
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Addressing the shortcomings of commercial-of-the-shelf
model-to-model transformations with open-source tools; from

SysML to AUTOSAR
Horacio Hoyos Rodríguez

hoyosroh@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Faezeh Siavashi
siavashf@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Monika Jaskolka
monika.jaskolka@@stellantis.com

Stellantis Canada
Windsor, Ontario, Canada

Vera Pantelic
pantelv@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Mark Lawford
lawford@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

Richard Paige
paigeri@mcmaster.ca
McMaster University

Hamilton, Ontario, Canada

ABSTRACT
Model-Based Systems Engineering (MBSE) is a widely adopted
approach to managing the complexity of modern cyber physical
systems, including automotive systems. In the domain of automo-
tive engineering, it is common for engineers to use a variety of
languages, at various levels of abstraction, to provide diverse and
concrete perspectives on a system. However, a significant incom-
patibility challenge arises due to weak or nonexistent integration
among these languages. In some cases, these challenges can be ad-
dressed by using commercial off the shelf (COTS) model-to-model
(M2M) transformation tools. However, in certain cases these tools
have semantic and technical limitations that hinder the develop-
ment process, produce sub-optimal results, and generate trace in-
formation in a proprietary format. In this paper, we present how
the same transformation can be implemented using an open-source
tool. First, we discuss the technical limitations and present how the
open-source tool provides better development support. Then, we
present the results of running both implementations for a set of test
models and show that the open-source implementation provides
more detailed output models and produces more fine-grained trace-
ability data. By using the open-source implementation, we reduce
the development effort, produce output that is better suited for pur-
pose and generate trace information that can be easily consumed
in other tools.

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
Model-driven software engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS 24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Model-Based Systems Engineering, Epsilon Transformation Lan-
guage, AUTOSAR, SysML

ACM Reference Format:
Horacio Hoyos Rodríguez, Faezeh Siavashi, Monika Jaskolka, Vera Pantelic,
Mark Lawford, and Richard Paige. 2024. Addressing the shortcomings of
commercial-of-the-shelf model-to-model transformations with open-source
tools; from SysML to AUTOSAR. In Proceedings of Make sure to enter the
correct conference title from your rights confirmation emai (MODELS 24).
ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Model-Based Systems Engineering (MBSE) has been widely used in
industrial environments such as the aviation and automotive, across
various development phases. MBSE utilizes modeling principles
throughout system development activities and relies on the use of
model-based tools for creating, transforming and validating the
artifacts used at different phases of the industrial process, such as
requirements elicitation and specification, design, and verification
and validation (V&V) [14].

Large companies usually rely onmultiple COTS tools within their
MBSE toolchains. These tools can be incompatible at the technical
level (e.g., proprietary model format) or at the formalism level (e.g.,
SysML vs. AUTOSAR) [4]. In previous work[12], we presented a
solution for bridging the formalism level of SysML vs. AUTOSAR,
while also bridging the gap at the tool level (IBM Rhapsody vs.
PREEvision) through a SysML to AUTOSAR transformation. Our
solution was based on a COTS M2M transformation tool called
M2M_IE that is integrated with IBM Rhapsody. In that paper we
reported on the limitations of the M2M_IE tool, pertaining to both
the technical aspects of the implementation and the semantics of the
transformation engine. The main consequences of those limitations
were slow implementation times, sub-optimal output models, and
coarse-grained trace information. It is precisely these impediments
that drive the motivation for this paper.

In this paper, we present an open-source alternative to theM2M_IE
SysML to AUTOSAR transformation, based on the Epsilon Trans-
formation Language (ETL) [9]. The main contributions of the open-
source alternative are:

1

https://orcid.org/0000-0002-0322-059X
https://orcid.org/0000-0001-8072-6167
https://orcid.org/0000-0001-5853-6412
https://orcid.org/0000-0003-1696-27680
https://orcid.org/0000-0003-3161-2176
https://orcid.org/0000-0002-1978-9852
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MODELS 24, September 22–27, 2024, Linz, Austria Hoyos et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• An abstraction of the SysML and AUTOSAR model access
using the Epsilon Model Connectivity layer, in order to
address the API limitations.

• An implementation of the SysML to AUTOSAR M2M trans-
formation using ETL, which provides improved semantics.

• A custom extension of the Trace𝑎 DLS [3] to improve trace-
ability information.

We also report on the integrated development environment (IDE)
tool facilities provided by ETL and other tools used during devel-
opment, to highlight how they reduce development time and bugs
while facilitating maintenance and future improvements.

The paper proceeds as follows.

2 FROM SYSML TO AUTOSAR (CLASSIC)
Our implementation of the SysML to AUTOSAR M2M transfor-
mation will follow the same functional requirements [12] of the
M2M_IE implementation. In order to compare both implementa-
tions and highlight their differences, we present some challenges
of the SysML to AUTOSAR transformation from the perspective of
the M2M transformation semantics.

2.1 Model to Model Transformations
A transformation is the automatic generation of a target model
from a source model, according to a transformation definition [7].
A transformation definition is a set of transformation rules
that together describe how a model in the source language can be
transformed into amodel in the target language. A transformation
rule is a description of how one or more constructs in the source
language can be transformed into one or more constructs in the
target language.

2.1.1 Transformation Languages. Transformation languages sup-
port defining rules with different cardinality, mainly 1 : 1, 1 :𝑛, or
1 :𝑚..𝑛. In 1 : 1 rules, one source language construct is transformed
into one target language construct. In 1 :𝑛 rules, one source lan-
guage construct is transformed into multiple target language con-
structs; the number of target constructs is known when the rule
is defined. In 1 :𝑚..𝑛 rules, one source language construct is trans-
formed into multiple target language constructs; the exact number
of target constructs can only be determined at runtime and usually
depends on some properties of the source model. Transformation
languages can be declarative or imperative. In imperative languages,
the user defines the order of execution of the transformation rules.
On the other hand, in declarative languages, the transformation
engine decides the execution order of the transformation rules.

Typically, transformation definitions are written using a model
transformation language and these languages are executed by a
model transformation engine. The SysML to AUTOSAR transfor-
mation is exogenous. An exogenous transformation is defined as a
process where source model(s) are converted to target model(s), and
each model adheres to a distinct language. Exogenous transforma-
tions serve various purposes, including tasks like model synthesis
and reverse engineering. The SysML to AUTOSAR transformation
is a model synthesis that bridges the gap between two abstraction
levels.

2.1.2 Traceability. Traceability plays a significant role in systems
and software development, supporting project management, soft-
ware evolution, and verification and validation. In M2M transfor-
mations, traceability support is typically not part of the language
but is provided by the transformation engine during execution. In
some cases, the traceability information is stored in a model, that
conforms to a traceability metamodel [6]. Using a metamodel al-
lows the trace to capture, apart from the links between source and
target elements, information about the transformation artifacts (i.e.,
transformation specification and rules) and quality aspects that can
be used to interpret the relevance and integrity of traces [3].

To support traceability, the transformation engine must offer
mechanisms for maintaining an explicit link between the source
and target models [10]. Additionally, the granularity of traceability
is usually directly tied to the cardinality of rules. In other words, the
trace model only includes references to model elements explicitly
specified in the constructs of the rules. Some transformation engines
automatically persist the trace model to a predefined format while
others allow the users to post-process the trace model and choose
the persistence format.

2.2 SysML to AUTOSAR Transformation
Semantics

The AUTOSAR language is at a lower level of abstraction than
SysML, which results in AUTOSAR models using more elements
in order to provide greater fine-grained system details. From a
transformation perspective, this means that some of the rules must
be 1 : 𝑛, or 1 :𝑚..𝑛. The need for 1 :𝑚..𝑛 rules is the result of the
semantics of AUTOSAR communication modes [12]. In particular,
in SysML a Port that provides an Interface does not care how
many ports require the same interface. However, in AUTOSAR,
a RPortPrototype acting as a server port (requires an interface)
needs a unique ClientComSpec for each PPortPrototype acting
as a client (requiring an interface). The number of ports can only
be determined at runtime.

In order to understand the semantics of the SysML to AUTOSAR
transformation and some of the challenges it presents, we examine
three rules of the existing M2M_IE. We picked a 1 : 1, 1 :𝑛, and a
1 :𝑚..𝑛 rule. We chose a graphical representation (See Fig. 2) to
describe the rules, in order to avoid discussing transformation lan-
guage details. The diagram notation resembles a UML class diagram,
where language constructs are depicted as boxes, with their types
specified in a top compartment. While both SysML and AUTOSAR
constructs may contain multiple attributes, for simplicity we only
show the name attribute. Arrows depict relationships between con-
structs. Three types of relations are used: association, containment,
and mapping. Associations and containment are only valid between
constructs of the same language. Mappings are applicable exclu-
sively between constructs of different languages.

2.2.1 Project to AUTOSAR (1 : 1Mapping). Figure 1 presents the
mapping from SysML Project to AUTOSAR AUTOSAR (the root
construct of an AUTOSAR model is the AUTOSAR construct) pair-
ing. This is a 1 : 1 pairing where each SysML Project maps to one
AUTOSAR AUTOSAR.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Addressing shortcomings of COTS m2m transformations with OSS MODELS 24, September 22–27, 2024, Linz, Austria

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Fig. 1: Mapping SysML Project to AUTOSAR AUTOSAR.

Fig. 2: Mapping SysML Event to AUTOSAR
OperationInvokedEvent (in the context of an
OperationWEvent).

2.2.2 Event to OperationInvokedEvent (1 :𝑛 Mapping). The Opera-
tionWEvent stereotype was defined to capture the event that trig-
gers the operation invocation in SysML [12]. Conceptually, a SysML
Operation has a reference to an Event. Fig. 2 presents the mapping
from SysML Event to AUTOSAR, showing that two target con-
structs are required: OperationInvokedEvent and POperation-
InAtomicSwcInstanceRef. In Fig. 2 we also present elements that
are required (in gray) to correctly set all the properties and refer-
ences of the new target constructs. This means that this mapping
would need access to the trace information in order to access the AU-
TOSAR RunnableEntity and ClientServerOperation elements
that where created from the SysML Operation that references the
Event.

2.2.3 OperationWEvent to Client–Server Elements (1 :𝑚..𝑛 Map-
ping). The complexity of this mapping comes from the AUTOSAR
semantics for ClientServer communication. In particular, a different
set of elements are needed at the client and the server end. Further,
the exact number of the elements needed depends on the number
of ports that use (require/provide) the interface that contains the
operation.

Fig. 3 shows the overall mapping for OperationWEvent includ-
ing multiple mappings to complete the required AUTOSAR struc-
tures for client and server. First, each OperationWEvent must be
transformed into an AUTOSAR ClientServerOperation; this is a
1 : 1 mapping. On the server side, we have the SysML Port(s) that
provides the interface. The OperationWEventmust be transformed

into an AUTOSAR ServerComSpec for each SysML Port that pro-
vides the interface; this is a 1 :𝑚..𝑛 mapping. On the client side, we
have the SysML Port(s) that require the interface. The Operation-
WEvent must be transformed into an AUTOSAR
ClientComSpec for each SysML Port that provides the interface
to define the communication attributes required by the port; this
is a 1 :𝑚..𝑛 mapping. Additionally, the OperationWEvent must be
transformed into an AUTOSAR RunnableEntity, Synchronous-
ServerCallPoint and ROperationInAtomicSwcIntanceRef for
each SysML Port that provides the interface in order for the client
to be able to call the operation on the server; this is a 1 :𝑚..𝑛 map-
ping. This mapping also needs access to the trace information
in order to access the AUTOSAR PortPrototypes and Client-
ServerInterface elements that where created from the SysML
Ports and Interface.

3 THE M2M_IE TRANSFORMATION
LANGUAGE

IBM®Engineering Systems Design Rhapsody®(commonly known
as Rational Rhapsody) is an environment for modeling and design
tasks. It supports various modeling languages such as UML, SysML,
UAF, and provides AUTOSAR import and export capabilities. The
AUTOSAR import/export is provided via the M2M_IE plugin. This
section presents the characteristics of the language and discusses
the limitations we encountered while developing the transforma-
tion.

3.1 The language semantics
The M2M_IE plugin provides a rule-based m2m, declarative, trans-
formation language, in which rules are specified within a tabular
format known as a RuleSet. Each rule is described in a separate
row and columns are employed to capture the rule’s properties
such as source/target constructs and processing functions. Source
constructs can either be specified by their Rhapsody Metaclass or
Stereotype. Target constructs can be specified by their EClass (from
a proprietary implementation of the AUTOSAR metamodel). Each
rule can define a condition that the source elements must satisfy to
be transformed. Processing functions are used to describe how the
target elements are organized hierarchy and to set their attributes
and relations. Conditions and processing functions must be written
in JavaScript. Finally, the priority level can be used to override the
declarative execution and define a specific rule execution order. All
rules with a defined priotity level will be executed imperatively in
the specified order.

Most notably, the tabular nature of rules means that M2M_IE
only supports 1 : 1 rules. Additionally, a semantic limitation imposed
by the transformation engine is that a source model element can
only be transformed once. That is, although multiple rules can have
the same source Metaclass, a source model element will only be
transformed by the first rule that applies (condition is matched).
The transformation trace is accessible to the processing functions
and can be persisted after execution.

The M2M_IE engine is opinionated about two aspects: element
names and containment. For names, it will automatically populate
the AUTOSAR element’s shortName (if present) value from the

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

MODELS 24, September 22–27, 2024, Linz, Austria Hoyos et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Fig. 3: Mapping SysML OperationWEvent to AUTOSAR constructs required for Client and Server communications.

SysML element’s name (if present). For containment, target ele-
ments will be automatically be added to the containment hierarchy
of the target model. Consider that source element 𝑆𝑐 is contained
in source element 𝑆𝑝 , for example a Block within a Package. Then,
the target element𝑇𝑐 (created from 𝑆𝑐 ) will be added to the contain-
ment hierarchy of 𝑇𝑝 (created from 𝑆𝑝 ). The exact reference used
to add the target child is automatically selected by the M2M_IE
engine.

3.2 The language limitations
From a developer’s perspective the biggest limitation we faced was
the lack of support tools for editing the condition and processing
functions. Currently, these functions have to be edited in a simple
text editor that lacks features such as syntax-highlighting, static
analysis and input content-assist. Since the engine lacks support
for debugging, syntax and API access errors took longer to fix.

Another more subtle issue is that the API to access SysML ele-
ments uses one-base indexing, while the AUTOSAR uses zero-based
indexing. We found that this resulted in hard to catch errors. Simi-
larly, there are two separate functions to retrieve elements from the
trace: mapMDW2RhpElements and mapRhp2MDWElements. The
similarity in names and the lack of static analysis results in hard to
catch errors.

With respect to source constructs, altough M2M_IE allows the
use of Project as a source metaclass, not all packages in the project
are transformed. As a result, before the transformation execution
the user has to select the package that should be transformed. An
effect of this restriction is that elements that belong to imported
packages, such as profiles, are not considered as source elements.
The reason being that imported pacakges are located at the root of
the project as opposed to under the package selected by the user.
One notable effect of this limitation is that DataTypes from the
SysML Profile are not transformed.

Listing 1: IsStaticAttribute Function (JS)
1 function IsStaticAttribute(attribute) {

2 return attribute.getIsStatic() == 1;

3 }

A consequence of the 1 : 1 mapping restrictions is that the 1 :𝑛
and 1 :𝑚..𝑛 transformations required by the SysML to AUTOSAR
transformation can’t be specified completely in the RuleSet. The
workaround is to create AUTOSAR elements in the processing
functions. The downside of this approach is that the trace is not
aware of the additional elements being created. As a result, the
trace produced by the M2M_IE transformation is coarse-grained
and does not correctly capture all the AUTOSAR elements created
for each SysML element.

Finally, we would also like to mention that during development
we faced an implementation bug in the M2M_IE plugin. The bug
related to the setting of the direction of operation arguments. In the
M2M_IE AUTOSAR implementation, the direction is defined using
an enumeration. Although we tried several approaches, we were
not able to use the different enumeration values with the processing
functions. As a result, all arguments used the default value (IN).

3.3 A rule example
An example rule in the M2M_IE transformation, that describies
how SysML (Static) Attributes are transfromed to AUTOSAR
VariableDataPrototypes is defined as follows.Metaclass: Attri-
bute, Target EClass: VariableDataPrototype,Condition Func-
tion: IsStaticAttribute and Post-process Function: SetParentAdd-
InitValue. The IsStaticAttribute function (see Listing 1) accepts the
Attribute source element as argument and the implementation
checks if the attribute is static.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Addressing shortcomings of COTS m2m transformations with OSS MODELS 24, September 22–27, 2024, Linz, Austria

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listing 2: SetParentAddInitValue Function (JS)
1 function SetParentAddInitValue(mdwVarDataProt) {

2 var rhpAttr = mapMDW2RhpElements.get(mdwVarDataProt);

3 var rhpBlk = rhpAttr.getOwner();

4 var mdwAppSwComp = mapRhp2MDWElements.get(rhpBlk);

5 var mdwSWIntBeh = mdwAppSwComp.getInternalBehavior();

6 mdwSWIntBeh.get(0).getExplicitInterRunnableVariable().add(mdwVarDataProt);

7 var mdwNumValSpec = model.create("NumericalValueSpecification");

8 mdwNumValSpec.value = 10;

9 mdwVarDataProt.initValue = mdwNumValSpec;

10 }

The SetParentAddInitValue (see Listing 2) function accepts the
VariableDataPrototype target element as an argument. In line 2,
we use the mapMDW2RhpElements function to get the Attribute
source element. In line 3 we capture the Attribute’s owner, a
SysML Block and in line 4 we use themapRhp2MDWElements func-
tion to get the ApplicationSwComponentType target element (cre-
ated by the rule that transforms Blocks toApplicationSwComponent-
Types). In lines 5-6, we find the ApplicationSwComponentType ’s
internalBehavior (SwcInternalBehavior) and add the
VariableDataPrototype to its list of explicitInterRunnableVariables.
In lines 7-9, we create and assign an initial value (initValue) to
the target VariableDataPrototype. As mentioned previously, the
NumericalValueSpecification element created in line 7 will not
be present in the transformation trace.

4 THE ETL IMPLEMENTATION
When setting out to provide the alternative open-source impleme-
nation of the SysML to AUTOSAR transformation, we had three
objectives in mind:

• Use a transformation language that supports 1 : 1, 1 :𝑛, and
1 :𝑚..𝑛 rules.

• Use a transformation language that provides better devel-
opment tools.

• Use a transformation language that allowed us to use a
unified API to access the SysML and AUTOSAR models.

The Epsilon Transformation Language (ETL) satisfies the three
objectives. The Epsilon Framework includes an ETL editor that
provides syntax and error highlighting, as well as code templates
and graphical tools for configuring, running, debugging and profil-
ing ETL programs1. The Epsilon Model Connectivity (EMC) layer
provides abstraction facilities over concrete modelling technolo-
gies which enables Epsilon programs to read/write a wide range
of heterogeneous models in a uniform manner. ETL supports the
specification of 1 : 1, 1 :𝑛, and 1 :𝑚..𝑛 rules. Finally, although the
ETL transformation trace is not persisted automatically by the ex-
ecution engine, it can be easilly accessed for post-processing and
persistence.

Next, we give an overview of the work on the EMC and trace,
but we skip the details are they are not the focus of this paper.
Following, we go into the details of the ETL transformation script
and use a set of three different rules to make a 1-to-1 comparison
with the M2M_IE implementation. Finally, we highlight some of
the differences in the generated models.

1The Epsilon Framework, https://eclipse.dev/epsilon/, last accessed 3-Mar-2024

Listing 3: The ETL concrete syntax
1 rule <name>

2 transform <sourceParameterName>:<sourceParameterType>

3 to <targetParameterName>:<targetParameterType>

4 (,<targetParameterName>:<targetParameterType>)*

5 (extends <ruleName> (, <ruleName>*)? {

7 (guard (:expression)|({statementBlock}))?

9 statement+

10 }

4.1 Writing transformations with the Epsilon
Transformation Language

“Epsilon is a family of scripting languages and tools for automating
common model-based software engineering tasks such as code
generation, model-to-model transformation, model validation and
model visualization”2. The Epsilon Transformation language (ETL)
supports a wide range of modeling languages/technologies. ETL is
rule-based, with rules defined in an ETL script. The ETL natively
supports 1 : 1 and 1 :𝑛 rules; 1 :𝑛..𝑚 can be defined by leveraging
the feature that rule are not limited to create types of the target
model. The details of 1 :𝑛..𝑚 are discussed in Sec. 4.7.

Listing 3 presents the ETL concrete syntax. The rule keyword
is followed by the rule name. The source and target constructs are
defined after the transform and to keywords. Notice that there can
be many to constructs in order to support 1 : 𝑛 rules. A transfor-
mation rule can also define a number of other transformation rules
it extends. The guard is used to define a condition on the source
construcs that must be satisfied for the rule to execute. Finally, mul-
tiple statements can be used to set the target constructs attributes
and references. Statements in ETL are written in the Epsilon Object
Language (EOL) [8].

4.2 Rhapsody and AUTOSAR EMC
In the M2M_IE implementation, the result of the transformation is
an AUTOSAR model (in ARXML, the AUTOSAR XML serialization
format), that can then be imported into PREEvision. On one hand,
it provides flexibility on what AUTOSAR tool to use. On the other
hand, given that the AUTOSAR tool is known, it adds another step
to the workflow. Ideally, the SysML-to-AUTOSAR transformation,
similarly as to how it reads the SysML model directly from Rhap-
sody, should be able to write the AUTOSAR model directly into
PREEviison. However, at the moment, the PREEvision tool does not
provide an API that can be used to read/write AUTOSAR models
directly. As a result, we follow the same approach as the M2M_IE
implementation and create an ARXML file as an output.

For the SysMLmodel, Rhapsody does provide an API3 that allows
other tools to interact with SysML models. Using this API, we
developed and EMC driver that can read/write Rhapsody’s SysML
models. The two main features of our implementation are 0-based
collection indexing and Stereotype promotion to type. The former,
standardizes collection access via 0-based indexing. The latter is
2https://eclipse.dev/epsilon/, last accessed Jan. 25 2024
3Rhapsody API, https://www.ibm.com/docs/en/engineering-lifecycle-management-
suite/design-rhapsody/9.0.2?topic=api-java-version-rhapsody, last accessed 3-Mar-
2024

5

https://eclipse.dev/epsilon/
https://eclipse.dev/epsilon/
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/9.0.2?topic=api-java-version-rhapsody
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/design-rhapsody/9.0.2?topic=api-java-version-rhapsody


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MODELS 24, September 22–27, 2024, Linz, Austria Hoyos et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

used to provide seamless support with M2M_IE, where the source
construct can be either a SysML type or a Stereotype.

For the AUTOSAR model, we implemented the AUTOSAR meta-
model using the Eclipse Modelling Framework (EMF) [13]. The two
main reasons for this where that Epsilon provides an EMC driver for
EMF, the ECore language is well suited to express the AUTOSAR
metamodel and EMF allowed us to provide a custom serialization
that respects the ARXML serialization rules [1]. Additionally, we
can also generate the AUTOSAR Schema [2] from the metamodel,
allowing easy distribution of models (ARMXL) with their required
schema.

4.3 The Trace Model
In an m2m transformation, the trace should include as a minimum
the links between source and target elements, and the transforma-
tion rules that created those links. However, for the trace infor-
mation to be of value for supporting the engineering process in
activities such as change impact or certification, it should include
additional metadata such as temporal information, trace origin and
confidence[3]. For this reason, we chose to extend and adapt the
Trace𝑎 metamodel proposed by Batot et al. [2021].

Our adaptations where done to increase the details captured
about the transformation script and the model elements. The rea-
soning is that since transformation scripts and models can be stored
across different systems in the organization, we should be able to
locate them when inspecitng the trace. For this purpose, both the
Artefact andModelFragment (element) types, were augmented with
an URI attribute to capture a unique identifier of the TracingEle-
ment. For rules, it is the path to the ETL script concatenated with
the rule name. For ModelFragments, since both Rhapsody and AU-
TOSAR support the notion of a unique ID, the URI can be the model
URI plus the element id.

After the ETL transformation has executed, we translate the
ETL trace information into a model that conforms to the extended
Trace𝑎 metamodel. A part from the model artefacts and the trace
links, we augment the trace model with the code artefacts, agent
information (the ETL engine) and confidence. Thus, the trace model
is not only more fine grained (due to the nature of ETL), but also
contains more metadata than the M2M_IE trace.

4.4 ETL development benefits
Before discussing the implementation details of ETL, we discuss
some of the ETL features that improve the development and increase
the maintainability of the transformation script.

4.4.1 Property navigation and Collection access. As mentioned pre-
viously, the differences in array index based access was a pain-point
for development. By wrapping the SysML and AUTOSAR APIs with
the EMC, we standardize the array access to 0-index based. But the
ultimate benefit of using ETL is that most collection access is done
via the EOL first-order operators in order to apply filter, map and
collect functions to the collections.

Another important aspect of using ETL is that property access
is wrapped by the EMC. Thus, property navigation in ETL is done
via attribute name, and the EMC is responsible for calling the re-
quired method, e.g. getter to read a property. For example, List-
ing 4 presents a snippet of how the value of the short name of an

AUTOSAR element can be retrieved in M2M_IE. For this, two get-
ters are called: getShortName() and getValue(). Listing 5 shows
the same statement written in ETL. This makes the ETL code less
verbose and less suceptible to bugs where the parenthesis where
ommited.

Listing 4: M2M_IE property access
1 mdwEl.getShortName().getValue()

Listing 5: ETL property access
1 mdwEl.shortName.value

4.4.2 Model navigation. When setting attributes and relations of
elements created in a transformation rule, it is common to need
to navigate the source and target models. To facilitate the naviga-
tion between the source and target models, both M2M_IE and ETL
provide access to the trace model during execution. As mentioned
previously, in M2M_IE, access to the trace model is enabled via two
functions: mapMDW2RhpElements and mapRhp2MDWElements.
The former can be used to get the target element from a source
element, and the latter to get a source element from a target ele-
ment. We found that the similarity in the names makes it easy to
introduce bugs related to using the incorrect function when retriev-
ing elements. The mapMDW2RhpElements is required because the
post-processing function, as presented in Listing 2), has only one
argument which is a target element. Thus, the only way to find
source elements is via the mapMDW2RhpElements function.

Conversely, in ETL, a transformation rule has access to both the
source and target elements. As a result, only one function, target
from source, is required. In ETL, this is provided via the equivalents
function. Having only one function makes it more difficult for de-
velopers to inject bugs. Further, the equivalents function accepts an
optional list of rule names, to invoke and return only the equiva-
lents created by specific rules. This reduces the amount of filtering
required when a source element can be transformed by multiple
rules.

4.5 1 : 1 rules
Section 2.2.1 presented the mapping for the 1 : 1 rule of SysML
Project to AUTOSAR AUTOSAR. Since only the project will be trans-
formed, no condition is required. Moreover, since the target AU-
TOSAR element is the root, there is no need for a context function.
Similarly, as there are no attributes other than the “name” attribute,
no post-processing function is required. Thus, all that is required
for this rule is the row definition in the RuleSet table:Metaclass:
Project, Target EClass: AUTOSAR. The IsStaticAttribute function
(see Listing 1) accepts the Attribute source element as argument
and the implementation checks if the attribute is static.

The ETL implementation of the Project to AUTOSAR mapping
is presented in Listing 6. However, since ETL is not opinionated
about containment, we need build the target containment hierarchy.
Thus, in line 4 we use the equivalents operation to retrieve all
AUTOSAR Packages created by other rules and add them to the list
of arPacakge of the AUTOSAR element. Although additional code
is required in ETL, we have complete control on what references to
use for containment.

Listing 6: Project to Autosar ETL rule
6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Addressing shortcomings of COTS m2m transformations with OSS MODELS 24, September 22–27, 2024, Linz, Austria

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 rule ProjectToAutosar

2 transform sPrj:SysML!Project

3 to aAutosar:AUTOSAR!AUTOSAR {

4 aAutosar.arPackage.addAll(sPrj.packages.equivalent());
5 }

4.6 1 :𝑛 rules
Section 2.2.2 presented the mapping for the 1 :𝑛 rule of SysML
Event to AUTOSAR OperationInvokedEvent. Since we are only
interested in Events that are defined as events of Operation-
WEvent operations, we need a condition function. The default nam-
ing and containment hierarchies are enough for this rule. However,
we need to create the additional POperationInAtomicSwcInstance-
Ref, and set its targetProvidedOperation and startOnEvent relations.
Thus, the rule definition in the RuleSet table is: Metaclass: Event,
Target EClass: OperationInvokedEvent, Condition Function:
IsEventforOperationWithEvent and Post-process Function: Set-
OperationInstanceRef.

The Condition function (in JavaScript) is presented in Listing 7.
The function’s parameter is the SysML Event. On line 2, we use the
findOpWEvntForEvent helper function to find the Operation, with
an OperationWEvent stereotype that uses the Event as its event.
That function iterates over all blocks, over all ports, over all re-
quired/provided interfaces and over all operations in the interfaces.
The reason for looping over ports as opposed to just interfaces, is
that the function is reused in other rules where the port information
is also important. If an Operation that matches the condition is
found, then the operation attribute of the returned JavaScript object
is not null. The result of that test is the return value of the condition
function, line 3.

Listing 7: Event Condition
1 function ceIsEventforOperationWithEvent(event) {

2 var objOperationAndPort = findOpWEvntForEvent(event, false);

3 return isNotNull(objOperationAndPort.operation);

4 }

The post-processing function is presented in Listing 8. The
function’s parameter is the AUTOSAR OperationInvokedEvent.
The three nested loops, lines 7, 11 and 16 are used to find the
AUTOSAR ApplicationSwComponentType where the Operation-
InvokedEvent parameter should be added (line 29). The create-
POpRef (line 19) is responsible for creating the POperationIn-
AtomicSwcInstanceRef. If that method returns false, it means the
inner loop mdwElement (line 17) is not the correct Application-
SwComponentType. If it returns true, it also means that the POpera-
tionInAtomicSwcInstanceRef was created. In line 30, we use a
helper function to find the operation that implements the Opera-
tionWEvent (operations from interfaces are implemented in blocks).
From the operation implementation we can retrieve the target AU-
TOSAR RunnableEntity (line 31), which we assing to the Opera-
tionInvokedEvent.

Listing 8: Event Post-processing
1 function ppeSetOperationInstanceRef(mdwOpInvkEvent) {

2 var rhpEvent = mapMDW2RhpElements.get(mdwOpInvkEvent);

3 var rhpPkg = rhpEvent.getOwner();

4 var mdwArPkg = mapRhp2MDWElements.get(rhpPkg);

5 var mdwPkges = mdwArPkg.getArPackage();

6 for (var j=0 ; j< mdwPkges.size() ; j++) {

7 var mdwArSwTypes = mdwPkges.get(j);

8 if (mdwArSwTypes.getShortName().getValue() == "SoftwareTypes") {

9 var mdwArSwTypesPkgs = mdwArSwTypes.getArPackage();

10 for (var k=0 ; k< mdwArSwTypesPkgs.size(); k++) {

11 var mdwArCompTypes = mdwArSwTypesPkgs.get(k);

12 if (mdwArCompTypes.getShortName().getValue() ==

"ComponentTypes"){

13 var mdwElements = mdwArCompTypes.getElement();

14 var mdwAppSwComp;

15 for (var i=0 ; i<mdwElements.size(); i++) {

16 var mdwElement = mdwElements.get(i);

17 if(mdwElement.eClass().getName()==
"ApplicationSwComponentType") {

18 if(createPOpRef(mdwElement, rhpEvent, mdwOpInvkEvent)){

19 mdwAppSwComp = mdwElement;

20 break;
21 }

22 }

23 }

24 if (isNull(mdwAppSwComp)) {

25 return;
26 }

27 var mdwSwInternalBeh =

mdwAppSwComp.getInternalBehavior().get(0);

28 mdwSwInternalBeh.getEvent().add(mdwOpInvkEvent);

29 var rhpOp = findOpWEvntImplForEvent(rhpEvent, false);

30 var mdwRunnableEntity = mapRhp2MDWElements.get(rhpOp);

31 mdwOpInvkEvent.setStartOnEvent(mdwRunnableEntity);

32 return;
33 }

34 }

35 }

36 }

37 }

The ETL implementation of the SysML Event to AUTOSAR
OperationInvokedEvent is presented in Listing 9. The first thing
to notice is that both the OperationInvokedEvent and POpera-
tionInAtomicSwcInstanceRef are listed in the to constructs (lines
3–4). The guard uses the same logic as the M2M_IE implementa-
tion, which is possible because we translated the findOpWEvnt-
ForEvent function to EOL. In line 10 we use the findOpWEvnt-
ForEvent function once more to get the relevant SysML Operation
and Port. Lines 11–12 are uses to set the POperationInAtomic-
SwcInstanceRef references to the equivalent target elements. Note
that instead of using the equiavlents operation, we use the ::= oper-
ator (EOL special assignment operator) that is syntactic sugar for
calling the equivalents operation. Lines 13–15 are used to set the
OperationInvokedEvent attributes and references. Note that in
ETL we must explicitly set the AUTOSAR element’s name attribute.

Of importance is that in the ETL implementation there is no
need for the nested loops. The reason for this is that, since in ETL
we have control over the creation of the containment structure,
it is more convenient to add the OperationInvokedEvent to the
ApplicationSwComponentType in the rule that creates the later.
Listing 10 presents a snippet demonstrating how this is done. In
line 3, we are adding all events to the SoftwareComponent’s inter-
nal behavior (aIntBhvr). For the events, we go over all the events of
the Package (line 4) and filter the ones used in the block (line 5). By
applying the equivalents operation (line 6) we get all the AUTOSAR
elements created by the transformation. Since the EventToOpera-
tionInvokedEvent is 1 : 2, we need to filter the results to select the
OperationInvokedEvents (line 7).

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

MODELS 24, September 22–27, 2024, Linz, Austria Hoyos et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Listing 9: Event to OperationInvokedEvent ETL rule
1 rule EventToOperationInvokedEvent

2 transform se: SysML!Event

3 to aOpInvEvnt: AUTOSAR!OperationInvokedEvent,

4 aPOpRef : AUTOSAR!POperationInAtomicSwcInstanceRef {

6 guard {

7 var opAndPort = findOpWEvntForEvent(se, false);

8 return opAndPort.op.isDefined();
9 }

10 var opAndPort = findOpWEvntForEvent(se, false);

11 aPOpRef.targetProvidedOperation ::= opAndPort.op;

12 aPOpRef.contextPPort ::= opAndPort.port;

13 aOpInvEvnt.`operation` = aPOpRef;

14 aOpInvEvnt.startOnEvent ::= opAndPort.port.owner.operations

15 .selectOne(op | op.name == opAndPort.op.name);

16 aOpInvEvnt.shortName = se.name;

17 }

Listing 10: Adding OperationInvokedEvents to the internal
behavior

1 ...

2 // Events

3 aIntBhvr.event.addAll(sSwCmp.owner.events
4 .select(e | usesEvent(sSwCmp, e))

5 .equivalent()

6 .select(eq | eq.isTypeOf(AUTOSAR!OperationInvokedEvent)));
7 ...

4.7 1 :𝑚...𝑛 rules
Section 2.2.3 presented the mapping for the 1 :𝑚..𝑛 rule of SysML
OperationWEvent to Client–Server Elements. Given that a sepa-
rate structure is needed for the server and the client sides, ideally
this mapping could be implemented in two or three separate rules.
However, since M2M_IE has the restriction that an element can be
transformed at most once, it is impossible to do so. For this reason,
the rule in the M2M_IE RuleSet only captures the common ele-
ments, mainly the OperationWEvent to ClientServerOperation.
For the other elements, the post-processing function was used to
identify the intended use (i.e. client or server) and create the re-
quired elements accordingly. This rule has a condition function,
which checks that the operation belongs to an interface, as pre-
sented in Listing 11. The reason for this check is that operations
can also belong to Blocks.

Listing 11: Operation Condition
1 function ceOwnerIsInterface(operation){

2 return operation.getOwner().getUserDefinedMetaClass()

3 .equals("Interface");

4 }

The creation of the extra elements is done in the post-processing
functions of another rule. The reason for this is that we can deter-
mine if the port is behaving as a client/server depending on whether
it requires/provides, respectively, the interface that owns the op-
eration. This separation was a design decision. At the time, it is
simpler to navigate from the port to the provided/required interface,
rather than using nested loops to find all ports that provide/imple-
ment the operation that owns the interface. Since all the elements
created by the post-processing function will not be traceable, it

Listing 12: RPortPrototype post-processing
1 function ppeAddPPortStructure(mdwRPortPrt) {

2 var rhpPort = mapMDW2RhpElements.get(mdwRPortPrt);

3 var rhpReqInts = rhpPort.getRequiredInterfaces().toList();

4 var rhpProInts = rhpPort.getProvidedInterfaces().toList();

5 if (!rhpProInts.isEmpty() && rhpReqInts.isEmpty()) {

6 if (ceIsClientServerInterface(rhpProInts[0])) {

7 var rhpPrvIntr = rhpProInts[0];

8 var mdwPrvIntr = mapRhp2MDWElements.get(rhpPrvIntr);

9 if (isNull(mdwPrvIntr)) {

10 return;
11 }

12 //Set the Port Prototype Interface

13 mdwRPortPrt.setProvidedInterface(mdwPrvIntr);

14 var rhpIntItems = rhpPrvIntr.getInterfaceItems();

15 for (var i =1; i<= rhpIntItems.getCount(); i++) {

16 var rhpOp = rhpIntItems.getItem(i);

17 var mdwCSOperation = mapRhp2MDWElements.get(rhpOp);

18 var mdwServerComSpec = model.create("ServerComSpec");

19 mdwRPortPrt.getProvidedComSpec().add(mdwServerComSpec);

20 mdwServerComSpec.setOperation(mdwCSOperation);

21 }

22 }

23 }

24 ...

made no difference in which particular post-processing rule they
were created. Thus, the client and server elements are created in
the post-processing functions of the Port-to-PPortPrototype and
Port-to-RPortPrototype rules.

For space considerations we will only present the creation of
the server side elements. Listing 12 presents a snippet of the post-
processing function for RPortPrototypes. The two conditional
blocks in lines 5 and 6 determine if the port provides an inter-
face identified as Client-Server. If so, in lines 7-8 we use the trace
to get the ClientServerInterface created form the provided
Interface.

In lines 9 to 14, we search for the AUTOSAR ClientServer-
Interface to use with the port, and if present, we assign it to
the RPortPrototype providedInterface reference. In lines 15-20, for
each operation in the interface, we create a new ServerComSpec,
add it to the RPortPrototype’s providedComSpec list and sets its op-
eration to the ClientServerOperation created from the operation.
Adding the implementation of the both client-server and sender-
receiver makes the post-processing functions for PPortPrototype
and RPortPrototype highly intricate.

The ETL implementation of the SysML OperationWEvent to
Client–Server Elements follows a different approach that on
M2M_IE. First, since elements in ETL can be transformed by multi-
ple rules, we are able to separate the mapping into three separate
rules (as explained next). Second, we use the ability of ETL to use
output types that are not part of the target constructs in order to
handle the 1 :𝑚..𝑛 requirement.

The first rule will handle the OperationWEvent to ClientSer-
verOperation, and its presented in Listing 13. The guard uses
the same logic as the M2M_IE implementation, checking that the
operation is owned by an interface. Additionally, we need to set
the operation name (line 7) and add all arguments transformed by
other rules (line 8).

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Addressing shortcomings of COTS m2m transformations with OSS MODELS 24, September 22–27, 2024, Linz, Austria

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Listing 13: OperationWEvent To ClientServerOperation
1 rule OperationWEventToClientServerOperation

2 transform sOp:SysML!Operation

3 to aClntSrvOp:AUTOSAR!ClientServerOperation {

5 guard: sOp.owner.isTypeOf(SysML!Interface) and
isOperationWEvent(sOp)

7 aClntSrvOp.shortName = sOp.name;

8 aClntSrvOp.argument.addAll(sOp.arguments.equivalent());
9 }

Listing 14: OperationWEvent To ServerRunnableEntities
1 rule OperationWEventToServerRunnableEntities

2 transform sOp:SysML!Operation

3 to runbls: Sequence {

5 guard : sOp.owner.isTypeOf(SysML!Interface)
6 and isOperationWEvent(sOp)

7 and isClientServerInterface(sOp.owner)

8 and sOp.owner.owner.classes

9 .select(c | c.isTypeOf(SysML!SoftwareComponent))
10 .ports.flatten().exists(p | p.providedInterfaces

11 .exists(i | i == sOp.owner))

13 var aClntSrvOp = sOp.equivalents()

14 .selectOne(eq | eq.isTypeOf(AUTOSAR!ClientServerOperation));
15 for (p in sOp.owner.owner.classes

16 .select(c | c.isTypeOf(SysML!SoftwareComponent))
17 .ports.flatten()
18 .select(p | p.providedInterfaces

19 .exists(i | i == sOp.owner

20 and isClientServerInterface(i)))) {

21 var aSrvComSpec = new AUTOSAR!ServerComSpec;

22 aSrvComSpec.`operation` = aClntSrvOp;

23 p.equivalent().providedComSpec.add(aSrvComSpec);
24 runbls.add(aSrvComSpec);
25 }

26 }

Listing 14 presents the details of the OperationWEvent To Ser-
verRunnableEntities that creates the elements required by the
server side. In order to provide the 1 :𝑚..𝑛 mapping, note that the to
type of the rule is a Sequence. Effectively, any elements created in
the rule statements can be added to this sequence. In this case, the
guard adds a new condition that checks if the interface is provided
by any port. The for loop in lines 15-24 iterates over all ports that
provide the interface that owns the operation. For each port, a
ServerComSpec is created and added to the list of providedComSpec
of the RPortPrototype created form the port.

Finally, the OperationWEvent To ClientRunnableEntities
rule, presented in Listing 15, creates the elements for the client side.
The guard is simliar to the server rule, but in this case we check
for required interfaces. There is a for loop (line 15) that iterates
over all ports that require the interface that owns the operation.
In this case, there are four new elements created for each port. In
order to group all the created elements we use a Tuple (lines 25–30).
This will facilitate finding specific elements when using the equiv-
alents function from other rules. For example, Listing 16 presents
a snippet of the rule that creates ApplicationSwComponentType
and their SwcInternalBehavior. In this case, we need to add all

Listing 15: OperationWEvent To ClientRunnableEntities
1 rule OperationWEventToClientRunnableEntities

2 transform sOp:SysML!Operation

3 to runbls: Sequence {

5 guard : sOp.owner.isTypeOf(SysML!Interface)
6 and isOperationWEvent(sOp)

7 and isClientServerInterface(sOp.owner)

8 and sOp.owner.owner.classes

9 .select(c | c.isTypeOf(SysML!SoftwareComponent))
10 .ports.flatten()
11 .exists(p | p.requiredInterfaces.exists(i | i == sOp.owner))

13 var aClntSrvOp = sOp.equivalents()

14 .selectOne(eq | eq.isTypeOf(AUTOSAR!ClientServerOperation));
15 for (...) {

16 var aROpAtmcSwcInstRef = new
ATOSAR!ROperationInAtomicSwcInstanceRef;

17 ...

18 var aSynchSrvrCallPnt = new AUTOSAR!SynchronousServerCallPoint;

19 ...

20 var aRnblEnt = new AUTOSAR!RunnableEntity;

21 ...

22 var aClntComSpec = new AUTOSAR!ClientComSpec;

23 aClntComSpec.`operation` = aClntSrvOp;

24 p.equivalent().requiredComSpec.add(aClntComSpec);
25 var result = new Tuple(

26 sPort = p,

27 opREf = aROpAtmcSwcInstRef,

28 srvrCallPnt = aSynchSrvrCallPnt,

29 rnbl = aRnblEnt,

30 comSpec = aClntComSpec);

31 runbls.add(result);
32 }

33 }

Listing 16: Accessing 1 :𝑚..𝑛 equivalent elements
1 ...

2 // Sender-Receiver creates Runnables for operations

3 aIntBhvr.runnable.addAll(
4 sSwCmp.ports.providedInterfaces.flatten()
5 .includingAll(sSwCmp.ports.requiredInterfaces.flatten())
6 .select(i | isSenderReceiverInterface(i))

7 .interfaceItems.flatten().equivalent()
8 .select(eq | eq.isTypeOf(Tuple)
9 and sSwCmp.ports.includes(eq.sPort))
10 .collect(eq | eq.rnbl));

11 ...

the RunnableEntity elements created for each operation. In line 8
we find the Tuples and in line 10 we access the rnbl element of the
tuple, which is the RunnableEntity (line 28 of Listing 15).

4.8 Takeaways
The main takeaway from the implementations is that there were
no scenarios that were impossible to implement in either M2M_IE
or ETL. Both technologies offer the capabilities that are needed to
generate transformation rules. We believe that this stems from the
fact that both approaches leverage languages that allow complex
algorithms to be implemented. During implementation of the ETL
rules, having control of the structural hierarchy helped guide the

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MODELS 24, September 22–27, 2024, Linz, Austria Hoyos et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Listing 17: A snippet of the TurningSignal ARXML produced
by ETL

1035 ...

1036 <CLIENT-SERVER-OPERATION>

1037 <SHORT-NAME>SignalStatus</SHORT-NAME>

1038 <ARGUMENTS>

1039 <ARGUMENT-DATA-PROTOTYPE>

1040 <SHORT-NAME>TurnSignalStatus_Arg</SHORT-NAME>

1041 <TYPE-TREF

DEST="APPLICATION-PRIMITIVE-DATA-TYPE">/Architecture/
DataTypes/ApplicationDataTypes/Status</TYPE-TREF>

1042 <DIRECTION>OUT</DIRECTION>

1043 </ARGUMENT-DATA-PROTOTYPE>

1044 </ARGUMENTS>

1045 </CLIENT-SERVER-OPERATION>

1046 ...

implementation in a top-down approach, resulting in reduced com-
plexity. Further, ETL allowed to divide some of the more complex
rules in M2M_IE into smaller, more manageable rules. Having a
single function to access the trace model resulted in less bugs due
to misspelled names. Finally, the support for 1 :𝑛 and 1 :𝑚..𝑛 rules
results in a more fine-grained trace.

5 EVALUATION
In order to verify the ETL implementation, we ran the transforma-
tion on the turn-signal (client-server) SysMLmodel used in Siavashi
et al. [2023]. We also used both approaches on a windshield-wiper
system that uses a sender-receiver communication mode.

5.1 ARXML file comparison
As XML is quite verbose, listing a full comparison of the generated
files is not viable. Rather, we will discuss the file contents relevant
to the key differences in the tools’ capabilities. All the ARXML files
generated by both tools comply with the AUTOSAR schema.

Listings 17 presents a snippet of the ARXML generated by ETL, in
particular for a ClientServerOperation. The listings highlight the
limitation of the M2M_IE approach to correctly set the operation’s
arguments direction. In the ETL output the DIRECTION ((listing 17)
line 1042) of the TurnSignalStatus_Arg argument is correctly set
(OUT direction). In contrast, in the M2M_IE output the direction is
not provided, i.e. the default value will be used.

In both tools, a package in the model has to be selected as the
transformation starting point. However, as opposed to M2M_IE,
the ETL tool can transform elements that are outside the selected
package. For example, ETL can transform DataTypes from imported
profiles when used by another element in the model. Listing 18,
shows that the primitive Boolean (from SysML) has been added
to the ARXML. These DataTypes are not present in the M2M_IE
ARXML.

5.1.1 PREEvision validation. In Siavashi et al. [2023] we discussed
how the PREEvision tool was used to validate the AUTOSAR mod-
els, within some pre-defined error acceptance. Table 1 presents the
summary of the warnings and errors reported by the PREEvision
consistency checker. The results show that the ETL approach pro-
duces models with fewer warnings and errors than the M2M_IE

Listing 18: A snippet of theARXMLproduced by ETL showing
primitive datatypes.

9 ...

10 <AR-PACKAGE>

11 <SHORT-NAME>ApplicationDataTypes</SHORT-NAME>

12 <ELEMENTS>

13 <APPLICATION-PRIMITIVE-DATA-TYPE>

14 <SHORT-NAME>Boolean</SHORT-NAME>

15 <CATEGORY>STRING</CATEGORY>

16 <SW-DATA-DEF-PROPS>

17 <SW-DATA-DEF-PROPS-VARIANTS>

18 <SW-DATA-DEF-PROPS-CONDITIONAL>

19 <SW-TEXT-PROPS>

20 <ARRAY-SIZE-SEMANTICS>FIXED-SIZE

21 </ARRAY-SIZE-SEMANTICS>

22 <SW-MAX-TEXT-SIZE>10</SW-MAX-TEXT-SIZE>

23 </SW-TEXT-PROPS>

24 ...

Table 1: PREEVision Validation Comparison

System Tool Warnings Errors

TurnSignal M2M_IE 13 4
ETL 10 0

WindshieldWiper M2M_IE 11 3
ETL 2 0

approach. In fact, by using ETL we were able to remove all errors
from the ARXML output for both models.

5.1.2 Transformation Trace. In M2M_IE, the trace information is
captured in a table, where each row represents a trace tuple. The
M2M_IE only captures the rule name, the source element and the
target element. The table can only be visualized within Rhapsody
(stored in proprietary format). While visualizing the table, the ref-
erence to SysML model elements can be navigated to the source
element(s), similar functionality is not applicable to the target ele-
ments. Target elements are only stored as string values of the target
element type and name. The major drawback of this approach is
that not all AUTOSAR elements have name, in which case the trace
information would be unsound. Additionally, if the trace needs to
be queried at a later stage, e.g., during certification, it will be very
hard to locate the AUTOSAR elements. In total, for the Windshield
Wiper and Turn Signal systems, M2M_IE created 56 tuples.

For ETL we are able to generate a trace with not only more fine
grained information for the model elements, but that also includes
information about the transformation engine and the transforma-
tion script. A screenshot of the Trace𝑎 model is presented in Fig 4.
The trace model has 217 tuples (LeafTraceLinks) in total and the
tree structure in the right shows the extra metadata captured, like
the date and the agent that generated the trace (in this case ETL).
Note that the source and target elements have an ‘id’ that can be
used to locate them. The other benefit of using Trace𝑎, is that the
trace model can hold trace information from other design activi-
ties/stages making it the single source of information for change
management and certification, among others.

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Addressing shortcomings of COTS m2m transformations with OSS MODELS 24, September 22–27, 2024, Linz, Austria

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Fig. 4: Tracea Trace Links

6 RELATEDWORK
Open-source tools have been successfully used in industry to offer
alternatives or complement COTS tools. CaMCOA [5] is a software
architecture specifically designed for Rolls-Royce’s Controls and
Monitoring systems. The CaMCOA workbench relies on OSS mod-
eling frameworks, domain-specific language frameworks andmodel
management tools. Further, some of these tools allows CaMCOA
to be used in conjunction with COTS modeling and verification
tools. In the cross-tool domain, support for other COTS tools has
been previously added to the Epsilon EMC. Support for the PTC
Integrity modeler was described by Zolotas et al. [2020], whilst
Sanchez et al. [2021] described how the connection to Simulink
was provided. In both cases the authors acknowledge that the EMC
offers lower performance (than the tools native access), but that the
use of EMC and the Epsilon languages provide usability benefits.
As far as we know, there are no other publicly available references
that share the experience of migrating MBSE COTS solutions to
OSS alternatives.

7 CONCLUSION AND FUTUREWORK
This paper addresses the limitations of a COTS model transfor-
mation tool using an open-source alternative. We showed how
abstracting the access to the SysML and AUTOSAR models can
reduce bugs related to the context switch between APIs. We demon-
strated that by using a language that supports the 1 : 1, 1 :𝑛 and
1 :𝑚..𝑛 mappings required by the transformation specification, the
transformation trace can include more fine-grained information.

We also showed that allowing a source element to be trans-
formed by multiple rules, it is possible to split complex rules into
smaller rules, reducing the code complexity. Although not fully
discussed, the ETL development environment helped us reduce the
implementation time and injected bugs. The environment will also

improve maintainability. Finally, the ETL implementation allowed
us to eliminate all validation erros in the ARXML models.

As part of the future work, we plan to extend the transformation
to support the reverse transformation (AUTOSAR to SysML) as an
initial step to allow model synchronization between system and
software architectures.

REFERENCES
[1] AUTOSAR. 2020. ARXML Serialization Rules. Technical Report. AUTOSAR

Standards 779. AUTomotive Open System ARchitecture partnership.
[2] AUTOSAR. 2022. AUTOSAR XML SchemaProduction Rules.
[3] Edouard R. Batot, Jordi Cabot, and Sébastien Gérard. 2021. (Not) Yet Another

Metamodel For Traceability. In 2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C). 787–796.
https://doi.org/10.1109/MODELS-C53483.2021.00125

[4] Manfred Broy, Martin Feilkas, Markus Herrmannsdoerfer, Stefano Merenda, and
Daniel Ratiu. 2010. Seamless model-based development: From isolated tools to
integrated model engineering environments. Proc. IEEE 98, 4 (2010), 526–545.

[5] Justin Cooper, Alfonso De la Vega, Richard Paige, Dimitris Kolovos, Michael
Bennett, Caroline Brown, Beatriz Sanchez Piña, and Horacio Hoyos Rodriguez.
2021. Model-Based Development of Engine Control Systems: Experiences and
Lessons Learnt. In 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS). ACM/IEEE, -, 308–319. https:
//doi.org/10.1109/MODELS50736.2021.00038

[6] Ismenia Galvao and Arda Göknil. 2007. Survey of Traceability Approaches in
Model-Driven Engineering. In Proceedings of the Eleventh IEEE International
EDOC Enterprise Computing Conference (Proceedings IEEE International Enter-
prise Distributed Object Computing Conference (EDOC), 11). IEEE, United States,
313–324. https://doi.org/10.1109/EDOC.2007.4384003 11th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2007, EDOC ; Con-
ference date: 15-10-2007 Through 19-10-2007.

[7] Anneke G. Kleppe, Jos Warmer, and Wim Bast. 2003. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing
Co., Inc., USA.

[8] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2006. The Epsilon
Object Language (EOL). In Proceedings of the Second European Conference on
Model Driven Architecture: Foundations and Applications (Bilbao, Spain) (ECMDA-
FA’06). Springer-Verlag, Berlin, Heidelberg, 128–142. https://doi.org/10.1007/
11787044_11

[9] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2008. The Epsilon
Transformation Language. In Theory and Practice of Model Transformations,
Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 46–60.

[10] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science 152 (2006), 125–142. https:
//doi.org/10.1016/j.entcs.2005.10.021 Proceedings of the International Workshop
on Graph and Model Transformation (GraMoT 2005).

[11] Beatriz A. Sanchez, Athanasios Zolotas, Horacio Hoyos Rodriguez, Dimitris
Kolovos, Richard F. Paige, Justin C. Cooper, and Jason Hampson. 2021. Runtime
translation of OCL-like statements on Simulink models: Expanding domains
and optimising queries. Softw. Syst. Model. 20, 6 (dec 2021), 1889–1918. https:
//doi.org/10.1007/s10270-021-00910-0

[12] Faezeh Siavashi, Horacio Hoyos Rodriguez, Vera Pantelic, Mark Lawford,
Richard F. Paige, Monika Jaskolka, Guanrui Hou, and Alessandro Verde. 2023.
Bridging the Gap Between System Architecture and Software Design using
Model Transformation. In 2023 IEEE 34th International Symposium on Software
Reliability Engineering Workshops (ISSREW). 51–56. https://doi.org/10.1109/
ISSREW60843.2023.00046

[13] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework (2 ed.). Addison-Wesley, Upper Saddle River, NJ.

[14] A. Wayne Wymore. 1993. Model-based systems engineering : an introduction to
the mathematical theory of discrete systems and to the tricotyledon theory of
system design. https://api.semanticscholar.org/CorpusID:108125826

[15] Athanasios Zolotas, Horacio Rodriguez, Stuart Hutchesson, Beatriz Pina, Alan
Grigg, Mole li, Dimitrios Kolovos, and Richard Paige. 2020. Bridging Proprietary
Modelling andOpen-SourceModelManagement Tools: The Case of PTC Integrity
Modeller and Epsilon. Software and Systems Modeling 19 (01 2020). https:
//doi.org/10.1007/s10270-019-00732-1

11

https://doi.org/10.1109/MODELS-C53483.2021.00125
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1109/MODELS50736.2021.00038
https://doi.org/10.1109/EDOC.2007.4384003
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1007/s10270-021-00910-0
https://doi.org/10.1007/s10270-021-00910-0
https://doi.org/10.1109/ISSREW60843.2023.00046
https://doi.org/10.1109/ISSREW60843.2023.00046
https://api.semanticscholar.org/CorpusID:108125826
https://doi.org/10.1007/s10270-019-00732-1
https://doi.org/10.1007/s10270-019-00732-1

	Abstract
	1 Introduction
	2 From SysML to AUTOSAR (Classic)
	2.1 Model to Model Transformations
	2.2 SysML to AUTOSAR Transformation Semantics

	3 The M2M_IE Transformation Language
	3.1 The language semantics
	3.2 The language limitations
	3.3 A rule example

	4 The ETL Implementation
	4.1 Writing transformations with the Epsilon Transformation Language
	4.2 Rhapsody and AUTOSAR EMC
	4.3 The Trace Model
	4.4 ETL development benefits
	4.5 1:1 rules
	4.6 1:n rules
	4.7 1:m...n rules
	4.8 Takeaways

	5 Evaluation
	5.1 ARXML file comparison

	6 Related Work
	7 Conclusion and Future Work
	References

