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Abstract

The quality of clinical pathology is a critical index for evaluating a nation’s healthcare
level. Recently developed digital pathology techniques have the capability to trans-
form pathological slides into digital whole slide images (WSI). This transformation
facilitates data storage, online transmission, real-time viewing, and remote consul-
tations, significantly elevating clinical diagnosis. The effectiveness and efficiency of
digital pathology imaging often hinge on the precision and speed of autofocusing.
However, achieving autofocusing of pathological images presents challenges under
constraints including uneven focus distribution and limited Depth of Field (DoF).
Current autofocusing methods, such as those relying on image stacks, need to use
more time and resources for capturing and processing images. Moreover, autofo-
cusing based on reflective hardware systems, despite its efficiency, incurs significant
hardware costs and suffers from a lack of system compatibility. Finally, machine
learning-based autofocusing can circumvent repetitive mechanical movements and
camera shots. However, a simplistic end-to-end implementation that does not ac-
count for the imaging process falls short of delivering satisfactory focus prediction
and in-focus image restoration.

In this thesis, we present three distinct autofocusing techniques for defocus pathol-

ogy images: (1) Aberration-aware Focal Distance Prediction leverages the asymmetric
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effects of optical aberrations, making it ideal for focus prediction within focus map
scenarios; (2) Dual-shot Deep Autofocusing with a Fixed Offset Prior is designed
to merge two images taken at different defocus distances with fixed positions, en-
suring heightened accuracy in in-focus image restoration for fast offline situations;
(3) Semi-blind Deep Restoration of Defocus Images utilizes multi-task joint predic-
tion guided by PSF, enabling high-efficiency, single-pass scanning for offline in-focus

image restoration.
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Chapter 1

Introduction

1.1 Whole Slide Imaging

Whole slide imaging (WSI), also referred to as wirtual microscopy [61, 84], is de-
veloped to transform the conventional microscope glass slides to splicing seamless
digital images that can be analyzed on a computer, easily stored, and quickly shared
with other researchers no matter where they are [25, 2]. In the medical realm, WSI
continues to gain traction worldwide as a feasible approach for digital pathology. It
has become a vital means gradually in biomedical research, clinical diagnosis and
prognosis of diseases like cancer [19]. A remarkable milestone is that in 2017 the US
Food and Drug Administration has approved Philips” WSI system for the primary
diagnostic use [1].

A typical WSI process includes: 1) utilizing a scanner to digitize tiles of a sample,
which generates digital images that are then stitched together to produce a complete
and seamless representation of the original entire slide [91]; 2) employing specialized

software to view and analyze these digital images [62]. It is clear that the quality
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of captured images in the first step is critical for the performance of WSI system.
A fundamental challenge in WSI is how to produce a high-quality, in-focus image
at fast speed. Specifically, a whole slide scanner is essentially a microscope with a
high-resolution objective lens (typically larger than 0.75 NA), whose DoF is usually
less than 1 pum. The small DoF in WSI systems poses a challenge to acquiring in-
focus images of tissue sections of uneven topography [36]. The out-of-focus blurring
artifact is the main source of image quality degradation in WSI [34]. In addition, the
use of high NA objectives results in a very small field of view (FoV), with each title
being only 2500 square micrometers. A typical pathology specimen of 1.5 x 1em? can
consist of as many as 6000 such titles. Clearly, bringing all these tiles into focus one
by one creates a severe bottleneck to the throughput of a WSI system.

The process referred to as autofocusing is conducted to solve this problem. In the
literature, one popular solution for autofocusing is the so-called focus map surveying
method [42]. It creates a focus map before scanning. More specifically, for each
tile (a point in the focus map), a z-stack of images of different focal distances is
taken. The sharpest image in the z-stack [90], identified by a contrast or entropy
criterion, determines the focus point for the tile. This process is repeated for all tiles
of the entire tissue slide to generate the focus map. According to this focus map,
the mechanical system scans the sample and performs in-focus tile-by-tile shooting.
However, there are two drawbacks to this focus map surveying method. First, as
stated above, for each tile the system takes as many as N images, N being the depth
of the z-stack, which is time-consuming. Creating a focus map for the slide is a
significant overhead. While selecting a subset of tiles for focus point surveying can

save time to some extent, it compromises the accuracy of focus. Second, the system
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needs to make two passes of the slide. The first pass is to generate the focus map; the
second pass is to shoot tiles one by one according to the focus map. Making an extra
pass slows down the image acquisition as moving between the files incurs mechanical
acceleration and deceleration. In order to achieve rapid autofocusing, some works
consider using additional hardware. For instance, the dual-camera setup is proposed
in [56], in which a secondary high-speed camera is employed to acquire images to
avoid axial scanning. However, this approach is not feasible in the alignment of the
additional camera to the microscope. Moreover, its compatibility with most existing
WSI platforms remains open to question.

Considering the limitations of the conventional methods, some researchers have
begun to investigate the possibility of exploiting advanced machine learning algo-
rithms to solve the autofocusing problem. The work in [30] is the first one that uses
deep convolution neural networks (CNNs) to predict the focal position, which ac-
quired ~130,000 images with different defocus distances as the training dataset, and
used an end-to-end deep residual network to bulid the connection between the input
image and its focal distance. This approach can capture images on the fly without
focus map surveying. Despite this method achieves remarkable autofocusing perfor-
mance, methodologically it is not easy to derive a model that accurately describes
the relationship between an image with complex contents and a numerical value (the
defocus distance). Pinkard et al. [64] also proposed to utilize CNNs to estimate focus
distances, which emphasizes the lack of generalization across various sample types.
Dastidar et al. [15, 66] explore the two-shot images as the input of CNNs for the
purpose of focus distance estimation. Though this method improves the estimation

accuracy, it needs the extra time to capture the second image. Wu et al. [87] proposed
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a deep neural network to refocus a virtually two-dimensional fluorescence image onto
user-defined three-dimensional (3D) surfaces within the sample. However, pathologi-
cal images we work on are with more complex biological structures than fluorescent
images. Thus, the autofocusing of pathological images is more challenging than that
of fluorescent images. In summary, achieving focus prediction and in-focus restoration
through a simplistic end-to-end approach without taking into account the principles

of optical imaging proves to be challenging.

1.2 Contributions and Thesis Organization

To address the aforementioned limitations of existing autofocusing methods, this
thesis proposes to incorporate advanced artificial intelligence (AI) techniques. Specif-

ically, we overcome the following challenges:

e Aberration-aware Focal Distance Prediction: Employing machine learn-
ing techniques enables the prediction of focus distance, effectively circumventing
the repetitive movements and focusing exposures inherent to traditional image
stacking methods. However, optical aberrations inevitably cause pathological
images with positive and negative defocus to exhibit distinct characteristic dif-
ferences. Such inherent limitations of the imaging system reduce the accuracy
of focus prediction. To address the aforementioned issue, this thesis proposes an
aberration-aware focus prediction method by feature classification and focus re-
gression. This method ingeniously leverages the characteristic differences caused
by aberrations as a physical guide, specifically, positive defocus exhibiting stri-

ation artifacts and negative defocus featuring uniform blurring. The method
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develops a binary classification network to differentiate samples with positive
and negative focus shifts, leveraging the principle that defocus features in the
same direction share similarities. Subsequently, utilizing the defocus data from
both categories, it designs a regression network for focus prediction, forming
a complete classification-regression deep cascade autofocusing network. Exper-
imental evidence indicates that, relative to the baseline classification method
without aberration guidance, our approach achieves a 26% reduction in focus
prediction error. This method is suitable for scenarios such as constructing fo-
cus maps for focus prediction, where through distance prediction followed by

system focusing and exposure, true in-focus images can be obtained.

e Dual-shot Deep Autofocusing with a Fixed Offset Prior: Directly using
machine learning algorithms to deblur defocus pathological images is undeniably
the most efficient approach, eliminating the need to capture dozens of images
at different defocus distances as in traditional image stack methods. However,
under constraints of high magnification objective lenses such as uneven focus
distribution and limited DoF', blind deblurring pathological images is challeng-
ing. To tackle the aforementioned problem, this thesis proposes a dual-shot

deep autofocusing with a fixed offset prior to achieve blind deblurring.

This method designs an implicit position prior, utilizing two defocus images
taken at fixed relative positions to derive a univariate equation for the in-focus
image, thereby transforming the problem of blind deblurring into a non-blind
deblurring issue. This approach uses only two images taken at different focal
lengths but with relatively fixed positions. The dual-shot design helps to merge

complementary information from both images, overcoming the challenges posed
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by uneven focus distribution and DoF limitations in pathological samples. Fx-
perimental findings show that, compared to the baseline single-image method,
our approach enhances image quality by 7%. This method is suitable for online
scanning and offline recovery. With just two scanning exposures, it can produce

high-quality in-focus images.

e Semi-blind Deep Restoration of Defocus Images: To speed up the dual-
shot autofocusing method, we propose a one-shot autofocusing method. This
one-shot method is similar to single-image deblurring, aiming to restore clear
images through algorithmic reconstruction. Currently, existing single-image
deblurring methods do not consider prior information related to the imaging
system. Therefore, our method introduces a multi-task joint training strat-
egy guided by the PSF prior, where the network simultaneously performs dual
predictions to the in-focus image and the defocus image. We can regenerate
re-defocus images by utilizing estimated blur kernel PSF. However, microscope
PSF's are affected not only by defocus but also by aberrations (such as spheri-
cal aberration, chromatic aberration), and demosaicing effects. This complex-
ity surpasses that of theoretical Bessel PSF functions, hence we utilize neural
network prediction for the PSF mask rather than traditional optimization al-
gorithms. To address color channel mismatches, we utilize Y channel data to
predict the PSF mask. Subsequently, we achieve re-defocus images convoluted
by the corresponding PSF from classification. Finally, the network can impose
joint constraints on both in-focus and defocus images, thereby significantly en-
hancing image restoration performance. Experimental results demonstrate that,

compared to the baseline method lacking PSF guidance, our approach results
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in a 2.7% improvement in image quality. This method is suitable for scenarios
involving online scanning and offline recovery. The one-shot scanning greatly

improves scanning efficiency while meeting basic imaging quality requirements.
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Chapter 2

Related Work

At present, there are numerous autofocusing methods available. This section provides
an overview of representative autofocusing techniques for microscopic imaging along

with corresponding examples. These are categorized as follows:

e Hardware-based Reflective Autofocusing: This includes methods like con-
focal pinhole detection, oblique illumination triangulation, and oblique illumi-

nation with weak coherent interference, among others.

¢ Real-time Image-based Autofocusing: Examples of this category encom-
pass the z-stack autofocusing method, dual-sensor independent scanning, beam
array technique, tilted sensor method, phase detection, and dual-LED illumi-

nation, to name a few.

e Deep Learning-based Autofocusing: This comprises methods such as focus

prediction and focal plane recovery.

Finally, this section also touches upon the current state of research on WSI scan-

ning strategies.



Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

2.1 Hardware-based Reflective Autofocusing Tech-
niques

Reflective-based autofocus aims to detect the axial position of a reference plane.
Typically, this plane lies at the interface between glass and liquid, where cells of-
ten adhere, or at the air-glass boundary at the bottom of a cell culture container.
During experiments, the focus drift correction system continually searches for the
axial position of the reference plane. It maintains a consistent distance between the
objective lens and the reference plane through an electric axial driver. This section
delves into three reflective hardware-based autofocusing methods, namely: confocal
pinhole detection, oblique illumination triangulation, and oblique illumination with

weak coherent interference.

2.1.1 Confocal Pinhole detection

Liron et al. introduced a laser reflection autofocusing method using confocal pinhole
detection [46]. The optical setup is depicted in Figure 2.1, where the expanded laser
beam focuses on the substrate of the specimen (illustrated as the red beam). The light
reflected from the substrate passes through the confocal pinhole to reach the photode-
tector (represented by the yellow beam). The fraction of laser intensity reflected at the
interface roughly corresponds to the square of the refractive index difference. Reflec-
tions from the glass-air interface account for approximately 4% of the incident beam,
while those from the glass-specimen interface are merely 0.4%. The inset of Figure 2.1
showcases intensity curves obtained by axially scanning the objective lens to various

positions. The first pronounced peak correlates with the air-glass interface, and the
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subsequent fainter peak pertains to the specimen-glass interface. Solid and dashed
lines represent results for 100 pm and 200 pm pinholes, respectively. As indicated by
the dashed line in Figure 2.1, enlarging the confocal pinhole size broadens the peak
width. Such a modification reduces unwanted interference patterns, facilitating the
data analysis process. The method employs a two-phase operation for autofocusing
execution. The first phase, termed long peak detection search, involves high-speed
axial scanning of the objective lens to identify the pronounced peak. Through the
position of this first peak, the second peak’s location can be estimated by factoring in
the glass substrate’s thickness. The second phase, dubbed local peak search, allows
precise peak searching within a relatively shorter range.

While this confocal detection technique enables precise autofocusing, its primary
drawback is the necessity of axial scanning to obtain the trajectory curve. Another
limitation is the significant intensity disparity between the two peaks, with the weaker
peak easily overshadowed by the first pronounced one, especially for objectives with
lower magnification. In the second method of this section centered on reflective
hardware techniques, we’ll discuss a strategy to overcome the first method’s short-
coming—Ilocating the initial peak position without axial scanning. The third method
explores another approach to address both drawbacks: reducing the signal strength

of the first peak and pinpointing both peaks without axial scanning.

2.1.2 Oblique Illumination Triangulation

To locate the axial position of the interface without axial scanning, one can illuminate
the specimen with tilted incident light and measure the lateral displacement of the

reflected beam, as illustrated in Figure 2.2. The triangulation method for microscope
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Figure 2.1: An autofocusing system using confocal pinhole detection [46]

autofocusing can be traced back to Reinheimer’s 1973 patent, which proposed shaping
the illumination beam to only occupy half the cross-section of the light pupil aper-
ture [67]. When the specimen surface is positioned at different axial locations, the
beam reflected from the surface will exhibit varying lateral displacements. Reflected
light from the specimen surface is detected by two photodetectors for differential mea-
surements. The differential signal detected by these two sensors drives the parfocal
helix. For instance, if the specimen surface aligns with the focal plane, the reflected
light is guided to the boundary of both photodetectors, producing a differential sig-
nal of zero, necessitating no adjustments. If the specimen surface is above the focal
plane, the reflected light leans towards one of the photodetectors, and the resulting
differential signal drives the specimen’s moving platform. Conversely, if the specimen
surface is below the focal plane, the differential signal from the two photodetectors

propels the specimen stage upward. Similar schemes have also been suggested in
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recent literatures [47, 48, 50, 49].

Specimen
LER T g |
amber
Reference Observation Perfect Focus

- Optical System  Optical System
Coverslip/ Interface ¥ p Y

Lens

s P Offset Colllmatlng
Objective = l Ad] ustment LED
Lenses Halr
s Mirror |

Intersecting — ( E
Dichromatic . =

Mirror

X

IR Cut
Light Filter_
Source

' Collector

»..._ Half -Moon k.3

Viéthle - condensing
£ ‘ > Lens

Relay
Lenses = Ha,'{,‘_.,“gﬁ”

chhromatlc ; n_
' Mirror Q‘. I';t,',',:.
Camera—{. H #:—CCD Line
Relay Lens - - Sensor

- !
Imaging f -
CCD Sensor e I
1]
’ I
i

Cylindrical Lens

-
-
-
-
-

El Line CCD
Focus -Z Focus +Z =

—3Signal Strength—

- 0
Line CCD Pixel Location (Amllrary Units)

Figure 2.2: Nikon perfect focus system [67]

2.1.3 Oblique Illumination with Weak Coherent Interference

In a 1996 patent, Wei and Hellmuth introduced an autofocusing method using Optical
Coherence Tomography (OCT), specifically utilizing an axial depth reflectivity device
known as A-scan to determine the specimen position, as shown in Figure 2.3 [83].

In related patents, autofocusing for ophthalmic surgery microscopes was achieved

12
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using a coaxial setup. However, this is not suitable for high-resolution imaging of
pathological tissue slides covered with coverslips. A primary reason is the overlap
between the strong reflection signal from the glass surface and the weak reflection
signal from the specimen. Given the dominant reflection from the glass surface,
positioning the specimen with sub-micron precision is challenging [10].

One solution to this problem is to significantly reduce the light reflected from
the glass surface while maintaining the scattered light from the sample relatively
constant. Figure 2.3 illustrates a solution employing an off-axis setup where light
illuminates the sample at an inclined angle, ensuring light directly reflected from
the glass surface won’t couple back into the interference system. In Figure 2.3, a
broadband superluminous diode is used as a low-coherence light source, with a spec-
trometer configured for Fourier domain OCT measuring axial depth reflectivity pro-
files. By Fourier-transforming the captured spectrum, the sample’s position can be
determined, by adjusting the objective lens to the focal point. Since OCT is highly
sensitive to refractive index changes within the specimen, this method can handle
transparent samples that might be challenging for traditional focus mapping tech-
niques. Drawbacks include the complexity of the Fourier domain OCT setup, precise

optical alignments, and the system’s high maintenance requirements.

2.2 Real-time Image-based Autofocus Techniques

Before initiating system scanning, methods to create a focus map require obtaining
a z-stack for the focus of each tile. This involves scanning the specimen to different
x-y positions to acquire multiple z-stacks and subsequently generate the focus map.

In most WSI sessions, the time spent creating this focus map constitutes a significant
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Figure 2.3: Low-coherence interferometry for reflective real-time autofocusing [83]

portion of the total scanning duration. In this section, we present six real-time auto-
focusing methods based on imaging. They include the z-stack autofocusing technique,
dual-sensor independent scanning, split-beam array method, tilted sensor approach,

phase detection method, and dual-LED illumination technique.

2.2.1 Z-stack Autofocusing Technique

The z-stack autofocusing method is depicted in Figure 2.4. This method revolves
around acquiring a series of images before and after the focal plane, enabling the
determination of the optimal focal length position by analyzing the focal positions of
these images. When employing the z-stack technique for autofocusing, it’s essential
first to capture a series of images near the specimen’s focal plane. These images cover
a certain depth of focus by minutely adjusting the focal length. Subsequently, the
optimal focal length can be determined by comparing the focal positions or image
quality metrics of these images, resulting in a clear image. Omne of the method’s
strengths is its ability to cope with the unevenness and complexity of the sample

surface, achieving precise autofocusing. By capturing a series of images and analyzing
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their focal points, it eliminates the irregularities and uneven features on the sample
surface, producing a universally clear image. In imaging systems like microscopes,
the z-stack method is extensively employed to achieve high-quality autofocusing. It
not only enhances image clarity and detail but also accelerates imaging speed and
improves work efficiency. As such, the z-stack method has become one of the widely
adopted autofocusing techniques in many labs and research fields. However, it also
has some clear drawbacks:

(a) Time and Resource Consumption: Employing the z-stack method usually
necessitates acquiring a series of images covering a certain depth of focus, which
means spending more time and resources capturing and processing these images.
Especially for larger or complex samples, a substantial number of images might be
required to achieve optimal focus.

(b) Data Storage and Processing Demands: As the z-stack method involves cap-
turing multiple images, it consumes more storage space. Moreover, processing and
analyzing these images demand additional computational resources and algorithms
to extract focal information. This could pose certain requirements for hardware and
computational capacities, adding to the system’s complexity.

(c) Motion Artifacts and Sample Movement: During z-stack autofocus, minute
movements or vibrations might be present in the sample or the camera, potentially
causing alignment issues between images. This could lead to motion artifacts or
inaccurate focusing results. This issue might be even more pronounced for living
samples or imaging processes that require a longer duration.

(d) Parameter Selection and Adjustment: The z-stack method necessitates the

selection and tweaking of several parameters, such as step size, sampling intervals,

15


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

and focusing range. The choices made regarding these parameters can influence the
focusing outcome, necessitating experimentation and optimization to determine the

optimal parameter settings.
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Figure 2.4: The traditional axial scanning z-stack procedure for autofocusing [78]

2.2.2 Dual-sensor Independent Scanning Technique

The traditional focal plane imaging method employs a single image sensor, both
for measuring focus and capturing images. Between two successive image captures,
there’s a quantifiable "dead time” for reading data out to storage. As a result,
during this ”dead time,” the camera cannot be used for focus measurements. Existing
literature suggests the use of a separate auxiliary image sensor for parallel focus
measurement [54].

Figure 2.5 illustrates the principle and operational process of the dual-sensor in-
dependent scanning concept [56]. As shown in Figure 2.5(a), the system employs an
independent camera, termed the quasi-focal sensor, to measure focus, while the pri-
mary camera captures high-resolution images of pathological tissue samples. During

the scanning process, the platform remains in constant motion, and short-pulse light
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is utilized during imaging to eliminate motion blur. As depicted in Figure 2.5(b), the
quasi-focal sensor captures three autofocusing images, each with a slightly different
focal plane. Based on these three images, the system computes the optimal focal po-
sition and relocates the sample to this plane where the primary camera can capture a
high-resolution image [90]. While the main camera is reading image data, the system
repeats autofocusing for the next tile position, predicting its subsequent optimal focal
plane. Since the platform remains in continuous motion throughout this process, the
three captured focus images share only a small overlapping region, as demonstrated in
Figure 2.5(c). Only this overlapping region can be used to compute the focal length.
The autofocusing performance of the dual-sensor independent scanning system has
been validated across various tissue sections. The continuous motion scheme averages
a focus error of approximately 0.30um, with around 95% of local micro-images falling

within the system’s depth of field range.
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Figure 2.5: Independent dual-sensor scanning for real-time image-based
autofocusing [56]
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2.2.3 Split-beam Array Method

In the aforementioned dual-sensor independent scanning approach, multiple images
are captured to compute the focus position as the sample moves across different focal
planes. Virag et al. introduced a beam-splitting array method, which simultaneously
captures images of different focal planes on a single image sensor [82]. Figure 2.6
represents the imaging principle of the system, where the quasi-focal optical compo-
nents consist of the primary imaging camera and an auxiliary quasi-focal camera. The
beam-splitter array serves to separate the light beams and reflect them onto different
areas of the quasi-focal sensor, allowing the system to simultaneously capture images
on multiple focal planes. By selecting a 45° semi-reflective surface within the beam-
splitting array method, one can ensure that all the beams reflected off the surface
possess approximately equal intensity. With the images captured by the quasi-focal
sensor, an optimal quasi-focal position can be inferred using specific quasi-focal met-

rics and fitting models.

2.2.4 Tilted Sensor Approach

The tilted sensor method employs a tilted quasi-focal sensor to image the oblique
cross-section of a sample. The optimal focal position can be inferred by real-time
pinpointing of the peak value on the contrast curve. Philips and Leica have fur-
ther refined and developed this original concept, and the tilted sensor technique has
now become one of the autofocusing technologies widely adopted in commercial WSI
systems [95, 29, 81].

Figure 2.7 illustrates the principle and operational process of the tilted sensor

concept. In Figure 2.7(a), the quasi-focal sensor is tilted at an angle relative to the
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Figure 2.6: Beam splitter array for real-time image-based autofocusing [82]

in-focus plane. This quasi-focal sensor can be a 2D area sensor or a 1D linear sensor.
The overlapping position between the quasi-focal sensor and the in-focus plane is
referred to as the co-focus point in Figure 2.7(b). The focusing range is determined
by the z-range; the greater the tilt angle, the longer the focusing range. During the
scanning process, both sensors capture images of the sample. For each pixel of the
captured data, a contrast value can be determined based on surrounding pixel values.
Then, by dividing the contrast values of the quasi-focal sensor by those of the imaging
sensor, a contrast curve is obtained, as depicted in Figure 2.7(c). The peak of the
contrast curve identifies the pixel with the highest contrast value, i.e., the pixel at
the optimal focal position. The co-focus point can also be plotted on this contrast

curve. In Figure 2.7(c), the pixel distance between the co-focus point and the peak
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of the contrast curve represents a physical distance along the z-axis. This distance
indicates the offset between the current position of the objective lens and its optimal
focal position - representing how much the objective lens needs to move axially to
achieve optimal focus. When the imaging sensor is centered on the objective’s field
of view, the quasi-focal sensor can be offset from the center of the optical field of
view. The quasi-focal sensor detects image data before the imaging sensor detects
the same area. Similarly, volume cameras comprised of multiple linear CCDs coupled
with optical fibers can be arranged at tilted angles for autofocusing [65]. Bravo and
colleagues reported on using nine sensors coupled with fibers to capture images on

different focal planes, facilitating real-time image-based autofocusing [9].

2.2.5 Phase Detection Method

Phase-detection autofocusing has been extensively adopted in the majority of digital
single-lens reflex cameras (DSLRs). This technique typically works by splitting the
incoming light into a pair of images. The distance between these two images is then
measured, allowing for an inference of the focal offset. Here, the term phase pertains
to the translational offset between the two images (or phase shift in the Fourier
domain). Inspired by the phase detection concept in photography, an autofocusing
attachment kit has been developed to facilitate full scanning imaging using a standard
microscope [23]. As illustrated in Figure 2.8(a), two aperture-modulated cameras are
attached to the eyepiece for phase detection autofocusing. By adjusting the positions
of the two apertures, the viewpoints can be effectively altered via both eyepiece
outlets. When the specimen is placed at the focal point, the images captured by

both cameras will be identical. If the specimen is positioned off the focal point,
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Figure 2.7: Beam splitter array for real-time image-based autofocusing [95, 29, 81]

it will project at two distinct angles, leading to a translational offset between the
captured images. This offset is directly proportional to the defocusing distance of the
specimen. Hence, by identifying the translational offset of the two captured images
using phase correlation, the specimen’s optimal focal position can be retrieved without
necessitating a z-axis scan.

Figure 2.8(b) showcases another autofocusing scheme grounded in the phase detec-
tion concept [41]. A dual-aperture mask is positioned on the pupil plane to modulate

the specimen’s light. Unlike the method employing two aperture-modulated cameras,
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here, only a single focus sensor is utilized to capture the image modulated by the dual-
aperture mask. In this scenario, the image acquired from the focus sensor encompasses
two replicas of the specimen, with the translational offset between them being directly
proportional to the defocus distance. Figure 2.8(b) presents the raw image captured
by the focus sensor, where duplicates of the specimen are discernible. The distance
between these two duplicates can be recovered through the auto-correlation analysis
depicted in Figure 2.8(b). Figure 2.8(c) displays a similar phase detection scheme
proposed by Silvestri et al. [77]. Analogous to the dual-aperture modulation method,
only a single camera is employed for focusing. A wedge plate is inserted into the pupil
plane, directing half of the light beam at a slightly inclined angle. Consequently, the
image acquired from the focus sensor contains two replicas of the specimen separated
by a definite distance. The defocus distance can be inferred from the translational
offset between the two replicas. For the configurations shown in Figure 2.8(a) and
(b), aperture masks are used to limit the light on the pupil plane, offering them a
relatively longer autofocusing range. In contrast, the system in Figure 2.8(c) has a
shorter autofocusing range. The use of the dual-aperture mask doesn’t impede its
application in fluorescence microscopy. A beam splitter can be employed to guide the
intense excitation light through the dual-aperture mask, enabling camera detection

of the specimen’s weak fluorescence emission.

2.2.6 Dual-LED Illumination Technique

The dual-LED illumination method has been proven to achieve single-frame autofo-
cusing even when the sample is in continuous motion [43, 44, 42, 31, 22]. Figure 2.9(a)

demonstrates one such configuration where two near-infrared LEDs are positioned at
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Figure 2.8: Phase detection for real-time image-based autofocusing [23]
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the post-focal point of a condenser lens for sample illumination. These two LEDs
illuminate the sample from two different angles of incidence and can be regarded as
spatially coherent light sources. Using a hot mirror, the near-infrared light can be
directed to the quasi-focal sensor shown in Figure 2.9(a). Consequently, the images
captured by this quasi-focal sensor will contain replicas of the sample images that are
spaced a certain distance apart. Specifically, the quasi-focal sensor is positioned at a
predefined offset distance relative to the imaging sensor. When the sample is at the
quasi-focal position, the image captured by this sensor will still contain two replica
images of the sample outline. Similar to the dual-pinhole template method, the in-
terval between the two image replicas can be determined through auto-correlation
analysis, thus recovering the defocus distance. The preset offset in Figure 2.9(a)
is configured to enhance the accuracy of the auto-correlation analysis and generate
defocus contrast for transparent samples. If the direction of sample movement is

perpendicular to the translation direction, autofocusing can be achieved even with
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continuous sample movement. This dual-LED approach has also been demonstrated
to measure the focus plane using only the primary camera.

Figure 2.9(b) illustrates the dual-LED method using color multiplexed illumina-
tion. In this setup, a color LED array is employed for sample illumination. For
regular bright-field image acquisition, all LEDs are turned on, as shown on the left
side of Figure 2.9(b1). Between two bright-field acquisitions, red and green LEDs
are activated for multicolor illumination. If the sample is placed out of focus, the
red and green image replicas will be separated by a certain distance, as depicted in
Figure 2.9(b1). Subsequently, the translation between the red and green image chan-
nels can be identified by maximizing image mutual information or cross-correlation.
The resulting translation is utilized for dynamic focus correction during scanning.
Figure 2.9(b2) displays the WSI method for dual-LED autofocusing based on color

multiplexing.
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Figure 2.9: Dual-LED illumination for single-frame autofocusing [43, 44, 42, 31, 22]
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2.3 Deep Learning-based Autofocusing Techniques

With the rapid advancements in the fields of artificial intelligence and computer
vision, research directions that integrate cutting-edge Al algorithms with microscopic
imaging techniques have garnered significant attention from researchers [16, 32, 11, 13,
12, 6, 93, 45, 39, 89, 14, 63]. Currently, there are two main methods for implementing
autofocusing in microscopic imaging using deep learning: focus estimation and focal
plane recovery. In the focus estimation method, neural networks are typically used to
learn the mapping relationship between defocus images to the defocus distance. Once
the defocus distance is obtained, mechanical movement compensates for the defocus
distance to capture the true in-focus image. In the focal plane recovery method, a
neural network is constructed to learn the inverse imaging process. The input of
defocus images is processed through the network, directly outputting the recovered
in-focus image. The focus estimation method is suitable for scenarios where authentic
captured images are required, while the focal plane recovery method is applicable to
high-speed scanning, offline processing, and other scenarios, achieving virtual in-focus

imaging.

2.3.1 Focus Prediction Methods

Jiang et al. were the first to utilize artificial intelligence techniques to quickly achieve
autofocusing on a single frame image [30]. Through multi-domain learning (spatial,
frequency, and multi-domain), this method can capture and learn focus-related infor-
mation from various domains (different imaging conditions, optical setups, or tissue

types) as shown in Figure 2.10. This cross-domain learning approach enhances the
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system’s robustness and adaptability, improving imaging speed and quality even un-
der complex imaging conditions. The in-focus distance is estimated through a neural
network, and then the mechanical platform is adjusted to compensate for this dis-
tance, achieving efficient autofocusing. However, this method did not fully take into

account the inherent limitations of imaging.
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Figure 2.10: WSI autofocusing method based on deep learning (Focus
Prediction) [30]

Tathagato et al. utilized lightweight network designs like MobileNet_v2 to create
an autofocusing network [15]. They used the difference between two defocus images
taken at fixed intervals as the network input, and the output was the estimated in-
focus distance, as shown in Figure 2.11. By utilizing the defocus difference design,
image details related to the distance were retained, avoiding the influence of sample
diversity on prediction results. However, this method requires two images to estimate
the in-focus distance, whereas Jiang’s method [30] only needs a single image. Scanning
additional images for exposure results in extra scanning time costs during the focus

image construction process.
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Figure 2.11: WSI autofocusing method based on deep learning by two images
(Focus Prediction) [15]

PINKARD et al. proposed a method for single-shot autofocusing microscopy
imaging under coherent light using deep learning techniques [64], as depicted in
Figure 2.12. Traditional autofocusing techniques typically rely on continuous ad-
justments and verifications to locate the optimal focal plane. This process can be
both time-consuming and potentially imprecise, especially when dealing with com-
plex sample structures or a wide range of focus. The method aims to address a core
challenge in microscopy imaging: how to quickly and accurately focus on the optimal
plane of the sample without multiple scans or adjustments. This approach utilizes
convolutional neural networks in microscopy imaging by training a model to identify
and predict the best focus position. During the training phase, the in-focus image
Ground Truth (GT) is determined by identifying the maximum spectral energy from
the non-coherent z-stack. The input images, taken using coherent illumination of
defocus images, undergo a frequency domain transformation before being fed into the

network. The network’s output is an estimated focal length. The paper provides a
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detailed description of the entire microscopy imaging system, including how to inte-
grate the deep learning model, hardware configurations, and associated software tools.
The authors conducted a series of experiments to validate the method’s effectiveness,
comparing it to traditional techniques. These experiments covered various types of
biological samples, demonstrating the method’s versatility across different scenarios.
While this method offers rapid network processing speeds, it requires optical modula-
tion of the WSI imaging system (using multiple illumination methods) and performs
suboptimally in terms of sample diversity.
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Figure 2.12: Single-shot autofocusing microscopy by deep learning (Focus
Prediction) [64]

Lee et al. introduced a dual-network method for automatic focusing in Scanning
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Electron Microscope (SEM) imaging based on deep learning [37]. This method con-
sists of an Auto-Focus Evaluation Network (AENet) and an Auto-Focus Control Net-
work (ACNet), as illustrated in Figure 2.13. AENet evaluates image quality based on
the current image and another image with the same dimensions representing normal-
ized magnification values, given a specific working distance. The effective utilization
of ACNet requires the integration of AENet scores, SEM parameters (like working
distance and magnification), and traditional image quality indicators (such as image
variance and entropy). Subsequently, the adjusted working distance value is relayed
back to the SEM. AENet is designed to assess the quality of a given image with a
score range from 0 to 9. ACNet can precisely control the SEM focus online, based
on AENet’s output, for any lateral sample position and magnification. While this
dual-network approach demonstrated promising autofocusing performance on three
training samples, the workflow of the dual networks operates in a feedback manner,
making joint optimization relatively intricate.

Tang et al. proposed a strategy based on the Deep Image Prior (DIP), embedding
neural networks within physical models [80]. This is designed to approximate pro-
cesses that are challenging to model or parameters difficult to measure, aiming to find
the optimal solution in single-variable optimization problems, as shown in Figure 2.14.
The extensive training, large sets of manually labeled data, and limited generalization
have constrained the application of deep neural networks under supervised learning.
Methods rooted in neural networks necessitate substantial data to fit physical models
or deduce inverse relations. This approach is cumbersome and time-consuming since

some phenomena can be precisely simulated and analyzed in optics. Moreover, there’s
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Figure 2.13: Architectures of the autofocusing SEM based on a dual deep learning
network (Focus Prediction) [37]

a risk that neural network-based methods may not align with physical realities, lead-
ing to inevitable readjustments. Tang introduced an Untrained Physical Network
(UPN) that predicts diffraction distances solely from a known phase object’s diffrac-
tion pattern. Experimental results demonstrated that UPN could consistently and
accurately predict distances associated with different targets, diffraction distances,
and phase ranges while requiring only a brief training period. Furthermore, once
trained, the UPN can generalize to other targets as long as the actual diffraction
process remains unchanged. Compared to autofocusing metrics of holographic recon-
struction and traversal methods, UPN boasts advantages in both speed and precision.

It also exhibits commendable noise resistance, which is meaningful for autofocusing
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in holographic reconstruction and imaging. However, this method still relies on the
availability of accurate physical models and may have certain limitations in situations
without analytical expressions.
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Figure 2.14: Schematic illustration of the UPN network in prediction of diffraction
distance (Focus Prediction) [80]

Montoya et al. introduced a regression model based on convolutional neural net-
works (CNN), named FocusNET, designed to predict the accurate reconstruction dis-
tance of original holograms in Digital Lens-free Holographic Microscopy (DLHM) [57],
as depicted in Figure 2.15. In Digital Holographic Microscopy (DHM), a significant
challenge lies in determining the precise location of a sample within the inspection
volume without any supplementary procedures. For weakly scattering specimens con-
taining axially disconnected samples, digital holograms provide plane-by-plane infor-
mation about the entire volume. However, there isn’t a direct method to ascertain the

reconstructed focal plane. Montoya presented a physico-mathematical formula and
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extended its application to DLHM setups that differ from the optical and geometric
conditions used during the recording of the training dataset. By applying this method
to holograms of various samples recorded using different DLHM configurations, tests
validated its distinctive feature. Moreover, the study also furnished a comparison
of FocusNET with conventional autofocusing techniques in terms of processing time
and accuracy. Compared to methods that utilize a series of reconstructions to locate
the optimal focal plane, FocusNET’s performance is accelerated by a factor of 600,

primarily because it eliminates the need for hologram reconstruction.
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Figure 2.15: DLHM FocusNET architecture (Focus Prediction) [57]

2.3.2 In-focus Restoration Methods

Wu et al. harnessed deep learning techniques to achieve three-dimensional virtual
refocusing of fluorescence microscopy imaging [87], offering an efficient means to refo-
cus captured fluorescence microscopic images, resulting in clearer and more accurate
three-dimensional structures, as shown in Figure 2.16. Fluorescence microscopy is
commonly employed to observe cells and intracellular molecular structures. How-
ever, acquiring sharp three-dimensional images often necessitates multiple scans and

post-processing, which can be time-consuming and resource-intensive. By leveraging
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neural networks, they demonstrated how a clear three-dimensional structure can be
inferred from a single fluorescence microscopic image. This technique facilitates the
virtual refocusing of an individual image, eliminating the need for multiple scans.
To train and validate their approach, multiple fluorescence microscopy datasets were
utilized, undergoing preprocessing and augmentation to fit the deep learning models.
Compared to traditional three-dimensional refocusing techniques, this deep learn-
ing approach yielded faster and higher-quality outcomes. This method holds vast
potential for biomedical research, offering researchers an efficient tool to explore cel-
lular and intracellular structures. It represents an innovative deep learning approach
in the realm of fluorescence microscopy imaging, elevating the capability of three-
dimensional virtual refocusing to new heights and marking a significant advance-
ment in this domain. However, compared to structurally simple fluorescence images,
pathological microscopy images possess more intricate biological structure features
and require higher imaging quality and efficiency.

Gan et al. introduced a rapid and accurate deep learning-based autofocus method,
addressing the challenge of focus instability in Light Sheet Fluorescence Microscopy
(LSFM) [18], as depicted in Figure 2.17. LSFM, recognized as a promising tool in
biological research due to its capability to continuously observe live cell dynamics for
hours and days, places stringent demands on the light sheet and the detection focal
plane to achieve optimal image quality. Spatial light modulators can generate light
sheets, modulating the excitation beam into multi-depth lattice patterns for multi-
plexed structured illumination. Defocusing information is encoded into combinations

of distinct stripe patterns of different depths. Concurrently, neural networks can be
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Figure 2.16: ROIs are refocused using Deep-Z to different planes within the sample

volume (In-focus Restoration) [87]

employed for high-precision decoding or predicting the defocus amount. The net-
work architecture adopted by Gan is memory-efficient, demands a minimal training
dataset, and is easily adaptable to various experimental conditions. The method is
compatible with any light sheet imaging apparatus equipped with a spatial light mod-
ulator for light sheet generation. The proposed neural network architecture boasts
commendable generalizability benefits for untrained sample types. However, the ap-

proach requires light modulators and other light sheet generation devices, making it

relatively costly.
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Figure 2.17: Architectures of the autofocusing LSFM based on a multiplexed
structured illumination network (In-focus Restoration) [18]

Huang et al. proposed a phase-recovery method based on a Convolutional Re-

current Neural Network (RNN) [28]. This technique rapidly reconstructs phase and

amplitude information on samples using multiple holograms captured at varying dis-

tances from the sample to the sensor. It also accomplishes autofocus within the same

network, as depicted in Figure 2.18. Digital holography is among the widely used

label-free imaging techniques in biomedical imaging, and recovering lost phase in-

formation from the hologram is a crucial step in holographic image reconstruction.

Huang introduced a deep learning-based holographic image reconstruction and phase

retrieval algorithm, trained using a Generative Adversarial Network (GAN). This

35


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

imaging framework uses multiple input holograms, which are back-propagated with
zero-phase to a common axial plane, achieving autofocus and phase retrieval at its
output simultaneously. By employing dilated convolution kernels, there’s no need for
any spatial back-propagation steps. The captured original holograms of the object
are directly fed into the trained RNN, with the focused image reconstruction done at
its output. The efficacy of this deep learning-based holographic imaging method was
validated by imaging microscopic features of human tissue samples and Gram-stained
smears. Compared to existing methods, the proposed approach enhances the qual-
ity of the reconstructed images while also improving the depth of field and inference
speed. However, holographic imaging lacks an objective lens, resulting in holograms
distinctly different from pathology slide images.
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Figure 2.18: Recurrent holographic imaging framework (In-focus Restoration) [2§]

Xu et al. introduced a deep learning-based image processing technique to obtain

autofocusing images from Surface Plasmon Resonance Microscopy (SPRM) without
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adding complexity to the optical system [88], as illustrated in Figure 2.19. SPRM
inevitably suffers from non-uniformities and shifts in focus, particularly during pro-
longed recordings, resulting in image distortion and inaccurate quantification. Tradi-
tional focus correction methods necessitate additional optical components to detect
and adjust focus conditions. While digital holographic image processing algorithms
can, in principle, reconstruct images on any focal plane, they grapple with challenges
like twin-image interference, missing initial phase, and unknown object positions. Xu
trained a network model using thousands of SPRM images of nanoparticles acquired
at different focal lengths for correcting focus drifts in SPRM. The trained model is
capable of generating in-focus SPRM images directly from a single defocused im-
age, without knowledge of the focal condition during recording. A GAN model was
constructed and trained using thousands of SPRM images acquired at various focal
planes. This trained model automatically corrects the focus of the input SPRM image
and provides a refocused image at the output. The methodology was experimentally
studied by monitoring nanoparticles in both static and dynamic settings and quan-
titatively compared to assess its efficacy. Experiments demonstrated the method’s
effectiveness in both static and time-lapse monitoring. Hence, the proposed autofo-
cusing technique offers an effective approach for enhancing the consistency of SPRM
research and long-term monitoring. However, GAN networks are typically challenging

to train and inevitably produce artifacts and noise.

2.4 Scanning Strategy

Whole slide digital pathology imaging is a medical imaging technique that has gar-

nered significant attention in recent years. It enables pathologists to view, analyze,
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Figure 2.19: GAN models and particle-by-particle correction (In-focus
Restoration) [88]

and interpret tissue slice images on computer screens. To acquire high-resolution dig-
ital images, scanning methods are typically employed. We introduce two prevalent
scanning techniques: tile scanning and line scanning methods. The scanning strategy

is based on the focus map surveying method, illustrated in Figure 2-21.
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2.4.1 Tile Scanning and Line Scanning Methods

Tile scanning, often referred to as regional or block scanning, stands as a founda-
tional method adopted by the vast majority of pathology slide scanners. It involves
decomposing the slide into several small tiles or regions, scanning each tile along the
x-y axes, and focusing using axial movement in the z-direction. Upon completion of
the scan, all the tiles are reassembled to form a comprehensive digital pathology slide
image. This approach is particularly suitable for larger pathology slides or samples
requiring scanning at high resolutions. Given its focus on processing smaller tiles, it
effectively allocates computational resources. A potential drawback of this method
arises at tile boundaries where suboptimal stitching may occur. Thus, high-quality
image-stitching algorithms are essential to ensure image continuity.

Linear scanning, on the other hand, involves scanning the slide in continuous
lines or paths, mirroring the operations of conventional scanners or printers. The
scanning head moves linearly along a predetermined path, capturing images along
this trajectory, for example, solely in the x-direction. This method yields continuous,
seamless images, eliminating concerns about stitching between tiles. However, in
the linear scanning approach, ensuring high-quality image capture necessitates that
the CCD sensor’s signal and the movement of the scanned slide sample be strictly
synchronized. Such a mechanism implies that real-time previews of specific slide
image details are challenging to achieve during the scanning process. Additionally,
the precision demanded by linear scanning for mechanical and control systems results

in a relatively higher implementation cost.
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2.4.2 Focus Map Surveying Method

High-resolution, in-focus images of entire slide specimens can be achieved by re-
peatedly applying the z-stack auto-focusing process to each tile. However, the auto-
focusing process may entail a significant amount of time capturing z-stacks at multiple
locations. Assuming images are captured at a rate of 20 frames per second, scanning
five distinct focal points would require 0.25 seconds for each tile. As a result, an im-
age comprising 500 tiles might take up to 150 seconds to capture, excluding the time
for deceleration, acceleration, and positioning to move the slide to different lateral
and longitudinal positions. Applying conventional image-based focal measurement
methods for auto-focusing on each tile is not the most efficient solution. To reduce
time costs, many WSI systems either create a focus map before scanning or conduct
a focal scan for every certain number of tiles or lines. The number and positioning of
focal points are usually determined by the user.

Figure 2.20(a) illustrates the process of generating a focus map by the mapping
method [7]. Initially, the system selects focal points based on the sample’s charac-
teristics, distributing them evenly across the entire slide. Each focal point employs
triangulation to produce a focus map of the tissue surface, subsequently filling the
vacant areas. Triangulation stands as a typical method for focus map generation,
as shown in Figure 2.20(b). Linear scanning methods generally offer superior auto-
focusing performance compared to traditional 2D tiles since linear sensors can adjust
focus at shorter intervals. Another approach to creating a focus map involves auto-
focusing every nth tile, referred to as skip-tile in Figure 2.20(b). Here, it’s assumed
that the focus is shared between tiles. However, compared to the focus map method,

its in-focus performance is subpar and might include more out-of-focus areas. Yet,
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the skip-tile method doesn’t necessitate returning to specific axial positions with sub-
micron precision. Its demands for motion repeatability are less stringent compared
to the focus map method. Nonetheless, for both methods, adding more focal points
can enhance the overall focusing performance’s accuracy but comes at the cost of

increased auto-focusing time.
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Figure 2.20: Focus map generation and scanning methods [7]

2.5 Conclusions

This chapter provides an overview of the current state of autofocusing research. It
encompasses several representative methods for microscopic imaging autofocusing,
including reflective hardware-based autofocusing, real-time image-based autofocus-
ing, and deep learning-based autofocusing. From the review, it is evident that deep
learning-based autofocusing methods have been extensively applied in various do-
mains in recent years. They offer numerous advantages, such as high accuracy, rapid
processing speed, robust generalization capabilities, reduced dependency on hard-

ware, and minimization of human-related variables. Deep learning-based autofocusing
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techniques, like focus prediction and focal plane recovery methods, have progressively

become the predominant strategies for microscopic imaging autofocusing.
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Chapter 3

Aberration-aware Focal Distance

Prediction

3.1 Introduction

WSI is an essential technology for digital pathology, the performance of which is
primarily affected by the autofocusing process. Conventional autofocusing methods
either are time-consuming or require additional hardware and thus are not compatible
with the current WSI systems, as mentioned in Chapter 1.1. Compared to mechan-
ically adjusting the focal distance on a tile-by-tile basis, using advanced machine
learning algorithms to predict focus position of pathological images is an efficient
approach. In the current deep learning-based focus-prediction autofocusing methods
[30, 15, 66], all images are treated by the same neural network to derive the defocus
distance. Howerver, as a practical optical system, the effect of optical aberrations in-
evitably exists in WSI. The images with positive / negative defocus are not symmetric

with respect to the focal plane, resulting in images with different levels of defocus
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artifacts, as illustrated in Figure 3.1. Therefore, ignoring the undesirable effect of
optical aberrations, the deep model would be at the risk of overfitting.

Inspired by this physics-based observation, in this paper, we consider two inter-
acted issues jointly for autofocusing: 1) how to reduce the effect of optical aberrations
effectively; 2) how to determine the defocus distance accurately. For the first issue, we
propose a defocusing classification network, which can determine images with either
positive or negative defocus offset. By classification, samples within the same cate-
gory share similar appearance characteristics, which remedies the undesirable effect
of optical aberrations. For the second issue, we propose a two-branch refocusing net-
work, which includes two CNN models for estimating defocus distance, one for images
with positive defocus offset, and the other for images with negative defocus offset.
Experimental results demonstrate that our method achieves superior autofocusing

performance compared with the state-of-the-art (SOTA).

3.2 Preliminaries and Motivations

In this section, we introduce related preliminaries, including DoF and defocus defini-
tion, the effect of optical aberrations and defocus images in WSI, which serve as the

motivations of modules of our proposed method.

3.2.1 Depth of Field and Defocus Definition

In microscopy, the DoF is determined by the distance between the focal plane and

the farthest plane where the captured image is still clear. Mathematically, DoF is
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determined by the numerical aperture (NA) of the objective lens

A-m m
DoF =
or=Nae Tt Na®

(3.2.1)

where A is the wavelength of illumination, m is the refractive index, e is the pixel size
of detector and the lateral magnification of microscope objective is M. In WSI, NA

of the objective lens is high. Thus DoF is usually small (lower than 1um).

.
.
N
N
.
.

Defocus Focus plane Defocus Optical objective Camera PSF

- = -4pm 0 +4pm +7um +10pm
Negative Defocus Focus Positive Defocus

Figure 3.1: (a) The microscope system of WSI. (b) Defocus and focusing model.
The PSF is the cross section of image intensity. (c¢) Illustration of the asymmetric
effect of optical aberrations on three samples. The defocus distances are -10um,
-Tum, -4dum, Opum, 4pum, 7Tum and 10pm, respectively.

The imaging model in WSI is illustrated in Fig. 3.1. Fig. 3.1-(a) illustrates the

microscope system of WSI, where the objective lens is placed above the sample and
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is moved along the axial direction to adjust the focus of the microscope. The optical
model is shown in Fig. 3.1-(b), which indicates that the effect of defocus would result
in a blurred image on the camera. As an example, we exhibit images of three samples
at different defocus distances along the optical axis, as shown in Fig. 3.1-(c). It can
be seen that a clear sample image is captured in the focal plane, while images become
blurring when their locations deviate from the focal plane.

It is worth noting that, in practice, to capture clear sample images, it is not
necessary to move samples to precisely locate in the focal plane; clear images can be
obtained as long as the focusing errors are within the range of DoF of the objective

lens. Thus, we define images captured out of DoF as the defocus ones.

3.2.2 Optical Aberrations

An ideal imaging model is shown in Fig. 3.2-(a), where a very thin lens is used.
However, the lenses used in practice are all with the thickness of a certain degree.
Thus the captured images would suffer from the effect of optical aberrations, as
shown in Fig. 3.2-(b). By comparing Fig. 3.2-(a) and (b), it can be seen that,
if both are used to capture a very thin sample, in ideal imaging model, images on
opposite sides of the focus are symmetric with respect to the focal plane; while in real
imaging model, images with positive / negative defocus are asymmetric with respect
to the focal plane. This physical observation is the primary motivation of this work.
Specifically, the optical aberrations of WSI are mainly due to spherical aberration.

In the following, we give a detailed interpretation about this effect.
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Ideal Imaging Aberrations

Figure 3.2: The model of single lens imaging. (a) Ideal focusing model. (b)
Practical model with optical aberrations.

Spherical Aberration In Microscopy

To achieve high level of optical performance, it is necessary to design and manufacture
the single lens carefully, which is usually the spherical surface since it is easier to
fabricate than non-spherical curved surfaces. Moreover, considering the limitation of
a single spherical lens in focus ability, multiple lens elements (e.g. the objective lens of
microscopes) are assembled for image shooting, which must be precisely located along
the optical axis in order to balance the optical aberrations. However, this balance
can be upended due to the refractive index mismatch caused by transmission media,
cover glass, or the specimen itself. Light rays that approach the focus at a larger
angle experience greater refraction at an interface. It leads to spherical aberration,
i.€., the focus position differs in depth between the central and peripheral light rays,
as illustrated in Fig. 3.3-(a).

In WSI, air and tissue sample are involved in refraction, whose refractive indexes
are n; = 1 and ny = 1.35 ~ 1.55, respectively. In the focus scenario, as shown in Fig.
3.3-(b), light rays from the objective lens are concentrated on the air-tissue interface.
When the objective lens is brought closer or farther to the tissue, as illustrated in
Fig. 3.3-(c) and (d), the asymmetric effect of spherical aberration generates due to

the refractive index n; # ns, resulting in different defocus artifacts. They are called
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Figure 3.3: The spherical aberration phenomenon in microscopy. (a) Right: ideal
focusing in the air; Left: The fact with spherical aberration caused by the refractive
index mismatch. n,, ny, n. stand for the refractive index of air, cover glass and cell
tissue. (b) Simplified focusing model only with two kinds of transmission medium,
air ny and cell tissue nq. (c) The positive defocus scenario. (d) The negative defocus
scenario.

positive / negative defocus according to the locations where defocus happens with

respect to the focal plane.

The PSF of Spherical Aberration In Microscopy

[t is necessary to analyze the PSF of spherical aberration in positive / negative defocus
scenarios. In the literature, Luo et al. [52] measured the PSF of a microscope by cre-
ating a 3D PSF z-stack (40x/0.95NA objective lens; 300nm fluorescence polystyrene
latex beads; the z-stack from -10um to 10um with 0.2um axial steps). In their 3D
PSF model, we find that spherical aberration in positive / negative defocus scenar-
ios produces an asymmetrical PSF. It indicates that diffraction rings with positive
defocus and a blur speckle with negative defocus, which is consistent with our obser-
vation. Furthermore, experiments in [52] also demonstrate that the asymmetry effect
results from the spherical aberration, rather than the thickness of samples (the size

of beads is negligible). Besides, we give the out-of-focus degradation imaging model
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Figure 3.4: The pathology images (a) and the corresponding frequency images (b)
at different defocus distances.

in the appendix for readers interested.

3.2.3 Defocus Images in WSI

In this subsection, we study the differences between positive / negative defocus images
caused by optical aberrations. We exhibit the pathology images and the corresponding
frequency images at the different defocus distances, as shown in Fig. 3.4. We get
distinctive statistics from abundant sample images captured by WSI with positive /
negative defocus offsets. The negative defocus images have more uniform blur, while
the positive ones have visible artifacts, such as stripes. The corresponding frequency
images also have noticeable differences: the positive defocus frequency image has
a central peak and two secondary peaks. The state-of-the-art [30] did not notice
the asymmetry effect of optical aberrations. In [30], the network learns one single
mapping function for all images. While we propose a binary classification network to

discriminate the sign of defocus offsets, which will be elaborated in the next section.
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In conclusion, we can classify positive and negative defocus first according to the
features of pathology images. Then, we perform algorithm processing in the same

defocus category.

3.3 The Proposed Method

3.3.1 The Proposed Autofocusing Method

To realize autofocusing, the most popular method in current WSI systems is focus map
surveying [42], which creates a focus map after tile-by-tile scanning by z-stacks, as
shown in Fig. 3.11 (a). However, in our method, the focus predicted process from a z-
stack is replaced by a neural network with a single shot, as shown in Fig. 3.11 (b). The
input of network is a single defocus tile image, and the output is the predicted defocus
distance for the tile. Then, defocus distances congregate together to generate a focus
map, by which the microscope scans the sample and performs shooting. Therefore,
the difference is that ours only needs to take a single shot, while the traditional
method needs to create a z-stack (n times shoots with the corresponding mechanical
z-scanning, n = 21 [42]). In conclusion, the merits of our methods are high accuracy,
high speed and compatibility.

We introduce our WSI workflow based on deep learning autofocusing in detail in

the next subsection.

3.3.2 Deep Cascade Networks Overview

In this paper, we leverage the knowledge of physics-based observation along with a

neural network architecture [58, 75, 94, 74|, and propose a learning-based strategy
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for autofocusing via deep cascade networks. Deep cascade networks usually combine
multi-stages for multi-tasks to train separately and test jointly, such as cascaded
classifiers [85], deep coarse-to-fine cascade networks [70] and reconstructing dynamic
sequences and each frame independently [71]. Although a single network may be
powerful adequately to learn one step reconstruction, such a one-step network could
show signs of overfitting, unless there are sufficient data to train [71]. Besides, a
one-step network may require a long time to train and fine-tune carefully.

A simple and effective solution is to train a second network independently, which
learns features and signs from the output of the first network. Therefore, we develop
a learning-based strategy for autofocusing via deep cascade networks, containing de-
focusing classification network and refocusing network. As shown in Fig. 3.5-(a), in
our cascade networks, the input is a defocus image and the output is the predicted
defocus distance. More specifically, the input defocus image is firstly divided into
subimages, for each of which the classification network is conduced to discriminate
the sign of the defocus offset. Then the accurate defocus distance is identified by the
refocusing network for positive / negative offset respectively. Finally, autofocusing
in WSI is realized by shifting mobile platform of microscope to the corresponding
defocus distance position. We introduce in detail the designs of these main modules

in the following.

3.3.3 Defocus Classification Network Design

Based on the asymmetry effect of aberrations, we design a defocus classification net-
work to distinguish sample images with positive or negative defocus offset, as shown

in Fig. 3.5-(b). More specifically, the defocus offset is considered negative when the
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sample slide is situated outside or at the focal length; otherwise, the defocus offset is
positive.

In our network, the input is a defocus image, the output are binary decisions indi-
cating positive / negative defocus. In the network training stage, the binary decisions
are derived from the signs of labeled defocus distances. We design a CNN network
with channel attention. Specifically, a convolutional layer (5 x 5, stride 1) extracts
low level features from the input defocus images. Subsequently, we utilize a channel
attention layer to weight features and a max-polling layer to reduce dimensionality
[27]. Then we repeat the block (convolution + channel attention + max-pooling)
four times and use a pointwise convolution to fuse the information. Finally, two fully
connected layers classify defocus features as positive or negative. The final fully con-
nected layer with a softmax activation function outputs label 1 for a positive sign and
0 for a negative sign.

In network training, we adopt cross entropy as the loss function

1 < . .
Ly = _E ;[?/z log y; + (1 - yi) IOg(l - yz)]’ (3‘3‘1)

where y; is the predicted sign, y; is the sign of the i-th labeled defocus distance, and

n is the number of images in each batch.

3.3.4 Refocusing Network Design

After the defocus classification network is designed, samples are classified into two
categories. It is known that samples within the same class share similar character-
istics. Therefore, we design two-branch refocusing networks—positive network and

negative network—to identify defocus distances for two categories respectively.
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We determine two-branch networks with the same structure, because samples are
captured by the same optical system, as shown in Fig. 3.5-(c). After the feature
extraction of convolution layer (5 x 5, stride 1) and downsampling of max-pooling,
we repeat two similar attention residual blocks (ARB_vl and ARB_v2) four times.
ARB_v1 is used to extract features and ARB_v2 reduce their dimensionality. Finally,
the first fully connected layer connect all features and the second one output the
predicted defocus distances.

In network training, the loss function is defined as follows:
1 -
Ly= =Y (D;— Di)’, (3.3.2)

where D; is the ground-truth defocus distance and D; is the predicted one.

We define the focus estimation error Dy ap = |D; — ﬁl| We can obtain faithful
autofocusing results as long as Dyap < Dpor. It offers a flexibility for the pro-
posed refocusing network, i.e., the result estimated by the refocusing network is not

necessary to be the exact defocus distance, but just within the DoF.

3.3.5 Networks Training
Autofocusing Dataset

In networks training, we utilize the dataset collected by Jiang et al. [30], which
includes about 130,000 images with the corresponding defocus distances. To be fair,
we adopt the same training, validation and test sets as [30]. The training set includes
35 research-grade human pathology slides with Hematoxylin and eosin stains (Omano

OMSK-HP50). The images were obtained by a color camera with pixel size 3.45um.
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Figure 3.5: An overview of proposed framework. (a) Overall framework of proposed
autofocusing cascade networks. The input is a defocus image from focal stack and
the output is the predicted defocus distance. (b) The defocus classification network.
The output stands for positive or negative label. (¢) The refocusing network.
Positive and negative networks have the same structure.

They are further divided into 224 x 224 smaller segments for further usage. A typical
WSI system uses a 0.75NA, 20x objective lens to acquire high-resolution images of
the sample. We follow the same setting in our network.

In the collection of sample dataset, a sequence of z-stack images are acquired with
41 different defocus distances and step size 0.5um from -10pum to +10pm, which are
sufficient to cover the possible focus offset. The in-focus ground truth is recovered
by maximizing Brenner gradient [90] of the z-stack images and it is considered to be
the reference plane. By shifting the axial mechanical stage from the reference plane,

the defocus images are obtained and corresponding defocus distances are recorded as

labels.
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Implementation

The outputs of two sub-networks are defocus offset signs and defocus distances, re-
spectively. We choose to optimize two sub-networks separately, and finally cast them
together as a cascade autofocusing network.

In the classification network, we use all defocus images with labeled distances as
our training set. Our classifier is trained using the ADAM optimizer with a learning
rate as 0.0001 for 50 epochs and with batch size as 128. The training time is about
14 hours. In the refocusing network, we select the positive / negative labeled images
to train positive / negative networks. Dropout rate 0.3 is employed for the first fully
connected layer to suppress overfitting. The refocusing network is also trained using
the ADAM optimizer with a learning rate as 0.0005 for 50 epochs. The batch size
is 128 and training time is about 8 hours. All networks training is run on a single

NVIDIA GTX 1080Ti.

3.4 Experiments

In this section, we provide performance comparison of defocus distance prediction
with the SOTA [30], which is the first learning-based autofocusing method for WSI.
Their methods all use a ResNet-50.

We provide experimental comparisons on two sets: 1) Dataset 1 built by [30] are
the same vendor with the training data. It contains all stained tissue slide images,
including six categories of biological tissues with different morphological characteris-
tics of size, thickness and structure. Each sample contains 41 images from -10um to

+10pm with interval 0.5um. 2) Dataset 2 contains the de-identified HE skin-tissue
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Table 3.1: The focusing error comparison of ours and three varaints of [30] under
incoherent illumination on Dataset 1.

[30] in [30] in .
Sample spatial- Fourier- [30] in d.ual— Proposed
domain domain domain method

Samplel 0.33 £0.25 0.61 £0.58 0.27 £ 0.18 0.29 + 0.22
Sample2  0.33 £ 0.26 0.70 £ 0.83 0.96 £ 0.86 0.62 + 0.49
Sample3 0.37 £ 0.22 0.53 £0.35 0.31 £ 0.22 0.33 £ 0.21
Sample4 0.53 £0.28 0.50+0.34 0.42+0.24 0.34 + 0.25
Sample5 0.58 £ 0.31 0.63 £ 0.39 0.36 £ 0.29 0.39 + 0.30
Sampleb 0.87 £0.57 0.70 £0.52 0.45 + 0.24 0.41 + 0.26
Summary 0.50 £ 0.32 0.61 £ 0.50 0.46 + 0.34 0.37 + 0.31

Table 3.2: The focusing error comparison of ours and three varaints of [30] under
incoherent illumination on Dataset 2.

[30] in [30] in .
Sample spatial- Fourier- [30] in d.ual— Proposed
domain domain domain method

Sample7 1.51 £1.02 094 +0.71 048 £0.32 0.42 + 0.25
Sample8 1.32 £1.29 099 +£1.51 1.03+1.50 0.72 + 1.46
Sample9 2.69 + 2.41 0.63 £ 0.50 0.28 = 0.28 0.36 £ 0.29
Sample10  2.19 £2.15 0.77 £ 0.53 0.38 = 0.38 0.40 £ 0.30
Sample’1 219 £2.15 0.77 £ 0.53 043 £ 0.69 0.37 + 0.34
Samplei2  1.00 £ 0.77 0.52 + 0.29 0.85 +0.73 0.76 & 1.76
Sample1s  2.19 £2.15 0.77 £ 0.53 0.29 + 0.22 0.33 £+ 0.53
Summary 1.85+ 1.68 0.71 £0.62 0.53 £ 0.49 0.46 + 0.90

slides made by the Dermatology Department of the UConn Health Center, which are
different sources from the training data [30]. For both datasets, the size of each tile

image is 2448 x 2048.

3.4.1 Performance Comparison of Defocus Distance Predic-

tion under Incoherent Illumination
Comparison of Focusing Errors

In WSI, the most widely used objective criterion for performance evaluation of de-
focus distance prediction is the focusing error, which represents the differences of

predicted defocus distance with respect to the ground truth Dgr. The focusing error
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is measured by mean absolute error (MAE) Dy 4r and standard deviation (SD) Dgp.

The objective comparison results of focusing errors on Dataset 1 are exhibited in
Tab. 3.1. Tab. 3.1 shows the comparison results under incoherent illumination, where
three variants of [30] are compared: 1) spatial-domain-only method, which exploits
RGB channels information only; 2) Fourier-domain-only method, which exploits the
Fourier domain information with a magnitude channel and a angle channel; 3) dual-
domain method, which combines spatial and Fourier domain information. For the
sake of fairness, the compared schemes do not involve any hardware modifications.
With respect to the average focusing errors over six test samples, our method achieves
the best performance compared with all three variants of [30]. We further provide
comparison results on Dataset 2. Tab. 3.2 exhibits results under incoherent illumi-
nation. Our method still achieves the best prediction performance among all three
variants of [30].

We exhibit the subjective autofocusing performance in WSI on Dataset 1, as shown
in Fig. 3.6, in which the left images are in-focus specimens as ground truth in each
sample. The top right are the out-of-focus images in the defocus distance of -10um,
-5pum, Sum and 10um, respectively. The bottom right are the autofocusing perfor-
mances of the corresponding defocus images. Samples from 1 to 6 are de-identified
HE skin-tissue slides with significantly different biological structural features. For
example, Sample 4 is with more prominent edge features, and Sample 3 is with more
distinct nuclear structure. In contrast, Sample 2 contains large transparent regions
and weaker structural features. For this case, our performance is worse than [8],
since the features in Sample 2 are not so classifiable and thus the binary classifica-

tion module does not work well. Experiments have proved that the proposed method
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Figure 3.6: The autofocusing performance on Dataset 1. The left images are
in-focus specimens as ground truth in each sample. The right images are defocus
images and the corresponding focusing performances.

can estimate the focus distance and achieve autofocusing for most of samples with

different features. Additional objective evaluation index for WSI is not required in

autofocusing performance except for the focusing error.

Comparison of Focusing Errors with respect to DoF

The predicted defocus distances are not necessary to be the exact ones. We can obtain

in-focus images as long as the focusing errors are less than DoF of the objective lens.

Accordingly, we make the comparison of focusing error to DoF to demonstrate the

effectiveness of our autofocusing performance.

We show the average focusing error distribution of our method on Dataset 1 and 2

in Fig. 3.7 under incoherent illumination. Each point stands for the average focusing
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Figure 3.7: The average focusing error distribution on Dataset 1 and 2. Fach red or
blue point stands for the average focusing error of different defocus distances under
incoherent illumination.

error at different defocus distances. In a typical WSI system (0.75NA, 20x objective
lens), the DoF is 0.8um calculated by Eq. 1 according to the hardware parameters. It
can be found that, all average errors are within the range of DoF in Fig. 3.7. In fact,
there are 92.25% of focus errors within the range of DoF on Dataset 1 and 89.48% on
Dataset 2, with the defocus distance from -10um to +10um. The average thickness of
the pathological tissue is usually 5um. Thus, we can focus on the data with defocus
distance from -5um to +5um, and there are 97.71% of focus errors within the range of
DoF on Dataset 1 and 95.12% on Dataset 2. Therefore, the focusing error distribution
of our method is more concentrated in the range of DoF. However, there are much
more points outside of DoF in dual-domain method [30] than those of ours. This
analysis demonstrates the superiority of our method in terms of accuracy.

In addition, in Fig. 3.7 we find that the points of focusing errors have signifi-
cant differences in spatial distribution. The distribution of positive points is more
concentrated within the range of DoF, while negative points have a more dispersed

distribution. The methods of [30] also show similar results. These results are the
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consequence of the asymmetry effect of optical aberrations: the positive defocus im-
ages have more distinct optical artifacts, which contribute to extract features by the
network; while the negative ones have more uniform defocus blur, that is difficult
to predict the defocus distances accurately by the network. Experiments prove the

rationality of our motivation for defocus classification design.

3.4.2 Performance Comparison of Defocus Distance Predic-

tion under Single-LED Illumination

How effective is our method on other optical modification systems? In this subsec-
tion, we compare the methods between ours and the Single-LED method of [30],
which utilizes a single green channel input under single-LED illumination condition,
rather than the typical incoherent Kolner illumination. Although it is not a typical
modification in WSI, it does not affect our evaluation of the network.

Fig. 3.8 illustrates the case on Dataset 1 and 2 under single-LED illumination.
It can be found that, the average predicted errors of our method can be reduced by
23% on Dataset 1 and 70% on Dataset 2, compared with Single-LED method of [30].
Only for dyed deeply Sample 1 and dyed slightly Sample 2, our performance is worse
than [30].

According to the figure, we find that: (1) Under single-LED illumination, most of
the focusing errors are less than DoF of the objective lens. However, the focusing er-
rors of Single-LED method in [30] are higher than DoF, even up to 3 times of DoF on
Sample 8. These results demonstrate that our algorithm is capable of achieving qual-
ified autofocusing. (2) Compared with the scenario under single-LED illumination,

there are more focusing errors within the range of DoF under incoherent illumination.
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Figure 3.8: The focusing error comparison of ours and Single-LED of [30] on
Dataset 1 (left) and Dataset 2 (right) under single-LED illumination.

It is the reason that the three channels of RGB under incoherent illumination contain
more characteristics information provided by RGB channels than the single-channel
under single-LED illumination. Therefore, the autofocusing has better performance

under incoherent illumination.

3.4.3 Comparison with Other Methods

We have provided autofocusing performance comparison of defocus distance pre-
diction with the state-of-the-art [30], which is the first learning-based autofocusing
method for WSI. For the sake of fairness, we only compare with the single defocus
image methods, without any optical hardware modification and multi-image inputs.
How about the performance of other methods? In this subsection, we discuss the

schemes involving optical hardware modifications and multi-image inputs.
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Table 3.3: The performance of focusing error on Dataset 1. Left: comparisons with
[30] under green LED illumination. Right: comparisons with three varaints of [30]
under RGB illumination.

Sample Dual-LED 3-Domain Proposed method Sample Dual-LED 3-Domain Proposed method

ample . . .42 .2
Samplel 0.16 + 0.12 0.29 £+ 0.22 Sample? 0.80 4 0.68 0 +0.25
Sample8 0.52 + 0.57 0.72 + 1.46

Sample2 0.26 £ 0.27 0.62 £+ 0.49
Sample9 0.52 £+ 0.30 0.36 + 0.29

Sampled 0.16 + 0.11 0.33 + 0.21
Samplel0 0.73 £ 0.47 0.40 + 0.30

Sampled 0.22 £ 0.16 0.34 + 0.25
Samplel1 0.52 £+ 0.39 0.37 +£ 0.34

Sample5 0.17 £ 0.12 0.39 + 0.30
Samplel?2 0.78 + 0.39 0.76 £ 1.76

Sampleb 0.28 + 0.22 0.41 £+ 0.26
Summar 0.21 £ 0.17 037 £ 031 Sampleld 0.33 £ 0.20 0.33 £+ 0.53
Y : : : : Summary 0.59 £ 0.43 0.46 L 0.90

Comparison with the Hardware Modification Method.

Dual-LED 3-Domain is a hardware modification method, which achieves the best per-
formance in [30]. The 3-domain input under dual-LED illumination contains a spatial
intensity channel, a Fourier magnitude channel and an auto-correlation channel. The
comparison results on Dataset 1 and 2 are exhibited in Tab. 3.3.

We find that: Although Dual-LED 3-Domain method achieves the better perfor-
mance on Dataset 1, ours has better performance on Dataset 2. In focusing error
distribution on Dataset 2, ours has a more uniform distribution. However, the focus-
ing error distribution of Dual-LED 3-Domain has a steep distribution near the focus
position, and the focusing error is even up to 2.5um in [30]. Therefore, our method
achieves better performance compared with the hardware modification method (Dual-
LED 3-Domain), which shows the best performance of [30].

It is worth mentioning that, our method enjoys the merits of compatibility and

low costs, because of no modifications on the optical hardware system.

62


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

Comparison with the Multi-image Method.

The method of [66] utilizes the difference image of two defocus images as the network
input. The interval between the two defocus images is 2um. All data sets are also
from [30]. The average focusing errors of this method are lower than those of our
method, with 0.22 4+ 0.25um on Dataset 1 and 0.36 £ 0.37um on Dataset 2.

Our method is a single-shot method, which only utilizes one defocus image to
predict the defocus distance. The shooting position is fixed along the z-axis, so we
only scan the slide along the x-y direction to create a focus map. However, the method
of [66] employs two defocus images, which need to re-scan the slide along the z-axis
and shot for a second time. Additional scanning and shooting significantly reduce
the speed of the WSI workflow. Therefore, our single-shot method is more suitable

for WSI.

3.4.4 The Necessity Analysis of Defocusing Classification Net-

work

The main contribution of this work is the binary classification network that exploits
the asymmetry effect of optical aberrations. In this subsection, we demonstrate the

necessity of classification by experimental analysis on Dataset 1 and 2.

Performance of Defocus Classification Network

Due to the effect of the non-uniformity of sample thickness, we perform the same data
pre-processing as [30], which divides the test image into 20 sub-images with 224 x 224
regions and discards outliers. These sub-images are used as the input of the proposed

deep cascade network. We select 20 non-overlapping regions as the basis for the
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Table 3.4: The focusing error comparison of positive refocusing network R, and
negative refocusing network R, on Dataset 1 and 2

Test set R, (Incoherent) R, (Incoherent)

Dataset 1 0.25 + 0.18 0.48 + 0.35
Dataset 2 0.25 + 0.18 0.51 £ 0.44

overall consideration. When determining whether a test image is positive or negative
defocus, we perform classification on these regions and count how many ones with
positive or negative labels. The sign that has the maximum number of regions are
considered to be the type of this test image. The accuracy rate of our classification
network is 98.85% on Dataset 1 and 97.48% on Dataset 2. The experimental results
demonstrate that the defocusing classification network we designed has satisfactory

performances.

Performance of Refocusing Network

Refocusing networks contain two parts: positive network R, and negative network
R,,. The comparison focusing errors of refocusing networks on Dataset 1 and Dataset
2 are exhibited in Tab. 3.4. We find that, for two-branch refocusing networks with the
same structure, the results of defocus distance prediction are significantly different
between positive and negative scenarios. The positive focusing errors are lower than
negative ones, about 50.5%.

The results demonstrate that, under the influence of asymmetry optical aberra-
tions, negative defocus images have a more uniform defocus distribution than positive
defocus images. The positive images have visible artifacts, which contributes to net-
work identification and classification. In contrast, the negative defocus images with

a uniform defocus distribution bring difficulty to network classification.
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Table 3.5: The focusing error comparison of four methods on Dataset 1 and 2

Methods Dataset 1 Dataset 2

Baseline (Incoherent) 0.50 £0.32 194 +191
State-of-the-art (Incoherent) 0.46 + 0.34 0.53 + 0.59
Refocusing (Incoherent) 0.41 +£0.33 0.60 + 0.61

Classification+Refocusing (Incoherent) 0.37 + 0.31 0.46 + 0.90

Table 3.6: The focusing error comparison of positive refocusing network R, and
negative refocusing network R, on Dataset 1 and 2 under single-LED illumination.

Test set R, (LED) R, (LED)

Dataset 1 0.49 £ 0.47 0.46 £+ 0.47
Dataset 2 0.52 £+ 0.42 0.49 + 0.37

Necessity Classification Analysis

The necessity classification analysis is performed on four scenarios in Tab. 3.5: 1)
Baseline (Incoherent): a ResNet-50 network, which is the approach in [30], to predict
defocus distances directly without classifcation; 2) State-of-the-art (Incoherent): a
ResNet-50 network, which is the dual-domain approach in [30]; 3) Refocusing with-
out Classification (Incoherent): refocusing network with all defocus images trained
together without classification; 4) Classification + Refocusing (Incoherent): our deep
cascade networks, including the classification network and the refocusing network. In
this comparison study, we can investigate the role of the binary classification network
fairly.

As indicated in Tab. 3.5, the performance of our deep cascade networks is remark-
ably better than refocusing network without classification. The average predicted
defocus distance errors can be reduced by 9.76% on dataset 1 and 23.33% on dataset
2. From this analysis, it can be found that the classification before refocusing is

necessary, and our proposed strategy is effective.
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Table 3.7: The focusing error comparison of four methods on Dataset 1 and 2 under
the single green LED illuminaiton

Methods Dataset 1 Dataset 2
Baseline (LED) 0.61 £0.39 1.72 +1.72
Refocusing (LED) 0.51 +£0.46 1.70 + 1.33

Classification+Refocusing (LED) 0.47 £+ 0.42 0.51 + 0.42

Analysis of Classification under Single LED Illumination

The main contribution of this work is the binary classification network that exploits
the asymmetry effect of optical aberrations. We demonstrate the necessity of classi-
fication by experimental analysis on Dataset 1 and 2 under single-LED illumination.
The accuracy rate of the defocusing classification network is 98.85% on Dataset 1
and 97.48% on Dataset 2. The comparison focusing errors of refocusing networks on
Dataset 1 and 2 are exhibited in Tab. 3.6. We find that, for two-branch refocus-
ing networks with the same structure, the results of defocus distance prediction are
similar between positive and negative scenarios.

The necessity classification analysis is performed on three scenarios in Tab. 3.7: 1)
Baseline (LED): a ResNet-50 network, which is the approach Single-LED in [30], to
predict defocus distances directly without classifcation; 2) Refocusing without Classi-
fication (LED): refocusing network with all defocus images trained together without
classification; 3) Classification + Refocusing (LED): our deep cascade networks, in-
cluding the classification network and the refocusing network. In this study, we can
investigate the role of the binary classification network objectively. As indicated in
Tab. 3.7, the performance of our deep cascade networks is remarkably better than

a refocusing network without classification. The average predicted defocus distance
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Table 3.8: The classification accuracy comparison of four ablation ways and
ResNet-50 on Dataset 1 and 2

Methods Test set 1 Test set 2
Baseline 97.85%  85.80%
Baseline-+Pre-processing 97.99%  91.46%
Baseline+Pre-processing-+Augmentation 96.84% 93.75%
Baseline+Pre-processing+Augmentation+Attention 98.85% 97.48%
ResNet-50 98.28% 90.96%

errors can be reduced by 7.84% on Dataset 1 and 70% on Dataset 2. From this anal-
ysis, it can be found that the classification before refocusing is necessary, and our

proposed strategy is useable in other optical modification systems.

3.4.5 Ablation Study

For the sake of high accuracy of defocus distance prediction, we use data pre-processing
and augmentation methods. Specifically, for the raw defocus data, we use a channel
normalization to enhance contrast and highlight features. Then to suppress overfit-
ting, we utilize the color channel data augmentation [76], which transforms RGB to
GBR or other color orders. The augmented data also reduces the color sensibility,
resulting from histological staining. After balancing data capacity and training time,
we add two color orders (GRB &GBR) with distinct color features. Besides, channel

attention is a practical approach to weight features.

Defocusing Classification Network

The ablation analysis of classification network is performed on four conditions in
Tab. 3.8: a) Baseline: a classification network without any channel attention lay-

ers and data pre-processing. The accuracy of classification is 97.85% on Dataset
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Table 3.9: The focusing error comparison of four ablation ways and ResNet-50 on
Dataset 1 and 2

Methods Test set 1 Test set 2

Baseline 0.27 £ 0.23 0.35 £ 0.28

Baseline+Pre-processing 0.27 £ 0.22 0.30 + 0.22
Baseline+Pre-processing-+Augmentation 0.26 £ 0.25 0.28 + 0.27
Baseline+Pre-processing+Augmentation+Attention 0.25 £ 0.18 0.25 + 0.18
ResNet-50 0.21 £ 0.20 0.33 &= 0.27

1, while the generalization ability of the network is relatively weak on Dataset 2.
b) Baseline+Pre-processing: a classification network with data pre-processing. The
performance is higher than the last one on all dataset, especially on Dataset 2.
c¢) Baseline+Pre-processing+Augmentation: a classification network with data pre-
processing and augmentation. The accuracy of classification still increases about 2%
on Dataset 2, although accuracy decreases a little on Dataset 1. d) Baseline+Pre-
processing+Augmentation+Attention: our defocusing classification network, includ-
ing data pre-processing, augmentation and channel attentions. In this scenario, we
get the highest performance on both Dataset 1 and 2. Therefore, in a classification
network ablation study, the application of data pre-processing, augmentation and
channel attentions indicate their effectiveness and practicability.

Besides, we take a typical ResNet-50 for the objective comparison. The accuracy
of our classification network is slightly higher than ResNet-50 on Dataset 1, while our
performance on Dataset 2 is 97.48%, which is much higher than ResNet-50 90.96%.
Besides, the parameters of our classification network are SMB, while the parameters of
ResNet-50 are up to 270MB. In summary, our defocusing classification network enjoys
the following merits: only a few parameters, high speed and strong generalization

ability.

68


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

Table 3.10: The comprehensive comparison between ResNet-50 and ours.

Method ResNet-50 Ours
Focusing 0.50 (Dataset 1) 0.37 (Dataset 1)
Errors (um) 1.85 (Dataset 2) 0.46 (Dataset 2)
Parameters
(MB) 270 248

Inference Time

89.6 90.4
(s)

Refocusing Network

The ablation analysis of refocusing network is performed on four conditions in Tab.
3.9, which are the same as the classification network. Likewise, in refocusing network
ablation study, the application of data pre-processing, augmentation and channel at-
tentions demonstrate their effectiveness of defocus distance prediction. We also utilize
a ResNet-50 for the objective comparison of focusing error. All networks are trained
and tested by positive defocus images only. Although the focusing error of our refo-
cusing network is slightly lower 16% than ResNet-50 on Dataset 1, our performance
is higher 24.24% than ResNet-50 on Dataset 2. In addition, the parameters of our
refocusing network are 120MB, while the parameters of a ResNet-50 are up to 270MB.

Therefore, the refocusing network has more advantages than typical ResNet-50.

The Comprehensive Comparison between ResNet-50 and Ours

The inference time of ResNet-50 and ours is 89.6s and 90.4s on both datasets, respec-
tively. Although our parameters are lower 9% than ResNet-50, ours still has the same
inference time as ResNet-50, due to the additional CPU cost. We compare the per-
formance, parameters, and time between ResNet-50 and ours as shown in Tab.3.10.
The experiment demonstrates that our cascaded networks (defocusing classification

+ refocusing) can significantly reduce focusing errors.
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3.4.6 The Influence Analysis about the Count of Network

Parameters

In this subsection, we will prove that the autofocusing performance improvement
results from classification design, rather than the network with more parameters or
deeper layers. For a further fair comparison, we design a new deeper single refocusing
network with 64 layers into a comparison study. We also design deep cascade networks
with 28 layers for the classification module and 35 layers for the refocusing module.
All of them use the ResNet, which is the same network as [30], except the number of
network layers. In this way, we can see more clearly the role of the proposed binary
classification network to the final performance. The comparison group now includes

three cases:

e The single regression network with 54 layers (ResNet) proposed by [30], which

is the baseline.
e The deeper single refocusing network with 64 layers (ResNet).

e The proposed cascade network with 28 layers (ResNet) for classification module

and 35 layers (ResNet) for refocusing module.

First, let us investigate the performance comparison between the baseline and
the deeper baseline. As shown in Fig. 3.9, for six test samples, the deeper baseline
network achieves better performance on Sample 3, / and 6, but loses in the rest
ones. So the comparison result is a tie. It means that simply increasing the network
layers is not a straightforward and inevitable manner to improve the performance
of autofocusing. Furthermore, we check the performance comparison between the

deeper baseline and ours, which are with almost the same network parameters. From

70


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

: .
Il Bascline

[ Deeper Baseline
[Icascade

0.8}

0.6

0.4}

Focusing Error (um)

0.2

Sam1 Sam2 Sam3 Sam4 Samb Sam6

Figure 3.9: The ablation analysis about the count of network parameters. Baseline:
the method from [30] with 54 layers; Deeper Baseline: deeper refocusing network
with 64 layers; Cascade: cascaded networks with classification network (28 layers)

and refocusing network (35 layers).

Fig. 3.9, it can be found that our scheme wins on Sample 1, 3, 5 and 6, and slightly
loses on Sample 4. The average defocus distance error of the deeper baseline is
0.43pum; in contrast, that of ours is 0.36um. The above analysis demonstrates that
the proposed binary classification module is constructive to improve the performance
of autofocusing.

In general, pathology slides can be categorized as small tissue sections (mouse
testis or TMA cores), medium tissue sections (mouse brains), and large tissue sections
(animal embryos). Our training images are human H&E stained pathology slides with
uniform thickness 4~5um, mainly specific to the small tissue sections. The defocus
distance is from -10 to +10um, i.e., 20pum, which is sufficient for our task. (For
the thick and large tissue sections, we need to add more defocus images with longer
defocus distances to the training set.)

It is a general question if the defocus distance exceeds the training dataset range.

We just need to expand the range of the training samples and add these samples to
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the training set, if we want to adjust the model trained with small range samples
to defocus samples with large range samples. Here, we design an experiment to
demonstrate our point. We take O~+5um dataset for training and 0~+10um dataset

for testing:

e To be objective, we utilize a typical network: Resnet-50;

e We train Resnet-50 by two datasets respectively: the first network is trained by
the data with defocus distances 0~+5um (0-5 ResNet) and the second network

is trained by the images with defocus distances 0~+10pm (0-10 ResNet);

e The testing set contains the images with defocus distances 0~+10um for two

networks;
e The two networks have the same hyperparameters;

e We only show the performance on the positive dataset. (The negative has a

similar performance.)

The comparison of errors at different defocus distances exhibits in Fig. 3.10. We
find that: (1) at O~4um, the 0-5 ResNet achieves similar performance to the 0-10
ResNet; (2) at bum, the 0-5 ResNet error is double that of the 0-10 ResNet; (3)
at 5b~10um, the 0-5 ResNet has a much worse performance totally than the 0-10
ResNet. As the defocus distance increases out of the training set range, the error of
0-5 ResNet increases approximately linearly. The experiment demonstrates that, due
to the small range of training set, 0-5 ResNet can extract small defocus features but

not extract large defocus features.
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Figure 3.10: The focusing error comparison between 0-10 ResNet and 0-5 ResNet.
The ResNet-50s are trained by two datasets (0~+5um and 0~—+10um), respectively.

In conclusion, although it inevitably increases errors when the network processes
the images beyond the training set range, we can adjust the model trained with small
range samples to process large range samples by adding large range samples to the

training set.

3.5 Applications

In current WSI practices, the most prevalent method is focus map surveying [7],
which creates a focus map after scanning each tile through a z-stack, as illustrated
in Fig.3.11(a). However, in the approach proposed in this chapter, the process of
predicting focus from the z-stack is replaced by a neural network, as depicted in
Fig.3.11(b). The network takes a single defocus tile as input and outputs the predicted
defocus distance for that tile. Subsequently, all the defocus distances are aggregated

to generate a focus map. Using this map, the pathology scanning system scans the
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Figure 3.11: The conventional focus map surveying method (a) and our deep neural
network autofocusing scheme (b). The input of our network is only a single defocus
tile image.
sample and carries out the shot capture. Therefore, the distinction lies in the fact that
our method necessitates only a single shot capture, whereas the traditional approach
demands the creation of a z-stack (entailing n mechanical z-axis movements and
camera exposures, where n = 21). The detailed WSI workflow is shown in Appendix

A.3.1.

In the conventional z-stack technique, constructing a z-stack entails n axial move-
ments (with n typically being 11, though selecting a higher number can yield better
results). The Brenner gradient method is utilized to identify the in-focus plane,
necessitating n calculations, with each gradient computation of an image requiring
approximately 1.4 s. Assuming each axial movement takes time P, the total time for
a single autofocusing operation using the traditional z-stack method is calculated as
(10xP 4 11x1.4) s. In contrast, the aberration-guided WSI autofocusing approach
introduced in this study leverages network inference, completing in a mere 2.5 s. This
method necessitates only one axial movement, thereby eliminating the need for addi-

tional movements and gradient calculations. Consequently, the time required for our
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method to perform a single autofocusing operation is merely (2.5 + P) s. Our find-
ings demonstrate that, in comparison to the traditional z-stack method, our approach
markedly decreases the time required for autofocusing.

This method provides several benefits, including minimal in-focus error, swift
focusing capability, and robust compatibility, making it particularly suitable for ap-
plications that demand accurate exposure captures of pathology images. Nonetheless,
there are some limitations to consider. The method exhibits challenges in classify-
ing transparent samples, reflecting limitations in its generalizability. Furthermore,
the reliance on network inference necessitates the computational resources of high-

performance GPUs.

3.6 Conclusion

This chapter introduces a WSI autofocusing method based on a deep cascading net-
work. Leveraging the asymmetric properties of optical aberrations, a defocus classifi-
cation network is designed, categorizing samples with distinct feature characteristics
into two classes. Benefitting from the classification results, the subsequent two refo-
cusing network branches can effectively learn the mapping between defocus images
and defocus distances. This approach can overcome the limitations of traditional
methods, facilitating rapid and precise focus prediction, and is compatible with cur-
rent WSI methodologies. Experimental results indicate that, compared to SOTA
focus estimation techniques, this method yields lower focusing errors and is particu-

larly suitable for real-exposure photography of pathological images.
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Chapter 4

Dual-shot Deep Autofocusing with
a Fixed Offset Prior

4.1 Introduction

WSI is an emerging technology in digital pathology. The accuracy and speed of auto-
focusing are crucial for the performance of the WSI system. Traditional autofocusing
methods require capturing a stack of up to 21 shoots with varying focal distances for
each tile of the target ultra-high-resolution pathology image. Conventional autofo-
cusing methods either are time-consuming or require additional hardware and thus
are not compatible with the current WSI systems, as mentioned in Chapter 1.1.
Compared to mechanically adjusting the focal distance on a tile-by-tile basis, using
advanced machine learning algorithms to deblur defocus pathological images is an ef-
ficient approach. This method can produce sharp slide images in a single pass without
the need to create a focus map or employ expensive and complex optical hardware.

However, achieving blind deblurring of pathological images presents challenges under

76



Ph.D. Thesis — Qiang Li; McMaster University — Electrical and Computer Engineering

constraints such as high NA and magnification by objective lenses, including uneven
focus distribution and limited DoF.

Diverging from the focus prediction approach outlined in Chapter 3, this chapter
introduces a method that is capable of directly restoring images to their in-focus
state. To overcome the imaging bottleneck, we have developed a deep convolutional
neural network for tile-wise autofocusing, designed to generate in-focus images from
tentatively defocus ones. This dual-shot autofocusing network (DAFNet) operates
with just two images taken at different focal distances, using their relatively fixed
offset as an implicit prior. Through a constrained position design, we utilize two
defocus images taken at fixed relative positions to derive a univariate equation for
the in-focus image, thereby transforming the problem of blind deblurring into a non-
blind deblurring issue. The innovative architecture of DAFNet facilitates the fusion of
complementary information from the two input images taken at different focal lengths.
The proposed offline reconstruction strategy allows for fast scanning of sample slides
without compromising on image quality, as DAFNet is capable of correcting errors in
the focal distance and bringing the scanned tiles back into focus through a learned
non-linear, dual-input blur-to-sharp mapping. Experimental results showcase the

refocusing capabilities of the DAFNet method.

4.2 Preliminaries and Motivations

Traditional autofocusing methods rely on mechanical adjustment to conduct refocus-
ing, which need repetitive axial scanning and thus are time-consuming. In order to
reduce the time cost of scanning, we propose the concept of deep autofocusing, which

no longer performs mechanical autofocusing but instead recovers in-focus images in
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a learning-based manner. In this section, we introduce the problem formulation and

the motivation of the proposed scheme.

4.2.1 Defocus Degradation Model

In optical microscopy, the PSF can be formulated by the classical Born & Wolf model
8, 26]: ,
h(r,Ap) = ‘C/l Jo (k‘%rp) e_%ikPQAD(¥>2pdp : (4.2.1)
0
where
— r is the radial distance along the lateral plane;
— Ap is the distance between the in-focus position and the object plane along the
optical axis, i.e., the defocus distance;
— (' is a normalization constant;
— Jy is zero-order Bessel function of the first kind;
— k is angular wave number of the light source;
— n is the refractive index;
— ¢ is the imaginary number;
— p is the normalized coordinate in the exit pupil.

As shown in the above formulation, the blurring artifact in digital pathology is
mainly due to the poor focusing effect induced by AD. The axial PSF model is shown
in Fig. 4.1 (a) and the lateral planes with different AD are shown in Fig. 4.1 (b) and
(c). It can be found that, the amplitude of blue line (AD = 0.5um) is lower than the
red one (AD = 0) due to the out-of-focus degradation, which becomes larger as AD

increases.
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Figure 4.1: (a) The axial PSF distribution curve with in-focus position (red line)
and defocus position (blue line). (b) The lateral plane with AD = 0. (c) The lateral
plane with AD = 0.5 pm.

In WSI, the refocusing task is even harder than deblurring in natural image pro-
cessing, wherein the scene is considered with a constant depth from the camera and
thus the PSF is uniform over the image. In contrast, in WSI the tissues have the
diversity of thickness, which causes the discontinuity of depths. It is thus impossi-
ble to make a perfectly focused image from a single surface, since the corresponding
PSF varies spatially. To simulate the DoF effect, we exploit the layered DoF model
(73, 86], which converts continuous depth map to approximated discrete depth layers
(object planes). Accordingly, the PSF h(r, AD) is rewritten as h,,, where m stands
for the position of each depth layer and hg is the PSF of the in-focus depth. Each
depth layer is blurred by its corresponding PSF with a convolution operation and
the blurred depth layers are integrated to form the captured image. Therefore, the

in-focus imaging model of WSI can be formulated as:

X=> 2y ®hpy, (4.2.2)

where x,, is the discrete depth layer of sample with depth m, ® is the convolution
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operator, X is the underlying in-focus image of the in-focus object plane xq. Ac-
cording to the formula (2), we find that the in-focus image X is essentially the result
of 3D PSF accumulation on the 3D object. Therefore, the in-focus image in digital
pathology and the clear image in natural image processing are different with respect
to the imaging principle.

When the sample is shifted by offset AD from x,, the new in-focus object plane
is denoted as zap and the corresponding m-th depth layer becomes x,,.ap. The

captured defocus degradation image Y can be represented as:

Y = Zmiap @ hin. (4.2.3)

This out-of-focus degradation imaging model indicates that the recovery of in-focus
image X from defocus image Y is far more challenging than deblurring in natu-
ral image processing. The manner that relies on a single defocus image for image
recovery—as done by image deblurring—cannot produce satisfactory image quality.
Intuitively, to address this ill-posed problem, multiple observed images should be used
in order to exploit the complementary information among them. In this work, we uti-
lize two defocus inputs and achieve wonderful refocusing performance. In addition,
to recover the in-focus image, it is reasonable to assume that the most reliable knowl-
edge is from the two nearest defocus planes of the in-focus plane [55, 3], denoted as

Y; and Y5 respectively:

Yi = me—i—ADl ® hma YV2 = Z:Em—ADQ ® hm (424)
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Figure 4.2: Illustration of the microscopy imaging model in WSI system. (a) The
proposed dual-shot deep autofocusing scheme. The expected focal distance Dy
(initial plane) over all tiles of the scanned slide, is estimated by performing simple
tile autofocusing once from the center filed of the whole slide. Then for all tiles, two
tentative possibly defocused images are captured with relative defocus offset AD;
and AD, to Dy respectively. (b) Tissue details with many tiles. The focus points of
all tiles are different in the range of tissue thickness along the optical axis with an
uneven distribution.

The dual-shot defocus images Y; and Y3 retain pieces of complementary informa-
tion about the underlying in-focus image X, which inspires us to fuse them to obtain

the refocused image in a data-driven manner.

4.2.2 Implicit Fixed Offset Prior

Both blind and non-blind deconvolution are techniques in image processing used to
restore blurred images, but they differ in terms of problem formulation and solution
approaches [35, 20]. Blind deconvolution is a method of deconvolution performed
without prior knowledge of the PSF or the blurring kernel. In blind deconvolution,
only the blurred image is available, and the task is to estimate both the original im-
age and the blurring kernel. Given the lack of prior information, blind deconvolution
presents a more challenging problem. To address blind deconvolution, regularization
methods or statistical learning approaches are often employed to constrain the so-

lution space and enhance stability. On the other hand, non-blind deconvolution is
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a method where deconvolution is carried out with knowledge of the blurring kernel
PSF. In non-blind deconvolution, both the blurred image and the blurring kernel
are available, and the task is to directly recover the original image. Compared to
blind deconvolution, non-blind deconvolution is typically easier to address because
information about the blurring process provides better constraints on the solution
space.

We have discovered that utilizing a pair of defocus images for deblurring facilitates
the transformation of the challenge from blind to non-blind deblurring. The derivation
of the imaging equation for this dual-shot approach yields Eq. A.2.6 (see Appendix
A.2). This equation involves merely two unknowns: the defocus distance, denoted as
Ap,, for the first image, and the relative distance, A, between the first and second
images. Given the relative distance A, Eq. A.2.6 simplifies into a univariate function
in terms of Ap,. This simplification permits the derivation of an approximate solution
via optimization techniques. Following this, the PSF can be explicitly defined by Ap,,
thereby facilitating the attainment of an in-focus image through the application of
non-blind deblurring methods.

In summary, the relative distance A serves as an implicit fixed offset prior. Despite
the PSF being unknown, the known and predetermined relative distance A between
the two defocus images allows for the indirect acquisition of the PSF. Consequently,
when designing the dual-shot positions, it’s crucial to maintain their fixed offset prior.
This implicit distance prior does not need to be explicitly specified in the network
design. Moreover, while the univariate equation for the in-focus image is known,
considering practical factors such as noise and imaging errors, it’s not necessary to

solve it directly. The recovery of an in-focus image can be achieved through the
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implicit input of a neural network.

4.2.3 Defocus Images Determination

In view of the above, we propose a CNN-based autofocusing strategy relying on dual-
shot position-constrained images, which are from the two nearest defocus planes of
the initial plane, as illustrated in Fig. 4.2 (a). Specifically, at the beginning, we
choose the central tile of the scanned slide as the representative one, for which we
collect a z-stack with dense images. According to the derived defocus distance, the
focal position Dy is computed, which serves as the initial plane for the subsequent
processing. It is worth noting that, since different tiles are with uneven topography,
this position is usually not the focus of other tiles. Then for all tiles, two tentative
possibly defocus images are captured with relative defocus offset AD; and ADs to
Dy respectively. This setup stems from an implicit position prior, namely the relative
distance A = AD; + AD,. Although we have not explicitly fed the position into the
network, the two implicit inputs of the network contain priors of the position. As
illustrated in Fig. 4.2 (b), the red star stands for the focus point of each tile and AD
is the defocus distance from different focus points to the initial plane. The following
task is to recover X by fusing its t