
A STUDY OF JUSTIFICATION ON JUPYTER NOTEBOOK

QUALITY & FAIRNESS

BY

KAI SUN, M.Eng.

a Report

submitted to the Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Masters of Engineering

© Copyright by Kai Sun, Feb 2024

All Rights Reserved

Masters of Engineering (2024) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: A study of Justification on Jupyter Notebook quality &

fairness

AUTHOR: Kai Sun

M.Eng. in Computing and Software,

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Sébastien Mosser

NUMBER OF PAGES: xiii, 75

ii

Lay Abstract

Jupyter Notebooks have become essential tools for data scientists and machine learn-

ing engineers. However, their diverse tools and languages present challenges in ensur-

ing consistent quality and reproducibility. Current research on maintaining notebook

quality is limited, and there’s a need to turn theoretical notebook best practices into

practical quality checks. This report explores using the Justification Diagram Lan-

guage to make these best practices checkable and implementable. This approach not

only makes it easier for developers to apply these practices but also demonstrates their

e↵ectiveness in real-world situations, ultimately enhancing the quality of notebooks.

iii

Abstract

Computational notebooks using the Jupyter Platform have become increasingly pop-

ular among data scientists and machine learning engineers. However, due to the

diversity of tools and languages, Notebook developers face reproducibility challenges.

Limited research has been conducted on verifying the quality of the notebook, and

only a few studies have established best practices for notebook development. Thus,

further study is needed to transform those conceptual best practices into concrete,

actionable quality checks to ensure the quality & fairness of the notebook. This report

aims to improve the quality of notebooks by investigating the possibility of using the

Justification Diagram Language to convert best practices into tangible steps of qual-

ity checks that users can execute within the Continuous Integration and Deployment

(CI/CD) pipeline. The report will focus on justifying 12 notebooks’ best practices col-

lected from existing studies using Justification Diagrams, and it will then map these

diagrams into practical steps that can be run in GitHub Actions, demonstrating their

e↵ectiveness in real-life scenarios and thus enriching the quality of the notebooks.

iv

Acknowledgements

I would like to start by expressing my deepest appreciation to my supervisor, Dr.

Sébastien Mosser, for his exceptional guidance. Your wisdom has been a guiding

light throughout my master’s studies, and your thorough reviews have significantly

enhanced my work. The resources and support you provided were vital to my growth.

Special thanks to my friend Deesha Patel. Your assistance in completing this

report and sharing your experience have been instrumental in accelerating my project.

To my parents, I am deeply grateful for your unwavering support and financial

backing. Your constant belief in me has been the foundation upon which I’ve built

my achievements.

Lastly, I extend my thanks to McMaster University for the opportunity to pursue

my studies in such a stimulating environment. This experience has been transforma-

tive, and I am thankful for every lesson learned.

v

Contents

Lay Abstract iii

Abstract iv

Acknowledgements v

Abbreviations xiii

1 Introduction 1

2 Background 4

2.1 Jupyter Notebooks . 4

2.1.1 Introduction to Jupyter Notebook 4

2.1.2 Reproducibility Crisis . 5

2.1.3 Pynblint . 6

2.2 DevOps . 7

2.3 CI/CD . 8

2.4 Justification Diagram . 10

2.4.1 Introduction to Justification Diagram 11

2.4.2 Representation of Justification Diagram 11

vi

3 Notebook Best Practices and Justification 15

3.1 Execution Reproducibility . 16

3.1.1 Linear Execution Order . 16

3.1.2 Beginning Imports . 18

3.1.3 Pinned Dependencies . 18

3.1.4 Virtual Environment . 20

3.2 High-Quality Code . 21

3.2.1 Meaningful Name . 22

3.2.2 PEP8 Standard . 22

3.2.3 Relative Path . 23

3.2.4 Notebook Testing . 25

3.3 Literate Programming Paradigm . 27

3.3.1 Code Document . 27

3.3.2 Markdown Headings . 28

3.4 Clean and Concise . 29

3.4.1 Conciseness . 29

3.4.2 Tidiness . 30

3.5 Conclusion . 31

4 Quality Check Implementations 33

4.1 GitHub Workflow Implementations 34

4.2 Implementation Separation . 38

4.3 Conclusion . 40

5 Operational Justification Diagram Language 41

vii

5.1 Introduction . 42

5.2 Eliciting Reusable Operations . 43

5.3 Syntax . 46

5.4 Example . 47

5.5 Conclusion . 49

6 Conclusion and Future work 50

6.1 Summary . 50

6.2 Future work . 51

A Notebook Best Practices 53

A.1 Linear execution order . 53

A.2 Beginning Imports . 53

A.3 Pinned Dependencies . 54

A.4 Virtual Environment . 54

A.5 Meaningful Name . 54

A.6 PEP8 Standard . 55

A.7 Relative Path . 56

A.8 Notebook Testing . 56

A.9 Code document . 57

A.10 Markdown Headings . 58

A.11 Concisness . 58

A.12 Tidiness . 59

B Implementations 61

B.1 Check file exist.sh . 61

viii

B.2 Check functions defined.sh . 62

B.3 Check test modules.py . 64

B.4 Pynblint . 67

B.5 Coverage . 68

B.6 Nbconvert . 70

ix

List of Figures

2.1 Jupyter Notebook sample . 5

2.2 Pynblint output sample . 7

2.3 CI/CD structure . 9

2.4 Python CI/CD pipeline using GitHub workflow 10

2.5 Justification Diagram for training a ML/DL model 12

2.6 Example .jd file . 14

3.1 Justification Diagram for linear execution order 17

3.2 Justification Diagram for beginning imports 19

3.3 Justification Diagram for pinned dependencies 20

3.4 Justification Diagram for virtual environment 21

3.5 Justification Diagram for meaningful name 23

3.6 Justification Diagram for pep8 standard 24

3.7 Justification Diagram for relative path 25

3.8 Justification Diagram for notebook-testing 26

3.9 Justification Diagram for script-testing 27

3.10 Justification Diagram for script-testing 28

3.11 Justification Diagram for markdown headings 29

3.12 Justification Diagram for conciseness 30

x

3.13 Justification Diagram for tidiness . 31

4.1 Mappings of Justification Diagrams to quality test steps for notebook

testing . 34

4.2 YAML file of GitHub workflow testing the usage of Pytest within note-

books . 36

4.3 Implementations for Unittest module 39

5.1 Implementation for environment setting 47

5.2 Implementations for quality test: notebook-testing 49

A.1 Example of linear execution order . 54

A.2 Example of beginning imports . 55

A.3 Example of requirements.txt . 55

A.4 Example of meaningful name . 56

A.5 Example of pep8 standard . 56

A.6 Example of notebook testing . 57

A.7 Example of code document . 58

A.8 Example of markdown headings . 59

A.9 Example of tidiness . 60

B.1 check file exist.sh . 62

B.2 Check functions defined.sh . 63

B.3 JSON output of Pynblint . 63

B.4 check test modules.py . 66

B.5 Example of Pynblint JSON lint result 69

B.6 Coverage report . 69

xi

List of Tables

3.1 Configuration files for self-contained environments 21

4.1 Scripts and tools used in notebook testing 37

5.1 Operations . 45

5.2 Keywords . 46

B.1 List of functions used in the script . 64

B.2 List of Pynblint Lint rules [28] . 68

xii

Abbreviations

Abbreviations

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

CI Continuous Integration

CD Continuous Delivery

YAML YAML Ain’t Markup Language

JD Justification Diagrams

xiii

Chapter 1

Introduction

Jupyter Notebook, a notebook-wise computational environment under Project Jupyter,

has been widely adopted by various groups, including students, researchers, and en-

gineers. As of April 19, 2023, there are over 10 million notebooks in GitHub [17].

Unfortunately, with this level of popularity, there are no universally accepted note-

book guidelines to follow. Thus, many people use notebooks according to their style

preference without considering their capacity to be shared. As a result, reproducibil-

ity [4] has become a concern in notebooks these days, as there is a high motivation

for notebooks to function properly in the environments of other researchers. Some

research papers have worked on extracting best practices of notebook development

from a massive amount of high-quality notebooks on GitHub [20, 21, 26, 29], aiming

to improve the general quality & fairness of notebooks and reduce the communication

gap among those who use notebooks as their primary tool in their work. Fairness

stands for the ability of data reuse [31]; for the purpose of this report, it relates to the

reusability of notebooks. Even though there are analyses summarizing best practices

1

M.Eng. Report—K. Sun McMaster University—Software Engineering

from a large sample of notebooks, no studies were found on tools for testing the qual-

ity & fairness of notebooks. The only relevant tool, Pynblint [28], is an open-source

notebook quality analysis tool published on GitHub last year. It is a linter that can

only analyze notebooks’ content and o↵er recommendations for quality enhancement

based on best practices, but it does not justify the quality & fairness of notebooks,

which means it does not provide the reasoning behind these recommendations or ex-

plain why they could lead to quality enhancement. This tool stopped being updated

in 2023, leaving its progress incomplete.

There is a strong need to demonstrate the rationales behind these best practices

and educate notebook users on why they should apply them in their notebooks. To

address the problems mentioned above, we proposed a solution to use Justification

Diagrams (JD) to transfer best practices into quality tests that can be integrated into

the Continuous Integration and Deployment (CI/CD) pipeline. This solution of using

JD could provide strong reasoning for how our proposed quality tests can enhance

the quality of notebooks. In the Background section, more details about Jupyter

Notebooks, DevOps, CI/CD and Justification Diagrams will be provided.

This report focuses on three questions:

1. How can best practices be converted into actionable steps using Justification

Diagrams?

2. How can justification diagrams be transferred into quality checks in CI/CD

pipelines?

3. How can we improve the above two steps by simplifying the translation between

Justification Diagrams and quality tests?

2

M.Eng. Report—K. Sun McMaster University—Software Engineering

To tackle the above three questions, we will first outline the best practices collected

from existing research papers and blogs. Then, we will apply JD to those practices

and show how the JD can help organize abstract best practices into concrete notebook

quality tests. Subsequently, we will map those diagrams to actual implementations in

GitHub workflows and propose the Operational Justification Diagram Language that

simplifies the translation of those diagrams into GitHub workflow implementations,

providing a practical usage for notebook quality & fairness checks.

Chapter 2 will provide essential background knowledge for readers to understand

this study’s context. Chapter 3 will describe notebook best practices and their cor-

responding JD, which answers question 1. Chapter 4 will choose one of the best

practices as the case study for showing the actual implementations of quality checks

in GitHub Actions, which solves question 2. Additionally, Chapter 4 will discuss

the possibility of having multiple implementations for an existing JD. Chapter 5 will

answer question 3 by proposing an Operational Justification Diagram Language that

simplifies the translation from JD to quality test implementations. Finally, the report

ends with a summary and an overview of potential future work in Chapter 6.

3

Chapter 2

Background

This section will introduce some relative background knowledge needed to understand

this report, including Jupyter Notebooks, DevOps, CI/CD and Justification Diagram.

2.1 Jupyter Notebooks

This section starts by describing what Jupyter Notebooks are. It then mentions the

current challenge of reproducibility encountered by Notebook developers, and finally

briefly introduces a Notebook analysis linter called Pynblint.

2.1.1 Introduction to Jupyter Notebook

Literate programming is a programming paradigm introduced in 1984 by Donald

Knuth. It emphasizes the importance of writing code humans understand [12], in-

tertwining source code and documentation into a single narrative. Computational

notebooks are a direct implementation of some Literate programming concepts. They

provide an interactive environment where users can write, execute and visualize code,

4

M.Eng. Report—K. Sun McMaster University—Software Engineering

making them essential tools in statistics, data science, machine learning and com-

puter algebra. Jupyter Notebook is one of the most popular computational notebooks

nowadays, alongside other options such as Org Mode1. It is open-source software that

enables users to edit and execute notebook documents through a web browser. It com-

prises three types of cells: raw text cell, markdown cell and code cell. The code cell is

the most commonly used cell for performing data analysis, machine learning or other

computational tasks. The markdown cell is used for writing documentation. The raw

text cell is used for writing plain text. A screenshot of Jupyter Notebook running

Python code can be found in Figure 2.1. Users can execute the “add” function and

view the output by clicking the run button.

Figure 2.1: Jupyter Notebook sample

2.1.2 Reproducibility Crisis

The Reproducibility crisis has been found across many scientific research fields these

days. Reproducibility is the ability of a researcher to re-obtain the results of a study

1https://orgmode.org/

5

https://orgmode.org/

M.Eng. Report—K. Sun McMaster University—Software Engineering

using the same code and input data as were used in the original experiment [4]. A

2016 survey [1] published in the Nature Journal found that about 70% of researchers

failed to reproduce another scientist’s experiment, and more than half failed to re-

produce their own experiments. This crisis has also extended to the field of Artificial

Intelligence (AI) and Machine Learning (ML), where the lack of access to the source

code and training conditions for ML models makes it di�cult to reproduce existing

publications [11]. At the same time, another reproducibility issues arise when using

Jupyter notebooks for data analysis. One study found only 25% of Jupyter note-

books on GitHub are reproducible because of bad coding practices [20]. For instance,

running a notebook requires the installation of dependencies first. Due to the varied

computational environments of each user, the version of packages installed might dif-

fer from those in the authors’ environment, causing reproducibility problems. And

that’s where the notebook best practice comes into play. In Chapter 3, more expla-

nations of notebooks’ best practices that address the reproducibility issues will be

provided.

2.1.3 Pynblint

Pynblint is a linter for Python Jupyter notebooks [28]. Linter are tools that analyze

source code to flag programming errors and bad practices. Pynblint can discover

potential defects in notebooks and provide recommendations. A sample output from

Pynblint that lints the notebook in Figure 2.2 is illustrated below, including the

statistics and the linting results. More explanations of Pynblint usage in quality tests

will be provided in Chapter 4 and Appendix B.

6

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 2.2: Pynblint output sample

2.2 DevOps

The term “DevOps” was initially coined in 2008 and became widespread in 2009 [6].

It is a culture in software development that aims to bring a tighter relationship be-

tween Development (Dev) teams and Operations (Ops) teams within an organization.

Traditionally, Dev and Ops teams were entirely isolated, often causing communication

overheads [2]. DevOps introduces a series of practices that help with the software de-

velopment cycle, such as increasing development speed by automating repetitive tasks

like building, testing, and deploying software. Moreover, DevOps also improves devel-

opment e�ciency by monitoring changes, quickly resolving issues, and bridging gaps

between dev and operation teams. Essentially, any practice that maintains software

7

M.Eng. Report—K. Sun McMaster University—Software Engineering

quality regarding code and delivery mechanisms is considered a DevOps practice [6].

The same theory applies to notebook development; any practices benefiting note-

book quality, such as reproducibility, readability or understandability, are considered

as DevOps practices.

2.3 CI/CD

Continuous Integration and Continuous Delivery, commonly called CI/CD, are fun-

damental software development practices in DevOps. Continuous Integration often

refers to techniques that regularly merge new or modified code into the existing code

base, aiming to minimize delays between code commit and code build [9]. Continuous

Delivery, following the steps of continuous integration, is the approach that allows

developers to produce software in short cycles, ensuring that software is always de-

ployable at any moment with minimal manual e↵ort [7].

As shown in Figure 2.3, the CI process typically includes planning, coding, build-

ing and testing, whereas the CD stage involves releasing, deploying, operating and

measuring the software.

In the CI stage, developers can frequently push their code changes to the repository

several times daily. An automated build process is triggered immediately, or based

on a predetermined timetable, to ensure that the source code is proper regarding

executability. The next step is the testing phase, where testing tools can verify the

software’s functionality, ensuring the software meets engineers’ expectations. These

steps allow a team to rapidly develop their software with enhanced quality and fewer

risks [9]. In the CD stage, developers can deploy their changes to the production

environment often, allowing organizations to bring service improvement to the market

8

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 2.3: CI/CD structure [5]

and stay competitive [7].

GitHub Actions2, a feature within GitHub, supports many phases in the CI/CD

pipeline, including automated building, testing and deploying. GitHub Workflow3, a

configurable automated process that sequences these individual Actions, is defined by

a YAML file in the code repository and will be triggered manually or by an event in the

repository. It helps organizations using GitHub accelerate their software development

cycle and enhance software quality by adhering to DevOps principles. Figure 2.4

shows a sample YAML file of GitHub workflow, representing a simple Python CI/CD

pipeline. The “on” keywords on line 3 indicate this pipeline’s triggering method.

This pipeline example will capture any push events under the “main” branch and

start the workflow. “Jobs” is the keyword that defines the steps of the workflow.

This pipeline will create an Ubuntu environment, install Python 3.8 and Pylint, and

2https://docs.github.com/en/actions
3https://docs.github.com/en/actions/using-workflows/about-workflows

9

https://docs.github.com/en/actions
https://docs.github.com/en/actions/using-workflows/about-workflows

M.Eng. Report—K. Sun McMaster University—Software Engineering

automatically execute the Pylint check on the sample.py file in the build phase. We

will elaborate more about Jupyter Notebook quality checks implementations using

GitHub workflow in Chapter 4.

Figure 2.4: Python CI/CD pipeline using GitHub workflow

2.4 Justification Diagram

This section will explain what is Justification Diagrams and show a real-life example

that can be illustrated by the Justification Diagram Language.

10

M.Eng. Report—K. Sun McMaster University—Software Engineering

2.4.1 Introduction to Justification Diagram

The Justification Diagram Language, inspired by Toulmin’s argumentation model,

is designed to organize and visualize the key elements that validate a product’s out-

comes [23]. During a development cycle, comprehensive documents that include input

data, assumptions, and applied technologies are essential to explain the outcomes of

a product. However, these documents are often not collected and presented formally

because they lack concrete structures. The JD addresses this by listing those abstract

documents in a structured fashion and showing each step of the reasoning process,

resulting in a transparent process and an acceptable conclusion. Building on this, a

study in DevOps demonstrated how the JD can justify CI/CD pipeline quality [25].

Similarly, this report will use the same techniques to justify the notebooks’ quality.

2.4.2 Representation of Justification Diagram

The Justification Diagram Language contains several key components: evidence,

strategy, sub-conclusion and conclusion. Evidence is used to support the conclusion;

it could be documents, source code, artifacts, or even a conclusion of another argu-

mentation step (sub-conclusion). Strategy is the link between evidence and conclu-

sion; it’s a method that explains why the conclusion is acceptable from our evidence.

The conclusion is the final conclusion derived from input data or assumptions. A

strategy can only have one conclusion, whereas a evidence can contribute to multiple

strategies.

Figure 2.5 shows a Justification Diagram Language example, illustrating a general

11

M.Eng. Report—K. Sun McMaster University—Software Engineering

process for training image classification models using computational notebooks. Be-

fore explaining the workflow, the language comprises four types of boxes: blue repre-

sents the evidence, green represents the strategy, white represents the sub-conclusion,

and grey denotes the conclusion. For the workflow, three key components are nec-

essary for training an ML/DL model for image classifications: a valid data set, a

training environment, and the chosen training algorithms or model architecture. Re-

searchers often prepare raw image files and corresponding labels to get a “valid data

set”, so “raw images” and “labels” are the evidence of JD; the “data processing” step

is the strategy that contributes to the sub-conclusion “data set is ready”. Next, “set-

ting up the training environment” is crucial. This step includes installing the required

“ML/DL libraries” within the notebook and ensuring “CPU/GPU power is available”

for computational tasks, so they serve as the evidence, where “setup environment”

as the strategy. The third step involves researchers selecting and understanding the

specific algorithm or model architecture that will be used for training. Once these

three keys are ready, they can start the strategy “training the model”, and finally,

they can conclude that an image classification model is trained and prepared to be

evaluated.

Figure 2.5: Justification Diagram for training a ML/DL model

12

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 2.6 is compiled from a ‘.jd’ file used in the JPipe compiler [15]. The

‘.jd’ file of Figure 2.5 can be seen in Figure 2.6. In the first line of the file, “im-

age classification” represents the name of this file as well as the title of the dia-

gram. In the body of the file, each component is identified by an indicator key-

word: “evidence”, “strategy”, “sub-conclusion” and “conclusion” to determine

its type. Then, following the identifier, a variable name is needed for the compo-

nent to build links with each other. The keyword “is” assigns text value to the

variable. For example, “Su1” is an evidence variable representing “Raw image files

are available”; “St1” is a strategy variable representing “Data processing”; “Sc1” is

a sub-conclusion variable representing “Data set is ready”. To add a link between

components, we need to use the “supports” keyword. It requires two arguments to

establish a link in order, such as “Su1 supports St1”, meaning we need image files to

start data processing.

1
2 justification image_classification {
3 evidence Su1 is "Raw image files are ready"
4 evidence Su2 is "Image labels are ready"
5 strategy St1 is "Data processing"
6 Su1 supports St1
7 Su2 supports St1
8
9 sub-conclusion Sc1 is "Date set is ready"

10 St1 supports Sc1
11
12 evidence Su3 is "ML/DL libraries are available"
13 evidence Su4 is "Notebook file is ready"
14 evidence Su5 is "CPU/GPU resource is available"
15 strategy St2 is "Setup environment"
16 Su3 supports St2
17 Su4 supports St2
18 Su5 supports St2
19

13

M.Eng. Report—K. Sun McMaster University—Software Engineering

20 sub-conclusion Sc2 is "Training environment is ready"
21 St2 supports Sc2
22
23 evidence Su6 is "Training algorithms are ready"
24 strategy St3 is "Start training"
25 Sc1 supports St3
26 Sc2 supports St3
27 Su6 supports St3
28
29 conclusion C is "Image Classification model
30 is ready for evaluation"
31 St3 supports C
32 }

Figure 2.6: Example .jd file

14

Chapter 3

Notebook Best Practices and

Justification

As discussed in the Background section, reproducibility issues were found in notebook

developments [20]. Several studies have conducted experiments to recommend a set of

best practices that users should follow to improve notebooks’ quality. While these best

practices are summarized, there is a lack of tools that allow researchers to apply them

e↵ectively and ultimately guide user practice toward better notebook development in

real life. This gap highlights the need for research to justify these best practices

and convert them to actionable quality tests. The Justification Diagram Language

is an appropriate tool to justify the rationale behind those practices. And we can

transform these diagrams into quality tests. Since these practices are independent,

ideally, each practice should represent an individual quality test case, and users can

choose to employ it freely.

This section explains 12 best practices collected from the state of the art [26] and

focuses on answering the question: “How can best practices be converted into

15

M.Eng. Report—K. Sun McMaster University—Software Engineering

actionable steps using Justification Diagrams?”. Each best practice will be

further categorized into four themes and transformed into quality test steps under

each section. The four themes are Execution Reproducibility in section 3.1, High-

Quality Code in section 3.2, Literate Programming Paradigm in section 3.3, and Clean

and Concise in section 3.4. All works in this section are collected in the repository,

“notebook-best-practices” [16], serving as a book for users to understand each best

practice and its test implementations. Please refer to Appendix A or the repository

for a more precise description of each best practice.

3.1 Execution Reproducibility

Execution Reproducibility is critical in assuring good collaboration among scientists

when working with notebooks. A well-written notebook should be easily re-executed

or reproduced with the same output in di↵erent systems. In section 3.1, four cor-

responding best practices contribute to Execution Reproducibility: linear execution

order, beginning imports, pinned dependencies and virtual environment.

3.1.1 Linear Execution Order

In Jupyter notebooks, code cells can be executed in any order. Even with proper

version control and dependency management in notebooks, the non-sequential run-

ning of code cells can create hidden states that hinder the reproducibility of note-

books [26]. For example, executing a later cell before an earlier one in a Jupyter

notebook can lead to using outdated variables. To achieve reproducibility, one best

practice we shall follow is ensuring the notebook has a linear execution order. Six

16

M.Eng. Report—K. Sun McMaster University—Software Engineering

articles [8, 14, 19, 20, 26, 29] suggest re-running notebooks from top to bottom before

storing or sharing. This approach restores the execution counter and reduces issues

caused by hidden states.

In this practice, ensuring notebooks have linear execution order could mitigate

risks of hidden state when sharing with others, so the conclusion of this practice is

“notebook execution is reproducible”. The evidence, the support where the conclusion

is based, could be “notebook file is ready”, indicating that the notebook file is ready

to be verified if it follows a linear execution order. However, considering the definition

of ready [10], from a test perspective, we can only automatically check the notebook

file’s existence at this point. So, the evidence is “notebook file exists”. More research

is needed to check readiness. This will be further discussed in the Future work part

of this report. The strategy is a method used to establish reasoning between evidence

and conclusion. Once the notebook file exists, we can check its linear execution order.

The strategy could be “verify notebook has linear execution order”. The diagram is

represented in Figure 3.1.

Figure 3.1: Justification Diagram for linear execution order

Thus, according to the diagram, we can build the first quality test case by checking

17

M.Eng. Report—K. Sun McMaster University—Software Engineering

the notebook file’s existence first and then verifying that the notebook has a linear

execution order.

3.1.2 Beginning Imports

When working with notebooks, developers often need to import extra dependencies

to perform complicated computations. Another best practice extracted from the

paper [26] is “putting import statements at the beginning of a notebook”, ensuring

reproducibility of the execution environment. It is also mentioned in the paper [20],

where authors discovered that over 90% of their studied notebooks put imports at

the beginning cell. This practice also aligns with the o�cial Python PEP8 style

guide [24]. The Justification Diagram can be seen in Figure 3.2. It has two benefits:

1. The dependencies being used are apparent at first glance.

2. When restarting the notebook server, all imports can be restored by a single

re-run.

By applying this practice, ensure the execution environment of the notebook is

reproducible. So, the second quality test case for notebooks starts by checking the

existence of the notebook file and then verifying the position of all import statements

within it. If the notebook passes these two checks, we can conclude that “notebook

execution environment is reproducible”.

3.1.3 Pinned Dependencies

When working on projects shared or used across di↵erent environments, we often

install the required packages first. However, the lack of versions may cause system

18

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.2: Justification Diagram for beginning imports

incompatibility issues [20]. For example, a function fails because it requires a feature

not present in the older version. Several articles [19, 20, 26, 29] suggested that one

practice contributing to notebooks’ reproducibility is maintaining a requirements.txt

file and declaring each dependency’s version number so that other researchers can

use it to install identical versions of every module and library as you did, ensuring

notebook execution environment are reproducible. For this practice, The focus is not

on the notebook but on the requirements.txt file. Figure 3.3 shows the evidence of

this practice is “requirement file exists”, verifying the requirements.txt exists. Again,

as discussed in section 3.1.1, the ideal evidence is “requirement file is ready”, which

requires more research work in future. Then, we can apply a strategy to check that

each dependency version is specified correctly, “verify dependencies version are cor-

rectly pinned”. The conclusion would be the same as the last practice: “notebook

execution environment is reproducible”

19

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.3: Justification Diagram for pinned dependencies

3.1.4 Virtual Environment

To make the execution environment even more straightforward to reproduce, many

papers and blogs [26, 27, 29, 32] recommend running notebooks in self–contained

environments, such as virtual environments: conda1, pipenv2, virtualenv3 or docker

containers4. Because using a virtual environment ensures dependency consistency

across di↵erent systems, preventing issues related to “it works on my machine”. In

this practice, the conclusion stays the same, “notebook execution environment is re-

producible”. The evidence is now the configuration files used to build virtual environ-

ments or containers, “virtual environment configuration files exist”. To support the

conclusion, we need to verify that those configuration files are valid, “verify configu-

ration files are valid”, and that the user used the virtual environment or container to

run their notebooks, “verify usage of virtual env”, as shown in Figure 3.4.

Thus, this practice contains three checks: first, check the existence of the config-

uration files. A list of configuration files needed for each environment is outlined in

1https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
2https://pipenv.pypa.io/en/latest/
3https://virtualenv.pypa.io/en/latest/
4https://www.docker.com/resources/what-container/

20

https://conda.io/projects/conda/en/latest/user-guide/concepts/environments.html
https://pipenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://www.docker.com/resources/what-container/

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.4: Justification Diagram for virtual environment

Table 3.1. Second, verify the validity of those configuration files. Third, verify that

the notebook is indeed running in those environments.

Environment File Name
pipenv Pipfile and Pipfile.lock
conda environment.yml
virtualenv requirements.txt
docker Dockerfile

Table 3.1: Configuration files for self-contained environments

3.2 High-Quality Code

Another practice we shall apply to notebooks is ensuring code quality. High-quality

code is critical when working in teams. It helps team members understand others’

work easier and move forward faster. Four best practices are related to this theme:

meaningful name, pep8 standard, relative path and notebook testing, which are ex-

plained below.

21

M.Eng. Report—K. Sun McMaster University—Software Engineering

3.2.1 Meaningful Name

A lousy name for notebooks is a nightmare when working in a team, causing di�culty

finding the right notebook. Thus, a proper naming strategy is necessary. It could

help everyone navigate file systems or shared repositories, find the right notebook

more quickly and save more time. Paper [20, 26] recommends giving a meaningful

name for notebooks. Paper [20] concludes explicitly three keys that build up a good

notebook name from many notebook samples:

1. Always customize the notebook name.

2. Avoid using non-portable characters in the notebook name.

3. Avoid using excessively long names.

The “notebook file exists” is evidence of this practice because we can only verify

its name if the notebook file exists. The conclusion is that “notebook is shareable and

searchable” based on the benefits of a good naming strategy. The strategy should be

“verify that the notebook has a proper name” based on the three points above. The

Justification Diagram can be viewed in Figure 3.5.

Thus, another quality test we have is first to check the existence of the notebook

file, then verify the notebook file has a valid name based on the above three keys.

3.2.2 PEP8 Standard

In software development, sticking to coding standards is a common way to ensure that

the code produced by one developer will be easy to read, understand, and maintain

by other developers [26]. Another best practice is sticking to widely accepted cod-

ing standards when developing computational notebooks, specifically the PEP8 style

22

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.5: Justification Diagram for meaningful name

guide. This practice helps you seamlessly navigate between various of your projects,

and there is no need to spend time deciding what style to use here and there. This

practice shares a similar diagram with the above one, shown in Figure 3.5. Evidence:

“notebook file exists”, strategy: “check PEP8 coding standard”, conclusion: “notebook

code quality is fair”.

The quality test for this practice is also simple: first, verify the existence of the

notebook file. Then, verify that the notebook follows the PEP8 style.

3.2.3 Relative Path

When processing large data sets, storing the data in separate files and reading it

in the notebook is common. However, reading the data file might fail in di↵erent

environments. According to a study, about 12.59% of their examined notebooks have

errors like “FileNotFound” or “IOError” [20]. One cause of errors is when users

use absolute paths to access data files, and the home directory varies in di↵erent

machines, so someone else might have a di↵erent absolute path. Therefore, using

23

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.6: Justification Diagram for pep8 standard

relative paths in notebooks for data access is essential. Regular programs typically

have two types of paths:

1. Static path, path generated at compile time.

2. Dynamic path, path generated at run time.

Given a notebook file, suppose the dynamic and static paths generated are relative

paths. In that case, we are sure that no absolute path exists in the notebook, reducing

the possibility of error occurrence.

Regarding the diagram, “notebook file exists” is the evidence, and the conclusion

indicates the notebook is shareable, “notebook is shareable”. We shall have two

strategies for this: one is verifying that statically generated paths in the notebook are

relative paths, “verify all static paths are relative paths”, and the other is confirming

that dynamically generated paths are relative paths, “verify all dynamic paths are

relative paths”. The Justification Diagram can be seen in Figure 3.7.

24

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.7: Justification Diagram for relative path

3.2.4 Notebook Testing

Testing is a standard practice in modern software development, aiming to ensure

programs work as the engineers expect. Research papers and blogs [8, 19, 20, 26] ac-

knowledge that testing is important, but none specify which type of tests is necessary.

There are many types of testing methods nowadays: unit tests, mock tests, integra-

tion tests, regression tests and so on. In this practice, we will focus on checking the

existence of unit tests to improve the quality of the notebooks because papers [20, 26]

found the most imported testing modules in notebooks are unit test modules. Other

types of tests shall be covered in future studies.

Performing unit tests in notebooks has two ways:

1. Directly write and run unit tests inside the notebook.

2. Write the tests in a separate Python script and execute it.

Therefore, two independent Justification Diagrams are needed for each execution

method. The first case assumes the user writes and runs unit test cases inside the

notebook directly. As pictured in Figure 3.8, we need “notebook file exists” as the

evidence. Then, if the notebook contains an imported unit test module and a defined

function, we are sure that the notebook is ready for unit tests. Because only if the

test module is imported into the notebook the notebook can trigger unit tests. Only

25

M.Eng. Report—K. Sun McMaster University—Software Engineering

if functions are defined inside the notebook are the unit tests needed. So, those two

checks become the two strategies: “verify the existence of common unit test import

modules” and “verify notebook has functions defined”, leading to the sub-conclusion:

“notebook is ready for unit tests”.

Once we know that the notebook needs unit tests, we can have two approaches

to check the test results statically and dynamically: “verify unit test coverage” and

“verify unit test correctness”. If the test coverage is acceptable, around 80% [22], and

all tests pass, we can conclude “notebook quality is tested and proven”.

Figure 3.8: Justification Diagram for notebook-testing

The other case assumes the user would run a separate Python script to test the

notebook, so we focus on the reasoning between the test script and the notebook

quality. Instead of checking the notebook file’s existence, “Python test script exists”

should be the evidence that supports a conclusion. Once the Python test script exists,

we need to verify its test “coverage” and “correctness” to ensure that the test script

is good. Additionally, we need to verify the user is indeed using this script to test the

notebook, “verify usage of test scripts”. With the success of all three strategies, we

conclude “notebook quality is tested and proven”. A detailed diagram is illustrated

below in Figure 3.9.

26

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.9: Justification Diagram for script-testing

3.3 Literate Programming Paradigm

Computational notebooks have gained popularity among data scientists mainly be-

cause they facilitate documentation alongside code, primarily inspired by literate

programming [26]. Two best practices in this category are code documents and

markdown headings. Both of them contribute to the notebooks’ readability and un-

derstandability.

3.3.1 Code Document

A well-written notebook should read like a book, detailing each computation step and

its reasoning. This method of documenting directly within the code makes it easy for

the author to track and update content. Other researchers or even the stakeholders

can also examine notebook analysis easily. Several papers and blogs [19, 20, 26, 29, 30]

highlight the importance of documentation in the notebook. Therefore, this best

practice recommends documenting notebooks with markdown cells.

As concluded in paper [26], the documentation quality is impossible to verify

within the notebook. However, we can check a few parts to support that a note-

book is well documented, such as increasing the number of markdown cells used and

checking whether the notebook begins and ends with a markdown cell. Additionally,

consecutive code comments are recommended to transfer into markdown cells [26, 29].

27

M.Eng. Report—K. Sun McMaster University—Software Engineering

In Figure 3.10, the diagram shows the quality test steps of this practice. First, the

evidence: “notebook file exists”. Only if the notebook file exists can we verify the

usage of markdown cells. The strategy should validate that the notebook has enough

markdown cells and concise code comments, “verify notebook has concise code com-

ments and enough MD cells”. If the notebook conforms to the check, we can conclude

“notebook is well-documented”.

Figure 3.10: Justification Diagram for script-testing

3.3.2 Markdown Headings

This practice recommends the usage of markdown headers to organize the notebook,

aiming for better readability and understandability. Papers [20, 26, 29] share the idea

of leveraging markdown headers to give the notebook a good hierarchy structure and

easy navigation. Specifically, paper [26] recommends using markdown headers from

the beginning of the notebook to serve as a notebook introduction.

As visualized in Figure 3.11, a notebook file is needed, so “notebook file exists” is

the evidence. The conclusion is that the notebook has a good structure, “notebook has

clear structure”. For strategy, we can verify that markdown headers are adequately

used in the notebook, “verify MD headings used properly”. Thus, this quality test

involves two check steps.

28

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure 3.11: Justification Diagram for markdown headings

3.4 Clean and Concise

The notebook loses its advantages of literate programming if messy or overly compli-

cated [26]. A common issue with notebooks is that they can easily become untidy,

leading to di�culties in readability and understandability. This category emphasizes

the importance of a concise and clean notebook. Each best practice in this category

focuses on the quality of code cells.

3.4.1 Conciseness

Paper [26] suggests that developers should focus on creating concise, understandable

cells, and each cell should perform one meaningful analysis step. Paper [29] suggests

breaking long notebooks and cells into smaller ones and limiting the number of cells

within each notebook. This practice advocates for writing concise notebooks and

cells. According to paper [26], there are two properties we shall pay attention to

ensure conciseness of the notebook:

29

M.Eng. Report—K. Sun McMaster University—Software Engineering

1. the number of code cells.

2. the length of each code cell.

Thus, we can have the notebook file as the evidence, “notebook file exists”, and

then the strategy is to check the notebook size and cell length, “verify notebook cell

length and overall size”. If the notebook’s overall size and cell lengths are proper, we

can conclude “notebook is concise”. To build the quality test, we first need to check

the notebook occurrence. Then, check whether it has the proper number of code cells

and whether each cell has the appropriate length.

Figure 3.12: Justification Diagram for conciseness

3.4.2 Tidiness

The second best practice in this category focuses on the code cell’s cleanness. Several

papers [20, 26, 29] mentioned cleaning notebooks is a significant best practice. Based

on their findings, there are three keys that we should pay attention to to keep the

notebook clean:

1. Ensure no unexecuted code cells are in notebooks.

30

M.Eng. Report—K. Sun McMaster University—Software Engineering

2. Ensure no empty code cells in notebooks.

3. Ensure no Python syntax errors in notebooks.

Therefore, we should verify the above three points in this practice and conclude

“notebook is clean”. Clearly shown in Figure 3.13, “notebook file exists” is the ev-

idence, and the strategy is to verify that there are no empty and unexecuted code

cells and no syntax errors in the notebook, “verify notebook for the absence of dead

cells and code”. The quality test involves a notebook file check and a check of the

above three keys.

Figure 3.13: Justification Diagram for tidiness

3.5 Conclusion

In Chapter 3, we have explored 12 key best practices for notebook development,

which we categorized into 4 groups. For each best practice, we have provided clear

explanations and transformed them into detailed quality check steps using Justifica-

tion Diagrams. These steps aim to enhance the quality of notebooks, with the JD

providing solid rationales for each practice.

31

M.Eng. Report—K. Sun McMaster University—Software Engineering

From this analysis, we can conclude that the Justification Diagram Language can

be used to model each best practice into a standalone, comprehensive quality test.

32

Chapter 4

Quality Check Implementations

As discussed in chapter 3, we have converted 12 notebooks’ best practices into 12

individual quality test cases using the Justification Diagram Language. The next

important step is implementing those test cases so that users can validate their note-

books.

This chapter chooses practice notebook testing (section 3.2.4) under the High-

Quality Code category as a case study and exhibits its detailed implementation

using GitHub workflow in section 4.1, answering the question: “How can Justifi-

cation Diagrams be transferred into quality checks in CI/CD pipelines?”.

Then, we will continue the case study and discuss a scenario where one diagram can

have separated implementations in section 4.2, demonstrating Justification Diagrams’

flexibility and reusability.

33

M.Eng. Report—K. Sun McMaster University—Software Engineering

4.1 GitHub Workflow Implementations

Recall from the notebook testing practice explained in section 3.2.4 that there are two

ways to execute unit tests in notebooks. One is directly running unit tests within the

notebook, and the other is indirectly running test scripts, represented respectively in

Figures 3.8 and 3.9. The converted quality test steps for both cases are also explained

in section 3.2.4. To implement the one running tests within the notebook, we can

map those steps into a GitHub workflow and check if each step is valid. A mapping

from Figure 3.8 to the actual quality test steps can be found in Figure 4.1. Every

evidence (Su1) and strategy (St1, St2, St3, t4) is transformed into a check and can

be performed in order inside a GitHub workflow. Users can trigger the whole process

manually or based on events. If any check fails in the middle of the GitHub workflow,

it will reject the CI/CD process and state the notebooks’ problems.

Figure 4.1: Mappings of Justification Diagrams to quality test steps for notebook
testing

Figure 4.2 is the YAML file of this quality test, representing a pipeline that checks

the usage of Pytest within notebooks. Recall from the background section that the

YAML file is used to define the GitHub workflow pipeline. The keyword on line

4, ‘workflow dispatch’, determines that the workflow can be triggered manually.

34

M.Eng. Report—K. Sun McMaster University—Software Engineering

Lines 5 to 10 represent the user inputs. Starting from line 12 to the end are the

implementations of test steps.

1 name: Test pytest modules in notebooks
2
3 on:
4 workflow_dispatch:
5 inputs:
6 notebook_path:
7 description: "Path to the targeting jupyter notebook

"
8 required: true
9 default: "./high -quality/notebook -testing/notebook/

10 pytest/examples/pytest_notebook1.ipynb"
11
12 jobs:
13 check-practice-pytest:
14 runs-on: ubuntu -latest
15
16 steps:
17 - uses: actions/checkout@v4
18
19 - name: Set up Python
20 uses: actions/setup -python@v4
21 with:
22 python -version: 3.8
23
24 - name: Install tools needed
25 run: |
26 python -m pip install --upgrade pip
27 pip install nbconvert coverage pytest pynblint
28
29 - name: Verify notebook exists
30 run: |
31 ./helper -scripts/check_file_exist.sh ${{

github.event.inputs.notebook_path }}
32 - name: Verify notebook has functions defined
33 run: |
34 pynblint --include ’[""]’ --output lint -results.

json --quiet ${{ github.event.inputs.notebook_path }}
35 ./helper -scripts/check_functions_defined.sh lint -

results.json

35

M.Eng. Report—K. Sun McMaster University—Software Engineering

36
37 - name: Check existence of pytest used in notebook
38 run: |
39 python3 ./helper -scripts/check_test_modules.py ${{

github.event.inputs.notebook_path }} pytest
40
41 - name: Verify unit test correctness
42 run: |
43 jupyter nbconvert --to script ${{

github.event.inputs.notebook_path }}
44 echo "NOTEBOOK_SCRIPT=$(echo ’${{

github.event.inputs.notebook_path }}’| sed ’s/.ipynb$
/.py/’)" >> $GITHUB_ENV

45 coverage run -m pytest $NOTEBOOK_SCRIPT
46
47 - name: Verify unit test coverage
48 run: |
49 coverage report --fail -under =80

Figure 4.2: YAML file of GitHub workflow testing the usage of Pytest within
notebooks

This quality test contains five steps, each checking one notebook condition. A list

of scripts and tools used in those five steps is shown in Table 4.1. The first step,

Su1, is to check if the notebook file exists. We ask users to provide a path of the

targeting notebook through GitHub environment inputs and then run a bash script

‘check file exists.sh’ to check its existence. St1 verifies whether the notebook

has functions defined by utilizing the Pynblint linter to count the number of func-

tions and output the result into a JSON file. Then, check its result with a bash

script ‘check functions defined.sh’. The third step, St2, verifies whether the

Pytest library is imported statically inside the notebook. We built a Python script

‘check test module.py’ that employs the Abstract Syntax Tree (AST1) module, a

1https://docs.python.org/3/library/ast.html

36

https://docs.python.org/3/library/ast.html

M.Eng. Report—K. Sun McMaster University—Software Engineering

feature that can help programmatically process Python code to check Pytest occur-

rence. Once the notebook passes Su1, St1 and St2, we can confirm the notebook is

ready for unit testing. For the fourth and fifth steps, we first convert the notebook

file into a Python script by nbconvert, a tool that converts notebook files to other

formats. Then, we employ coverage, a tool for measuring the code coverage of Python

programs, to verify the test results as well as the test coverage of the converted Python

script. If the notebook passes all unit tests and the test coverage is over a certain

threshold (80% by default), we can conclude the notebook is tested and proven.

Type Name Description

Bash scripts
check file exist.sh Check the existence of a file

check functions defined.sh Check the existence of functions
within a given notebook

Python script check test module.py Check the existence of a given test
module within a given notebook

Python tool

pynblint Jupyter notebooks linter

coverage Measuring tool for Python code cov-
erage

nbconvert A tool that converts Jupyter note-
books to other formats

Table 4.1: Scripts and tools used in notebook testing

It’s vital to note that all these scripts and tools used in this quality test are

reusable. They can be used in other quality tests. Moreover, these implementations

are not exclusive to GitHub Workflow. It can be implemented freely in other CI/CD

pipelines such as Jenkins, CircleCI, Azure Pipeline, etc. We chose GitHub workflow

37

M.Eng. Report—K. Sun McMaster University—Software Engineering

for the case study due to its ease of use and broad accessibility.

Many unit-testing libraries, such as Unittest2, Doctest3, Pytest4, and others, are

available for Python notebooks. We focus on testing the tool Pytest in this case

study. For explanations of other unit testing tools, please see section 4.2. In section

4.1, we briefly summarize the implementations of each step in this quality test. For

a more detailed description of the scripts and tools used in the process, please refer

to Appendix B or the repository [16].

4.2 Implementation Separation

Following the case study in the above section, many unit testing tools are available,

such as Unittest, Doctest, Pytest and so on. In real-world situations, users can choose

any testing tool based on personal preference. Consequently, there is a need for a

flexible approach that allows for the adaption of existing implementations to suit dif-

ferent testing tools. Luckily, another benefit that the Justification Diagram Language

o↵ers is its reusability. The constructed diagram is only an abstract presentation of

test steps, while the specific implementations of each step can be tailored as needed.

That means no matter which testing tool the user prefers, the core structure of JD

(Figure 3.8) and the quality test steps (Figure 4.1) remain the same. For example,

we can modify the implementations of Pytest (Figure 4.2) to check the existence of

Unittest, as shown in Figure 4.3.

2https://docs.python.org/3/library/unittest.html
3https://docs.python.org/3/library/doctest.html
4https://docs.pytest.org/en/8.0.x/

38

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/doctest.html
https://docs.pytest.org/en/8.0.x/

M.Eng. Report—K. Sun McMaster University—Software Engineering

1 - name: Verify notebook exists
2 run: |
3 ./helper -scripts/check_file_exist.sh ${{

github.event.inputs.notebook_path }}
4 - name: Verify notebook has functions defined
5 run: |
6 pynblint --include ’[""]’ --output lint -results.json

--quiet ${{ github.event.inputs.notebook_path }}
7 ./helper -scripts/check_functions_defined.sh lint -

results.json
8
9 - name: Check existence of pytest used in notebook

10 run: |
11 python3 ./helper -scripts/check_test_modules.py ${{

github.event.inputs.notebook_path }} unittest
12
13 - name: Verify unit test correctness
14 run: |
15 jupyter nbconvert --to script ${{

github.event.inputs.notebook_path }}
16 echo "NOTEBOOK_SCRIPT=$(echo ’${{

github.event.inputs.notebook_path }}’ sed ’s/.ipynb$/.py
/’)" >> $GITHUB_ENV

17 coverage run -m unittest discover -s $(dirname
"$NOTEBOOK_SCRIPT") -p $(basename "$NOTEBOOK_SCRIPT")

18
19 - name: Verify unit test coverage
20 run: |
21 coverage report --fail -under =80

Figure 4.3: Implementations for Unittest module

The only di↵erence between Unittest and Pytest implementations is the param-

eters passed to the ‘check test modules.py’ script and the ‘coverage’ tool in the

third and fourth steps, highlighted in red font.

Thus, one Justification Diagram can have many implementations. Users can ad-

just the implementations based on their needs. The same theory applies to best

39

M.Eng. Report—K. Sun McMaster University—Software Engineering

practice: virtual environment, where multiple environments (Pipenv, Conda, Viru-

talenv, Docker) share the same Justification Diagram. Please refer to the GitHub

repository [16] to view its implementations.

4.3 Conclusion

This case study demonstrates the practicability and reusability of Justification Dia-

grams. It explains how we can transfer JD into quality tests within GitHub workflows

and highlights its reusability through an example of having multiple implementations

for one diagram. With this analysis, we are confident in asserting that the Justifi-

cation Diagram Language is a practical and usable solution for users to apply best

practices to their notebooks, thus enhancing overall notebooks’ quality and fairness.

40

Chapter 5

Operational Justification Diagram

Language

We have demonstrated in the previous chapter that Justification Diagrams are e↵ec-

tive in developing quality tests to enhance the overall quality of notebooks. However,

the current approach still presents several challenges and inconveniences when ap-

plying this technique in real-world applications. This chapter aims to answer the

question:“How can we improve the translation between Justification Dia-

grams and quality tests?”. We will first discuss the challenges encountered using

the Justification Diagram Language, as detailed in section 5.1. Next, we will intro-

duce a solution - the Operational Justification Diagram Language - and explain how

it is designed by explaining its operations in section 5.2 and syntax in section 5.3.

Finally, section 5.4 shows a real example of using this new language to create quality

tests for notebooks, showcasing its capacity to crack these challenges.

41

M.Eng. Report—K. Sun McMaster University—Software Engineering

5.1 Introduction

Even though all proposed best practices are represented by Justification Diagrams

in Chapter 3 and integrated into the GitHub workflow, there’s still a big learning

curve for users to grasp these concepts and be able to create new quality tests using

JD themselves. Besides, even for the existing implementations, it takes time for

users to understand all the scripts and tools involved so that they can adapt the

implementations to suit their specific team needs. For example, suppose a data

science team prefers using another tool like Nose1 instead of Pytest for unit testing

their notebooks. In that case, they must fully understand how existing Pytest scripts

work and adjust the parameters accordingly.

Moreover, lots of manual work is needed to use those quality tests. In the current

setup, each quality test is defined in a ‘.jd’ file and implemented by a YAML file,

which demands considerable manual e↵ort from users to maintain these files, thereby

adding the possibility of human errors.

To alleviate those di�culties, we need to create an Operational Justification Di-

agram Language that aims to enrich JD with operational commands. This new

language should simplify the conversion of JD into practical GitHub workflow im-

plementations, allowing users to write JD along with the implementation without

needing to know all the details of helper scripts and tools, saving time for users.

More explanations are provided in the following section.

1https://nose.readthedocs.io/en/latest/

42

https://nose.readthedocs.io/en/latest/

M.Eng. Report—K. Sun McMaster University—Software Engineering

5.2 Eliciting Reusable Operations

To address the challenges mentioned, an Operational Justification Diagram Language

is needed to reduce the complexity of converting JD into real implementations in the

GitHub workflow. To create such a language, we first need to study the structure

of each quality test workflow, extract all the scripts, commands and environment

settings from them and identify commonalities. Then, we encapsulate shared ones

into simple operations that can be reused easily, ensuring reusability and simplicity.

Since our study focuses only on the quality tests for Jupyter Notebooks, every test

shares the same workflow structure with only di↵erent test steps so that we can

look into shared scripts and tools directly. For how to design operational language on

di↵erent platforms, please refer to Deesha Patel’s work [18]. This section will continue

the quality test explained in section 4.1, describing how to define operations of this

new language based on the YAML file of that quality test.

Recall the complex GitHub workflow implementation in Figure 4.2, which involves

many helper scripts, commands and the environment setup. You can find a thorough

description of them in Appendix B.

The script ‘check file exist.sh’ requires a file path as input to verify whether

the file is present. It is a commonly shared script by every quality test. Instead of

manually executing this in the GitHub workflow like writing

‘./helper-scripts/check file exist.sh ./notebook.ipynb’ to check if

‘notebook.ipynb’ exists in the current directory. We can simplify this with our

language by defining an operation: ‘file exist()’. This function performs the same

check when calling ‘file exist(“./notebook.ipynb”)’.

Similarly, ‘check test modules.py’ is a script to confirm if a particular test

43

M.Eng. Report—K. Sun McMaster University—Software Engineering

module is imported into a given notebook file. We can streamline this by cre-

ating an operation: ‘import exist()’, which requires two inputs. For example,

‘import exist(“./notebook.ipynb”, “pytest”)’ checks whether Pytest is imported

in the ‘notebook.ipynb’.

Pynblint linter is also a frequently used tool in our quality tests. Each qual-

ity test applies di↵erent lint rules, and the results are typically saved in a JSON

file for further processing [Appendix B - Pynblint]. We can design an operation:

‘pynblint check()’, that accepts three parameters: the notebook file path, selected

lint rules, and the desired output file name. This operation allows users to easily apply

di↵erent Pynblint rules on the notebook file and customize the output file name.

The ‘jupyter notebook –to script’ command, followed by a notebook file path,

is a standard method to convert a notebook to a Python script. This command is

also a candidate for encapsulation into an operation: ‘convert to script()’.

Not every script and command is required for all quality tests, as some tests

have unique checks that demand specific ones. For example, the Coverage tool uses

di↵erent commands for various unit test modules: ‘coverage run -m pytest’ for

Pytest, ‘coverage run -m unittest’ for unittest. Therefore, we need a mechanism to

allow users to execute customized commands, so we introduce the ‘run[]’ operation.

For example, to obtain pytest results of ‘notebook.ipynb’ with Coverage, users can

write: ‘run[“coverage”, “run”, “-m”, “pytest”, “notebook.ipynb”]’.

Setting up the workflow environment for quality tests usually involves user in-

puts, the base operating system, and additional configurations. To add user inputs,

we designed an operation: ‘add input()’ takes three parameters: name, descrip-

tion and a default value. Users can write ‘add input(“notebook path”, “the

44

M.Eng. Report—K. Sun McMaster University—Software Engineering

path to your notebook”, “./notebook.ipynb”)’ to create a user input variable:

‘notebook path’, storing the value ‘./notebook.ipynb’. This variable can be ac-

cessed by writing ‘${{github.event.inputs.notebook path}}’ in the language.

We also need two operations, ‘run on()’ and ‘add step()’, where ‘run on(“ubuntu-

latest”)’ specifies that the GitHub workflow should run on an Ubuntu machine.

And ‘add step(“actions/setup-python@v4”)[python-version= “3.8”]’ config-

ures the workflow to install Python 3.8.

Operation Description

file exist() Check the existence of a file.

import exist()
Check a provided module is statically imported in a

notebook file.

pynblint check()
Execute Pynblint linter on a notebook file with specific

lint rules.

convert to script() Convert a notebook file into a Python program.

run[] Execute customized bash commands.

add input() Define user inputs.

run on() Set up base OS system for workflow.

add step() Set up environments for workflow.

pynblint check results()
Check the Pynblint results contain any recommenda-

tion.

relative path check()
Check all statically defined paths in a notebook file are

relative path.

multiline comments check() Check the existence of any consecutive code comments.

Table 5.1: Operations

We have encapsulated all the commonalities shown in Figure 4.2 into reusable

operations. These operations simplify the procedures of writing GitHub workflows,

ensuring consistency and ease of understanding for users. A list of all operations we

45

M.Eng. Report—K. Sun McMaster University—Software Engineering

defined can be found in Table 5.1. It includes all the operations we mentioned above

and additional operations used in other quality tests.

5.3 Syntax

To use the operations defined above, we also need to design our language’s syntax.

The goal is to minimize the learning curve for users, allowing them to define quality

test steps using the Justification Diagram Language while implementing the tests us-

ing this new language. This section introduces several keywords we define to complete

this new language. Table 5.2 lists all the keywords and their explanations.

Name Description

evidence

This keyword establishes a link to the corresponding ‘evidence’ in

the ‘.jd’ file by following the evidence name, such as ‘evidence

Su1’. It also defines the check steps involved in this evidence.

strategy

This keyword establishes a link to the corresponding ‘strategy’ in

the ‘.jd’ file by following the strategy name, such as ‘strategy

St1’. It also defines the check steps involved in this strategy.

expectation
This keyword is used to define the expected output of each test

step.

is

This keyword assigns the implementation details to ‘evidence’

and ‘strategy’. It is also used to assign expected value to

‘expectation’.

load This keyword is used to import the ‘.jd’ file for linking.

implementation It names the implementation of the quality test.

deploy
This keyword indicates the environment that our tests are imple-

mented on.

prologue This keyword defines the environment settings.

Table 5.2: Keywords

46

M.Eng. Report—K. Sun McMaster University—Software Engineering

5.4 Example

To build a quality test using the Operational Justification Diagram Language, we first

need to load the corresponding ‘.jd’ file and set up the environment. An example of

this initial step is shown in Figure 5.1.

1 load "../ justification.jd"
2
3 deploy python on GitHubAction as "notebook -unittest.yaml"

{
4
5 prologue {
6 runs_on("ubuntu -latest")
7 add_input("notebook_path","Path to the targeting

jupyter notebook","./high -quality/notebook -testing/
notebook/unittest/examples/unittest_notebook1.ipynb"
)

8 add_step("actions/setup -python@v4") [python -version="
3.8"]

9 run ["python","-m","pip","install","--upgrade","pip"]
10 run ["pip","install","nbconvert","coverage","pynblint"]
11 }
12 }

Figure 5.1: Implementation for environment setting

The first line loads the ‘justification.jd’ file, which corresponds to the dia-

gram in Figure 3.8. The instruction ‘deploy python on GitHubAction’ indicates

we are deploying this test on GitHub Action. The environment is configured using

the ‘prologue’ keyword, which includes specifying Ubuntu as the operating system,

defining the notebook path as a user input, and installing Python 3.8 along with other

necessary tools.

Following this setup, we apply the defined operations to implement each piece of

evidence and strategy. Figure 5.2 provides a detailed view of these implementations.

47

M.Eng. Report—K. Sun McMaster University—Software Engineering

Each step ends with an ‘expectation’ keyword. ‘Expectation is True’ in Su1

means we expect the notebook file to exist. In the other four strategies (St1, St2,

St3, St4), ‘Expectation is EXIT CODE.SUCCESS’ implies that successful com-

pletion of each step is expected. The entire test will fail if any steps fail in the middle,

similar to how the GitHub workflow fails the pipeline when encountering errors.

1 implementation unittest of notebook -unittest {
2
3 evidence Su1 is {
4 file_exist("${{ github.event.inputs.notebook_path }}")
5 expectation is True
6 }
7
8 strategy St1 is {
9 pynblint_check("${{ github.event.inputs.notebook_path }}"

,"[""]","lint -results.json")
10 run ["./helper -scripts/check_functions_defined.sh","

lint -results.json"]
11 expectation is EXIT_CODE.SUCCESS
12 }
13
14 strategy St2 is {
15 import_exist("${{ github.event.inputs.notebook_path }}","

unittest")
16 expectation is EXIT_CODE.SUCCESS
17 }
18
19 strategy St3 is {
20 convert_to_script("${{ github.event.inputs.notebook_path

}}")
21 add_env("NOTEBOOK_SCRIPT","echo ’${{ github.event.

inputs.notebook_path }}’ sed ’s/. ipynb$/.py/’")
22 run ["coverage","run","-m","unittest","discover","-s","

$(dirname "${NOTEBOOK_SCRIPT}")","-p","$(basename "$
(NOTEBOOK_SCRIPT)")"]

23 expectation is EXIT_CODE.SUCCESS
24 }
25
26 strategy St4 is {
27 run ["coverage","report","--fail -under =80"]

48

M.Eng. Report—K. Sun McMaster University—Software Engineering

28 expectation is EXIT_CODE.SUCCESS
29 }
30 }

Figure 5.2: Implementations for quality test: notebook-testing

As a result, by comparing our new implementations using the Operational Justi-

fication Diagram Language with the GitHub workflow implementation in Figure 4.2,

we can see that the new language provides a much cleaner and easily understandable

structure, demonstrating its e↵ectiveness.

5.5 Conclusion

The introduction of this new language allows users to incorporate implementations

alongside Justification Diagrams. It simplifies the process of setting up complex

CI/CD pipelines, leading to a more organized code structure and user-friendly expe-

rience, as demonstrated in the example provided in section 5.4. Thus, we can conclude

that this operational language can better assist users in utilizing JD, enhancing note-

books’ quality e�ciently.

49

Chapter 6

Conclusion and Future work

This chapter provides a summary of the project and discusses potential future works.

6.1 Summary

In conclusion, this report has explored the e↵ectiveness of using the Justification

Diagram Language to develop quality tests for Jupyter Notebooks within the CI/CD

pipeline. This approach is beneficial for notebook users in maintaining robust coding

practices and improving the overall quality of notebooks.

We began by identifying the need for quality checks due to the growing complex-

ity and popularity, alongside the challenges in achieving reproducibility, especially

in data science and AI fields. In Chapter 3, we demonstrated the application of the

Justification Diagram Language in structuring and visualizing best practices for note-

books. We showed how these diagrams could be transformed into actionable quality

test steps, providing researchers with a practical approach to designing proper qual-

ity tests. Chapter 4 featured a case study on implementing these quality tests in

50

M.Eng. Report—K. Sun McMaster University—Software Engineering

GitHub workflow, confirming their practicality. We also emphasized a key advantage

of the Justification Diagram Language: Its ability to support multiple implementa-

tions from a single diagram, enhancing reusability. Toward the end, we introduced

an Operational Justification Diagram Language in Chapter 5. This language gives

users a cleaner method to implement quality tests alongside the JD. This approach

simplifies the testing process, making it more accessible and less time-consuming for

users to apply quality tests to their notebooks.

6.2 Future work

The report has demonstrated the potential of the Justification Diagram Language in

creating notebooks’ quality tests. However, our research work in this field is incom-

plete, and we still need further studies in this field.

The Justification Diagrams in Chapter 3 visualize the best practice in a straight-

forward way. Going forward, we need to add more details to these diagrams to reflect

the real-world notebook development process accurately. Specifically, as discussed in

section 3.1.1, the only automated check that can be done is to check the file exists;

more studies are needed to fulfill the evidence ”notebook file is ready”,”requirement

file is ready”, ”virtual environment configuration files are ready” and ”python test

script is ready”. Also, there are instances where our existing quality tests may not

address specific situations. For example, according to the interview conducted in [26],

several scientists believe that longer notebook filenames help understand the file con-

tent at first glance, which conflicts with the viewpoint of our suggested best practice

of keeping filenames simple. Therefore, we need to create more JD and allow users

to choose the best fit for their needs.

51

M.Eng. Report—K. Sun McMaster University—Software Engineering

This report focuses on the best practices that enhance the quality of individual

notebook files. There are broader practices related to improving the quality of working

many notebooks in a repository, such as dataset reproducibility, which are worth

further study.

In this project, we heavily rely on the Pynblint linter to implement the strategies

of each best practice JD such as “Verify notebook has linear execution order”, “Verify

position of imports”, and others. Additional experiments are necessary to ensure the

accuracy of these implementations.

While our study proposed a practical solution for implementing best practices,

we have yet to assess its usability among notebook users. Further works involving

conducting experiment usability tests are needed for our tool.

Moreover, our current focus on notebook testing has been limited to tools such as

Pytest, Unittest and Doctest. Future research should include a broader range of unit

testing tools and other testing methods like mock tests, integration tests, etc.

Lastly, while our study has implemented test cases within the GitHub workflow,

there is a need for additional research on incorporating these practices into other

CI/CD platforms.

52

Appendix A

Notebook Best Practices

Section 3 briefly introduces 12 notebook best practices without explaining each in

detail. In Appendix A, we will explain each best practice’s meaning by showing real

examples.

A.1 Linear execution order

In notebooks, there is an execution counter representing the order in which code cells

have been run, as shown in Figure A.1. Each time the user clicks on the run button,

the execution counter increments by 1, indicating the order. A linear execution order

means that the user triggers the code cell one by one from top to bottom.

A.2 Beginning Imports

Put all import statements in one code cell at the beginning of the notebook, just like

Figure A.2

53

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.1: Example of linear execution order

A.3 Pinned Dependencies

Figure A.3 shows an excellent example of requirements.txt, where the package numpy

has a specific version number: 1.24.0

A.4 Virtual Environment

Di↵erent configuration files are needed for each type of environment. To see a real

example, please refer to the repository [16]

A.5 Meaningful Name

A Couple of bad notebook names are shown in Figure A.4. The first one contains

non-portable characters. The second one’s name is too long. And the third one uses

the default notebook name.

54

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.2: Example of beginning imports

Figure A.3: Example of requirements.txt

A.6 PEP8 Standard

PEP8 standard contains many rules. One example that does not follow the PEP8

style is shown in Figure A.5, which has too many white spaces.

55

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.4: Example of bad file name

Figure A.5: Example of pep8 standard

A.7 Relative Path

A relative path typically begins with a dot (.), like ‘./data/sample.txt’. This format

indicates a path that starts from the current folder (./) to the file ‘sample.txt’

file located in the subfolder (data/). On the other hand, an absolute path usually

starts with a forward slash (/), such as ‘/home/user/data/sample.txt’, indicating

a complete path from the root folder of the file system to the ‘sample.txt’ file

A.8 Notebook Testing

As explained in section 3.2.4, there are two ways to run unit tests in notebooks. The

first runs directly within the notebook, like in Figure A.6a. We have ‘test add()’

and ‘test subtract()’ test functions defined in cell 2. The second runs a Python test

56

M.Eng. Report—K. Sun McMaster University—Software Engineering

script, like in Figure A.6b. We have test functions written inside a Python script,

‘test script2.py’, and trigger it by shell command in the notebook.

(a) pytest in notebook (b) pytest in a Python script

Figure A.6: Example of notebook testing

A.9 Code document

As explained in section 3.3.1, it is recommended to have more markdown cells in

the notebook. And avoid using more consecutive code comments. For the example

in Figure A.7, we put two markdown cells at the start and end of the notebook,

respectively. Also, we restrict a code cell to not having more than three consecutive

code comments.

57

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.7: Example of code document

A.10 Markdown Headings

It is recommended to use markdown headers to organize the notebook for clear struc-

ture. In Figure A.8, we use one hashtag (#) for the introduction heading, and in the

following content, we use two hashtags (##) to divide them into sections for better

readability.

A.11 Concisness

For this practice, it is recommended to have shorter code cell length and fewer code

cells in the notebook, aiming for notebooks’ conciseness. According to the blog [13],

a code cell that contains more than 15 lines is considered lengthy. For real examples

and more explanations, please refer to the repository [16].

58

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.8: Example of markdown headings

A.12 Tidiness

Figure A.9 illustrates a notebook that contains unexecuted code cells, empty cells and

syntax errors. For notebook tidiness, we should avoid having these problems during

notebook development.

59

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure A.9: Example of tidiness

60

Appendix B

Implementations

Section 4.1 briefly describes the implementation of quality test: notebook testing,

without detailed explanations. In Append B, we explain each helper script and tool

used in that quality test in detail. Recall that a list of scripts and tools used is shown

in Table 4.1.

B.1 Check file exist.sh

‘check file exist.sh’ is a bash script that takes an argument that represents the

path of the notebook file and determines whether it exists by using the ‘-f ’ flag. If

the notebook does not exist, print the error message and exit by 1. Figure B.1 is the

screenshot of this script.

1 #!/bin/bash
2
3 # Check if a file path is provided as an argument
4 if ["$#" -ne 1]; then

61

M.Eng. Report—K. Sun McMaster University—Software Engineering

5 echo "Error: Argument not provided. Usage: $0 path/to/
file"

6 exit 1
7 fi
8
9 NC=’\033[0m’ # No Color

10 RED=’\033[0;31m’ # Red Color
11
12 # Assign the first argument to a variable
13 file_path="$1"
14
15 if [! -f "$file_path"]; then
16 echo -e "${RED}File not found:${NC} $file_path"
17 exit 1
18 else
19 echo "File exists: $file_path"
20 fi

Figure B.1: check file exist.sh

B.2 Check functions defined.sh

‘Check functions defined.sh’ (illustrated in Figure B.2) is a bash script designed

to verify if functions are defined within the notebook. It operates by analyzing a

JSON output file generated by the Pynblint linter. An example of a JSON file is

shown in Figure B.3. The script uses the tool ‘jq’, a JSON processor, to process this

JSON file and check whether the number of functions is greater than 0.

1 #!/bin/bash
2
3 # Check if a file path is provided as an argument
4 if ["$#" -ne 1]; then
5 echo "Error: Argument not provided. Usage:
6 $0 path/to/pynblint output file"
7 exit 1

62

M.Eng. Report—K. Sun McMaster University—Software Engineering

8 fi
9

10 # Assign the first argument to a variable
11 file_path="$1"
12
13 # Install jq if not already present
14 sudo apt -get install jq
15
16 GREEN=’\033[0;32m’ # Green Color
17 RED=’\033[0;31m’ # Red Color
18 YELLOW=’\033[0;33m’ # Yellow Color
19 NC=’\033[0m’ # No Color
20
21 # Check if "notebook_stats.number_of_functions" > 0
22 if [$(jq ’.notebook_stats.number_of_functions ’ $file_path

) -gt 0]; then
23 echo -e "${GREEN} functions defined in notebook${NC}"
24 else
25 echo -e "${RED}No functions found in notebook${NC}"
26 exit 1
27 fi

Figure B.2: Check functions defined.sh

Figure B.3: JSON output of Pynblint

63

M.Eng. Report—K. Sun McMaster University—Software Engineering

B.3 Check test modules.py

The ‘check test modules’ Python script is designed to verify the presence of specific

test modules in a notebook. It requires two inputs: the path to the given notebook

and the name of the test module. This script is needed as importing the relevant test

module is a prerequisite for running notebooks within the notebook. If the notebook

passes the check, we can confirm the notebook is ready for unit testing.

The script utilizes Abstract Syntax Tree (AST), a tool that traverses and interprets

di↵erent components of Python code. As depicted in Figure B.4, by inputting the

notebook path and the targeting test module into the ‘find test modules’ function

at line 60, the script first reads the notebook file using ‘nbformat’, then parses it and

processes it through an AST node finder, ‘TestModuleFinder’. It is instantiated

at line 35 and triggered at line 46, processing an ast node structure derived from

the notebook’s source code. This node finder contains four methods, each with a

specific purpose, as listed in Table B.1. Each method represents a distinct Python

code structure which the AST framework processes.

Name Purpose

visit Import visit and process ‘import’ statement in the code.

visit ImportFrom visit and process ‘import from’ statement in the code.

visit FunctionDef visit and process ‘function’ definitions in the code.

visit ClassDef visit and process ‘class’ definitions in the code.

Table B.1: List of functions used in the script

64

M.Eng. Report—K. Sun McMaster University—Software Engineering

1 import ast
2 import nbformat
3 import sys
4
5 class TestModuleFinder(ast.NodeVisitor):
6 def __init__(self , target_module):
7 # List of common Python testing modules
8 self.test_module = target_module
9 self.found = None

10
11 def visit_Import(self , node):
12 # Check if any of the imported modules are in the

list of test modules
13 for alias in node.names:
14 if alias.name == self.test_module:
15 self.found = True
16
17 def visit_ImportFrom(self , node):
18 # Check if the imported module (from ’from x

import y’ statement) is a test module
19 if node.module == self.test_module:
20 self.found = True
21
22 def visit_FunctionDef(self , node):
23 # Identify pytest -style test functions by their

name and the presence of assert statements
24 if target_module == "pytest" and node.name.

startswith(’test_ ’) and any(isinstance(elem ,
ast.Assert) for elem in ast.walk(node)):

25 self.found = True
26
27 def visit_ClassDef(self , node):
28 # Check for pytest -style test methods within a

class
29 for item in node.body:
30 if isinstance(item , ast.FunctionDef):
31 self.visit_FunctionDef(item)
32
33 def find_test_modules(notebook_path , target_module):
34 # Initialize the TestModuleFinder
35 finder = TestModuleFinder ()
36
37 # Open and read the Jupyter notebook

65

M.Eng. Report—K. Sun McMaster University—Software Engineering

38 with open(notebook_path , ’r’, encoding=’utf -8’) as
file:

39 nb = nbformat.read(file , as_version =4)
40
41 # Iterate through each cell of the notebook
42 for cell in nb.cells:
43 if cell.cell_type == ’code’:
44 # Parse the code cell and search for test

modules
45 tree = ast.parse(cell.source)
46 finder.visit(tree)
47 # Return the found test module , if any
48 if finder.found:
49 return finder.found
50
51 # Return None if no test module is found
52 return None
53
54 if __name__ == "__main__":
55 # Get the notebook path from command line arguments
56 notebook_path = sys.argv [1]
57 target_module = sys.argv [2]
58
59 # Print the result and exit appropriately
60 if find_test_modules(notebook_path , target_module):
61 print(f"{target_module} found in notebook.")
62 sys.exit (0)
63 else:
64 print(f"{target_module} not found in notebook.")
65 sys.exit (1)

Figure B.4: check test modules.py

The AST framework will traverse the notebook cell by cell from the beginning.

When it encounters classes or functions, it delves into the body of ‘visit FunctionDef ’

or ‘visit ClassDef ’ at lines 22 and 27. If the target test module is detected in ei-

ther ‘visit import’ or ‘visit ImportFrom’, the script sets the found flag as TRUE,

indicating the presence of the target module within the notebook.

It is important to note that Pytest does not require an explicit import statement

66

M.Eng. Report—K. Sun McMaster University—Software Engineering

to be used within the notebook. The presence of a function name that starts with

‘test ’ and includes an assert statement is also a sign that Pytest unit tests exist.

Therefore, an additional check is performed in the ‘visit FunctionDef ’ method of

the script to look for ‘test ’ and assert statements. That ensures Pytest can be

recognized even when it is not explicitly imported.

B.4 Pynblint

As introduced in the background section, Pynblint is a linter that can analyze note-

book contents and provide recommendations. In our quality test implementations,

we utilize Pynblint to analyze the notebook, save the result into a JSON file, and

process it, just like how we did in the above check functions defined.sh sections.

Pynblint provides statistic reports about the notebook, including the number of

functions, classes, cells, etc. It also provides recommendations based on the lint rules

selected. A partial list of lint rules available in Pynblint is outlined in Table B.2.

Users can choose any rules they need and apply them to their notebooks. For a

complete list of lint rules, please refer to the Pynblint repository [28].

For example, suppose users want to check whether the notebook has a linear

execution order and imports at the beginning. In that case, they can run the com-

mand: ‘pynblint –include ‘[“non-linear-execution”, “imports-beyond-first-

cell”]’ notebook.ipynb’, and Pynblint will process the notebook file and display

the lint results to the console. Users can specify which lint rules to apply by adding

them after the ‘–include’ and within the ‘[]’. If the notebook fails to follow any of

the lint rules they choose, Pynblint will report this either in the console output or, if

67

M.Eng. Report—K. Sun McMaster University—Software Engineering

Name Description

non-linear-
execution

Notebook cells have been executed in a non-linear order.

notebook-too-
long

The notebook is too long (we can customize threshold).

untitled-
notebook

The notebook still has the default title.

non-portable-
chars-in-nbname

The notebook filename contains non-portable characters.

notebook-name-
too-long

The notebook filename is too long.

imports-beyond-
first-cell

Import statements found beyond the first cell of the notebook

Table B.2: List of Pynblint Lint rules [28]

the results are directed to a JSON file, as specific attributes, like the example in Fig-

ure B.5. In most of our quality test implementations, we save the outputs of Pynblint

to a JSON file by using a built-in Pynblint flag: ‘–output lint-results.json’.

B.5 Coverage

Coverage is a tool for measuring Python programs’ code coverage. We use this tool

to execute the unit tests of the notebook and measure the test coverage. To run

Pytest tests, run the command: ‘coverage run -m pytest test script.py’, where

test script is the file’s name containing Pytest tests. This command displays the test

results, revealing how many tests passed or failed, and records the coverage data in

68

M.Eng. Report—K. Sun McMaster University—Software Engineering

Figure B.5: Example of Pynblint JSON lint result

a report file. For instructions on running tests with other tools, please refer to the

Coverage repository [3].

To view the test coverage report, run the command: ‘coverage report’, which

outputs the test coverage details. An example of such a report can be seen in Fig-

ure B.6. Additionally, the flag ‘–failed-under=80’ can be included to raise an error

if the test coverage falls below 80

Figure B.6: Coverage report

69

M.Eng. Report—K. Sun McMaster University—Software Engineering

B.6 Nbconvert

Nbconvert is a tool to convert jupyter notebooks into other formats. Given that the

Coverage tool is designed to work exclusively with Python programs, we use the com-

mand: ‘jupyter nbconvert –to script notebook.ipynb’ to convert the specified

‘notebook.ipynb’ file into a ‘notebook.py’ file. Once this conversion is complete,

the Coverage tool utilizes the generated Python script for further processing.

70

Bibliography

[1] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533,

7604 (2016).

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices

architecture enables devops: Migration to a cloud-native architecture. IEEE

Software 33, 3 (2016), 42–52.

[3] Ned Batchelder. [n. d.]. coveragepy. https://github.com/nedbat/coveragepy

[4] Fabien CY Benureau and Nicolas P Rougier. 2018. Re-run, repeat, reproduce,

reuse, replicate: transforming code into scientific contributions. Frontiers in

neuroinformatics 11 (2018), 69.

[5] Bestarion. 2022. What is CI/CD and How Does It Work? https://

www.linkedin.com/pulse/what-cicd-how-does-work-bestarion/ Accessed

on Dec 22, 2024.

[6] Andreas Brunnert, André van Hoorn, Felix Willnecker, Alexandru Danciu, Wil-

helm Hasselbring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner

Jung, Joakim von Kistowski, et al. 2015. Performance-oriented DevOps: A re-

search agenda. arXiv preprint arXiv:1508.04752 (2015).

71

https://github.com/nedbat/coveragepy
https://www.linkedin.com/pulse/what-cicd-how-does-work-bestarion/
https://www.linkedin.com/pulse/what-cicd-how-does-work-bestarion/

M.Eng. Report—K. Sun McMaster University—Software Engineering

[7] Lianping Chen. 2015. Continuous delivery: Huge benefits, but challenges too.

IEEE software 32, 2 (2015), 50–54.

[8] Michael Cheng and Viacheslav Kovalevskyi. 2019. Jupyter Notebook Manifesto:

Best practices that can improve the life of any developer using Jupyter note-

books. https://cloud.google.com/blog/products/ai-machine-learning/

best-practices-that-can-improve-the-life-of-any-developer-using-

jupyter-notebooks Accessed on Dec 25, 2023.

[9] Martin Fowler. 2024. Continuous Integration. https://martinfowler.com/

articles/continuousIntegration.html Accessed on Jan 20, 2024.

[10] Agile Guide. n.d.. What Is Definition of Ready? (DoR). https://

www.wrike.com/agile-guide/faq/what-is-definition-of-ready/ Accessed

on Mar 10, 2024.

[11] Matthew Hutson. 2018. Artificial intelligence faces reproducibility crisis. https:

//www.science.org/doi/full/10.1126/science.359.6377.725

[12] Donald E Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.

https://doi.org/10.1093/comjnl/27.2.97

[13] Atma Mani. 2018. Coding Standards for Jupyter Notebook. https:

//www.esri.com/about/newsroom/arcuser/coding-standards-for-

jupyter-notebook/ Accessed on Dec 25, 2023.

[14] Lj Miranda. 2020. How to use Jupyter Notebooks in 2020 (Part 2: Ecosys-

tem growth). https://ljvmiranda921.github.io/notebook/2020/03/16/

jupyter-notebooks-in-2020-part-2/ Accessed on Dec 25, 2023.

72

https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks
https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks
https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://www.wrike.com/agile-guide/faq/what-is-definition-of-ready/
https://www.wrike.com/agile-guide/faq/what-is-definition-of-ready/
https://www.science.org/doi/full/10.1126/science.359.6377.725
https://www.science.org/doi/full/10.1126/science.359.6377.725
https://doi.org/10.1093/comjnl/27.2.97
https://www.esri.com/about/newsroom/arcuser/coding-standards-for-jupyter-notebook/
https://www.esri.com/about/newsroom/arcuser/coding-standards-for-jupyter-notebook/
https://www.esri.com/about/newsroom/arcuser/coding-standards-for-jupyter-notebook/
https://ljvmiranda921.github.io/notebook/2020/03/16/jupyter-notebooks-in-2020-part-2/
https://ljvmiranda921.github.io/notebook/2020/03/16/jupyter-notebooks-in-2020-part-2/

M.Eng. Report—K. Sun McMaster University—Software Engineering

[15] Sébastien Mosser, Aaron Loh, Deesha Patel, and Nirmal Chaudhari. [n. d.]. jpipe.

https://github.com/ace-design/jpipe

[16] Sébastien Mosser and Kai Sun. [n. d.]. notebook-best-practices. https://

github.com/ace-design/notebook-best-practices

[17] Peter Parente. 2020. nbestimate. https://github.com/parente/nbestimate/

tree/master

[18] Deesha Patel. 2023. A STUDY ON JUSTIFYING PLATFORM-

INDEPENDENT CI/CD PIPELINES. Technical Report. https:

//macsphere.mcmaster.ca/handle/11375/29326

[19] Alexis Perrier. 2020. Tips to make you data analysis easier to

share. https://alexisperrier.com/datascience/2020/02/15/

jupyter notebooks sharing best practices.html Accessed on Dec 25,

2023.

[20] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

2019. A large-scale study about quality and reproducibility of Jupyter note-

books. In 2019 IEEE/ACM 16th international conference on mining software

repositories (MSR). IEEE, 507–517.

[21] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.

2021. Understanding and improving the quality and reproducibility of Jupyter

notebooks. Empirical Software Engineering 26, 4 (2021), 65.

[22] STEN PITTET. n.d.. What is code coverage? https://www.atlassian.com/

73

https://github.com/ace-design/jpipe
https://github.com/ace-design/notebook-best-practices
https://github.com/ace-design/notebook-best-practices
https://github.com/parente/nbestimate/tree/master
https://github.com/parente/nbestimate/tree/master
https://macsphere.mcmaster.ca/handle/11375/29326
https://macsphere.mcmaster.ca/handle/11375/29326
https://alexisperrier.com/datascience/2020/02/15/jupyter_notebooks_sharing_best_practices.html
https://alexisperrier.com/datascience/2020/02/15/jupyter_notebooks_sharing_best_practices.html
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage

M.Eng. Report—K. Sun McMaster University—Software Engineering

continuous-delivery/software-testing/code-coverage Accessed on Mar

15, 2024.

[23] Thomas Polacsek. 2016. Validation, accreditation or certification: a new kind

of diagram to provide confidence. In 2016 IEEE Tenth International Conference

on Research Challenges in Information Science (RCIS). IEEE, 1–8.

[24] Python Enhancement Proposals. n.d.. PEP8 - Style Guide for Python Code.

https://peps.python.org/pep-0008/#imports Accessed on Jan 10, 2024.

[25] Corinne Pulgar. 2022. Eat your own DevOps: a model driven approach to

justify continuous integration pipelines. In Proceedings of the 25th International

Conference on Model Driven Engineering Languages and Systems: Companion

Proceedings. 225–228.

[26] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2022. Eliciting best prac-

tices for collaboration with computational notebooks. Proceedings of the ACM

on Human-Computer Interaction 6, CSCW1 (2022), 1–41.

[27] ReviewNB. 2019. Reproducible Jupyter Notebooks with Docker. https://

blog.reviewnb.com/reproducible-notebooks/ Accessed on Dec 30, 2023.

[28] Vincenzo Romito, Luigi Quaranta, Felice Tortorelli, and Filippo Lanubile. [n. d.].

pynblint. https://github.com/collab-uniba/pynblint

[29] Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng

Huang, Rob Knight, Niema Moshiri, Mai H Nguyen, Sara Brin Rosenthal, Fer-

nando Pérez, et al. 2019. Ten simple rules for writing and sharing computational

analyses in Jupyter Notebooks. , e1007007 pages.

74

https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://www.atlassian.com/continuous-delivery/software-testing/code-coverage
https://peps.python.org/pep-0008/#imports
https://blog.reviewnb.com/reproducible-notebooks/
https://blog.reviewnb.com/reproducible-notebooks/
https://github.com/collab-uniba/pynblint

M.Eng. Report—K. Sun McMaster University—Software Engineering

[30] Julia Wagemann, Federico Fierli, Simone Mantovani, Stephan Siemen, Bernhard

Seeger, and Jörg Bendix. 2022. Five guiding principles to make Jupyter note-

books fit for earth observation data education. Remote Sensing 14, 14 (2022),

3359.

[31] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle

Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,

Luiz Bonino da Silva Santos, Philip E Bourne, et al. 2016. The FAIR Guid-

ing Principles for scientific data management and stewardship. Scientific data 3,

1 (2016), 1–9.

[32] Mark Woodbridge, Daniel Sanz, Daniel Mietchen, and R Mounce. 2017.

Jupyter notebooks and reproducible data science. Retrieved January 24 (2017),

2020. https://markwoodbridge.com/2017/03/05/jupyter-reproducible-

science.html

75

https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html
https://markwoodbridge.com/2017/03/05/jupyter-reproducible-science.html

	Lay Abstract
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Background
	Jupyter Notebooks
	Introduction to Jupyter Notebook
	Reproducibility Crisis
	Pynblint

	DevOps
	CI/CD
	Justification Diagram
	Introduction to Justification Diagram
	Representation of Justification Diagram

	Notebook Best Practices and Justification
	Execution Reproducibility
	Linear Execution Order
	Beginning Imports
	Pinned Dependencies
	Virtual Environment

	High-Quality Code
	Meaningful Name
	PEP8 Standard
	Relative Path
	Notebook Testing

	Literate Programming Paradigm
	Code Document
	Markdown Headings

	Clean and Concise
	Conciseness
	Tidiness

	Conclusion

	Quality Check Implementations
	GitHub Workflow Implementations
	Implementation Separation
	Conclusion

	Operational Justification Diagram Language
	Introduction
	Eliciting Reusable Operations
	Syntax
	Example
	Conclusion

	Conclusion and Future work
	Summary
	Future work

	Notebook Best Practices
	Linear execution order
	Beginning Imports
	Pinned Dependencies
	Virtual Environment
	Meaningful Name
	PEP8 Standard
	Relative Path
	Notebook Testing
	Code document
	Markdown Headings
	Concisness
	Tidiness

	Implementations
	Check_file_exist.sh
	Check_functions_defined.sh
	Check_test_modules.py
	Pynblint
	Coverage
	Nbconvert

