Test Simulation by Modified Code

To verify the asymmetric creep material model which is implemented in explicit 

finite element code, the C-ring compression creep test simulation was performed with the 

same creep constants, specimen dimensions and load.

4.4.1 Model Preparation

Because of symmetry of geometry and load with respect to the apex of the ring, 

upper half of the ring was modeled. The quarter ring on the right side of the load was 

included in the model because in the experiment which is introduced in section 3.2, “The 

load-point displacements were monitored as a function of time by measuring the 

separation distance of the opening slit, using a traveling optical microscope.” 

(Wiederhorn et al., 1991). Therefore, the change of separation distance is twice the Δd 

of Figure 4.6 and Δy = Δy1 - Δy2 of Figure 4.1. Due to symmetry in thickness, one half of 
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the thickness was considered and a half of the load was applied on the model.

Nodes on the y = 0 surface were fixed in y displacements but free in x and 

z displacements. And all nodes on the front surface of the ring were fixed in z 

displacements but nodes on the back surface of the ring were free to move so that 

thickness could change as the ring bent.

Instead of concentrated nodal loads, a pushing rod was modeled with rigid surface 

and contact elements were modeled both on the rigid surface and on top surface of the 

ring, which is shown on the following Figure 4.7.
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P

Figure 4.6 Finite element model of C-ring

Figure 4.7 Contact surfaces of the model
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4.4.2 Simulation Result

The explicit code with the asymmetric creep model was run to simulate the C-ring 

compression creep test. The same creep laws which was given in section 4.3 was used. 

The creep time step (50 sec) was calculated from the formula (3-13) and 360,000 sec 

(100 hr) creep was simulated. The friction coefficient between the pushing rod and C-ring 

was assumed as μ = 1, which is reasonable because at creep test the pushing rod and 

specimen are almost stuck together due to high temperature.

Figure 4.8 and Figure 4.9 are the von Mises stress distributions at time t = 0 and 

t = 100 hr. At around the apex, the neutral axis (σ = 0) shift toward compression side is 

observed because of higher creep rate in tension. Figure 4.10 shows the stress 

redistribution across the thickness at apex as time. The stresses were collected from the 

elements at the first row near apex.
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Output Set: TRANSIENT AT T=0.0000E+00
Contour AVERAGE von MISES STRESS

Figure 4.8 Von Mises stress at time t = 0 (elastic solution)

Output Set TRANSIENT AT T=0.3600E+06 
Contour AVERAGE von MISES STRESS

Figure 4.9 Von Mises stress at time t = 100 hr (creep 
solution)
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Figure 4.10 Time evolution of the stress σyy at the 
ring apex



56

D
ef

le
ct

io
n r

at
e 

(u
m

/h
) 

D
ef

le
ct

io
n (

um
)

Time (h)

Figure 4.11a Total deflection vs. time (modified 
code)

Time (h)

Figure 4.11b Deflection rate vs. time (modified 
code)
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4.5 Comparison and Discussion

For comparison, curves on Figure 4.5 and Figure 4.11 are plotted together for 

deflection vs. time and deflection rate vs. time as follows.
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Figure 4.12a Total deflection vs. time (comparison)
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Figure 4.12b Deflection rate vs. time (comparison)
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As can be seen from Figure 4.12a and Figure 4.12b, the data from current 

simulation are in very good agreement with both experimental data and data from 

Chuang’s simulation. The deflection rate from current simulation is 11.23 μm / h at 100 

hr, which is compared with 11.55 μm/h from experiment and 11.00 μm/h from 

Chuang’s simulation. The total deflections of current simulation differ from experiment 

considerably because the transient creep is considered in the simulation. But the steady­

state creep rate is the main concern of this research. Therefore the accuracy of 

asymmetric creep model implemented in the in-house code is convincing from the 

comparison.

To see the error of using nodal loads instead of including contact conditions 

between the pushing rod and C-ring, another simulation was performed with simplified 

nodal loads. In the C-ring compression test, the contact point migrates toward the inside 

of C-ring as can be seen from Figure 4.13. With nodal load, this contact point shift is not 

considered in the simulation and the applied moment gets bigger than the actual applied 

moment as deformation goes. In the current simulations, the effect of contact shift was 

minor as can be seen from the table 4.2 and Figure 4.13., but the difference increases as 

deformation goes. Thus caution is required to use simplified nodal load in the simulations 

with large deformation.

Table 4.2 Total deflections for contact load simulation vs. nodal load simulation

Total deflection (μm) 
at t = 0

Total deflection (μm) 
at t = 100hr

Simulation with contact load 367 1715
Simulation with nodal load 371 1763
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Contact load location Contact load location 
at t = 0at t = 100hr

Output Set TRANSIENT AT T=0.3600E+06
Deformed(0.994): TOTAL TRANSLATION

Figure 4.13 Contact point shift in the C-ring compression 
test (deformed shape 2% exaggerated)

Figure 4.14 Total deflection vs. time (comparison)



CHAPTER 5

FINITE ELEMENT STUDY ON FOUR-POINT BENDING CREEP

TEST

In this chapter, the methods of Hollenberg et al. (1971) and Chuang (1986) to 

extract creep parameters from bend test data are evaluated by comparing with various 

simulations. The asymmetric creep material model which was developed in chapter 3 and 

verified in chapter 4 is used for the simulations of ceramics which have asymmetric creep 

property.

First, the observation of Jakus and Wiederhorn (1988) is studied with finite 

element analysis. Their experiments are simulated with various creep parameters and the 

reason for the non-linear curvature distribution in the mid-span of four-point bending 

creep test specimen is searched.

And then, the methods of Hollenberg et al. (1971) and Chuang (1986) to extract 

power-law creep parameters from bend creep test data which was introduced in chapter 2 

are evaluated by comparing with simulation results. Both methods assumes constant 

moment and therefore constant curvature in the mid-span to relate the curvature rate to 

load-point displacement rate which is more easily measurable than curvature rate. 

Therefore it will be tested if the methods are still valid in spite of the Jakus and 

Wiederhorn’s observation (non-linear curvature distribution in the mid span).

60
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Then, frictional effect on the estimation of creep parameters by the methods will 

be studied. Also, various aspects of bend creep test which are hard to see in real 

experiments are examined through simulations.

5.1 Model Preparation

It is quite common to simplify the finite element model using concentrated nodal 

load and skipping detailed geometries in finite element analyses. But in the current 

research, more realistic simulations were designed by including loading rollers in the 

finite element modeling which interact with a bending specimen through contact surfaces. 

By doing this the frictional effects on bend creep test were studied. To take advantage of 

symmetry the right half of a specimen and half thickness of it were modeled, and a half 

of loading roller in proximity to the specimen and half thickness of it were modeled. 

Linear quadrilateral solid elements were used to model the bending specimen and shell 

elements were used to model the loading rollers. The mesh was refined in the region of 

contacts of the specimen and the rollers, and all nodes on supporting roller were fixed. 

The nodes on pushing roller were tied to each other so that they work as rigid surface, 

and the total force (P) was applied on one node in the pushing roller (see Figure 5.3). All 

nodes on left edge surface were fixed in x-translation and nodes on front surface were 

fixed in z-translation. Contact surfaces were set on four elements in the specimen and in 

the roller. It was enough because the contact point shift was small, and it saved 

calculation time by reducing the targets of contact searching algorithm.
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Figure 5.1 Geometric model of four-point bending creep test 
(a quarter of the model was used for finite element modeling)
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5.2 Finite Element Study on Experiment of Jakus and Wiederhorn

The experiment of Jakus et al. (1988) exhibits non-constant curvature in the mid­

span. From Figure 5.4, one can also notice that specimen (A) and (B) don’t show constant 

curvature in the mid-span, but specimen (C) shows the constant curvature region inside 

the mid span which is tilted possibly because of the friction difference between left and 

right loading points. The reasons for this are sought through detailed finite element 

simulations.

5.2.1 Observation of Jakus and Wiederhorn

Jakus and Wiederhorn (1988) investigated four-point bending test as a method of 

studying the creep of ceramics at elevated temperature. In their tests, ceramic specimens 

were dead-weight loaded in four-point bending at elevated temperatures. The creep 

process was periodically interrupted by cooling the specimen to room temperature under 

load, after which the curvature was determined as a function of position along the tensile 

surface from the measurement of the deformation of the specimen (Jakus et al., 1988).

Figure 5.4 shows the curvature of three crept specimens. The nominal size of the 

specimen was 3 by 5 by 50 mm and the inner loading span was 10 mm and the outer span 

was 40 mm. The curves generally follow the simple beam theory, but in the mid span it 

deviates from the theory. From simple beam theory the constant moment and therefore 

radius of curvature expected in the mid span but from the experiment the curvature was 

greatest under the inner loading points and not constant in the mid span ( Jakus et al. 

1988).
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The methods of Hollenberg et al. (1971) and Chuang (1986) to extract creep 

parameters from bend creep tests, which were explained in chapter 2, assumed constant 

moment in the inner span to relate the curvature rate to load-point displacement rate. 

With the above observation as one of the reasons, Jakus and Wiederhorn (1988) 

concluded that “the necessity of performing creep tests in uniaxial tension and 

compression is apparent.”
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Figure 5.4 Curvature as a function of distance along the flexure bar (Jakus 
et al., 1988)
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5.2.2 Finite Element Modeling

The Finite element model was prepared with the way which had been explained in 

section 5.2. A total of 772 elements and 1,660 nodes were used. 15 elements were used

in the height of specimen to depict the stress distribution in height direction of the

specimen.

Figure 5.5 Specimen dimension of the experiment of Jakus et al.

Figure 5.6 The finite element model for the simulation of Jakus’s 
experiments
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5.2.3 Simulation

Because the creep properties were not given in the paper of Jakus et al. and the 

purpose of simulations in this section is not a quantitative study of their experiment, 

various creep properties were assumed based on the limited data in the paper and 

curvatures of the specimens from the simulations were compared with the curvature 

curves (Figure 5.4) from the experiments of Jakus et al..

The curvature curve of the crept model of simulation was calculated by the 

similar way that Jakus et al. used to determine curvature from the measurement of the 

deformation of the specimen (Jakus et al., 1988). Y-translations of the nodes (Figure 5.6) 

in tensile surface of the model were collected from the simulation, which are shown in 

the following Figure 5.7 as graphical form.

Figure 5.7 Beam deflection data from simulation
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The curvature can be determined from beam deflection data by numerically calculating the 

second derivative of the beam deflection with the following equation assuming small 

deflection.

1/p = (d2y/dx2) (5-1)

where 1/ρ is the curvature, y is the beam deflection, and x is the distance along the 

beam. When the nodal data were used to calculate curvature, the noise was quite high as 

Jakus et al. experienced with experimental data because differentiation accentuates scatter 

in data. To use the localized curve-fitting scheme which was used by Jakus et al., nodal 

displacement data were connected with smooth line by cubic spline interpolation. By doing 

this the beam deflection data were collected at every 0.1 mm in x-coordinates along the 

beam. Twenty to forty adjacent points in the deflection data, corresponding 2 to 4 mm 

along the beam, were fitted with the following polynomial.

y = a2x2 +a1x + a0 (5-2)

The second derivative of this equation is 2a2 and this is the curvature of the data segment. 

This value was considered as the curvature at the center of the segment. The curvature at 

the next location was calculated by shifting the segment by one data point and the curvature 

of the center of that segment was calculated. This process was repeated at every location 

along the beam.
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5.2.4 Results and Discussion (Sodalime Silica Glass)

First, creep test of specimen (C) of Figure 5.4, sodalime silica glass, was 

simulated with the following creep parameters which were assumed based on the data 

given in the paper.

At = Ac = 1.35 x 10-7 s-1, nt = nc = 1 ; symmetric creep

where nt = nc = 1 was given in the paper mentioning linear viscous creep behavior of 

sodalime silica glass. The load 7.5 N was applied so that the outer fiber elastic stress of the 

specimen may become 30 MPa. The creep time step of 30 sec, was used to simulate 900 

sec (15 min.) of creep.

Output Set TRANSIENT AT T=0 9000E+03 
Deformed(0 333) TOTAL TRANSLATION
Contour AVERAGE von MISES STRESS

Figure 5.8 Von Mises stress distribution after 900 sec creep
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Figure 5.9 Curvature curve from simulation without friction 
between loading roller and specimen (μ = 0)

Figure 5.10 Curvature curve from simulation with friction 
between loading roller and specimen (μ = 1)
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Two simulations were performed with different friction coefficients (μ = 0 and μ = 1) 

between pushing rollers and specimen. Figure 5.9 and Figure 5.10 shows the curvature 

curves from the simulations. To get the curvature curves from the beam deflection data, 

the method explained in section 5.4.2 were used. The beam deflection data from the 

simulation were flipped for the opposite half so that the curvature curves for the whole 

specimen length could be viewed.

The curvature curves from simulations didn’t exactly match quantitatively with 

the curve from the experiment of Jakus et al. because the exact creep parameters were not 

used in the simulations. However, the general trend is similar to each other. Flat 

curvature regions were shown for both experiment and simulation. By comparing Figure 

5.9 and Figure 5.10, one can notice that friction lowers the curvature at the loading point. 

Based on this observation, one can see from the curvature curve of specimen (C) of 

Figure 5.11 that the friction was higher at the right loading point.

Figure 5.11 Curvature curve of specimen (C) (Jakus et al.,
1988)
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5.2.5 Additional Observation for the Total Moment in the Beam Section

The stress (σxx) distribution at the beam cross section in the mid span was plotted 

as a function of time (Figure 5.12). It showed the linear stress distribution as expected 

from creep exponent n = 1. The total bending moment in the section can be calculated as 

the summation of moments produced by stresses of elements in the cross section.

From simple beam theory, the bending moment applied to the beam cross section 

in the mid span must be constant as a function of time in the four-point bending creep 

test. However, one can notice from the plot that the total bending moment keeps 

decreasing as time goes. This is why the bending creep tests show that the displacement 

rate decreases with increase in test time even in the steady-state stage of creep. This is a 

very important observation of four-point bending creep test. It means that in a four-point 

bending creep test, steady-state condition will never be clearly discerned and a wise 

decision of researchers for quasi steady-state data is required.
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Figure 5.12 Stress distribution at beam cross section (n = 1)

Stresses collected 
from here

Output Set TRANSIENT AT T=0 9000E +03
Contour GLOBAL STRESS SIG 11
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Figure 5.13 Stress (σxx) distribution after 900 sec creep (n = 1)
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5.2.6 Results and Discussion (Alumina)

A creep test of specimen (A) and (B), alumina, of Figure 5.4 was simulated with 

the following creep parameters which were assumed based on the creep parameters 

estimated for AD86 alumina in Chuang’s paper (Chuang, 1986).

At = 0.885 x 10-13 s-1, Ac = 4.25 x 10-9 s-1, nt = 4, nc = 0.5 ; asymmetric creep

The load 7.5 N was applied so that the outer fiber elastic stress of the specimen may 

become 30 MPa. The creep time step was 100 sec and 2,7000 sec (7.5 hr) creep was 

simulated. The curvature curve was obtained from the deflection data by the way explained 

previously. A number of simulations were repeated with different creep parameters to get 

the curvature curve which is similar to the curves given in Figure 5.4. The creep parameters 

which are given above were the most successful in matching the non-uniform curvature of 

crept specimen.

Output Set TRANSIENT AT T=0 2700E+05
Deformed(0.0781): TOTAL TRANSLATION
Contour AVERAGE von MISES STRESS

Figure 5.14 Von Mises stress distribution after 2,7000 sec
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Figure 5.15 Curvature curve from simulation without friction 
between loading roller and specimen (μ = 0)

Figure 5.16 Curvature curve from simulation with friction 
between loading roller and specimen (μ = 1)
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Figure 5.15 shows the curvature curve from the simulation where friction was not 

applied (μ = 0) and Figure 5.16 shows the curvature curve from the simulation where 

friction was applied for loading rollers and specimen contact. The curvature curve from 

the simulation is only for a right half of the beam and for the better comparison the data 

flipped for the opposite half so that the whole curvature curve may be obtained.

Like curvature curves from the sodalime silica glass simulations, the curves from 

simulations didn’t match quantitatively with the curves from the experiment because the 

input creep parameters were assumed. However, the general trend agreed well with the 

experimental curves. By comparing Figure 5.15 and Figure 5.16, one can notice that 

friction lowers the curvature at the loading point. Based on this observation, one can see 

from the curvature curve of specimen (A) of Figure 5.11 that the friction was higher at 

the left loading point.

Figure 5.17 Curvature curve of specimen (A) (Jakus et al., 
1988)
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From both simulations and the experiments of Jakus et al., the curvature enhancement in 

the vicinity of the loading points was observed. With symmetric creep parameters 

(nt = nc = 1, At = Ac) , the theoretical constant moment region and therefore constant 

curvature region in the mid-span were detected. However, with asymmetric creep 

parameters (nt ≠ nc, At ≠ Ac) the curvature in the mid-span was non-linear, and a constant 

region was not evident in both experiments and simulations.

In view of the detailed simulations, the ability to extract creep parameters from 

bend tests needs further consideration. In particular, the methods to extract creep 

parameters from bend test data which are based on simple beam theory (constant moment 

in the mid-span and linearly diminishing moment at the outer-span) and the validity of 

these methods can be checked with finite element simulations.
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5.3 Finite Element Study on Method of Hollenberg et al.

Hollenberg’s method (Hollenberg et al., 1971) to extract creep parameters from 

four-point bending creep tests is based on simple beam theory. Here it is evaluated using 

finite element simulations of four-point bending creep test with given creep parameters 

(A,n) at four different load levels. Symmetric creep parameters (= Ac, nt=nc) were 

used because the method of Hollenberg’s et al. is only for symmetric creep cases.

5.3.1 Simulation

The specimen size considered was 3 by 5 by 50 mm, the inner loading span was 

10 mm, and the outer span was 40 mm. A total of 772 elements and 1,660 nodes were 

used with creep parameters At = Ac =3.273 x 10-12 s-1, nt = nc = 2.2 .

Output Set TRANSIENT ATT=0 8000E-05 
Contour: AVERAGE von MISES STRESS

Figure 5.18 Von Mises stress distribution after 22 hr creep 
(neutral axis is in the beam center due to symmetric creep)
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Figure 5.19 Stress ( ) distribution in the beam section as a function of
time (linear elastic stress distribution becomes non-linear because of n > 1)
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Figure 5.20 Stress (σxx) distribution after 22hr creep (σc = 90 MPa)
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The load point displacement data were collected as a function of time from node 13 

(Figure 5.20 and Figure 5.21) and load point displacement rates were calculated from the 

displacement data. (Figure 5.22) This process was repeated for simulations with four 

different load levels. The following table summarizes the results.

Table 5.1 Load point displacement rate data from simulations

Applied Load 

P(N)

Outer-Fiber Elastic

Stress σe (MPa)

Steady-State Load Point Displacement Rate

ynode13 (mm/sec)

22.5 90 2.71xl0-6

20.0 80 2.08xl0-6

15.0 60 1.03x10-6

12.0 50 6.57xl0-7

Displacement data were collected also from node 1 and specimen mid span

displacements (yR) were calculated by yR = ynode1 -ynode13. (Figure 5.21)

Figure 5.21 Mid span displacement yR (Fett et al., 1991)
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Then curvature rates were calculated from the mid-span displacement rates by the 

following formula.

K = 8/a2 yR (5-3)

where a is inner loading span (10 mm) and K is curvature rate of the inner loading span.

This process also was repeated for simulations with four different load levels. The 

following table summarizes the results.

Table 5.2 Curvature rate data from simulations

Outer-Fiber Elastic

Stress σe (MPa)

Steady-State Mid Span Displacement

Rate yR (mm/sec)

Curvature Rate

K (mm-1sec-1)

90 2.75xl0-7 2.20xl0-8

80 2.10xl0-7 1.68xl0-8

60 1.05xl0-7 8.40xl0-9

50 6.67xl0-8 5.34xl0-9
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Figure 5.22 Nodal displacement data from simulation (σe = 90 MPa)
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Figure 5.23 Load-point displacement rate (ynode13) and mid- 
span displacement rate (yR) with σe = 90 MPa
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5.3.2 Estimation of Creep Parameters by the Method of Hollenberg et al.

As explained above in section 2.2, creep parameters can be estimated from bend 

creep test data by the method of Hollenberg et al. (Hollenberg et al., 1971) for the 

symmetric creep. In section 2.2 , equations were derived for the curvature rate (K) and 

for the load-point displacement rate ( ynodel3 ). Therefore, creep parameters can be 

estimated from the curvature rate data and from the load-point displacement rate data. In 

practice researchers have preferred to measure the load-point displacement rate because it 

is much easier to measure than curvature rate. Fett et al. (1991) introduced the method to 

measure the curvature from bend specimen.

Previously, both the load-point displacement rate data (Table 5.1) and the 

curvature rate data (Table 5.2) were obtained from bending creep simulations. Using 

Equation (2-16), the creep parameters can be obtained by plotting the load-point 

displacement rate vs. applied elastic stress. From the plot in Figure 5.24, the creep 

exponent n = 2.42 and the intercept C2=-23.7 were obtained, and from C2 and Equation 

(2-16a) the pre-exponent A = 1.028x10-12 was calculated. Using Equation (2-11), the 

creep parameters can be obtained also by plotting the curvature rate vs. applied elastic 

stress. The plot is shown in the below where n = 2.41 and C1=-28.5 and from C1 and 

Equation (2-11a) the pre-exponent A = l.061xl0-12 was calculated.
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Outer-fiber elastic stress (MPa)

Figure 5.24 Log-log plot of outer-fiber elastic stress vs. load­
point displacement rate

Outer-fiber elastic stress (MPa)

Figure 5.25 Log-log plot of outer-fiber elastic stress vs. 
curvature rate
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The simulation input creep parameters and the estimated creep parameters are 

summarized as follows.

Table 5.3 Summary of results

Creep Parameters Original Input By Load-Point 
Displacement Rate

By Curvature 
Rate

n 2.2 2.42 2.41

A 3.273xl0-12 1.028xl0-12 1.061x10-12

5.3.3 Frictional Effect on Estimation of Creep Parameters

The above simulations were performed without friction between loading roller 

and specimen. To study the frictional effect on bending creep test, another set of 

simulations were performed with friction (μ = 1). The load point displacement rates were 

collected from simulations following the same procedures previously explained.

Table 5.4 Load point displacement rate data from simulations (with friction)

Applied Load

P(N)

Outer-Fiber Elastic

Stress σe (MPa)

Steady-State Load Point Displacement Rate 

ynode13 (mm/sec)

22.5 90 1.9x10-7

20.0 80 1.4x10-7

15.0 60 7.0xl0-8

12.0 50 4.4xl0-8

was

The above data were plotted in log-log scale and the creep exponent n = 2.47 and 

the intercept C2 =-26.6 were obtained. From C2 the pre-exponent A = 5.79x10-14 
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calculated. The following table compares the creep parameters from simulations with and 

without frictions.

Table 5.5 Frictional effect on estimation of creep parameters

Creep Parameters Original Input
Simulation without
Friction ( μ = 0 )

Simulation with 
Friction (μ = 1)

n 2.2 2.42 2.47

A 3.273xl0-12 1.028xl0-12 5.79xl0-14

Outer-fiber elastic stress (MPa)

Figure 5.26 Log-log plot of outer-fiber elastic stress vs. load­
point displacement rate



88

5.3.4 Discussion

By the method of Hollenberg et al., creep parameters were estimated from bend 

creep test simulation data. There were two ways to estimate creep parameters, one by 

measuring load-point displacement rate and the other by measuring curvature rate. The 

estimated creep parameters from displacement rates and from curvature rates didn’t show 

much difference. The estimated creep exponent n was quite similar to original input n 

and the estimated pre-exponent A was about one third of original input A which is 

within allowable error range in ceramics creep tests. Therefore the common practice of 

measuring load-point displacement rate instead of curvature rate which is possible (Fett et 

al.) but difficult to measure is reasonable.

The frictions between loading rollers and specimen didn’t affect the creep 

exponent n estimation much, but the pre-exponent A was seriously underestimated 

when friction applied in simulations (Table 5.5).
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5.4 Finite Element Study on Chuang’s Method

In section 5.3 above the method of Hollenberg et al. (1971) was tested using finite 

element simulations and the validity of this method was discussed. Only symmetric creep 

parameters were applied to the simulations in section 5.3 because the method of 

Hollenberg is valid for symmetric creep cases. In this section the generalized method 

(Chuang’s method) to extract creep parameters from bend test data for asymmetric creep 

is evaluated using finite element simulations.

5.4.1 Simulation

The used specimen size was 3 by 4 by 50 mm and the inner loading span was 20 

mm and the outer span was 40 mm. A quarter of the geometry was modeled for 

simulation (see section 5.1). A total of 809 elements and 1,756 nodes were used for finite 

element model.

Figure 5.27 The finite element model for the simulations
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The asymmetric creep parameters used are summarized as follows.

At =2.972x10-17 s-1, Ac=5.555x10-13 s-1, nt =5.6, nc =1.7

The parameters came from a paper of Ferber et al. (Ferber et al., 1990) They measured the 

above creep parameters from tensile and compressive tests of AD94 alumina. The modulus 

of elasticity, E = 300 GPa, and Poisson’s ratio, v = 0.25, which are typical for engineering 

ceramic materials were applied. The simulations were performed at five different load 

levels. (σe = 90, 80, 60, 50, 39 MPa)

With the material model for asymmetric creep which was developed in section 3, four- 

point bending simulations of ceramics which have asymmetric creep properties were 

performed.

Output Set: TRANSIENT ATT=0.9000E+05 
Contour: AVERAGE von MISES STRESS

Figure 5.28 Von Mises stress distribution after 27 hr creep with 
σy = 90 MPa (neutral axis migrated toward compression surface)
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Figure 5.29 Stress ( σxx ) distribution in the beam section as a function of 
time (neutral axis migrates toward compression surface)

Stresses collected 
from these elements

Output Set TRANSIENT ATT=0.9900E+05
Contour: GLOBAL STRESS SIG 11

Figure 5.30 Stress (σxx) distribution after 27 hr creep (σe = 90 MPa)
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Figure 5.29 Stress (σxx) distribution in the beam section as a function of 
time (neutral axis migrates toward compression surface)

Stresses collected 
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Figure 5.30 Stress (σxx) distribution after 27 hr creep (σe =90 MPa)
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From each simulation, the nodal displacement data ( ynode1 and ynodel9) were collected for 

node 1 and node 19 and the mid-span displacement data ( yR =ynode1-ynode19) were 

calculated as in Figure 5.31. Then, mid-span displacement rate (yR) was calculated from 

the mid-span displacement data. A curve fitting scheme similar to the one in section 5.4.2 

was used to remove the numerical noise from the displacement rate curve. The steady­

state mid-span displacement rate obtained from the curve and then steady-state curvature 

rate was calculated from the Equation (5-3).

K = 8/a2 yR (5-3)

where inner loading span a = 20 mm and K is the curvature rate of the mid-span. The 

following table shows the obtained steady-state curvature rate from the simulations at 

different load levels.

Table 5,6 Curvature rate data from simulations

Outer-Fiber Elastic

Stress σe (MPa)

Steady-State Mid Span Displacement

Rate yR (mm/sec)

Curvature Rate

K (mm-1sec-1)

90 4.20x10-7 8.40x10-9

80 2.75x10-7 5.50x10-9

60 7.80x10-8 1.56x10-9

50 4.22x10-8 8.44x10-10

39 1.89x10-8 3.78x10-10
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Figure 5.31 Nodal displacement data from simulation (σe =90 MPa)

Figure 5.32 Mid-span displacement rate (yR) as a function of time 
(σe =90 MPa)
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5.4.2 Evaluation of Chuang’s Method

The Chuang’s method to extract bend test data was already explained in section 

2.3. The method has two highly non-linear coupled equations and a computer program to 

do numerical iterations and graphic solutions are required to estimate creep parameters. 

The two equations are shown below again.

R1[KH/Ac]C1(Hc/H)C2 + (Hc/H) = 1 (2-20)

M/(BH2)=[KH / Ac]C3 {[KH / Ac]C4 (R3 / C5)(1 - Hc / H)C5 +(1/C6)(Hc/H)C6} (2-21)

In the current research, efforts were not given to compose the program and instead 

of following whole iteration steps of Chuang’s method, curvature rates were estimated 

from the given creep parameters (At,Ac,nt,nc) by using the above two equations. (see 

section 2.3.2 for details) And the estimated curvature rates were compared with the 

curvature rates obtained from simulations in section 5.6.1. The curvatures rates were 

calculated already by Chuang’s equations (2-20) and (2-21) with the same creep 

parameters and specimen geometries. The result is given in the table 5.7.

The applied moments had been selected to match the same outer-fiber elastic 

stresses as in the simulations of section 5.4.1. Table 5.8 compares the curvature rates 

estimated from Chuang’s equations and the curvature rates from simulations.
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Table 5.7 Curvature rate data from Chuang’s equations

Specimen 
No.

Applied Moment 
M (N mm)

Neutral Axis Location
Hc/H

Curvature Rate 
k

1 510 0.197 8.00xl0-9

2 453 0.220 4.88xl0-9

3 340 0.278 1.57x10-9

4 282 0.319 7.82x10-10

5 220 0.374 3.28x10-10

Table 5.8 Curvature rates from Chuang’s equations vs. simulations

Outer-Fiber Elastic

Stress σe (MPa)

Curvature Rate (Chuang’s Method) 

(mm-1sec-1)

Curvature Rate (Simulation) 

(mm-1sec-1)

90 8.00x10-9 8.40x10-9

80 4.88xl0-9 5.50xl0’9

60 1.57xl0’9 1.56x10-9

50 7.82xl0’9 8.44x10-10

39 3.28x10-10 3.78x10-10

5.4.3 Frictional Effect on Chuang’s Method

Additional simulations were performed with various frictions between loading 

roller and specimen to see how friction affects the bending creep test and creep parameter 

estimation by Chuang’s method. Table 5.9 and Figure 5.33 summarize the results.
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Table 5.9 Curvature Rates from simulations depending on friction

σe (Mpa)

K (μ = 0) K 

(μ = 0.1)

K 

(μ = 0.25)

K 

(μ = 0.5)

K 

(μ = 1)

90 8.40x10-9 7.62x10-9 6.52x10-9 4.86x10-9 2.48x10-9

80 5.50x10-9 4.94x10-9 4.26x10-9 3.22X10-9 1.63x10-9

60 1.56x10-9 - 1.21x10-9 9.4OX10-10 5.O8X10-10

50 8.44x10-10 - 6.76xl0-10 5.14X10-10 2.68X10-10

39 3.78xl0-10 - 3.02xl0-10 2.31xl0-10 1.26X10-10

Friction coefficient

Figure 5.33 Curvature rate changes depending on friction between 
loading roller and specimen
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5.4.4 Discussion

By comparing the curvature rates calculated by Chuang’s equations with 

curvature rates from simulations, the Chuang’s method was evaluated. The curvature 

rates from Chaung’s equations were quite well matched with the curvature rates from 

simulations only when there was no friction between loading roller and specimen. 

Figures 5.34, 5.35 and 5.36 show how friction affects the stress distribution and creep 

deformation. One can see that friction lowered the outer-fiber elastic stresses and creep 

rates with friction defer from creep rates without friction. Therefore, the creep parameters 

estimated from bend creep data by Chuang’s method are reliable only when the friction 

between loading rollers and specimen is maintained low enough during creep test.
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(a) Friction coefficient = 0
85
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Figure 5.34 Stress (σxx) distribution at time = 0 (σe = 90 MPa)
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(a) Friction coefficient μ = 0
41
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Figure 535 Stress (σxx ) distribution at time = 27 hr (σe =90 MPa)
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(a) Friction coefficient μ = 0
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Figure 5.36 Creep Strain (εxx) distribution at time = 27 hr
(σe = 90MPa)



CHAPTER 6

EVALUATION OF BEND TEST SET-UP

From finite element studies of four-point bending creep test in chapter 5, the 

methods of Hollenberg et al. (1971) and Chuang (1986) were verified that they can 

predict power-law creep parameters from bend test data when the friction between 

loading roller and specimen is low enough. In this chapter a bend creep test set-up is 

considered which might remove or reduce the friction between loading roller and 

specimen. Finite element simulations are performed to quantify the effect of friction.

6.1 Recommended Bend Creep Test Set-up

The drawing in Figure 6.1 shows the frequently used four-point bending creep test 

set-up where the shallow groves on the platens establish the positions of loading rollers.

Figure 6.1 Normal four-point bending creep test set-up
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In this test set-up, the loading rollers may stick to the specimen and the platens during 

creep test because of high temperature, and the friction between loading roller and 

specimen is very high. Therefore the creep parameters measured from this set-up 

(especially pre-exponent At, Ac) are inaccurate as proved in chapter 5 because of high 

friction.

Another creep test set-up which might remove the friction between loading roller 

and specimen is shown in Figure 6.2. ASTM C 1211 requires this test set-up to measure 

the ultimate strength of a advanced ceramics on the basis of researches of Hoagland et al. 

(1976) and Swank et al. (1990). Krause and Chuang (1991) showed that they used this 

set-up in creep test to get creep parameters from bend creep test data. In the creep test set­

up shown in Figure 6.2, the loading rollers are expected to roll on the specimen and flat 

platens without applying significant friction forces on the specimen. The loading rollers 

are attached to platens temporarily with an organic cement which will melt away during 

creep testing. The vertical edges in the fixture facilitate accurate initial positioning of the 

rollers while not hindering rolling motions of rollers because they roll to opposite 

directions.

Figure 6.2 Recommended four-point bending creep test set-up (Krause 
et al, 1991) (ASTM C 1211)
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6.2 Simulation of the Recommended Bend Creep Test Set-up

The test set-up in ASTM C 1211 (Figure 6.2) was modeled with four contact 

surface sets as follows and simulation was performed with friction coefficient μ 1 for 

them to depict the high friction condition during creep test. The rollers would roll 

between specimen and platens because of moment induced by friction forces.

The upper platen was modeled as rigid body using tied nodes, shell elements were 

used to model rollers and large thickness (16 mm) compared to element sizes was given 

to the shell elements so that the rollers behave like rigid body without significant elastic 

deformation.

Pushing Roller (free to move 
and rotate, z-translation fixed)

Upper Platen (modeled as rigid 
body, y-translation free)

z
Supporting Roller (free to move 
and rotate, z-translation fixed)

Lower Platen (all-translation fixed)

Figure 6.3 Finite element model for recommended creep test set-up
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(a) Normal set-up with μ = 0
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(b) Recommended set-up with μ = 1
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Figure 6.4 Stress () distribution at time = 27 hr (σ. = 80 MPa) 
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(a) Normal set-up with μ = 0

Sliding

Sliding

Output Set: TRANSIENT AT T=0.1000E+06
Deformed(0.0275): T1 TRANSLATION

(b) Recommended set-up with μ = 1

Rolling

Rolling

Output Set: TRANSIENT ATT=0.1000E+06
Deformed(0.0279): T1 TRANSLATION

Figure 6.5 x-translation (exaggerated) visualized at time = 27 hr 
(σe =80 MPa)
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The same creep parameters and the first two loads used in simulations of section 5.4 were 

applied to the proof simulations. Then the curvature rates were obtained from the 

simulations as shown in Table 6.1.

Figure 6.4 compares the stress distribution between normal test set-up without 

friction and recommended test set-up with friction and shows how the recommended set­

up removed the frictional effect on specimen. Figure 6.5 visualizes the x-translation of 

the model. In normal set-up without friction (Figure 6.5a), the contact points shifted due 

to the sliding between loading rollers and specimen. The rolling motion of rollers is 

apparent from the recommended set-up because the rollers rotated with initial contact 

points as rotation centers (Figure 6.5b). The rolling motion of rollers in simulation was 

quantified in Table 6.2. Rolling was bigger in supporting roller, which is discernable 

from Table 6.2 and Figure 6.5.

Table 6.1 Curvature rates comparison between normal and recommended test set-up

K (μ = 0) 
(Simulation, Normal)

K (μ = 1) 
(Simulation, Normal)

K (μ = 1)
(Simulation, Recommended)

90 8.40xl0-9 2.48xl0-9 8.66xl0-9

80 5.50xl0-9 1.63x10-9 5.60xl0-9

Table 6.2 Rolled angles of rollers at time=27 hr (σe =90)

Total creep stain at 
outer-fiber in tension (ε11)

Rotation
(Upper roller, °)

Rotation
(Bottom roller, °)

0.3 % 0.20 0.73
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6.3 Discussion

The simulations showed that the bend test set-up in ASTM C 1211 effectively 

reduced the frictional effects between loading rollers and specimen in creep tests. The top 

rollers rolled on the upper platen toward the center and the bottom rollers rolled on the 

lower platen toward the outside because of the torque generated by contact friction forces. 

Due to this rolling, the distance between top roller and bottom increased and the bending 

moment increased. That is the reason why the curvature rates are slightly increased than 

the fixed roller simulation without friction. As one can see from Table 6.1, the effect of 

moment increase is minor. Therefore the bend test set-up in ASTM C 1211 was proved as 

a method to remove the frictional effects between loading rollers and specimen in bend 

creep tests.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this research, four-point bending creep test and methods to extract power-law 

creep parameters from bend test data were studied with finite element analysis. A 

material model for asymmetric creep behaviors of ceramics was developed and 

implemented in the non-linear finite element code H3DMAP. Ceramics C-ring 

compression creep test simulation was performed with asymmetric creep material model 

and benchmarking comparison with experimental data and simulation data proved its 

validity.

Jakus and Wiederhorn’s observation of non-linear curvature distribution in the 

mid-span of four-point bend specimen was also proved in the simulations and it was 

shown from simulations that the non-linear curvature distribution is due to the 

asymmetric creep properties. The enhancement of curvature in the vicinity of loading 

points was observed from both symmetric and asymmetric creep simulations, whereas a 

constant curvature region was observed from symmetric creep simulations. Also, from 

simulations with symmetric creep (n = 1) where the stress distribution is linear at the 

specimen section during creep process, the total bending moment decrease was observed. 

This means that in four-point bending tests, the total bending moment keeps decreasing 
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as deformation goes and a wise decision of researchers for a quasi steady-state data is 

required in the creep tests.

The methods of Hollenberg et al. (1971) and Chuang (1986) were evaluated by 

comparison with simulation results. When friction between loading rollers and specimen 

was not applied in the simulations, both methods well predicted creep parameters from 

bend creep simulation data. But, when friction is high as in the real creep test, the pre­

exponent (A) was highly underestimated. Prediction of stress exponent (n) was not 

affected much by friction. Measuring load-point displacement rates did not show much 

difference in creep parameter prediction than measuring curvature rates which is more 

difficult in real experiments.

The bend test set-up in ASTM C 1211 was recommended as a method to 

effectively reduce the friction between loading rollers and specimen in bend creep tests. 

Proof simulation showed that the test set-up in ASTM C 1211 effectively removed the 

frictional effect of normal creep test set-up.

Bending creep tests will never replace the uniaxial creep tests because of its 

apparent limitations such as assuming power-law creep law, but in spite of the doubts 

about four-point bending creep tests to get creep parameters of engineering ceramics, 

researchers are still performing bending creep tests at least to get reference data. From 

this research, the limitations and abilities of four-point bending creep tests and methods 

to predict creep parameters are more clearly understood. Errors and uncertainties are now 

more quantifiable so that researchers who are referring to four-point bending creep tests 

can be more confident in their results.
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7.2 Recommendations for Future Work

In section 5.2 it was found that the non-uniform curvature in the mid-span of crept 

ceramics specimen is due to the asymmetric creep properties of ceramics material. It is 

evident that even with asymmetric creep properties, the shape of non-uniform curvature 

curve in the mid-span changes depending on the creep parameters ( Al,Ac,nl,nc.). For 

example, in the curvature curves of Figure 1.1 the maximum curvature enhancement 

locations are different. In Figure 1.1(a) the peaks moved inward from the inner loading 

locations but in Figure 1.1(b) the peaks are on the inner loading locations. This 

observation means that there is a possibility to be able to expect general tendency of 

creep parameters from the shape of curvature curves of crept bend specimen . Therefore 

finding the relationship between the shape of crept bend specimen and creep parameters 

is recommended for the further research.

Figure 1.1 Curvature as a function of distance along the bend bar (Jakus et al, 
1988)
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Wang et al. (1997) studied the optimum design of tensile creep specimen using a 

finite element method. They included the contact effects between pin and pinhole in the 

simulations, but symmetric creep properties were applied for the ease of computations. 

From the simulations they concluded that “creep symmetry seems to give rise to delayed 

head failure and creep asymmetry may play a beneficial role in preventing delayed head 

failure of the tensile creep specimens” (Wang et al., 1997). They suggested future 

research for the proof of this contention. In the research of this thesis, asymmetric creep 

material model was developed and successfully applied to four-point bending creep 

simulations where asymmetric creep and contact conditions were considered together. 

Therefore the tensile creep test simulations with asymmetric creep and contact are 

possible now and further research is recommended for the proof of the aforementioned 

contention that tensile specimens with asymmetry creep properties are more resistant to 

delayed head failure.
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