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Abstract

The Fisher dispersion index is a widely used measure of dispersion in count
data. In the univariate case, the dispersion index is equal to the ratio of the
variance to the mean. In the multivariate case, such a widely used and ap-
plied dispersion index does not exist. In this thesis, we review some previously
proposed multivariate extensions and introduce a new multivariate dispersion
index. We illustrate its properties on some common multivariate discrete dis-
tributions and demonstrate its usefulness through a simulation study and real-
world examples.
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Chapter 1

Introduction

Introduced by Ronald Fisher (1934), the dispersion index is defined as the
ratio of the variance to the mean

DI =
Var(Y )

E(Y )
. (1.0.1)

When DI = 1, we say that X is equi-dispersed. When DI < 1 we say that X
is under-dispersed and over-dispersed when DI > 1. The dispersion index is
often used to assess whether a set of univariate count data can be modelled us-
ing the Poisson distribution, which is always equi-dispersed. This assumption
of the Poisson distribution is highly restrictive in practice as many datasets
display over/under-dispersion (Hilbe (2014)).

A distribution is said to be over-dispersed relative to the Poisson dis-
tribution if it has DI > 1. Similarly, a distribution is said to be under-
dispersed relative to the Poisson distribution if DI < 1. For example, the
Bernoulli distribution is under-dispersed relative to the Poisson distribution
since Var(X)/E(X) = p(1 − p)/p = (1 − p) < 1. Further, the negative bi-
nomial distribution is over-dispersed relative to the Poisson distribution since
Var(X)/E(X) = 1/p > 1 when p ∈ (0, 1).

In the multivariate setting, measuring dispersion is not so straightforward.
One key challenge is that the variance and expected value of a distribution
become matrix and vector valued, so care must be taken when defining an
appropriate measure of dispersion. Further, a multivariate dispersion index
should account for dependency between random variables, as this will influence
the degree of dispersion present in data.

Considering these challenges, recent developments have been made in ex-
tending the dispersion index to a multivariate setting. Kokonendji and Puig
(2018) have proposed the multivariate generalized and marginal dispersion in-
dices (GDI and MDI) and Minkova and Balakrishnan (2014a) introduced FI 2
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as a bivariate extension of the dispersion index. In this thesis, we will intro-
duce a multivariate extension of FI 2 that provides a natural generalization of
equi-dispersion from the bivariate to p-variate case. Key properties of GDI,
MDI and FI p will be explored in later sections, and their comparison will form
the basis of our simulation study and examples.

1.1 Thesis Outline

The thesis is structured as follows. In Chapter 2, we introduce some bivari-
ate discrete distributions and discuss their key properties. In Chapter 3, the
methodology used for the simulation study is presented alongside the maxi-
mum likelihood estimates for some bivariate discrete distributions from Chap-
ter 2. In Chapter 4, we introduce FI p, our proposed multivariate dispersion
index, and illustrate some of its key properties. In Chapter 5, we present a
simulation study and applications of GDI, MDI and FI p to some datasets of
interest. Finally, Chapter 6 offers an overview of the thesis and suggestions
for future research.

2



Chapter 2

Background

2.1 Bivariate Discrete Distributions

Here we introduce some bivariate and p-variate discrete distributions that
will be of use in later sections. For a more detailed discussion of univariate
and multivariate discrete distributions please refer to Johnson et al. (1997),
Johnson et al. (2005) and Kocherlakota and Kocherlakota (2017).

2.1.1 Bivariate Bernoulli

Recall that Y follows a Bernoulli distribution if it has the following probability
mass function (PMF) and probability generating function (PGF)

P (Y = y) = py(1− p)1−y (2.1.1)

ψ(s) = (1− p) + ps (2.1.2)

where y ∈ {0, 1}, p ∈ [0, 1] and s ∈ R. The expected value and variance of the
Bernoulli distribution are E(Y ) = p and Var(Y ) = p(1− p) respectively.

Consider the random vector Y = (Y1, Y2), where Yi follows a Bernoulli
distribution. The four possible outcomes for Y are (0, 0), (0, 1), (1, 0), (1, 1)
with probabilities p00, p10, p01 and p11 respectively. We say Y = (Y1, Y2) follows
a bivariate Bernoulli distribution if it has the following joint probability mass
function and joint probability generating function

P (y1, y2) = py1y211 p
y1(1−y2)
10 p

(1−y1)y2
01 p

(1−y1)(1−y2)
00 (2.1.3)

ψ(s1, s2) = E(sy11 s
y2
2 ) = (s1s2p11 + s1p10 + s2p01 + p00) (2.1.4)

where yi ∈ {0, 1}, pij ∈ [0, 1] and (s1, s2) ∈ R2. The marginal distributions
of Y, P (Y1 = y1) and P (Y2 = y2), are readily seen to follow a Bernoulli
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distribution with parameters p00 +p10 and p01 +p11 respectively. The expected
value and variance of Yi are E(Yi) = p0i+p1i and Var(Yi) = (p0i+p1i)(1−p0i−
p1i) for i = 1, 2. We have E(Y1Y2) = Pr(Y1 = 1, Y2 = 1) = (p00+p10)(p01+p11).
Thus, the covariance and correlation of Y1 and Y2 are given by

Cov(Y1, Y2) = p00p11 − p10p01 (2.1.5)

Corr(Y1, Y2) =
p00p11 − p10p01√

(p00 + p10)(1− p00 − p10)(p01 + p11)(1− p01 − p11)
. (2.1.6)

2.1.2 Bivariate Poisson

Recall that Y follows a Poisson distribution if it has the following PMF and
PGF

P (Y = y) =
e−λλy

y!
(2.1.7)

ψ(s) = eλ(s−1) (2.1.8)

where y ∈ N, λ > 0 and s ∈ R. The expected value and variance of the Poisson
distribution are E(Y ) = Var(Y ) = λ.

The bivariate Poisson distribution arises in several ways though, here we
follow the trivariate reduction method used originally by Holgate (1964). Let
W1, W2 and W3 be independent Poisson random variables with parameters λ1,
λ2 and λ3. Define the random vector Y = (Y1, Y2) where Y1 = W1 + W3 and
Y2 = W2 + W3. We say Y = (Y1, Y2) follows a bivariate Poisson distribution
if it has the following joint probability mass function and joint probability
generating function

P (y1, y2) = e−(λ1+λ2+λ3)
min(y1,y2)∑

k=0

λ
(y1−k)
1 λ

(y2−k)
2 λk3

(y1 − k)! (y2 − k)! k!
(2.1.9)

ψ(s1, s2) = e(λ1+λ3)(s1−1)+(λ2+λ3)(s2−1)+λ3(s1−1)(s2−1) (2.1.10)

where λi > 0 and (s1, s2) ∈ R2. The marginal distributions of Y, P (Y1 =
y1) and P (Y2 = y2), are readily seen to follow Poisson distributions with
parameters λ1 +λ2 and λ2 +λ3 respectively. The expected value and variance
of Yi are E(Yi) = Var(Yi) = λi + λ3 for i = 1, 2. We have E(Y1Y2) = E((W1 +
W3)(W2+W3)) = λ1λ2+λ1λ3+λ2λ3+λ23. Thus, the covariance and correlation
of Y1 and Y2 are given by

Cov(Y1, Y2) = λ3 (2.1.11)

4
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Corr(Y1, Y2) =
λ3√

(λ1 + λ3)(λ2 + λ3)
. (2.1.12)

Below we visualize the PMF with λ1 = 2, λ2 = 3 and λ3 ∈ {1, 2, 3, 4}.
The lightly coloured cells indicate large values of the PMF, whereas the darker
cells indicate areas with smaller values of the PMF.

Figure 2.1: Joint PMF of Bivariate Poisson distribution
with parameters (λ1, λ2, λ3) evaluated on {0, 15}2

2.1.3 Bivariate Negative Binomial

Recall that Y follows a Negative Binomial distribution if it has the following
PMF and PGF

P (Y = y) =
(y + r − 1)!

y! (r − 1)!
(1− p)y pr (2.1.13)

5
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ψ(s) =

{
p

1− (1− p)s

}r
(2.1.14)

where y ∈ {0, 1, 2, . . .}, p ∈ [0, 1] and | s |< 1
p
. The expected value and vari-

ance of this distribution are E(Y ) = r(1−p)
p

and Var(Y ) = r(1−p)
p2

respectively.
The univariate Negative Binomial distribution arises in the analysis of wait

times. If we consider an infinite number of Bernoulli trials with probability of
success p, and let Y denote the number of failures before the rth success, then
Y follows a Negative Binomial distribution. An alternative way to derive the
Negative Binomial distribution arises in the analysis of accident proneness.

Originally derived by Greenwood and Yule (1920), assume that the number
of accidents experienced by α individuals in a period of time follows a Poisson
distribution with rate parameter λ > 0. Let Y denote this random variable
with probability mass function

P (Y = y | λ) = e−αλ
(αλ)y

y!
(2.1.15)

where y ∈ N. Let λ ∼ Gamma(ν, β) with probability density function

P (λ) =
βν

Γ(ν)
λν−1e−βλ (2.1.16)

where λ > 0, ν > 0 and β > 0. Then the unconditional distribution of Y is
given by

P (Y = y) =
Γ(y + ν)

y! · Γ(ν)

(
α

α + β

)y (
β

α + β

)v
(2.1.17)

=
Γ(y + ν)

y! · Γ(ν)

(
1− β

α + β

)y (
β

α + β

)v
(2.1.18)

which is Negative Binomial with parameters ν and p = β
α+β

(from 2.1.13).
Similar to the bivariate Poisson distribution, the bivariate Negative Bi-

nomial distribution arises in several ways. Here we follow the compounding
method originally introduced by Edwards and Gurland (1961) and later in-
dependently discovered by Subrahmaniam (1966). We note that the original
derivation of the Negative Binomial distribution was given by Arbous and
Kerrich (1951) and Bates and Neyman (1952).

Let Y = (Y1, Y2) represent the number of accidents incurred by the same
individual for two types of accidents. Assume Y follows a bivariate Poisson

6
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distribution with parameter λ ∼ Gamma(ν, β) and joint conditional probabil-
ity generating function

ψ(s1, s2 | λ) = eλ[α0(s1−1)+α1(s2−1)+α2(s1s2−1)]. (2.1.19)

We say Y = (Y1, Y2) follows a bivariate Negative Binomial distribution if it
has the following joint probability mass function and the unconditional joint
probability generating function

P (y1, y2) =

y1∑
k=0

y2∑
m=0

(
α0 + y1 + y2 − k −m− 1

α0 + y2 −m− 1

)
(2.1.20)

×
(
α0 + y2 −m− 1

α0 − 1

)(
α1 + k − 1

α1 − 1

)(
α2 +m− 1

α2 − 1

)
(2.1.21)

× βy11 β
y2
2 (β1 + β2 + 1)k+m−y1−y2−α0

(β1 + 1)k+α1(β2 + 1)m+α2
× 1 (y1,y2)∈N2 (2.1.22)

ψ(s1, s2) =

[
1 +

α0

β
+
α1

β
+
α2

β
− α0

β
s1 −

α1

β
s2 −

α2

β
s1s2

]−ν
(2.1.23)

where β2 = δ ∗ β1, αi > 0, βj > 0 for i = 0, 1, 2 and j = 1, 2 and (s1, s2) ∈ R2.
The marginal distributions of Y, P (Y1 = y1) and P (Y2 = y2), are Negative
Binomial distributions with Yi ∼ NB(α0 + αi,

1
βi+1

) for i = 1, 2. The expected

value and variance of Yi are E(Yi) = (α0 +αi)βi and Var(Yi) = (α0 +αi)βi(βi+
1). The covariance and correlation of Y1 and Y2 are given by

Cov(Y1, Y2) = α0β1β2 (2.1.24)

Corr(Y1, Y2) =
α0√

(α0 + α1)(α0 + α2)

√
β1β2

(β1 + 1)(β2 + 1)
. (2.1.25)

Below we visualize the PMF with parameters α = (α0, α1, α2) and β =
(β1, β2).

7
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Figure 2.2: Joint PMF of Bivariate Negative Binomial distribution
with parameters α = (α0, α1, α2) and β = (β1, β2) evaluated on {0, 15}2

2.1.4 Bivariate Type I Pólya-Aeppli

Recall that Y follows a Pólya-Aeppli distribution if it has the following PMF
and PGF

P (Y = m) =


e−λ if m = 0

e−λ
m∑
k=1

(
m− 1

k − 1

)
[λ(1− ρ)]k

k!
ρm−k if m ∈ {1, 2, . . .} (2.1.26)

ψ(s) = e−λ(1−
(1−ρ)s
1−ρs ) (2.1.27)

where λ > 0, ρ ∈ (0, 1), and s ∈ R. The expected value and variance of

the Pólya-Aeppli distribution are E(Y ) = λ
1−ρ and Var(Y ) = λ(1+ρ)

(1−ρ)2 . We note
that the Pólya-Aeppli distribution belongs to a larger class of compound dis-
tributions. In this case, the distribution is found by summing Y independent

8
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and identically distributed Geometric random variables, where the number of
random variables to sum has a Poisson distribution.

The bivariate Pólya–Aeppli distribution arises by considering a compound
bivariate Poisson distribution with geometric compounding distribution as
shown in Minkova and Balakrishnan (2014b). Let Y = (Y1, Y2) follow a bivari-
ate Poisson distribution with parameters λ1, λ2 and λ3. We say Y = (Y1, Y2)
follows a bivariate Pólya–Aeppli distribution if it has the following joint prob-
ability generating function

ψ(s1, s2) = e−(λ1+λ2+λ3)+(λ1+ψ1(s1)+λ2ψ1(s2)+λ3ψ1(s1)ψ1(s2)) (2.1.28)

where λi > 0, (s1, s2) ∈ R2 and ψ1(s) = (1−ρ)s
1−ρs is the PGF of a Geometric

random variable. The marginal distributions of Y, P (Y1 = y1) and P (Y2 = y2),
follow Pólya-Aeppli distributions with parameters {λ1+λ3, ρ} and {λ2+λ3, ρ},
respectively. The expected value and variance of Yi are E(Yi) = (λi+λ3)

1−ρ and

Var(Yi) = (λi+λ3)(1+ρ)
(1−ρ)2 for i = 1, 2. We have E(Y1Y2) = (λ1+λ3)(λ2+λ3)+λ3

(1−ρ)2 . Thus,
the covariance and correlation of Y1 and Y2 are given by

Cov(Y1, Y2) =
λ3

(1− ρ)2
(2.1.29)

Corr(Y1, Y2) =
λ3

(1 + ρ)
√

(λ1 + λ3)(λ2 + λ3)
. (2.1.30)

Below we visualize the PMF with parameters λ1 = 1, λ2 ∈ {1, 3}, λ3 ∈
{1, 3} and ρ ∈ {0.25, 0.50}.

9
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Figure 2.3: Joint PMF of Type I Bivariate Pólya-Aeppli distribution
with parameters (λ1, λ2, λ3, ρ) evaluated on {0, 15}2

2.2 Multivariate Discrete Distributions

2.2.1 Multivariate Poisson Distribution

Let Y1, . . . , Yp ∼ Pois(λi). Then we may construct the following multivariate
extensions of the Poisson distribution. Let cov(Y) be the p-dimensional co-
variance matrix of Y = (Y1, ..., Yp). If cov(Y) = Ip, then the joint PMF is
given by

P (y1, . . . , yp) =

p∏
i=1

e−λiλyii
yi!

. (2.2.1)

The second multivariate extension follows from the trivariate reduction method,
which was used to construct the bivariate Poisson distribution. Let Zi = Yi+Y
where Y ∼ Pois(a). Then Z = (Z1, . . . , Zp) follows the classical p-variate

10
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Poisson distribution, denoted MVPois(λ1, . . . , λp), with mean vector E(Z) =
(λ1 + a, . . . , λp + a) and covariance matrix

(cov(Z))ij =

{
λi + a if i = j

a if i 6= j.
(2.2.2)

Clearly, each Zi marginally follows a Poisson distribution with mean and vari-
ance equal to λi + a.

2.3 Extensions of the Fisher Dispersion Index

In this section, we review some proposed multivariate extensions of the Fisher
dispersion index, then apply them to the bivariate discrete distributions intro-
duced in Section 2.1.

2.3.1 FI2

Introduced by Minkova and Balakrishnan (2014b), they proposed the following
bivariate dispersion index

FI2(Y) =

[
DI 1 + DI 2−2R

Cov(Y1, Y2)√
E(Y1)

√
E(Y2)

]
1

(1−R2)
(2.3.1)

where R = Corr(Y1, Y2) and DIi = Var(Yi)/E(Yi). The definition of this mea-
sure is motivated by the observation that the univariate Poisson distribution
is equi-dispersed, and thus the bivariate Poisson distribution should possess a
similar property (shown in section 4.3).

Using this index, a bivariate count distribution is over-/equi-/under-dispersed
if FI 2 > 2, FI 2 = 2 and FI 2 < 2, respectively. The quantity FI 2(Y)/2 is a
measure of dispersion relative to the uncorrelated bivariate Poisson distribu-
tion. This connection is made clearer in later sections, and is extended to the
p-variate case.

11
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2.3.2 GDI and MDI

Introduced by Kokonendji and Puig (2018), they proposed the following gen-
eralized dispersion index and multiple marginal dispersion index defined by

GDI(Y) =

√
E(Y)

T
cov(Y)

√
E(Y)

E(Y)T E(Y)
(2.3.2)

MDI(Y) =

√
E(Y)

T
diag(cov(Y))

√
E(Y)

E(Y)T E(Y)
(2.3.3)

where Y ∈ Np, p ≥ 1. Using GDI, a p-variate count distribution is over-/equi-
/under-dispersed if GDI(Y) > 1, GDI(Y) = 1 and GDI(Y) < 1, respectively
(same interpretation for MDI(Y)).

Compared to FI 2, GDI and MDI do not require the inverse covariance
matrix, which can be singular in some cases. Further, under some assumptions
on the moments, Kokonendji and Puig (2018) provide explicit formulas for the
asymptotic covariance matrices via the multivariate delta method. To verify
the formulas, the authors conducted a simulation study which empirically
verified the asymptotic results for large n.

In the next chapter, we introduce maximum likelihood estimation (MLE),
the delta method and the bootstrap. Further, MLEs for the bivariate discrete
distributions used in the simulation study will be discussed.

12



Chapter 3

Methodology

In this section we introduce maximum likelihood estimation (MLE) as a method
for fitting model parameters from data. MLE has a long and storied history
which can be traced to several famous scientists such as Lagrange, Bernoulli,
Laplace and Gauss. The central role MLE plays in modern statistical inference
is largely due to Ronald Fisher, who popularized it during the 1920s (Pfanzagl
(1994)). Important properties of MLEs will be discussed, in particular the
invariance property and asymptotic normality of MLEs. Using these proper-
ties, we will introduce the delta method as a way to construct approximate
confidence intervals for FI p, GDI and MDI. Lastly, the bootstrap will be in-
troduced as an alternative to the delta method for constructing confidence
intervals for the indices of dispersion mentioned previously.

3.1 Maximum Likelihood Estimation

Assume y1, . . . , yn are independent and identically distributed random vari-
ables (i.i.d) with parameters θ and probability density function f(y|θ). The

maximum likelihood estimate of θ is defined to be the value θ̂ which maximizes
the likelihood function L(θ|y) =

∏n
i=1 f(yi|θ). Intuitively, the MLE is the set

of parameters that make the observed data most likely to have occurred under
the assumed probability model. Further, since the product of density func-
tions is always positive, the log-likelihood function `(θ|y) =

∑n
i=1 log(f(yi|θ))

is often used instead of the likelihood function as it is monotonic and easier to
optimize.

There are several asymptotic properties of MLEs that are useful for con-
structing confidence intervals and performing hypothesis tests. MLEs are
asymptotically normally distributed and converge to the true population pa-
rameter as the sample sizes goes to infinity. Often we are interested in a
function of the MLEs. In this case, the invariance property of MLEs states
that if θ̂ is the MLE for θ and f(θ) is any function of θ, then f(θ̂) is the MLE

13
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for f(θ) (Casella and Berger (2002)). Since the MLE is asymptotically normal,

for a continuously differentiable function f of the MLEs θ̂, a first-order Taylor
series expansion can be taken to find an estimate of the asymptotic variance
of f about the MLE. This procedure is referred to as the delta method in
statistics. Here is a formal definition from Casella and Berger (2002).

Theorem 3.1.1. (Multivariate Delta Method) Let Y1, ..,Yn be a random sam-
ple with E(Yij) = µij and Cov(Yik, Yjk) = σij. For a given function f with

continuous partial derivatives and a specific value θ̂ = (θ1, . . . , θp) for which

τ 2 =
∑∑

σij
∂f(θ̂)
∂θi
· ∂f(θ̂)

∂θj
> 0,

√
n
[
f(θ̂)− f(θ)

]
d∼ N(0, τ 2) (3.1.1)

Using the delta method, we can construct confidence intervals based on
the normal approximation for FI 2, GDI and MDI. Further, we can use the
observed Fisher information matrix defined by

V̂ar(θ̂) ≈ −
(
∂2 log [L(θ|y)]

∂θ2

)−1
(3.1.2)

to calculate the asymptotic covariance matrix of the MLEs, evaluated at θ̂.
The estimated covariance matrix is used in the delta method to obtain the
value of τ 2 for a given dataset.

3.1.1 Bootstrap Method

The bootstrap method is a general purpose tool based on resampling. Given
observed data, the bootstrap method proceeds by producing many bootstrap
samples of the original data with replacement. Using these samples, vari-
ous quantities of interest such as bias, variance, confidence intervals can be
constructed. Let B denote the number of bootstrap samples, and θ for the
parameters of interest. Suppose we are given a sample y1, ..., yn from an abso-
lutely continuous distribution with probability density function f(y;θ). In the
context of this thesis, we first find the MLEs for the original dataset. Then, we
simulate B samples of size m from f(y; θ̂) where θ̂ is the MLE for the original
data. For each bootstrap sample, we calculate the MLE for the sample, and
thus end up with a sequence of MLEs θ̂1, ..., θ̂B for which various quantities
can be calculated such as the bias and variance. In this thesis, we are inter-
ested in functions of the MLEs, so we the sequence will be f(θ̂)1, ..., f(θ̂)B. In
practice, we assume the number of bootstrap samples B are sufficiently large
for the bootstrap to yield accurate results.

14
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There are various ways to form confidence intervals using bootstrap esti-
mates. The simplest, which we consider here, is the percentile based confidence
interval. To form a percentile confidence interval, we sort the bootstrap es-
timates in increasing order f(θ̂)1′ , ..., f(θ̂)B′ . Then, using the l = (B × α)th

and u = (B × (1 − α))th values, a 100(1 − α)% percentile confidence interval
is given by [

f(θ̂)l, f(θ̂)u

]
.

For example, when B = 10, 000 and α = 0.05, then the l = 250th and
u = 9, 750th sorted values are the upper and lower bounds for the percentile
confidence interval (Davison and Hinkley (1997)).

3.1.2 Bivariate Bernoulli

For the purposes of this thesis, the bivariate Bernoulli maximum likelihood
estimates are omitted. Our simulation study only covers distributions with
support in N2, whereas the bivariate Bernoulli distribution has support in the
lattice {0, 1}2.

3.1.3 Bivariate Poisson

Recall from subsection 2.1.2 the probability mass function given by

P (y1, y2) = e−(λ1+λ2+λ3)
min(y1,y2)∑

k=0

λ
(y1−k)
1 λ

(y2−k)
2 λk3

(y1 − k)! (y2 − k)! k!
, (y1, y2) ∈ N2. (3.1.3)

Holgate (1964) first obtained the maximum likelihood estimates of P (y1, y2)
using the slightly modified version

P (y1, y2) = e−(λ
∗
1+λ

∗
2−λ3)

min(y1,y2)∑
k=0

(λ∗1 − λ3)(y1−k)(λ∗2 − λ3)(y2−k)λk3
(y1 − k)! (y2 − k)! k!

(3.1.4)

where λ∗i = λi + λ3 for i ∈ {1, 2}. Using this form of the probability mass
function, the recurrence relations from Teicher (1954) become

y1P (y1, y2) = (λ∗1 − λ3)P (y1 − 1, y2) + λ3P (y1 − 1, y2 − 1) (3.1.5)

y2P (y1, y2) = (λ∗2 − λ3)P (y1, y2 − 1) + λ3P (y1 − 1, y2 − 1). (3.1.6)

Upon differentiating (3.1.4) with respect to each parameter λi, we have

∂P (y1, y2)

∂λ∗1
= P (y1 − 1, y2)− P (y1, y2) (3.1.7)
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∂P (y1, y2)

∂λ∗2
= P (y1, y2 − 1)− P (y1, y2) (3.1.8)

∂P (y1, y2)

∂λ3
= P (y1, y2)− P (y1, y2 − 1)

− P (y1 − 1, y2) + P (y1 − 1, y2 − 1)

(3.1.9)

Using the recurrence relations and partial derivatives, the following likelihood
equations were obtained by Holgate (1964) by differentiating the log-likelihood
function of (3.1.4)

ȳ1

λ̂∗1 − λ̂3
− λ̂3R̄

λ̂∗1 − λ̂3
− 1 = 0 (3.1.10)

ȳ2

λ̂∗2 − λ̂3
− λ̂3R̄

λ̂∗2 − λ̂3
− 1 = 0. (3.1.11)

Adding the equations together, we obtain

ȳ1

λ̂∗1 − λ̂3
+

ȳ2

λ̂∗2 − λ̂3
−

[
1 +

λ̂3

λ̂∗1 − λ̂3
+

λ̂3

λ̂∗2 − λ̂3

]
R̄− 1 = 0, (3.1.12)

where

R(y1, y2) =
P (y1 − 1, y2 − 1)

P (y1, y2)
(3.1.13)

R̄ =
1

n

∑
y1,y2

R(y1, y2), (3.1.14)

Solving (3.1.10) and (3.1.11), we obtain

ȳ1 = λ̂3(R̄− 1) + λ̂∗1 (3.1.15)

ȳ2 = λ̂3(R̄− 1) + λ̂∗2 (3.1.16)

where the maximum likelihood estimates are λ̂∗1 = ȳ1 and λ̂∗2 = ȳ2 given that

R̄ = 1. The maximum likelihood estimate for λ̂3 can be found by solving R̄ = 1
using an iterative method (since R̄ depends on λ1 and λ2 through P (y1, y2)).
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3.1.4 Bivariate Negative Binomial

Following the approach of Cho et al. (2023), we obtain the maximum likehood
estimates via the expectation-maximization (EM) algorithm using the bzinb

package available in R (Cho et al. (2022)). The EM algorithm is a general
purpose approach to iteratively computing MLEs, especially in cases where
there is missing data (McLachlan and Krishnan (2008)). There are two key
steps in the EM algorithm, the expectation step and the maximization step,
which are alternated repeatedly until a desired error tolerance is reached.

Following Cho et al. (2023), the complete data density is given by

f(Y1, Y2, Y1, Y2, R0, R1, R2, E1, E2, E3, E4) =

(R0 +R1)
Y1(R0 +R2)

Y2Rα0−1
0 Rα1−1

1 Rα2−1
2 βY22

∏4
k=1 π

Ek
k

Y1!Y2!Γ(α0)Γ(α1)Γ(α2) exp{R0
(1+β1+β2)

β1
+R1

(1+β1)
β1

+R2
(1+β2)
β1
}βY2+α0+α1+α2

1

× 1∑4
k=1 Ek=1 . (3.1.17)

The full individual log-likelihood for the ith entry (i.e. observation) is given
by

`Fulli

= Y1,i log(R0,i +R1,i) + Y2,i log(R0,i +R2,i) + (α0 − 1) log(R0,i)

+ (α1 − 1) log(R1,i) + (α2 − 1) log(R2,i) + Y2,i log(β2)

− (Y2,i + α0 + α1 + α2) log(β1) +
4∑

k=1

Ek,i log(πk)− log(Y1,i!)− log(Y2,i!)

− log(Γ(α0))− log(Γ(α1))− log(Γ(α2))

−R0,i
(1 + β1 + β2)

β1
−R1,i

(1 + β1)

β1
−R2,i

(1 + β2)

β1

+ log(1(Y1,i=Y1,i(E1,i+E2,i))) + log(1(Y2,i=Y2,i(E1,i+E3,i)))

+ log(1(Y1,i=Y1,i(E1,i+E2,i))) + log(1∑4
k=1 Ek=1). (3.1.18)

The conditional expected log-likelihood is linear given (X1,i, X2,i ;θ) where
θ = (α,β,π) contains the current MLEs. The authors propose solving the
following score equations iteratively to find the MLEs

∂αjE
[
`Fulli

∣∣ · ] = E [log(Rj,i)|· ]− log(β1)− ψ(αj) (3.1.19)

∂β1E
[
`Fulli

∣∣ · ] =
E [R0,i +R2,i|· ] (1 + β2) + E [R1,i|· ]

β2
1
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− α0 + α1 + α2 + E [Y2,i|· ]
β1

(3.1.20)

∂β2E
[
`Fulli

∣∣ · ] =
E [Y2,i|· ]

β2
− E [R0,i +R2,i|· ]

β1
(3.1.21)

∂πjE
[
`Fulli

∣∣ · ] =
E [Ej,i|· ]

πj
− 1− E [Ej,i|· ]

1− πj
(3.1.22)

for αj = {α0, α1, α2} and πj = {π1, π2, π3}, where (·) represents conditioning
on (X1,X2 ;θ). The final MLE are determined based on a given maximum
number of iterations and error tolerance.

3.1.5 Bivariate Type I Polyá-Aeppli

The maximum likelihood estimates for θ = (λ1, λ2, λ3, ρ) can be found using
an iterative procedure as proposed by Balakrishnan et al. (2017). Due to
the recursive nature of the probability mass function (PMF) and likelihood
equations, the Newton-Raphson (N-R) algorithm was proposed to solve the
following non-linear system of equations

θ(n) = θ(n−1) − J−1(θ(n−1)) · F(θ(n−1)), (3.1.23)

where J−1 is the Jacobian matrix and F is the gradient of the likelihood
function. The algorithm stops once a desired error-threshold has been reached
between the nth and (n+1)st step or a maximum number of iterations has been
reached. In the latter case, convergence of the MLEs is said to have failed and
a grid search can be used instead as proposed by the authors. Initial values,
θ(0), for the Newton-Raphson algorithm can be found in some cases using the
following method of moments (MoM) estimates

ρ̂ =
s21 + s22 − (n̄1 + n̄2)

s21 + s22 + n̄1 + n̄2

(3.1.24)

λ̂1 = (1− ρ̂ )n̂1 − (1− ρ̂ )2s12 (3.1.25)

λ̂2 = (1− ρ̂ )n̂2 − (1− ρ̂ )2s12 (3.1.26)

λ̂3 = (1− ρ̂ )2s12. (3.1.27)

When the MoM estimates produce an inadmissible initial value, the authors
suggest using a parameter grid search to find a suitable starting value for the
NR algorithm (refer to Balakrishnan et al. (2017) for more details).
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Chapter 4

A Multivariate Index of
Dispersion

4.1 Preliminaries

Before introducing our proposed extension of the Fisher dispersion index, we
first review some matrix theory that will be useful for our purposes. For further
details, please refer to Styan (1973) and Horn and Johnson (2012).

Definition 4.1.1. Let A and B be m×p real-valued matrices. The Hadamard
product is defined as (A⊗B)ij = aijbij for 1 ≤ i ≤ m, 1 ≤ j ≤ p.

Compared to the usual matrix product, the Hadamard product requires
both the row and column dimensions be equal. Further, the Hadamard product
is commutative, whereas the regular matrix product is not. This result follows
directly from the commutativity of scalar multiplication.

(A⊗B)ij = aijbij = bijaij = (B⊗A)ij (4.1.1)

The role of the identity matrix for Hadamard products is played by the
matrix J. This matrix has elements (J)ij = 1 for all 1 ≤ i ≤ m, 1 ≤ j ≤ p.

(A⊗ J)ij = aij × 1 = aij = (A)ij (4.1.2)

We will assume in the proceeding discussion that matrices A and B are
square symmetric matrices of dimension p.

4.1.1 Important Results

The Hadamard product has many applications in statistics due to the following
theorem proved in 1911 by the mathematician Issai Schur (Schur (1911)).
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Theorem 4.1.1. (Shur Product Theorem) When A and B be are positive
semidefinite, then so is A⊗B. When A and B are positive definite, then so
is A⊗B.

Proof. (from Styan (1973)) Suppose A and B be are positive semidefinite
matrices. Let x 6= 0 be p× 1 and consider the quadratic form

xT (A⊗B) x. (4.1.3)

Since B is positive semidefinite, there exists a p× p matrix V such that B =
VVT , where VVT is symmetric. Plugging this into (4.1.3), we find

xT (A⊗ (VVT )) x =

p∑
i=1

p∑
j=1

xiaij

(
p∑

k=1

vikvjk

)
xj (4.1.4)

=

p∑
k=1

(
p∑
i=1

p∑
j=1

xiaijvikvjkxj

)
(4.1.5)

=

p∑
k=1

(
p∑
i=1

p∑
j=1

xivikaijxjvjk

)
(4.1.6)

=

p∑
k=1

(x⊗ vk)
TA (x⊗ vk) ≥ 0 , (4.1.7)

where vk denotes the kth column of V. Since A is positive semidefinite, (4.1.7)
is the sum of k non-negative quadratic forms, and is always greater than or
equal to zero. When A and B are non-singular, VVT is non-singular and
(4.1.7) becomes strictly positive. �

Positive semidefinite matrices arise naturally in statistics through the co-
variance matrix. Since the eigenvalues of the covariance matrix are always
greater than or equal to zero, we know that non-singular covariance matrices
and their inverses are always positive definite. This leads us to the following
useful corollary.

Corollary 4.1.2. Suppose cov(Y) is a non-singular covariance matrix of size
p with inverse matrix given by cov(Y)−1. Then (cov(Y) ⊗ cov(Y)−1) is a
positive definite matrix of size p.

Proof. Follows immediately from Theorem 4.1.1 �

Proved by Oppenheim (1930), we have an interesting lower bound on the
determinant of A⊗B.
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Theorem 4.1.3. When A and B are positive semidefinite matrices

det(A⊗B) ≥ det(A) det(B) (4.1.8)

Proof. See Theorem 3.7 in Styan (1973) �

A nice application of Theorem 4.1.3 is that det(cov(Y) ⊗ cov(Y)−1) ≥ 1
for every non-singular covariance matrix Y.

With these results in hand, we introduce our proposed multivariate exten-
sion of the Fisher dispersion index.

4.2 FIp - A New Multivariate Dispersion Index

We start this section by introducing a new multivariate index of dispersion
denoted FI p.

Definition 4.2.1. Let Y be a p-variate random vector defined on Np, p ≥ 1.
Let cov(Y) be the covariance matrix of Y and

√
d = (

√
DI 1, . . . ,

√
DI p) be

the element-wise square-root vector of marginal dispersion indices. We define
the following quadratic form

FI p(Y) =
√

d
T

(cov(Y)⊗ cov(Y)−1)
√

d (4.2.1)

as a multivariate dispersion index.

As mentioned in subsection 2.3.1, the bivariate dispersion index FI 2 in-
troduced by Minkova and Balakrishnan was motivated by the equi-dispersion
property of the Poisson distribution. They found that when Y follows a bi-
variate Poisson distribution, FI 2(Y) = 2. It turns out that this result can be
generalized to the multivariate Poisson distribution as follows.

Lemma 4.2.1. Let Y ∼ MVPois(λ1, . . . , λp) with E(Yi) = Var(Yi) = λi + a
and cov(Yi, Yj) = a. Then FI p(Y) = p.

Proof. See Appendix B.

This important result extends the equi-dispersion property of the bivariate
Poisson distribution to the multivariate Poisson distribution using FI p. The
importance of this result is that it justifies normalizing FI p by p to measure
dispersion relative to the p-variate Poisson distribution. Next we show that
FI 2 is a special case of FI p when p = 2.

21



M.Sc. Thesis – D. Hansen McMaster University – Statistics

Lemma 4.2.2. When p = 2, FI p is FI 2.

Proof. Let Y = (Y1, Y2) be a random vector in N2 and cov(Y) be the associated
2× 2 covariance matrix.

cov(Y) =

[
σ11 σ12
σ12 σ22

]
The determinant of cov(Y) is det(cov(Y)) = σ11σ22 − σ2

12 and the inverse is
given by

cov(Y)−1 =
1

det(cov(Y))

[
σ22 −σ12
−σ12 σ11

]
Taking the Hadamard product of the two matrices we have

(cov(Y)⊗ cov(Y)−1) =
1

det(cov(Y))

[
σ11 σ12
σ12 σ22

]
⊗
[
σ22 −σ12
−σ12 σ11

]
(4.2.2)

=
1

σ11σ22 − σ2
12

[
σ11σ22 −σ2

12

−σ2
12 σ11σ22

]
(4.2.3)

Letting R = σ12 /(
√
σ11
√
σ22) denote the correlation coefficient of Y, the above

becomes

=

[
1 −R2

−R2 1

]
1

(1−R2)
(4.2.4)

We now compute FI p below where p = 2.

FI p(Y) =
√

d
T

(cov(Y)⊗ cov(Y)−1)
√

d (4.2.5)

=
[√

DI 1
√

DI 2
]
·
[

1 −R2

−R2 1

]
·
[√

DI 1√
DI 2

]
1

(1−R2)
(4.2.6)

=
[√

DI 1
√

DI 2
]
·
[√

DI 1 −R2
√

DI 2√
DI 2 −R2

√
DI 1

]
1

(1−R2)
(4.2.7)

=
[
DI 1 + DI 2−2R2

√
DI 1

√
DI 2

] 1

(1−R2)
(4.2.8)

=

[
DI 1 + DI 2−2R2

√
σ11
µ1

√
σ22
µ2

]
1

(1−R2)
(4.2.9)

=

[
DI 1 + DI 2−2R

σ12√
µ1
√
µ2

]
1

(1−R2)
(4.2.10)

22



M.Sc. Thesis – D. Hansen McMaster University – Statistics

=

[
DI 1 + DI 2−2R

cov(Y1, Y2)√
E(Y1)

√
E(Y2)

]
1

(1−R2)
(4.2.11)

which is the same expression as FI 2 �

For certain classes of matrices, FI p admits a simple form. When the co-
variance matrix is diagonal, we have the following result.

Corollary 4.2.3. Let cov(Y) be a diagonal covariance matrix of size p. Then
for Y ∈ Np

, the multivariate dispersion index equals

FI p(Y) =

√
d
T ·
√

d

det(cov(Y))
. (4.2.12)

Proof. Let cov(Y) be the non-singular diagonal covariance matrix of Y. Since
cov(Y) is a diagonal matrix, we have that (cov(Y) ⊗ cov(Y)−1) = Ip, which
implies that the multivariate dispersion index is given by

FIp(Y) =

√
d
T

(cov(Y)⊗ cov(Y)−1)
√

d

det(cov(Y))
(4.2.13)

=

√
d
T ·
√

d

det(cov(Y))
� (4.2.14)

From the previous corollary, we have the following result which we state
without proof.

Corollary 4.2.4. Suppose cov(Y) = Ip is the identity matrix of size p. Then
(cov(Y)⊗ cov(Y)−1) = Ip and FI p(Y) =

∑p
k=1 DI k.

For joint distributions constructed via products of independent and iden-
tically distributed random variables, Corollary 4.2.4 says that FI p will always
equal the sum of the marginal dispersion indices. The importance of this
result is that for uncorrelated random variables, FI p will always equal the
sum of the marginal dispersion indices. If each marginal dispersion index is
over/equi/under-dispersed, then FI p will be over/equi/under-dispersed.

Next we apply GDI, MDI and FI p to some common bivariate and multi-
variate discrete distributions.

4.3 Illustrative Examples

In this section, we derive expressions for FI p, GDI and MDI for the bivari-
ate discrete distributions introduced in Section 2.1 and the p-variate Poisson
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distribution introduced in Section 2.2.

Example 4.3.1 (Bivariate Bernoulli). Let Y ∼ BivBern(p00, p10, p01, p11).
Then µi = E(Yi) = p0i + p1i, σi = Var(Yi) = µi(1− µi) and a = cov(Y1, Y2) =
p00p11 − p01p10 for i = 1, 2. First, we derive an expression for FI 2.

FI 2(Y) =
√

d
T

(cov(Y)⊗ cov(Y)−1)
√

d (4.3.1)

=
1

(µ1µ2 − a2)
[
√
1−µ1

√
1−µ2 ] ·

[
µ1µ2 −a2
−a2 µ1µ2

]
·
[√

1−µ1√
1−µ2

]
(4.3.2)

=
µ1µ2(1− µ1) + µ1µ2(1− µ2)− 2a2

√
1− µ1

√
1− µ2

µ1µ2 − a2
(4.3.3)

=
µ1µ2(2− µ1 − µ2)− 2a2

√
µ2
√
µ1

µ1µ2 − a2
(4.3.4)

=
(p00 + p10)(p01 + p11)

(p00 + p10)(p01 + p11)− (p00p11 − p01p10)2
(4.3.5)

−
2(p00p11 − p01p10)2

√
(p00 + p10)(p01 + p11)

(p00 + p10)(p01 + p11)− (p00p11 − p01p10)2
. (4.3.6)

The bivariate Bernoulli is always under-dispersed relative to the bivariate Pois-
son using FI 2. For example, when (p00, p10, p01, p11) = (0.25, 0.25, 0.25, 0.25),
FI 2 = 1 < 2. Next, we derive an expression for GDI.

GDI(Y) =

√
E(Y)

T
cov(Y)

√
E(Y)

E(Y)T E(Y)
(4.3.7)

=

[√
µ1
√
µ2

]
·
[
µ1(1− µ1) a

a µ2(1− µ2)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.8)

=
µ2
1(1− µ1) + µ2

2(1− µ2) + 2a
√
µ1µ2

µ2
1 + µ2

2

(4.3.9)

= 1 +
2a
√
µ1µ2 − (µ3

1 + µ3
2)

µ2
1 + µ2

2

(4.3.10)

= 1 +
2(p00p11 − p01p10)

√
(p00 + p10)(p01 + p11)

(p00 + p10)2 + (p01 + p11)2
(4.3.11)
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− (p00 + p10)
3 + (p01 + p11)

3

(p00 + p10)2 + (p01 + p11)2
. (4.3.12)

Similar to FI 2, the bivariate Bernoulli is always under-dispersed relative to
the bivariate Poisson using GDI. For example, when (p00, p10, p01, p11) =
(0.25, 0.25, 0.25, 0.25), GDI = 1/2 < 1. Lastly, we derive an expression for
MDI, which is the same as GDI with a = 0.

MDI(Y) =

√
E(Y)

T
diag(cov(Y))

√
E(Y)

E(Y)T E(Y)
(4.3.13)

=

[√
µ1
√
µ2

]
·
[
µ1(1− µ1) 0

0 µ2(1− µ2)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.14)

=
µ2
1(1− µ1) + µ2

2(1− µ2)

µ2
1 + µ2

2

(4.3.15)

= 1− µ3
1 + µ3

2

µ2
1 + µ2

2

(4.3.16)

= 1− (p00 + p10)
3 + (p01 + p11)

3

(p00 + p10)2 + (p01 + p11)2
. (4.3.17)

Since (µ3
1 + µ3

2)/(µ
2
1 + µ2

2) > 0, MDI has the same interpretation as GDI for
the bivariate Bernoulli (i.e., it is always under-dispersed).

Example 4.3.2 (Bivariate Poisson). Let Y ∼ BivPois(λ1, λ2, λ3). Then µi =
E(Yi) = Var(Yi) = λi + λ3 and a = cov(Y1, Y2) = λ3 for i = 1, 2. As in the
previous section, we derive expressions for FI 2, GDI and MDI.

FI2(Y) =
1

(µ1µ2 − λ23)
[
1 1

]
·
[
µ1µ2 −a2
−a2 µ1µ2

]
·
[
1
1

]
(4.3.18)

=
2µ1µ2 − 2a2

(µ1µ2 − a2)
(4.3.19)

=
2(µ1µ2 − a2)
(µ1µ2 − a2)

(4.3.20)

= 2. (4.3.21)
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The bivariate Poisson distribution is always equi-dispersed using FI 2 (by
definition). This result is extended to the p-variate uncorrelated Poisson dis-
tribution by Corollary 4.2.3. Next we derive an expression for GDI.

GDI(Y) =

[√
µ1
√
µ2

]
·
[
µ1 a
a µ2

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.22)

=
µ2
1 + 2µ1µ2a+ µ2

2

µ2
1 + µ2

2

(4.3.23)

= 1 +
2λ3µ1µ2

µ2
1 + µ2

2

(4.3.24)

= 1 +
2λ3(λ1 + λ3)(λ2 + λ3)

(λ1 + λ3)2 + (λ2 + λ3)2
. (4.3.25)

Depending on λ3, the bivariate Poisson can exhibit over/equi-dispersion to
the uncorrelated bivariate Poisson distribution using GDI. For example, when
(λ1, λ2, λ3) = (1, 1, 3) we have GDI = 4 > 1 and for (λ1, λ2, λ3) = (1, 1, 0) we
have GDI = 1. Next we derive an expression for MDI, which is the same as
GDI with λ3 = 0.

MDI(Y) =

[√
µ1
√
µ2

]
·
[
µ1 0
0 µ2

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.26)

=
µ2
1 + µ2

2

µ2
1 + µ2

2

(4.3.27)

= 1. (4.3.28)

Similar to FI 2, the bivariate Poisson distribution is equi-dispersed relative to
the uncorrelated Poisson distribution using MDI.

Example 4.3.3 (Bivariate Negative Binomial). Let Y ∼ BivNB(α0, α1, α2, β1, β2).
Then µi = E(Yi) = (α0 + αi)βi, σi = Var(Yi) = (α0 + αi)βi(βi + 1) and
a = cov(Y1, Y2) = α0β1β2 for i = 1, 2. Further, set w = (α0 + α1)(α0 +
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α2)(β1 + 1)(β2 + 1). First we derive an expression for FI 2.

FI2(Y) = 1
β1β2w−α2

0β
2
1β

2
2

[
√
β1+1

√
β2+1 ] ·

[
σ1σ2 −a2
−a2 σ1σ2

]
·
[√

β1+1√
β2+1

]
(4.3.29)

=
σ1σ2(β1 + 1) + σ1σ2(β2 + 1)− 2a2

√
β1 + 1

√
β2 + 1

β1β2w − α2
0β

2
1β

2
2

(4.3.30)

=
w(β1 + 1) + w(β2 + 1)− 2α2

0β1β2
√
β1 + 1

√
β2 + 1

w − α2
0β1β2

(4.3.31)

=
w(2 + β1 + β2)− 2α2

0β1β2
√
β1 + 1

√
β2 + 1

w − α2
0β1β2

(4.3.32)

=
(α0 + α1)(α0 + α2)(β1 + 1)(β2 + 1)(2 + β1 + β2)

(α0 + α1)(α0 + α2)(β1 + 1)(β2 + 1)− α2
0β1β2

(4.3.33)

− 2α2
0β1β2

√
β1 + 1

√
β2 + 1

(α0 + α1)(α0 + α2)(β1 + 1)(β2 + 1)− α2
0β1β2

. (4.3.34)

The bivariate Negative Binomial distribution is over-dispersed relative to the
bivariate Poisson distribution using FI 2. For example, when (α0, α1, α2, β1, β2) =
(2, 2, 2, 0.25, 0.25) we have FI 2 = 2.5 > 2. Next we derive an expression for
GDI.

GDI(Y) =

[√
µ1
√
µ2

]
·
[
µ1(β1 + 1) a

a µ2(β2 + 1)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.35)

=
µ2
1(β1 + 1) + µ2

2(β2 + 1) + 2a
√
µ1µ2

µ2
1 + µ2

2

(4.3.36)

= 1 +
µ2
1β1 + µ2

2β2 + 2α0β1β2
√
µ1µ2

µ2
1 + µ2

2

(4.3.37)

= 1 +
(α0 + α1)

2β3
1 + (α0 + α2)

2β3
2

(α0 + α1)2β2
1 + (α0 + α2)2β2

2

(4.3.38)

+
2α0β

3
2
1 β

3
2
2

√
(α0 + α1)(α0 + α2)

(α0 + α1)2β2
1 + (α0 + α2)2β2

2

. (4.3.39)

The bivariate Negative Binomial distribution is over-dispersed relative to the
bivariate Poisson distribution using GDI (this follows since the second term
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is always positive). For example, when (α0, α1, α2, β1, β2) = (2, 2, 2, 0.25, 0.25)
we have GDI = 1.28125 > 1. Next we derive an expression for MDI which is
the same as GDI with a = 0.

MDI(Y) =

[√
µ1
√
µ2

]
·
[
µ1(β1 + 1) 0

0 µ2(β2 + 1)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.40)

=
µ2
1(β1 + 1) + µ2

2(β2 + 1)

µ2
1 + µ2

2

(4.3.41)

= 1 +
µ2
1β1 + µ2

2β2
µ2
1 + µ2

2

(4.3.42)

= 1 +
(α0 + α1)

2β3
1 + (α0 + α2)

2β3
2

(α0 + α1)2β2
1 + (α0 + α2)2β2

2

. (4.3.43)

Similar to GDI, the bivariate Negative Binomial distribution is always over-
dispersed relative to the bivariate Poisson distribution using MDI. For exam-
ple, when (α0, α1, α2, β1, β2) = (2, 2, 2, 0.25, 0.25) we have MDI = 1.25 > 1.

Example 4.3.4 (Bivariate Type I Pólya-Aeppli). Let Y ∼ BivPA(λ1, λ2, λ3, ρ).

Then µi = E(Yi) = (λi+λ3)
1−ρ , σi = Var(Yi) = (λi+λ3)(1+ρ)

(1−ρ)2 and a = cov(Y1, Y2) =
λ3

(1−ρ)2 for i = 1, 2. First we derive an expression for FI 2.

FI2(Y) =
1

(σ1σ2 − σ2
12)

[√
1+ρ
1−ρ

√
1+ρ
1−ρ

]
·
[
σ1σ2 −a2
−a2 σ1σ2

]
·

√1+ρ
1−ρ√
1+ρ
1−ρ

 (4.3.44)

=
2σ1σ2(

1+ρ
1−ρ)− 2a2(1+ρ

1−ρ)

(σ1σ2 − a2)
(4.3.45)

= 2

(
1 + ρ

1− ρ

)
. (4.3.46)

The Type I bivariate Pólya-Aeppli distribution is always over-dispersed rela-
tive to the bivariate Poisson distribution (since ρ ∈ (0, 1)). For example, when
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ρ = 0.5 we have FI 2 = 6 > 2. Next we derive an expression for GDI.

GDI(Y) =

[√
µ1
√
µ2

]
·

[
µ1

(1+ρ)
(1−ρ) a

a µ2
(1+ρ)
(1−ρ)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.47)

=
µ2
1
(1+ρ)
(1−ρ) + µ2

2
(1+ρ)
(1−ρ) + 2a

√
µ1
√
µ2

µ2
1 + µ2

2

(4.3.48)

=
µ2
1
(1−ρ+2ρ)
(1−ρ) + µ2

2
(1−ρ+2ρ)
(1−ρ) + 2a

√
(λ1+λ3)(λ2+λ3)

(1−ρ)2

µ2
1 + µ2

2

(4.3.49)

=
µ2
1 + µ2

2 +
2ρµ21+2ρµ22

(1−ρ) + 2a
√

(λ1+λ3)(λ2+λ3)
(1−ρ)2

µ2
1 + µ2

2

(4.3.50)

= 1 + 2
(µ2

1 + µ2
2)ρ+ a

√
(λ1 + λ3)(λ2 + λ3)

(1− ρ)(µ2
1 + µ2

2)
(4.3.51)

= 1 +
2ρ [(λ1 + λ3)

2 + (λ2 + λ3)
2]

(1− ρ)(λ1 + λ3)2 + (1− ρ)(λ2 + λ3)2

+
2λ3
√

(λ1 + λ3)(λ2 + λ3)

(1− ρ)(λ1 + λ3)2 + (1− ρ)(λ2 + λ3)2
(4.3.52)

= 1 +
2ρ

(1− ρ)
+

2λ3
√

(λ1 + λ3)(λ2 + λ3)

(1− ρ)(λ1 + λ3)2 + (1− ρ)(λ2 + λ3)2
. (4.3.53)

The Type I bivariate Pólya-Aeppli distribution is always over-dispersed rel-
ative to the bivariate Poisson distribution using GDI. For example, when
(λ1, λ2, λ3, ρ) = (1, 1, 1, 0.5) we have GDI = 4 > 1. Lastly, we derive an
expression for MDI which is the same as GDI with a = 0.

MDI(Y) =

[√
µ1
√
µ2

]
·

[
µ1

(1+ρ)
(1−ρ) 0

0 µ2
(1+ρ)
(1−ρ)

]
·
[√

µ1√
µ2

]
[
µ1 µ2

]
·
[
µ1

µ2

] (4.3.54)

=
µ2
1
(1−ρ+2ρ)
(1−ρ) + µ2

2
(1−ρ+2ρ)
(1−ρ)

µ2
1 + µ2

2

(4.3.55)
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= 1 +
2ρ(µ2

1 + µ2
2)

(1− ρ)(µ2
1 + µ2

2)
(4.3.56)

= 1 +
2ρ

(1− ρ)
. (4.3.57)

Similar to GDI, the Type I bivariate Pólya-Aeppli distribution is always
over-dispersed relative to the bivariate Poisson distribution using MDI. For
example, when (λ1, λ2, λ3, ρ) = (1, 1, 1, 0.5) we have GDI = 3 > 1.

Example 4.3.5 (Multivariate Poisson). Let Y ∼ MVPois(λ1, . . . , λp). Then
µi = E(Zi) = Var(Yi) = λi + a and cov(Yi, Yj) = a. Again, we first derive an
expression for FI p.

FI2(Y) = 1T
[
(D + a · 11T )⊗

(
D−1 − D−1(a · 11T )D−1

1 + a · 1TD−11

)]
1 (4.3.58)

= p. (4.3.59)

As mentioned, a proof of this result is given in Appendix B. The key ingre-
dient to the proof is recognizing that the covariance matrix can be written as
the sum of a diagonal and a rank-one matrix. Next we derive an expression
for GDI.

GDI(Y) =

∑p
k=1(λk + a)2 + a ·

(∑p
k=1

√
λk + a

) (∑
j 6=k
√
λj + a

)
(λ1 + a)2 + . . .+ (λk + a)2

(4.3.60)

= 1 + a

(∑p
k=1

√
λk + a

) (∑
j 6=k
√
λj + a

)
(λ1 + a)2 + . . .+ (λk + a)2

. (4.3.61)

When a = 0, the p-variate Poisson distribution is equi-dispersed. When a > 0,
then it is over-dispersed relative to the uncorrelated p-variate Poisson distri-
bution using GDI. Lastly, we derive an expression for MDI, which is the same
as GDI with a = 0.

MDI(Y) =
(λ1 + a)2 + . . .+ (λk + a)2

(λ1 + a)2 + . . .+ (λk + a)2
(4.3.62)

= 1. (4.3.63)

Similar to FI p, the p-variate classical Poisson is always equi-dispersed using
MDI. The authors Kokonendji and Puig (2018) commented on the similar
behaviour of FI 2 and MDI during simulations. That both measures treat
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the p-variate classical Poisson distribution as always equi-dispersed reveals yet
another interesting connection between FI p and MDI.
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Chapter 5

Results

In this chapter, we simulate datasets from known over/equi-dispersed models
and measure how well FI 2 can discriminate between proposed models com-
pared to GDI and MDI. Further, we compare the dispersion indices on a
stock trading volume dataset, football dataset and insurance claims dataset.
The following analysis was conducted using R (R Core Team (2023)).

5.1 Simulation Study

In this simulation study, the goal is to investigate the performance of FI 2 in
detecting over/equi-dispersion given the true data distribution is known to be
over/equi-dispersed. The original methodology included a bootstrap compo-
nent of the simulation study. However, due to technical difficulties with the nu-
merical optimization, bootstrap estimation was not used. Instead, we present
three datasets simulated from known over/equi-dispersed models and fit the
Poisson, Pólya-Aeppli and Negative Binomial models to the entire dataset
(which did not have issues). Using the fitted models, we compute FI 2, GDI
and MDI for each model, then make some comments on their interpretation.

For the first case, we generated N = 500 observations from a bivariate
Poisson distribution with parameters (λ1, λ2, λ3) = (2, 4, 1) using the rbvpois

function in the bivpois package (Tsagris (2023)). The observed range of
values for Y1 and Y2 are 0 to 8 and 0 to 15, respectively. The mean and
variance for Y1 are 2.94 and 2.58, while the mean and variance for Y2 are 4.98
and 5.27. The marginal dispersion indices for Y1 and Y2 are 0.88 and 1.06,
respectively. Table 5.1 displays the MLEs for the Bivariate Poisson, Pólya-
Aeppli and Negative Binomial distributions.
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MLEs Poisson Pólya-Aeppli Neg. Bin.

λ̂1 1.9843 2.0200

λ̂2 4.0283 4.0742

λ̂3 0.9517 0.8940

ρ̂ 0.0005

α̂0 36.1570

α̂1 1.0358

α̂2 0.8099

β̂1 0.0789

β̂2 0.1347

− logL -2047.87 -2033.05 -2042.96

Table 5.1: MLEs for the three bivariate models.

Table 5.2 displays the indices evaluated at the MLEs found in Table 5.1.
The true index values for this dataset are FI 2 = 1, GDI = 1.88 and MDI =
1. We see FI 2 and GDI are close to unity for each model, indicating the
data are equi-dispersed. GDI has a large range of values indicating varying
levels of over-dispersion under each model. All three indices are close to their
true values, but the different interpretations of FI 2, GDI and MDI under the
Poisson model make direct comparison difficult.

Index Poisson Pólya-Aeppli Neg. Bin.

FI 2 1.0000 1.0011 1.1068

GDI 1.8327 1.2063 1.1170

MDI 1.0000 1.0011 1.1067

Table 5.2: Indices evaluated at the MLEs for
each model presented in Table 5.1.

For the second case, we generated N = 500 observations from the bi-
variate negative binomial distribution with parameters (α0, α1, α2, β1, β2) =
(4, 4, 6, 0.25, 0.25) using the rbnb function in the bzinb package (Cho et al.
(2022)). The observed range of values for Y1 and Y2 are 0 to 9 and 0 to 9,
respectively. The mean and variance for Y1 are 2.12 and 2.81, while the mean
and variance for Y2 are 2.58 and 3.25. The marginal dispersion indices for Y1
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and Y2 are 1.33 and 1.26, respectively. Table 5.3 displays the MLEs for the
Bivariate Poisson, Pólya-Aeppli and Negative Binomial distributions.

MLEs Poisson Pólya-Aeppli Neg. Bin.

λ̂1 1.9460 0.6437

λ̂2 2.4020 1.1291

λ̂3 0.1760 0.9475

ρ̂ 0.1947

α̂0 3.1287

α̂1 3.1292

α̂2 6.7100

β̂1 0.3391

β̂2 0.2620

− logL -1902.46 -1928.70 -1882.69

Table 5.3: MLEs for the three bivariate models.

Table 5.4 displays the indices evaluated at the MLEs found in Table 5.3.
The true index values for this dataset are FI 2 = 1.25, GDI = 1.28 and MDI =
1.25. Under the Poisson model, FI 2 and MDI do not provide any information
about the underlying dispersion since they are constant (as a function of the
MLEs). Further, we see that all three indices are close to their trues values
for the Negative Binomial model, indicating the data is over-dispersed.

Index Poisson Pólya-Aeppli Neg. Bin.

FI 2 1.0000 1.4834 1.3006

GDI 1.1727 2.1083 1.3163

MDI 1.0000 1.4834 1.2842

Table 5.4: Indices evaluated at the MLEs for
each model presented in Table 5.3.

For the third case, we generated N = 500 observations from the bivariate
Pólya-Aeppli distribution with parameters (λ1, λ2, λ3, ρ) = (0.6, 0.6, 0.9, 0.25)
using the method described in Balakrishnan et al. (2017). The observed range
of values for Y1 and Y2 are 0 to 14 and 0 to 11, respectively. The mean and
variance for Y1 are 2.02 and 3.53, while the mean and variance for Y2 are 1.81
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and 2.88. The marginal dispersion indices for Y1 and Y2 are 1.75 and 1.59,
respectively. Table 5.5 displays the MLEs for the Bivariate Poisson, Pólya-
Aeppli and Negative Binomial distributions.

MLEs Poisson Pólya-Aeppli Neg. Bin.

λ̂1 1.2804 0.6671

λ̂2 1.0724 0.5225

λ̂3 0.7356 0.8383

ρ̂ 0.2498

α̂0 2.2907

α̂1 0.1016

α̂2 0.0824

β̂1 0.8422

β̂2 0.7618

− logL -1888.34 -1745.30 -1758.01

Table 5.5: MLEs for the three bivariate models.

Table 5.6 displays the indices evaluated at the MLEs found in Table 5.5.
The true index values for this dataset are FI 2 = 1.67, GDI = 2.47 and MDI =
1.67. Under the Pólya-Aeppli model, all three indices underestimate the true
index value whereas under the Negative Binomial model, all three indices
overestimate the true index value. In either case, the indices correctly classify
the underlying data as over-dispersed. Further, we see that FI 2 and GDI under
the Poisson model imply the data are equi-dispersed, whereas GDI correctly
identifies over-dispersion.

Index Poisson Pólya-Aeppli Neg. Bin.

FI 2 1.0000 1.6661 1.8021

GDI 1.7313 2.4428 2.4192

MDI 1.0000 1.6661 1.8023

Table 5.6: Indices evaluated at the MLEs for
each model presented in Table 5.5.
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5.2 Simulated Quintivariate Count Dataset

Kokonendji and Puig (2018) used the NORTARA package to simulate a quinti-
variate dataset of size n = 300 (Su (2014)). The marginal distributions of the
quintivariate dataset are Poisson, binomial and negative binomial (three of the
marginal distributions are negative binomial). Table 5.7 displays a summary
of the dataset and results of the dispersion indices using sample estimates of
the mean vector and covariance matrix.

Xj Mean Variance Dispersion Index

1 1.2633 1.6930

2 4.9467 5.3483 ĜDI = 1.8995

3 5.0300 6.3703 M̂DI = 1.3464

4 0.4767 0.2503 F̂I 5 = 3.4779

5 2.7300 6.8667

Table 5.7: Simulated quintivariate data. Expected value and
variance of marginal distributions presented with

multivariate dispersion indices.

We see from Table 5.7 that GDI > 1, MDI > 1 and FI 5 > 1, all indicating
over-dispersion. The value of FI 5 is almost double the values of GDI and MDI,
indicating that GDI and MDI under-estimate the amount of dispersion present
in the data.

5.3 Intra-day Trading Volume Dataset

From www.finam.ru, Kokonendji and Puig (2018) downloaded the intra-day
common stock trade volumes from May 6, 2015 to June 6, 2015 for JPMorgan
Chase & Co (NYSE: JPM), Bank of America (NYSE: BAC) and Wells Fargo
(NYSE: WFC). Table 5.8 displays a summary of the dataset and results of the
dispersion indices using sample estimates of the mean vector and covariance
matrix.
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Bank Mean Variance Correlation Dispersion Index

JPM 11,965.52 96,707,437 JPM & BAC: 0.381 ĜDI = 59975.32

BAC 44,455.59 2,550,265,224 JPM & WFC 0.565 M̂DI = 51350.61

WFC 11,654.23 109,833,650 BAC & WFC: 0.388 F̂I 3 = 26618.91

Table 5.8: Summary statistics from the intra-day trading volume dataset.

We see from Table 5.8 that all three indices indicate significant over-
dispersion. The value of FI 3 is less than half that of GDI and MDI, indicating
less over-dispersion is present in the data.

5.4 Football Reference Dataset

European football has an abundance of count data. Many statistics of inter-
est are naturally represented as counts such as the number of goals scored
in a game and the number of successful passes by each team. In the last
decade, the rivalry between Real Madrid and Barcelona in Spain was marked
by the presence of Cristiano Ronaldo and Lionel Messi, two of the greatest
men’s goalscorers of all time (IFFHS (2023)). The three seasons between
2014-2015 and 2017-2018 saw the height of the rivalry between Real Madrid
and Barcelona as they both had formidable attacking trios up front. Real
Madrid with Cristiano Ronaldo, Karim Benzema and Gareth Bale, Barcelona
with Lionel Messi, Luis Súarez and Neymar.

Using match logs from FBref (2024), we created a dataset containing all of
the goals scored per game in La Liga by the Real Madrid and Barcelona at-
tacking trios between 2014-2015 and 2017-2018. Games where all three players
did not appear were removed, and only games played in La Liga were included.
The resulting dataset contains 115 matches for Barcelona and 67 matches for
Real Madrid. Our goal is to assess the amount of dispersion present in the
data using bootstrap estimates of FI 3, GDI and MDI for Barcelona and Real
Madrid respectively.

Summary statistics for the Real Madrid (RM) and Barcelona (BAR) at-
tacking trio datasets are presented in Table 5.9. We see that Ronaldo and
Messi have the highest average goals on their team. Further, Bale and Súarez
have the largest dispersion indices on their respective teams.
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# Team Player x̄ s2 Dispersion Index

1 RM Gareth Bale 0.4627 0.6463 1.3969

2 RM Karim Benzema 0.5672 0.5219 0.9203

3 RM Cristiano Ronaldo 1.0896 1.3252 1.2163

4 BAR Lionel Messi 0.9130 0.8871 0.9716

5 BAR Luis Súarez 0.7565 0.9402 1.2428

6 BAR Neymar 0.5304 0.4267 0.8044

Table 5.9: Summary statistics by team and player. Sample mean,
sample variance and (marginal) dispersion index shown.

Below in Figure 5.1 we plot the frequency of goals scored per game per
player. We see Ronaldo and Messi have similar numbers of zero and one goal
games, whereas Bale has many zero goal games and some game where he scores
one or more goals.
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Figure 5.1: Goal frequency for each Real Madrid (Purple)
and Barcelona (Yellow) player.

Below in Figure 5.2 we plot the bootstrap distributions of FI 3, GDI and
MDI. The plots indicate that goal counts are approximately equi-dispersed for
Barcelona, and slightly over-dispersed for Real Madrid. This indicates that a
trivariate Poisson model may be suitable for Barcelona, whereas a trivariate
distribution that can account for over-dispersion would be suitable for Real
Madrid.
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Figure 5.2: Histogram of bootstrap FI 3, GDI and MDI values
for Real Madrid (Purple) and Barcelona (Yellow)

We provide a summary of results for the B = 10, 000 bootstrap samples
in Table 5.10 below. Based on the confidence intervals, we cannot reject the
null hypothesis that both datasets are equi-dispersed. Further, we find that
confidence interval for FI 3 is shorter than GDI and MDI across both datasets.
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# Team Index x̄ σ̂se 95% CI CI Length

1 RM FI 3 1.1534 0.1677 (0.8465, 1.4924) 0.6459

2 RM GDI 1.3868 0.3498 (0.7548, 2.1032) 1.3484

3 RM MDI 1.1556 0.1862 (0.8027, 1.5345) 0.7318

4 BAR FI 3 0.9988 0.1082 (0.7981, 1.2181) 0.4200

5 BAR GDI 1.1370 0.2205 (0.7491, 1.6056) 0.8565

6 BAR MDI 1.0257 0.1205 (0.8052, 1.2734) 0.4682

Table 5.10: Bootstrap summary statistics. 100(1− α)% confidence
interval provided for index value using percentile method.

Below we display the bias and MSE for the bootstrap estimates. We found
the bias and MSE were smallest for FI 3 and MDI across both datasets. Fur-
ther, the bias and MSE are small and positive for each index, indicating over-
estimation of the dispersion in the data.

# Team Index Bias MSE

1 RM FI 3 0.0278 0.0289

2 RM GDI 0.0434 0.1242

3 RM MDI 0.0278 0.0354

4 BAR FI 3 0.0076 0.0118

5 BAR GDI 0.0128 0.0246

6 BAR MDI 0.0100 0.0112

Table 5.11: Bootstrap summary statistics. 100(1− α)% confidence
interval provided for index value using percentile method.
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5.5 Posterior Ratemaking Dataset

The posterior ratemaking dataset contains 80, 994 automobile insurance claims
made to a Spanish insurance company in 1995. Each observation is represented
as a bivariate count vector, denoted N = (N1, N2), where N1 represents claims
made under third-party liability policies and N2 represents claims made under
guarantees such as emergency roadside assistance and medical cost coverage
(Bermúdez i Morata (2009)). The cross-tabulation of claims from the two
types of policies is shown in Table A.1. Table 5.12 presents the MLEs for the
Bivariate Poisson, Pólya–Aeppli and Negative Binomial models.

MLEs Poisson Pólya-Aeppli Neg. Bin.

λ̂1 0.0670 0.0516

λ̂2 0.0884 0.0658

λ̂3 0.0140 0.0132

ρ̂ 0.2167

α̂0 0.0822

α̂1 0.0684

α̂2 0.0710

β̂1 0.5372

β̂2 0.6695

− logL -53271.05 -48087.48 -48050.41

Table 5.12: MLEs for the three bivariate models.

For each fitted model, we present the indices evaluated using the MLEs
in Table 5.12. We see that each index indicates over-dispersion in the data,
except for Poisson where FI 2 and MDI are always equi-dispersed (using the
MLEs).
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Index Poisson Pólya-Aeppli Neg. Bin.

FI 2 1.0000 1.5533 1.6034

GDI 1.0136 1.7849 1.7991

MDI 1.0000 1.5533 1.6044

Table 5.13: Indices evaluated at the MLEs for
each model presented in Table 5.12.
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Chapter 6

Conclusion

In this thesis, we have proposed a new multivariate extension of the Fisher
dispersion index. Some interesting properties of FI p have been discussed, with
applications to some common bivariate and multivariate discrete distributions
and real-world datasets. One potential issue in practice is the need to com-
pute the inverse of the covariance matrix. This can present a challenge when
using numerical linear algebra routines since they may be unable to compute
a matrix inverse, though it is known to exist. In practice, many matrices are
invertible, and thus this issue of minor importance. Further, when suitable,
the generalized inverse can be used in place of the usual inverse covariance
matrix to compute the index.

To conclude, FI p has several interesting mathematical properties, and
presents a natural extension of the univariate dispersion index to the mul-
tivariate setting. Previously proposed indices such as GDI and MDI do not
take into account crucial dependency information present in the covariance
matrix, making it simpler to use computationally but potentially misleading.
This dependency information is naturally included in FI p through the covari-
ance matrix and marginal dispersion indices. Future research is required to
develop hypothesis testing and goodness-of-fit tests. Further, exploration of
the mathematical properties of FI p may also provide a fruitful research direc-
tion.
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Appendix A

Supplementary Data

A.1 Posterior Ratemaking Dataset

N2

N1 0 1 2 3 4 5 6 7
0 71,087 3,722 807 219 51 14 4 0
1 3,022 686 184 71 26 10 3 1
2 574 138 55 15 8 4 1 1
3 149 42 21 6 6 1 0 1
4 29 15 3 2 1 1 0 0
5 4 1 0 0 0 0 2 0
6 2 1 0 1 0 0 0 0
7 1 0 0 1 0 0 0 0
8 0 0 1 0 0 0 0 0

Table A.1: Automobile insurance database cross-tabulation.
N1: number of claims for third-party liability.
N2: number of claims for the rest of guarantees.
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Appendix B

Proofs

B.1 Delta Method Std. Errors

B.1.1 Bivariate Poisson

Let µi = λi + λ3. The gradient vector of FI 2(θ) has components

∂FI 2(θ)

∂λ1
= 0 (B.1.1)

∂FI 2(θ)

∂λ2
= 0 (B.1.2)

∂FI 2(θ)

∂λ3
= 0. (B.1.3)

Let D = µ2
1 + µ2

2. The gradient vector of GDI(θ) has components

∂GDI(θ)

∂λ1
=

2µ2λ3(µ
2
2 − µ2

1)

D2
(B.1.4)

∂GDI(θ)

∂λ2
=

2µ1λ3(µ
2
1 − µ2

2)

D2
(B.1.5)

∂GDI(θ)

∂λ3
=

2µ1µ2 ·D + 2λ3(µ1 + µ2)
2(µ1 − µ2)

D2
. (B.1.6)

The gradient vector of MDI(θ) has components

∂MDI(θ)

∂λ1
= 0 (B.1.7)
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∂MDI(θ)

∂λ2
= 0 (B.1.8)

∂MDI(θ)

∂λ3
= 0. (B.1.9)

B.1.2 Bivariate Negative Binomial

Let µi = (α0 + αi), β̄i = (βi + 1), N = (µ1µ2β̄1β̄2(β̄1 + β̄1) − 2α2
0β1β2

√
β̄1β̄2)

and D = (µ1µ2β̄1β̄2−α2
0β1β2). The gradient vector of FI 2(θ) has components

∂FI 2(θ)

∂α0

=
2µ1µ2β

2
1β

2
2(µ1(β2 − β1) + µ2(β1 − β2))

D2
(B.1.10)

∂FI 2(θ)

∂α1

=
µ2β̄1β̄2α

2
0β1β2(2

√
β̄1β̄2 − (β̄1 + β̄2))

D2
(B.1.11)

∂FI 2(θ)

∂α2

=
µ1β̄1β̄2α

2
0β1β2(2

√
β̄1β̄2 − (β̄1 + β̄2))

D2
(B.1.12)

∂FI 2(θ)

∂β1
=
µ1µ2β̄2(2β̄1 + β̄2)− α2

0β2

√
β̄1β̄2

(
1− β1β̄−11

)
D

(B.1.13)

− N · (µ1µ2β̄2 − α2
0β2)

D2
(B.1.14)

∂FI 2(θ)

∂β2
=
µ1µ2β̄1(2β̄2 + β̄1)− α2

0β1

√
β̄1β̄2

(
1− β2β̄−12

)
D

(B.1.15)

− N · (µ1µ2β̄1 − α2
0β1)

D2
. (B.1.16)

Let N = (µ2
1β

3
1 +µ2

2β
3
2 +2α0β

3
2
1 β

3
2
2

√
µ1µ2) and D = (µ2

1β
2
1 +µ2

2β
2
2). The gradient

vector of GDI(θ) has components

∂GDI(θ)

∂α0

=
(2µ

3
2
1

√
µ2β

3
1 + 2

√
µ1µ

3
2
2 β

3
2 + β

3
2
1 β

3
2
2 (2µ1µ2 + α0(µ1 + µ2))√

µ1µ2 ·D
(B.1.17)

−
2
√
µ1µ2(µ1β

2
1 + µ2β

2
2) ·N

D2
(B.1.18)
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∂GDI(θ)

∂α1

=
2µ

3
2
1 β

3
1 + α0β

3
2
1 β

3
2
2

√
µ2√

µ1 ·D
− 2µ1β

2
1 ·N
D2

(B.1.19)

∂GDI(θ)

∂α2

=
2µ

3
2
2 β

3
2 + α0β

3
2
1 β

3
2
2

√
µ1√

µ2 ·D
− 2µ2β

2
2 ·N
D2

(B.1.20)

∂GDI(θ)

∂β1
=

3(µ2
1β

2
1 + α0

√
β1β

3
2
2

√
µ1µ2)

D
− 2µ2

1β1 ·N
D2

(B.1.21)

∂GDI(θ)

∂β2
=

3(µ2
2β

2
2 + α0β

3
2
1

√
β2
√
µ1µ2)

D
− 2µ2

2β2 ·N
D2

. (B.1.22)

The gradient vector of MDI(θ) has components

∂MDI(θ)

∂α0

=
2µ1µ2β

2
1β

2
2(µ1(β2 − β1) + µ2(β1 − β2))

D2
(B.1.23)

∂MDI(θ)

∂α1

=
2µ1µ

2
2β

2
1β

2
2(β1 − β2)
D2

(B.1.24)

∂MDI(θ)

∂α2

=
2µ2

1µ2β
2
1β

2
2(β2 − β1)
D2

(B.1.25)

∂MDI(θ)

∂β1
=
µ2
1β1(µ

2
1β

3
1 + µ2

2β
2
2(3β1 − 2β2))

D2
(B.1.26)

∂MDI(θ)

∂β2
=
µ2
2β2(µ

2
2β

3
2 + µ2

1β
2
1(3β2 − 2β1))

D2
. (B.1.27)

B.1.3 Bivariate Pólya-Aeppli

Let µi = λi + λ3. The gradient vector of FI 2(θ) has components

∂FI 2(θ)

∂λ1
= 0 (B.1.28)

∂FI 2(θ)

∂λ2
= 0 (B.1.29)

∂FI 2(θ)

∂λ3
= 0 (B.1.30)

∂FI 2(θ)

∂ρ
=

4

(1− ρ)2
. (B.1.31)
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Let D = (1− ρ)(µ2
1 + µ2

2). The gradient vector of GDI(θ) has components

∂GDI(θ)

∂λ1
=

√
µ1

µ2

· 2(1− ρ)(µ2
1 − 3µ2

2)

D2
(B.1.32)

∂GDI(θ)

∂λ2
=

√
µ2

µ1

· 2(1− ρ)(µ2
2 − 3µ2

1)

D2
(B.1.33)

∂GDI(θ)

∂λ3
=

2µ1µ2 ·D + λ3(1− ρ)(µ1 − µ2)
2(µ1 + µ2)√

µ1µ2 ·D2
(B.1.34)

∂GDI(θ)

∂ρ
=

2(µ2
1 + µ2

2)− 2λ3
√
µ1µ2

(1− ρ) ·D
(B.1.35)

The gradient vector of MDI(θ) has components

∂MDI(θ)

∂λ1
= 0 (B.1.36)

∂MDI(θ)

∂λ2
= 0 (B.1.37)

∂MDI(θ)

∂λ3
= 0 (B.1.38)

∂MDI(θ)

∂ρ
=

2

(1− ρ)2
. (B.1.39)

B.2 FI p for p-variate Poisson

First we demonstrate the results for p = 3. Using trivariate reduction, the
covariance matrix is given by

Σ =

λ1 + a a a
a λ2 + a a
a a λ3 + a

 (B.2.1)

=

λ1 0 −λ3
0 λ2 −λ3
a a λ3 + a

 . (B.2.2)
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The determinant of Σ is given by

|Σ| = λ1λ2λ3 + a(λ1λ2 + λ1λ3 + λ2λ3) , (B.2.3)

and the inverse matrix is given by

Σ−1 =
1

|Σ|

λ2λ3 + aλ2 + aλ3 −aλ3 −aλ2
−aλ3 λ1λ3 + aλ1 + aλ3 −aλ1
λ2λ3 λ1λ3 λ1λ2

 . (B.2.4)

Plugging this into the formula for FI 3, we have that

FI p(Y) =
√

d
T

(cov(Y)⊗ cov(Y)−1)
√

d (B.2.5)

=
1

|Σ|
1T
[
λ1λ2λ3+aλ1λ2+aλ1λ3 0 aλ2λ3

0 λ1λ2λ3+aλ1λ2+aλ2λ3 aλ1λ3
aλ2λ3 aλ1λ3 λ1λ2λ3+aλ1λ2

]
1 (B.2.6)

=
1

|Σ|
· [3λ1λ2λ3 + 3a(λ1λ2 + λ1λ3 + λ2λ3)] (B.2.7)

=
3

|Σ|
· [λ1λ2λ3 + a(λ1λ2 + λ1λ3 + λ2λ3)] (B.2.8)

= 3 · |Σ|
|Σ|

(B.2.9)

= 3. (B.2.10)

The key observation here is that the vector of ones 1T = (1, . . . , 1) on both
sides of the quadratic form changes the product into a sum over all of the
entries of (cov(Y)⊗ cov(Y)−1).
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For the p-variate case, we have the covariance matrix

Σ =


λ1 + a a a . . . a
a λ2 + a a . . . a
a a λ3 + a . . . a
...

...
...

. . .
...

a a a . . . λp + a

 . (B.2.11)

Observe that Σ is the sum of a diagonal and a rank-one matrix. Thus we can
write Σ as the sum of two matrices

Σ = D + a · 11T (B.2.12)

=


λ1 0 0 0 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λp

+


a a a a a
a a a . . . a
a a a . . . a
...

...
...

. . .
...

a a a . . . a

 . (B.2.13)

By the Sherman-Morrison-Woodbury matrix inverse formula (Horn and John-
son (2012)), the inverse of this matrix is given by

Σ−1 = D−1 − D−1(a · 11T )D−1

1 + a · 1TD−11
. (B.2.14)

To simplify the derivation, we note the following useful results

1 + a · 1TD−11 = 1 + a

(
1

λ1
+

1

λ2
+ . . .+

1

λp

)
(B.2.15)

= 1 + aq (B.2.16)

q2 =

(
1

λ1
+

1

λ2
+ . . .+

1

λp

)(
1

λ1
+

1

λ2
+ . . .+

1

λp

)
(B.2.17)

=

p∑
i=1

p∑
j=1

1

λi

1

λj
. (B.2.18)
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Plugging these results into FI p(Y), we have for any classical p-variate
Poisson distribution that

FI p(Y) =
√

d
T

(cov(Y)⊗ cov(Y)−1)
√

d (B.2.19)

= 1T
[
(D + a · 11T )⊗

(
D−1 − D−1(a · 11T )D−1

1 + a · 1TD−11

)]
1 (B.2.20)

= 1T
[
(D + a · 11T )⊗

(
D−1 − a · D

−111TD−1

1 + aq

)]
1 (B.2.21)

= 1T (D ⊗D−1)1− a

1 + aq
1T (D ⊗ (D−111TD−1))1 (B.2.22)

a · 1T (11T ⊗D−1)1− a2

1 + aq
1T (11T ⊗ (D−111TD−1))1 (B.2.23)

= p− aq

1 + aq
+ aq − a2

1 + aq
1T
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1
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... ... 1
λ1

1
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1
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... 1
λ2

1
λp

1
λ1

1
λ3

1
λ2

1
λ3

1

λ23
... 1

λ3

1
λp

...
...
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...
1
λ1

1
λp

1
λ2

1
λp

1
λ3

1
λp

... 1

λ2p

1 (B.2.24)

= p+
−aq + aq + a2q2 − a2q2

1 + aq
(B.2.25)

= p+
0

1 + aq
(B.2.26)

= p. (B.2.27)

This result proves that the classical p-variate Poisson distribution is always
equi-dispersed.
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Appendix C

Code

Code to generate the plots and analysis is available at github.com/deanhansen/MSc.
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