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Abstract
The neutrino is one of the most abundant elementary particles in the Universe, and
plays important roles in proposed answers to many frontier scientific questions, such as
matter-antimatter asymmetry, and by what mechanism and processes do massive stars
end their lives in supernova explosions. Nevertheless, some of the neutrino’s most basic
properties remain poorly understood, in particular, the neutrino’s mass. One avenue to
determine the mass of the neutrino and explore its origin is the study of a hypothetical
nuclear decay process known as neutrinoless double beta decay (0νββ).

The nEXO experiment is a tonne-scale liquid xenon (LXe) time projection chamber
that aims to uncover properties of neutrinos via the 0νββ in the isotope 136Xe. The
observation of 0νββ would point to new physics beyond the Standard Model and imply
lepton number violation, indicating that neutrinos are their own antiparticle and thus
change our understanding of the universe.

The collaboration has been pursuing the development of Ba-tagging as a potential tech-
nique to further improve upon the detection sensitivity of nEXO by detecting the daugh-
ter isotope 136Ba, produced from the ββ of 136Xe. This technique aims to extract single
daughter Ba ions from a LXe volume. Ba-tagging would allow for an unambiguous
identification of true ββ decay events. Various Ba-ion extraction approaches are under
investigation by the nEXO collaboration. The groups at TRIUMF and McGill Univer-
sity are developing an accelerator-driven ion source to implant radioactive beam ions
inside a LXe volume, for subsequent ion extraction and identification via methods under
development by other nEXO collaborators. In the first phase, radioactive ions will be
extracted using an electrostatic probe for subsequent identification by γ spectroscopy.

This thesis describes the setup, fluid dynamics and particle ray tracing simulations to
study the motion of barium ions in liquid xenon, and ion extraction efficiency simulations
using an electrostatic probe.
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Chapter 1

Theoretical background

1.1 Neutrinos
The neutrino is one of the most abundant elementary particles in the Universe, and
plays important roles in proposed answers to many frontier scientific questions, such as
why the Universe is composed almost entirely of matter rather than anti-matter [1], and
by what mechanism and processes do massive stars end their lives in supernova explo-
sions [2, 3]. Nevertheless, some of the neutrino’s most basic properties remain poorly
understood. In particular, the neutrino’s mass influences how the neutrino interacts
with matter, which in turn affects the role of neutrinos in the Cosmos. The existence
of the neutrino’s mass and neutrino oscillation (see Section 1.2) was established by the
2015 Nobel Prize-winning research carried out at the Sudbury Neutrino Observatory
and Super-Kamiokande [4, 5, 6]. The actual neutrino mass value, however, is presently
unknown and its origin remains one of the biggest questions in particle physics.

Neutrinos are weakly interacting elementary particles with no electric charge; they are
currently classified as leptons because of their half-integer spin nature, according to the
Standard Model of Physics [7]. The neutrino was first proposed by Wolfgang Pauli in
1930 to explain the continuous energy spectrum in beta decays [8]. He suggested that
this particle could carry the missing energy and angular momentum, explaining the
discrepancies between the initial and final states of the decay. Originally named the
"neutron", the neutrino was postulated to be electrically neutral and of similar mass to
that of an electron in order to obey conservation laws, and also to speculate on why it
was so difficult to detect.

In 1934, Enrico Fermi renamed the particle to its current name while presenting the
now-recognizable theory of beta decays [9]. The nucleus was already conceptualized as
bound states of protons and neutrons, where neutrons could undergo a decay resulting
in a proton, electron, and antineutrino, as shown in Equation 1.1. At this time, the
neutrino was believed to have no rest mass.

n0 → p+ + e− + ν̄e (1.1)

1
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The first direct experimental detection of neutrinos was in 1956 by the Cowan-Reines
neutrino experiment [10]. Cowan and Reines measured the (then hypothetical) electron
antineutrino flux from a nearby nuclear reactor through inverse beta decay, using large
water tanks as their detector. Throughout the 1960s, the nature of the neutrino con-
tinued to be a popular area of research. It was later discovered in 1962 that there was
more than one type of neutrino, beginning with the muon neutrino [11]. An intense pro-
ton beam was accelerated onto a beryllium target to produce pi-mesons, which decayed
and resulted in a collimated beam of muons and neutrinos. These neutrinos were then
detected in a large spark chamber.

In 1975, the tau lepton was discovered [12] and it immediately implied the existence
of the tau neutrino. The tau neutrino was later found at Fermilab by the DONUT
collaboration in 2000 [13]. It was, therefore, accepted that in nature there are three
distinct neutrino flavours: νe, νµ, and ντ , each corresponding to a respective lepton with
which they weakly interact.

The infamous solar neutrino problem, discovered in the mid-1960s by the Homestake
experiment, presented an inconsistency between the flux of solar neutrinos as calculated
from the Sun’s luminosity and as measured directly [14]. The solar neutrino flux as
theoretically calculated by John Bahcall were consistently three times larger than the
value measured by the Homestake experiment, lead by Raymond Davis [15]. It was
found that both approaches were correct, except Davis’ chlorine-based detector was only
sensitive to one kind of neutrino out of the three possible types. Steps towards solving
this discrepancy required an update to the (then accepted) Standard Model around 2002
[16]. It was then postulated that the three neutrino flavours each had slightly different
mass values, and that the neutrino mass is a mixture of these three mass eigenstates. In
addition, the neutrinos could change flavour eigenstates as they travelled to Earth from
the Sun, giving rise to the process known as neutrino oscillation. The solar neutrino
problem remained unsolved for about 30 years, until the discovery of solar neutrino
oscillations in 2001 at the Sudbury Neutrino Observatory (SNO) [5]. This discovery was
in support of the detection of atmospheric neutrino oscillation by Super-Kamiokande a
few years prior in 1998 [6].

1.2 Neutrino Oscillations and Neutrino Mass
Neutrino oscillations are only possible if the lepton flavour numbers (Le, Lµ, Lτ ) are
not conserved by the neutrino mass term, that is if ∆Lx ̸= 0. During the process of
neutrino oscillation, a neutrino changes its flavour eigenstate between νe, νµ, and ντ .
The neutrino flavour eigenstates (νe, νµ, ντ ) and mass eigenstates (ν1, ν2, ν3) are related
by a unitary transformation matrix U as follows:

νe(t)
νµ(t)
ντ (t)

 = U

ν1(t)
ν2(t)
ν3(t)

 (1.2)

2
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This mixing matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix [17]. Evidently, the flavour and mass eigenstates would be equal if this matrix was an
identity operator, but this would not correspond to experimental findings. The PMNS
matrix is given by

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 , (1.3)

where it can be represented as a product of three rotation matrices, resulting in

U =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12c23 − c12s23s13eiδ −c12c23 − s12s23s13eiδ c23c13

P. (1.4)

The terms cij and sij represent cos(θij) and sin(θij), where θij is the mixing angle, and
δ is the Dirac CP-violating phase [18]. The matrix P is either the 3x3 unit matrix for
Dirac neutrinos, or carries the Majorana CP phases α1 and α1 as in Equation 1.5.

P =

1 0 0
0 eiα1/2 0
0 0 eiα2/2

 (1.5)

The neutrino mass matrix Mν can be found through a congruence relation involving the
PMNS matrix, since U is invertible.

Mν = U

m1 0 0
0 m2 0
0 0 m3

UT , (1.6)

The diagonal elements in the central matrix are the neutrino masses corresponding to
their respective mass eigenstates. The mass eigenstates |νj⟩ can also be expressed by a
plane wave solution

|νj(t)⟩ = e−i(Ejt−p⃗j ·x⃗)|νj(0)⟩, (1.7)

where the energy of mass eigenstate j, Ej , can be approximated in the ultra-relativistic
limit (|p⃗j | = pj ≫ mj) as

Ej =
√

pj
2 + mj

2 ≈ E + mj
2

2E
, (1.8)

3
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since it is known that neutrino masses are on the order of eV [19], and their energies
are greater than 1 MeV. In Equation 1.8, the term E is the energy of the particle to
be detected. Redefining the dependent variable in Equation 1.7, the time parameter, to
distance travelled by the particles, and including the approximation for the energy gives

|νj(L)⟩ = e−i(mj
2L/2E)|νj(0)⟩. (1.9)

As such, the frequency at which a neutrino propagates depends on the mass in the
exponent, where heavier mass eigenstates oscillate faster than lighter ones. Furthermore,
since the mass eigenstate can be expressed as a superposition of flavour eigenstates,
as in Equation 1.10, the differences in the frequency lead to interference between the
corresponding flavour components of a mass eigenstate.

|να(t)⟩ =
3∑

j=1
Uαj |νj⟩ (1.10)

By inverting Equation 1.10, and substituting in the time evolved neutrino mass eigen-
states from the Schrodinger equation, a superposition of flavour eigenstates can be de-
rived to express the flavour eigenstate at time t:

|να(t)⟩ =
∑

β=e,µ,τ

( 3∑
k=1

Uαke−iEktU∗
βk

)
|νβ⟩ (1.11)

This constructive interference gives rise to the possibility of observing a neutrino chang-
ing flavours during propagation. With Equation 1.11 and the energy approximation, the
probability of oscillation (να → νβ) is then represented by

Pα→β = |⟨νβ(L)|να⟩|2 (1.12)

Pνα→νβ
= |

∑
j

Uβje−imj
2L/2EUαj

∗|2 =
∑
j,k

Uαj
∗UβjUαkUβk

∗e−i∆mjk
2L/2E , (1.13)

where the subscripts α and β correspond to two of the three neutrino flavors, and j and
k correspond to the mass eigenstates. More conveniently, for a simplified two-neutrino
system, the oscillation probability for an electron neutrino with a travelling distance L
and kinetic energy E is given by:

Pνe→νµ = sin2 (2θ12) sin2
(

∆m2L

4E

)
. (1.14)

This probability equation reveals the length scale for neutrino oscillations, L = 4E/ ∆m2:
the distance after which a given neutrino is most likely to be found in the muon state

4
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[7]. By measuring neutrinos from a source with a known and constant flavor at a certain
distance away, the quantity of neutrinos that had changed state can be determined, and
thus ∆m2 may be calculated.

From Equation 1.13, ∆mjk
2 is the difference between the squared neutrino masses,

mj
2 - mk

2 [20]. The measured oscillation probability defined above can set bounds on
the squared mass differences, but they do not define the order of the hierarchy. From
the KamLAND experiment, the magnitude of the squared mass differences between
mass eigenstates ν1 and ν2 is established, and it is known from atmospheric neutrino
experiments that the difference between the ν3 mass eigenstate and the other two is
larger [21]. As a result, there are two possible combinations of neutrino mass orderings
denoted by normal ordering (m1 < m2 < m3), and inverted ordering (m3 < m1 < m2);
the ν3 state is considered either the lightest or the heaviest. Figure 1.1 demonstrates
these two possible neutrino mass orderings, and the flavour oscillation dependence on
∆m2

21, ∆m2
31, and ∆m2

32 if ∆mij
2 = mi

2 - mj
2, i and j = 1,2,3, and i ̸= j. The true

neutrino mass ordering and absolute mass scale are unknown because it is not possible
to determine the sign of the ∆m2

31 term.

From experiment, the observed number of neutrinos of each flavor can be compared
to the number produced to obtain values for the weak mixing angles θ12 and θ23. In
addition, these measurements can be compared to limits placed on observations of the
cosmic microwave background to place a limit on θ13. Solar, atmospheric, and reactor
neutrino oscillation experiments have provided us with approximate values for the weak
neutrino mixing angles given in Table 1.1 [22]. The mixing amplitude of each mass
eigenstate with each weak eigenstate can be determined by substituting these values of
θij into the PMNS matrix in Equation 1.4. The contribution of each flavour state is also
shown in Figure 1.1.

sin2(θ12) 0.846 ± 0.021 [23]
sin2(θ13) 0.093 ± 0.008 [23]
sin2(θ23) > 0.92 ± 0.061 [24]

Table 1.1: Mixing angles compiled from various neutrino oscillation experiments.

5
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Figure 1.1: A visualization of the two possible neutrino mass hierarchies. By the conventional
definition if ∆m2

21 > 0, normal ordering is in the case where ∆m2
31 > 0 (left) and ∆m2

31 < 0
depicts inverted ordering (right). Schematic from [25].

Current estimates of the mass differences are approximately 2.44 ×10−3 eV2 for |∆matm
2|

and about 7.53 ×10−5 eV2 for ∆msol
2 [26].

Assuming that the light Majorana neutrino exchange model and the calculations for the
nuclear matrix elements are correct, the 0νββ discovery potential of next-generation
experiments in the case where neutrinos are Majorana particles differs depending on
the mass hierarchy. Given these assumptions for all next-generation experiments, in the
case of an inverted hierarchy, the discovery probability is 100%; the normal hierarchy
discovery probablity is closer to 70% [27].

Thus the observation of neutrino oscillation requires that neutrinos have mass. As
previously mentioned, however, the neutrino mass-generating mechanisms are unknown.
If Dirac neutrinos acquire their mass through the Higgs coupling, just like other leptons
[28], it would still raise questions about why the neutrino mass is comparatively obscurely
small to other leptons. For this reason, many believe the neutrino could be a Majorana
particle, or its own anti particle, since it would provide an intuitive explanation for this
peculiarity, and eliminate the need for observable right-handed neutrinos in the SM. The
handedness of neutrinos refers to the relative orientations of spin and linear momentum,
which is fixed and intrinsic to the particle. If they exist, the spin and linear momentum
of right-handed, or sterile neutrinos, would be in the same direction.

1.3 Neutrinoless Double Beta Decay
There are certain types of isotopes that decay via double beta (ββ) decay, which is a rare
transition between two nuclei with the same mass number A. In this decay, the atomic
number Z changes by two units (N-2, Z+2). The ββ decay occurs only in even-even
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nuclei, which are isotopes with even numbers of p+ and n0 [29], when the single β decay
(n⇒p or p⇒n) to an odd-odd isobar is energetically forbidden or severely suppressed
by the angular momentum. Due to the pairing forces, the ground states of an even-
even nucleus more tightly bound than their neighbouring odd-odd nuclei. The second
order decay, however, into the (Z+2) daughter nucleus is still energetically allowed. The
process of ββ decay is presented in Figure 1.2.

Figure 1.2: The mass parabola maps the valley of stability against β-decays. The ground
states of even-even nuclei are energetically lower than their (A,Z+1) neighbour. These nuclei
only decay into a stable isotope through the emission of two electrons and two neutrinos [29].

The ββ decay is thought to occur through two decay channels: the rare process of two
neutrino double beta decay (2νββ) given by

(A, Z) → (A, Z + 2) + 2e− + 2ν̄e (1.15)

and, if the neutrino were Majorana in nature, neutrinoless double beta decay (0νββ),
given by

(A, Z) → (A, Z + 2) + 2e−. (1.16)

Both of these decay channels are depicted in Figure 1.3.

7

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – M. Cvitan; McMaster University – Physics & Astronomy

(a) 2νββ (b) 0νββ

Figure 1.3: Feynman diagrams for (A) 2νββ and (B) 0νββ, taken from [30]. The difference
between the decays lies with the number of electron antineutrinos released.

The 2νββ process was first postulated in 1935 by Maria Goeppert-Mayer [31]. It con-
serves both electric charge and lepton number, and typically occurs between nuclear
ground states (0+ → 0+). There are 35 isotopes that could theoretically decay via 2νββ
decay, but only 14 have been observed experimentally [32, 33, 34, 35]. The decay has
been measured for a variety of nuclei: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te,
130Ba, 136Xe, 150Nd and 238U. Table 1.2 shows the 2νββ decay half-lives for these listed
isotopes. Moreover, the shortest half lives of the ββ decays for these isotopes are on
the order of 1018 years [36]. Comparatively, the age of the universe is about 1.4 × 1010

years [37].

Isotope T 2ν
1/2 [×1021 years]

48Ca 0.064 ±0.007
−0.006 (stat.) ±0.0021

−0.009 (syst.) [33]
76Ge 1.926 ± 0.094 [36]
82Se 0.096 ± 0.003(stat.) ± 0.010(syst.) [36]
96Zr 0.0235 ± 0.0014(stat.) ± 0.0016(syst.) [36]

100Mo 0.00693 ± 0.00004 [36]
0.69±0.1

−0.06 [36]
116Cd 0.028 ± 0.001(stat.) ± 0.003(syst.) [36]

0.026±0.009
−0.005 [36]

128Te 7200 ± 400 [36]
1800 ± 700 [36]

130Te 0.82 ± 0.02(stat.) ± 0.06(syst.) [34]
136Xe 2.165 ± 0.016(stat.) ± 0.059(syst.) [36]
150Nd 0.00911 ±0.00025

−0.00022 (stat.) ± 0.00063(syst.) [36]
0.107±0.046

−0.026 [36]
238U 2.0 ± 0.6 [36]

Table 1.2: The measured 2νββ decay half-lives for several isotopes.

If neutrinos were classified as Dirac particles, 2νββ would be the only possible decay
channel for these isotopes, with no new physics involved. The Majorana neutrino would
transform double beta decay events into new opportunities to search for physics beyond
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the Standard Model. If the 0νββ process exists in nature, it can only occur if the
neutrino is its own anti-particle, and consequently violates lepton number conservation.
This latter property would imply a unique mechanism for generating the neutrino’s mass,
thus shedding light on its origin. Since the rate of the decay process is proportional to
the effective neutrino mass square, its observation would further offer the possibility to
calculate the neutrino mass, provided the nuclear matrix elements associated with the
decay process are known.

Since the amplitude of the neutrinoless decay mode is small as a result of the small
neutrino mass, it has not been possible to observe the 0νββ decay experimentally. The
sensitivity limits of the 0νββ decay half life, however, are reported to be between 1025 and
1026 years [38, 39, 40]. There are several large-scale experiments world-wide searching for
0νββ, and they are all doing so using different isotopes. Some of these past and present
isotopes of interest are summarized in Table 1.3, along with their published sensitivity
(T 0ν

1/2 limit assuming a null signal, which depends on detector resolution, background
index, and exposure), T 0ν

1/2 limits (determined by statistics), exposure (the mass of the
isotope in use times the duration of data acquisition), and effective Majorana neutrino
mass (mββ).

Isotope Exposure Sensitivity T 0ν
1/2 mββ Experiment

[kg × yrs] [yrs] [yrs] [eV]
48Ca 1.8 · 1022 > 1.4 · 1022 < 3.5 - 22 ELEGANT-VI [41]
76Ge 127.2 18 · 1025 > 1.8 · 1026 < 0.079 - 0.18 GERDA [38]

64.5 > 8.1 · 1025 > 8.3 · 1025 < 0.113 - 0.269 M.D. [42]
82Se 8 · 1023 > 1.0 · 1023 < 1.8 - 4.7 NEMO-3 [43]
82Se 8.82 7.0 · 1024 > 4.6 · 1024 < 0.263 - 0.545 CUPID-0 [44]

100Mo 7.369 2 · 1024 > 2.1 · 1025 < 0.32 0.88 NEMO-3 [43]
116Cd - - > 1.7 · 1023 < 1.5 - 2.5 Solotvina [45]
128Te 309.33 2.2 · 1024 > 3.6 · 1024 CUORE [46]
130Te 1000 2.8 · 1025 > 2.2 · 1025 < 0.09 - 0.305 CUORE [47]
136Xe 5.0 · 1025 > 3.5 · 1025 < 0.09 - 0.29 EXO [48]

970 1.5 · 1026 > 2.3 · 1026 < 0.036 - 0.156 KamLAND-Zen [49]
150Nd > 2.1 · 1025 < 4.0 - 6.3 eV NEMO-3 [50]

Table 1.3: The current experimental limits (>90% CL) of various 0νββ searches. T 0ν
1/2 and

mββ denote the 0νββ half-life and the effective Majorana neutrino mass, respectively.

The 0νββ decay rate itself depends on the neutrino’s effective Majorana mass, and
so a measurement of the rate would determine the actual value of this mass. If this
hypothetical process proceeds through light neutrino exchange, the half life for this
decay [51] can be represented by

1
T1/2

0ν = G0ν |M0ν |2 < mν >2

me
2 . (1.17)
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In Equation 1.17, G0ν(Q,Z) is the leptonic phase space factor, which varies between
isotopes [52], and only depends to the 5th order on the Q-value since less particles than
in the 2ν process are emitted. M0ν is the nuclear matrix element, and ⟨mν⟩ is the effective
Majorana neutrino mass. More specifically, the nuclear matrix element consists of

M0ν = gA
2 × MGT

0ν − gV
2 × MF

0ν + gA
2 × MA

0ν , (1.18)

where the terms MGT
0ν , MF

0ν , and MA
0ν are the Gamow-Teller, Fermi, and tensor

nuclear matrix elements, as calculated in [53]. The axial and vector coupling constants
for the weak interaction are denoted by gA and gV , respectively.

Many of these experiments outlined in Table 1.3 employ one common technique in hopes
of finding this decay: using large quantities of an active isotope that is known to undergo
2νββ. If neutrinos are Majorana in nature and 0νββ exists, the amount of detected
events N0νββ can be estimated by the following:

N0νββ = ln(2) · α · m · NA · ϵdetector · tlive

M · T1/2
, (1.19)

given a certain detector of mass m with isotopic abundance fraction α. The terms M
and NA are the molar mass (kg) of the decaying isotope employed by the detector, and
Avogadro’s number (mol−1). ϵdetector is the detector efficiency towards 0νββ, tlive is the
detector’s duration of data acquisition, and the half life of 0νββ is given by Equation
1.17. By Equation 1.19, it is evident that increasing the quantity of active material in
the detector improves the chances of observing this decay event.

The final state of a 2νββ decay involves two neutrinos carrying away a portion of the
decay’s energy–although the neutrinos would not be detected. For 0νββ, all of the
decay energy is encapsulated in the two emitted electrons. This decay energy is called
the Q-value. It is an important aspect to consider when choosing the active isotope in
a detector, and it can be defined for a ββ decay as

Qββ = M(A, Z) − M(A, Z + 2), (1.20)

where M is the mass (in units of kg, of the detector isotope), A is the atomic number
and Z is the proton number [54]. Thus, the energy spectrum for the emitted electrons
would differ significantly for the two decay modes. Peaks would be observed in different
locations depending on the decay; for the 0νββ case, at the tail of the curve at the Q
value [29]. As an example, the endpoint energy spectrum for the emitted electrons in
136Xe is shown in Figure 1.4. The peaks take the form of a distribution instead of a delta
function, considering that the energy collection is governed by Poisson statistics. The
total number of detected photons for 0νββ decays is distributed around the Q-value [55],
since all of the decay energy would have to be carried away by the detected electrons.
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Figure 1.4: The decay rate as a function of the fraction of the decay energy for both electrons,
normalized for 2νββ decays. The small peak located on the tail of the larger curve corresponds
to 0νββ decays, normalized to 10−6 in the inset for emphasis. Adopted from [55].

There are many reasons to consider a monolithic (liquid) 136Xe-based detector. Xe has
a natural abundance of 9% but it can be enriched to >80% with centrifuge techniques.
It also has a high Q = 2457 keV, in a signal region which can have lower contamination
from radioactive background events [56]. Due to its high Z value, a 2.5 MeV γ ray would
have an attenuation length of about 9 cm in liquid xenon [57].
136Xe is also known for its special ability to produce scintillation light [58], which can
be used to enhance the energy resolution and identify other backgrounds. Lastly, a ββ
decay of 136Xe would produce a stable 136Ba ion, allowing for the exciting opportunity
to make an unambiguous measurement of a ββ decay. This process is referred to as
Ba-tagging, and it is discussed more in sections 1.5 and 2.

1.4 Searching for 0νββ with EXO-200 and nEXO
EXO-200 was an experiment searching for 0νββ with approximately 175 kg of 80.6%
enriched 136Xe in the liquid phase [59]. It was in operation at the Waste Isolation
Pilot Plant (WIPP) in New Mexico, USA from 2011 until its decommission in 2018.
The detector vessel, seen in Figure 1.5, consisted of a double wall copper cryostat,
and the liquid xenon was held in a Time Projection Chamber (TPC) that served as a
calorimeter to record the electron energy spectrum [59], location and event multiplicity.
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The scintillation light was collected by Large Area Avalanche Photo-Diodes (LAAPDs)
located behind wire planes at each end of the TPC. At the time, no evidence of 0νββ
decay was found and new limits on the half-life and sensitivity were set at 3.5×1025

and 5.0×1025 at 90% confidence level, respectively [48]. EXO-200 achieved the first
experimental observation of 2νββ [60], and performed the most precise measurement of
the half-life to date for this decay process: 2.165 ± 0.016(stat) ± 0.059(syst) × 1021

years [59].

Figure 1.5: Artist’s rendition of the EXO-200 detector. The experiment was located in an
underground clean room in New Mexico, and it searched for 0νββ decay using 175 kg of LXe
isotopically enriched to 80.6% in 136Xe. The key component of the detector was a LXe time
projection chamber (TPC) inside a double-walled Cu cryostat, lead shielding, and a muon veto.
The role of the inner cryostat was to keep the xenon liquid, and to shield from background
radiation. Taken from [60].

As the successor to EXO-200, the nEXO experiment will search for 0νββ decay in 5
tonnes of LXe enriched to 90% [61]. The nEXO detector will be 136Xe-based, which
undergoes ββ decay to 136Ba:

136Xe →136 Ba + 2e− + 2ν̄e. (1.21)

In the event of a 0νββ, the above decay equation would omit the two neutrinos. The
Q-value for 2νββ is 2458 ± 0.31 keV [62], which would be split between the electrons
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and the neutrinos, or carried away entirely by the electrons in a 0νββ decay.

The nEXO detector design is shown in Figure 1.6. nEXO is a single phase cylindrical
Time Projection Chamber (TPC) that will search for 0νββ decay through a combination
of light and charge readout. The xenon atoms in the TPC are subject to excitation or
ionization caused by decay events, which creates excited xenon dimers [63] that decay
and emit 175 nm scintillation light. A static electric field will drift the ionization charge
to a segmented anode, and scintillation light will be detected by specialized photo-
detectors called silicon photomultipliers (SiPMs). Thus, a decay event position can be
reconstructed based on the electron drift in LXe and the timing information from the
scintillation light signal. The x and y coordinates of a position can be found by the
location of the charges at the charge collecting tiles at the anode, and the z coordinate
is found by comparing the electrons’ time of arrival on the anode with the scintillation
light signal from the SiPMs.

These detection techniques will take place in the TPC (copper-coloured), at the centre of
the diagram in Figure 1.6; it will contain the 5 tonnes of LXe, which will be surrounded by
the inner cryostat vessel full of refrigerant (HFE 7000) to maintain the xenon at liquid
phase at about 168 K. The outer cryostat encapsulates the TPC and inner cryostat
within a vacuum environment. The 12.3 m outer detector then shields the system from
external radiation, namely γ backgrounds, and serves as a muon veto through the use
of photomultipliers (PMTs) [61].
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Figure 1.6: Artist’s rendition of the nEXO experiment that is planned for construction ∼2 km
underground at SNOLab, in Sudbury, Ontario, Canada. Shown is the TPC containing LXe
within the inner cryostat, nested inside the outer cryostat and the outer detector to protect from
external radiation. The SNOLab cryopit is the ideal site for the experiment, given a very low
muon rate of 0.27 muon/day/m2 [64]. Picture taken from [65].

After 10 years of detector livetime, the half-life sensitivity for nEXO is projected to be
1.35×1028 years (90% CL), and the 3σ discovery potential is calculated to be 0.74×1028

[66], as demonstrated in Figure 1.7. Using Equation 1.17, this sensitivity estimates an
effective Majorana neutrino mass < 15 meV. nEXO will be able to explore the entire
inverted hierarchy parameter space, since this mass range is less than the parameter
space for most nuclear matrix elements. In the case of normal mass ordering, there is
also a significant possibility to discover 0νββ as the nEXO half-life sensitivity is increased
by more than two orders of magnitude compared to existing experiments.
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Figure 1.7: The nEXO sensitivity and discovery potential as a function of detector livetime
[67]. The projection includes an updated 2021 background model with reduced radioactivity.

The 0νββ sensitivity of nEXO is nonetheless limited by background signals that con-
tribute counts to the region of interest, most of which are derived from long-lived ra-
dionuclides, cosmogenically-activated radionuclides, neutrino-induced backgrounds, and
radionuclides from (α,n) reactions. The energy spectra of these background radiation
sources overlap with the Qββ value of the ββ decay in 136Xe.

Several steps are taken to minimize the amount of radionuclides inside the detector,
such as improvements in the materials used and using an open field cage to minimize
the amount of cage material. However, it is difficult to completely reject all backgrounds.
To combat these irreducible background contributions, a background rejection technique
called Ba-tagging is under development as a potential future upgrade to the nEXO
detector.

1.5 Ba-tagging for a Future 0νββ Decay Experiment
A challenge in the search for 0νββ is the suppression of background events. In future
upgrades of the nEXO detector, there may be a possibility to essentially completely
suppress background events, except those from 2νββ, by extracting and identifying the
136Xe-decay daughter nucleus 136Ba. This process is referred to as Ba-tagging, and is
based on a concept introduced in the early 1990s by M. Moe [68]. An event of interest
in the detector volume is considered a possible 0νββ decay candidate only if 136Ba is
identified because gamma-background events do not produce 136Ba.

Figure 1.8 shows the projected nEXO sensitivity as a function of different background
rates in the inner 2 tonnes of LXe. The 2νββ-only background, denoted in Figure 1.8,
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demonstrates the sensitivity of nEXO in a 100% efficiency Ba-tagging scenario, assuming
that Ba-tagging separates all ββ events from gamma-background events. In this scenario,
the sensitivity could be increased by a factor of 2-3 compared to the baseline models,
denoted by the red curve in Figure 1.8. To reach the same detector sensitivity as with
Ba-tagging, a significant increase in the detector mass would be required.

Figure 1.8: Plot of the nEXO detector sensitivity to 0νββ half-lives as a function of different
background models in the inner-most 2 tonnes of liquid xenon over 10 years of data-taking [66].

Ba-tagging would allow for the possibility to unambiguously identify a candidate 0νββ as
a true ββ decay. In essence, this technique acts as a method of independent identification
of an event as a ββ decay.

There are four main steps in the process of Ba-tagging outlined in a flow chart in Figure
1.9. When a possible 0νββ event is detected, the position of the decay within the
detector is located in Step I. A small volume surrounding the event location is extracted
from the detector to search for the daughter nucleus 136Ba in Step II. In Step III, if
there is a 136Ba ion present in this small volume of liquid xenon, it is then separated
from the residual LXe that was removed from the detector volume along with the Ba.
Whether Step III is needed or not depends on the technologies used in the subsequent
and prior steps. In Step IV, the isolated 136Ba is identified. The presence of 136Ba at the
location of a ββ-like event inside the detector will provide conclusive proof for excluding
all non-ββ-decay backgrounds. Step I in Figure 1.9 has been established by EXO-200,
where decay events were localized within a few millimetres [69].
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Figure 1.9: Overview of conceptual steps involved in Ba-tagging. This thesis focuses on the
development of Step II (highlighted in red).

Identification approaches (Step IV) for various forms of Ba have been previously demon-
strated, such as Ba+ trapped in vacuum [70], Ba− atoms trapped in a Xe-ice matrix
[71], and Ba++ with Single Molecule Fluorescence Imaging [72]. The Ba-tagging tech-
nique relies on the fluorescence of the Ba+ ion. This unique property of 136Ba+ was
applied in the early development of imaging trapped ions dating from the 1980s using
laser spectroscopy [73]. In these early studies, two lasers are aimed at trapped 136Ba+
ions in order to excite the ground state (λ = 493.545 nm), but prohibiting the ion from
reaching a meta-stable state (λ = 649.869 nm) [70]. Thus, laser spectroscopy of 136Ba
is well-established.

The only remaining step that needs to be demonstrated experimentally is the extraction
of 136Ba from a volume of its parent isotope 136Xe. The nEXO collaboration is investigat-
ing two main extraction approaches (Step II). One method involves inserting a cryoprobe
inside the LXe volume, whereas a capillary tube is used in the other. The cryoprobe
approach is pursued by researchers at Colorado State University [71]; it consists of trap-
ping a Ba-ion in a Xe ice matrix frozen to the tip of the probe. The capillary approach
is studied by a number of Canadian groups, and it involves ion extraction, from liquid
to gas phase using a capillary tube, being developed at Carleton University, followed by
separation of Ba-ion from the accompanying Xe and identification, being developed at
McGill University. It is currently unknown which of these extraction methods will be
exclusively used in the final Ba-tagging scheme. For the demonstration of Ba-extraction
from LXe– using either the cryoprobe or the capillary tube approaches– a single-Ba-ion
source is required. This thesis focuses on simulations of an accelerator-driven radioactive
Ba-ion source using rare isotope beams (RIBs) from the TRIUMF-ISAC facility. The
apparatus is described in Chapter 2.

A diagram of the entire Ba-tagging scheme using the capillary approach is shown in
Figure 1.10 [74]. It begins with the extraction of ions from the location of a possible
0νββ decay signal.
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Figure 1.10: Multi-phase Canadian Ba-tagging approach, as outlined in [75]. The 136Ba+ is
extracted from the TPC, along with some LXe. An RF carpet guides the 136Ba+ ion into the
RF-funnel, bringing the ion from high pressure to a high vacuum environment. The 136Ba+ is
directed to a linear Paul trap, where it could be identified via laser fluorescence spectroscopy,
prior to being transferred to a mass spectrometer to measure its mass.

The capillary will be moved into the TPC to extract a small volume of LXe from the
detector volume from the location of a 0νββ signal. The extracted detector volume
phase transitions from liquid to gas, while containing the 136Ba+ inside it. A singly
charged Ba is expected because the Ba2+ is expected to undergo electron exchange with
xenon [68]. At this stage, the Ba ion is in the xenon gas, which is kept at pressures of
(1-10) bar. Next, an RF-only ion funnel transports the ion from high pressure (≈ 10
bar) to vacuum (≈ 10−6 mbar) [76].

An RF carpet is under development; it will allow the ions to enter the funnel. The RF car-
pet guides the ions towards the central axis using optimized RF potential and electrode
geometry. The 136Ba+ moves to the linear Paul trap. Here, the ions are trapped, and
element-specific identification is performed using laser fluorescence spectroscopy. Then,
the 136Ba+ ion is transported downstream to a multiple-reflection time-of-flight mass
spectrometer (MRTOF-MS) to measure its mass to a high precision and accuracy [77].

1.6 Ion Mobility in Noble Gases
Understanding ion mobility in liquid xenon is key to the development of efficient Ba-ion
extraction methods. Ion mobility refers to the differential speeds at which ions migrate
through a medium under the influence of an electric field [78]. In addition to the effect
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of the ion’s mass and charge, the mobility is also influenced by the temperature and
density of the medium through which it propagates. Specifically, this property becomes
relevant when simulating charged particles in liquid xenon. It is crucial to understand
loss mechanisms for our setup to demonstrate extraction efficiencies and ultimately, we
need to know precise locations of the ions in the nEXO TPC, where mobility will play
a role as well.

Much of our understanding of ion mobility comes from the study of ion transport in
gases [79, 80]. The theory of ion mobility spectroscopy (IMS) is summarized in this
section, as it applies to singly charged ions in noble gases in low electric fields.

An ion distribution of ni ions (molm−3) for a single species i disperses through a noble gas
medium by diffusion– the main force exerted on the ions. Naturally, the ions move from
high concentration to low concentration regions until all ions are uniformly dispersed.
In order for the diffusion to be the dominant force on the ions, there are four main
conditions that must hold true:

1. There must be no temperature gradient.

2. The density of the ions must be low enough to neglect Coulomb repulsion.

3. There must be no electric or magnetic fields.

4. There cannot be any chemical or charge transfer reactions occurring.

This ion flux1(molm−2s−1), J , due to diffusion is defined by Fick’s first law, where J
is proportional to the magnitude of the concentration gradient ∇ni–that is, the first
derivative of the concentration for ideal mixtures [81]:

J = −D|∇ni| (1.22)

The constant D, the ion diffusion (m2s−1), is a joint property of the ions and the gas
medium through which the motion proceeds. The velocity of these ions, which is the
velocity of the diffusive flow, is represented by v, as given by J = niv. As such, Equation
1.22 can be modified to find an expression for the velocity:

v = −D

ni
|∇ni| (1.23)

By applying a weak uniform electric field in the gas, the ions begin to flow along the field
lines. This ion motion is superimposed on the diffusive motion in the gas. The average
velocity of the ions, vd, is also called the drift velocity. The drift velocity is directly
proportional to the electric field E; an increase in the electric field strength increases
the drift velocity.

1For simplicity, the magnitudes of the flux, velocity, and field vectors are used.
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vd = K · E (1.24)

The coefficient K is the ion mobility, and it is also a joint property of the ions and the
gas through which they diffuse. The ion mobility is essentially a measure of friction
linked to the time that it takes the ions to traverse a certain distance. The ion flux can
now be reformulated to

J = niK · E − D|∇ni|. (1.25)

The relation between, D, and the weak-field ion mobility, K, for singly charged ions is
given by the recognizable Nernst-Townsend-Einstein equation [79]:

K = eD/kBT, (1.26)

where kB is the Boltzmann constant, e is the electron charge, and T is the temperature
of the gas. Equation 1.26 is generally true for systems near equilibrium; that is, if the
field and the concentration gradients are small. This equation is valid for dilute and
dense gases, as well as liquids and isotropic solids [80]. The ion mobility can be found
from a measurement of the ion drift time td, as expressed by

td =
∫

S
ds/vd(s) = 1

K

∫
S

ds/E(s), (1.27)

where vd(s) is the instantaneous ion drift velocity along a trajectory S, in a weak field
E(s).

To compare results of ion mobility from different experiments, the mobility can be ex-
pressed as a function of the parameter E/n, where n is the number density of the drift
gas atoms. This parameter considers the experimental conditions during a measurement,
and characterizes the average ionic energy acquired from the electric field. It is generally
expressed in units of Townsends, where 1 Td = 10−21 V m2. The ion mobility is inversely
proportional to the number density of the gas medium atoms; it is typically converted
to the reduced mobility K0, defined by

K0 = K · P

P0
· T0

T
, (1.28)

where P0 is the standard pressure, 760 Torr, and the standard temperature T0 is 273.16
K. The gas pressure and temperature P and T are the conditions at which the mobility
K was calculated. However, the reduced ion mobility is not a constant, as it depends
on the E/n ratio:
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)4
+ ...

]
(1.29)

The low-field limit is when E/n is small enough where K0 is independent of E/n. This
condition generally remains true for E/n values below ≈ 2 Td [82].

The reduced ion mobility also depends on the collision frequency, which is linked to all
of the other parameters already introduced such as T , P , and n. In cases where the
drift velocity vd is small compared to the ion thermal velocity vT , the mobility can be
expressed as [83]:

K0 = 3
16

√
2π

µkBT

Ze

nΩ , (1.30)

where µ is the reduced mass of the ion-gas pair, denoted by µ = mM/(m+M), and m
and M are the ion and gas particle masses. The Ze term corresponds to the charge of the
ion. From kinetic theory, the collision cross section term, Ω, represents the momentum
transfer integral between the ion and gas particles averaged over all gas-ion relative
vT [84]. As a result, a value for this experimental "cross section" can be obtained through
measuring K0. This integral is generally difficult to calculate theoretically unless a rigid
sphere model is used, where it is equal to the projection cross section [85]. The details of
this integral representation are inconsequential for simulation developments; derivations
of the collision cross section with a rigid sphere model are described by Ref. [86].

A process that affects ion mobility, and is involved at the forefront of performing particle
simulations, is ion cluster formation. Clusters are composed by a central ion with one
or more neutral atoms or molecules, bound together by charge induced dipoles [87],
consequently changing the effective radius of the ion in question. The size of a cluster
has implications on the drift velocity of the ions, and it is also pressure dependent [88].
This concept of electrostriction becomes increasingly important when simulating Ba ions
in noble gas and liquid media, and is later discussed in Section 3.
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Chapter 2

Methodology and Apparatus

2.1 Radioactive Ion Beams at TRIUMF
Situated in Vancouver, British Columbia, TRIUMF stands as Canada’s premier particle
accelerator centre, facilitating rigorous research across a spectrum of disciplines [89].
Its mandate spans critical domains such as particle physics, nuclear physics, nuclear
medicine, materials research, and the advancement of accelerator and detector technolo-
gies. At the core of TRIUMF, facilitating such research, is the 520 MeV H− cyclotron,
which possesses the capacity to simultaneously deliver multiple proton beams at distinct
energies for a range of experiments [90]. The cyclotron provides beams for the Isotope
Separator and Accelerator (ISAC) target stations. The ISAC facilities, shown in Figure
2.1, host various experiments dedicated to research with radioactive ion beams (RIBs)
[91].

The process of ion beam generation leading up until the ISAC facility is outlined below.
It starts with a source of H− ions that are delivered to the cyclotron to be accelerated.
Thin graphite foils are placed at various radii of the cyclotron to strip the two electrons
off of the H−, leaving a bare proton beam, which is then led out of the cyclotron to
the beamlines. Beam line 2A supplies ISAC facilities with 500 MeV proton beams up
to currents of 100 µA [91], made by the Isotope Separator On-line (ISOL) method.
At TRIUMF, the ISOL method is capable of producing the desired exotic nuclei by
aiming a high energy proton beam at thick high power targets to induce spallation and
fragmentation reactions [92].
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Figure 2.1: The ISAC facilities at TRIUMF, highlighting some of the many experimental setups
accommodated there. Figure from [91].

Figure 2.2: A schematic of the SEBT beamline, from the superconducting (SC) linac to ex-
periments EMMA, TIGRESS, and TUDA-II, which is an external user beamline (SEBT-I). This
section of the entire beamline is also in Figure 2.1, at the top of the image. The Ba-tagging
apparatus is located where the HERACLES (shown) once was. Image courtesy of [93].

Proton beams with 500 MeV energies are sent to the ISAC target stations, and they
impinge on a target at the RIB target station is shown in Figure 2.1. The target is made
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of several disks (stacked), inside which stable and radioactive isotopes are produced. The
reaction products quickly diffuse to the surface of the target and evaporate. The isotopes
are guided to an ion source to become ionized before being directed to ISAC experiments.
There are various different ion sources available: a surface ion source, a laser ion source
called the TRIUMF Resonant Ionization Laser Ion Source (TRILIS), and a plasma ion
source named the Forced Electron Beam Induced Arc Discharge (FEBIAD) [91]. The
RIB is extracted and separated based on mass-to-charge ratio m/q and velocity v by
a high resolution magnetic mass-separator. The ions are guided through the magnet
at different radii, r = mv/qB, and are spatially separated with a resolving power of
m/δm ≈ 2500 [94]. At this stage, the RIB is delivered to either the ISAC-I or ISAC-
II experimental halls. The Ba-tagging apparatus is located in ISAC-II at the end of
the SEBT-I beam line, depicted in Figure 2.2. After the mass-separator, the RIB goes
through an RFQ and then to the drift tube linac before the final acceleration stage by
the superconducting linac to ISAC-II, where it is distributed to experiments with high
beam energy requirements.

The ISAC yield station determines the isotope species in the beam by taking a decay
spectroscopy measurement to determine the half lives of the beam constituents. This
step occurs before every experiment during the setup shifts, and it is important for
determining any contaminant isotope species. In the future, when ARIEL-CANREB is
available for RIB production using an electron beam ion source (EBIS) for ISAC-housed
experiments, the beam would be sent to an almost identical yield station in the ARIEL
facility.

2.2 Barium Tagging Apparatus at TRIUMF
In this section, the multi-phase experimental approach and details of the experimental
setup at TRIUMF are introduced. Currently in preparation, the experiment aims to
perform radioactive ion beam implantation into LXe followed by extraction and identi-
fication. The experimental approach involves stopping a radioactive beam of 139Cs ions
in LXe, extracting the decay product 139Ba after a certain collection time, and then
identifying the extracted ions using γ spectroscopy.

An engineering rendering model of the apparatus is shown in Figure 2.3. Also shown
is the current state of the setup at TRIUMF’s ISAC-II experimental hall. There are
three main components to the setup: the Injection Chamber (IC), the Measurement
Chamber (MC), and the electrostatic probe. The IC contains a LXe chamber of volume
1.045 cm3 and 1.9 cm thick copper walls. It is thermally coupled to a liquid nitrogen
(LN2) reservoir with copper heat-transfer straps and suspended in a vacuum chamber for
thermal insulation [74]. The copper straps have a high thermal conductivity, allowing for
the LN2-enabled cooling system to over-cool the IC. For this reason, the cooling system
also consists of gold resistive heaters, allowing for a better range of temperature control.
The heaters are controlled by a Proportional Integral Derivative (PID) controller, which
could hold the temperature of the cell at approximately 165 K to maintain Xe in its
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liquid state. There are already PT100 Resistive Thermal Device (RTD) probes installed
to measure the temperature of the cell.

Figure 2.3: Left: Ba-tagging apparatus at TRIUMF. A Computer-Aided Design (CAD) model
of the Ba-tagging system showing the Injection Chamber, Measurement Chamber, and extraction
probe. Right: The current setup at TRIUMF, under reassembly. Adopted from [74].

There are four ConFlat, (CF2.75′′) ports surrounding the LXe cell. One of the ports will
be fitted with a radioactive-ion beam entrance window to contain the LXe within the
cell. The port opposite to the beam entrance window will be fitted with a Faraday-cup
detector for tuning the RIB into the cell. The two side-view ports will be reserved for
visible verification of the probe position within the cell.

The beam entrance window will be manufactured by Moxtek using commercially avail-
able Be of width 7.62 µm. This thickness is best suited for letting through a mass 139
beam, while withstanding a significant pressure gradient between both sides of the win-
dow (∼ 10−7 Torr and > 1 atm) and the cryogenic conditions of the system. Extensive
testing regarding the beam entrance window has been carried out by T. Daniels et.al at
the University of North Carolina Wilmington (UNCW). The window will be attached
on the tip of a mounted nozzle by either epoxy or metal diffusion bonding, as seen in
the inset in Figure 2.3, and in (c) of 2.4. The nozzle will extend into the LXe through
the CF flange on the LXe cell.
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Figure 2.4: An engineering rendering of the beam window mount, showing the future position
of the Be window at the end of the cylinder.

The MC is located above the IC. This chamber will house a high purity Ge-detector
(HPGe), beside which the extraction probe tip will be placed. The motion of the ex-
traction probe is controlled by a linear actuator with a stepper motor. Additionally, the
probe tip has the functionality to be biased.

Also shown at the bottom of Figure 2.3 is a beam pipe and a fast-acting valve. The
installation of the setup will be at the SEBT-I beamline in ISAC-II, connected by a beam
pipe outfitted with a fast-acting valve to preserve the rest of the beamline vacuum in the
event of a window failure. The setup requires a beam stand to ensure that it is levelled
properly with the SEBT-I beamline. The beam stand is currently under construction,
and the pumping system with interlocks was developed by M. Good at TRIUMF. The
controls of all of the pumps and gauges responsible for the temperature and pressure
readback will be integrated with EPICS.

The LXe cell will be maintained at a pressure of approximately 900 Torr inside the IC. It
would require ∼3.1 kg of xenon gas (GXe) to fill the xenon to the blue line shown in the
inset of Figure 2.3. A gas handling system (GHS) is under development for deploying
and recovering the GXe for recycling and purification as a means of reducing future
material costs. A schematic of the GHS is shown in Figure 2.5. The design of the GHS
has been approved by the TRIUMF Detector Group, and it is in its final stages before
commissioning. The GXe will be deployed from the GHS into the setup from a pre-
filled gas bottle (GB1) through a cold getter purifier (GP) to remove any contaminants.
The recovery process will return the gas into the other (empty) gas cylinder, through
cryopumping. On the next deployment, the GXe will be supplied from the second (now-
filled) bottle. Along the system, there are high pressure burst discs and relief valves
connected to the nuclear exhaust of the experimental hall. Other features include a
pressure regulator, pressure transducers, and an interlock control system for safety.
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Figure 2.5: Gas handling system (GHS) of the Ba-tagging setup. It is a closed system to store,
supply and recover GXe with minimal or no loss.

The LN2 dewar, located at the bottom of the IC, allows for the chamber to reach tem-
peratures as low as 103.15 K; it is also covered with super insulation. Unless hardware
updates are made to support a lower temperature, the current setup is capable of liquify-
ing Xe and Kr, given the temperature values in Table 2.1. This gives options for testing
and commissioning purposes. The saturation curve of Xe is depicted in Figure 2.6 to
contextualize these values, and the same plots for Ar and Kr can be found in Appendix
A for comparison. The gas of choice is injected into the setup, and condenses to liquid
form at the bottom of the Cu cell.
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Figure 2.6: The saturation curve for Xe. The red diamond denotes the triple point. The green
point denotes the conditions for the Xe in the IC. The black star represents the conditions in
the LXe vessel. Saturation data from NIST [95].

Fluid Boiling Point (K) Melting Point (K)
Xe 165.02 ± 0.05 161.36
Ar 88.15 ± 0.02 83.81
Kr 119.93 ± 0.05 115.79

Table 2.1: Boiling and melting points of Xe [96], [97], Ar [98], [99] and Kr [100], [101].

This apparatus was previously used at Stanford University for Ba-tagging developments
using an internal, spontaneously-fissioning 252Cf source and a deposition substrate for
Resonance Ionization Spectroscopy (RIS) and Time-of-Flight (TOF) spectroscopy [102,
103, 104]. During these studies, liquification of xenon was demonstrated. For the recom-
missioning of this apparatus, components such as the TOF spectrometry section and
a load-lock substrate-mounting section originally included will be removed. The RIS
chamber will be repurposed into a Ge chamber.
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2.3 Commissioning in Gas Media and Proposed Experi-
mental Plan

As previously mentioned, the nEXO collaboration has been developing different Ba atom
and ion identification techniques. Open questions remain primarily towards the ex-
traction of Ba-ions from LXe. Our experiment in preparation at TRIUMF is the first
proposed experiment that is planned, as a proof of concept, to demonstrate that it is
possible to inject radioactive barium beam into a liquid xenon cell, as in Figure 2.7, and
then extract it, along with its decay products, respectively. Thus, demonstrating the
missing step in the Ba-tagging scheme. The methods are described in this section. The
experimental goals are divided into three phases, leading up to the commissioning of the
setup with a LXe medium. The third phase is briefly described in Section 4.

Figure 2.7: A cross section view of the LXe cell. The region highlighted in green is the inner
wall of the LXe cell, and the fill level is denoted by the horizontal blue line. The probe is also
shown; it is controlled by a linear actuator. The beam entrance window is indicated on the left,
through which the beam will be injected.
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(a) (b)

Figure 2.8: A close view of the probe inside the Cu cell, as assembled for its previous experi-
mental purposes [104].

Phase 1: Initial commissioning with gas media

This phase outlines the commissioning of the entire apparatus, including the vacuum
system, safety interlocks, and GHS. Also, the electrostatic collection and extraction of
ions from gas will be commissioned. Simulations in this thesis explore the extraction
efficiency in different gas media, in addition to LXe, as well as the optimal probe biases
and configurations required to extract the implanted ions from a specific position in the
gas.

The plan is to connect the Cu cell, of about 1 L in volume, to the SEBT-I beamline
shown in Figure 2.2 in Appendix B. The cell will be commissioned with argon and
xenon gases, up to pressures of ∼900 Torr. Ar gas is more economical for the initial
commissioning of the apparatus, prior to using Xe gas. Additionally, these campaigns
using gas-media will be used to optimize the GHS, beam intensities and implantation
times, and detection procedures including the HPGe-detector position and the necessary
data-acquisition times, before the experiment will be repeated using LXe [74].

The extraction probe will be placed in the gas volume using the linear actuator. The
probe tip, as in Figure 2.8, must then be aligned with the beam entrance window, labelled
in Figure 2.7. The radioactive beam ions will then be implanted into the gas-filled cell
through the Be beam-entrance window on a mount, in which they will travel a certain
distance before coming to rest, or before all its energy is lost. This distance is referred to
as the stopping range of an ion, and it can be determined by the Bethe-Bloch formula for
the stopping power S, defined as the mean energy E loss suffered by a charged particle
per unit path length x [105]:

S = −dE

dx
=
(

e2

4πϵ0

)2 4πnZ2

mec2β2

[
ln

(
2mec2β2

I

)
− ln(1 − β2) − β2

]
, (2.1)
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for a particle with speed v, charge Z, traveling a distance into a target of electron
number density n and mean excitation energy I, in SI units. The permittivity of free
space is denoted by ϵ0 and β = v

c , where c is the speed of light. The stopping power
depends on the charge and velocity of the projectile ion, as well as the target material
[106]. For an ion beam penetrating through matter, energy loss would result from
collisions with electrons (electronic stopping) and target nuclei (nuclear stopping) [107].
Depending on the velocity of the ions, the energy loss is governed by one of these two
regimes. Nuclear stopping dominates when the charged particle loses energy through
an effective interaction with the host ions, and the electrons respond instantaneously
without undergoing excitations. The electronic stopping regime dominates the ions’
energy loss at high velocities, where the ion loses energy by partially screened Coulomb
interactions with the electrons, and the host ions do not have time to react as a result
of large inertia.

The stopping range for 139Cs beam ions in LXe as calculated by TRIM are shown in
Figure 2.9. In gas media, however, the stopping range for mass 139 ions is much farther
than in liquids on the order of tens of millimetres.

(a) (b)

Figure 2.9: (A) The stopping ranges for 139Cs in LXe as a function of beam energy per nucleon,
simulated by TRIM [74]. (B) A 9 MeV/u 139Cs beam entering a LXe volume through a 7.62 µm
thick Be window. The stopping range is approximately 150 µm.

The beam energy must be adjusted to ensure that the beam ions are not stopped too
close to the probe, or stopped as a result of colliding with the probe tip, as this would
not demonstrate electrostatic attraction of the ions. This portion of the experiment will
be performed at room temperature to ensure that the Be-window is unharmed prior
to continuation, as it will experience a significant pressure gradient (about 900 Torr)
between its two sides.

Once the ions are implanted into the gas, a DC bias will be applied to the probe tip
copper substrate to induce an electric field in the cell, guiding the beam ions towards
it. A (negative) voltage of a few hundred V should be sufficient, but hardware allows
for a maximum bias of approximately -2 kV. After a certain amount of collection time,
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the probe will be removed from the gas volume and placed directly in front of a Ge
detector. The Ge detector will be used to detect any radioactivity from the beam ions
accumulated onto the probe tip.

After the isotope collected on the probe tip decays away completely, the probe may be
reused for another experimental run with different conditions. In future runs, it may
also be possible to use a custom-machined spacer to push the beam-entrance window
mount back, instead of varying the beam energy.

Phase 2: Commissioning with LXe

In the next phase, we will change the medium inside the Cu cell. The cell will be filled
with LXe, maintained at pressures of 900 Torr, and connected to the SEBT-I beamline
in ISAC-II, as seen in Figure 2.2. This step will also demonstrate our ability to liquify
GXe inside the Cu cell.

Similar to Phase 1, the extraction probe will be moved down into the LXe, with its tip
in line with the beam-entrance window. The radioactive beam ions will be implanted
through the Be-window. Since they are in LXe, the distance they will travel is on the
order of microns, as seen in Figure 2.12. A bias will be applied to the probe tip, and the
probe will be moved out of the LXe after collecting sufficient ions. Then, γ-spectroscopy
will be performed just as in Phase 1. The ultimate goal of this step is to commission
the electrostatic collection and ion extraction from a specific location within the LXe
volume.

Currently, the probe is able to move only in the z-direction. Controls will be implemented
to enable xy movement of the probe, to test ion collection from various positions within
the LXe chamber. Due to the inside diameter of the conflat parts, the xy motion
is limited, and it will be possible to scan over a small portion of the LXe chamber.
Compared to the ion implantation depth, however, the range of the probe’s xy motion
is sufficient.

As a secondary project using this apparatus, it will also be possible to perform ion mo-
bility measurements for the implanted beam ions, made possible through the application
of electric fields [108]. Generally, this would be performed using a square wave collection
voltage; the ions can be driven back and forth to simulate a longer collection path. It
would be possible to compare experimentally determined ion mobility and ion drift time
values to benchmark COMSOL simulations.

In addition, it may be possible to determine the charge state of the β-decay daughters.
The charge state booster (CSB) would be used to produce the beam in q = 22+. Us-
ing the EBIS, this portion of the beam production will differ, by charge breeding to
higher charge states in the EBIS directly. To remove contaminants, the beam will be
stripped to 31+ or 32+ after the drift tube linac (DTL). At these charge state values,
the contaminants will be mostly isobars coming from the target.
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The design of the setup allows for many systematic studies, some of which can be per-
formed by implanting different isotopes into the Cu cell medium. Since the different
isotopes would each have their own specific half-life, studies of neutralization rates of
the implanted beam ions drifting through the medium would be possible.

The identification of the beam ions will be done by γ-spectroscopy, searching for the
166 keV γ-ray released in the decay of 139Ba to its daughter 139La. Extensive GEANT4
simulations were performed by L. Backes and I. Casandjian to determine the required
number of ions to observe a signal at the anticipated energy value. As well, the simu-
lations determined the amount of time to keep the probe in the Ge-chamber to collect
sufficient decay statistics above the background. The simulations were performed as-
suming realistic conditions for the Ge detector geometry, efficiency, and placement. In
Figure 2.11 (B), the 166 keV peak is clearly distinct after 30 minutes of observation time.

Figure 2.10: Schematic showing the energy level of 139Ba and its stable decay product 139La.
The 165.9 keV state, highlighted in red, is the state of experimental interest that will be later
detected through γ spectroscopy. The half-life of the 139Ba-decay is 84.6 minutes. Energy values
from [109].
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Figure 2.11: The γ-ray spectrum of 139Ba and 139Cs, as simulated using GEANT4 by L. Backes
and I. Casandjian, for 30 minutes of data collection. The largest visible peak corresponds to the
166 keV γ-ray, denoted in red in (A).

Isotope T1/2 Yield (pps)
139Cs 9.27 m 5 1-2 ·108
139Ba 82.93 m 9 5·107

Table 2.2: Radioactive isotopes and their respective half lives [110] available at TRIUMF. The
yields are as measured at the ISAC yield station. By the time the RIB reaches the Ba-tagging
apparatus, there may be a decrease in this yield by a certain factor.

Ideally, the composition of the radioactive beam should be entirely 139Cs; the decays to
139Ba would occur in the LXe, mimicking the 0νββ decay of 136Xe to 136Ba in the nEXO
detector. The expected beam energies for Cs isotopes in ISAC-II are up to 9 MeV/u.
The maximum beam energy may reach 10 MeV/u. The stopping ranges of 139Cs is found
for various fluid mediums in the Cu cell, as calculated in Figure 2.12. The minimum
beam energy required for implantation studies with LXe is 2 MeV/u; at this energy, the
ions will travel through the beam window and come to a stop 25-50 mm into gas media
and about 50 µm into LXe based on SRIM calculations [111]. The ions’ positions will
be far enough in the medium of choice for the electric field to guide them away from the
window and towards the probe. With higher beam energies from ISAC-II, the stopping
ranges will increase, as seen in Figure 2.4 (A). Varying the beam energies will provide
one way to perform systematic studies on the ion extraction efficiency.
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Figure 2.12: Stopping ranges of 139Cs in various gas and liquid mediums at 1 atm. Only the
latter beam energies are relevant as actual experimental parameters: beam energies greater than
2 MeV/u, corresponding to particle energies greater than approximately 280 MeV. Figure taken
from D. Ray, private communication.

To conclude, the apparatus arrived at TRIUMF in late Fall 2022. Work towards Phase
1 is underway. The support structure, vacuum system and safety interlocks are all
completed. The model for the window mount for Phase 2 is finalized and will be machined
at McGill University before being sent to Moxtek for installation. The window mount will
then be tested at UNCW to verify that it meets the pressure and cryogenic temperature
requirements. The window mount is not required for Phase 1 of the experiment, since
gas media will be used at room temperature. Thus, the window as installed by Moxtek
is ready to use for Phase 1.

Sections 1 and 2 serve as the basis for the next section focusing on simulations of the
electroprobe in liquid xenon and other mediums, as well as general studies of Ba-ion
motion in LXe.
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Chapter 3

Electrostatic Probe Simulations

The majority of this Master’s thesis project is dedicated to simulating the outlined ex-
perimental apparatus in action prior to its arrival at TRIUMF. The purpose of the
simulation is to check if ions can be drifted to specific locations within the liquid xenon,
such as the electrostatic probe, which would allow for ion extraction studies. The simula-
tions also serve as a method to understand ion loss mechanisms to determine extraction
efficiency. This chapter serves as a guide for the simulation work performed of the exper-
imental setup outlined in Chapter 2. The verification methods used to ensure that the
simulation’s structure and parameters are correct and that the particles’ behaviour is as
realistic as possible are described. The model is also used to perform various systematic
studies of ion diameter, ion initial distance from probe and probe bias, to name a few.

3.1 Software Considerations
The first step in performing the simulations is selecting the most suitable software for
these studies. There were several software options to carry out simulations of the ex-
perimental setup, namely COMSOL, SIMION, and OmniTrak. The capabilities were
investigated of each of these listed software packages commonly used for simulating ion
motion. SIMION is typically used to "calculate electric fields and the trajectories of
charged particles in those fields when given a configuration of electrodes with voltages
and particle initial conditions, including optional RF (quasistatic), magnetic field, and
collisional effects" [112]. Ultimately, SIMION was not pursued because it is more suit-
able for gas environments (lower pressure mediums), rather than liquids. Convergence
issues may arise while attempting to solve ion-gas collisions for xenon under very high
pressure. SIMION is not a Computational Fluid Dynamics (CFD) solver.

OmniTrak is often used in the analysis of 3D charged-particle devices; it uses finite
element methods to calculate ion trajectories to a high degree of accuracy. Basic simu-
lation geometries were possible to run in OmniTrak, but difficulties arose when adding
in critical parameters. For example, there is no option to consider drag force for fluids.
OmniTrak characterizes all of the liquid xenon properties within the ion mobility µ.
While this simplistic model provides a reasonable estimate of the barium trajectories
within liquid xenon, COMSOL is required for more involved studies.
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COMSOL Multiphysics can solve a wide variety of physics, ranging from mechanical,
chemical, acoustic, and electrical applications. This software uses the finite element
method (FEM) to compute approximations to the partial differential equations (PDEs)
of interest in a specific physical geometry. Since these PDEs cannot typically be solved
analytically, approximations to these equations are necessary. "These discretization
methods approximate the PDEs with numerical model equations, which can be solved
using numerical methods. The solution to the numerical model equations are, in turn,
an approximation of the real solution to the PDEs" [113]. FEM is used to calculate these
approximations.

COMSOL is the ideal software for the purposes of this project because it can combine
the main physics phenomena present in the experimental setup: the electrostatics of
the probe’s field configuration, the fluid dynamics in liquid xenon, and the barium ion
ray tracing. These functionalities can simulate the barium ions as they move through
liquid xenon and onto the electrostatic probe. Other advantages to the program include
the possibility to define your own parameters where appropriate, such as forces or fluid
properties. There is a broad scope of possibilities for systematic studies, since the user
has the freedom to control the majority of the parameters. Also, COMSOL is able to
generate refined 3D visualizations and plots.

The organizational structure of COMSOL is as follows: the user is able to add on
interfaces, which are the physics modules. These modules are also able to be coupled
together in Multiphysics. It is possible to then add pre-existing, built-in nodes under
every interface, each with its own specific function such as accounting for boundary
conditions. The domain is a volume region within a geometry, and the user must define
what physics to solve for each one, as well as physical properties and conditions of the
material.

There are also disadvantages to using COMSOL for these studies, most of which are
related to the difficulty of a beginner to learn the program and troubleshooting. Some
of the common simulation issues, as well as potential fixes, are shared in this chapter.
As with any programming project, it is best to begin with a simple model and gradually
add in complexities.

3.2 Benchmark Model
A proof of concept exercise to investigate the capabilities of COMSOL within this context
is described below. It may also act as a future tester simulation environment where
parameters can be adjusted and solved rapidly, without involving other complexities of
the simulation. In this preliminary model, there is a row of positively charged particles
moving in the direction of an applied electric field. This simulation and the remaining
simulations outlined in Chapter 3 are performed in three dimensions because it is the
most comprehensive approach, especially in terms of simulating particle ray tracing.

The only material included in the simple geometry is liquid xenon. It is not necessary to
include the copper vessel, or the stainless steel probe tip, just yet. The plain cylindrical
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vessel is 10 cm tall and has a radius of 10 cm. The meshing is set to extremely fine,
and it is possible to further resize the meshing elements to fit custom requirements. The
mesh of this geometry is shown in Appendix C.

Figure 3.1: Electric potential (V) in simplistic model. Red arrows represent the direction of
the electric field.

Using the Electrostatics interface, the surfaces of the liquid xenon cylinder are biased
such that a uniform electric field is produced within it. The top face is biased to -8 kV
(Vcathode) for ease of comparison to previous simulations, the bottom face is grounded
(Vanode), and the curved side (Vside) is biased according to Equation 3.1.

Vside = Vanode + Vcathode

(
z

Total Height

)
(3.1)

The electric potential produced throughout the geometry is shown in Figure 3.1. The
direction of the field is upwards, as indicated by the red arrows. The magnitude of the
electric field is represented in Figure 3.2; the field is fairly uniform throughout the liquid
xenon, and the electric force will be the only driving factor moving the particles. This
model does not simulate fluid flow–only the dielectric properties of the liquid xenon are
required. Since fluid flow is not considered, the Charged Particle Tracing interface is
used to perform particle tracing in Figure 3.3. The drag force is ignored, as well as
gravity, and any particle-particle interactions for simplicity.
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Figure 3.2: Electric field (V/m).

Figure 3.3: Singly charged 139Ba trajectories in liquid xenon. Ions are shown at their final
position at the top of the cylindrical vessel.
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A row of singly charged 139Ba ions is placed near the bottom of the cylinder. After
running the simulation, the particles move upwards in the direction of the electric field
as expected. The ion trajectories can be traced using smaller time steps (≈ 1 µs) to see
their position evolve as they approach the top of the cylinder. In a simplified model, the
ions’ velocity v⃗ is represented by Equation 1.24 introduced in Chapter 1, where K is the
ion mobility, and E⃗ is the electric field to which the ions are exposed.

The ion mobility is an intrinsic value that is unique to an ionic species. This value is
important throughout the simulations to check particles’ behaviour in the model and
compare to experimentally measured values of µ.

This model demonstrates the suitability of COMSOL for performing more involved simu-
lations of the experimental setup outlined in Chapter 2, and provides the first conditions
for the main simulation environments discussed in the rest of this Chapter.

3.3 Simulation Environment

3.3.1 Simulation Geometries

In this section, two simulation models named ’Model A’ and ’Model B’ are introduced,
including the physics solved in both of the simulation models that were built for simulat-
ing the trajectories of singly charged barium ions as they move towards an electrostatic
probe. Simplifications to the geometries are also summarized. The geometries are mod-
elled after the barium tagging experimental setup outlined in the previous chapter.

Both Model A and Model B include a fluid volume, a copper boundary surrounding the
fluid, and a probe extending downwards in the centre. The probe is initially stationary
inside the fluid prior to the addition of the ions. The two geometries differ in the size
and placement of the inlet and outlet features. They also have different probe shapes
and biased surfaces on their respective probes.
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Figure 3.4: Geometries of the COMSOL simulations. The slight geometric differences between
Model A (left) and Model B (right) are shown.

The inlet and outlet attached to the copper vessel in Model A are included for con-
vergence purposes in the fluid dynamics model; these components are not physically
present in the experimental apparatus. In Model B, the inlet and outlet features are
defined as the entire top and bottom faces of the vessel. These differences in the models
allow for faster convergence times depending on the type of study being run, and do not
ultimately affect the physics being solved.

The coordinate units in the geometry can be configured appropriately (centimetres).
Care was taken to note the unit used, especially when releasing a set of custom particle
positions; it is important for scaling purposes of external files.

In later phases of the experiment, the probe may be moved into the medium during
radioactive beam application. Simulating this later phase would require modifications
to the current simulation model. Preliminary studies on a general moving electroprobe
were done in a former student’s thesis at Carleton University. However, there has been
no simulation work done to explore barium ion deposition into liquid xenon, and subse-
quent extraction by a stationary electroprobe. As well, finding the optimal experimental
settings for the barium tagging apparatus.

3.3.2 Solving Electrostatics

The simulations are separated into three main types of studies: electrostatics, fluid
dynamics, and particle tracing. The former two studies are solved together using a sta-
tionary solver, and the particle tracing requires a time-dependent solver. We begin with
the electrostatics solution.

The Electrostatics interface computes the electric field and potential distributions in
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dielectric materials where the electric charge distribution is explicitly defined. This fea-
ture models the induced electric field in the medium of interest, namely liquid xenon, in
the copper vessel generated by the electroprobe. It is possible to bias different compo-
nents and surfaces within the geometry. A time-independent electric field is computed,
by solving the necessary equations in a stationary state. Within the context of the
simulation, it can be assumed that the liquid or gas medium in the copper vessel is an
idealized dielectric material; it has bound charges, rather than free charges. The bound
charges can be displaced by an outside electric field, producing induced electric dipoles–
pairs of positive and negative charges that align with the external electric field. This
process results in an electric field, E⃗, inside the dielectric material, different than that
of free space. This phenomenon is described by the polarization vector field, P⃗ , and the
polarization charge density ρp. These quantities are related by [114]:

ρp = −∇ · P⃗ (3.2)

The electric field within a material is modified according to the relation

∇ · E⃗ = ρ + ρp

ϵ0
, (3.3)

where ρ is the space charge density, and ϵ0 is the permittivity of free space. Similarly,
Equation 3.3 can be represented as

∇ · (ϵ0E⃗ + P⃗ ) = ρ, (3.4)

where the electric field displacement D⃗ can be defined as

D⃗ = ϵ0E⃗ + P⃗ (3.5)

The constitutive relationship for linear dielectric materials is configured in the interface
as Equation 3.5, setting the relation for the electric displacement field, D⃗. By applying
this definition, a modified version of Gauss’ law becomes

∇ · D⃗ = ρv (3.6)

The Electrostatics interface fully describes electrostatics phenomena by finding solutions
to Equation 3.6, and Equation 3.7, Faraday’s law of electrostatics. Faraday’s law holds
true because of the condition that the electric field is irrotational.

E = −∇V (3.7)

It is assumed that the fluid media used are linear dielectric materials in the simulated
temperature ranges. The Charge Conservation node adds the equation for the electric
potential and describes the macroscopic properties of the medium, as well as the con-
stitutive relation for the electric displacement field– relating D⃗ and E⃗ together. One
such associated material property is the relative permittivity; for liquid xenon, the value
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for ϵr is approximately 1.87 [115]. For materials for which the relative permittivity is
unknown, the value is set to 1.

After ensuring the correct equations and dielectric model are set, certain surfaces in
the geometry are biased. An example of the electric potential for Model A is shown in
Figure 3.5. Here, the probe tip is biased to -4 kV. The rest of the geometry is grounded.

The magnitude (and polarity) of the potential can be varied in the simulation, which
consequently allows for control over the electric field density in the fluid medium. The
electric field produced by biasing the probe tip immersed in liquid xenon is shown in
Figure 3.6. Typical bias values (in combination with particle tracing) ranged from -100
V to -2 kV. Generally, any probe shape with biased surfaces on the probe tip will result
in a similar electric field. This is explored later in this chapter.

Figure 3.5: The electric potential (V) configuration around a biased probe tip. A voltage of
-4 kV is applied to the surfaces on the rounded probe tip in Model A. The rest of the probe is
grounded.
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Figure 3.6: The electric field (V/m) around the probe tip and surrounding regions in liquid
xenon, given the biased surfaces in Figure 3.5.

After configuring the electric field, it is also important to ensure that particles injected to
the simulation environment are actually subjected to an electric force. This verification
test was performed whenever it was suspected that the charged particles do not move
as expected in the presence of an electric field. By checking the electric force felt by the
particles, it is possible to determine if the strength is simply too low for particles to be
affected by it, or if other troubleshooting methods should be pursued. In cases where the
force is not felt by the particles, extra care was taken to check the domains included in the
interface, while removing any unnecessary ones and verifying the boundary conditions.
The Electrostatics portion of the simulation should be relatively quick to run on its own,
given all of the correct boundary conditions and material properties.

3.3.3 Fluid Dynamics Solution

This section describes the fluid flow model solved in the simulations by the Fluid Flow
interface, showing only liquid xenon solved in both Model A and Model B. It is the most
computationally heavy portion of the COMSOL simulations.

There are many mathematical models that can be used to represent the movement of a
fluid. The most exhaustive description is derived from PDEs. A fluid flow field is defined
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by a balance in mass, momentum, and total energy described by the continuity equation,
the Navier-Stokes equation, and the total energy equation in terms of the temperature:

∂ρ

∂t
+ ∇ · (ρu⃗) = 0 (3.8)

∂ρu⃗

∂t
+ ∇ · (ρu⃗u⃗) = −∇p + ∇ · τ + F⃗ (3.9)

∂

∂t

[
ρ

(
e + 1

2u2
)]

+ ∇
[
ρu⃗

(
e + 1

2u2
)]

= ∇ · (l∇T ) + ∇ · (u⃗ + τ · u⃗) + u⃗ · F⃗ + Q (3.10)

The solution to these equations provides the velocity field u⃗, the pressure p, and the
temperature T of the modelled fluid. These equations can describe a wide range of fluid
models, from creeping flow to supersonic flow. Many times, it is not necessary to fully
solve the equations above for a low-flow fluid model, and suitable approximations can
be made to reduce the computation time while achieving accurate results.

There are several fluid properties to set in order to solve the fluid model; an example of
common simulated values for these properties for liquid xenon are outlined in Table 3.1;
these values are general estimates.

Medium Temperature Pressure Density Viscosity
(K) (atm) kg/m3 µPas

LXe 165.5 1.33 3000 510.37

Table 3.1: Common liquid xenon fluid parameters for COMSOL simu-
lation purposes.

The density, viscosity, and temperature values are straightforward to define. Within
COMSOL, the viscous effects are encapsulated by the viscous stress tensor, denoted by
τ in Equation 3.9. For a Newtonian fluid, such as liquid xenon, τ is represented by
Equation 3.11:

τ = µ
(
∇u⃗ + ∇u⃗T

)
− 2

3µ (∇ · u⃗) I⃗ (3.11)

This effect is taken into account when the constitutive relation is set for a Newtonian
fluid. Also, the compressibility of the fluid must be specified by the program. A fluid with
constant or very small variations of viscosity and density is considered an incompressible
fluid. The condition ∆ρ

ρ ≪ 1 must be met. If viscous heating can be neglected, and the
fluid is Newtonian as in our case with liquid xenon, Equations 3.8, 3.9, and 3.10 can be
simplified to:
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∇ · u⃗ = 0 (3.12)

ρ
∂u⃗

∂t
+ ρu⃗ · ∇ (u⃗) = −∇p + ∇ ·

(
µ
(
∇u⃗ + ∇u⃗T

))
+ F⃗ (3.13)

ρCp
∂T

∂t
+ ρCpu⃗ · ∇T = ∇ · (k∇T ) + Q (3.14)

The term −2
3µ (∇ · u⃗) I⃗ in Equation 3.11 would disappear from the viscous force term

in the case of an incompressible fluid. It is removed because the continuity relation in
Equation 3.12 must hold true. The solution to these equations gives the velocity and
pressure fields for fluids with constant or very small variation of viscosity and density.

Different flow models can be described by a corresponding Reynolds number. The set
of equations used for modelling fluid flow are chosen based on the range of values that
the Reynolds number falls in, defined as Re in Equation 3.15

Re = ρUL

µ
(3.15)

where µ and ρ and are the fluid’s dynamic viscosity and density, U is a representative
velocity scale, and L is a representative length scale. If the density and viscosity are
constant, and if there are no body forces, Equation 3.13 can be nondimensionalized as

∂u⃗′

∂t
+ u⃗′ · ∇

(
u⃗′
)

= −∇p′ 1
Re

∆u⃗ (3.16)

where p′ is (p−p0)/(ρU2), and p0 is a representative pressure level. From Equation 3.16,
it is evident that the Reynolds number governs the importance of the viscous stresses.
In fluids with a low Reynolds number, the flow is fully determined by viscous effects,
whereas at high Reynolds numbers the flow is virtually non-viscous.

The limit where Re tends towards 0 is also known as Stokes flow, which is the region of
interest for these simulations. As Re increases, the fluid flow models gradually become
more turbulent. It is not required to include turbulence in this fluid flow model with
liquid xenon (or argon), but it becomes relevant for gaseous media. The most suitable
fluid flow model for an idealized scenario involving liquid xenon is Creeping Flow, since
there is no turbulence, but there is still some particle motion. The Creeping Flow
interface is only defined for the domain that includes the liquid xenon, where it models
the Navier-Stokes equations without the contribution of the inertial term. The inertial
terms are found on the left side Equation 3.13, and neglecting these terms (and the
−2

3µ (∇ · u⃗) I⃗ term) leaves Equation 3.17: only the pressure forces (first term), part of
the viscous force (second term), and any external forces applied to the fluid (third term):
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0 = −∇p + ∇ ·
(
µ(∇u⃗ + (∇u⃗)T )

)
+ F⃗ (3.17)

This model is suitable for flow at small Reynolds numbers, such as in very small channels
or in microfluidic applications. The fluid’s velocity, pressure, density, and dynamic
viscosity are represented by u, p, ρ, and µ respectively.

Setting the pressure of the liquid xenon using Creeping Flow, however, requires some trial
and error because the fluid model is more restrictive, and prone to convergence errors.
When the chamber is filled with liquid xenon in the simulation, the xenon can be thought
of as nearly at rest. Realistically, however, there will not be xenon flowing in and out of
the chamber during radioactive beam application. But, in order for the program to solve
for a fluid model, it is required to define pressure boundaries for at least two surfaces in
the fluid domain where the fluid in question is allowed to flow: one for in-flow, and the
other for out-flow. It is up to the user to define how restrained the pressure boundary
conditions should be. To achieve a fluid model as realistic as possible, parameter ramping
must be performed to find the right combination of pressure boundary conditions that are
as constricting as possible, but still converge to a full solution. As previously mentioned,
the inlet and outlet seen in the geometry are included for convergence purposes in the
fluid dynamics model; these components are not physically present in the experimental
apparatus.

Although the liquid xenon is almost completely still, a fluid model must be solved in
order to consider the drag force on the ions’ motion while performing particle tracing.
We need to provide pressure boundary conditions for the inlet and outlet walls. It would
also be possible to define it in terms of velocity instead, if this were a known value at
each wall. The difference between the inlet and outlet pressures conditions are very small
to minimize the amount of flow. Equation 3.18 represents the boundary conditions on
the inlet and outlet.

n⃗T
(
−p + µ(∇u⃗ + (∇u⃗)T )

)
n⃗ = −p̂o, u⃗ · t⃗ = 0 (3.18){

p̂o ≥ po Inlet Pressure
p̂o ≤ po Outlet Pressure

If the selected pressure range is too small, convergence issues may arise. It needs to
be large enough to converge, but as small as possible to prevent the introduction of
unrealistic flow in the liquid xenon. To keep the liquid xenon inside the chamber around
133200 Pa, inlet and outlet pressures were set to po = 133197.5 Pa and po = 133202.5 Pa,
respectively, while actively suppressing backflow. These parameters are generally kept
constant throughout all of the performed simulations since they produced acceptable
solutions. It can be difficult to find a converging pair of boundary conditions, especially
if there are tight constraints from a practicality perspective.
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Figure 3.7: Liquid xenon pressure field (Pa) solved using creeping flow.

Figure 3.8: Liquid xenon velocity field.
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(a) Velocity < 0.001 m/s, yz plane view (b) Velocity < 0.002 m/s

Figure 3.9: Enlarged velocity field map for liquid xenon solved with creeping flow, showing
only the regions below a certain velocity threshold for emphasis of the flow field. The inlet and
outlet pressures are po = 133100 Pa and po = 133300 Pa

The velocity field solutions are shown in Figures 3.8 and 3.9. At first glance in Figure
3.8, the velocity field seems to be uniform in the liquid xenon. Further investigations
in Figure 3.9 show that there is slight flow on one side of the probe in Model A, which
allows for fluid effect studies. These simulations are described in a later section.

The velocity and pressure field solutions for liquid xenon in Model B are shown in Fig-
ure 3.10, using the Laminar Flow fluid model. Laminar flow is when a fluid travels
smoothly, in regular paths, where each layer moves past the adjacent layers with little or
no mixing [116]. When operating at low Re numbers (tending towards 0), COMSOL will
automatically solve the Stokes equations for flow, identical to the Creeping Flow module.
The differences between the two fluid models would be concerning the tolerances, and
possibly the required mesh sizes.
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(a) (b)

Figure 3.10: The pressure solution (Pa) for liquid xenon solved using Laminar Flow The right
shows an enlarged view focusing on the region near the probe tip.

(a) (b)

Figure 3.11: The velocity solution for liquid xenon solved using a laminar flow model.

It seems that for the specific geometry in Model A, it is easier to arrive at a fluid solution
when the surface area of the inlet and outlet are smaller if the pressure difference between
the two is quite small– especially for a 3D model. This is most likely because creeping
flow is the most restrictive fluid flow model. In Model B, if laminar flow is being solved,
the solver is less affected by the larger inlet and outlet surface areas.

Model B is more suitable for solving gaseous mediums using laminar flow. Though, the
same Stokes equations apply in these studies, and it is used to solve liquid mediums as
well as gas. The level of precision/accuracy for the fluid solution can be tailored to the
requirements of the specific study by choosing the more appropriate model.

At this stage, the simulation environment is ready for further complexities, such as
Particle Tracing.
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3.3.4 Particle Tracing

The Particle Tracing interface solves ODEs for particle positions and velocities as it
moves through a liquid medium. Specifically, the Particle Tracing for Fluid Flow in-
terface is designed for modelling microscopic particles in a background fluid [117]. It is
defined only in the domain that includes the liquid xenon. Unless new forces that are
not included in the model by default are defined, the solution is deterministic; the same
particle trajectory is always given for the same set of initial conditions of the simulation.

The user is given the option to select which particle parameters to provide. For these
purposes, specifications are made for the mass, diameter, and charge of the barium
ions. The program does not recognize fluid displacement; the particles do not displace
the fluid in which they are suspended [117]. Another assumption regarding particle
size is made when modelling particle-wall interactions: the particles are assumed to
be point masses when a particle-boundary interaction takes place [117]. The particle
size is mostly used for any size-dependent forces that may be defined, and it plays an
important role in defining the most suitable formulation of the equations of motion
for the underlying physics of the problem at hand. Choosing the best formulation can
reduce the computational cost, or improve the accuracy of a simulation. Thus, modelling
particle tracing begins with this fundamental choice, starting with making an estimation
of Lagrangian time scale τp for the particles.

This value depends on the particle density ρp, particle diameter d2
p and dynamic viscosity

µ of a given fluid [118]:

τp =
ρpd2

p

18µ
. (3.19)

Comparing this time scale to the range of desired solution times helps decide how im-
portant inertia is in the problem. If the range of simulation time is much larger than
the velocity response time (by a factor of several thousand), then the Newtonian, ignore
inertial terms formulation is the best option. This is the case for Ba ions in LXe, as
well as many examples involving particles of sizes on the micron scale in viscous fluids.
This formulation is used for all of the particle simulations. The equations of motion for
the particles can be derived by considering the classic example of a spherical particle
subjected to Stokes drag. For this particle of mass mp (kg), and neglecting gravity, the
equation of motion can be written as:

mp
d2q⃗

dt2 = 3πµdp(u⃗ − v⃗), (3.20)

with q (m) as the particle position vector, u⃗ is the velocity of the fluid, and v⃗ is the
velocity of the particle (dq⃗/dt).
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Under the assumption that the particle size remains the same, thus fixing dp and mp,
and given the mass of a sphere defined by mp = π

6 ρpd3
p, Equation 3.20 can be rewritten

as:

mp
d2q⃗

dt2 = 1
τp

mp(u⃗ − v⃗). (3.21)

In Equation 3.21, the τp has units of time, and is already defined by the expression
introduced in Equation 3.19. In a fluid with a spatially uniform u⃗, the difference between
the v⃗ and u⃗ decays exponentially with a time scale τp. Evidently, the d2

p dependence of
τp suggests that large particles would have a much greater velocity response time, and
terminal velocity; this means that larger particles are capable of moving greater distances
before the drag force has any effects on their motion, and smaller particles match the fluid
velocity much sooner. It is essentially a scale indicating how fast a particle accelerates
in the case where its velocity is not equal to the velocity of its surrounding fluid.

For Ba in LXe, with a particle density of 3630 kg/m3, an ion diameter of 8.7e-10 m
and a fluid dynamic viscosity of 0.0005 Pas, the Lagrangian time scale is 5.79e-27 s.
Therefore, for a simulation duration on the order of seconds, millions of time steps may
be necessary to come to a solution, or more if u⃗ is not spatially uniform. This example
would be unnecessarily difficult to solve, because the Ba-ions would reach the same
velocity as the LXe in a fraction of a second, but taking such small time steps would
still be required [119]. Although time steps are specified prior to running a simulation,
it is up to the solver to take smaller time steps, if required, to get an accurate solution,
while not necessarily storing all of the steps.

To avoid this problem, the Newtonian, ignore inertial terms formulation would simplify
the equation of motion by assuming that dynamic equilibrium is achieved instantaneously
between the particle and the velocity of the fluid. As a result, rather than solving

mp
d2q⃗

dt2 = 3πµdp(u⃗ − v⃗) + F⃗gravity + F⃗external, (3.22)

where F⃗external encompasses all of the forces exerted on the particle except for drag and
gravity, only a set of first order equations for the particle position is solved. Thus, where
dq⃗
dt = v⃗, the velocity of the particles is initially defined as

v⃗ = u⃗ + F⃗gravity + F⃗external

3πµdp
, (3.23)

where it is assumed that the drag force is balanced with all of the forces applied on the
particle, and then the position is found by integrating v⃗ over time. This simplification is
only correct when the particle inertia is insignificant in the given context, usually when
τp is extremely small compared to the simulation time [118].
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When simulating with this formulation, less forces are available to incorporate into the
model because any force that is velocity dependent or dependent on the relative positions
of other particles is excluded. Nonetheless, the most significant forces at play for small
particles in a viscous fluid are the drag force and the electric force.

User defined forces are also possible to include if necessary, using one’s own input equa-
tions. The user is also able to decide what particles of a given distribution are exposed
to a defined force. For example, this feature would be helpful in a situation where within
a distribution of different particles, a selection of particles are sensitive to certain forces
and some are not.

The motion of Ba-ions in LXe is dominated by the drag force. The fluid flow solution
calculates the Stokes drag force, FD, that the Ba ions are subjected to during their
journey to the electroprobe, given by

F⃗D = 6πµRv⃗, (3.24)

where µ is the dynamic viscosity of LXe, R is the barium particle radius, and v⃗ is the
LXe flow velocity relative to Ba. In COMSOL, this relation is rewritten as Equation
3.25.

F⃗D = 1
τp

mp (u⃗ − v⃗) , τp = ρpdp
2

18µ
(3.25)

The electric force is defined by Equation 3.26:

F⃗e = eZE⃗, (3.26)

where e is the elementary charge, Z is the charge of the particle species moving through
the liquid, E⃗ is the electric field as defined from a previous study. It is possible to import
the previously solved dataset from the Electrostatics interface, and set it to only affect
the Ba ions. In addition, the charge of the ions must be defined, or else the particles
will ignore any electric fields to which they are subjected. The particle charge is a useful
parameter for troubleshooting purposes, as the effects of increasing Z to higher values
are immediately observed for particles in an electric field, i.e. the particles would travel
faster with a higher Z, which may be a reassuring test. Similar tests may be performed
by toggling a particle’s mass higher or lower.

Once the forces acting upon the particles are defined, it is time to create particle dis-
tributions to release into the simulation. There are many ways to define the particles
in COMSOL. One way to fully control the initial positions and the amount of particles
is by importing a file that specifies this information using the Release from File node.
Different particle distributions are used in these simulations depending on what study
is being performed: either a cylindrical distribution of Ba ions created in Python, or a
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1cm×1cm×1cm Ba ion cloud as generated by SRIM. These distributions will be shown
in the next sections. The user also has the option to release the particles in a given
distribution more than once, over a range of desired time steps.

As a trivial example, a beam cross section with 104 139Ba+ ions is arranged with Python
and placed near a biased probe tip (-8 kV); all of the particles are drifted towards the
probe, as seen in Figure 3.12

(a) t = 0 s (b) t = 0.1 s

(c) t = 0.2 s (d) t = 0.3 s

Figure 3.12: An example of the particle trajectories of a collection of 139Ba+ ions in LXe
travelling towards a biased probe tip (-8 kV). At nearby distances to the probe, the attraction
efficiency is 100%, within a very small time interval.

For Ba-tagging developments, it is important to be able to track an ion in a fluid. Simu-
lations enabling particle tracing are advantageous to the development of the electrostatic
probe approach because a knowledge of the location of Ba ions within a LXe environment
is necessary to perform ion extraction. Additionally, on a broader scope, a knowledge of
the Ba ion mobility in LXe is necessary in order to know where to reach in the detector
volume to tag a Ba-ion in the event of a rare ββ decay [88].

The ion mobility acts as an all-encompassing value describing an ion’s motion in a fluid,
from a computational perspective; ensuring that the correct ion mobility value is used,
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enables one to trust the results of a particle tracing simulation. However, there is no
direct way to set this value in COMSOL. The ion mobility is varied through setting the
particle diameter until it matched experimental mobility values. This corresponds to
the notion that Ba ions undergo a "Snowball Effect" when propagating through LXe,
likely as a result of the electrostrictive pressure, which leads to an agreement in the
experimental mobility values for Ba+ in LXe with the Atkins cluster model for positive
ions in non-polar liquids [88]. Meaning, the Ba ions’ effective radius increases in LXe,
from one or more layers of Xe atoms around the ion solidifying, forming a cluster or
snowball structure.

From Ba ion mobility studies in LXe, the electrostriction may have other effects on the
mobility, such as increasing the liquid density and viscosity around the ionic cluster [88].
These effects are neglected in these COMSOL simulations.

From literature, the mobility of alkaline earth ions, including Ba+ ions, in LXe is mea-
sured experimentally for the first time and found to be 2.11e-4 cm2/Vs [88]. To convert
the mobility into a tangible value for simulations, the particle size is extracted by equat-
ing the electric and drag forces:

FE = FD, (3.27)

eE = 6πµRv, (3.28)

where e is the elementary charge, E is the electric field, µ is the viscosity of the LXe,
R is the Ba ion radius, and v is the relative velocity between the Ba and the LXe. The
mobility is given as v/E from Equation 1.24, which substituted in Equation 3.28 to get
an expression relating the mobility and the radius. For 139Ba+ in LXe, this corresponds
to a particle diameter of 1579.45 pm at a temperature of 165 K, and dynamic viscosity
of 0.000510037 Pas.

The relation between ion mobility and radius is described in Figure 3.13. The software
program does not recognize that the ion size can vary if you input different charges for
a certain isotope. Rather, the given charge value is used for electrostatic purposes only.
The mobility values in Figure 3.13 are obtained from a linear fit, where the uncertainties
of the simulated ion velocities are almost negligible due to machine precision, and the
values are chosen to produce a reasonable linear fit. The curve demonstrated in Figure
3.13 is fit with Equation 3.28, and as a result one may extract the elementary charge value
e and compare it to the accepted value 1.60217663 ×10−19 C. For this fit, calculating e
serves as another method to check the simulation parameters as a whole. The extracted
elementary charge from the curve in Figure 3.13 is within ∼3% of the accepted value.
Not shown in the plot, the same relation was simulated for 139Ba++, which yielded
similar results.
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Figure 3.13: Simulated Ba ion mobility for various ion sizes.

This relation in Figure 3.13 would also follow the same trend as the charge state of the
Ba as a function of ion diameter. In a 2+ charge state or higher, the cluster would be
larger, and thus the mobility would scale with it. Essentially, varying the ion diameter is
an avenue to indirectly study the charge state effects of an ion species’ mobility through
a medium.

To count the ions at the probe tip, either an Accumulator or Particle Counter is used,
which is a separate node to define a boundary or domain, in this case the probe tip,
as a region where the released particles are to be recorded if there is a wall interaction.
The exact locations of the wall interactions, within this specially defined region, are also
recorded by the program.

Ultimately, the goal of these simulations is to determine the allowable distances from the
probe tip for the Ba ions to begin their journey, while maintaining a 100 % extraction
efficiency in a reasonable amount of time, and probe bias setting. The uncertainties
on all of the parameters supplied to the simulation are not considered at this point of
the project. The uncertainties for certain parameters, such as the extraction efficiency,
can be estimated by varying controllable parameters, such as the voltage applied to
the probe, and checking whether or not this changes the extraction efficiency. Similar
approaches can be taken for parameters that are not controlled experimentally, through
the introduction of random numbers, for example as an offset to the initial ion positions.

Next, general studies of the simulation environment are performed to characterize the
geometry and the fluid effects.
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3.4 Attraction Efficiency Simulation Results
Given any probe bias setting, it is helpful to first find the maximum distance from the
probe tip that allows for ions to be attracted. Without knowing this "capture radius",
it would be difficult to get a sense of how sensitive the ions are to the electric field,
especially at greater distances. A strategy to finding the capture radius for any probe
bias setting is to generate a uniform cylindrical particle distribution to place around
the probe tip region, ensuring that the particles extend beyond the estimated capture
radius. The particle distribution, called "Distribution A", shown in Figure 3.14 is used for
a variety of studies in Model A. The scale is readjusted when importing into COMSOL.

Figure 3.14: Distribution A: A particle distribution generated with Python. There are 6859
particles included. The units shown on the axis are rescaled once they are imported into the
COMSOL environment.

There is blank space in the centre of this distribution reserved for the probe (probe
not shown). The 6859 particles span a radius of 2 cm around the probe tip, leaving
2 mm of space between the probe surface and the particles, and 1 mm between each
other in the radial direction for the first several rings starting from the centre. As the
radial distance increases, the spacing until the next set of particles that share an r value
becomes gradually smaller. This was done because it was of interest to find the capture
radius within units less than ∼mm distance scales. After this distribution is imported
into COMSOL, it is possible to filter out and view only the particles that connect a
source (initial distribution) and a destination (boundary on the probe) using a logical
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expression in the Filter node of the Particle Trajectories plot. It is also possible to shift
the distribution around the geometry, to cover a different region from the probe.

3.4.1 Probe Bias Effects on Extraction Efficiency

The following study was performed to investigate the effects of probe bias on the number
of 139Ba+ ions that are attracted to the probe tip, while submerged in LXe. In this case,
only the probe tip is surface is biased. Distribution A is imported into the simulation
twice, in order to cover the positive and negative z-axis regions about the z=0 plane;
there are 13718 ions initially surrounding the probe.

Figure 3.15: The initial particle distribution surrounding the rounded probe tip in Model A.
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Figure 3.16: The extraction efficiency as a function of time for various probe bias settings.

As expected, more ions are attracted to the probe faster for -2 kV compared to the
lowest simulated bias -10 V. Even for a bias of -2 kV, a perfect efficiency is not achieved
for this particular particle distribution. In the event of ion loss for this simulation, the
particles are found on the walls of the LXe vessel or elsewhere in the LXe. Figure A3.1 in
Appendix C includes additional data for higher biases, up to -10 kV. Such large voltages
are not realistic for the experimental apparatus, but it demonstrates that biases from -4
kV to -10 kV are all sufficient to attract 100 % of the ions surrounding the probe.

It is also worth exploring the effects of different electric field configurations on the ion
extraction efficiency and the capture radius. One variation that was made to the electric
field was biasing the top of the copper vessel, and allowing the attached probe to float
(take the voltage value of the cathode). Otherwise, the same temperature and pressure
conditions for the LXe medium are used, as well as the probe geometry, Model A, and
position in the LXe.
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(a) (b)

Figure 3.17: (A): The electric field (V/m), given the whole probe is biased to -4 kV. (B): The
ions’ final positions on the probe, with the bias set to -5 kV.

Figure 3.18: The extraction efficiency as a function of time for various probe bias settings,
with a biased probe body and tip.
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The extraction efficiencies are largely similar for these two electric field configurations.
For example, with only the probe tip biased at -500 V, ∼40% efficiency is achieved after
250 s, compared to 180 s for the whole probe biased at -500 V. Also, since the electric
field is not converging onto a localized region on the probe when the entire probe is
biased, the ions are collected along the shaft, as shown in Figure 3.17. Similar end
locations of the ions are observed for all of the probe bias values, since the electric
field follows the same direction, just with varying magnitudes. This result would have
implications for the post-ion extraction γ-detection setup, and the simulations suggest
that it is preferable to bias the probe tip only to attract the ions to a localized region.

In Figures 3.16 and 3.18, it appears that there is oscillation-like behaviour for the initial
time steps, up to ∼80 s. One likely explanation for these ripples is that they are an
artifact from the initial ion distribution used, where the particles at closer radial distances
to the probe were also spaced slightly further apart than the particles at the outer edges
of the distribution. Each ripple observed may correspond to one set of these inner r
values, and since the spacing between the ion "rings" increases as one moves outward in
the distribution, more time is required to drift the ions as the radial distance increases,
so only one batch of ions for one certain r value is seen at the probe at a time, until the
spacing between the rings becomes so small that it is indistinguishable. This may also
be why at the top of each small ripple, there is a plateau, which could mean that all
ions of a certain r reached the probe– a 100 % efficiency was achieved for that particular
radial distance from the probe.

3.4.2 Varying Probe Shapes and Probe Depth

Similar to changing what components of the setup are biased, the electric field shape
could be varied by changing the probe’s shape. Simulations were performed to consider
the extraction efficiency using a flat rod-shaped probe tip. Figure 3.19 shows the biased
flat face of the probe, where the electric field lines (in red) meet.
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Figure 3.19: The electric field (V/m) in the case where the flat cylindrical face at the bottom
of the probe is biased to -2 kV. The red lines represent the electric field direction.

When particles are released from Distribution A in this setting, they all follow the electric
field and settle on the flat face of the probe. No particles arrive to any other region of
the probe; they are all localized to one surface, and this may serve as advantageous
when it comes to the detection portion of the experiment. The efficiency of the flat
rod probe was compared to the regular rounded probe used in Model A, and the whole
probe bias configuration, as seen in Figure 3.20. When using ion Distribution A, there
is an advantage to using the biased rounded probe tip, which is capable of reaching
higher efficiencies compared to the flat rod probe within the same given time frame (for
a general, uniform ion distribution).
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Figure 3.20: The extraction efficiency as a function of time for three different probe types: a
biased rounded probe tip (as in Model A), a flat rod with the flat face biased, and the whole
probe as in Distribution A biased.

Other variations of probe shapes were also considered, such as a mushroom-shaped probe
tip. A similar electric field is produced in the case where the mushroom-shaped probe tip
is biased as the flat rod example in Figure 3.19. Generally, the ideal setup would involve
biasing a small part of the probe to allow for an electric field shape that converges at a
confined region. From simulations, there are no significant differences found in the ion
travel times, and ultimately extraction efficiency, if this general rule is followed.

Simulations were also performed to investigate the effects of the probe’s depth (along the
z-axis) on the ion extraction efficiency of a general particle distribution. Using Model
A, the pressure difference between the inlet and the outlet is set to 5 Pa, to minimize
the amount of fluid flow in the LXe around the probe. An example of this simulation
is demonstrated in Figure 3.21, where the probe tip is placed at z = 2 cm and biased
to -500 V. The simulation was run for a collection of z values, excluding z = -1 cm due
to solution convergence errors. It is possible that the solution for z = -1 was difficult
to compute because it would have been the best case scenario for the efficiency, and it
overwhelmed the program during runtime.
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Figure 3.21: The rounded probe in Model A, after running the simulation with particles from
Distribution A surrounding the probe shifted up 2 cm from the initial position. There is particle
loss on the outer edges of the distribution on the right side, as is expected as a result of the
minimal flow on the side including the inlet and outlet.

Figure 3.22: The extraction efficiency for various probe depths at -8 kV bias, using a rounded
probe tip. The depths correspond to the z-axis.
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In reality, the implanted beam ions will not resemble Distribution A. When comparing
the same distance magnitude pairs (-2 and 2 cm, -3 and 3 cm, -4 and 4 cm), higher
extraction efficiencies are achieved for the negative counterpart, likely as a result of the
effect of gravity on the ions. As shown in Figure 3.22, for z values of equal distance but
opposite sign, a cross-over point is observed in all 3 simulated pairs (-2 cm and 2 cm,
-3 cm and 3 cm, -4 cm and 4 cm), but the negative z position out of each of these pairs
continues on to produce a 95-100 % extraction efficiency, where the positive z counterpart
stagnates. For z = 4 cm, this stagnation occurs at efficiencies as low as ∼40 %. This
finding might suggest that in reality, the z component of the probe location in the LXe
medium should be less than that of the ions. Note that Distribution A extends to a
wider distance from the probe tip than the realistic implanted ions would, but these
effects may still extrapolate to smaller particle distributions (≤ 0.5 cm from the probe
tip).

Most of the particle loss is observed on the right side of the probe that includes the inlet
and outlet, but the effects of this are minimized for ions closer to the probe tip (for both
the z and radial directions).

3.4.3 Fluid Velocity Field Effects on Extraction Efficiency

The simulations in this subsection are all performed with Model A, with -8 kV on the
rounded probe tip. Initially, these studies were done to examine the initial positions of
the particles that were successful in arriving on the probe tip. Upon further investigation,
it was found that small flow fields present in the LXe medium were affecting the ion
extraction efficiency for large ion distributions (≥5 cm from probe), using a test ion
distribution. The initial particle cloud Distribution A was then separated into four
sections, as labelled in Figure 3.23, to study the trajectories and final destinations of
the ions depending from where they were initially released. Essentially, the purpose of
these studies is to determine the effects of a slight fluid flow on the extraction efficiency,
to quantify the effect of the medium’s flow on the capture capabilities of a given probe
setting. In reality, there should be no turbulent flow or fluid circulation in the IC,
but minuscule (∼ µm/s) thermal currents are always introduced in the LXe due to
temperature gradients between the outside walls of the vessel and the LXe volume.
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Figure 3.23: The boundaries for the four groups of particles within Distribution A. Quadrant
3 (Q3) contains the inlet and outlet features, and the majority of the fluid flow effects on the
particles. By dividing Distribution A into quadrants, it is possible to compare the extraction
efficiencies depending on the starting location around the probe.

The magnitude of the fluid flow is varied by the pressure settings at the inlet and the
outlet boundaries. The larger the pressure difference between the inlet and outlet, the
greater the fluid velocity field, specifically on the LXe regions in Q3, as shown in Figure
3.9. By decreasing this pressure difference, until the fluid solution no longer converges,
the symmetry of the ion distribution is restored which demonstrates a dependence on
the fluid flow for the capture radius. These simulations were performed for a wide range
of pressure differences, from 3 Pa to 200 Pa. In addition, the data was taken for three
different variations of Distribution A: only the positive z ions (called the "top"), only the
negative z ions ("bottom"), and the whole distribution as is ("top and bottom"). The
redundancy is meant as confirmation method, to verify that the same ion behaviour is
observed when the subregions are run separately and together.

As the pressure difference is decreased, more ions are found to reach the probe tip. For
pressure differences up to ∆ P = 200 Pa, this results in a flow large enough to dislodge
some of the outer ions in the distribution, which is observed on the left-side of the
central plot of Figure 3.24. The computed LXe velocity in this case is ≥ 3 mm/s. As
∆P decreases to 3 Pa, the symmetry is restored about the y = 0 axis for the given set
of particles; this pressure difference corresponds to a current ≤ 0.3 mm/s.

66

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – M. Cvitan; McMaster University – Physics & Astronomy

Figure 3.24: Three views of the initial positions of the positive z particles of Distribution A
that are capable of reaching the probe tip under the given conditions. The outlines of the ion
cloud find the "capture radius" when -8 kV of voltage is applied to the probe tip surface. The
yz-plane view shows the asymmetry that arises (reflected over y = 0 cm) when fluid current
is introduced, by a ∆P = 200 Pa difference between the set inlet and outlet pressures. The
labelled red points in each of the three plane views shows the particle with the greatest distance
magnitude from the probe tip.

After investigating the initial ion locations by quadrant, it is clear that Q3 has the
lowest extraction efficiencies across all of the fluid flow fields (introduced by varying the
pressure difference between the inlet and outlet). For the three different variations of
Distribution A (top region, bottom region, and simultaneous top and bottom regions),
this finding is consistent. Also, the LXe region furthest from the affected quadrant, that
is Q1, experiences the least ion loss when currents are introduced, up until pressure
differences ≥ 100 Pa. It could also be possible that the fluid field pushes some ions, that
would have otherwise gone elsewhere, towards the scope of the capture radius around
the probe tip (where the electric force overpowers the current).
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Figure 3.25: Ba ions at probe tip classified by their initial positions within the LXe, for all z
> 0 ions.

Figure 3.26: Ba ions at probe tip classified by their initial positions within the LXe, for all z
< 0 ions.
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Figure 3.27: Ba ions at probe tip classified by their initial positions within the LXe, with
positive and negative z ions distributions run simultaneously.

As a verification method, the same simulation was performed for two other particle
datasets: one with a 50% reduction of particles and one with a 25% reduction. The Ba
ion initial positions are also separated by quadrant in Figure 3.23. Given that the same
trends are observed in Figure 3.28 as in Figures 3.25, 3.26, and 3.27, it confirms that
space charge effects are not considered in the simulation, for the amount of ions present
(∼ 13,000 total ions for both top and bottom distributions together).
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Figure 3.28: The number of ions extracted that originate in each quadrant for the top and
bottom (simulated together) ion distributions, as well as for reduced distributions. The number
of ions scales with the percent reduction (50% and 75%) of the original distribution.

Since it seems that only the outer ions in the cloud are affected by the currents, the
radius of interest from the probe tip can be adjusted to compare the ion extraction
efficiencies. As the radius from the probe tip increases, there is a sharper drop in the
extraction efficiency for larger fluid fields, as shown in Figure 3.29. For ions within 0.53
cm from the edge of the probe tip, these LXe currents do not have any effects on the
extraction efficiency even at the greatest (> 5 mm/s) applied velocity fields.
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Figure 3.29: The effect of the currents on the extraction efficiency in the LXe volume for
varying probe distances for Distribution A.

The same studies can be repeated for a reversed fluid field direction by redefining the
inlet and outlet regions in the vessel’s geometry and their respective initial pressures.
The same trends are observed in this case.

To conclude, the precise capture radius of a given model may be found by passing a large,
finely spaced particle distribution into the simulation, and then filtering out the success-
ful particles (those that interact with a specified boundary) with logical expressions in
COMSOL. A Python script was written to find the capture radius of any combination of
probe tip bias and probe shape. Additionally, the introduction of small thermal currents
to the LXe environment shows no significant effect on the ion extraction efficiency for
realistic drift distances of about ∼ 1 cm from the probe.

3.4.4 Effects of Proximity to Probe on Extraction Efficiency

Given the information in the previous several studies involving probe bias and the fluid
effects, these simulations can be further refined to investigate the effect of distance from
the probe on the extraction efficiency. First, a new particle distribution is defined in Fig-
ure 3.30, called Distribution B; this collection of particles remains a simplification of the
real experimental conditions using a high intensity beam of ions, but it allows for more
efficient simulations. Using SRIM, the final positions of 100 139Ba+ ions in LXe at 165
K and 1 atm are collected after propagating through a Be window of 7.62 µm thickness
and a volume of LXe much larger than the stopping range of the ions. Distribution B is
placed within Model A at various distances from the rounded, biased (-500 V) probe tip
to determine the amount of time needed to collect all of the ions. This study is described
in Figure 3.31. Since for every initial position, the ion extraction efficiency is always 100
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%, it is more descriptive to plot this data in terms of the time required to reach 100 %
efficiency.

Figure 3.30: A particle distribution of 100 139Ba+ ions. The particle positions were simulated
with TRIM, after allowing 100 139Ba+ ions to pass through a Be window of 7.62µm thickness
and a volume of LXe at 165 K and 1 atm. The maximum stopping range is 0.156 mm into the
LXe for a beam energy of 10 MeV/u.
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Figure 3.31: Ion cloud initial distances from probe as a function of time until all of the ions
reach the probe boundary for 100 139Ba+ ions in LXe. The studies were performed using the
Creeping Flow and Laminar Flow fluid models, and on both sides of the probe for Model A.

The same study is performed for Model B, with solving laminar flow, which is the less
stiff solver for fluids compared to creeping flow, and very similar results are observed
with slight discrepancies between the two fluid models at larger distances past 1.5 cm.
Additionally, releasing the ions in Quadrant 1 gives the same results as Quadrant 3 in
Model A, thus the fluid velocity field does not appear to change the efficiency. Perhaps
the fluid velocity field would have implications on the extraction efficiency at larger
distances, especially in a liquid medium; however, distances larger than 2 cm are not
applicable to the experimental setup, since the beam will be implanted much closer than
the maximum distance studied because of the nozzle.

Ultimately, if the ion mobility value used in these simulations deviates from the true
value, the effects on the extracted efficiency can be calculated. Using Model B, for
a LXe environment at 1 atm and 165 K, and a -500 V voltage applied to the probe
tip, a particle distribution of 139Ba+ as in Figure 3.30 is released from the position
with coordinates (-2.5 cm, 0 cm, 0 cm). The time required to collect all 100 particles is
recorded for a collection of ion diameter values, from 100 pm to 2500 pm, and the results
are shown in Figure 3.32. Given an estimated ion mobility value of 2.11e-4 cm2/Vs for
139Ba+ in LXe [69], a 33.3 % increase or decrease in the corresponding ion diameter of
1579.45 pm would result in an ion collection time of ± 66 seconds. Ultimately, in the
simulations, if the mobility value is "incorrect", then the same trends would be observed
for any efficiency studies, only scaled up or down by a certain predictable factor.
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Figure 3.32: The collection time to achieve 100 % efficiency as a function of the ionic diameter.
The data is collected from a simulation of 100 139Ba+ ions in LXe at 1 atm and 165 K starting
2.5 cm from the centre of the geometry.

3.4.5 Feasibility of Commissioning with Other Liquid and Gas Noble
Mediums

For economical and commissioning purposes, the possibility of using gas and liquid
mediums other than LXe is investigated. Due to availability, the use of gaseous argon
(GAr) is appropriate for initial tests. Afterwards, the feasibility of using gaseous xenon
(GXe) prior to employing LXe is investigated. Several parameter ramping simulations
were performed to determine experimental settings for pressure and temperature of the
GAr medium, as well as the probe bias.

In each of these different media, there are numerous simultaneously-changing parame-
ters, ie., the media’s dynamic viscosity, temperature, pressure, and the submerged ion’s
mobility. The ionic radius varies due to the clustering effect, which is how this chang-
ing ion mobility is incorporated into the simulation. The radius is calculated for each
medium from ion mobility values from literature using Equation 3.28, and the values are
summarized in Table 3.2.
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Medium Dynamic Viscosity η Temperature Ion Mobility Particle Diameter
(Pas) (K) (cm2/Vs) (pm)

LXe 0.000510037 165 2.11e-4 [88] 1579.45
LAr 0.0026271 87 8.6e-4 [120] 752.34
GXe 0.000021118 273 ∼0.58 [121] 13.88
GAr 0.000021007 273 ∼ 2.322 3.48

1.80 [122] 4.49

Table 3.2: Ion mobility values from literature for singly charged 139Ba1+ in various media, and
the corresponding ionic radius for simulation purposes.

The ion mobility value for 139Ba1+ in LAr is sourced from an EXO-200 experiment
performing radon-polonium coincidence measurements to get 218Po1+ in LAr, and as-
sumptions to equate the ion mobilities of Ba and Po ions apply. It is commonly assumed
for simulation purposes amongst collarborators that these two ions would exhibit similar
behaviour in LXe. The ion mobility value for 139Ba1+ in GXe is derived from a theory
article using density functional theory and computational ion mobility theory to discuss
the clustering and drift properties of Ba-ions (in GXe). By comparison of the mobility
in LXe and LAr, the value in LAr is approximately a factor of 4 larger than that of
LXe. As a benchmark, it is assumed that the same scaling applies between GXe and
GAr, giving a mobility value of 2.32 cm2/Vs in GAr. This value was used in the GAr
simulations described in this section, however it is not a precise value2.

More in-depth investigations of the ion mobility of 138Ba1+ in GAr are described in a
1990’s experimental article [122]. The effects of the ratio of the electrostatic field strength
to the gas number density, E/n, are explored for the reduced mobility of 138Ba1+, demon-
strating the pressure and electric field dependence of the ion mobility. This relation is
shown in Figure 3.33. The number density n of GAr at STP is found to be 2.69 ×1019

1/m3 from n = NA
M ρm, where NA is Avogadro’s constant, M is the molar mass of argon,

and ρm is the mass density of argon. Given this value, to obtain an E/n value of 1
Td, 269 V is required to be applied on the probe tip. For a bias of -1000 V, the E/n
value would be ∼4 Td, which corresponds to a reduced mobility of ∼1.80 cm2/Vs. This
mobility value remains valid for simulations unless there is a change in the electric field
or the pressure of the gas by a factor of 100 or more.

2The ion mobility value for 139Ba1+ in GAr is based on an assumption.
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Figure 3.33: The reduced mobility of 138Ba1+ ions drifting in Ar at 305 K, as a function of
E/n. Adapted from [122] Figure 1.

The initial particle positions used in the COMSOL simulation were generated with SRIM.
It was assumed that for a maximum available beam energy (10 MeV/u), one hundred
139Ba1+ ions penetrated two layers of material: a thin beryllium window, and a volume
of the medium in question that is much larger than the stopping range of the ions in
this material.

Within Model B, this particle cloud was released from various positions from the biased
probe tip, starting from 1 cm to 7 cm away from the probe. When using gaseous
mediums, the beam particles that will penetrate the window will make it further into
the gas than they would if it was liquid. Various initial positions were taken to evaluate
the optimal position of a nozzle to be placed at the beam window extending inside the
copper cylinder. These simulations serve as an indirect study to the ideal location of
this nozzle, depending on the medium in the vessel.

The electric field generated by the biased probe tip in Model B is shown in Figure 3.34.
In this example, -2000 V is applied to the surface of the probe tip. Once the ions are
released in this environment, their trajectories while travelling in GAr are demonstrated
in Figure 3.42.
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Figure 3.34: The electric field (V/m) of Model B where the substrate of the probe is biased to
-2000 V. The field lines are shown in yellow, converging onto the substrate. Ions are injected on
the left side of the vessel.

Figure 3.35: The trajectories of 100 Ba ions submerged in GAr, as they travel to the probe tip
from the edge of the copper vessel 7 cm away (x-direction). The frames shown are read from left
to right from the top row, and the bottom row. The coloured scale represents the ion velocities
(cm/s), and the frames take place over the course of 30 s.
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In the case where a lower beam energy is used, the particles do not travel as far into
the gas. Nonetheless, simulations suggest that they will always arrive to the probe, it
is a matter of time. Since we wish to reduce the collection time where possible to allow
for more experimental runs, the amount of time taken to achieve 100% efficiency is of
importance. It may also matter depending on the half-life of the studied species. The
ion cloud initial distances from the probe tip are varied for several probe bias values,
using GAr, GXe, and LAr in Figures 3.36, 3.37, and 3.38 respectively. For reference, in
Figure 3.42 shows the ions beginning their journey 7 cm away from the probe (an initial
position of 7cm for the whole ion cloud). The results from Figure 3.36 are summarized
in Table 3.3.

Figure 3.36: Ion cloud distance vs. time for various probe biases in GAr at 1 atm, 273 K.
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Figure 3.37: Ion cloud distance vs. time for various probe biases in GXe at 1 atm, 273 K.

Figure 3.38: Ion cloud distance vs. time for various probe biases in LAr at 1 atm, 87 K.
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Initial Ion Cloud Time to Reach Probe for Various Biases (s)
Distance from Probe (cm) -10 V -50 V -100 V -500 V -1000 V -2000 V

1 94 19 10 2 1 1
2 374 75 38 8 4 2
3 1081 217 109 22 11 6
4 2609 522 261 53 27 14
5 5689 1138 569 114 57 29
6 12120 2424 1212 243 122 61

Table 3.3: Results for Ba ion simulations in GAr at 1 atm and 273 K, as shown in Figure 3.36.
The time required for all ions to be collected on the probe tip is shown for various biases, for a
range of ion starting distances from the probe tip.

The ion travel time increases exponentially when the distance between the ion cloud and
the probe increases. In GAr, for a reasonable experimental probe bias setting of -500 V,
the ion travel time to the probe spans a range from 1 s (at 1 cm from the probe), to 243
s (starting at 6 cm from the probe). Depending on the beam energy used, the stopping
range for 139Ba1+ in GAr at 1 atm and 273 K falls within the probe distances explored
in these simulations. As introduced in Figure 2.12, a beam energy of 0.72 MeV/u would
deposit 139Cs1+ ions 5 cm away from the probe tip, and higher beam energies of 3.6
MeV/u would bring the ions within millimetres from the probe tip. The effect of the
probe bias magnitude on the ion travel time increases with the ion cloud distance; for
instance, when comparing the two extreme scenarios of applying -10 V and -2000 V to
the probe, the difference in the ion travel times is 93 s for 1 cm, but it increases to
12059 s (∼3.3 h) for a distance of 6 cm. This effect would result in practicality concerns
during experimental runs, favouring high voltages applied to the probe only if necessary
in cases where beam energies are expected to be low. The same trends are observed in
all of the simulated media.

Krypton would also suffice in the initial phases of the experiment. However, the precise
ion mobility value of Ba in gaseous krypton (GKr) is experimentally unknown and as of
current times, there is no reliable value from literature; the value lies between that of
GXe and GAr. For this reason, simulations involving GKr would only lead to estimations
in the time required to reach 100 % extraction efficiency. The experimental apparatus
would be able to keep krypton in the required temperature ranges for these studies, as
the melting point is 116 K for GKr [100].

3.4.6 Modifications to Beam Entrance Window

Since the initial distance of the implanted ions is a critical parameter in the process of
ion extraction, methods to control it other than varying the beam energy are explored.
One possibility is the addition of a nozzle extending inside the LXe volume, bringing the
implanted ions closer to the probe tip. This subsection summarizes the effects of these
modifications to the simulation geometry.
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The electric potential of the setup and the fluid velocity field of the LXe are shown in
Figure 3.39 when the nozzle is placed 1 cm away from the probe tip. This simulation
geometry will be referred to as Model C. The nozzle is defined as a hollow, stainless steel
object with a thin Be sheet on the circular face in the simulation. It has no visible effect
on the electric field produced by the biased probe tip. However, the fluid velocity field
does differ when compared to Model B. As demonstrated in Figure 3.39, there is almost
no flow field at the region of LXe between the nozzle and the probe tip (region in blue).
However, the lack of fluid field does not seem to affect the ion extraction efficiency.

Figure 3.39: Left: The electric potential (V) of the model, with -500 V applied to the probe
tip substrate. Right: The fluid velocity of the LXe medium at 1 atm and 165 K.

More complexities are also included with regards to the ion distribution used in these
simulations, now containing 15,000 particles instead of 100 as in Distribution B. This
new set of particles, named Distribution C, was also generated by SRIM, after passing
Ba ions through a Be layer of 7.62 µm in thickness, and an adjacent volume of LXe.
Distribution C is depicted in Figure 3.40, and these ions are placed 0.15 mm from the
nozzle on the x axis (assuming a maximum ion beam energy in LXe).
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Figure 3.40: Distribution C consists of 15,000 particles, and their positions shown are calculated
by Monte-Carlo SRIM simulations of Ba ions travelling through a Be (window) and LXe layer.
For a given beam energy of 10 MeV/u, the ions come to a stop around 0.15 mm, shown on the
x-axis.

The particles arrive in 15 s from 1 cm away, thus no new behaviour is found compared
to previous simulations. It is interesting, however, that the ions all arrive at a localized
point on the probe tip, seen in Figure 3.41, even with such a large particle distribution.

Figure 3.41: The final locations of the Ba ions on the probe tip, where red corresponds to a
higher concentration of particles and blue represents no particles detected.
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The same distribution type was also created with SRIM, but exchanging LXe with GAr.
The same maximum beam energy was used (despite the stopping range being greater
than the distance from the edge of the vessel to the probe) in order to maintain the most
extreme cases of ion straggle (deviations from the y-axis). For lower beam energies, the
implanted ions into gas media would not spread out as much as for higher beam energies;
the limits of the ions’ straggle behaviour is accounted for. When importing this particle
data set into COMSOL, the initial position is manually configured to the edge of the
vessel, as shown in Figure 3.42. Most of the particles successfully reach the probe tip
in less than 5 s with -500 V applied to the probe. From these simulations, it is evident
that for gas media there is no requirement for a nozzle or extension of the beam window,
even for the lowest possible beam energy setting available.

Figure 3.42: The simulated trajectories of 15,000 139Ba1+ ions in GAr at 1 atm and 273 K.
The vast majority of the ions reach the probe in about 5 s.
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Chapter 4

Discussion

COMSOL simulations were performed to investigate Ba ion motion in LXe, LAr, GXe,
and GAr under different experimental conditions. The ion diameter, distance from
probe tip, probe tip bias, and the pressure, temperature, and viscosity of the medium
of interest were varied to study systematic effects and possible ion loss mechanisms on
the ion extraction efficiency.

The ion diameter is inversely proportional to the ion mobility in a given medium and
it is used to set the ion mobility, the most critical parameter in the COMSOL simula-
tion. In LXe, the ion extraction efficiency decreases exponentially as the distance of the
ions’ position from the probe tip increases (for given medium and probe bias settings).
Optimal voltages to attract the particles at certain distances from the probe are also
explored, as a method to combat particle loss and drift the ions in the shortest, most
practical amount of time.

The feasibility of using noble gases and liquids (other than LXe) is explored to allow
successful commissioning of the apparatus and to understand systematics related to the
experimental setup and conditions. It appears that GAr is a good candidate medium for
a phased approach in commissioning the experimental setup. With the simulations dis-
cussed, a clearer understanding of the conditions and Ba ion behaviour is cultivated prior
to making a precise measurement of extraction efficiencies. Performing the simulations
with multiple media plays a role in bench marking, as experimental data for various
media and conditions can determine if the simulation is capable of making accurate
predictions.

Additionally, the effects of small thermal currents on the ion extraction efficiency in
LXe are investigated. By introducing a fluid velocity field in the simulated LXe, it
is found that the ion extraction efficiency is unaffected for certain proximities to the
probe tip, but it entirely depends on the magnitude of the thermal current. This finding
emphasizes the importance of maintaining a constant temperature and pressure within
the LXe vessel during the experiment, as well as implanting the ions as close as possible
to the probe tip.

This work is crucial to determine the optimum experimental configuration and conditions
prior to the experiment, and to ultimately determine the extraction efficiency of Ba ions
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from LXe in a controlled environment. Once insights are made towards this goal, this
technique may be incorporated into the wider scheme for Ba-tagging, and eventually the
nEXO detector.

4.1 Future Outlook
Now that a realistic simulation has been constructed specifically for the planned ra-
dioactive beam experiments at TRIUMF, the simulations can be advanced to include
functionalities involving more ions. Particularly, the initial ion distributions can be re-
leased more than once, at a time interval corresponding to a certain beam intensity
(within the computational memory limits). In addition, it may be possible to study how
many layers of Ba ions can accumulate onto the probe tip surface to determine if any
modifications are required to the probe bias during operation.

There is also a possibility for the need to incorporate particle-particle interactions in
the simulation, but this depends on the beam intensity for the exact isotope in use.
Particle-particle interactions of the implanted ions are neglected in the current simu-
lations because the space charge effects are negligible for the number of Ba ions used;
these effects may become important if the space charge density of the implanted ions
becomes ∼ 1 million charges/cm3.

Once the setup has been commissioned with Ba and extraction of Ba from LXe has
been demonstrated successfully, the next step would be to implant pure 139Cs beam
and allow it to decay to mimic a ββ decay and extract the decay daughter 139Ba. This
scenario would more closely resemble the potential 0νββ decay in 136Xe for nEXO, since
the decay daughter 136Ba is produced within the LXe volume if extracted and identified
with the electrostatic probe. Also, implanting different beam isotopes with different half
lives opens up the potential to study systematic effects based on decay rate.

Depending on the initial commissioning results, it may also be worth investigating the
effects of adding field shaping rings within the copper cell; this may allow the beam
particles to be deposited into LXe without a beam port nozzle if the electric field is
guiding the ions from the edge of the vessel. In addition, a set of quadrupoles on the
beamline has the potential to unintentionally expose the apparatus to a magnetic field;
this field could be added to the simulation to minimize ion losses.

In subsequent steps of the experiment, it will be tested to move the probe into the
LXe cell after ions were implanted into the medium. This scenario could be simulated
with COMSOL as well, and it would more closely resemble the capillary ion extraction
technique.

The third and final experimental phase involves the implementation of silicon photomul-
tipliers (SiPM). SiPMs have been chosen as the devices to detect the vacuum ultraviolet
(VUV) scintillation light for nEXO. SiPMs are silicon devices with single photon sen-
sitivity, and are approximately 1 cm2 in size; they have a quantum efficiency of about
15% at 175 nm– the wavelength of the 136Xe scintillation light.
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The LXe volume, instrumented with SiPMs, will be connected to the beamline. Longer-
lived Cs isotopes will be implanted into the LXe cell, without any electrostatic probe
initially present. The radioactive decays of the implanted Cs will be detected by the
SiPMs, and the daughter ions of the Cs-decays will be extracted with a probe. The
daughter Ba atom or ion will be identified using laser spectroscopy either in ice or in
vacuum. At first, this will be done with multiple decays, and eventually with only a single
Cs decay. Eventually, the goal is to achieve single Ba ion capture with the electroprobe–
not only clusters of barium ions as simulated.

86

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


Appendix A

Saturation and Decay Chain Plots

Figure A1.1: The saturation curve for Ar. The red diamond denotes
the triple point.
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Figure A1.2: The saturation curve for Ar. The red diamond denotes the triple point.
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Appendix B

Beam Delivery of 139Cs and 139Ba

Figure A2.1: Beamline and accelerator network for the ISAC experimental halls [93].
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Realistically, after consultation with the Beam Delivery Group at TRIUMF, the beam
composition will be 1:1 139Cs and 139Ba. This would not hinder the capability of demon-
strating electrostatic ion extraction with a probe. The half lives and available yields of
these isotopes are summarized in Table 2.2. Cs beams have been demonstrated in the
past to be deliverable at adequate intensities using a UCx target. The total transmission
efficiency of the target is on the order of 10−4. Higher efficiencies would be possible once
CANREB becomes available for later phases of the experiment by skipping directly to
the 32+ charge state. If a very high charge state is used, such as 45+, and closed shell
breeding, additional background reduction will be possible. This possibility requires
EBIS operation at full electron beam power, and improved vacuum conditions around
the RFQ. In Phase 1 and 2, the isobaric contaminants are not a concern because they
have unique γ spectra. For Phase 3, the contaminants become of importance because
daughters of single Cs decays will be studied, and a high Ba contamination in the Cs
beam may create an unwanted background. Further beam development to reduce this
contaminant will be crucial.

The required beam current is estimated using 139Cs as an example. A signal-to-background
ratio of 30 was attained at an initial minimum count rate of R0 = 3 counts/s for 139Ba
166 keV line in the γ spectrum using a past setup test. With a conservative 1% Ge
detector efficiency for the 166 keV line, the initial Ba activity on the probe is given by:

A0 = R0
ϵT ot

= 300 Bq. (B.1)

After about 30 minutes, a sample of 139Cs would undergo three half-lives resulting in
87.5 % of the initial Cs decaying into Ba. This amount of time is sufficient for populating
the sample with adequate quantities of Ba, which suggests that the minimum number
of Cs ions to be implanted in the volume should be 3 · 106 ions. With a beam exposure
time from 5 to 10 minutes, the minimum ion current required is approximately

Ibeam = (4.5 − 9) · 103 139Cs ions/s. (B.2)

The estimated beam intensity is below the currently available 139Cs beam at TRIUMF,
outlined in Table 2.2. After considering the transmission efficiency, however, this inten-
sity may decrease to approximately 104 or 105 pps, depending on the isotope species.
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Appendix C

Extraction Efficiency Plot

Figure A3.1: The extraction efficiency of Ba in LXe as a function of time for various probe
bias settings using Model A and Distribution A.
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