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LAY ABSTRACT

The human lungs are exposed to over 10,008 |df air each day from normal respiration, and it

is the first point of contact between the outside environment and the iraeatamy The cells

on the surface of the air passages in the lungs are called human airway epithelial cells (HAECS),
and they represent a critical deeragainst inhaled foreign objects that may include air pollution,
allergens, bacteria, and viruses. HAECs have a group of proteins called ABC transporters, that are
capable of different activities that are essential for maintainmrmal lung health. One unique

ABC transporter called ABCF1 was found to regulate defences against viral and bacterial
infections in noAung cells. It is unclear whether ABCF1 has the same function and protective

capacity in HAECs.

In this Ph.D. thesis, we investigated how ABCF1 functions in HAECs to detect and respond to
respiratory infections. By understanding how ABCF1 is involved in protecting the lungs against
these infections, novel treatmsiin be developed to minimize morbidity and mortality in both
healthy and vulnerable individuals. In our studies, we evaluated the chartpesasponse of
HAECs that had normal or absent levelsled ABCF1 gene under conditions thasemblean
infection. We used computational tool&lp us investigate the proteins that interact with ABCF1
and predict their potential function. Our studies have concluded that ABCF1 does have a protective
capacity in HAECs, howevewe have yet to elucidate how and what other proteins are involved

to help it function.
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ABSTRACT

Human airway epithelial cells (HAECgJay a pivotal role in creating mechanical barrier to
prevent environmental insults from entering deeper thédung tissueandin facilitating host
defence against pathogens and allergens by producing immune mediators and recruiting
inflammatory cells. ABCF1lis a uniqgue member of the ABttansportefamily thatit is highly

expressed in the airway epitheliungwever, its function itHAECsis currently not known

In this thesis we explored the role of ABCF1 as a dsDNA viral sensodAECs Ourfindings
demonstrated that while ABCF1 is required for an immune response to a-dtrablded DNA
(dsDNA) viral mimic VACV -70,ourtranscriptomic analysis suggested a role inipflammatory
responsedownstream of tollike receptors (TLR) 3 and 4 signalling pathwa&e followed this
outcome by investigating ABCF1 in mediating {inflammatory responses to TNF an d
Poly(I:C) through A20, NFe B a n-8 redulgt&d sigriing pathways. Our study demonstrated
that Poly(I:C) and TNFJ i n d u8are cegulated by ABCF1 through pathways independent of
NF-a B, a fBactivatRrk although the exact mechanism remains unclear. The next approach
was to run a hypothesigeein silico investigation of the ABCF1 proteiprotein interaction (PPI)
network using publicly available databases and Gene Ontology (GO) term enrichment analysis.
Following ourin silico resultsof ABCF1 protein interactors, we validated a novel interaation

ABCF1 and SYK in human airway epithelial cells following Poly(l:C) stimulation.



Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

We have demonstrated that silencing ABCF1 under stimulation by VAGVINFU a n d
Poly(I:C) inHAECsaffects the induction of immune mediators, and a candidate protein interaction
partner, K, is involved in immune signallindiowever itexactmechanism is not definetlve
propose that further insights into the functions of ABCF1 may aid in understanding/Aie@s

maintain mucosal immune homeostasis.
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Introduction
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Human airway epithelial cells (HAEC)i Overview

The respiratory system is one of the two systems in the human body that directly interacts
with the external environmefit]. The respiratory tract is divided into two zones: the
proximal conducting zone and the distal respiratory [&n&he proximal conducting zone
includes the nasal cavity, trachea, and the bronchi and it prepares the inhaled air for gas
exchange by moistening, cleaning, and warntimg aif2]. The distal respiratory zone
contains the respiratory bronchioles and alveoli, and it allows for gas exchange with the
inhaled air and blodd, 2]. Through normal respiration, the lungs are constantly exposed

to various pathogens, toxins, allergens, and foreign particles, therefore the respiratory tract

requires immunological surveillance to maintain lung homeostasis and prdtHction

The nmajority of the respiratory tract is lined with pseudostratified epithelial cells. The
epithelium of healthy individuals has 14 types of cells: 12 in the surface epithelium and 2
in the submucosal glan@$. Most of the cells in the airway are epithelial cells (89.[3})

The rest are stromal cells (4.7%), such as endothelial cells, fibroblasts, smooth muscle cells,
and pericytes; immune cells (6.2%), including myeloid and lymphoid cells; and basal cells

(30%)3].

In the tracheobronchial section of the respiratory tract, the pseudostratified airway
epithelium is made up of three major cell types: basal cells, ciliated cells, amdiated
celld1]. Basal cells reside within the basement membrane and are the main stem cells of

the airways with the ability to setenew posinjury and differentiate into other cell types,
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including goblet cells, club cells and ciliated d&l|s3]. Ciliated cells are columnar and
have haiflike structures, called ciljd]. They are terminally differentiated cells, and they
make upthe majority of all the epithelial cells in the conducting airnj@ysThese cells

have an important role in maintaining airway homeostasis by facilitating mucociliary
clearance (MC(Q], 2]. Goblet cells are the main mucus producing cells in the airways and
work together with ciliated epithelial cells to assist with MZJCThe mucus it produces

is made of electrolytes, metabolites, antimicrobial prodactdmucin glycoproteins, and

is essential for trapping foreign particles in the respiratory[Bjac@lub cells are primarily
found in the respiratory bronchioles and functions as stem cells to facilitate epithelial repair
like basal cells, as well as secretory cells that secrete CC10 to maintag integrity2,

4]. Less common cells in the airway epithelium include pulmonary neuroendocrine cells
which make up approximately 0.5% of all airway epithelial cells and serve as a
communicator between the immune system and nervous system; tuft cells are proposed to
presentantigens to developing thymocytes; hillock cells are involved in epithelial cell
differentiation, cellular adhesion, and immunomodulation; and microfold cells initiates

immune responses by endocyt{a]s

The pseudostratified airway epithelium functions as a barrier that separates the external
environment from the internal mili€lj. It has three main activities: MCC, functions as a
physical mechanical barrier and regulates mucosal immunity. MCC primarily involves
mucus and ciliated cells to trap and remove unwanted environmental microorganisms and

particulates from the airwajld. Mucus is produced primarily by secretory cells, such as
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goblet cells, as well as submucosal glahfslt contains over 200 proteins including
mucins, that make upemajority of the barrier to trap potential pathogens and particulates,
as well as keeping the airway hydrdfied5]. The coordinated beating of the cilia on
epithelial cells pushes objects trapped in the mucus from the terminal bronchioles towards

the pharynx whertheycan be removdd, 6].

Tight and adherens junctions are both located at the apicolateral border of the airway
epithelium to create a mechanical barrier between the luminal space and pulmonary
parenchymf, 6]. Tight junctions are made of several transmembrane proteins, including
occludins, claudins, and junctional adhesion proteins to regulate the transport of solutes
and ions across the epithelial cHlls Adherens junctionare consisted of transmembrane
proteins, includinge-c a d h e r i-catenig loachtedbbelowthe tight junctions and are
responsible for connecting adjacent cells in the epith¢liimogether, these two groups

of proteins form a mechanical barrier that prevents inhaled pathogens and environmental
insults from entering the submucosa and injuring the airways, while also serving as a
signdling hub to regulate gene expression, cell proliferation and differentiation in the

epitheliunil].

Human airway epithelial cells (HAECs) have a crucial role in regulating and maintaining
immunological activities in the epithelium. They secrete a variety of antimicrobial products

into the mucus barrier upon detecting pathogens, and recruit immuneocedigulate
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mucosal immunitfd, 5, 7} Thisi ncl udes smal | cat i aefansins,mol e c |

LL-37, and CCL20, and larger proteins, saslysozyme, lactoferrin, and mug¢sj.

HAECs express pattern recognition receptors (PRRs) on the cell surface and intracellularly
to detect and respond to invading pathogens. They recognize whole viruses, bacteria and
fungi, as well as their components called pathemgsociated molecular paits
(PAMPs]5, 7]. PAMPs can go through the respiratory mucus layer to gain access to the
surface or intracellular receptors and stimulate an inflammatory regppmsmongst the

PRRs are Tollike receptors (TLRs) that can recognize a large array of pathogenic
components. This includes lipoproteins (TLR1, TLR2, and TLR®6), lipopolysaccharide
(LPS) (TLRA4), flagellin (TLR5), DNA (TLR9), and RNATLR3, TLR7 and TLR)[5].
Activation of the TLRs will initiate signal transduction in a MyD88pendent or
independent manner to activate transcription factors, Nuclear fadsor (aNBP and
interferon regulatory factors (IRF), to allow for the downstream expression ef pro
inflammatory genes including typeahd Il IFNs, TNF,IL-1 b , -6 dndL. IL-8[5]. Other

PRRs found in HAECs includeNod-like receptors (NLRsyvhich activatedNF-a Bwhile
retinoic acidinducible gene | (RIG)-like receptors (RLRsactivatesIRF-3 and IRF7

upon detection of PAMPs in the cyto$d) 8].

HAECs express receptors for immune mediators, such as cytokines and chemokines, to
signal neighboring epithelial cells of an infection, and to recruit innate and adaptive

immune cellf9]. One of these receptors is CXCR3, which binds to CXCL9, CXCL10, and
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CXCL11[5]. These ligands help recruit leukocytes, such as T lymphocytes, to the site of
infection or injury and initiate inflammatigs]. Another receptor expressed by HAECs

includesTNFRY, areceptor for TNF, a cytokine family that also promotes inflammEgijon

ATP Binding Cassette (ABC)i Overview

ATP Binding Cassette (ABC) is a family of transporter pratéiatareconserved in both
prokaryotes and eukaryof&6]. Currently, there ard9 knownhumanABC transporters

that are subdivided into 7 subfamilies from ABCA to ABCQ. Most ABC transporters
possess &ransmembrane domain, andcleotidebinding domais (NBDs) with highly
conservedequences, including/alker A and Walker B motifs, signature H and Q loops,
that are essential for NBD mediated ATP hydrolysit13]. These transportefanctions

as an importer or exporter depending on the direction of tran&yohydrolyzing ATP,

ABC transporters camove substrates such as metal ions, peptides, amino acids, lipids, and
sugars, across thigid membrane in or out of ce]lsl]. Two ABC transporter subfamilies,
ABCE and ABCF, are unique as they lack a transmembrane d@nditherefore are

unlikely to function as a transporfét].

Three known ABC transporterisave important roles in normal and pathological lung
functions: ABCC4, ABCC7, and ABCA3n primary HAECs,ABCC4, also known as
multi-drug resistance transporH@iRP4, has beerdemonstratedo haverolesin beinga
pharmacological inhibitgt5]. Previous groups have demonstrated thatirdyibiting

ABCC4 in chronic lung diseases was shown to increase intracellular cAMP levels by
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minimizing its extracellular transport activity, therefore potemgaCFTR function, as

well as glucocorticoid signalling to manage disease progression and exacefbations
healthy individuals, the function of ABCC7, also known as cystic fibrosis transmembrane
conductance regulator (CFTRunctions asan ion channel that transports chloride and
bicarbonate ions across the apical membrane of epithelial cells to maintain ion and fluid
homeostas[45]. However, nutations in the CFTR gene will lead to the development of a
chronic lung disease, called cystic fibrosis. The expression of a mutated CFTR can
compromise ion transport, therefore causing an increase in mucus viscosity, impaired MCC
and modulated immunify4]. The protein expression of ABCA3 has been demonstrated
exclusively in the lungs, specifically in alveolar type 1l daky. ltés been sugg
it functions as a regulator of surfactant production, which is required for lowering surface
tension in the alveoli. Individuals with a mutation in the ABCA3 gene damonstrated

surfactant deficiency and severe neonatal lung dige#se

ABCF1 71 Overview

A study by Aguiar et al. investigated the gene expression levéd8Gftransporters in
healthy HAECs throughout the airway tree generations and demonstrated that ABCFL1 is
one of the most highly expressed ABC transporters in the[lL®lgT his finding suggests

that ABCF1 may have an important role in HAEC physio[@@}. Currently, the protein
expression and function of ABCF1 transportevehget to be characterized in HAECs.

However, several groups have investigathdir function in different cell types and
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demonstrated its roles in immunity, transcriptéom translatiomegulation, and embryonic

development.

Several studies have demonstrated the role of ABCF1 in innate immune responsgs. In an
vitro study with synoviocyteBom rheumatoid arthritis patients, it was observed that-TNF

U stimulation led to an increase in ABCF1
ABCF1 may have a role in primflammatory responsgk6]. A separate group
demonstrated that ABCF1 plays a role in sensing cytosolic viral dsDNA in mouse
embryonic fibroblasts (MEFs). In this study, they silenced ABCF1 using siRNA, followed
by stimulation with a dsDNA viral mimic called interferon stimulatory DN8D), a 45

bp oligomer derived fromListeria monocytogenesto trigger the ISD signalling
pathwayl17]. This pathway involves the activation of STING, TBK1 and{R induce

the production of type | interfer¢iB]. They measured the induction of CXCL10 with an
ELISA and demonstrated a decrease in CXCL10 secretion when ABCF1 is knockdown
compared to the control cqll¥]. They suggested that ABCF1 detects and binds to viral

dsDNA in the cytosol of the infected cells and interacts with HMGB2 and IFI16 to stimulate

an innate immune response through the activation of3[R®].

Prior studies have also reported the role of ABCF1 as an E2 ubigaitjongating enzyme
that regulates LP#iducedTLR4 signalling inmurinebone marrow derived macrophages
(BMDM)[20]. Here, they demonstrated that under LPS stimulation, ABCF1 had an impact

on the activation status of transcription factors-&NB(MyD88-dependent) and IRB
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(TRIF-dependent). During LPS stimulation, silencing of ABCF1 led to an increase in
phosphorylation of a MyD88ignalling associated kinase (TAK1) and attenuation of a
TRIF-signalling associated kinase (TBK1). They also observed a reduced expression of
TNFAIP3(A20) protein, a negative regulator of MyD88 sitjimg. However, when they
overexpressed ABCF1, there was a shift from Myfd@Bendent to TRHdependent
signalling in BMDM under LPS stimulation. Following these findings, they observed that
ABCF1 was argeted for K4&olyubiquitination by clAP1/2an E3 ubiquitin ligaseluring

the early phase @heLPS challenge, howevghis shifted to K63 linkages by TRAF&N

E3 ubiquitin ligaseduring the late phase of the challenge. They have also demonstrated
that ABCF1 associates with and mediates 468/ubiquitination of SYKas an E2
ubiquitin conjugating enzyme with TRAF6 in an-BBNG enzymatic pathway. ABCF1
was also characterized to polyubiquitinate and interact WRAF3, along with an
unknown E3 ligasduringlate phas@LR4 signalling likely in a TRIFdependent manner
Overall, this study concluded that ABCF1 controls the molecular switch from MyD88
TRIF-dependent signalling, therefore regulating LR&uced macrophage polarization

from M1 (preinflammatory response) to M2 (asitiffammatory responsg0].

ABCF1 was identified to have an essential role in biogenesis, function and control of
translational machinery in eukaryotic cgl$]. A study demonstrated that ABCF1 directly
associates with elF2 to promdtes binding of methionyl tRNA (MetRNA) to elF2 and
associates with the ribosome in an Adé&pendent manner during mRNA translation

initiation[21, 22] The authors from this studybserved that a mutated form of ABCF1
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impairs its ability to bind and hydratg to ATP, therefore compromising the components

involved in start site recognition during the initiation of MRNA trans|§#8h

ABCF1 expression waalso characterizedo be essential for embryo development. To
study the role of ABCF1 in development and disease, Wilcox et al. created a knockout
mouse model. During this study, they observed that heterozygllsf1{") mice
development normally, however homozygousb¢fI) knockout mice models were
lethal[24]. They observed that th®BCF1 promoter was active in all organs and tissues,
and it was highly active throughout mouse embryogenesiggestingthat ABCF1
knockoutcanpotentiallycompromise mRNA translation duripgstimplantationstage in
embryo developmef4]. To conclude, their findings demonstrated that ABCF1 is
essential for blastocyte survival during embryogelfi2$jsA separate group ran a study to
investigate the role of ABCF1 in embryonic stem cells. Their findings suggest that ABCF1
functions as a cellpecific transcriptional cactivatorfor the transcription factors in stem

cell pluripotency, SOX2 and OCT4nd regulates stem cell pluripotency in response to
genome instability25]. The authors in this studyemonstrated that under DNA damage or
exposure to pathogeterived DNAs in embryonic stem cells, ABCF1 binds to the aberrant
DNAs accumulating in these cellsausng a loss of interaction of SOXand OCT4and

therefore dissociatinthemfrom the gene promoters targei2hl.
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Overarching Aim and Thesis Objectives

The overarchingaim of this Ph.D. thesis i® investigate whether ABCF1 plays a role in
innate immune signalling in human airway epithelial callsvitro. The sequence of

objectives tapproach this airs as follow:

1. To confirm ABCF1 gene and protein expression in HAECs and localization in
human lung tissues (Chapter 2).

2. Toinvestigate whether ABCF1 functions as a dsDNA nucleic acid sensor in HAECs
and characterize its roles in antiviral responses (Chapter 2).

3. To observe whether silencing ABCF1 will impact A20 protein expression, thereby
increasing pranflammatory responses in HAECs under TNF and Pol y (|
challenge (Chapter 3).

4. To generate a list of ABCF1 protein interactors using egmnced databases and
performing a Gene Ontology (GO) enrichment analysis to generate a hypothesis on
the potential functions of ABCF1 (Chapter 4).

5. To demonstrate that ABCF1 interacts with SYK under Poly(I:C) challenge (Chapter

4).

Our interest in characterizing the expression and function of ABCF1 in HAECs stemmed
from a study byAguiar et al. In their study, they examined the gene expression levels of
ABC transporters in healthy HAECs across all airway generations: small airways, large

airways, and the trachid®]. They observed that one of the ABC transporter genes that was

11
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highly expressed includedBCF1, suggesting that it has the potential to play an important
role in HAEC$10]. Currently, there are no known studies that have been conducted to
characterize the expression and function of ABCF1 in HAECs. We therefore began our

investigation to characterize its function in the airway epithelium.

12
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Chapter 2

ABCF1 RegulatesdsDNA-induced Immune Responses in Human
Airway Epithelial Cells

Summary and Significaac

The human airway epithelium plays a critical role in the human lung by facilitating defence against
respiratory viral infectionsthrough the detection of pathogens by the pathogen recognition
receptors (PRR) and initiating a downstream innate immune response. A study has demonstrated
the role of ABCF1 in sensing cytosolic dsDNA viral mimic in mouse embryonic fibroblast
followed by inducing an antiviral immune response. Currently, there is no evidence on the role of
ABCF1 as a cytosolic antiviral sensorfioman airway epithelial cells (HAECs). We hypothesize
that ABCF1 functions as a dsDNA nucleic acid sensor and has an important role in regulating
antiviral responses in HAECs. Our study showed thafBEF1gene and protein is expressed in

the HAECs. UndeABCF1siRNA-mediated knockdown and dsDNA viral mimic challenge, there
was a significant decrease in timeluctionof CXCL10 compared to the control. However, our
transcriptomic analysis demonstrated that there was no global attenuation of genesdssiticiat
antiviral immunity. The Gene Ontology (GO) analysis with our transcriptomic data revealed that
the genes most impacted by ABCF1 knockdown under viral stimulation were associated with TLR
signalling, suggesting that ABCF1 does have a role in inimateunity in the human airway
epithelial cells. Insummary our findings suggests thaBBCF1 is a candidate cytosolic nucleic

acid sensor and modulator of TLR signalling, though its exact mechanism remains to be

characterized.

15



Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

ABCF1 Regulates dsDNAinduced Immune Responses in Human Airway Epithelial Cells

Quynh T. Cad Jennifer A. Aguiat, Benjamin M. Tremblay, Nadin Abba$ Nicholas
Tiesseh, SpenceRevillt, Nima Makhdanti, Anmar AyouB, Gerard Co¥ Kjetil Ask'?,

Andrew C. Doxey? and Jeremy A. Hirota34

1. Division of Respirology, Department of Medicine, Firestone Institute for Respiratory
Health, McMaster University, Hamilton, ON, Canada

2. Department of Biology, University of Waterloo, Waterloo, ON, Canada

3. McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada

4. Division of Respiratory Medicine, Department of Medicine, University of British

Columbia, Vancouver, BC, Canada

Conflict of interest: All authors declared no conflicts of interest.

Statusofwork Publ i shed in AFrontiers in Cellular
Citation: Cao QT, Aguiar JA, Tremblay BJ, Abbas N, Tiessen N, Revill S, Makhdami N, Ayoub
A, Cox G, Ask K, Doxey AC, Hirota JA. ABCF1 Regulates dsDMAuced Immune Responses

in Human Airway Epithelial CellsFrontiers in Cellular and Infection Microbiolog2020; 10:

487 .https://doi.org/10.3389/fcimb.2020.00487

Author contributions: QC: designed, performed, and analyzed in vitro experiments, in vitro
figure generation, drafting and editing of the manuscript. JA and BT: performed bioinformatics
analysis, figure generation, and drafted the manuscript. NA: perfamwéido experiments, &n

vitro figure generation. NT: processed human tissue, performeiio experiments, &n vitro

16

a


https://doi.org/10.3389/fcimb.2020.00487

Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

figure generation. NM: responsible for patient consenting and human tissue acquisition. SR:
responsible for histology and imaging. AA: responsible for human ethics protocols, human tissue
acquisition, histology, and imaging. GC: responsible for supervigfothe clinical research
coordinator and human tissue acquisition. KA: responsible for supervision of the trainees, human
tissue acquisition, study design, histology, and imaging. AD: responsible for oversight of the entire
study & supervision of the tna¢es and funding. JH: responsible for oversight of the entire study

& supervision of the trainees and funding, drafting, and editing of the manuscript. All authors
contributed to the article and approved the submitted version.

Corresponding author: Dr. Jeremy A. Hirota, Department of Medicine, McMaster University
and The Research Institute of St. Joeds Hami/l
Charlton Ave East, Room L3416, Hamilton, Ontario, Canada L8N 4A6, Ph. (3838-0745; Fax

(905)521-6183; Email:hirotaja@mcmaster.ca

17


mailto:hirotaja@mcmaster.ca

Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

ABSTRACT

Background: The airway epithelium represents a critical component of the human lung that helps
orchestrate defences against respiratory tract viral infections, which are responsible for more than
2.5 million deaths/year globally. Innate immune activities of the gimyathelium rely on Tol

like receptors (TLRs), nucleotide binding and leugiicl-repeat pyrin domain containing
(NLRP) receptors, and cytosolic nucleic acid sensors. ATP Binding Cassette (ABC) transporters
are ubiquitous across all three dains of lifei Archaea, Bacteria, and Eukaryand expressed

in the human airway epithelium. ABCF1, a unique ABC family member that lacks a
transmembrane domain, has been defined as a cytosolic nucleic acid sensor that regulates
CXCL10, interferorb e ssjpm, and downstream type | interferon responses. We tested the
hypothesis that ABCF1 functions as a dsDNA nucleic acid sensor in human airway epithelial cells
important in regulating antiviral responses.

Methods: Expression and localization experiments were performed irssity hybridization and
immunohistochemistry in human lung tissue, while confirmatory transcript and protein expression
was performed in human airway epithelial cells. Functional experiments were performed with
siRNA methods in a human airway epithelial celeli Complementary transcriptomic analyses
were performed to explore the contributions of ABCF1 to gene expression patterns.

Results: Using archived human lung and human airway epithelial cells, we confirm expression of
ABCF1 gene and protein expression in these tissue samples, with a role for mediating CXCL10
production in response to dsDNA viral mimic challenge. Although, ABCF1 kneokdeas
associated with an attenuation of select genes involved in the antiviral responses, Gene Ontology
analyses revealed a greater interaction of ABCF1 with TLR signalling suggesting a multifactorial

role for ABCFL1 in innate immunity in humamaay epithelial cells.
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Conclusion: ABCF1 is a candidate cytosolic nucleic acid sensor and modulator of TLR signalling
that is expressed at gene and protein levels in human airway epithelial cells. The precise level
where ABCF1 protein functions to modulate immune responses to pathogenssréomnae

determined but is anticipated to involve KBFand CXCL10 production.

Key words: ABCF1, airway epithelial cells, virus, CXCL10, innate immunity
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INTRODUCTION

The human lung functions at the interface of the external and internal environments and is exposed
to over 10,000 litres of air each day from normal respiration. The airway epithelium represents a
critical component of the human lung that helps orchesttatences against inhaled noxious
substances that may include air pollution, allergens, bacteria, and viral[[x8)lt¥o manage

these continuous insults, the airway epithelium has evolved to be aumglibnal barrier tissue

with mechanical and immunological impedances, manifested through the mucociliary ladder,
proteinprotein junctions, and innate immune procesfedominant exposure important in both
healthy individuals and those with underlying chronic respiratory diseases are viral infections.
Collectively, respiratory tract viral infections are responsible for more than 2.5 million deaths/year
globally and repesent an economic burden on health care systems for all demogripHhits
individuals with underlying chronic airway disease, respiratory tract viral infections increase
frequency and severity of disease exacerbations, hospitalizations, and contribute to morbidity and
mortality[5-9]. Understanding the mechanisms governing respiratory tract viral infections and host
defence is essential for the future development of treatments aimed at minimizing the morbidity

and mortality of these pathogens.

Innate immune activities of the airway epithelium rely on accurate sensing of the external
environment. The threat posed by viruses that infect the respiratory mucosa is countered by the
airway epithelium expressing functional TtKke receptors (TLRS), ucleotide binding and
leucinerich-repeat pyrin domain containing (NLRP) receptors, and cytosolic nucleic acid sensors
that are able to rapidly detect exposures and provide host défeht€-12]. Antiviral sensing

mechanisms in the respiratory mucosa enable responses to influenza A, respiratory syncytial virus,
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rhinovirus, and human parainfluenza virus; all single stranded RNA Vitig§eBoublestranded

DNA (dsDNA) viruses are also relevant lung infections, with adenovirus capable of inducing
influenza like symptoms in healthy subjects and associated with chronic respiratory disease
exacerbationg8,14-16]. Like RNA viruses, adenovirus is able to infect airway epithelium
followed by replication, which leads to a variety of innate immune defences able to sense viral
nucleic acids and proteifig},17,18] Vaccinia virus is another dsDNA virus that is able to infect
airway epithelium and has been explored for capacity to genetically engineer the virus for
transgene delivery, vaccination strategies, and studying Variola virus infedti®ra3].
Exploring how the airway epithelium responds to viruses may provide new strategies for
controlling infections, optimizing transgene delivery, and vaccination strategies relevant in lung

health and disease.

ATP Binding Cassette (ABC) transporters are ubiquitous across all three domains iof life
Archaea, Bacteria, and Eukaf24]. In humans, the 49 ABC transporters are classified according

to structure and function, resulting in 7 families. ABC transporters with clear involvement in lung
health and disease include ABCA3 and ABCC7 (better known as cystic fibrosis transmembrane
conductance regulatoi CFTR), responsible for surfactant production and ion transport,
respectively[20,25,26] The ABCF family members are unique in their structure and function as
they lack transmembrane regions and therefore lack capacity for transport of sufttaigs

Of the ABCF family members, ABCF1 is most extensively characterized in eukaryotes, with
functions ranging from initiation of mMRNA translation, immune modulation, and nucleic acid
sensing[27-32]. The diverse functions attributed to ABCF1 are physiologically important, as

demonstrated by the embryonic lethality of homozygous deletion of ABCF1 ifi33lic€o date,
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nucleic acid sensing by ABCF1 has been defined using the dsDNA immunostimulatory DNA
(ISD) sequence derived frobisteria monocytogend84] and a dsDNA HIV sequence, with both
nucleic acid motifs inducing CXCL10, interferdn e x pr essi on, and downstr
responses in mouse embryonic fibroblgsts Complementary to dsDNA sensing, immune
modulation mediated by ubiquiticonjugating activities of ABCF1 have been defined in the
context of macrophage polarization and immune responses linked to intdsfergnr oduct i on
tolerance important in mouse dals of seps[82]. In the context of studies using human lung
samples,ABCF1 gene expression has been identified in the human airway epitf@hlim
although confirmation of protein and function remains to be determined. Theirlearo
demonstration of ABCF1 functions in immune responses in mouse models and the presence of
detectableABCF1 gene expression the human airwayarranta deeper interrogation into the

expression and function of this molecule in human health and disease.

Defining defence mechanisms in airway epithelial cells has important consequences in both lung
health and disease, with the potential for interventions that could reducmdiraéd pathologies

and exacerbations of chronic respiratory disdas@ls We therefore tested the hypothesis that
ABCF1 functions as a dsDNA nucleic acid sensor in human airway epithelial cells important in
regulating antiviral responses, using archived human lung samples and human airway epithelial
cells. Expression and lo¢zdtion experiments were performed usingsitu hybridization and
immunohistochemistry in human lung tissue, while confirmatory transcript and protein expression
was performed in human airway epithelial cells. Functional experiments were performed with
SIRNA methods as no selective small molecule inhibitors to ABCF1 have been validated to date.

Complementary transcriptomic analyses were performed to explore the potential contributions of
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ABCF1 beyond dsDNA virus sensing. A focused approach on CXCL10 as a readout was
performed based on the discovery of ABCF1 as a dsDNA sensor in mouse embryonic fibroblasts.
Further hypothesifree analyses explored candidate pathways differentially reguthieng
ABCF1 attenuation. Our results confirm expression of ABCF1 in human airway epithelial cells
with a role for mediating CXCL10 production in response to dsDNA viral mimic challenge.
Although, reduced expression of ABCF1 was associated with an atitemwf select genes
involved in the antiviral responses, Gene Ontology analyses revealed a greater interaction of
ABCF1 with TLR signalling suggesting a multifactorial role for ABCF1 in innate immunity in

human airway epithelial cells.
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METHODS
Human Ethics
All studies using primary human lung material were approved by Hamilton integrated Research

Ethics Board (HIREB 5305T and 5099T).

Reagents

In situ hybridization was performed using a custom RNAséoperobe for ABCF1 (construct
targeting 17132726 of NM_001025091.1) generated by Advanced Cell Diagnostics (ACD,
Newark, California). Negative and positive control probes for quality control of RNA signal in
analyzed human tissues were purchased from ACD (data not shown). Protein cell Igsates w
collected by lysing and scraping cells with RIPA Lysis buffer (VWR, Mississauga, Ontario) mixed
with protease inhibitor cocktail (Sigmdrich, Oakville, Ontario). Immunoblots were conducted
using MiniProtean TGX stakfree gels and Transf@lot Turbo RTA Transfer Kit reagen{8io-

Rad, Mississauga, Ontario). ABCF1 protein was probed with primaryA&@F1 antibody
(HPA017578, Sigmaldrich, Oakville, Ontario) at 1:100 in 3% Casein in 1X Tris Buffered Saline
with TWEEN ® 20 (Sigma&Aldrich, Oakville, Ontario, and Antiabbit HRRlinked Antibody
(70743 Cell Signalling Technology, Danvers, MA) at 1:2000. Immunohistochemistry was
performed using the same aABCF1 antibody as immunoblotting. ABCF1 and scramble siRNA
SMARTpool siGENOME transfection rgants were purchased from Dharmacorq0826301

and D00120614, Lafayette, Coloradolhe SMARTpool siRNA reagent is a pool of 4 siRNA
duplexes all designed to target distinct sites within the specific gene of interest. The 4 different
siRNA within the pool were selected by Dharmacon using their design algorithm to have the

optimal silenciig of the target transcript NM_001025091 and NM_001090, witrsiRINAs
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targeting within the open reading fram@ell viability was estimated with the Pierce LDH
Cytotoxicity Assay kit (ThermoFisher Scientific, Mississauga, Ontario). RNA samples were lysed
with Buffer RLT and purified with Rneasy Mini Kit columns (Qiagen, Toronto, Ontario). The
ligands ISD, ISD contl, VACV-70, VACV-70 control, and Poly(l:C) were purchased from
Invivogen (San Diego, California). Apart from Poly(I:C), where it was applied directly to the cells,
the other ligands were complexed with LyoVec tfaogon reagent (Invivogen, San Diego,
California). Human CXCL10 was quantified using a commercial ELISA with ancillary reagent kit
(R&D Systems, Oakville, Ontario). The protocol for quantifying CXCL10 was modified with the

use of a loading plate for tharaples.

Cell Culture

All experiments were performed in submerged monolayer cell culture. An immortalized human
airway epithelial cell line (HBE@GKT) over expressing human telomerase reverse transcriptase
(hTERT) and cyclirdependent kinase 4 (Cdk4) was used as previouslyioed§36-40]. The

cell line was obtained from lung biopsies that were not histologically involved with lung cancer
from nonrsmoker donors and it does not have a malignant pher@6jpelBEC-6KT were grown

in keratinocyte serum free medium (ThermoFisher Scientific, Mississauga, Ontario) supplemented
wi t h 0. 8 ng/ mL epithel i al gr owt h factor, 5
penicillin/streptomycin. Cahk3 cells (ATCC HTB55)weregr own i n Eagl ebs Mini
Media supplemented with 10% fetal bovine serum (Wisent, SaemBaptiste, QC), 1mM

HEPES, and 1X penicillin/streptomycin (Sigr&rich, Oakville, Ontario). Primary human
bronchial epithelial cells derived from healtipatient bronchial brushings were grown in

PneumacCul t ExPIl us Medi um suppl emented wi t h
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Technologies, Vancouver, BC) and 1X antimicrofaatimycotics (ThermoFisher Scientific,
Mississauga, Ontario). All cells were grown at 3at 5% CQ. Experiments with primary cells
were performed between passages 1 and 4, and experiments with6#8E&hd Calu3 cells

were performed within 5 passages.

In vitro experiments

All in vitro knockdown experiments in HBEGKT were done using siRNA transfected with
DharmaFECTTr ansf ecti on Reagent according to the
transfected with iIBCF1 or siCTRL for 24hours. For nofthallenge experiments, cells were
immediately collected for outcome measurements. For challenge experimentsnadtatown,

cells were transfected with an immunostimulatory ligand for 24h followed by outcome
measurements of cell viability (LDH and cell morphology), function (cytokine secretion), protein
expression (immunoblot), or gene transcription (microarray)TR6tU st i mul ati on exp
10 ng/ml was incubated for 24h followed by protein collection for immunoblots. For ISD and
VACV-70 stimulation experiments, a concentrattesponse study was performed using 0-316
3.16 €9/ ml-3(L6DE}% gbmd) lpoied 6§ \incubation for 24h. For Poly(l:C)

stimulation experi ments, 1 €g/ ml was incubate

Cytokine Analysis

Cell supernatants were collected followingvitro experiments and sent to Eve Technologies for
a Human Cytokine Array/Chemokine Array-#P8x (Eve Technologies, Calgary, Alberta). Eve
Technologies uses the BRlex ® 200 to detect 49 different cytokines, chemokines and growth

factors: sCD40L, EGF, Eotaxin, FGE, FIt-3 ligand, Fractalkine, &€SF, GMC S F , GROU,
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| FNU2, -L BN20 L1rd, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12
(p40), IL-12 (p70), =13, IL-15, IL-17A, IL-17E/IL-25, IL-17F, IL-18, IL-22, IL-27, IR10
(CXCL10), MCR1, MCP3, M-CSF, MDC (CCL22), MIG,MIPL U, -IMd ,P PAR,GBGF

AB/BB, RANTES (CCL5), TGFRU, TINF BDNF V-BEGF

Histology, digital slide scanning and microscopy

In situhybridization and immunohistochemistry was performed using a Leica Bond Rx autostainer
with instrument and application specific reagent kits (Richmond Hill, Ontario). The human lung
tissues selected for analysis were formalin fixed, paraffin embeddedsdumples from archived
hospital clinical samples, determined to be free of defined lung pathology, collected during a
tumour resection procedure. No history on smoking was available for the samples analyzed.
Following selection, four micron thiclestions were stained with using RNAscBp@robes if

situ hybridization) or antibody (immunohistochemistry) following directions supplied with the
Leica Bond reagent kits. For IHC, heatluced antigen retrieval in citrate buffer was performed

at pH 6 with primary antibody diluted at 1:50. Slides underwentaligiide scanning using an
Olympus VS126.100 Virtual Slide System at 40X magnification with \AASW-L100 V2.9
software and a VC50 colour camera (Richmond Hill, Ontario). Image acquisition and flogmatt

was performed using Halo Software (Indica Labs, Albuquerque, NM).

Gene Expression Omnibus (GEO) dataset mining
Gene expression patternsABCFLlin human airway epithelial cells was determined relative to
markers for immune cell<C034), ABC transporters of known function in airway epithelial cells

(ABCC4 ABCCY, and junctions @DH1) in a dataset containing samples from trachea, large
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airways (generation"239), and small airways (generation ™02" from healthy subjects
(GSE11906, Affymetrix Human Genome U133 Plus 2 microarray platféih)The following
probesets were used to extract gene expressionARBGE1 (200045 at) ABCC4(203196_at),

ABCC7 (CFTR 205043 at)CDH1 (201131 _s_at), an@D34 (209543 _s_at). In cases where

more than one probe corresponded to a given gene, the following hierarchy was used to select an
individual probe for further use: perfect, unique matches (probes ending in _at or _a_at) were
preferred over mismatch or namique probes (ending in _s_at or _x_at). GSE11906 included 17

trachea (agé 42 ++ 7), 21 large mway (agei 42 ++9), and 35 small airway samples.

Processing of raw microarray data

Raw intensity values from a microarray experiment using the Affymetrix Clariom S Human chip
type were imported into the R statistical language environment (version 3.6.1; R Core Team,
2019). Probe definition files were obtained from the Brainarray datdlesson 2442]). The

Single Channel Array Normalization (SCAN) method was used to obtapatreogsformed
normalised expression values with the SCAN.UPC R package (version [235.Qvith
annotation data from the Bioconductor project (versiofd3]®. The microarray data generated

from ABCF1 siRNA experiments is deposited in GEO with accession number GSE150541.

Analysis of processed microarray data

From the processed expression valyesjcipal component analyses were performed with the
prcompfunction (version 0.1.0) from the R statistical language (version 3.6.1; R Core Team, 2019)
using default parameters. Determination of statistically significant differential gene expression

was performed using the empirical Bayes method via the eBayesofurirom the limma R
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package (version 3.4Q4b]. P values were adjusted using the Benjamini & Hochberg method,
with a significance cutoff of 0.05. Significantly enriched Gene Ontology (GO) Biological Process
Terms (ranked bp value) were determined using Enricf#g,47). Scatter plots, PCA plots, and

GO term enrichment dot plots were generated using the ggplot2 R package (version 3.2.1). Heat
maps were generated using the pheatmap R package (version 1.0.12), yeitiplegsion scaled

by gene and complete hierarchical clustering using a Euclidean distance measure applied. A GO

term enrichment clustergram was modified from Enrichr using Inkscape.

Statistical analyses

Al | experiments were performed with an -n0O3 un
6KT and Calu3 cells were considered independent when separated by a passage. Statistics were
determined by permutation ANOVA with a Bonferommairrected poshoc tes comparing selected

groups with p<0.05 determined to be statistically significant.
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RESULTS

ABCF1 gene and protein expression is localized to human airway epithelial ceitssitu and

in vitro

Expression and functional studies of ABCF1 have focused on human synoviocytes, mouse
embryonic fibroblasts, human embryonic kidney cells, and peripheral blood mononucl¢ar-cells
30,32] We have demonstrated gene expressioABEF1in human airway epithelial ce[&5].

To date, nan situgene and protein expression data has confirmed ABCF1 expression in human

lung tissues.

To address this knowledge gap, we first mined publicly available gene expression data from
primary human airway epithelial cells from healthy subje&BCF1 gene expression was
observed along the airway generations (trachea, large, and small) at levels relative to
ABCC7/CFTRand ABCC4 two other ABC transporters with reported functions in airway
epithelial cell§25,40,48,49Figure 1A). CD34andCDH1 (encoding ECadherin) were used as
negative and positive control genes, respectively, for airway epithelial cells to provide contextual

expression levels.

Next, in situlocalization ofABCF1gene transcript was performed using RNAsébpeobes on
archived formalin fixed paraffin embedded human lung samptesure 1B). ABCF1 gene
transcript was observed in small puncta throughout the cytoplasm and nuclear areas of airway
epithelial cellsABCF1staining was also observed in submucosal cells with morphology consistent

with macrophages.
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Protein expression levels were next explored with validation of a commercially available antibody
for ABCFL1.Positive staining was observed in human airway epithelial cells as shown in a serial
section used fom situ hybridization Figure 1C) with sparse staining in immune cells with
macrophage morphology. Usiiigvitro culture of primary human airway epithelial cells and two
distinct airway epithelial cell lines-{gure 1D). For each airway epithelial cell type, a single band
was observed at the predidtmolecular weight of 96 kDa for ABCF1, validating the use of the

antibody forin situimmunohistochemistry localization.

Lastly, to explore proposed regulatory mechanisms for ABZH1we performed a TNE
exposure in human airway epithelial cells. Exposure to 10 ng/miONF or 24 h f ai |l ed
change in ABCF1 protein expressidigure 1E-F), despite inducing an increase in8L(Figure

1G).

Collectively ourin vitro andin situdata confirm gene and protein expression of ABCF1 in human

airway epithelial cells, warranting downstream characterization and functional studies.
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Figure 1. Validation of ABCF1 gene and protein expression in human airway epithelial cells

in situ and in vitro. A: Gene expression analysis of GEO deposited microarray dataset
(GSE11906) generated from epithelial cells isolated from trachea, ldfg@Y(@eneration), and

small airways (10-12" generation) from healthy subjects (see Methods for det&ilsh situ
hybridization of ABCF1 RNAscoge probe in human lung under low (10X) and high (40X)
magnification. Red puncta are representative of ABCF1 gene tiassawnith nuclei
counterstained blue. Representative image of n€tOlmmunohistochemistry of ABCF1 in
human lung under low (10X) and high (40X) magnification. Representative image of n=10.
Pink/red staining is representative of ABCF1 protein with nuclei counterstained iue.
Immunoblot confirmation of ABCF1 protein expression in HB&T, Calu3, and primary
human airway epithelial cells (each cell type n=3 distinct cell line passages or donors) with a single
band observed at predicted molecular we{§BkDa) with total protein loading blot demonstrating
equal protein loading for each cell tyfe.Immunoblot of ABCF1 following TNFU st i mul at i ¢
of HBEG-6KT cells with corresponding total protein stakh. Quantification of immunoblot of
ABCF1 protein expressiorG: IL-8 secretion from HBEGKT cells measured by ELISA as

positive controlfor TNFUs t i mul ati on. All studies n=3 unl es
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Reduced expression of ABCF1 under basal conditions vitro has limited impact on HBEC

6KT viability and transcriptional profiles

Functional studies have implicated ABCFL1 in translation initiation and have demonstrated that
homozygous loss of function results in embryonic leth@&yB0,33] We therefore first
interrogated the basal functions of ABCF1 in our human airway epithelial cells in the context of

cell viability and transcriptional profiling.

We performed siRNA experiments to reduce ABCF1 expression levels as no small molecule
ABCF1 inhibitor has been described to date. Using siRNA approaches ind-dREGve confirm

that ABCF1 protein levels can be reduced with qualitatfigufe 2A) and quantitative measures
(Figure 2B). Next, we measureldDH levelsto measure cell cytotoxicitynder ABCF1 silencing.

Our findings showed that LDH levels wemet elevated when ABCF1 expression was reduced
with siRNA when compared to the silencing cont(Bigure 2C). Cell morphology was not
different in human airway epithelial cells with reduced ABCF1 expressiigure 2D).
Collectively, the quantitative and qualitative dateygest moderate levels of siRNA knockdown

are not associated with compromised HB&CT viability under basal conditions.

To interrogate the impact of reduced expression of ABCF1 under basal conditions, a human gene
expression microarray analysis was performed. A principal component analysis of ABCF1
reduction and corresponding experimental controls revealed no clustenvegbhetxperimental
replicates for any conditiorF{gure 2E), suggesting that the overall impact of ABCF1 reduction
under basal conditions minimally impacted global gene expression patterns. Statistical analysis

comparing ABCF1 reduction and siRNA contra@dted HBEGGKT confirmedABCF1gene was
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downregulated Figure 2F) which was associated with only one other significantly differentially
expressed (up or down) gen@l2orf75 which encodes overexpressed in colon carcinbma

(OCGC-1) protein.

Collectively ourin vitro studies under basal conditions demonstrate that reduced ABCF1
expression is not associated with changes in viability or significant genome wide changes in

transcriptional profiles in HBEGKT.
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Figure 2. Interrogation of ABCF1 under basal conditions in HBEG6KT in vitro. A:
Immunoblot confirming siRNAmediated knockdown of ABCF1 protein expression in HBEC
6KT cells.B: Quantification of ABCF1 protein expression following siRNA treatméntLDH
guantification as a measure of cell viability following siRNA treatmdht. Phasecontrast
microscopy (4X magnification) of HBEGKT following siRNA treatmentE: PCA plot of
microarray gene expression profiles of HBEKT cells following siRNA treatment. &l circles

(media alone), green circles (transfection reagent only), blue circles (transfection reagent and
control siRNA), purple circles (transfection reagent and ABCF1 siRNA)og. expression data

for transfection reagent with ABCF1 siRNA compared to transfection reagent with control siRNA.
Significantly differently expressed genes are in blue and are -degutated ABCF1 and

C12orf75. All studies n=3. *p<0.05.
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The dsDNA viral mimic VACV -70 induces CXCL10 and an antiviral response itHBEC-

6KT in vitro

Since reduced expression of ABCF1 under basal conditions resulted in limited impacts on cell
viability and gene transcription, we next explored conditiorchaflengein HBEC-6KT. ABCF1

was described as a dsDNA sensor in mouse embryonic fibroblasts that mediated CXCL10
secretion under challenge conditions with the viral mimic interferon stimulatory DNA (ISD)
sequend@1], a 45 bp oligomer shown to activate the STHNIBK1-IRF-3 antiviral sensing axis

[34,50]

To determine the response of HBBET to ISD, we performed a concentratijmsponse study
followed by quantification of extracellular CXCL10 secretasthe primary readout for interferon
stimulated gene expression and translation as demonstrated in previous li(Ergtwes3A) [31].

| SD i nduced an i ncr easmincreaaseCwe@iserved aalawerl0.3286g / ml
eg/ ml) and higher (3.16 e€g/ml) concentrations.
cellular response to the coolt{ssDNA of the ISD sequence) also increased. These results limited

the use of ISD as dsDNA challenge stimulus in HB&O cells for studying ABCF1 function.

Vaccinia virus is a dsDNA virus that is able to infect airway epithelial[¢SHR3]. We therefore
determined the responselBEC-6KT to VACV-70, a 70 bp dsDNA oligonucleotide containing
Vaccinia virus motiffs1]. VACV-70 induced a concentration dependent increase in CXCL10
from 0.316 ¢€g/ ml to 3.16 eg/ ml. I n contrast t

the VACV-70 sequence) was observed at any concentration.
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To characterize the molecular pathways activated by VAOVwe performed a transcriptional
and pathway analysis of HBEGKT following challenge. To interrogate the VAERO
transcriptional responses a principal component analysis was performed for raicrgane
expression data, revealing distinct clustering between stimulation (VAD4nd controlKigure
3C). Statistical analysis revealed 170-nggulated genes and 42 dowegulated genes with
VACV -70 stimulus Figure 3D). VACV-70 upregulatedCXCL10gene expression and a curated
list of antiviral related interferon stimulated geneg(re 3E). GO term analysis revealed that the
top pathways activated by VACGYO were associated with type | interferon signalling, viral

responses, and cellular responses to virdsgsite 3F).

Collectively ourin vitro challenge studies confirm that VAGX0, a dsDNA viral mimic, can

induce CXCL10 and antiviral transcriptional responses in HBECT.
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Figure 3. dsDNA induced antiviral responses in HBEGGKT in vitro. A: Concentration
response analysis of ISiDduced CXCL10 protein production for HBEGKT cells. Grey bars:
ISD, Black bars: control ssDNA generated from ISD. Concentratiorresponse analysis of
VACV-70-induced CXCL10 protein production for HBEBKT cells. Grey bars: VACV/O,
Black bars: control ssDNA generated from VAGQW. C: PCA plot of microarray gene expression
profiles of HBEG6KT cells following transfection with VACVW/0 or control. Red circles (control
VACV-70), blue circles (VACV70). D: Log. expression data faransfection treatment with
VACV-70 compared to control VACGVO0. Significantly differently expressed genes are identified
in blue (downi 42 genes) and red (lipl70 genes)E: Heat map ofog. expression data (scaled
by gene) of select known antiviral for VACY0 and control VACVY70 sampleskF: Top 5 GO
Biological Processes aranked by increasingogio adjustedp value, with number (Count) of
significantly differentially expressed gertestween VACV70 and control VACVY70contributing

to the total number of genes associated with the given pathway (N) denoted by the size of circle.

All studies n=3. *p<0.05.
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Reduced expression of ABCF1 under VACWV/0 stimulation attenuates CXCL10 secretion
with limited impact on HBEC-6KT viability

We have confirmed VACW/0 induction of CXCL10 in HBEGKT at the gen¢Figure 3E) and
protein Figure 3B) levels. Furthermore, we have demonstrated siRiMAdiated reduction of
ABCF1 expression with no impact on cell viabilityigure 2A-D). We therefore performed a
VACV -70 stimulationwith reduced expression of ABCF1 by siRNA with a primary readout of

CXCL10.

ABCF1 reduction was associated with a decrease in CXCL10 protein secretion fromGkBEC
with confirmation and quantification of ABCF1 reduction performed by immunoBlgtife 4A-

C). Cell viability following VACV-70 stimulationand ABCF1 attenuation was not impacted as
assessed by LDH quantificatiorFigure 4D). Qualitative analysis following VACWO

stimulationand ABCF1 revealed no impact on HBB&T cell morphology Figure 4E).

Collectively ourin vitro stimulation and functional studies demonstrate that ABCF1 siRNA

treatment attenuated VACGYO-induced CXCL10 protein secretion in HBEBKT.
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Figure 4
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Figure 4. Reduced expression of ABCF1 under VACV/0 stimulated conditions attenuates
CXCL10 secretion.A: Immunoblot confirming siRNAmediated knockdown of ABCF1 protein
expression in HBE@GKT cells under experimental conditions of VACA challengeB:
Quantification of ABCF1 protein expression following siRNA treatmé&it.VACV-70 (3.16
¢ g / -mdluged CXCL10 protein production for HBEEKT cells with ABCF1 siRNA treatment.
Black bars: siCtrl treated. Grey bars: ABCF1 siRNA tredled.DH quantification as a measure
of cell viability following VACV-70 and siRNA treatmenkE: Phasecontrast microscopy (4X
magnification) of HBEGGKT following VACV-70 and siRNA treatmentAll studies n=3.

*=p<0.05.
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ABCF1 reduction does not impact VAC\:70-induced antiviral transcriptional responses in
HBEC-6KT

In parallel to induction ofCXCL10gene, we have confirmed with GO pathway analysis that
VACV-70 induces a dominant antiviral transcriptional signateigufe 3E-F). We therefore next
explored how reduced expression of ABCF1 impacts transcriptional responses induced by VACV

70, beyond induction of CXCL10.

A principal component analysis was performed for microarray gene expression data, revealing
distinct clustering in samples where ABCF1 expression was reduced relative to control conditions
under conditions of VACWV/0 stimulation(Figure 6A i green vs purple) Statistical analysis
revealed 63 wpegulated genes and 65 dowegulated genes when comparing ABCF1 reduction
relative to control under conditions of VACYXO stimulation (Figure 6B). siRNA mediated
reduction of ABCF1 was confirmed and associated aftbnuation o£XCL10gene expression

(Figure 6C, p=0.06).

To explore a focused transcriptional response of ABCF1 reduction in the context of-Y&CV
challenge, a hypothestsi r ect ed approach curated 79 genes
defence response to viruso and kpysualizationponent
[52](Figure 6D). Statistical analysis revealed no global significant difference between ABCF1

reduction and control groups for the expression pattern of this curated list of genes.

To explore the broader transcriptional responses of ABCF1 reduction in the context of RCACV

challenge, a hypothesieee directed approach with GO term analysis was performedrainiqing
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GO pathway terms includeéRlegulation of toHlike receptor 34 signalling pathwayswhich were
driven by the gene®DFY1 TNFAIP3 andNR1D1(Figure 6E-F). Complementary cytokine
analysis further revealed impacts of ABCF1 reduction on RBBFVEGFA, and to a lesser

extent IL-6, IL-8, and IL-1 family members, It1la, IL-18, and Il-:1RA (Figure 5).

As our data suggested that ABCF1 functions in HBEKT may extend beyongknsing of VACVY

70 dsDNA viral mimic through regulation of TLR signalling, we explored Poly(l:C), a dsRNA
analog and TLR3 ligand that induces interferon responses including CXCL10 production. ABCF1
reduction was associated wia 63% reduction in Poly(l:@hduced CXCL10 protein (p=0.07)

secretion but did not impact Poly(I:@)duced IL-8 protein secretiorHijgure 6G-H).

Collectively ourin vitro challenge and functional studies with transcriptional analyses demonstrate

a role for ABCF1 in mediating VACMO0 and Poly(I:C) induced CXCL10 secretion and TLR3

related signalling in HBEGKT.
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Figure 5. Transcriptional interrogation of ABCF1 function during VACV -70 challenge in
HBEC-6KT. A: PCA plot of microarray gene expression profiles of HB&O cells following

ABCF1 knockdown and VACW/0 treatment. Red circles (control siRNA and control VATY),

green circles (control siRNA and VACGYD), blue circles (ABCF1 siRNA and control VACV

70), purple circles (ABCF1 siRNA and VACYO0). B: Log> expression data faransfection
treatment with ABCF1 siRNA and VAGV0 compared to control siRNA and VAGRO.
Significantly differently expressed genes are identified in blue (do88genes) and red (B3
genes).C: Confirmation of ABCF1 and CXCL10 attenuation with ABCF1 siRNA treatment
presented abg. expression data. Black baiontrol siRNA and control VACV/0, light grey

bars: control siRNA and VACW0, dark grey bars: ABCF1 siRNA and control VAG, white

bars: ABCF1 siRNA and VACWO0. D: Heat map ofog. expresion data (scaled by gene) of
genes associated with the #Aregul ation of def
selected known antiviral genes from Figure 3E (n=11) for VA\Vsamples with and without
ABCF1 siRNA.E: Top 5 GO Biological Processes aanked by increasingogio adjustedp

value, with number (Count) of significantly differentially expressed géetseen VACV70
samples with and without ABCF1 siRNA&ontributing to the total number of genes associated
with the given pathway (N) deted by the size of circl€&. Significantly differentially expressed

genes between VACV0 samples with and without ABCF1 were submitted to Enrichr for
generation of &lustergram defining the gene contributiondXis) to the functional enrichment

of the top 5 GO Biological Processes (X axis), with orange squares denoting the association of a
differentially expressed gene with a particular GO te@.Pol|l y (I : C) -infuted0 ¢ g/
CXCL10 andH: IL-8 secretion for HBEGKT cells with ABCF1 siRNA treatmenall studies

n=3. *=p<0.05.
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Figure 6. Transcriptional interrogation of ABCF1 function during VACV -70 challenge in HBEG
6KT. A: PCA plot of microarray gene expression profiles of HB&O cells following ABCF1
knockdown and VACV70 treatment. Red circles (control siRNA and control VATY), green circles
(control siRNA and VACV70), blue circles (ABCF1 siRNA and control VAGRO), purple circles
(ABCF1 siRNA and VACV70). B: Log, expression data fdransfection treatment with ABCF1 siRNA
and VACV-70 compared to control siRNA and VACRO. Significantly differently expressed genes are
identified in blue (dowri 65 genes) and red (lip63 genes)C: Confirmation of ABCF1 and CXCL10
attenuation with ABCF1 siRNA treatment presentedogs expression data. Black baiontrol siRNA
and control VACV70, light grey bars: control siRNA and VACGXO, dark grey bars: ABCF1 siRNA and
control VACV-70, white bars: ABCF1 siRNA and VAGYO0.D: Heat map olog, expression data (scaled
by gene) of genes associated with the Aregul
selected known antiviral genes from Figure 3E (n=11) for VACVsamples with and without ABCF1
siRNA. E: Top 5 GO Biological Processes asmked by increasindogioadjustedp value, with number
(Count) of significantly differentially expressed gersstween VACV70 samples with and without
ABCF1 siRNA, contributing to the total number of genes associated withittem pathway (N) denoted
by the size of circlel: Significantly differentially expressegkenes between VAGV0 samples with and

without ABCF1 were submitted to Enrichr for generation ofustergram defining the gene contribution

(Y-axis) to the functional enrichment of the top 5 GO Biological Processes (X axis), with orange squares

denoting the association of a differentially expressed gene with a particular GGGteRoly 1:C (1.0
€ g / -mduged CXCL10 andH: IL-8 secretion for HBEGKT cells with ABCF1 siRNA treatmentAll

studies n=3. *p<0.05.
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DISCUSSION

The human airway epithelium expresses a variety of sensors that can detect and initiate an immune
response to virus infection. Recognition by these sensors can trigger dowresttaation of
antiviral responses by inducing the production and release of antiviral and inflammatory
cytokine$53]. The recognition sensoiaclude TLRs found at the cell surface such as TLRS3,
which can detect viral RNA to trigger a type | IFN response by the TRIF signalling pathway. In
addition, TLR7 and TLR8 detect viral RNA while TLR9 detects CpG containing viral DNA in
the endosomes tmgring the same response through the MyD88 signalling paff8jayin
addition to TLRs, there are several cytosolic receptors including K& receptors that
recognizes viral RNAas well as cytosolic DNA sensossich as cyclic GMPAMP synthase,
AIM2-like proteins and DNAJependent activator of IFkegulatory factors that produces an IFN
responsgp2]. It is likely that additional candidates are present as redundancy is built into viral

sensing mechanisms in host ci&ify.

ABCF1, a member of the ATP Binding Cassette family expressed in diverse mammals and
different tissue types, has been reported to have diverse functions including initiation of mMRNA
translation, dsDNA viral sensing, and polarization of immune cell pherf@X¥432]. We have
recently reported ABCF1 gene expression levels in human airway epitf83iibvut the function

of this molecule remained unexplored. Herein we confirm ABCF1 gene and protein expiression
situ andin vitro in primary human lung tissue and cell lines and explore its function in airway
epithelial cells. Under basal conditions, reduced expression of ABCF1 did not lead to quantitative
changes in cell viability or qualitative changes in cell morphology assdomta cell death.

Furthermore, ABCFL1 reduction failed to significantly alter basal transcriptional activity in a human
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airway epithelial cell line, HBEGKT. Under VAC\:70 challenge, a model of dsDNA viral
exposure, ABCF1 was linked to CXCL10 secretion. Interestingly, despite the demonstrated
activation of a viral gene signature by VAEAD, no global change in antiviral ige expression
patterns were observed with ABCF1 reduction. In contrast, the gene pathways regulated by
ABCF1 under VACV¥70 challenge were associated with TLR signalling and intracellular signal
transduction. Furthermore, Poly(l:C), a dsRNA analog and TligaBd induced CXCL10 in an
ABCF1 sensitive mechanism. Collectively, ofindings suggest that ABCF1 may regulate
CXCL10 production downstream of dsDNA sensing mechanisms and TLR3 in human airway
epithelial cells. It remains possible that ABCF1 can function to complement viral sensing
mechanisms mediated by canonical dsRNA viral respanachinery (e.g. RKB as there are

possible redundancies in viral sensing mechanisms in tfig4iell

ABCF1 (originally called ABC50) was first identified in human synoviocytes at the mRNA level

as a transcript regulated by TNF e x gdaY]s ABCEL is unique in the mammalian ABC
transporter family in that it contains the signature ATP binding LSGGQ amino acid motif and
associated Walker A and B motifs for phosphate binding, but lacks a predicted transmembrane
regior27,55,56] which is supportive of a cytosolic localization and functi@BCF1transcript
expression profiling has revealed near ubiquitous expression in human organs including lung,
heart, brain, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testis,
ovary, small intestine, colon, peripheral bloodkiecyte$27]. The expression of ABCF1 has
subsequently been identified in the human HelLa cells and embryonic kidney cells and other
mammalian cells from rats, rabbits, hamsters, and j2880,32,33] Highlighting the importance

of ABCF1 in normal physiology and development, homozygous deletion of ABCF1 is embryonic
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lethal in either C57B/6 mice or BALB/c micg3]. As our group recently identified gene
expression oABCF1in human airway epithelial cel[85], we set out to first confirm this at the

protein level and then determine the function(s) of ABCF1 in human airway epithelial cells. We
confirm thatABCF1gene expression is present in airway epithelial cells and expressed at levels
relative to other known ABC transporters with function in this cell typ8CC4 and
ABCC7CFTH?25,40,48,49] In situ hybridization using RNAscofte technology demonstrated

ABCF1 transcripts present in the airway epithelial cells in human lung samples, which was
consistent with positive immunohistochemical staining of protein in a serial section of the same
samples using an antibody validated for specificity. Since the origised\dry of ABCF1 was

the result of an upregulated transcript resulting from INF st i mul ati on o f syn
examined if this mechanism was functional in human airway epithelial. delicontrast to the

reported data on synoviocytes, TWIF st i mul ati on failed to induce
HBEC-6KT, despite IL-8 induction as a positive control. Interestingly, in a recent report profiling

the role of ABCF1 in murine bormarrowderived macrophages, TNF s t i nsupprassed o n
ABCF1 protein expressi¢d2]. These contrasting observations of ABCF1 expression in HBEC

6KT compared to synoviocyteand bonemarrow derived macrophages could be due to the
difference in ontogeny and function of these cells. Collectively our results and those in the
literature support gene and protein expression of ABCF1 in human airway epithelial cells, and that

reguldion of this protein is likely to be cell specific.

The first description of a potential function for ABCF1 in mammalian cells was derived from the
experiments on human synoviocytes, suggesting a role in translation due to homology of molecular

sequence with yeast proteins that performed this furjeigf8] The embryonic lethality
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observed in mice for homozygous ABCF1 deletion and ubiquitous expression across multiple cell
and tissue typ¢33], is consistent with ABCF1 playing a role in a fundamental biological process

like protein translation. The observation that proliferating cells including synoviocytes stimulated
withTNFFU and T cells stimulated wi trhelepaedBGrd | my r
levels is further consistent with a role in translgdn28]. Subsequent to thkscovery of ABCF1

gene expression and homology modeling, biochemical studies implicated the protein in interaction
with eukaryotic initiation facte (el F2) , a heterotrimeric prot
subunits, that is important for translatioitiation[28]. A distinguishing feature of ABCF1 relative

to other ABC transportersis atNe r mi n a | domain that is able to
that potentiates binding of methiom@NA and initiation of translatida9]. I n addition t
interactions, ABCF1 associates with ribosomes in a process potentiated by ATP binding to the
nucleotide binding domains and inhibited by AP#], although the hydrolysis of ATP seems
dispensable for ribosome interacid®]. To explore the potential function of ABCF1 as an

initiator of translation in human airway epithelial cells, we undertook a siRNA approach to
attenuate gene and protein expression followed by a global assessment of cell viability and
transcriptomics. Surfsingly, under basal conditions, reduced expression of ABCF1 at the gene

and protein level did not impact HBEGKT viability, morphology or transcriptional profile.
Importantly, our outcome measurements were performed on HBHEChat were suzonfluent

and undergoing proliferation in serdfree media, an experimental condition where ABCF1
function in translation initiation would be relevant. A limitation of our design is that we measured
global gene expression under the assumption that this would r&fieglobal changes in gene
translation, an indirect approach which does not allow us to directly implicate ABCF1 expression

levels to protein synthesis. Interestingly, our observations of minimal changes in6G8EQay
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be consistent with cells of epithelial lineage, as near complete ABCF1 knockdown in HeLa cells
was also only associated with a modest attenuation of total protein sy@®Blesisllectively, our
results suggest that ABCF1 may function independent of protein translation functions in HBEC
6KT, as gene and protein attenuation results in no changes in cell viability or global transcriptional

profile.

The original discovery that ABCF1 expression was regulated byONFs t i mul ati on S u ¢
link to immune responses, although no differential expression patterns were observed for
synoviocytes from healthy individuals or those with rheumatoid arf@iiis Subsequently,
ABCF1 has been implicated in immune responses via a cytosolic dsDNA viral sensing function
using mouse embryonic fibroblag]. Using an integrative bioinformatic and molecular biology
approach, a biotinylated ISD sequence was used as a bait and transfected into cells, followed by
proteomic interrogation of identified candidates. The ISD bait method was validated by identifying
known dsDNA sensors including HMGB1, HMGB2, and HMGB3, components of the AIM2
inflammasome, and the SET complex that plays a role in-HIkétroviral detection and
infectio57]. Within the pool of unknown dsDNA interacting candidates, ABCF1l was
mechanistically linked to ISD induceg@XCL10 production using siRNA methods. The observed

ISD inducedCXCL10 converged on IRB signalling, confirmed by showing reduced IRF
phosphorylabn following ISD treatment under conditions of ABCF1 silencing. In a separate
study, ABCF1 has been implicated as a molecular switch downstream of TLR4 signalling in mouse
bonemarrow derived macrophages that regulates MyD88 dependenbflarmmatory and
TRIF/TRAM dependent anthflammatory processg?]. Using in vitro and in vivo model

systems, ABCF1 was implicated in polarizing jqmilammatory macrophages to an anti
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inflammatory/tolerant macrophage phenotype with direct involvement in shifting the systemic
inflammatory response syndrome to a endotoxin tolerance phase iH33pdike mechanism
responsible for the ABCFfnediated polarization of macrophages was identified to be-a E2
ubiqutinconjugating enzyme function. In wikype macrophages the TRIFN-b pat hway i
intact with attenuation of the MyD88 pathway, allowing {Bphosphorylation, dimerization, and

IFN-b expressi on. I n contrast, heterozy-tN-si ty f
b pat hway, w i-3 dctivatiom candclEMd p R&duct i on. | mportar
immunological studies converge on a tielaship between ABCF1 and IR¥;, which could

involve direct or indirect interactions to facilitate downstream immune responses. Consistent with

the potential role for ABCF1 as a dsDNA sensor, we explored immune and transcriptional
responses downstream\@ACV -70, a dsDNA viral mimic capable of activating STING, TBK1,

and IRF3 independent of TLRS1]. VACV-70 induced a dominant antiviral signature and
pathway activation in HBE®KT, consistent with successful transfection and cytosolic sensing.
Reduced expression of ABCF1 was associated with a reduction in CXCL10, an antiviral cytokine
regulated by IR-3 activation, independent of any changes in cell viability or morphology.
Transcriptomics revealed that although attenuation of CXCL10 was observed with ABCF1 siRNA,

a global attenuation of an antiviral signature was not observed. Hypéfileesi&€O analsis

identified that the key pathways that were significantly impacted by ABCF1 siRNA treatment
during VACV-70 challenge were related to TLR signalling. Interestingly, a key gene identified in

our VACV-70 challenge and ABCF1 silencing studie®/iBFY 1, which links TLR3/4, TRIF, and

IRF-3 signalling58]. This finding suggested that ABCF1 could potentially be regulating both
TLR4 and TLR3/TRIF/IRF3 signalling32]. We tested this hypothesis by using Poly(l:C), a

dsRNA viral mimic that activates TLR3 and IRf2]. ABCF1 siRNA treatment attenuated
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Poly(l:C}induced CXCL10 production, further demonstrating a link between ABCF1 and
TRIF/IRF-3, perhaps through regulation\@DYF1 While we have not yet demonstrated the link
between ABCF1 and TLR4, a LPS challenge with ABCF1 siRNA treatment would effectively
interrogate this. Our exploratory results suggest that ABCFL1 is likely to play a complex role in
innate immunity in responge cytosolic nucleic acids, with a potential interaction with TRIFARF

3 for regulation of CXCL10.

Throughout our study we encountered several technical issues. The absence of pharmacological
interventions that could antagonize ABCF1 function required us to pursue molecular approaches
with siRNA. siRNA approaches were unable to completely attenuate ARCEoncentrations of

25 nM for up to 48h. Longer durations of silencing were not possible as the human airway
epithelial cell line used showed changes in morphology with vehicle control transfection reagent
beyond 48h of incubation. Our inability to colefely attenuate ABCFL1 levels was consistent with
human embryonic kidney celB0]. Secondary to addressing ABCF1 expression levels, we sought
to explore the functional consequences with the reported dsDNA viral mimic ISD as reported in
the literature with mouse embryonic fibroblg38. During our concentratieresponse studies

with ISD, the vehicle control conditiamsulted in elevations in our primary readout of CXCL10,
which suggested an unexplained confounding factor. We therefore opted to useADAplace

of ISD, which limits our ability to directly compare our results to those that have established
ABCF1 asa dsDNA sensor with I1S[32]. Importantly, reported findings from the HBESKT cell

line will require confirmation using primary human airway epithelial cells under submerged and/or
air-liquid interface culture conditions to more accurately model inrthgtu human respiratory

mucosa.
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In conclusion, we confirm that ABCF1 is expressed at the gene and proteiml|sitelandin

vitro in human airway epithelial cells. In HBEGKT, ABCF1 has minimal functions for cell
viability and transcriptional regulation under basal conditions but is important for mediating
immune responses to cytosolic nucleic acids in pathways that involve Th&tlsig and CXCL10
production. Our data form the foundation to pursue precisely how ABCF1 is regulated and where
it functions in the network of cytosolic akeic acid sensors and immune responses in human

airway epithelial cells.
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Chapter 3

TNF-U and Poly(l:C) induction of
signalling are independent of ABCF1 in human airway epithelial
cells.

Summary and significance

ABCF1 is the most characterized member of the ABCF family, with proposed functions related to
innate immunity in fibroblasts, macrophages, and airway epithelial cells. A study has demonstrated
that in murine bone marrow derived macrophages (BMDMs) unddrRi$stimulation ABCF1
negatively regulates MyD88ependent signalling and positively regulates Fépendent
signalling. Our last study showed that ABCF1 mediates an innate immune response in airway
epithelial cells under the dsDNA viral mimstimulaton. While the mechanism was unclear, our
transcriptomic analysis suggests that ABCF1 has a role in TLR signalling and impacts the gene
expression off nfaip3(A20), a negative regulator of pmflammatory response&ollowing the
findings from our previous study, we hypothesize that silencing ABCF1 in human airway epithelial
cells will lead to a reduction of A20 protein expression, which thereby results in a greater pro
inflammatory response mediated by NFB s ing. Wa tlemonstrated that under TNIF a n d
Poly(l.C) stimulationwith ABCF1 silencing, there was a reduction in the induction e8 Bknd a

trend for reduced H6, however, the expression levels of A20 and activation status of the
transcription factors werenaffected. Our study concluded that ABCF1 regulates the expression
levels of the pranflammatory cytokines through pathways that are independent &§ BF a n d

IRF-3 activation. The exact mechanism remains to be characterized.
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ABSTRACT

ABCF1 is the most characterized member of the ABCF family in eukaryotes with proposed
functions related to innate immunity in fibroblasts, macrophages, and epithelial cells. Currently, a
mechanistic link between ABCF1 and immune responses in human aipitglial cells
(HAECs) remains to be clearly defined. The present study aimed at characterizing the function of
ABCF1 in the cont e(MRo Bof meudctindietraanatoripasminses in @anB
immortalized human airway epithelial cell line, HBEBKT. We demonstrated that with ABCF1
silencing under basal conditions, TNF Alpha Induced Protein 3 (TNFAIP3/A20) protein
expression and downstream expression and activation of transcription facteessBNFa n d
Interferon regulatory factor 3 (IRB), werenot disrupted. We followed with investigations of
ABCF1 function under prinflammatory stimuli that are known to be regulated by A20. We
demonstrated that under Polyinosinic:polycytidylic acid (Poly(l:C)) and tumour Necrosis-Factor
U ( TONsEmulationwith ABCF1 silencing, there was a significant reduction in secreted levels
of interleukin8 (IL-8) and a trend for reduced-B. However, we observed no changes to the
expression levels of A20 and the activation status of the transcription factees BN dR#3.
Collectively, these studies demonstrate that Poly(l:C) and-UNFi n d uScaee degulated by

ABCF1 via pathways independent of dFB  a n-8 activ&ién.

Key words: airway, epithelial cells, ABCF1, A20, N& B, -3, Raf/(l:C), TNFU, -pr o

inflammatory, cytokines, innate immunity
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INTRODUCTION

Our group have confirmed the expression of ABCF1 in human airway epithelial cells (HAEC) at
the gene and protein level boith situ and in vitro in our previous studies. In addition, we
characterized the function of ABCF1 as an important component in modulating innate immune
responses in HAECs. We used a hypoth&sis gene ontology (GO) analysis and identified the
key pathways that were impactegl ABCF1 siRNA treatment during a cytosolic nucleic acid
stimulatiorfl]. One of these pathways included TLR3/4 signalling and the key gene that was
differentially expressed in these pathways WASFAIP3 This gene is expressed as the
A20/ tumour n eimduceds fdrotein B8 &TOIFAGPB) prbtein, a ubiquitin ligase and
deubiquitinating enzyme toehBat ainndh iibnittesr fneurcolne arre
3 (IRF3) activation to regulate inrmimmune responggs 3]. To our knowledge, a mechanistic

link between ABCF1 expression and A20,-NB ,  a B dignalliRdg-has not been explored in

HAECs.

Previously, stimulation of synowU0demonstratadawi t h
potential role of ABCF1 in promoting inflammatory responses. The study linkedffammatory
stimulationin vitro with the mRNA transcript oAbcfl accumulating in synoviocytes, without
mechanistically linking this relationship to functional respoffdeth macrophages, ABCF1 was

shown to be regulating MyD8&nd TRIFdependent prinflammatory signalling in response to
lipopolysaccharide (LPStimulation It was demonstrated that by silencing of ABCFL1, it led to a
decrease in protein expression of A20, anincrease 9 BF and a d e3cactieatome i n |
under basal and LPStimulated conditions. This finding suggested that ABCF1 could be

negatively regulating the MyD88ependent signalling and positively regulate the TRIF
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dependent signalling in response to LlFBi8ulatior5]. Currently, there are no known implications

for lung health and disease associated with ABCF1. Nonetheless, we are intrigued by the
possibility of exploring whether ABCF1 plays a functional role in the airway epithelium and
whether it has an influence tumg health like certain members of the ABC transporter family of
proteins. The two studies mentioned provides an associative and mechanistic links between
ABCF1 with immune responses, thereby supporting the need for a more comprehensive

expl or at isoharactef®aiénlindHAECS.

Building upon the conclusions drawn from our earlier study, we put forth the hypothesis that
suppressing ABCF1 in HBEGBKT HAECs will result in a reduction of A20 protein expression,
thereby intensifying the primflammatory reactions mediated by NFB .n this study, we
performed mechanistic studies with ABCFL1 silencing under basal and stimulated conditions with
readouts of A20, Nl B, a B @xpresBién and activation. We demonstrated that under basal
unstimulated conditions, ABCF1 knockdown does ngpact A20 protein expression or NFB

and IRF3 activation. Furthermore, despite the silencing of ABCF1 leading to attenuation of
Polyinosinic:polycytidylic acid (Poly(I:C)) and TNB i n d u8cne chanbes were observed in
A20 protein expression or N8B and IRF3 activation. Our results demonstrate that in HBEC
6KT HAECs, ABCF1 regulates #8 induction independent of canonical pndlammatory

pathways and suggests novel regulatory mechanisms for this cytokine.
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METHODS

Reagents

ABCF1, A20, NFa Bp65, phosphorylated N8 B p 6 5 ( S-8 an8l gBh6sphoryldatdd RF

3 (Ser386) were probed with atBCF1 primary antibody (HPAO017578, SigrAddrich,
Burlington, Massachusetts) at 1:501000, antA20 primary antibody (5630T, Cell Signalling
Technoloy, Danvers, Massachusetts) at 1:1000-Hftio Br65 primary antibody (4764T, Cell
Signalling Technology) at 1:1000, aMF-a Bp65 (Ser536) primary antibody (3033T, Cell
Signalling Technology) at 1:1000, a®F-3 (ab76493, Abcam, Waltham , Boston) dtQDO and
antIRF-3 (Ser386) (ab68481, Abcam) at 1:1000 in 3% Casein (170640RK&Id_aboratories,
Hercules, California) in 1X Tris Buffered Saline (T5912, Sigiidrich) with TWEEN® 20
(P1379, Sigmahldrich) (TBS-T). The secondary antibody used for le@cotein was antiabbit
HRP-Linked Antibody from Cell Signalling Technology (7074S, Cell Signalling Technology) at
1:2000 in 3% Casein in TB®. ABCF1 (stABCF1) and scramble siRNA (siCtrl) SMARTpool
SiIGENOME, as well as the DharmaFECT 1 transfectiogaswere purchased from Dharmacon
(M-00826301 and D00120614, Lafayette, Colorado). The SMARTpool siRNA reagent is a pool
of 4 siRNA duplexes all designed to target distinct sites within the specific gene of interest. The 4
different siRNA within the pol were selected by Dharmacon using their design algorithm to have
the optimal silencing of the target transcript NM_001025091 and NM_001090, with all siRNA
targeting within the open reading frame. The immunostimuldigapnds TNFU was pur chas
from Peprotech (30601A, Rocky Hill, New Jersey), Recombinant humaRrlllA protein was
purchased from R&D Systems (7985025, Minneapolis, Minnesota); TLR3 Agonist ({jpic),

TLR4 Agonist (tIrkb5Ips), and TLR2 Agonist (thpgns2) were all purchased from lmegen (San
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Diego, California). Allimmunostimulatory ligandsvere directly added to the cells with cell

culture media without a transfection reagent.

Cell Culture

All experiments were performed in submerged monolayer cell culture using the -BIBEC
immortalized HAEC line over expressing human telomerase reverse transcriptase (hTERT) and
cyclin-dependent kinase 4 (Cdkéd)10]. The cell line was obtained from lung biopsies that were
not histologically involved with lung cancer from nremoker donors and it does not have a
malignant phenotygé]. HBEG6KT were grown in Kkeratinocyte serum free medium
(ThermoFisher Scientific, Waltham, Massachusetts) supplemented with 0.8 ng/ml epithelial
growth factor, 50 pug/ml bovine pituitary extract and 1 X penicillin/streptomycin (97083

VWR, Radnor, Pennypsl vani a) . Al | cells were grown at 37

In vitro pro-inflammatory stimulation experiments with siRNA-mediated knockdown of

ABCF1

Proinflammatory dose response experiments were performed in HEHC cells with
immunostimulatonyigandsfor 24 hours (h) at a confluency of approximately®046. Cells were
stimulatedwith TNF-4 (107 1000 ng/ml), Poly(l:C) (0.011 € g/ miSA (17 PGGIN € g/ ml ) ,

IL-17A (0.171 10 ng/ml), and LPB5 (0.011 1 € g/ ml ) .

All in vitro siRNA-mediated knockdown experiments in HBIBET were done using SiRNA
transfected with DharmaFECT Transfection Reag:

Cells were transfected with-8BCF1 or siCtrl for 24 h at approximately 70% confluency. After
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siRNA-mediated knockdown when the cells are a®8& confluency, the cells westimulated
for 24 hwith TNFFU and P followed by:o@dome measurements of function (cytokine
secretion measured by ELISA) and protein expression (immunobigtiré 1a). All transcription
factors were assessed following 24 h of stimulat®imilar experiments were performed in the

absence o&ny stimulatiorto investigate baseline ABCF1 function.

Cytokine Analysis

Cell culture media were collected followimmg vitro experiments and centrifuged at 7500 x g for

12 minutes. ELISA assays were run for humar6l(DY206, R&D Systems, Minneapolis,
Minnesota) and I8 (DY208, R&D Systems) according to manufacturer directions with
absorbance read using the SpectraMax i3 Mutide Platform (Molecular Devices, Silicon
Valley, California) microplate reader. Cytokine analyses were performed with n=5 and analyzed

as unpairedtudent ttests.

Western Blotting

HAECs were isolated using a cell scraper (83.395, Sarstedt, NUmbrecht, Germany) and lysed with
RIPA lysis buffer (89900, ThermoFisher Scientific) containing protease inhibitor cocktail 2714
1BTL, SigmaAldrich) and phosphatase inhibitor (4906845001, Rodflississauga, Ontario).

The collected protein was used for western blotting without further sample preparation. Protein
from tot al cel |l |l ysate (4 ¢€g) was pr eRad xed
Laboratories), then separated on2086 Min-FPROTEAN TGX stairfree precast gels (4568093,
Bio-Rad Laboratories) and transferred to a PVDF membrane using the THlwdf€urbo RTA

Transfer Kit reagents (1704272, Biad Laboratories). Membranes were blocked at room
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temperature for 1 h using 5% Casein (1706404;H3d Laboratories) in 1X Tris Buffered Saline

with TWEEN® 20. Protein detection was performed using the Clarity Western ECL Substrate
(1705061, BieRad Laboratories) and imaged in a ChemiDoc MP Imaging ®ysi images

were acquired using the atggposure setting. Signal intensity was normalized to total protein
loading from membranes stained for total protein, on ImageLabRBdLaboratories), a method

that ensures normalization of protein signal isfggened in the linear range of detectjbh].

Western blot analyses were performed with n=3 and analyzed as urgiadent ttests. Although

an n=5 was performed for each experiment, an n=3 was used for western blot analyses due to

limited sample availability for all the blots required.

Statistical Analyses

The statistical analyses of the processed microamalysiswere performed following the same
methodology as described in our previous stidyDetermination of statistically significant
differential gene expression was performed using empirical Bayes method via the eBayes function
from limma R package. Gene expression analysis was conducted with a sample size of n = 3, and

a gendevel pvalueof < 0.05 was considered statistically significant.

Al | subsequent experiments were conducted wit
otherwise. Each repetition was obtained from a distinct cell culture. Experiments conducted with
HBEC-6KT were considered independent when separated by at leapassege, all within a
maximum of 5 passages. Statistical analysis was conducted using Ordinavya@&NOVA

with a Dunnet t Sugentttessdomparmg selecteggaoups witthigue of < 0.05

determined to be statistically significant ora@hPad Prism 9.
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RESULTS

ABCF1 Knockdown does not impact A20 protein expression and function under basal
conditions.

We have previously performed a transcriptomic profiling with Gene Ontology (GO) term analysis

on ABCF1 knockdown in response to VACK), dsDNA viral mimicstimulation Top-ranking

GO pathway terms includddegulation of toHike receptor 34 signalling pathwaysdriven by

the genedWDFY1 TNFAIP3(A20) andNR1D1 Induction of the TNFR1 and TLR3 signalling

pathways can induce an innate immune response throughBIF si gnal | i ng pat hws
The geneTNFAIP3 expressed as A20 protein, is a master regulatdlFa B act i vi ty
ubiquitinatiorf2]. To follow up with our previous findings, we first investigated the expression

and function of A20 in our model system under basal conditions.

First, we looked at the differential gene expression of A206NE p 6 5 -aaBhrdr eNgFu | at e
cytokines and chemokinesigure 1b) under basal unstimulated conditions. Under siRNA
mediated knockdown of ABCF1, we observed a-sigmificant trend for downregulated gene
expression of A20, 118, IL-6, IL-8, IL-U, -1IbL and C X CL ksipnificaatrirend far n o n

upregulated gene expsgsnof NFe B p65 and RANTES when compared

Next, we wanted to confirm A20, N6 B p 6 5, p h o sapBh opr6)dt-ca@B pepd6 FYF, | RF

and phosphorylated IRE (pIRF-3) protein expression with and without ABCF1 knockdown

under basal unstimulated conditions using an immunoblot. We demonstratecaignBCF1
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knockdown of approximately 82.4%ifjure 1c). Under this level of ABCF1 attenuation, baseline

A20 protein expressiorF{gure 1d) was not impacted.
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Figure 17 ABCF1 silencing on A20 protein expression under basal conditions in HBEGKT

in vitro. a) Experimental design schematic. Immortalized human airway epithelial cells grow in
cell culture plates, the undergoes ABCF1 siRMAdiated knockdown followed by pro
inflammatorystimulation Total cell lysates collected from the cells are used for immunoblotting

and cell culture supernatant are used to run ELIBAsleat map of expressidavels ofselect
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genes associated with antiviral and-prilammatory responses for VAGY0O samples with and
without stABCF1.c) i) Immunoblot to confirm siRNAmediated knockdown of ABCF1 protein
expression in HBE@GKT cells under basal conditiong. Stainfree blot was used i6) quantify
ABCF1 protein expressiord) i) Immunoblot to confirm siRNAmediated knockdown of A20
protein expression in HBEGKT cells under basal condition§. Stainfree blot was used tid)

guantify ABCF1 protein expression. All studies 8; **** p < 0.0001.

Downstreanof A20 protein regulation is NB B a c t[d]. Wa theredone explored if NB B
expression and activation were disrupted under basal unstimulated conditions with ABCF1
silencing. The protein expression of total-dFB  pFégbre 4a) and its phosphorylation form

(Figure 2b) remained unchanged when compared to the control.
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Figure 217 ABCF1 silencingon NFe B p65 protein expression and
unstimulated condition in HBEC-6KT in vitro. a)i) Immunoblot oftotal NFe B p65 pr ot e
expression with and without-8iBCF1 in HBEG6EKT cells under basal conditiong. Stainfree

blot was used tai) quantify NFa Bo65 protein expressiob) i) Immunoblot of phosphorylated

NFFeB p65 (Ser 5 36)ABCGFL ih HBEGGKT cells unddr basat conslitions.

Stainfree blot was used o) quantfyNFe B p65 phosphoryl atsi0®m. Al |
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In addition to A20 regulation, N B si gnal | i ng i s -adigeaindd.bNee t o r
therefore explored the protein expression of total8and its phosphorylation. Similar to NF

a8 B, t o3 (Egure 3aRaRd phosphorylated fornfrigure 3b) were not impacted by ABCF1

Figure 3
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Figure 3 1 ABCF1 silencing on IRF3 protein expression and activation under basal
unstimulated condition in HBEC-6KT in vitro. a) i) Immunoblot of total IRF3 protein
expression with and without-8iBCF1 in HBEG6EKT cells under basal conditiong. Stainfree
blot was used tadi) quantify IRF3 protein expressiorn) Immunoblot of phosphorylated IRF
(Ser 386) with and without-#ABCF1 in HBEG6KT cells under basal condition§. Stainfree

blot was used toi) quantify IRF3 phosphorylation. All stués n = 3; ns 0.05.
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Collectively, these data suggest that under basal unstimulated conditions, a reduction of ABCF1
greater than 80 % does not impact A20,-8B a n @ protdtFexpression and activity in

HAECs.

Immunostimulation induction of A20 pro-inflammatory mediated responses in HAECSs.

Our experiments with HAECs did not reveal an obvious role for ABCF1 under basal unstimulated
conditions. We therefore investigated the impact of ABCF1 on A26s NB=,  a 48 dnddr [itd-

inflammatorystimulations

To select the appropriagtimulantthat can induce a pfioflammatory response in HAECs, we
selected five immunostimulatorfigands known to induce A20 mediated 4& and IL-8
responsd42i 16]. We performedn vitro stimulationsat log concentrations with TNB (10 t o
1000 ng/ml), 11:17 (0.1 to 10 ng/ml), LR85 ( 0. @/il), PGNSA € 1 to 100 &g/
Poly(I:C) (0.01 tol g#nl). Following thestimulation secretion of I1k6 and IL-8 in cell culture
supernatant were quantifieggigure 4), as well as the protein expression levels of ABGRdUre

5) and A20 Figure 6). Of the fivestimulantsthat were tested, TNBand Poly(l:C) increased the
protein expression of A20 without changing the expression of ABCF1, and strodgbedhthe
secretion of IL6 and IL-8. LPS, PGNSA, and Il-:17 failed to induce robust {6 and IL-8
secretion [Figure 4), did not impact ABCF1 expressio8ypplementary Figure 1), and showed

a mild induction of A20 $upplementary Figure 9. Our data validated the selectionTidF-U

and Poly(l:C) for downstream analysis of ABCF1 unstenulatedconditions.
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Figure 41 Responses to pranflammatory i mmunostimulation in HBEC-6KT in vitro. a) IL -
6 andb) IL-8 protein production in HBEGKT cells under concentration response induced by

TNF-1, ii) Poly(I:C),iii) LPS-B5,iv) PGN-SA, andv) IL-17.All studies n = 35; *** p  0.0001.
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ABCF1 does not regulate A20NF-#B and IRF-3 mediated inflammatory responses under
Poly(l:C) stimulation.

Leveraging our characterization of Poly(l:C) responses in HAECs, we explored the role of ABCF1
with siRNA. ABCF1 knockdown of 81.9% was confirmed in control vehicle and Poly(l:C)
stimulated HAECsKigure 7b) and was associated with a significant reduction 18 ind a trend

for reduced IL6 (Figure 738). Under these conditions, we observed no changes in A20 protein

expression leveld={gure 70).
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Since the observed attenuation of8Lis not due to changes in A20 protein expression, we
investigated whether the silencing of ABCF1 is affecting the protein expression and activation
status of the transcription factors, FB a n-@. We Btserved nohanges in total N B
protein expression levels-igure 8a). Its activation status based on its phosphorylation, also

remained unchanged when ABCF1 is silenced under PolgliGyulation(Figure 8b).
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b) phosphorylated N B p65 ( Ser 536) pr-6KT edlsnunderPply(ll€s s i on

( 1g/md) stimulationwith and without SABCF1 treatment. All studiesn=3pO0 0. 05 .
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Poly(I:C) may signathrough IRF3 and contribute to H8 production independent of N&-B
signalling. We therefore analyzed IR8Fand its phosphorylation. We observed an increase in total

IRF-3 protein expression levelEigure 9a), while no changes in level of phosphorylation were

observedFigure 9b).
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Figure 97 ABCF1 silencing on IRF3 protein expression and activation under Poly(l:C)
stimulation in HBEC-6KT in vitro. a) Immunoblot with quantification of total IRB, andb)
phosphorylated IRB (Ser 386) protein expressioninHBBCK T cel | s under Pol y(

stimulationwith and without SIABCF1 treatment.

Collectively, these studies demonstrate that Poly(I:C) inducefl ifl_regulated by ABCF1 via

pathways independent of N\=B  a n-8 activ&ién.
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ABCF1 does not regulate A20and N B medi at ed infl ammatedry resp
stimulation.

It remained possible that ABCF1 regulates®B si gnal |l ing in a context
was influenced by the stimulus. We therefore investigated whether ABCF1 regulated TNF
mediated pranflammatory responses in HAEC using identical approachesutoPoly(l:C)
experiments. Consistent with Poly(l:C) data, we observed a significant reductiof8ifeVels

and a trend for reduced-& (Figure 103 with ABCF1 knockdown of 82.2%-{gure 10b). Again,

no changes in A20 protein expression levels wererebdevith ABCF1 silencingKigure 109

under TNFU sti mul ation conditi onBgure®. have shown t

85



Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

Figure 10
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We next investigated whether silencing of ABCF1 expression undeftNFs t i mul ati on h
impactonNFe B expression and activity. We observed
9B with ABCF1 s iU estcii mHAguatiigaithou(h tié phosphorylation

statusof NFe B, was not changedigwerltber t hese conditio
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ng/ml) stimulationwith and without SIABCF1 treatment. All studiesn=3pO0 0. 05 .

87



Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

Collectively, these studies demonstrate that TNF i n d u&ie ekgulhtdd by ABCF1 via

pathways independentof \FB act i vati on.

DISCUSSION

Explorations into theole ABCF1 has in modulating respiratory mucosal immune responses are
grounded in reports that this protein has a diverse range of activities including translation initiation,
viral sensing in the cytosol, and polarization of immune cell phenf@yd®, 13] Our group
previously confirmed the expression of ABCF1 at the gene and protein level in the airway
epithelium. Using siRNAmediated knockdown on ABCF1 followed by a viral cytosolic nucleic
acidstimulationin airway epithelial cells, our findings suggested that ABCF1 was not involved in
regulating antiviral responses but instead mediates an immune response involving TLR3/4
signalling pathways. One of the genes that was significantly differentially expriesseese
signalling pathways under ABCF1 silengiand viralstimulationincludedTNFAIP3 expressed

as A20 protein, a ubiquitin ligase and deubiquitinating enzyme that supresses -thd3 NF
transcription factor activatig]. The present manuscript explored the regulatory and functional
relationship between ABCF1 and A20 in HAECs under basal unstimulated amdlanomatory

stimulatedconditions.

For this study, we investigated the function of ABCF1 in an immortalized human bronchial
epithelial cell line called HBE®KT. This cell line was developed using retroviral expression of
Cdk4 and hTERT to promote cell proliferation and extend their lifesphis was developed in

cells that were obtained from bronchial biopsies from areas of the lungs that were histologically

not involved with cancer. Unlike other cell lines that are immortalized by viral oncogenes, the
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Cdk4/nTERT cells are phenotypically normal, and they do not exhibit malignant characteristics.
Karyotyping analyses have been conducted in similar HBEC lines and demonstrated that the
approach of oveexpressing Cdk4/hTERT results in cells that are geaitimore like parental

cells than HPMmmortalized cell lines and distinct from lung cancerous cell lines such as-BEAS
2B[6]. It remains possible that the HBEBKT cell line used has interruptions in genomic regions
that regulate ABCF1 expression and could lead to haploinsufficiency. Routine karyotyping of cell
lines has been suggested in the [dd$t The rationale for choosing HBEEKT was to ensure
continuity with our earlier research that has demonstrated that the expression of ABCF1 protein is
conserved in both primary human airway epithelial cells and HBECHAECs with functional

links to innaé immune respongés.

As no selective pharmacological inhibitor for ABCF1 has been reported and evidence that
homozygous deletion of ABCFL1 is fatal in mice, we have pursued ABCF1 siRNA approaches in
this paper angast reporfd]. Previously, our group showed that with 35% ABCF1 silencing, there
was no observed changes in HAEC secrete® lWinder Poly(l:C)stimulationin vitro[1]. In
contrast to our previous findings, increased efficiency in gene silencing that produces
approximately 80% ABCF1 knockdown led to a decreasing trend in Poly(l:C) induced secretion
of IL-8 when compared to silencing control. Compared to our gene knenkefticiency, Hswet

al. demonstrated that with 510% knockdown of ORMDL3 gene expression using SiRNA in
A549 and 1HAE airway epithelial cell lines, they observed no changes to the levelssoBNF
induced IL-:6 and IL-8 under TNFU and LPSstimulation§15]. However, in our study we were

able to achieve sufficient knockdown of ABCF1 to observe changes in the secretion of these

cytokines. This was done by ensuring our cell lines were treated with SiRNA at an appropriate
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confluency of 70% and at a concentration of 25 nM for no more thant@4void cell death,

potentially due to off target effects that accompany this appfb@lchFor the purpose of
investigating our previous findings, we carried forward with the use of subconfluent HAECs in

this study, maintaining continuity with our earlier research. Howeduéuye approaches with
conditional deletion of ABCF1 in human cell lines using CRISP&9knockoutvia lentiviral
transduction and singie e | | cloning would strengthen the e
immunity. Additionally, exploringhovel selective inhibitors of ABCF1 ardlturing cells grown

at air liquid interface (ALIwould alsoprovide valuable insights on the function of ABCEZ

19].

The expression and function of A20 in HAECs has been defined in the conteximflgmomatory
responses and lorayc t i radrendoeBeptor agonists (LABASs)/glucocorticoid combination
treatmentfl4, 20] While characterizing the differences between theipitammatory responses

in HAECs and alveolar macrophages, it has been proposed that the response to TLR3 and TLR4
agonists differs between these two cell types. They first demonstrated that undeomhdisiains,

gene expression of A20 was unchanged in both HAECs and alveolar macrophages. Under
Poly(l:C) stimulation, they showed that compared to alveolar macrophages, HAECs had a stronger
pro-inflammatory response and higher A20 protein expression.eWmbter LPS stimulation,
alveolar macrophages had a stronger-ipflammatory response but A20 levels was not
impacted21]. A separate group proposed that combination treatment in HAECs can augment A20
protein expression to repressdMB me d i -snflamrdatory responses. Using HAECs, they
demonstrated that LABAs augments A20 expression to negatively regulate BNF a n d

conequently improve the aniinflammatory properties by glucocortico[@8]. Our findings
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confirm the protein expression of A20 in HAECs under basal conditions and demonstrate that
ABCF1 silencing by 80 % fails to change A20 protein expression levels. This contrasts to previous
research where a group observed a reduced expression of AZ@cmophagesvith ABCF1

silencing under basal conditigb$. The contrasting results may owe to the cell type selected, as
HAECs and macrophages have shown different A20 expression levels and therefore may be
regulated by different mechanisf2s]. The regulation of A20 is intertwined with the transcription

factors NFe B a n &3, tHrdedgh negative feedback loops that enable shutting off pro
inflammatory signalling by A222]. As ABCF1 silencing failed to regulate A20 expression under

basal conditions, we sought to deeper characterize this pathway and defm&NFa n® | RF
expression and activation. With an immunoblot on totaldNB p 6 5, a sBbumaind ot
activatedohosphorylated form, we showed that the knockdown of ABCF1 led to no changes to the
protein expression of total N6 B p 6 5, and its activation when c
under basal unstimulated conditions. The protein expression of toteB Heid its activated
phosphorylated form was also unchanged. Collectively, resultsdo not demonstrate any
relationship between ABCF1 and A20 expression andeNB- a n 8 activRtéd signalling

pathways in HAECs under basal unstimulated conditions.

It is possible that baseline A20 expression levels are not regulated by ABCF1, while dynamic
upregul ation of A20 may be dependent on ABCF1
translation initiation and modulation of immune respofisets2]. We therefore investigated a

variety of preinflammatorystimulationghat are known to be regulated by A20, including TNFR,

TLR2, TLR3, TLR4, and IE17R induced signalling pathwdfs 23 25]. Under viral stimulation,

downstream of TLR3 signalling, A20 directly interacts with {Rkinases, N Bactivating

91



Ph.D. Thesisi Q. Cao McMaster University i Medical Sciences

kinase/Traf family membeaissociated Nl B a ¢ tbinding kinase 1 (NAK/TBK1) and IKK

s/ I-KKt o i n-B phosphorylatidR,Fdimerization, translocation to the nucleus and
downstream expression of interferon stimulation response element (ISREYipisi&c26].
Consistent with literature, TNB and Pol y (| : C) woeanck IL-8acptdkiee t o i
secretion and an associated upregulation in A20 expression in a conceiutegigoiient manner

in HAECH21, 27 29]. In contrast, those stimuli (LPS,4L7, PGNSA) that showed more modest
induction of IL.-6 and IL-8 failed to induce A20 expression. Prior research showedAB@r1
silencing in macrophages led to a reduction in-BRéiimerization and phosphorylation with and
without LPS stimulatiofb]. In our HAEC modelin vitro LPS stimulation was unable to induce a
strong preinflammatory response which is consistent with previous reports with primary
HAEC4H21]. The data suggest that there may be cell specific responses to LPS that lead to A20
regulation. Taken together, diimdingsdescribe a relationship where stimuli that inducé land

IL-8 are accompanied by a concomitant expression of A20, a negative regulator- of pro
inflammatory responses. These experimental conditions enable mechanistic studies aimed at

defining a role for BCF1 in regulating A20 expression and function.

Since no changes were observed for protein expression levels of A202dnklesf stimulation
withTNF-U and Poly(l:C), we investigated whether
the transcription factors N8 B a n @ at Ithi® Eime pointA study by Son, D et al. have
demonstrated that under TNF st i mul ati on for 24 h in i mmort
Caca2, they observed an increaséNiR-a Branscriptional activity associated with-8 promoter

activity measured with the lucifesa assg30]. In a separate study by Hirata, Y et al., the authors

used HTF29 intestinal epithelial cells to show that following Poly(l:C) stimulation for 24 h, they
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observed IRR activatiofi31]. Given the findings from previous studies, we wanted to observe

the protein expressidavels of the transcription factors following 24 h of stimulation. In our study,

we found that the expressioitotalNFe B and i ts activation was unc
an increased expression of total IRFsuggesting that increased activation could be possible.
Although, the level of IR phosphorylation remained unchanged when compared to the ¢ontrol
suggesting that while there was a potential for incréB&e3 activity, its activation was not

affected by ABCF1 silencing under Poly(l:&)mulation

Downstream of TNFR signalling with TNB stimulation A20 can negatively regulate the
activation of NFII B by inhibiting B kinase (IKK) phosphorylation through its protein ubiquitin

ligase and deubiquitinatinase activities. This consequently prevertss BNF f r om t rans | oc
the nucleus for gene transcription and prevents Protein Kinase A (PKA) frophaingisiting NF

9B subunit s [2, 32lnRhdsphdrylatian of p655is known to be essential for the
stability, degradation, and transcriptional activity of -INB with factors involved in gene
transcription, including CBP/p3(82]. Early studies characterizing ABCF1 used TNF
stimulation on fibroblaslike synoviocytes, where an increaseAbcfl gene expression was
observed and led to the suggestion that it was involved in regulating inflampht©nor study
demonstrated that with ABCF1 silencing under TBIgtimulationin vitro, there was a reduction

in secreted IE8 and a more modest trend for reduceebllWhile there were no changes to the

protein expression levels of A20, we observed an increase expression level of toet&8 NF T hi s
suggests that there is a potential forreased N B acti vati on and downs
However, the phosphorylation of NFB wi t h ABCF1 s i-Ustmuatiomngs under

unchanged when compared to thersilag control. This finding suggests that while there is an
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increase potentialforNB B acti vation, this was not affecte

Ustimulation

In conclusion, our study demonstrated the roles of ABCF1 in regulating innate immune responses
under preinflammatory stimulations We demonstrated that under basal conditions, ABCF1
silencing led to no changes to the protein expressions of A20 and the transcription factoi8, NF
and IRF3, and its activation. However, we did observed changes in levels of secreted pro
inflammatory gtokines, I1L-8 and IL-6, as well as increased protein expression of totabNB- a n d
IRF-3 under thestimulations These findigs suggest ABCF1 may have a role in regulating pro
inflammatory responses in HBEGKT HAECSs, but its exact function will require further
investigation. We propose that ABCF1 protein interactome may consist of interactors that are
known to be involved in imacellular signalling pathways to regulate innate immune responses.
Ourfindingssupportfuture investigations into the functional role of ABCF1 using CRISRIR9

KO cells with an unbiased proteprotein interaction experiments to gain insights into its function

in HAECs.
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Supplementary Figure 1i Immunostimulationon ABCF1 expression in HBEG6KT in vitro.
i) Immunoblot of ABCF1 protein expression with-1I7, LPSB5, and PGNSA dosagebased

stimulation in HBEGGKT cells. ii) Stainfree blot was used toi) quantify ABCF1 protein

expression. All studies n = 3; r9.05.
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Supplementary Figure 2i Pro-inflammatory i mmunostimulation on A20protein expression
in HBEC-6KT in vitro. i) Immunoblot of A20 protein expression with-Il7, LPSB5, and PGN

SA dosagéased stimulation in HBEGKT cells.ii) Stainfree blot was used t@) quantify A20

protein expressiorAll studies n = 3; n$ 0.05.
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c) NF-{B p65, d)

Supplementary Figure 51 Full length immunoblots o&) ABCF1, b) A20,

Phosphorylated NiEB p65 (Ser 536)) IRF-3, andf) Phosphorylated IRB (Ser 386) in HBEE

6KT under immunostimulatorstimulationswith siCtrl and siABCF1 treatmenin vitro.
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Chapter 4

Bioinformatic Exploration and in vitro Validation of ABCF1-SYK
Protein-Protein Interaction in Human Airway Epithelial Cells

Summary and significance

Proteins interact with other molecules, including proteins, nucleic acids, lipids, substrates, and
small molecules such as metal ions, to carry out a biological function. By exploring the how
proteins interact with other proteins, the profeiotein inteactions (PPIs), we can predict the
function of an uncharacterized protein of interest based on its interaction with proteins with known
functions. We have previously demonstrated that ABCF1 has the potential to positively regulate
innate immune responseashuman airway epithelial cells under pnflammatory conditions. Our
previous study showed that ABCF1 positively regulates the induction einffmonmatory
cytokines through pathways that are independent ebNB- a n-@ activ&tibn, yet the exact
mechanism remains to be characterized. In this study, we first took a hypéitieesapproach by
investigating the protein interactome of ABCF1 using publicly available protein interaction
databases and ran a Gene Ontology enrichment analysis to furthdrgateethe function of
ABCF1 in the context of innate immunity. Our findings suggest that ABCFL1 interacts with SYK,
which is known to be involved in innate immunity. We then validated our exploratory analysis and
showed that ABCFL1 interacts with SYK undeoly(l:C) stimulation, but not under resting
conditions. We provide the first evidence in human airway epithelial cells that ABCF1 physically
interacts with SYK, warranting deeper investigation into how this complex may regulate

respiratory mucosal immuryit
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ABSTRACT

ABCF1 is the most characterized member of the ABCF family in eukaryotes with proposed
functions related to innate immunity in fibroblasts, macrophages, and epithelial cells. Our previous
work has demonstrated that ABCF1 has a role in innate immune respgonseman airway
epithelial cells during viral and ptiaflammatory conditions. However, a detailed mechanistic
understanding of ABCF1 and its roles in immune responses in the airway remains to be defined.
This study aims to provide insights into the solef ABCF1 in human airway epithelial cells
(HAECSs) within the framework of innate immunity. We first explored the interactome of ABCF1,

to identify key protein interactors with BioGRID, IntAct, and STRING databases. Furthermore,
we characterized the funabal activities of these interactions with Gene Ontology (GO) term
enrichment. Next, we performed anvitro validation on the candidate interactor under resting
and a pranflammatory stimulated condition (Poly I:C). Oim silico results revealed that
ABCF16s interactome is enriched with terms rel
and signalling pathways. Notably, some of these interactors, including SYK, have been previously
implicated in regulating innate immenresponses to piinflammatory stimuli. Ourin vitro
validation studies in HAECs demonstrated the interaction between ABCF1 anduSdé¢
Poly(Il:C) stimulation, but not under resting conditions. It remains unclear how ABCF1 regulates
SYK and the downstream pioflammatory responses following Poly(l:C) exposure or other
immune stimuli, warranting further investigation on the impacheir interaction. Overall, these
findings support the idea that ABCF1 and its associated protein partners play a role in responding

to immunostimulatory signals and modulating signalling pathways in HAECs.
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Keywords: airway epithelial cells, ABCF1, Proteprotein interaction, enrichment analysis,
BioGRID, IntAct, STRING, gene ontology, WebGestalt, Poly(l:C), SYK,-ipftammatory,

TRAF, ubiquitination
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INTRODUCTION

Proteins can carry out a wide range of biological function through direct interactions with a range
of molecules, including proteins, nucleic acids, lipids, substrates and small molecules such as metal
iond1]. The protein interactome is defined as a large network of pfptetein interactions (PPIs)

that take place within a living cell, and it has major roles in both physiological and pathological
processgg, 3]. Some proteins can function independently, such as antibodies which can recognize
and neutralize a foreign antigen without relying on other host prptgildowever, most proteins
interact with other proteins and form complexes to carry out a biological fupagti®Pl implies

that the interaction interfaces between the interacting proteins are intentional and not accidental,
as well as nowmgeneri¢6]. Some examples of effects from PPIs include altering the kinetic
properties of proteins such as substrate binding and catalysis, substrate channelling, formation of
new binding sites, and activation or inactivation of a prtéirProtein interactions can form
homocomplexes (association between identical subunits) or hebtenplexes (association
between different protein subunits); be obligate (protomers that are structurally unstable and must
form a permanent complex with anettprotein to be functional) or nabligate (protomers that

are independently stable and can form either transient or permanent complexes); and can differ
based on their stability and persistence with their protein pafnés9] Studying PPIls can
predict the function of an unidentified or uncharacterized protein based on its interaction with
proteins with known functions, detect proteins involved in a disease pathway, and identify

potential targets for drug development to ttaanan diseasgs 5.

PPIs can be identified by vitro techniques that are either higiroughput such as affinity

purification mass spectrometry (A®S), or lowthroughput such as dmmunoprecipitation.
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PPIs can also be identified by silico methods such as computational predictions based on
sequencéased or structurbased approachi@ 5]. In silico PPl methods are grounded in data
collected experimentally or computationally and can then be accessed via publicly available
interaction databas¢3]. Multiple databases exist, with each database having different sources for
data collection. Some collect data exclusively from yeeiewed publications (e.g., BioGRID,

IntAct, MatrixDB), or computationally predicted interactions with no experimentdeece (e.g.,
STRING, PIPs, MPIDHB]. Each database has the PPIs annotated with an identifier (e.g., NCBI
Gene Identifier, UniProt Identifier), source (e.g., PubMed Identifier, Digital Object Identifier),
interaction type (e.g., physical, association, proximity), and detection method. &Plsec
presented as a network where the nodes represent the interaction partners (proteins or other
molecules such as nucleic acids or chemical drugs) and the edges connecting the nodes represents

the interactiofB].

Researchers often run a Gene Ontology (GO) Enrichment analysis with the list of PPIs collected
from the databases to get additional information on their biological function. The GO consortium
annotates gene products with a term to describe their functopkrties using the three
ontologies that cover three independent biological domains: cellular components, biological
processes, and molecular funcf®nl0] A directed acyclic graph is used to present the GO
annotations, where each term is represented by a node and the relationship between the terms is
represented by an edge that connects the nodes in a hierarchid@]wale GO annotations is

often followed by an enrichment analysis for each biological domain to identify which GO terms

were over or undefrepresented based on the protein list of intf8gsiThis tool helps the
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researcher predict or interpret the function of the protein of interest by highlighting the terms

related to its interactors, such as their location, biological events, and functional a@jvities

Previously, our group confirmed the expression of ABCF1 in human airway epithelial cells
(HAECs) at the gene and protein level bathsitu andin vitro[11]. Using anin vitro SIRNA
knockdown experiment in an airway epithelial cell line, HB&CT, we have characterized the
function of ABCF1 as an important component in innate immune responses in HAECs under
dsDNA viral mimic, VACV-70, stimulatiofill]. We also ran a microarray using Affymetrix
Clariom S Human chip to observe differential gene expression and ran a hypfrdeesiO
enrichment analysis to identify the pathways that were impacta@6y1siRNA treatmenfl1].

We showed that one of these pathways included TLR3 and TLR4 sigfEllinghe key gene

that was differentially expressed in these pathways™MHSAIP3 This gene is expressed as the
A20/ tumour n eimduceds drotein B8 &TOIFALPB) prbtein, a ubiquitin ligase and
deubiquitinating enzyme that inhibits nuclear fagtBr(NF-{B) and interferon regulatory factor

3 (IRF-3) activation to regulate innate immune respoied 3]

Next, we investigated whether there was a link between ABCF1 expression andFAPB, and

IRF-3 signalling in HAECs under psmflammatory stimulations. Similar to our study above, we

ran anin vitro siRNA knockdown experiment in HBEGKT, and stimulated the cells with
Poly(I:C) and TNFU14]. We demonstrated that under these stimulations ABBF 1silencing,

there was a significant reduction in induced levels eBland a trend for reduced -B[14].
However, we observed no changes in the expression levels of A20 and the activation status of the

transcription factora\NF-{B and IRF3[14]. This studydemonstrated that Poly(I:C) and TNF
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induced IL-8 are regulated by ABCF1 under 24 hours (h) of stimulation through pathways
independent oNF-[B, and IRF3 activation. However, the exact mechanism of how ABCF1

regulates IL8 induction remains unclear.

Ubiquitination is a postranslational modification involved in protein degradation, directing
protein localization, and regulating protein interaction actijities This process involves
attaching a conserved ubiquitin (Ub) molecule to target proteins in the form of a monomer or
polymer (Ub chains) through a thretep enzymatic pathway with kHzctivating enzymes (E1),
Ub-conjugating enzymes (E2) and dligating enymes (E3]15]. Different types of ubiquitin
chains serve different purposes, where Lysine (K)#&d polyubiquitin chains target proteins

for proteasomal degradation, and Klg&ed or linear polyubiquitin chains stabilize PPIs for
downstream signalling molecu[&&]. Ubiquitination is a dynamic and reversible process where
Ub chains can be removed or modified by deubiquitylases or deubiquitinases [[B)BAh
example of DUBs includes A20, which functions as both a K48 ubiquitin ligase and K63

deubiquitinase to negatively reguldé-[ B mediated signalling pathwd{].

Spleen tyrosine kinase (SYK) is a n@teptor tyrosine kinase that is involved in the recognition

of pathogen associated molecular patterns (PAMPSs) through pathogen recognition receptors
(PRRs), including tollike receptors (TLRs)16]. Srcfamily tyrosine protein kinase (SFK)
phosphorylate and activate SYK, whereby it then triggers reactive oxygen species (ROS)
production following PRR stimulation and activates transcription factors, suchasBNFa n-d | RF
3, to trigger an immune respsrpl 7]. While SYK has a crucial role in immune receptor signalling,

it is also involved in cellular adhesion, osteoclast maturation, platelet activation and vascular
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developmerjii6]. The function of SYK is negatively regulated by phosphatases such a &HP
targeted for degradation by ubiquitination by E3 ligases, including Castiasdgje lymphoma

(CBL)[16].

Previous studies have demonstrated the role of ABCF1 in ubiquitination in murine bone marrow
derived macrophages (BMDMs). They demonstrated that ABCF1 is targeted for K48
polyubiquitination by clAP1/2 during the early phase of TLR4 signalling by LPS stiron]
however this shift to Ké®olyubiquitination by TRAF6 at late phd$8]. This modification
causes ABCF1 to become a molecular switch where it functions as an-&shuigating enzyme

to transition the macrophage from an M1 qmflammatory phenotype (MyD88ependent
signalling) to an M2 antinflammatory phenotype (TRiBepement signalling) during LPS
stimulatiorj18]. During this transition, ABCF1 was shown to associate with TRAF6 and SYK to
form a complex, and K6polyubiquitinate SYK to mediate TLR4 endocyt¢$&]. Additionally,
TRAF3, a component essential for the TERRIF pathway for IRF3-dependent interferon type

1 production, is targeted for Kg®lyubiquitination by ABCF[18].

To characterize the biological function of ABCF1 in HAECs under immunostimulatory conditions,
we propose to run a hypothesise in silico investigation of the ABCF1 PPI network using
publicly available databases and use this network for GO term enrichment. Based on the findings
from ourin silico work, we hypothesize that ABCF1 interacts with SYK to positively regulate
innate immune responses in HAECs. We experimentally validatednosilico results by
performing an immunoprecipitation to investigate @Bl interaction with SYK under basal and

Poly(I:C) challenge.
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METHODS

ABCF1 interactors: BioGRID, IntAct, STRING database

The BioGRID fttps://thebiogrid.orgiversion 4.4), IntActhttps://www.ebi.ac.uk/intagtversion

1.0.4) and STRINGhttps://stringdb.org/ version 12) databases was queried for ABCF1 (homo
sapiens, UniProtID: Q8NE7MRi 21]. First, the list of interactions from BioGRID was
downloaded as a TAB 3.0 file (retrieval date: September 15, 2023). Next, the list of interactions
from IntAct was downloaded as a JSON file (retrieval data: October 3, 2023). Lastly, the list of
interactions from STRING was downloaded as a TSV file (retrieval data: October 3, 2023). All
downloaded files were imported into an Excel spreadsheet for analysis. A python script was used

for all sets of data to convert the annotated interactors to NCBI/EntrezZl@ene

We merged the ABCF1 interaction data collected from the three databases in an Excel spreadsheet.
Annotations for each interaction included the protein interactor (NCBI/Entrez GenelD), the
publication (PubmedID), the interaction type, and the detectionoueatised to identify the
interaction. Repeated interactions that were reported from the same publication dnanaon
interactors were filtered out. Following the filter, this generated the finalized merged dataset for

candidate ABCF1 interactors.

We further filtered the list of ABCF1 interactions to include ones that hvetero complexeas

they can reveal how ABCFL1 participates in a variety of different activities through its interaction
with different proteins. Then we annotated them based on the number of publications and detection
methods were reported. This annotation method enalse® selectively identify confirmed

interactors, rather than relying on chance occurrences. Each interaction was labelled as low,
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medium, or high occurrence based on the following criteria. An interaction is labelled as low
occurrence when the protein interactor was reported in only one publication or detected by one
experimental method; medium occurrence is when the interactoepaead in one publication

but had two or more experimental approaches, or was reported in two or more publications but
detected by the same experimental technique; and high occurrence when the interactor was
reported in two or more publications and had tw more experimental approacfgy. This new

list of 12 ABCF1 interactors is called the ABCF1 interactome.

GO Enrichment Analysis

The WEBbased GeneSeT AnaLysis Toolkit 2019 (WebGestalt) web tool was used to run our GO
term enrichment analysis for both the merged dataset, and the list of 12 interactors, ABCF1
interactom@3]. To begin, we ran an Ow&epresentation Analysis (ORA) with Homo sapiens as

our organism of interest and used the GO functional database. The analysis was performed using
hypergeometric statistics and a Benjantiachberg adjusted P value. The minimunmivner of

genes was set at 2 and the significance level was set to retrieve the to220Q 2&k The report

from WebGestalt will display the top 10 categories that were identified as enriched, where each is
annotated with their identifiers (GO ID and Entrez Gene ID), the FDR aalue, and the
enrichment ratio. The report will also inform the useww many gene inputs were mapped (the
number of genes from the input list that can be recognized by WebGestalt), gene sets (the
collection of genes that belong to a certain functional category) and overlapping genes (the number
of genes that are in bothe input list and in the gene set) were analyzed for each ca{@@pry

We submitted and retrieved the data on November 9th, 2023.
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Software
The protein interaction data collected from interaction databases was stored and analyzed as Excel
spreadsheet (XLSX) files, and annotations were converted using Python 3.11. Graphs were

prepared on GraphPad Prism 8 and Cytoscape (version 3.10.1).

Reagents

ABCFl1 and SYK were probed with affBCF1 primary antibody (ab190798, Abcam,
Cambridge, UK) at 1:1000, and a8t¥K primary antibody (13198T, Cell Signalling Technology,
Massachusetts, USA) at 1:1000 in 5% BSA @30, Wisent Inc., Quebec, CA) in 1X Tris
Buffered Saline (T5912, Sigrwadrich, Oakville) with TWEEN® 20 (P1379, Signradrich)
(TBS-T). The secondary antibody used was an-@atitbit HRRLinked Antibody from Cell
Signalling Technology (7074S, Cell Signalling Technology) at 1:2000 in 3% Cas#6404,
Bio-Rad Laboratories, California, USA) in TBS Immunoprecipitated proteins used VeriBlot for

IP Detection Reagent (HRP) from Abcam (ab131366, Abcam) at 1:500 as a secondary antibody
alternative. The immunostimulatory ligand was Poly(l:C)-id, Invivogen, San Diego, USA),

which was directly added to the cells with cell culture media without a transfection reagent.

Cell culture
All experiments were performed in submerged monolayer cell culture using the -BIBEC
immortalized HAEC line over expressing human telomerase reverse transcriptase (hTERT) and

cyclin-dependent kinase 4 (Cdk4) as described in our previoud 4jdy
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In vitro immunostimulation and protein collection

Cellsaregrownto80 0 % confl uency, then stimulated with
experiments were performed in the absence of stimulation to investigate baseline ABCF1 function.
HAECs were washed with phosphate buffered saline (Cornin@4@CM, Corning, USA)

collected using a cell scraper (83.395, Sarstedt, Nimbrecht, Germany) and lysed-wysiB

buffer (J60766.AP, ThermoFisher Scientific, Massachusetts, USA) containing protease inhibitor
cocktail (P27141BTL, SigmaAldrich) and phgphatase inhibitor (4906845001, Roche,

Mississauga, Canada).

Immunoprecipitation

Immediately after sample collection and lysis, the samples were quantified and used for the indirect

Coi mmunoprecipitation assay. Ap p r -oleaiednveith ttd y 5 0 O
PureProteomeTM Protein A Magnetic Beads. Next, the sampleagture antABCF1 antibody

(sc¢377445, Santa Cruz Biotechnology, Dallas, USA), and IgG isotype contf8B{&; Santa

Cruz Biotechnology), underwent continuous mixing overnight. Magnetic beads were then added

to the antibodyantigen complex as describedi t he manuf acturer 6s i nstr.
stand to engage with the magnetic beads, the beads were washed (1X PBS, 50 mM NaCl and 0.1%
Tween20) five times, and the elution buffer (0.2M Glyd#CL, pH 2.5) was added to elute the

captured target ptein and its potential interactor. The eluted protein sample was neutralized with

1M Tris (pH 8.5).
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Western Blotting

The collected protein was used for western blotting without further sample preparation. Protein
from total celll l ysate (4 €g) and i mmunopreci
Sample Buffer (1610747, BiRad Laboratories), then separatedaod20% Mini-PROTEAN

TGX stainfree precast gels (4568093, BRad Laboratories) and transferred to a PVDF
membrane using the TransfBlot Turbo RTA Transfer Kit reagents (1704272, Htad

Laboratories). Membranes were blocked and imaged as describedarevious study4].

Statistics
All experiments were conducted with a sample size of n=3. Each repetition was obtained from a
distinct cell culture at a distinct time. Experiments conducted with HBET were considered

independent when separated by at least one passage, all withimaumaof 5 passages.
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RESULTS

ABCF1 protein interactors from publicly available databases

Using publicly available, opesourced databases that archive and disseminate genetic and protein
interaction data, we generated a list of ABCF1 prategractions derived from primary literature,
direct usersubmitted data, and/or computational predicfib®s24] This interaction dataset was
then analyzed to rationalize the findings from existing literature that have described the role of
ABCF1 in various biological processes, as well as to infer its potential activities in unexplored

areaf2?].

BioGRID was queried for ABCF1 (human, DABB9D20.7) and 184 unfiltered annotations from

110 unique publications or sources were downloaded. IntAct was queried for ABCF1 (human,
Q8NE71) from 30 unique publications or sources and 54 unfiltered annotagomslewnloaded.
STRING was queried for ABCF1 (human) and 10 unfiltered annotations from one publication
were downloaded. Altogether, we had 15 publications that were identical while the remaining 126
were unique. In the BioGRID and IntAct datasets, 23 tatioms were duplicates, therefore we

kept one set of these annotations in our finalized merged dataset.

In the finalized merged dataset, there were a total of 141 publications that described 204 hetero
oligomeric protein interactions captured by various detection methadsaré 1). Of these
interactions, approximately 53% were detected by affinity capture; 20% were captured by co
fractionation, 10% by cammunoprecipitation (CdoP), 8% by proximity labelling, <2% for
reconstitution complex, <1% for yeadhybrid (Y2H) and the reaining 6% by other various

methods. Of the 204 interactions, 182 were physidaich constitutes most of these interactions.
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Figure 1
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Figure 1. Visualization of the ABCF1 protein interaction network as reportey) iBioGRID, B)

IntAct, C) STRING. Each node represents a protein, and each line (edge) represents an interaction.
The node colour represents which detection method was used to identify the interactor. The edge
pattern refers to how the interactors interact with ABCF1. Networks gemerated using the

Cytoscape tool.

Using the finalized merged dataset, we further condensed the list of interactors and generated a
new list of ABCF1 interactors, the ABCF1 interactome, based on the number of publications and
detection methodg$=(gure 2). This list consists of 12 interactions that were all labelled as medium
occurrences. Of these interactions, 11 were reported in two publications and detected by one
experimental approach, whereas one interaction was reported in one publication bueuetad de

by two experimental approaches.
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Figure 2
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Figure 2. Visualization of the interaction network of ABCF1 interactome. The interactors were
selected based on the number of times it has been reported in publications and whether it was
detected by different detection methods. Each node represents a protegachrithe (edge)
represents an interaction. The node colour represents which detection method was used to identify
the interactor. Node colowoded with multiple colours refers to multiple detection methods used

to detect the interaction. The edge pattefers to how the interactors interact with ABCF1. The

network was generated using the Cytoscape tool.
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GO term enrichment analysis on ABCF1 protein interactors demonstrated to function in

protein ubiquitination and immune responses

With GO term enrichment analysis, we interpreted the function of the ABCF1 based on its set of
protein interactors. This provided information on the biological process, molecular function, and

cellular componentg4].

Among the submitted list of 204 genes from the final merged dataset of ABCF1 interactors, 183
were recognized by WebGestalt. For the analysis of biological processes, molecular function, and
cellular components, 176, 171, and 163 IDs were respectivelyaeddo the selected functional
categories. In our biological process analysis, the top 10 categories included cellular responses to
stress, regulation of gene expression, regulation of metabolic processes, and regulation of
biosynthetic processe$dble 17 Biological Proces}. In the molecular function analysis, the top

10 categories included ubiquitin protein ligase binding, protein kinase binding, transcription factor
binding, and nucleic acid binding4ble 217 Molecular Function). The cellular component
analysis showed that the top 10 categories included ribosomes, polysomes, chromatin, nuclear

body, and chromosome$gble 31 Cellular Component).

127



Ph.D. Thesisi Q. Cao

Table 1 GOBiological Procesgnriched for all ABCF1 interactors merged from three interaction

databases, in WebGestalt. Only the top 10 overrepresented terms are shown with details about the
enriched terms: GO term and ID, gene set size associated with that GO term, -F&IRe P

adjusted for multiple testing, enrichment ratio and gene overlap which is the number of interactors

(genes) from our input list associated with that GO term.

McMaster University i Medical Sciences

Biological
Process GO
Term

GO ID

Gene Set
Size

FDR

P-value

Enrichment
Ratio

Gene
count

Regulation of
cellular
response to
stress

G0:0080135

654

<2.2E16

<2.2E16

5.4

37

Cellular
macromolecule
catabolic
process

G0:0044265

1108

<2.2E16

<2.2E16

4.1

48

Macromolecule
catabolic
process

G0:0009057

1338

<2.2E16

<2.2E16

4.0

56

Negative
regulation of
gene
expression

G0:0010629

1733

<2.2E16

<2.2E16

3.9

72

Positive
regulation of
protein
metabolic
process

G0:0051247

1640

<2.2E16

<2.2E16

3.5

61

Cellular
response to
stress

G0O:0033554

1867

<2.2E16

<2.2E16

3.3

66

Positive
regulation of
macromolecule
biosynthetic
process

G0:0010557

1826

<2.2E16

<2.2E16

3.2

62

Positive
regulation of
gene

expression

G0:0010628

1911

<2.2E16

<2.2E16

3.2

64
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Positive G0:0009891| 1949 <2.2E16 | <2.2E16 | 3.1 63
regulation of
biosynthetic
process
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Table 2 GOMolecular Functiorenriched for all ABCF1 interactors merged from three interaction

databases, in WebGestdlinly the top 10 overrepresented terms are shown with details about the
enriched terms: GO term and ID, gene set size associated with that GO term, -F&IRe P

adjusted for multiple testing, enrichment ratio and gene overlap which is the number ofangera

(genes) from our input list associated with that GO term.

Molecular
Function
GO Term

GO ID

Gene Set
Size

FDR

P-value

Enrichment
Ratio

Gene
count

Ubiquitin
protein
ligase
binding

G0:0031625

283

5.6E09

1.2E11

6.9

20

Ubiquitin-
like protein
ligase
binding

G0:004438

298

2.4E09

3.8E12

6.9

21

Chromatin
binding

G0:0003682

520

5.2E10

5.6E13

5.2

28

Ubiquitin-
like protein
transferase
activity

G0:0019787

416

1.3E05

5.6E08

4.5

19

Transcription
factor
binding

G0:0008134

638

1.4807

3.7E10

4.1

27

RNA
binding

G0:0003723

1603

<2.2E16

<2.2E16

4.0

65

Protein
kinase
binding

G0:0019901

631

8.1E06

3.0E08

3.7

24

Kinase
binding

G0:0019900

711

1.2E06

3.9509

3.7

27

Transcription
regulatory
region DNA
binding

G0:0044212

896

8.7E05

44607

2.9E

27

Regulatory
region
nucleic acid
binding

G0:0001067

898

8.7E05

4.6E07

2.9

27
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Table 3. GO Cellular Componentenriched for all ABCF1 interactors merged from three

interaction databases, in WebGestalt. Only the top 10 overrepresented terms are shown with details
about the enriched terms: GO term and ID, gene set size associated with that GO term, FDR, P
value adjsted for multiple testing, enrichment ratio and gene overlap which is the number of

interactors (genes) from our input list associated with that GO term.

Cellular GO ID Gene FDR P-value | Enrichment | Gene
Component GO Set Size Ratio count
Term

Polysomal G0:0042788 31 1.3612 | 2.2E15 |38.3 11
ribosome

Polysome G0:0005844 73 5.010 | 3.0E12 |17.7 12
Ribosome G0:0005840 229 4207 |3.6E09 |7.1 15
Ribonucleoproteir 834 <2.2E16 | <2.2E16 | 5.4 42
complex G0:1990904

Chromatin G0:0000785 509 8.2E09 |5.6E11 |5.1 24
Nuclear body G0:0016604 741 1.2E11 |4.0E14 | 4.8 33
Chromosomal G0:0044427 886 1.2E11 |3.7E14 |44 36
part

Chromosome G0:0005694 1014 19E11 |8.0E14 4.0 38
Nucleoplasm part| GO:0044451 1087 27E11 |14E13 |39 39
Catalytic complex| GO:1902494 1346 1.3608 |1.0E10 |3.1 39

For the condensed list of 12 genes that were curated to form the ABCF1 interagbmwe- (
Figure 2), all 12 were recognized by WebGestalt. For the analysis of biological processes,
molecular function, and cellular components, all 12 IDs were annotated to each functional
category. In the biological process analysis, the top 10 categories includedcsiyaapimission,
regulation of viral replication, and responses to stréablé 41 Biological Proces$. The top 10
categories in the molecular function adysis included DNAbinding transcription activity,
ubiquitin protein activities, as well as protein kinase activifieble 57 Molecular Function).

In our cellular component analysis, the top 10 categories included ciliary rootlet, linear ubiquitin
chain assembly complex (LUBAC), 3M complex, and heterochromatibl¢ 6 i Cellular

Componen.
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Table 4. GOBiological Processnriched for the ABCF1 interactome in WebGestalt. Only the top

10 overrepresented terms are shown with additional details about the enriched terms: GO term and
ID, gene set size associated with that GO term, FDRallRe adjusted for multiple testing,
enichment ratio and gene overlap which is the number of interactors (genes) from our input list

associated with that GO term.

Biological
Process GO
Term

GO ID

Gene Set
Size

FDR

P-value

Enrichment
Ratio

Gene
count

Regulation
of
spontaneous
synaptic
transmission

G0:0150003

5

0.013

4. 7606

555.5

Spontaneou
synaptic
transmission

G0:0098814

0.015

1.0E05

396.8

Negative
regulation
of viral
genome
replication

G0:0045071

50

0.013

5.5E06

83.3

Negative
regulation
of viral life
cycle

G0:1903901

74

0.018

1.8E05

56.3

Regulation
of viral
genome
replication

G0:0045069

87

0.021

2.9E05

47.9

Regulation
of stress
activated
MAPK
cascade

G0:0032872

228

0.018

1.6E05

24.4

Regulation
of stress
activated
protein
kinase
signalling

cascade

G0O:0070302

230

0.018

1.6E05

24.2
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Regulation
of response
to stress

G0O:0080134

1361

0.006

7.1E07

8.2

Positive
regulation
of cellular
component
organization

G0:0051130

1203

0.013

5.8E06

8.1

Regulation
of organelle
organization

G0O:0033043

1245

0.013

7.2E06

7.8
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Table 5. GO Molecular Functiorenriched for the ABCF1 interactome in WebGestally the

top 10 overrepresented terms are shown with additional details about the enriched terms: GO term
and ID, gene set size associated with that GO term, FBR|uUe adjusted for multiple testing,

enrichment ratio and gene overlap which is the nurobeteractors (genes) from our input list

associated with that GO term.

McMaster University i Medical Sciences

Molecular
Function
GO Term

GO ID

Gene Set
Size

FDR

P-value

Enrichment
Ratio

Gene
count

DNA-
binding
transcription
repressor
activity,
RNA
polymerase
Il -specific

G0:0001227

267

0.23

0.0008

15.6

Ubiquitin
protein
ligase
binding

G0:0031625

283

0.23

0.0010

14.7

Ubiquitin-
protein
transferase
activity

G0:0004842

390

0.15

0.0001

14.2

Ubiquitin-
like protein
ligase
binding

G0:0044389

298

0.23

0.0011

14.0

Ubiquitin-
like protein
transferase
activity

G0O:0019787

416

0.15

0.0002

13.4

Protein
kinase
binding

G0O:0019901

631

0.23

0.0008

8.8

Protein
kinase
activity

G0:0004672

649

0.23

0.0009

8.6
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Protein
domain
specific
binding

G0O:0019904

684

0.23

0.0011

8.1

Kinase
binding

G0O:0019900

711

0.23

0.0012

7.8

Sequence
specific
DNA
binding

G0O:0043565

1097

0.23

0.0007

6.3
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