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ABSTRACT

A numerical study for steady laminar double-diffusive natural 

convection within a vertical closed annulus is examined with a constant 

temperature and mass species (concentration) difference imposed across 

the vertical walls. System parameters are the thermal Rayleigh number, 

the buoyancy ratio, the Lewis number and the Prandtl number, with the 

aspect ratio and the curvature ratio as the physical enclosure 

parameters.

The effect of the buoyancy ratio, thermal Rayleigh number and 

Lewis number was investigated on the flow structure and the average 

Nusselt and Sherwood numbers. Resulting flow structures were found to 

fall into three categories: mass species buoyancy force dominated 

circulation, thermal buoyancy force dominated circulation and 

transitional flow. It was determined that the solutions in the flow 

reversal range are not unique, with two or three solutions for the same 

parameters depending on the original flow conditions. The extent of 

this flow reversal range is defined by upper and lower critical buoyancy 

ratios which are influenced by the Lewis and thermal Rayleigh numbers.
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NOMENCLATURE

a Coefficient in discretization equation (SIMPLER)

b Source term in discretization equation (SIMPLER)

Ar Aspect ratio [ H/R ]

C Mass fraction of constituent

C Dimensionless concentration [(C - C )/(C - C )]
r i o

d Coefficient of pressure-difference term (SIMPLER)

D Mass diffusivity of constituent through the fluid mixture

D Diffusion conductance (SIMPLER)

F Flowrate through a control volume face (SIMPLER)

g Gravitational acceleration

Gr Mass species Grashof number [ gp (C - C )R /v ]
c ~ c i o

_ _ _ _ . _ . . . . _3 . 2 ,Gr^ Thermal Grashof number [ ^^(T^ - T )R /v ]

h Convective heat transfer coefficient

hm Convective mass species transfer coefficient

H Height of enclosure

k Thermal conductivity

K Curvature ratio [ r /r ]

i Cell size increase percentage for non-uniform grids

j" Mass species flux

J Total (convection + diffusion) flux (SIMPLER)

L Characteristic length for two-dimensional test case

Le Lewis number [ a/D ]
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m Number of cells across enclosure

n Buoyancy ratio [ ^(VCV^-TJ ]

Nu Local Nusselt number
★ •sir[dT /dr ]

Nu Average Nusselt number

P Pressure
* P Dimensionless pressure [ PR2/Pr«2 ]

Pe Peclet number [ u Ar/r ], [ v Az/r ]

Pr Prandtl number [ ]

q" Heat flux

r Radial coordinate
* r Dimensionless radial coordinate [ r/R ]

R Radial difference [ r -r ] 
o i

R Field equation residual

Ra c Mass species Rayleigh number [ (C -C )R3/Dp ]
CIO

Ra T Thermal Rayleigh number [ gd (T -T )R/ai/ ] 
T i o

S Number of thin cells for semi-uniform grids

S Source term (SIMPLER)

Sc Schmidt number [ ^/D ]
* *Sh Local Sherwood number [dC /dr ]

Sh Average Sherwood number

t Time

T Temperature

T Dimensionless temperature [ (T-Tp/CT^-T^) ]

u Radial velocity

u Dimensionless radial velocity [ uR/a ]

v Axial velocity
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v Dimensionless axial velocity [ vR/a ]

z Axial coordinate

z Dimensionless axial coordinate [ z/R ]

Greek Symbols

a Thermal diffusivity

Mass species expansion coefficient

Thermal expansion coefficient

6 Distance between two adjacent grid points (SIMPLER)

A Difference, Width of control volume (SIMPLER)

Dependent variable (SIMPLER)

T Diffusion coefficient (SIMPLER)

v Kinematic viscosity

w Underrelaxation factor

rj Tridiagonal matrix algorithm (TDMA) overrelaxation factor

p Fluid density

Streamfunction
*$ Dimensionless streamfunction [ ^/Ra ]

Subscripts

c Mass species

e,w,n,s East, west, north and south neighboring control volume faces

e,w,n,s East, west, north and south neighboring grids points (SIMPLER)

i Inner radial wall

i,J Computational space coordinates

nb General neighbor grid point (SIMPLER)

o Outer radial wall
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r Reference

p Central grid point under consideration (SIMPLER)

t Thermal

Superscripts

* Non-dimensional

' Non-dimensional for flux boundary conditions, or

Correction value (SIMPLER)

Average

- Guessed value (SIMPLER)

* Pseudo value (SIMPLER)

m Iteration step
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CHAPTER ONE

INTRODUCTION

1.1 Introductory Remarks

The study of convection produced by unbalanced density gradients 

in a fluid, otherwise known as natural convection, has been extensively 

studied. When the unstable density gradient is subjected to a 

gravitation field, natural convective fluid flow will result. The 

density gradient can usually be created by a temperature gradient or a 

concentration gradient.

Most numerical studies have attended to cases of temperature 

variations due to heat transfer as the single driving force. However 

more recently, attention has been paid to the simultaneous presence of 

two components with different diffusivities. This type of flow is 

referred to as double-diffusive natural convection, in which a whole 

range of interesting phenomena can be studied and applied.

1.2 Conf igurat ions

Thermal natural convection studies have almost extensively 

examined all types of configurations for external and internal flows. 

External flow studies usually examine flow occurring around a submerged 

body. The heated or cooled vertical plate would be a more well known 

case, however other external flow configurations such as horizontal flat 

plates, vertical and horizontal cylinders, and spheres have also been 
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examined. The majority of numerical studies of internal flow have been 

limited to two dimensional rectangular enclosures. However, a few 

studies have been performed on vertical and horizontal closed cylinders, 

or other irregular geometries. In double-diffusive natural convection 

most, if not all, numerical studies have been performed with two 

dimensional rectangular coordinates. At the present time there is a 

need to expand this field to include other geometries. The present 

study attempts to do this by examining the heat, mass and laminar flow 

characteristics for a closed annulus in axi-symmetric coordinates.

1.3 Analogy of Heat and Mass Transfer

The concept of mass transfer is very similar to heat transfer, 

where as the temperature difference is the driving potential for heat 

transfer (Fourier's law), the concentration difference is the driving 

potential for mass transfer (Fick's law).

Fourier's law Fick's law

q" . ST 
dx j" n ac p D^r

The similarity between heat and mass transfer is given in table 1.1.

Table 1.1 Similarity of Heat and Mass Transfer.

Variable Heat Mass

Potential AT AC

Flux q" j"

Flux (Non dimens.) Nu Sh

Diffusivity a D

Diffusivity (Non dim.) Pr Sc

Expansion Coef. ^T
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1.4 Double-Diffusive Applications

Natural convection is caused by the density gradient due to the 

concentration and temperature gradients. Many occurrences of 

double-diffusive natural convection are found in nature and technology. 

In nature, double-diffusive natural convection may be found in flows of 

water containing suspended particulate or dissolved materials which 

increase the local fluid density acting along with temperature 

gradients. A prime example of this is in the study of oceanography 

where thermal and salinity gradients drive the flow (an example of this 

is when sea water intrudes into fresh water), this is also known as 

thermohaline or thermosolutal convection [1]. Atmospheric flows also 

can be considered to be double-diffusive with temperature and water 

concentration gradients. Astronomers have suggested that double- 

diffusive convection occurs in large stars in which the helium rich core 

is heated from below while cooler hydrogen exists outside the core [2]. 

Double-diffusive convection can also be applied to the fields of geology 

and geophysics where chemical and thermal differences at the core-mantle 

boundary within the Earth drive magma flow [3].

Technological applications of double-diffusive natural 

convection are also as widespread. Examples include cleaning and drying 

operations, where residual fluids diffuse into a surrounding fluid 

medium at a different temperature. Liquid gas storage, transpiration 

cooling, energy storage in solar ponds [4], material processes such as 

solidification, oxidation of surface material [2] and the fouling of 

piping and fluid storage components also entail such flows. Recently, 

there has been an increased interest in the role double-diffusive 
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natural convection plays in crystal-growth techniques where temperature 

and concentration differences are evidently required for crystal growth 

[5]. Simultaneous heat and mass transfer is not only important for its 

engineering applications, but also for the understanding of the physics 

involved. Some of the examples are listed with the driving forces in 

table 1.2 [6].

Table 1.2 Simultaneous Heat and Mass Transfer Processes and 
Driving forces.

Application Species AC AT

Evaporation Water Vapour Csurface Tsurface
of water - Cmo i s t air - Tmo i s t air

Frost Water Vapour 0 - Cm o i s t air Tf r o s t
Formation - Tmo i s t air

Drying of Solvent Cwa11 - Ca i r Twa11 - Tai r
Painted
Surfaces

Melting of Ice Water 1 - Cs e a water Tice
in Sea Water - Tsea water

Chemical Metallic Salt Csurface Ts o1i d
Leaching - Csolute - Tsolute

1.5 Orientation of Driving Forces

Problems that involve the simultaneous presence of temperature 

and concentration gradients are considerably more complex than problems 

with a single driving force. For a single driving force in an enclosure 

(temperature and concentration gradients are interchangeable in this 

case), there are two modes of convection depending on the orientation of 

the density gradient with respect to the gravitational or body force 
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direction. If the density gradient is perpendicular to the body force 

(fig. 1.1a), flow will result and is referred to as conventional natural 

convection. If the density gradient is parallel and acting in the same 

direction as the body force no flow is possible due to the stratified 

stabilizing effect of the density gradient; heat or mass diffusion will 

occur as if the fluid is solid. However, if the body force and the 

density gradient are opposed, and a critical value for the density 

gradient is exceeded, flow will result in the form of rolling cells or 

vortices (fig. 1.1b), this is referred to as the Benard convection 

problem.

With the simultaneous action of both temperature and 

concentration gradients more configurations for different orientations 

are possible. The combinations of the two gradients are displayed in 

figures 1.2a through 1.2d. In figures 1.2a and 1.2b the temperature and 

concentration gradients are parallel to each other. In case (a) the 

opposing concentration and temperature gradients augment the density 

gradient. A positive concentration gradient will tend to produce a 

positive density gradient, whereas a positive temperature gradient 

produces a negative density gradient. In case (b) the temperature and 

concentration gradients are aligned and suppress the resulting combined 

density gradient. If the strength of the concentration and temperature 

gradients are equal and the two components have matched diffusivities 

the flow will be impeded, resulting in heat conduction and mass transfer 

through molecular diffusion only. The effect of the temperature and 

concentration gradients on the buoyancy forces will be discussed later.
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If the temperature and concentration gradients are 

perpendicular, two outcomes may result. In figure 1.2c the vertical 

stabilizing concentration gradient tends to retard the flow produced by 

the horizontal temperature gradient. When the temperature and 

concentration gradients are interchanged and the direction of the 

temperature gradient is reversed the same retarding influence will be 

generated. In case (d) the direction of the concentration gradient is 

reversed leading to a flow condition where the unstable influence of the 

concentration gradient will enhance the flow. Again, if the two 

components are interchanged and the direction of the temperature 

gradient reversed the same flow condition would follow.

1.6 Aiding and Opposing Flow Conditions

In this study we are only interested with the suppression and 

enhancement of the horizontal density gradient as depicted by case (a) 

and (b) in figure 1.2. The effect of the temperature and concentration 

gradients on the buoyancy forces are shown in figure 1.3. In figure 

1.3a the enhancement of the concentration and temperature gradients 

create clockwise buoyant flow; this is known as aiding flow. However, 

in figure 1.3b the component of the density gradient influenced by the 

temperature gradient suppresses the other density gradient component 

caused by the concentration difference. The actual direction of the 

overall buoyancy force in this opposing flow condition is determined by 

the magnitudes of the temperature and concentration gradients (thermal 

and mass species Rayleigh numbers) along with the ratio of the thermal 

and mass species diffusivities (Lewis number).



Aiding Flow Opposing Flow

Figure 1.3 
Effect of Concentration and Temperature Gradients on Buoyant 
Flow

Buoyant Flow due toAT ► Buoyant Flow due to AT ►

Buoyant Flow due toAC Buoyant Flow Due to AC

00
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1.7 System Parameters

Dimensional analysis shows that six main parameters exist for a 

closed annulus in axi-symmetric coordinates. These include geometric 

parameters such as the aspect ratio, Ar (ratio of the enclosure height 

to the radii difference) and the enclosure curvature ratio, K (ratio of 

the outer and inner radii of the enclosure). Fluid property parameters 

include the Prandtl number, Pr (ratio of the kinematic viscosity and the 

thermal diffusivity) and the Lewis number, Le (ratio of the thermal 

diffusivity and the mass species diffusivity). The thermal Rayleigh 

number is the measure of intensity of the temperature difference on the 

density gradient. The buoyancy ratio, n, is the ratio of the buoyancy 

forces due to the imposed concentration and temperature differences. If 

the buoyancy ratio is multiplied by the thermal Rayleigh number and the 

Lewis number, the mass species Rayleigh number can be obtained. 

Derivation of the governing equations and implementation of the boundary 

conditions for double-diffusive natural convection will be discussed in 

Chapter 3. Figure 1.4 is adapted from Han [4] and demonstrates the 

general flow regions and transport conditions as a function of the Lewis 

number (Le) and buoyancy ratio (n). As n approaches +co the flow will 

resemble that of pure mass transfer, whereas if n = 0 pure heat transfer 

will result. At Le » 1 the mass species and thermal diffusivities are 

equal such that the net buoyancy force is the sum of the component 

buoyancy forces (refer to the simple additive flow region in fig. 1.4). 

The region bounded by the four "U" shaped boundaries (Le - 1, n = 0, +«) 

can be approximated by single-diffusive natural convection. A special 

case occurs at Le = 1 and n = -1 where a no flow condition results due
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to the non-existent net buoyancy force (at this point the component 

buoyancy forces cancel each other). For n > -1 upward flow will result 

(assuming the surface is heated not cooled), whereas for n < -1 downward 

flow will result. If Le is greater than unity and n is less than 

negative unity a transition zone from downward to upward flow may 

develop. Consequently, n > -1 for transition to occur for the case of 

Le less than unity. Basically for transition to occur the buoyancy 

force of the less diffusive constituent must be greater than the 

buoyancy force of the more diffusive component.

1.8 Objectives

The objectives of this study are to examine laminar 

double-diffusive natural convection due to lateral temperature and 

concentration gradients for a closed annulus with an aspect ratio of 

one. The vertical walls are maintained at different uniform 

temperatures and concentrations such that both aiding and opposing 

buoyancy effects can be investigated. The top and bottom walls are 

considered to be adiabatic and impermeable to mass transfer. The study 

is limited to an enclosure curvature ratio of 2, and the fluid modeled 

is a water based solution with a Prandtl number of 7.

Numerically, the governing equations are solved using the finite 

volume SIMPLER algorithm developed by Patankar [7] in which the power 

law approach for discretization is applied across the control volume 

boundaries. The governing equations along with the boundary conditions 

are derived for laminar steady state equations of mass, momentum, 

thermal energy and mass species in axi-symmetric coordinates.
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System parameters are extended over a wide range for the present 

study. The effects of the buoyancy ratio for a given thermal Rayleigh 

number and Lewis number are examined in detail. The hydrodynamic, 

temperature and concentration fields along with the overall heat and 

mass transfer rates from the vertical surfaces are also investigated.

The conditions for flow reversal are examined by varying the 

buoyancy ratio for various thermal Rayleigh numbers and Lewis numbers 

under opposing flow conditions. The influential parameters are 

identified for this phenomenon, where the flow structures and the 

overall Nusselt and Sherwood numbers (dimensionless temperature and 

concentration gradients) are closely inspected. The thermal Rayleigh 

number and the Lewis number are investigated for their effect on the 

critical buoyancy ratio. Finally, recommendations for further studies 

are made.



CHAPTER TWO

LITERATURE SURVEY ON DOUBLE-DIFFUSIVE NATURAL CONVECTION

2.1 Initial Studies

One of the first studies of double-diffusive natural convection 

came in the study of oceanography where the process is called 

thermohaline convection. Much work has been done on the study of salt 

fountains and fingers where convection is due to opposing thermal and 

salinity gradients aligned with the gravity vector (Turner [1] presents 

a good discussion of these effects). Stommel, Arons and Blanchard [8] 

provided the initial idea for the development of double-diffusive flow. 

Consider, if a long vertical metal tube is inserted vertically in the 

ocean where warm salty water is at the surface, and cooler less saline 

water is at the bottom of the pipe. If the water were to be initially 

pumped up through the pipe and allowed to reach thermal equilibrium with 

its surroundings at the same level (the metal tube is assumed to conduct 

heat but is impermeable to salt) it would be lighter than the 

surrounding water due to its low salinity content. This in effect would 

cause an upward buoyancy force resulting in a salt fountain if the 

externally applied pressure difference were to be removed (see figure 

2.1a) [1]. If the flow were started downward, it would also continue to 

flow due to the more saline water cooling and becoming more dense than 

the surrounding less saline water.

13
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The opposite case can also happen where warm salt water lies 

underneath colder fresher lighter water. Assume that a portion of the 

warm salt water is enclosed in an elastic heat conducting shell (figure 

2.1b) and is displaced upwards. As this parcel of fluid rises it will 

lose heat but not salt, resulting in a denser fluid. The buoyancy force 

will drive it back down beyond its initial position thus producing an 

oscillating flow. In fact these oscillations can grow provided the 

dampening effect of the surrounding fluid is not too large. There would 

also be a time lag between the temperature of the fluid within the shell 

and the surroundings which further enforces the oscillations. Both salt 

fountains and oscillations can be demonstrated in the laboratory [9]. 

Stern [10] points out that shells or solid boundaries are not necessary 

for the previous examples. Similar motions can occur in the interior of 

the fluid due to the slower transfer of mass in relation to the transfer 

of heat ensured by the lower mass to thermal diffusivity of the salt 

water. Salt fingers are similar to salt fountains where rapid salt 

convection occurs in the form of tall thin columns of fluid alternately 

ascending and descending due to the stabilizing effect of the thermal 

gradient being overcome by the lateral diffusion of heat. The upper 

part of the fluid being more saline than the lower part (heavier fluid 

above lighter) provides the main driving force for this phenomenon.

2.2 Analytical Studies

The majority of analytical double-diffusive natural convection 

studies have been performed on simple configurations, usually a vertical
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flat plate, where boundary layer analysis has been extended from pure 

heat transfer analysis to include the additional effect of mass 

transfer.

One of the first studies into the analytical examination of 

double-diffusive natural convection was performed by Somers [11], where 

he considered the effects of thermal and mass transfer from a vertical 

flat plate. Evaporation and condensation effects were modeled from a 

wetted isothermal plate using an integral approach. A correlation of 

the average Nusselt and Sherwood numbers was determined for aiding flow 

where the Schmidt Prandtl ratio (Lewis number) is near unity. Somers 

concluded that the effect of the mass species Grashof number on the 

solution was modified by the square root of the Lewis number.

Wilcox [12] used an integral approach to find solutions for zero 

wall velocity and for mass transfer velocities for a vertical plate. 

The plate was either insulated or held at a uniform temperature. 

Results were determined for a range of Prandtl numbers from 0.01 to 1000 

using arbitrary assigned velocity, temperature and concentration 

distributions. As with Somers, Wilcox reasoned that the square root of 

the Lewis number was a good approximation for modifying the mass species 

diffusive component of the aiding buoyancy force, especially when the 

Lewis number approaches 1. Transport conditions were compared with 

exact results for pure thermal diffusion driven flows, where differences 

were notable such that solutions were reasonable only for a small range 

of Prandtl numbers. Consequently the comparison does not validate the 

use of the simple integral approach for aiding double-diffusive free 

convection for a wide range of Prandtl numbers.
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Gill, Del Casal and Dale [13] studied the effects of individual 

and various combinations of variations in species enthalpy, thermal

conductivity, viscosity and density with concentration on free 

convection along a vertical plate for a binary gas system. Exact

solutions for the nonlinear system of three coupled equations were

obtained by integrating and numerically solving these equations by a

method developed by the authors. Solutions were presented for systems 

where air was the ambient gas (Pr — 0.72, Sc — 0.25) and H^, He, 

H 0 , and CO were introduced at the plate surface. The
2 (vap) 2

wall/ambient temperature ratio was 1.1 where all properties were 
o evaluated at 200 F. Numerical results were obtained to demonstrate the 

relative importance of the various effects.

Taunton, Lightfoot and Stewart [14] examined the flow transport 

over a flat vertical two dimensional plate numerically; aiding and 

opposing flow effects were considered and an approximate procedure for 

predicting the onset of flow separation was offered. However, results 

for countercurrent flow were not offered (flow occurs in opposite 

directions beyond the point of separation). Results were determined for 

Prandtl numbers of 0.7, 7 and 1000, with Lewis numbers ranging from 1 to 

1000. Taunton et al. determined that mildly opposing buoyant forces 

(small negative values of n) give similar results as aiding buoyant 

forces (flow occurs in same direction), but the fluid near the wall is 

slowed down. At the critical buoyancy ratio for Le * 1 the velocity 

gradient at the wall will vanish resulting in the zero streamline 

separating from the wall surface. A further decrease in n will result 

in countercurrent flow and eventually to a second separation limit where 
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the flow occurs in the opposite direction. For the special case of Le = 

1 at n - -1 the authors determined that no flow would occur, thus no 

countercurrent flow or separation can occur for Pr - Sc. 

Double-diffusive natural convection results were also presented for 

three dimensional objects including spheres, vertical cones, cylinders 

and fins.

Gebhart and Pera [15] argued that previous studies of flows and 

transport arising from multiple buoyancy causing agencies derived from 

integral method analysis were at variance with experimental and more 

exact analytical results. The primary reason for this variance resulted 

from arbitrary assumptions and formulations which are only reasonable 

when the Prandtl and Schmidt numbers are near each other (le. Le * 1) . 

Gebhart and Pera examined vertical flows adjacent to surfaces and in 

plumes for various Prandtl and Schmidt numbers (0.1 - Sc - 10 for Pr - 

0.7 and 7 * Sc * 500 for Pr - 7) under aiding and opposing conditions; 

interfacial mass velocities were neglected due to low concentration 

levels. Gebhart and Pera found for certain conditions of opposing flow 

(Pr - 0.7, Sc = 0.5, n - -0.5), countercurrent flow occurred within the 

hydrodynamic boundary layer. For small values of Sc and negative n, the 

authors postulated that the negative flow in the outer boundary region 

was due the thicker mass species diffusion layer, whereas the positive 

inner flow boundary region was a result of the thinner but higher 

thermal buoyancy component dominated thermal diffusion layer. This 

result particularly led Gebhart and Pera to believe that earlier studies 

were inappropriate for complicated combined buoyancy mechanisms due to
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the fact that the boundary layer approximation was based on the 

similarity solution for single-diffusive buoyancy flows.

Schenk, Altmann and de Wit [16] repeated Gebhart and Pera's 

calculations for heat and mass transfer about an isothermal vertical 

flat plate in air. Their study only considered aiding flow for a 

Schmidt number range of 0.1 to 10 for a Prandtl number of 0.71. The 

authors confirmed that heat and mass transfer are mutually influenced, 

except for Sc - Pr. However the two effects can be approximated as 

mutually independent (within 2%) for 0.6 < Sc < 0.9 (or 0.85 < Le < 

1.25). These limits are considered to be technologically important 

since they apply to water vapor and carbon dioxide in air.

Nilson's studies [17,18] revealed that a double-diffusive 

counterbuoyant boundary layer may possess the classical self-similar 

structure first investigated by Gebhart and Pera [15] only within two 

distinct and disconnected subdomains of the physical parameter space 

(buoyancy ratio and Lewis number in this case). In the outer dominated 

subdomain, it is the more diffusive of the buoyancy mechanisms which 

controls the primary direction of the flow. Conversely, the less 

diffusive component controls the primary direction of the flow within 

the inner dominated subdomain. Between these two domains there exists a 

third domain of counterflow, in which Nilson determined that 

self-similar solutions were inadmissible. Nilson examined this regime 

of bidirectional flows by using a procedure based on the method of 

matched asymptotic expansions, under the restriction that the Prandtl 

and Lewis numbers must both be large (ie. very small mass diffusion 

coefficient). The borderlines between the flow regimes along a vertical
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flat plate were mapped out and may be used as a possible guideline for 

other configurations:

(i) unidirection downflow occurs when n s -Le (inner dominated)

(11) unidirection upflow occurs when n - -Le (outer dominated)
............... . „ . . . 1/3 (in) bidirection counterflow occurs when -Le i n t -Le

These guidelines are based on the assumptions that the surface in 

question has a higher temperature and a high concentration than the 

surroundings, if this is not the case the flow directions are simply 

reversed. If the Lewis number is less than unity the conditions for (i) 

and (ii) are reversed, and finally if Le - 1 then counterflow will not 

occur.

Chen and Yuh [19] examined the combined heat and mass transfer 

in natural convection over an inclined plate. Similarity solutions were 

obtained and numerical results were presented for water and air over a 

range of Schmidt numbers (0.2 to 10 for Pr = 0.7 and 7 to 500 for Pr = 

7). Uniform wall temperature and concentration cases along with uniform 

heat and mass flux cases were examined for buoyancy ratio ranges of -1 

n s 2 and -2 s n s 2 respectively. Solutions were found for decreasing 

buoyancy ratio to the point of flow separation, however there was no 

discussion of the latter, an important aspect of double-diffusive 

natural convection. The authors determined that surface heat and mass 

transfer diminishes as the angle of inclination from the vertical axis 

is increased. Furthermore, uniform heat and mass flux conditions 

provide larger Nusselt and Sherwood numbers than the corresponding 

uniform wall temperature and concentration conditions.
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Similar studies have been applied to geometries other than the 

flat plate. An analytical study on flow transport along a vertical 

cylinder was examined also by Chen and Yuh [20], who investigated the 

effect of cylinder curvature on heat and mass transfer rates under 

aiding and opposing flow conditions. This was one of the first studies 

using axi-symmetric coordinates for natural convection due to 

double-diffusion; the authors attributed the lack of study on this 

problem to the rather difficult mathematical and numerical procedures 

involved in dealing with nonsimilar boundary layers. Solutions were 

found for a practical range of Schmidt numbers for species diffusion in 

air and water where the range of the buoyancy ratio was limited to -0.5 

n s 1, therefore neglecting to examine flow separation and mass 

species dominated opposing flow. The authors found that their analysis 

was in good agreement with the experimental study of Bottemanne [21], 

furthermore they determined that an increase in curvature results in the 

increase of both the local Nusselt and Sherwood numbers.

Hasan and Mujumdar [22] examined the free flow around a 

horizontal cylinder using local similarity and local nonsimilarity 

approaches for both aiding and opposing flow conditions. Solutions were 

found for Schmidt numbers of 0.63 and 2.57 representing water vapor and 

naphthalene diffusing in air, for a buoyancy ratios of -0.5, 0.5 and 2. 

Unfortunately, flow separation and counterflows were not considered in 

this study. The authors concluded that the local similarity approach 

provides reasonably accurate solutions compared to other convention 

approaches, however they found that the local nonsimilarity approach 

generates results that are inaccurate and inconsistent.
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Trevisan and Bejan [23] developed analytical solutions for 

simultaneous heat and mass transfer in a two dimensional enclosure based 

on the Oseen-linearized solution for natural convection due to 

temperature variations in the fluid alone [24]. In the configuration 

the left and right walls had uniform distributions of heat flux and mass 

flux imposed on them, whereas the top and bottom walls were considered 

to be adiabatic and impermeable to mass transfer. The features of the 

boundary layer regime were based on four assumptions:

(i) The boundary layers have a constant thickness (altitude 

independent)

(ii) The core region is motionless and stratified.

(iii) The side wall temperatures and concentrations increase linearly 

with altitude at the same rate as the core temperatures and 

concentrations .

(iv) The fluid has a Prandtl number greater than one (eliminating the 

inertia terms of the momentum equation)

Solutions for the overall Sherwood and Nusselt numbers were determined 

for three simple cases. First, the Lewis number number was held at 

unity for an arbitrary buoyancy ratio, which in this case can be modeled 

as additive flow. Similarity solutions were used to determine the 

results for Le » 1 and |n| « 1 (heat transfer driven flow) and Le « 1 

and |n| » 1 (mass transfer driven flow). In these two cases the 

concentration boundary layer (for the former) and the thermal 

concentration boundary layer (for the latter case) are considered to be 

very small due to the extremity of the Lewis number such that the flow 

can be considered to be driven by a single buoyancy force. The results 
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from these three test cases are not really a major improvement over the 

solutions from single diffusive natural convection in an enclosure 

except for the fact that both the diffusive components flux rates were 

determined and validated against numerical solutions from the same 

study. Nevertheless, it is the first logical step for an analytical 

solution for double-diffusive natural convection in an enclosure.

2.3 Experimental Studies

Many experimental studies have been performed on simultaneous 

heat and mass transfer in enclosures along with free surfaces. 

Evaporation and condensation have been studied in air, whereas 

electrochemistry has been used to stimulate mass transfer in liquids. 

The first experimental studies in double-diffusive natural convection 

were performed in conjunction with the first analytical studies in which 

free convection was studied along vertical surfaces.

Adams and McFadden [25] measured the local heat and mass 

transfer coefficients for subliming p-dichlorobenzene (Pr - 2.23) from a 

heated vertical surface into air. The buoyancy forces were opposed and 

approximately the same. The results were compared to the analytical 

solutions of Somers [11] and Wilcox [12] and were found to be between 10 

and 15% lower. This discrepancy was somewhat expected since the 

analytical results were based on a near unity Lewis number and were 

limited to aiding, not opposing flow situations.

An electrochemical method was used by De Leeuw Den Bouter, De 

Munnik and Heerties [26] to study simultaneous thermal and chemical 

species diffusion in a CuS0^-H2S0*-H20 solution (Pr “ 10 and Sc « 2000) . 

A copper cathode was maintained at a constant temperature for aiding and 
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opposing buoyancy cases, in which upward, downward and oscillitory flows 

were observed. Mass and heat transfer parameters were correlated with 

analytical solutions using the (Le) modifier, which gave good 

agreement for the aiding buoyancy cases. However, for opposing flow 

effects there was a significant disagreement of 30% and beyond, 

confirming that simple analytical solutions are inappropriate in these 

circumstances.

Bottemanne [21] felt that the vertical edge effects that occur 

with flat plates in experimental studies were large enough such that an 

alternative was warranted. His measurements for the evaporation of 

water into air were carried out on a vertical cylinder where the 

diameter was large enough so that only a small correction was needed to 

compare his results with theoretical solutions of flat plates. Only 

aiding flow cases were carried out due to experimental measurement 

difficulties encountered with opposing buoyancy forces. Furthermore, 

Bottemanne did hint that they may be difficulties with the validity of 

boundary layer approximation for these cases. The results from pure and 

simultaneous heat and mass transfer were within 2% of a previous 

analytical study made by Bottemanne [27] such that he concluded that the 

classical boundary layer theory was sufficient for predicting 

simultaneous mass and heat transfer in free convection for problems with 

Sc - 0.63, Pr - 0.71.

The first experimental studies of double-diffusive natural 

convection in enclosures examined the effects of temperature gradients 

on vertically stratified salt solutions. These laboratory experiments 

were attempting to model the vertical temperature and concentration 
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gradients found in oceans possibly due to the phenomenon of salt 

fingers. If a vertical wall is heated or cooled in the presence of a 

vertical stable salinity gradient, a definite layered structure of long 

thin cells of uniform concentration will develop adjacent to the wall. 

Furthermore the salinity of the solution will increase in a step wise 

fashion with depth. Mendenhall and Mason [28] offer an explanation for 

this phenomenon for a cooled wall: suppose that the temperature of one 

side of a container is lowered such that there is a uniform temperature 

difference across the container. If a sufficient density gradient is 

present in the liquid, a portion of the liquid near the cooler wall 

becomes denser than the average such that it descends. As it falls the 

negative buoyancy force decreases in intensity due the relative 

increasing density of the surrounding fluid. When the fluid portion 

reaches its density equilibrium with the surrounding fluid the downward 

flow will cease and the momentum will carry it into the interior of the 

fluid. This equilibrium depth acts as a boundary for this cell layer 

where local convection is established, mixing the fluid such that the 

concentration becomes nearly uniform within the interior of this layer. 

Below this boundary a similar cell will develop with the density almost 

uniform but more than that of the above cell, and in this manner the 

entire volume of liquid is divided into layers.

Thorpe, Hutt and Soulsby [29] examined the growth of cells from 

the top and bottom of a salt stratified container where the vertical 

walls were subjected to heating. The authors found that under certain 

conditions (supercritical thermal Rayleigh number), the convection cells 

or rolls would spring up simultaneously along the vertical wall, and 
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would grow laterally to reach the opposite wall of the container. 

Thorpe et al. suggested that these simultaneous intermediate layers were 

the result of a difference in the diffusivities of heat and salinity and 

the presence of horizontal gradients of temperature and salinity near 

the vertical wall. Near the wall the fluid will warm and rise, but its 

salinity will not change very much due to its small mass diffusivity 

thus creating a horizontal salinity gradient along with lateral 

temperature gradients leading to a physical instability with a layered 

structure. To support this theory, the authors performed a linear 

stability analysis for a case of stable stratified fluid confined 

between two parallel plates. The plates sustained horizontal linear 

gradients in temperature and concentration such that the horizontal 

density gradient is zero. For the onset of instability their solution 

yielded a relationship between the thermal Rayleigh number based on the 

lateral temperature gradient and the solute Rayleigh number based on the 

vertical salinity gradient. The stability limit was confirmed by their 

qualitative experimental results in slots.

Chen, Briggs and Wirtz [30,31] expanded on the Thorpe et al. 

study [29], in which they further examined the initiation of instability 

induced by the lateral heating of a stably stratified fluid. At 

subcritical Rayleigh numbers, the fluid rose almost imperceptibly 

parallel to the heated plate and the lateral transport of heat was 

entirely by conduction. The authors indicated that layers are induced 

by two mechanisms. One is the successive formation of layers due to the 

presence of top and bottom boundaries. The other is due to a critical 

Rayleigh number, which if exceeded, cells of approximately equal size 



27

will appear simultaneously along all of the heated wall. The critical 

Raleigh number is based on the temperature difference, buoyancy ratio 

and vertical salinity gradient and was found to be 15 000 ± 2500. The 

authors also confirmed Mendenhall and Mason's observations [28] in which 

once the layers are established the fluid in each layer is well mixed 

and of fairly constant density with large gradients in temperature and 

salinity at the layer interface.

Natural convection in enclosures in which the thermal and 

concentration gradients are vertically aligned in a Benard configuration 

was studied by Bergman, Incropera and Viskanta [32]. Bergman et al. 

examined the single mixed layer growth due to the heating of a salt 

stratified system from below, where an unstable temperature gradient 

will develop just above the heated surface. This gradient may induce 

local thermal instabilities and convective motion which, unlike single 

diffusive fluids, is restricted to the lower part of the enclosure by 

the stabilizing salt distribution. As heat is further supplied to the 

system, this mixed convective layer will expand, entraining fluid from 

the overlying stable region through an interfacial layer separating the 

two regions. This mixed layer height is a function of time, the bottom 

heat flux, the initial salinity profile and the thermophysical 

properties of the saline solution. The authors obtained data for this 

double-diffusive phenomenon and attempted to correlate the results 

ultimately using this correlation in a mathematical model for prediction 

mixed layer heights, temperatures and salt concentrations. Use of the 

mixed layer growth correlation for the model was in good agreement with 

the authors experimental data, however it is limited to water based
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solutions and does not account for delays in the onset of convection. 

In a subsequent paper Bergman and Ungan [33] focused on the formation 

and growth of the lower convective regimes. They determined that the 

development of convective conditions is characterized by an interaction 

between Benard type convection and longitudinal convective rolls 

possibly formed by horizontal temperature gradients which may provide 

clues for explaining the mechanisms by which mixed convective layers 

expand.

Little attention was paid to combined horizontal temperature and 

concentration gradients within an enclosure until recently due to the 

increased interest in crystal growth. In some horizontal growth 

techniques, such as the horizontal Bridgman, the fluid phase is 

subjected to simultaneous horizontal and temperature gradients. The 

lack of experimental studies on this specific configuration of the 

diffusive components inspired Kamotani, Wang, Ostrach and Jiang [34] to 

experimentally study double-diffusive convection in a low aspect ratio 

rectangular enclosure for both aiding and opposing flow conditions. The 

authors used a copper sulphate solution (Pr - 7, Sc = 2100) with an 

aspect ratio range of 0.13-0.55 for the investigation. Kamotani et al. 

determined that if the buoyancy ratio is greater than 6 for aiding flow, 

a three layer/cell structure will appear. If n < 6 for the same aiding 

flow conditions the flow will have a unicellular pattern with secondary 

cells at the vertical walls. The authors concluded that these secondary 

cells had been a double-diffusive effect, not shear, since they had not 

appeared when the enclosure was subjected to temperature gradients 

alone. For opposing flow situations, if n was less than -10, the flow
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was three layered with secondary cells in the middle. For flows with a 

buoyancy ratio greater than -10, the flow was unicellular with secondary 

cells at the wall. On a point of interest, counterflow was observed at 

the vertical walls for opposing flow cases, where at the hot anode the 

flow within the solute boundary layer was downward, however 

less concentrated fluid in the thermal boundary layer outside the solute 

boundary layer rose. Complete flow reversal was not investigated, most 

likely due to the very high buoyancy ratios required by the large Lewis 

number (Le - 300).

Han [4] performed a similar study to Kamotani et al. for higher 

aspect ratios of 1 and 4 (Pr - 7, Sc - 2300-2600) in which he found 

similar flow patterns. Han decreased the buoyancy ratio for the 

opposing flow conditions and found that the number of cells increased. 

As the solutal buoyancy force is large compared to the thermal force, 

the fluid tends to be more stratified thus creating cell layers. For 

the aiding buoyancy condition, no appreciable difference in flow 

structure was observed from an opposing case with the same value of |n| . 

Han also performed a numerical simulation for a similar configuration 

and found that the results agreed with his experiments.

Other experimental investigations have included more diverse 

subject matter. Some have included complex geometries such as Lee, 

Parikh, Acrivos and Bershader [35] who have examined natural convection 

in a vertical channel with opposing buoyancy forces with porous and 

solid walls. Others have examined additional forces, such as RouSar and 

Cezner [36], who examined the effect of an electrical field of the flow

of ions on a vertical flat plate. So far, there has been no
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experimental study on record that examines double-diffusive natural 

convection with a vertical closed annulus.

2.4 Numerical Studies

Most of the numerical studies examining double-diffusive 

convection have been performed on enclosures with stabilizing vertical 

concentration gradients with destabilizing horizontal or vertical 

temperature gradients or enclosures with horizontal temperature and 

concentration gradients.

Wirtz [37] continued his studies on heat transfer across an 

enclosure in the presence of a stable solute gradient by complementing 

his and his colleagues experimental examinations [30,31] with a 

numerical investigation. In this study Wirtz was interested in how the 

lateral heat transfer due to a uniform temperature difference is 

affected by the presence of solute stratifications, furthermore, under 

what conditions will the interface separating convecting layers become 

unstable resulting in merging? The problems of this type are considered 

to be transient, since a steady state solution will eventually lead to 

layer merging with a uniform enclosure concentration. In order to 

simulate a thermohaline system, all calculations were made for Le - 100 

and Pr - 6.7 with a buoyancy ratio varied between 0 and -10. Wirtz 

found that the major effect of solute layering was a reduction in the 

heat transfer across the enclosure. For n < -1 the flow would develop 

into layered convection cells with the Nusselt number slowly increasing 

as the salinity difference between the regions was diminished through 

vertical diffusion across the interface. However, for the flow field 

where n > -1 the interface separating the convecting regions became 
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unstable where flow penetrated the diffusive interface at the side walls 

and resulted in a rapid mixing of the layers.

There have been several numerical papers written on the Benard 

problem, some have been written in conjunction with experimental studies 

such as Bergman and Ungan [33]. Others have studied more specific 

problems related to the Benard problem such as stability, convection for 

infinite Prandtl number, or bifurcations and flow transitions to chaos.

The stability of salinity stratified layers with a vertical 

temperature gradient was investigated by Hassab, Tag and Kamal [38] 

using linear analysis to gain some insight into the mechanism of 

instability. Three separate conditions were considered: strong 

stabilizing salinity gradient opposed by a destabilizing temperature 

gradient, a weak destabilizing salinity gradient combined with a 

destabilizing temperature gradient, and a weak destabilizing salinity 

gradient counteracted by a stabilizing temperature gradient. Hassab et 

al. plotted the stability curves for various thermal and concentration 

Rayleigh numbers and vertical disturbances for the limiting case of a 

salt solution of Pr - 3.35 and Sc - 175. Hansen and Yuen [3] examined 

subcritical convection at an infinite Prandtl number to simulate flows 

applicable to geophysical flows in magma chambers. They established a 

relationship between the Lewis number and the buoyancy ratio for the 

onset of steady double-diffusive convection. For large aspect ratios, 

the authors established a bifurcation pattern for increasing Le with the 

sequence of: no steady states, three different steady state flows and 

then to a single elongated cell. A more in depth examination of 

bifurcation and chaos was performed by Moore, Toomre, Knolch and Weiss
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[39] for a finite Prandtl number which revealed a transition from 

periodic oscillations to chaos through a sequence of period-doubling 

bifurcations, within the chaotic region there are narrow periodic 

windows.

The influence of Soret-induced solutal buoyancy forces on the 

hydrodynamics and heat transfer rates associated with the natural 

convection of an initially uniform concentration fluid in an enclosure 

with a lateral temperature gradient was examined by Bergman and 

Srinivasan [40]. The Soret effect can be described as the effect 

temperature gradients within a fluid have on the concentration profiles 

(a temperature gradient will induce a concentration gradient). Bergman 

and Srinivasan stated that most numerical double-diffusive studies tend 

to ignore this effect for the following various reasons. The time scale 

associated with the establishment of Soret effects is large compared to 

the thermal time scale due to the large Lewis numbers of binary liquids; 

compositional differences established by Soret effects will be washed 

out once convection begins; Soret diffusion coefficients for liquid 

mixtures are difficult to predict and experimental data are relatively 

scarce. The first reason is not relevant to steady state situations, 

the second reason depends on the magnitude of the Soret effect relative 

to buoyancy forces and finally the authors argue that the third reason 

does not justify the absence of Soret phenomena in double-diffusive 

systems. Contrary to their expectations the authors determined that 

Soret diffusion does not always need to be included in analysis unless 

there are special conditions. It may be necessary to include Soret 

phenomena in the modeling of the freezing and melting of water based 
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binary solutions since the effect seems to manifest itself in the 

vicinity of the density inversion temperature. However if conditions 

are to be determined in the far field as opposed the solid/liquid 

interface the Soret effect can be ignored.

In the past few years, study of double-diffusive natural 

convection due to horizontal temperature and concentration gradients in 

enclosures has really opened up. One of the initial numerical studies 

on this aspect of double-diffusive convection was performed by Trevisan 

and Bejan [23] in which they studied the convection produced by lateral 

heat and mass fluxes for limited aiding and opposing buoyancy 

situations. The main purpose of this numerical investigation was to 

validate analytical results for a similar configuration in which only 

basic calculations were made. Simple additive flow was examined where 

the Lewis number was held at unity while the buoyancy ratio ranged from 

-11 to 9 (in this case the dimensionless concentration and temperature 

profiles are identical due to the equivalent diffusivities). The 

authors determined that both the Sherwood and Nusselt numbers increase 

with the absolute buoyancy ratio. Furthermore, they also established 

that flow reversal will occur at n - -1. The Lewis number was only 

examined for the effect on the mass transfer rate alone, by equating the 

buoyancy ratio to zero enabling the flow to be independent of mass 

effects. The authors determined that an increase in the Lewis number 

will increase the Sherwood number and decrease the thickness of the 

concentration boundary layer. Trevisan and Bejan also examined the 

effect of aspect ratio and Prandtl number on the Nusselt and Sherwood 

numbers. They determined that an increase in the Prandtl number will 
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result in only a marginal increase, whereas the results for the aspect 

ratio indicated independence.

Lai and Ramsey [41] examined natural convection for two and 

three dimensional rectangular enclosures due to differential temperature 

and water vapor gradients for aiding flow conditions only. The authors 

determined that a combined Grashof number that combines the effects of 

both thermal and concentration gradients can be incorporated since the 

Lewis number for an air and vapor system is near unity and aiding flow 

is inherent for this specific mixture. The authors used Patankar's 

SIMPLER algorithm for Grashof numbers up to 106, however, for Grashof 

numbers beyond this range the algorithm would fail to converge and a 

direct solution technique was applied. When the combined Grashof number 

exceeded 5.0 x 10 , a change from a basically unicellular circulation to 

a distinct boundary layer flow on the vertical walls with a stagnant 

interior was observed. Finally the authors determined that the 

differences between the two dimensional square and three dimension cubic 

enclosures for similar boundary conditions ranged in a 3% to 9% 

reduction in the average Nusselt number for the cubic enclosure. The 

authors concluded that a two dimensional approximation provided a good 

estimate avoiding the large computational time required for a simple 

three dimensional enclosure.

Ranganathan and Viskanta [42] examined the effects of combined 

lateral temperature and concentration gradients on natural convection in 

a two dimensional square cavity filled with a binary gas. The numerical 

study was limited to simple additive flow where the Schmidt number 

equaled the Prandtl number and the buoyancy ratio included aiding and 
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opposing buoyancy forces with n ranging from -5 to 5. The authors 

decided to include the velocity of material normal to the vertical walls 

in order to better model the transit of species across the cavity. 

Furthermore, they wanted to examine the effect of including this 

boundary condition in the overall solutions of the flow, temperature and 

concentration fields. It was determined that the normal velocities at 

the walls have a negligible effect on these fields inside the cavity 

(the vertical velocities near the vertical walls were two orders of 

magnitude higher than these normal velocities). The effect of the 

normal velocities on the Nusselt and Sherwood numbers were also 

negligible provided that the species in the enclosure is dilute.

Han [4,43] performed a numerical study to complement his 

experimental studies on double-diffusive convection due to lateral 

temperature and concentration gradients. Han studied various effects on 

the flow fields along with the heat and mass transfer characteristics 

for an enclosure encompassing a wider range of buoyancy ratios, Rayleigh 

numbers and Lewis numbers than previous studies. The effect of the 

buoyancy ratio, for given Rayleigh numbers, on the overall Nusselt and 

Sherwood numbers was examined and were found to be minimal around n - -1 

or the flow reversal area. It was determined that an increase in the 

thermal Rayleigh number, for a given buoyancy ratio, would result in an 

increase in the Nusselt and Sherwood numbers. This was not surprising 

since an increased flow rate would result at the walls thus increasing 

the mass and heat transfer rates. The flow structure was examined near 

the critical condition for flow reversal and revealed that more than one 

solution may exist for a given set of flow conditions. In fact, Han 
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determined that the solutions are based on the choice for the initial 

flow conditions, however, outside the critical buoyancy range unique 

solutions exist. The effect of the Lewis number on the critical 

buoyancy ratio range was investigated where the range of the critical 

buoyancy ratio was found to increase with the Lewis number. However, 

Han determined that increasing the Lewis number decreases the point of 

actual flow reversal. Similar results were found in the studies of 

Taunton et al. [14] and Nilson [17] for vertical flat plates. Han 

further studied the flow structures for tall enclosures in which he 

determined that multiple cells develop during flow reversal. However, 

as the buoyancy ratio was further decreased the multiple cell structure 

would disappear and unicell flow would develop with a stagnant core. 

Interestingly, Han also found that multiple cells develop for a small 

range of buoyancy ratios for aiding flow conditions during the 

transition from thermal dominated flow to concentration dominated flow.

An examination of double-diffusive flow in enclosures with a low 

aspect ratio (0.5) was performed by Benard, Gobin and Thevenin [44] for 

aiding thermal and solutal buoyancy forces only. Only the Lewis number 

and the buoyancy ratio were varied (1 s Le s 10 and 0.1 s n 10) to 

determine their effect on the mass and heat transfer in the enclosure. 

It was found that, when the buoyancy ratio was less than unity, an 

increase in the Lewis number (the Schmidt number would increase since 

the Prandtl number was held constant in this case) would result in an 

increase the Sherwood number while the Nusselt number would remain 

virtually unchanged. However for n 1 the solutal buoyancy force is 

greater or equal to the thermal buoyancy force. Consequently an 
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increase in the Lewis number would result in a decrease in the Nusselt 

number especially for large buoyancy ratios. This is due to the 

thinning of the solutal buoyancy layer due to the decrease in the mass 

diffusivity, which has the effect of decreasing the boundary layer 

velocities which the heating or cooling efficiency depends on.

Krishnan [45] concentrated his study on varying the thermal 

Rayleigh number for a square cavity with a buoyancy ratio of -1 for a 

single Lewis number of 3.162. He determined that the transition from 

the conductive to a steady convective regime occurs around a Rayleigh 
3number of 4.65 x 10 , and that a transition from steady state flow to 

transient convection with oscillatory motions occurs at Ra - 6.25 x 10 . 

Krishnan also confirmed Han's finding that two unique solutions may be 

obtained for a certain range of Rayleigh number, with the solution 

depending on the initial conditions.



CHAPTER THREE

MATHEMATICAL FORMULATION

The derivation of the governing equations for laminar, nearly 

incompressible flow in axi-symmetric coordinates is presented. 

Assumptions and approximations for the solution model are discussed. 

The boundary conditions for both aiding and opposing flow are imposed 

and the non-dimensional system parameters are derived.

3.1 Assumptions and Approximations

All the equations formulated for the flow, thermal and mass 

species fields are regarded to be steady and laminar. The fluid is 

considered to be incompressible and Newtonian in behavior with 

negligible viscous dissipation. The Boussinesq linear approximation is 

utilized to model the effect of the density change on the buoyancy force 

due to the temperature and concentration gradients. All other 

properties are considered to be independent of temperature, 

concentration and pressure effects. Both Soret and Dufour effects are 

neglected, as heat transfer is independent of the concentration gradient 

and mass transfer is independent of temperature gradients. Dufour 

effects are considerably weaker than Soret phenomena which in turn, 

according to Bergman and Srinivasan [40], can be neglected provided that 

the fluid is not in the vicinity of the density inversion temperature 

(see Chapter 2). Of course, the results for the Boussinesq fluid

38
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considered here may not be applicable to this situation since the 

Boussinesq density/temperature/concentration relationship is assumed to 

be linear. However for real systems, these assumptions are only valid 

when the solution is dilute, the temperature differences are small and 

the average fluid temperature is significantly higher than the freezing 

point. In order for the system to be considered laminar and steady the 

thermal and species Rayleigh numbers should not exceed 106. This is a 

conservative limit since it is generally well known that the laminar 
glimit of the Rayleigh number is around 10 . Furthermore, as discussed 

in chapter two, Krishnan determined that transition to transient 

convection will occur at a much lower Rayleigh number [45]. Finally it 

should be said that this investigation of a simple model of 

double-diffusive natural convection is intended to demonstrate the basic 

phenomena for an axi-symmetric system.

3.2 Governing Equations

By exercising the above assumptions into the conservation of 

mass, momentum, energy and mass species using primitive variables, one 

can obtain the governing equations for an axi-symmetric coordinate 

system.

Continuity:

d(r u) dv
  + 0 (3.1) 
r dr----dz

Radial Momentum:

du
u--- 
dr

du
+ v--- 

dz
= 1/

d ' du ' 
r-

I 3rr dr a 2 az

ap
p dr 

r

(3.2)
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Axial Momentum:

3v 3v 3
u--- + v--- = u ----

dr dz r dr

a \ -2
OV O V

dr 3z2
3P p - p 

------ + —---  g (3.3)
p dz p

Thermal Energy:

ST ST
11 --------- + V --------- “ CK

dr dz

, - _2
d ST 6 T

r’7— + V2r dr 3r dz
(3.4)

Mass Species:

u
ac

+ -v
ac

~ D
a ' ac ' 

r-I 3r J
+

8r dz r 3r

O G

a 2 dz

The density for the

(3.5)

fluid is a function of both temperature and

concentration. Using the first order Boussinesq approximation, the

density can be expressed as.

p - p | 1 - (T - Tr) - 0c (C - C^ (3.6)

The subscript " r " refers to a reference state. The coefficients 

and are the volumetric expansion coefficients at the reference 

temperature and concentration respectively,

1 dp

ST

dp

ac
(3.7)

Note: for water based solutions is usually positive and B is c

-

p
^c“ -

1

p r

usually negative.

3.3 Dimensionless Variables and Governing Equations

The governing equations can be made dimensionless by using the

radii difference as the reference length, R - r - r , where
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* *r - r/R, z = z/R (3.8)

* u u R
a

* v a (3.9)

* P
P R2

2
P “ r

T —
T

T -
T r
T

* 
C

C - C

1 o
C 

i
C

o

(3.10)

(3.11)

The subscripts i" and o refer to the inner and outer radii

respectively. Substituting the Boussinesq approximation for the

buoyancy force term in equation (3.3), and inserting the dimensionless

variables,

Continuity:

9(r u ) Sv*

0 (3.12)
Sr dz

Radial Momentum:
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Thermal Energy:

2 * d T* *_ ST u ST * *
U ---3T + v --- 37* *

dr dz r dr

Mass Species:

* ** 9C * ac i
u — + v —v---

dr dz Le

where the fluid system parameters are,

Pr Le

. . 3g B (T - T ) R T i o
T a v

0 (C - C ) 
C i o n - -----------

.a (T - T ) 
T i o
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I T

dz
*2
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(3.16)

(3.17)

(3.18)

(3.19)

*

a
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3.4 Enclosure Geometry

The geometry for the present study is illustrated in figure 3.1 

in axi-symmetric coordinates. The physical model consists of two 

concentric cylinders closed off at the top and bottom. The inner 

cylinder radius is specified as r and the outer radius is defined as 

r . The aspect ratio is measured as the ratio of the annulus height (H) 
o

and the radii difference (R). The curvature ratio (K) is determined by 

the ratio of the outer and inner radii. (Note, as K approaches unity, 

the configuration can be considered to be two dimensional in cartesian
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Figure 3.1 Schematic of Enclosure
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coordinates as opposed to axis-symmetric.) The geometric system

parameters, aspect ratio and curvature ratio as defined above are,

H r«
Ar - K - (3-20)

i

3.5 Boundary Conditions

The boundaries of the enclosure consist of four walls; where the 

top and bottom walls are considered to be adiabatic and impermeable to 

mass transfer, and the inner and outer vertical radial walls are 

maintained at uniform temperatures and uniform concentration. Other 

boundary conditions can be easily applied to the vertical walls, such as 

uniform heat and mass fluxes, however it is not the intention to study 

this at the present time. Non slip velocity conditions are applied to 

all four of the enclosure walls. There are also no normal velocity 

boundary conditions applied to the walls, consequently no fluid enters 

or exits the cavity.

The dimensionless radii of the inner and outer enclosure walls

depend on the value of the curvature ratio constant, where

therefore,

v =
r o * r

r i * 
r

r orv — r ’ i i r - r ’ o i o r - r o i

(3.21)* 1 * K
ri " K - 1 ’ ro “ K - 1

For purposes of this study the curvature ratio is limited to two, thus

r* - 1, r* = 2 (3.22)
i o
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The reference condition is taken at the outer wall for all flow

situations,

T - T , 
r o

thus at the inner radial wall,

*
T - 

i

T -T 
i o

T -T 
i o

* 1 o
1 “ c -c 

i o
1 (3.23)

and at the outer radial wall,

T -T
* O O
o “ T -T 

i o
(3.24)

At the bottom and top wall:

* *
3T 3C

* " *dz dz
(3.25)

The velocity boundary conditions are defined as follows,

* * * * * *u - 0, v - 0 for (r - r , r ) or (z =0, Ar) (3.26)
i o

3.6 Buoyancy Ratio for Aiding and Opposing Buoyancy Forces

By virtue of the their definitions, the dimensionless

temperatures and concentrations at the inner and outer walls will always

equal 1 and 0 respectively, except when T = T^, or C* - Cq, which 

results in a singularity. Aiding and opposing flow conditions are 

determined by the sign of the buoyancy ratio. If we impose the thermal 

condition that T > T , then for aiding flow: C > C , and for opposing 
io o i

flow: C > C . If one examines the definition of the buoyancy ratio 
i o

(equ. 3.19),

0 (C - C ) 
C i o

n " £ (T - T ) 
T i o
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then for aiding flow, (C^ - C°) is negative, (T - T ) is positive, 

while the expansion coefficients, and are positive and negative 

respectively. This results in a positive buoyancy ratio for aiding 

flow. For opposing flow, the terms retain their signs except for the 

now positive (C^ - C ), resulting in a negative buoyancy ratio.



CHAPTER FOUR

NUMERICAL SOLUTION

4.1 Control Volumes and Staggered Grid

The governing equations are numerically solved using a finite 

volume approach. The variables are determined at discrete points on a 

staggered grid in which Patankar's SIMPLER [7,46] (Semi-Implicit Method 

for Pressure Linked Equations-Revised) algorithm is adopted. This 

algorithm is applied to discretize the equations by integrating the 

differential equations over the control volumes and then solving for the 

variables. A brief description of the SIMPLER algorithm for the 

discretization of the axi-symmetric differential equations, along with 

the general solution procedure are presented in Appendix B. The 

staggered grid can be examined in figure 4.1. To avoid a checkerboard 

pressure pattern [7, p.116] the radial and axial velocity (u and v, 

respectively) components are offset from the pressure, temperature and 

concentration grid points. This staggered approach has the effect of 

reducing the complexity of the solution by directly calculating the mass 

flow into the pressure/temperature/concentration control volume at the 

control volume boundaries. Another advantage is that the pressure 

difference between two adjacent grid points becomes the driving force 

for the velocity component between these two points, thus complex 

non-linear interpolation is avoided if all the variables are to be

47
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Figure 4.1 Staggered Control Volumes for the SIMPLER Algorithm
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calculated on the same point. Treatment of wall conditions can also be 

examined in figure 4.1; the wall is treated as control volume with zero 

width, such that if the wall variable is unknown, it can be solved 

implicitly with the interior control volumes. However, if the variable 

is a boundary condition (ie fixed), the control volume can be easily 

dropped from the solution.

4.2 Generalized Equation

The governing equations, apart from continuity, can simply be 

expressed as a simple general conservation equation with a dependent 

variable, a diffusion constant, and a source term.

3/ *
--  + u  — + v —— - r _-------- _ * - *dt 5r dz

a
* _ * r ar

f * 1
r ar*

J.. ' 
o <p 

+ *2
az

+ s

(4.1)

The first term on the left hand side can be neglected since it is time 

dependant and we are only concerned with the steady state solution. The 

other terms on the left hand side represent convection. On the right 

hand side the terms in the square brackets represent the radial and 

axial diffusion respectively. The final term represents the source 

term. Depending on the dependent variable, the diffusion

coefficient, T, and the source term, S, the general governing equation 

can take on specific meanings. These are demonstrated in table 4.1 for 

the conservation of momentum, energy and mass species in axi-symmetric 

coordinates. The mass continuity equation can be examined in Chapter 

Three (eqs 3.1 and 3.12). A unique feature of this generalized equation 

is that it can easily be converted to two dimensional cartesian
St coordinates by substituting the enclosure width for R and equating r 
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(but not Sr ) to unity. Of course the radial velocity source term would 

have to be dropped in the radial momentum equation.

Table 4.1 Variables, Coefficients and Source Terms for eq.(4.1)

Equation r S

Radial Momentum * u Pr
*

-Pr *2 r

„ * SP
Sr*

Axial Momentum * 
V Pr

„ * dP .
a * oz

Rar Pr (T*+ n C*)

Energy * T 1 0

Mass Species * C 1 
Le 0

4.3 Differencing Schemes for Convective Terms

There is a choice of profile schemes in which the variable can 

be determined at a control volume interface. One of the more accurate 

schemes is the exponential scheme based on the exact solution for a 

one-dimensional convection-diffusion problem with constant properties 

and zero source terms. However, this approach involves ample computer 

time to determine the exponentials. There are two approximations for 

this scheme: the power law differencing scheme by Patankar [7, pp. 

90-95], and a slightly different scheme by Raithby [47, p.253], both of 

which involve less computational time. These differencing schemes along 

with the upwind and hybrid differencing schemes can be examined in 

figure 4.2. The variable is centered between two points (W and E)
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Figure 4.2 Comparison of Differencing Schemes with Respect to Pe
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with values of 0 and 1, respectively. The Peclet number (Pe) is the 

ratio of convection and diffusion across a control volume,

„ u Ar ,,Pe - —=  (4.3)

If there is no convection (ie. Pe = 0), then 0^ = 0.5. For I Pe | >6, 

the exact solution seems to be the value of the upstream point = 

6 = 0, for Pe > 6; i = d> =1, for Pe < -6). The differences between w, ’ pe '
the exact, power and Raithby's solutions are minimal, however Raithby's 

differencing scheme is more complicated than Patankar's, thus the power 

law differencing scheme, for reasons of computational efficiency, is 

chosen for the present study.

4.4 Solution of a General Field Equation

Due to the nature of the cross linked equations (concentration 

and temperature fields are dependent on the flow fields, but the 

buoyancy force in the axial momentum equation is determined by the 

concentration and temperature fields) the solution is iterative. It is 

determined that only one local iteration is required for the solution of 

a general field equation (axial momentum, pressure etc.) since all the 

equations are interlinked (note: a local iteration refers to a solution 

of a general field equation, whereas a global iteration signifies one 

complete cycle through the SIMPLER procedure). A converged solution of 

a field equation after many local iterations is unnecessary, if not 

wasteful, since the field conditions will change for the next global 

iteration. Certain variables may be underrelaxed in order for 

convergence, specifically it is found that the axial and radial
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velocities must be relaxed the most. Underrelaxation may be expressed 

as follows, where is an arbitrary variable

- w + (1-w) <f> new old

Values of w may be found for each governing equation in table 4.2. The 

general field equation is numerically solved by use of a combined 

alternating direction tridiagonal matrix algorithm (TDMA) enhanced with 

overrelaxation. In the solution procedure one local iteration actually 

consists of four sweeps of the numerical grid: one line sweep from the 

bottom to the top, then a line sweep from the left to right, followed by 

top to bottom and then finally right to left. The TDMA is a widely 

known algorithm and is presented in Appendix C, however the TDMA 

enhancement is less well known and is presented below.

4.4.1 Enhancement of the Tridiagonal Matrix Algorithm

The TDMA is enhanced by use of overrelaxation in which the 

changes in variables ahead of the present line are predicted and 

incorporated into the solution for the present line [47, p.262]. For 

the standard TDMA the value is required for the present "J" line

sweep, but this value is lagged (m-1) at its best estimate value at this 

stage (m) of the sweep application. A revised estimate can be given by 

m’1 + (^ - 1) [ . a m’1 1 (4.4)
l,J+l i,j+i ' ( ri,j+i ri,J+i J

Generally, 4*™^ not known, however a reasonable estimate of the 

change, m 1 , can be obtained. This estimate is determined
i,j+i i,j+i 
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by approximating the change at (I,J+1) by the change at (I,J) which is 

currently being calculated, thus

,n'1 + (t; - 1) f m’1 1 (4.5)
rI,J+l VI,J+1 ' ( rI,J I,J J

A similar approach is applied for "I" line sweeps. The optimum values 

for the TDMA overrelaxation factor can be found in table 4.2.

Table 4.2 Underrelaxation and TDMA Overrelaxation Factors

Equation r-Momentum z - Momentum Pressure Energy Mass Spec.

0.5 0.5 1 1 1

1.2 1.2 1.85 1.8 1.8

4.5 Convergence Criteria

The convergence criteria is based on the equation residuals as 

opposed to solution changes. Convergence based on solution changes is 

particularly dangerous in some cases since convergence may become so 

slow that it appears converged when in fact it may be far from it. This 

problem is inherent when heavy underrelaxation is used. Equation 

residuals basically test how well the discretization equations are 

satisfied by the current values of the dependent variables. The general 

discretization equation for a control volume is usually written as

Vp “ + b <4-6)r r no DD

(For more details of the discretization equation, see Appendix B) The 

residual for the control volume may be calculated as

R - £ a + b - a (4.7)nbnb PP V 7 
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where, R, represents the residual. If the discretization equation is 

satisfied, R will be zero. However, it is sufficient to set the value 

of | R | to be less than a small number. The major indicator of 

convergence is the residual for the mass continuity equation since this 

equation is influenced by all the other variables. The convergence 

limits for each governing equation are presented in table 4.3, where 

every control volume residual must satisfy this criteria in order for 

the solution to be considered converged. For certain cases with high 

thermal Rayleigh numbers the convergence level for the momentum 
- 4equations is reduced to 10 since these equations converge to the 

tighter level only in double precision (which requires extra 

computational time). However, the mass equation convergence residual 

limit is still satisfied. Figure 4.3 illustrates the convergence of the 

maximum control volume equation residuals against the number of global 

iterations for an arbitrary trial. Notice that after 950 global 
-4 iterations the momentum equations have reached a residual level of 10 

while the mass continuity residual has reached 10 7.

Table 4.3 Maximum Equation Residuals for Convergence

Mass r-Momentum z-Momentum Pressure Energy Mass Spec.

io'6 5.x 10’5 5.x 10‘5 10‘6 10‘5 io’5

4.6 Calculation of Nusselt, Sherwood Numbers and Streamfunctions

The Nusselt and Sherwood numbers are calculated at the inner 

wall after convergence has been obtained. The local Nusselt number at



Figure 4.3 
Convergence of the Maximum Equation Residuals
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the wall is defined as the non-dimensional temperature gradient,

Nu^Cz) - * dr ★ * r =r i
(4.8)

The Nusselt number in dimensional coordinates is easy to determine

Nu (z) — - 
1

* 
ST R ST

* 
Sr

* * 
r -=r i

T - T i o Sr r - r i
(4.9)

but

q" - -k st
dr r - r i

q" - h (z) (T - T ) i i io (4.10)

Combining the two equations above (4.10) and substituting into equ. 4.9

h ( z ) R
Nu (z) - -------- at the inner wall (4.11)

1 k

The local Sherwood number at the inner wall can be determined in a 

similar fashion

ac* hm^z) R
Sh (z) = - -- r- . . - --------- at the inner wall (4.12)

Sr r =r Di

The dimensionless gradient is calculated by approximating the linear 

profile at the wall. Higher order approximations can be used, however 

due to the nature of the discretized equations, source fluxes will 

produce linear variable distributions within the control volume near the 

boundary wall. Since the flux-variable distribution relationship is 

linear, unknown fluxes should be determined by linear variable 

distributions. The overall Nusselt and Sherwood numbers are determined 

by integrating the local Nusselt and Sherwood numbers along the inner 

wall.
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Nu 
i

Sh 
i

(4.13)

Due to the differences in radii it can be shown that the relationship

between the inner and outer overall Nusselt number is

Nu - 
o

r_ i 
r O

Nu
i

(4.14)

Furthermore the relationship between the inner and outer Sherwood number 

can be similarly described

(4.15)

Due to the curvature ratio being constant for this study the outer 

overall Nusselt and Sherwood numbers will be half of the overall inner

Nusselt and Sherwood numbers respectively.

For purposes of plotting the flow field, streamline functions 

need to be defined. The streamfunctions are formulated in axi-symmetric 

coordinates, where the relationship between the streamfunction and 

velocity is
*

* i
*1

(4.16)

Thus,
b

,* ,*-***

* *r 8r

+ J u r dz
a

d
* * r * * *or ^’^"Jvrdrd c J

c
(4.17)

where b and a refer to the axial location of the top and bottom

boundaries of a control volume for a line of constant r . Similarly d 

and c refer to the radial location of the right and left boundaries of a 
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control volume for a line of constant z . Either equation will result 

in the same streamfunction field because of mass continuity. The 

enclosure boundary walls are arbitrary assigned a streamfunction value 

of zero.

4.7 Solution Grid and Grid Independence

A grid independence test is performed using various uniform, 

semi-uniform and non-uniform grid structures in order to obtain a 

suitable grid layout which the solutions are independent of. In 

general, fine grid spacings are required in the wall regions where there 

is high shear along with steep temperature and concentration gradients. 

This region is also important since the analysis of the problem 

significantly examines the Nusselt and Sherwood numbers in this region 

(in this study, the Nusselt number is examined for the indication of 

grid independence). The general theory behind grid independence is that 

as the number of grids are increased a certain point will be reached 

where the solution is independent of further grid refinement. An 

arbitrary test case is chosen with the following parameters: Ar = 1, K = 

2, Pr - 1 , Le = 4, n ■= -1 and Ra " 20 000.
T

4.7.1 Uniform Grids

Initially a uniform grid structure is chosen with a range of 11 

by 11 to 101 by 101 control volumes. Examining the circular data points 

on figures 4.4 and 4.5 indicates the solution's dependence on the grids 

with a uniform structure. From the uniform cell size of 0.0164 (61 by 

61) to 0.0099 (101 by 101) the difference in the Nusselt number is only 

0.002 or a 0.06% relative change. From this minimal change and the 

curved distribution in figures 4.4 and 4.5 it can be reasonably assumed 
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that grid independence has been achieved at the 61 by 61 uniform control 

volume grid. However solutions for a 61 by 61 grid (3721 control 

volumes or cells') are time consuming and solving for a 101 by 101 grid 

(10 201 cells) is simply unreasonable.

4.7.2 Non-Uniform Grids

To decrease the amount of grids, yet obtain accurate solutions 

for the wall heat and mass transfer, a non-uniform parabolic increment 

grid structure has been proposed. The cell sizes are increased at a 

predetermined percentage (1) from the boundary wall to the cell centre, 

where

(cell size^ = (cell size)^ (1 + i/100) (4.18) 

Grid structures ranging from 11 by 11 to 101 to 101 have been examined 

with cell size increases of 0 (uniform), 5, 10, 15, 20, and 30%. An 

example of this grid structure (11 by 11, i - 10; and 51 by 51, i = 20) 

can be examined in figure 4.6. Figure 4.4 represents the overall 

Nusselt numbers for various combinations of the above grid sizes and 

cell size increments plotted against the maximum cell size in the centre 

of the enclosure. The results prove to be unsuccessful in obtaining 

grid independence. (Note: the results also have been plotted against 

the minimal cell size, which also proves to be inconclusive.)

4.7.3 Semi-Uniform Grids

Hrymak [48] suggested the use of two or three different levels 

of uniform cells: uniform cells within the centre of the cavity and 

finer uniform boundary layers adjacent to the walls (see figure 4.7). A 

similar semi-uniform method was used by Trevisan and Bejan [23], 

Because of their success in obtaining grid independence, this grid
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Figure 4.4 Grid Independence for Non-Uniform Grids

Figure 4.5 Grid Independence for Semi-Uniform Grids
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Figure 4.6 Examples of Non-Uniform Grid Structure
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Figure 4.7 Semi-Uniform Grid Structure Chosen, m - 51, s = 3
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structure has been adopted for the present study. The enclosure is 

divided into m by m control volumes where there are s thin cells normal 

and adjacent to the walls, with a thickness of 1/s of a core cell. This 

results in the core section having (m - 2s) by (m - 2s) cells (for fig. 

4.7, m — 51, s — 3). Examination of figure 4.5 reveals a definite trend 

in convergence for a decrease in the cell size in the core region with 

approximately half the data points fitting in the 0.2% relative 

difference band (based around the uniform grid solution for 101 by 101 

cells). Thus a grid size is chosen for the present study with m - 51 

and s - 3, optimizing the number of boundary cell layers for determining 

accurate wall results, while minimizing the total number of cells (2601) 

for reduced computer solution time.

4.8 Numerical Error

The SIMPLER algorithm is susceptible to a numerical error 

commonly known as false diffusion or numerical diffusion. Maximum false 

diffusion occurs when flow is oblique to grid lines and when there is a 

high gradient of the dependent variable in the direction normal to the 

flow. For a rectangular grid structure, this error has the greatest 

effect when the flow is 45 degrees to the grid lines. Patankar [7, 

p.108] suggests that the following expression [49] approximately 

represents the false diffusion coefficient for two dimension situations

rfalse
* * *

* 3 * 34 (Ax sin 6 + Ay cos O')

where Ax and Ay represent the control volume size and 6 is the angle 

the flow makes with the x-axis (it is probable that this expression can

u Ax Ay sin 26 (4.19)
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be extended to an axi-symmetric system with the error being of the same 

order). It should be stressed that the source of false diffusion is a 

local phenomenon, however diffusion will permeate most of the grid. The 

majority of flows adjacent to walls will not be significantly affected 

since the flow is parallel to the grid lines. Flows within the interior 

of the enclosure may be more influenced since the flow may be oblique to 

the grid lines at certain locations. However it is expected that false 

diffusion will be minimal since the velocities in this region are 

expected to be low along with the variable gradients since high 

gradients usually occur at the boundary walls. Schemes that 

significantly reduce false diffusion are available (ie Skewed Upwind 

Differencing, QUICK [47, pp 256-259]), however they are more complex and 

involve more neighbouring point values in the discretization equations 

thereby involving significantly more computational effort. Finally, it 

should be said that false diffusion can effectively be reduced by 

obtaining a grid independent solution.



CHAPTER FIVE

CODE VERIFICATION

Due to the lack of other numerical and experimental studies of 

double-diffusive natural convection in axi-symmetric coordinates in the 

literature, the computer code cannot be exhaustively validated. 

Instead, three separate verification tests are conducted. The first 

test is simply to verify the Nusselt and Sherwood numbers on the outer 

and inner radial walls under no flow or stagnant conditions. The second 

test is a complete double-diffusive natural convection comparison 

against Trevisan and Bejan's [23] two dimensional numerical study in a 

rectangular enclosure. The computer code has the optional ability to 

solve double-diffusive problems in cartesian coordinates, where the 

simple modifications are discussed in Chapter Four (section 4.2). 

Finally, to examine the axi-symmetric capabilities of the program, a 

comparison has been made with a numerical study performed by Thomas and 

de Vahl Davis [50] on heat transfer driven natural convection in annular 

cavities.

5.1 Stagnant Flow

The initial test is to examine the Nusselt and Sherwood numbers 

of conductive heat transfer and diffusive mass transfer under no flow 

conditions. It is also important to ensure that there is no flow when 

these conditions are applied. Examining the axial momentum equation

66
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(eq. 3.14), a no flow condition will exist when the buoyancy source 

term,

T* + n C* =0 (5.1)

This can be achieved by equating the buoyancy ratio (n) to negative 

unity and limiting the Lewis number (Le) to unity, ensuring that the 

thermal and mass species diffusivities are equal in order to obtain 

similar dimensionless temperature and concentration distributions. An 

alternative for stagnant flow for Le * 1 is to limit the thermal 

Rayleigh number to a low value (Ra^ - 5000, at low Rayleigh numbers the 

viscosity of the fluid acts as a stabilizer) while again equating the 

buoyancy ratio to negative unity. The initial conditions must be 

stagnant, otherwise an instability may induce convection.

The alternative condition is used to examine stagnant flow heat 

and mass transfer using the following arbitrary parameters: Ar - 1, Pr = 

7, K-2, n - -1, Le = 5. and Ra - 5000. The standard solution grid is T
used (m - 51, s - 3, see Chapter Four) resulting in an inner wall 

overall Nusselt and Sherwood number of 1.442634, where as the outer 

radial wall overall Nusselt and Sherwood number is calculated to be 

0.721002. The ratio between these two values is 0.4998 which is 

extremely close to the value of 0.5 predicted by equations 4.14 and 

4.15.

The exact solution for conductive heat and diffusive mass 

transfer in axi-symmetric coordinates can be derived from the 

conservation of the energy and mass species equations. Dropping the

advection terms in equation 3.15
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* * r dr
* QT r —

dr

9 * 
d T
_ *2 dz

(5.2)d = 0
Since the radial walls have uniform temperatures and the top and bottom 

walls are adiabatic, the problem can be considered to be one dimensional 

such that the axial diffusion term can be dropped, therefore

d
* 

dr

** ST r —
dr

(5-3)— 0

Integrating equation 5.3 twice and solving for the boundary conditions

of T - 1, 0 at r , r respectively 
i o

-ln( K )
(5.4)

(The actual temperature distribution can be observed in figure 5.1) The 

Nusselt number is defined as the dimensionless temperature gradient, 

thus

Nu----------- (5.5)
r ln(K)

For K - 2,

Nu - 1.442695, Nu - 0.721348 (5.6)
i o

The Sherwood numbers are equivalent to the above Nusselt numbers since 

the diffusion coefficient drops out in equation 5.2. The results from 

the stagnant flow conditions are considered to be extremely good, 

furthermore it demonstrates that 1st order Nusselt number approximation 

(Chapter Four, section 4.6) is sufficient.
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Figure 5.1 Dimensionless Thermal Distribution for Stagnant Conditions
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5.2 Two Dimensional Double-Diffusive Test

The computer code is tested against a double-diffusive natural 

convection study in a two dimensional rectangular enclosure performed by 

Trevisan and Bejan [23]. At the time of code verification, this is one 

of the few simple double-diffusive studies known to the author without 

complicated flow dependent boundary conditions (le. velocity normal to a 

wall due to mass species influx). The schematic for the two dimensional 

enclosure can be examined in figure 5.2; the enclosure is similar to 

the axi-symmetric enclosure used in the present study in two aspects: 

the aspect ratio is unity, and the top and bottom enclosure walls are 

adiabatic to heat transfer and impermeable to mass transfer. However 

the boundary conditions on the vertical walls are imposed with uniform 

heat and mass transfer as opposed to uniform temperature and 

concentration differences. These boundary conditions will slightly 

change the definitions of some of the dimensionless variables and 

parameters, specifically the dimensionless temperature 

concentration, the thermal Rayleigh number and the buoyancy 

Therefore 

k(T - T ) D p (C - C )
1 q" L ° j" L

and 

_ .4 ...g q L S k j"
Ra' ” --- 1--- i--- . n’ = -----T a v k D p q"

system

and 

ratio.

(5.7)

(5.8)
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Figure 5.2 Schematic For Two Dimensional Enclosure
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The definition of the overall Nusselt and Sherwood numbers have also

been modified for the heat and mass flux boundary conditions 

Nu'
' 1 J'1

J* AT'dy 
o

Sh' *J AC'dy 
o

(5.9)

where AT' and AC' represent the dimensionless temperature and 

concentration differences across the enclosure.

The Trevisan and Bejan study used Patankar's control volume 

approach [7,46] to discretize the governing equations. However as 

opposed to using primitive variables, the governing equations were set 

up for streamline and vorticity functions eliminating the pressure terms 

and solved using a Gauss-Seidel iterative routine. For the present 
configuration a thermal Rayleigh number of 3.5 x 105 was applied across 

the vertical walls, the Prandtl number corresponds to air and water (0.7 

and 7), the Lewis number was ranged from 1 to 10, and the buoyancy ratio 

had a range of -1 to 9. A similar grid structure to the original study 

was used. A comparison of the results for Le = 1 may be found in table

5.1 ; for this case the Nusselt and Sherwood numbers will be equivalent.
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Table 5.1 Comparison of Results for Double-Diffusive Natural 
Convection in a Two Dimensional Cavity with (Le = 1, Ar - 1, 
Ra' - 3.5 x 105).

n' Pr

Present Study Trevisan and Bejan

Nu', Sh' Nu,Sh(y/H-.5) Nu', Sh' Nu,Sh(y/H=.5)

-1 7 1.001 1.00079 1.04 1.05
0.7 1.001 1.00079 1.04 1.05

0 7 4.89 5.77 4.83 5.88
0.7 4.85 5.71 4.78 5.82

1 7 5.78 6.72 5.73 6.83
0.7 5.73 6.68 5.72 6.87

3 7 6.81 7.78 6.88 8.05
0.7 6.75 7.76 6.76 7.92

9 7 8.44 9.41 8.67 9.86
0.7 8.37 9.43 8.44 9.55

The agreement between the present study and Trevisan and Bejan's 

results for Le = 1 is fairly good, with the largest Nusselt number 

difference around 4%. However, the case with n' = -1 should be examined 

closely; when Le = 1, the thermal diffusivity equals the mass species 

diffusivity resulting in identical thermal and concentration 

distributions within the enclosure. The result is a no flow situation, 

consequently for a two dimensional enclosure the Nusselt and Sherwood 

numbers should be equivalent and equal unity. For this case, Trevisan 

and Bejan's model predicts the average Nusselt number to be 1.04, 

whereas the present model predicts an overall Nusselt number of 1.001. 

This difference can be attributed to the fact that Trevisan and Bejan 

have used a convergence criteria based on the relative change in 

variables as opposed to a minimal equation residual. One may 
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hypothesize that Trevisan and Bejan's solutions have not fully converged 

which may explain the small difference in the Nusselt and Sherwood 

numbers between the present study and the Trevisan and Bejan study. 

Neglecting the no flow case for the comparison of the two solutions the 

largest relative difference between the Nusselt numbers is 2.7%.

Solutions for a buoyancy ratio of zero with the Lewis number as 

the main parameter are presented in table 5.2. Physically speaking, n' 

- 0 indicates that the concentration difference across the enclosure has 

a negligible effect on the density, thus there is no concentration 

effect on the flow structure. Consequently, natural convection is 

driven by temperature gradients alone. The Nusselt number for these 

trails is constant since only the diffusivity of the mass species is 

being changed. It should be noted that the Nusselt number for the 

Trevisan and Bejan case varies slightly, most likely for the same 

reasons as mentioned in the previous paragraph. Generally the Sherwood 

number results are in good agreement with the comparative study with the 

greatest relative difference being 3.6%.

Table 5.2 Comparison of Results with the Lewis Number as Main 
Parameter (n'- 0, Ar - 1, Pr - 7, Ra' - 3.5 x 105)

Le

Present Study Trevisan and Bejan

Nu' Sh' Nu' Sh'

1 4.89 4.89 4.83 4.83
2 4.89 6.49 4.81 6.46
4 4.89 8.04 4.81 8.15

10 4.89 10.61 4.81 10.99
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To further complement the comparison, concentration profiles are 

presented in figures 5.3 and 5.4. Figures 5.3a-b demonstrates the 

dimensionless concentration profile with system parameters of Pr - 7, Le 

= 1 and n' - 0, in this case the distributions are approximately the 

same. Under similar conditions, except for Le = 10, figures 5.4a-b are 

slightly different; the zero concentration contour from the Trevisan and 

Bejan study is a linear diagonal through the core of the cavity, however 

from the present study the same contour is wavy. This indicates that 

there are small eddies within the centre of the enclosure for the 

present study, whereas the original study had one square like eddy in 

the same location. The contour line for C' - .06 indicates that the 

distributions are slightly unmatched with the present study predicting 

high absolute concentrations at the vertical walls, assuming that the 

concentration profiles in the original study have constant increments.

In general the two studies are comparable with minor 

differences. The general flow patterns are similar and the overall 

Sherwood and Nusselt numbers for the two studies are close. Differences 

are probably due to the two different solution procedures along with the 

different variable forms of the governing equations and solution 

convergence criteria. This section verifies the code in two dimensional 

cartesian coordinates, however there is a need to know how well the code 

will perform in axi-symmetric coordinates.

5.3 Axi-Symmetric Heat Transfer Driven Comparison

Since there are no previous double-diffusive studies in a 

vertical closed annulus known to the author, the code has been verified 

against a thermal natural convection study by Thomas and de Vahl Davis
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a) Present Study Le - 1 b) Trevisan and Bejan Le - 1

Figure 5.3 Dimensionless Concentration Contours for Two Dimensional 
Enclosure. (Ar - 1, Ra^ - 3.5 x 105, Pr - 7. and n' - 0)

a) Present Study Le - 10 b) Trevisan and Bejan Le - 10

Figure 5.4 Dimensionless Concentration Contours for Two Dimensional
Enclosure. (Ar - 1, Ra' = 3.5 x 10 , Pr = 7. and n' - 0) T



77

[50 ] in order to check the performance of the code in axi-symmetric 

coordinates. The mass species equation is identical to the energy 

equation apart from the difference in the diffusivities, such that the 

separate verification of the mass species equation in axi-symmetric 

coordinates would be inconsequential since it has already been validated 

in the previous section. The axi-symmetric configuration under the 

present verification has an aspect ratio of ten with a curvature ratio 

of two where a single uniform temperature difference is laterally placed 

across the inner and outer walls (see fig. 5.5 for the schematic). The 

top and bottom enclosure walls are considered to be adiabatic. Thomas 

and de Vahl Davis have studied the problem for a Prandtl number of unity 

and for thermal Rayleigh numbers of 2000, 20 000 and 100 000. Since the 

natural convection is driven by heat transfer alone the buoyancy ratio 

for the present code is zero and the Lewis number does not have to be 

defined. The original solution used vorticity/streamfunction variables 

for the governing equations and was solved using an underrelaxed 

alternating direction iterative method.

A visual presentation of the streamfunctions and thermal 

contours for the original and present studies can be examined in figures 

5.6 and 5.7. A comparison of the mid-radial and mid-axial velocity 

profiles can be examined in figures 5.8 and 5.9, while the overall 

Nusselt numbers are presented in table 5.3. Both the streamfunction and 

thermal contour plots are almost identical. For the velocity profiles, 

both the studies are in good agreement. The velocity distributions are 

almost identical and the error in relative magnitude seems to be within 

an acceptable 5%. The agreement for the overall Nusselt number is
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Ar=H/R=10
K=r lx. =2 o |

Figure 5.5 Schematic of Axi-Symmetric Single-Diffusive Enclosure
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Figure 5.6 Streamfunctions for Single-Diffusive Case (Ar = 10, K = 2, 
Pr = 1, n = 0) Note: Enclosure Heights are Compressed.
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Present Study

Ra - 20 000 T

Ra - 2000 T
Figure 5.7 Thermal Distribution for Single-Diffusive Case (Ar - 10, K -
2, Pr - 1, n - 0) Note: Enclosure Heights are Compressed.
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Figure 5.8 Comparison of Radial Velocities at r =1.5

Figure 5.9 Comparison of Axial Velocities at z =5.
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excellent. Overall the agreement between the two studies is excellent, 

and differences due to the different solution techniques is minimal. 

Therefore as a result of the three comparisons the code can confidently 

be considered to be verified.

Table 5.3 Comparison of Overall Nusselt Numbers for Single- 
Diffusive Natural Convection in a Vertical Cylinder (Ar = 10, 
K= 2, n — 0, Pr — 1)

Ra
T

Present Study Thomas & de Vahl Davis

2000 1.61 1.61
20 000 2.88 2.83

100 000 4.35 4.38



CHAPTER SIX

RESULTS AND DISCUSSION

6.1 Parameter Limitations

To examine the complete interdependence of all the parameters in 

this study would be such an enormous task that the examination of the 

effects of each parameter must be limited. Clearly, the top priority 

must be given to the parameters that have the most impact on convection. 

These parameters include the buoyancy ratio (n), the thermal Rayleigh 

number (RaT) and the Lewis number (Le). The other parameters also play 

a role in the convection, but for this study they have been limited. 

The fluid modeled is considered to be a water based solution such that 

the fluid Prandtl number is limited to 7. In fact, both Han [4, p.151] 

and Trevisan and Bejan [23] agree that the effect of the Prandtl number 

is minimal for values near and above unity. The final two parameters, 

the aspect ratio and the curvature ratio, are physical enclosure based 

parameters. For the present study these two parameters are limited to 

an enclosure with an aspect ratio of one and a curvature ratio of two. 

(Note: for the remainder of the text, Pr, Ar and K will remain constant 

at the values specified above.) Though the variation of these 

parameters are important, their effects on convection will have to be 

examined in a future study.

83
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The range of the major parameters considered in the present 

study is 5000 at RaT 100 000, 1 s Le a 10 and -10 $ n S 10. For water 

based solutions the mass species diffusivity is usually less than the 

thermal diffusivity such that examination of the Lewis number below one 

is not required. The buoyancy ratios beyond the range specified do not 

need to be examined since the present extremes reflect strong mass 

species dominated buoyancy forces where the effect of the thermal 

induced buoyancy forces are minimal for the present Lewis number range. 

The range of the thermal Rayleigh number is determined by numerical code 

restrictions. Initially the thermal Rayleigh number has been varied 

from 1000 to 300 000. For thermal Rayleigh numbers less than 2000, no 

flow or stagnant conditions exist. For Ra^ > 200 000 the solution does 

not converge and there is a strong indication that the flow within the 

cavity may be periodic. This range agrees with the bifurcation studies 

of Moore et al. [39] for a two dimensional enclosure. For Ra^ between 

100 000 and 200 000, convergence of the solution is possible but 

difficult to obtain without an excessive amount of iterations. As a 

result of these code restrictions the thermal Rayleigh numbers are 

limited to the range stated above.

To examine the effects of the three major parameters 

efficiently, a central case must necessarily be established in which the 

parameters can be varied singly. Furthermore, the effects of the 

variation of the Lewis number and thermal Rayleigh number should be 

examined under a comprehensive range of buoyancy ratios to fully 

establish their influence. Based on these two criteria, variations of 

the parameters are centered around the case of Ra^ = 50 000 and Le - 5, 



85

where the results are examined for a range of buoyancy ratios (-10 S n 3 

10). The Lewis number or RaT is varied while the other parameter is 

held constant. If both these parameters are to be varied at the same 

time for a range of buoyancy ratios, the amount of data will be enormous 

and the presentation of the results for three independent variables will 

be difficult (for simultaneous presentation of the results, the plots 

would have to be four dimensional).

6.2 Effect of the Buoyancy Ratio on Convection

To establish the general effect of the buoyancy ratio on the 

hydrodynamic, temperature and concentration fields, the results are only 

presented for the central case (RaT - 50 000, Le - 5).

6.2.1 Streamfunction, Temperature and Concentration Profiles

One can examine the streamfunction, temperature and 

concentration profiles for the central case for -10 s n s 10 in figures 

6.1 to 6.9. The left vertical wall represents the inner radius with a 

constant dimensionless temperature and concentration of one, while the 

right vertical wall represents the outer radial wall with a 

dimensionless temperature and concentration of zero. The isotherms and 

concentration contours have an increment of 0.1. The streamfunctions on 

the enclosure walls have an arbitrary value of zero, and the 

streamfunction values are indicated for each plot.

At n = -10 (fig. 6.1) the flow is clearly dominated by the mass 

species buoyancy force, indicative of the strong counter-clockwise flow. 

The hydrodynamic boundary layer on the radial walls is relatively thin, 

and the core section has a relatively low flow rate. The concentration 

contours are vertically stratified within the core and the concentration





Figure 6.4 Streamfunction, Temperature and Concentration Contours for Ra - 50 000 Le = 5
T * *n “ -1.2 (transition from mass species to thermal dominated flow)



Figure 6.5 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 5, 
n - -1.2 (thermal dominated flow)

Figure 6.6 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 5, n = -1 00 co



Figure 6.7 Streamfunction, Temperature and Concentration Contours for RaT - 50 000, Le - 5, n = 0

Figure 6.8 Streamfunction, Temperature and Concentration Contours for Ra? - 50 000, Le 5, n 2 g



Figure 6.9 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le - 5, n = 10

o
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boundary layers are relatively thin. The steep concentration gradient 

at the top of the inner radius indicates a high mass transfer rate in 

this area. The isotherms are less affected by the flow than the 

concentration isopleths, as illustrated by a diagonal rather than a 

vertical distribution. This is due to the thermal diffusivity being 

five times the mass species diffusivity.

At n = -2 (fig. 6.2) the effect of the thermal buoyancy force is 

introduced by the clockwise vortex at the top centre of the enclosure. 

However, the opposing concentration buoyancy force still dominates the 

flow even though the hydrodynamic boundary layers are thicker and the 

flow is weaker. The isotherms are clearly becoming more vertical and 

the top centre distortion indicates a vorticity reversal. In the same 

area the concentration gradient is relatively low, while the lower 

isopleths are becoming more diagonal than stratified. The mass species 

boundary layers are thickening which is indicative of lower mass species 

transfer across the enclosure. This trend continues as n is increased 

to -1.5, as shown in figure 6.3.

As n is increased to -1.2 (fig. 6.4), the thermal buoyancy force 

is clearly dominating the flow with the opposing concentration buoyancy 

flow limited to the lower left of the annulus (dashed streamfunction) . 

However, the flow along the majority of the inner wall and the lower 

half of the outer wall is still counterclockwise even though its 

intensity is much less than the thermal buoyancy dominated vortex. From 

the isotherms and mass species isopleths, it is clear that the mass 

species boundary conditions have little or no direct influence on the 

upper vortex by virtue of the fact that the temperature gradients in 
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this area are significantly higher than the concentration gradients. In 

the "L" shaped vortex region (dashed contour) the temperature and 

concentration gradients are within the same order, giving the 

concentration gradients the edge on the net buoyancy force due to the 

mass species dominated buoyancy ratio.

The flow structures shown from figures 6.2 to 6.4 are classified 

as transitional flow in which thermal and mass species buoyancy forces 

dominate separate circulations within the enclosure. The onset of 

transition is the buoyancy ratio at which flow separation occurs due to 

the intrusion of the thermal buoyancy force dominated vortex. Flows are 

considered transitional until a critical buoyancy ratio is reached at 

which the thermal dominated vortex completely spans the enclosure (see 

fig. 6.5). At this point the thermal dominated vortex dominates the 

majority of the enclosure.

If n is increased above -1.19, an interesting change occurs. 

The concentration governed "L" eddy vanishes and the thermal dominated 

clockwise vortex moves from the top centre to the centre of the core. 

At this point complete flow reversal has occurred where there is one 

major vortex extending from the outer top corner to the inner bottom 

corner. In the remaining two corners there are small eddies resulting 

from the bisection of the "L" eddy by the thermal governed vortex. When 

the buoyancy ratio is decreased, the flow field does not immediately 

revert to the previous solution for the same n (compare the two cases 

for n=-1.2, figures 6.4 and 6.5). Instead, the flow field tends to 

retain its characteristics until a lower critical buoyancy ratio is
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reached. In this case, the thermal dominated vortex does not separate 

from the bottom inner corner until n < -1.725, letting the two minor 

eddies join into the "L" vortex.

At n - -1 (fig. 6.6) the effect of the temperature difference 

and concentration difference are evenly matched. If the thermal and 

mass species diffusivities are equal (Le — 1), a no flow situation would 

exist where the temperature and concentration distributions would 

emulate solid conduction and mass diffusion, respectively. However, 

since Le = 5 for this case, a clockwise thermal buoyancy force dominates 

the flow results. Examining the temperature and concentration 

distributions for this case, the mass species boundary layer at the 

inner and outer radial walls is thinner than the thermal boundary layers 

for the same regions. This leads to a much larger temperature gradient 

than concentration gradient within the annulus core resulting in a 

temperature dominating flow extending to the enclosure walls.

At n - 0 (fig. 6.7), the effect of concentration does not exist 

and the flow is completely governed by the imposed temperature 

difference. The corner eddies have completely disappeared, and the 

temperature profiles are stratified through the core region. When the 

buoyancy ratio is further increased above zero, the flow is considered 

to be aided with the mass species and thermal buoyancy forces acting in 

the same direction. Observing the hydrodynamic, temperature and 

concentration distributions for n > 0 (n - 2, fig. 6.8; n = 10, fig. 

6.9), the streamfunctions indicate that the flow rate near the walls is 

increasing as well as the size on the stagnant fluid in the centre. The 

temperature and concentration boundary layers are thinning along the 
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vertical walls which further indicates an increasing wall velocity. For 

n - 10 (fig. 6.9), the core region has become stagnant due to 

stabilizing effect of the combined vertical temperature and 

concentration gradients in this area.

6.2.2 Velocity Distributions 
* The flow direction can be examined for the centreline (z =0.5) 

vertical velocity distribution as shown in figure 6.10. For high mass 

species dominated flows in both aiding and opposing modes, the 

hydrodynamic boundary layer near the inner wall appears to be relatively 

thin with the flow confined to this region and the core remaining 

stagnant. For thermal dominated flows and transition flows, there tends 

to be an increased amount of flow within the core area, including a 

thicker boundary layer. The difference between thermal dominated flow 

and transitional flow (thermal to mass species dominated) for opposing 

buoyancy conditions is clearly marked with positive to negative velocity 

gradients at the inner wall. For n - -1.2 (transitional flow) the two 

buoyancy effects are distinguished by the mass species dominated 

downward flow near the inner wall, while the core region is still 

dominated by the thermal buoyancy force as demonstrated by the positive 

vertical flow on the warmer side of the centre core.

6.2.3 Horizontal Temperature and Concentration Profiles

Temperature and concentration distributions along the horizontal 

centreline may be examined in figs. 6.11 and 6.12. Generally, the mass 

species boundary layers are thinner than the thermal boundary layers due 

to the lower mass species diffusivity. For high mass species dominated 

flows (n - 10, -10), the temperature distribution is almost similar to
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Figure 6.11 Temperature Distributions along the Horizontal Centreline

r
Figure 6.12 Concentration Distributions along the Horizontal Centreline
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that of a pure conduction regime. This is due to the relatively 

stagnant core for this type of flow. For single major vortex regimes 

where the core is not stagnant (n - 2, 0, -1 and -1.2 (thermal 

dominated)), the horizontal centreline temperature seems to remain 

constant within the core region. The same can be said for the 

concentration distributions for the same buoyancy ratios as well as for 

the strong mass species dominated flows. The latter is due to the 

weaker mass species diffusivity in which the mass species gradients can 

not penetrate the stagnant core as far as thermal gradients.

6.3 Effect of the Thermal Rayleigh Number on Convection

The effect of Ra^ on convection is only demonstrated for a few 

specific buoyancy ratios to obtain a concise understanding of the 

relationship. In this case the thermal Rayleigh number is varied from 

5000 to 100 000 with a range of buoyancy ratios specified at n - -2, 

-1.2, -1 and 2, which reflect conditions at mass species dominated 

opposing, transitional, unity buoyancy ratio, and mass species dominated 

aiding flows respectively. The Lewis number is held constant at 5.

The effect on convection for a buoyancy ratio of -2 can be 

examined in figures 6.13 to 6.16. At a low thermal Rayleigh number of 

5000 (fig. 6.13), the flow regime is completely dominated by the mass 

species buoyancy force. However, as the thermal Rayleigh number is 

increased, the thermal buoyancy force increases its influence on the 

convection. At this point it should be restated that the counterpart 

mass species Rayleigh number is increased at the same rate as Ra^ since 

the buoyancy ratio remains constant. At Ra^ = 20 000, separation occurs 

at the top of the enclosure. For higher thermal Rayleigh numbers this



Figure 6.14 Streamfunction, Temperature and Concentration Contours for Ra - 20 000, Le - 5, n “ -2



Figure 6.16 Streamfunction, Temperature and Concentration Contours for Ra * 100 000, Le = 5, n = -2 S T
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region of flow reversal intrudes further into the cavity displacing the 

mass species dominated circulation (figures 6.15 and 6.16). Thus it 

seems that for n - -2 (previously thought be a mass species buoyancy 

force dominated flow for all RaT ) the flow will only be dominated by a 

mass species buoyancy force for low Ra^ (RaT - 20 000). After this 

point transitional flow occurs and hypothetically for high thermal 

Rayleigh numbers the flow will be dominated by the thermal buoyancy 

force. However the present study does not reveal at what point this 

complete reversal occurs.

The effect of varying the thermal Rayleigh number is further 

demonstrated on a transitional flow regime (n - -1.2) in figures 6.17 to 

6.20. At a low thermal Rayleigh number (Ra^ - 5000, fig. 6.17) the 

majority of the flow is dominated by the mass species buoyancy force 

apart from the top outer corner of the enclosure where a small thermal 

eddy exists. Increasing Ra^ to 20 000 results in a substantial increase 

in size and intensity of this eddy. On examination of figure 6.18 this 

thermally dominated buoyancy force eddy now occupies approximately half 

the centre core to the upper outer wall whereas the original flow 

circulation has been reduced and displaced to a low intensity "L" shaped 

eddy to the lower left of the enclosure. Further increases in the 

thermal Rayleigh results in the eventual disappearance of the mass 

species dominated "L" eddy (figures 6.19 and 6.20). At RaT — 100 000 

this eddy is bisected by the more dominant flow circulation resulting in 

two small eddies in the top left and bottom right corners of the 

enclosure. For this buoyancy ratio there is more variation in the 

temperature and concentration contours than in the previous case.



Figure 6.18 Streamfunction, Temperature and Concentration Contours for RaT - 20 000, Le - 5, n = -1.2
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Figure 6.19 Streamfunction, Temperature and Concentration Contours for Ra^ = 50 000, Le = 5, n = -1.2
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At a low Ra^ the temperature and concentration contours tend to be 

distributed horizontally, as Ra^ is increased a distortion is present in 

both profiles at the location of the stronger thermal dominated vortex. 

This is more notable in the concentration contours. As the thermal 

Rayleigh number is increased into the higher values (specifically RaT - 

100 000, figure 6.20) the distortions result in an almost vertical 

thermal stratification, while the concentration in the centre on the 

vortex remains constant. From the observations of this case (n - -1.2) 

an increase in the thermal Rayleigh number tends to cause transition 

from a mass species dominated buoyancy flow to a thermal dominated 

buoyancy flow which further supports the observations for the case of n 

- -2.

Evaluating the effect of Ra^ at the buoyancy ratio of negative 

unity is important due to the significance of this value. Figures 6.21 

to 6.24 demonstrate the effect of the increase in Ra on the flow 
T

profiles. At a low Ra^ of 5000 (fig. 6.21) the thermal dominated vortex 

is somewhat circular in shape. An increase in Ra^ results an expected 

increase in intensity of motion while the shape of the circulation 

becomes more box like with the exception of eddies in the top left and 

bottom right corners. On a point of interest these eddies are not 

reduced when RaT is increased, in fact the opposite is true. From the 

present observations, it is not known if these corner eddies are a 

result of shear or a double diffusive characteristic. It is further 

interesting to note that eddies are not formed in the upper right and 

low left corners for high Ra . This observation will further be 

discussed for an aiding flow buoyancy ratio. Examination of the





Figure 6.24 Streamfunction, Temperature and Concentration Contours for Ra^ - 100 000, Le - 5, n = -1
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temperature and concentration contours for this case reveals that an 

increase in Ra will result in the thinning of the thermal and mass T
species boundary layers. Consequently a "blob" of uniform temperature 

and concentration will establish itself in the centre core of the 

enclosure. This is more noticeable for the concentration contours where 

the constant concentration "blob" is developing at RaT - 5000 (fig. 

6.21), however on close examination of the temperature contours for RaT 

- 100 000 (fig. 6.24) the thickening vertical contours at the centre 

core indicate that a constant temperature "blob" is developing.

Finally, the effect of the thermal Rayleigh number should 

examined for an aiding buoyancy force case. Figures 6.25 to 6.28 

demonstrate this effect for a buoyancy ratio of 2. For low RaT the 

streamfunctions (fig. 6.25, RaT - 5000) indicate that the flow is 

uniformly distributed almost to the centre of the core. However for 

high Ra^ (fig. 6.28, Ra^ - 100 000) the majority of the flow tends to be 

in close proximity to the enclosure walls with the core area becoming 

stagnant. The temperature and concentration contours seem to follow 

similar relationships with increasing RaT as discussed in the previous 

case (n = -1) with a developing vertical stratified temperature 

distribution and the growth of a constant concentration "blob" within 

the core of the enclosure.

Following up on what has been discussed in the previous 

paragraph, it is interesting to note that no corner eddies have been 

formed for the case of aiding flow. This leads us to believe that 

corner eddies are a double-diffusive characteristic and are not caused 

by shear, otherwise they would have appeared for this case since the



Figure 6.25 Streamfunction, Temperature and Concentration Contours for Ra? - 5000, Le = 5, n = 2

Figure 6.26 Streamfunction, Temperature and Concentration Contours for Ra = 20 000, Le = 5, n - 2 T '

107



Figure 6.27 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 5, n = 2 T

Figure 6.28 Streamfunction, Temperature and Concentration Contours for Ra - 100 000, Le - 5, n ~ 2 T
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intensity of the flow is in the same order as for the case of n = -1. 

Another interesting note about these eddies is that they only seem to 

occur in the range of n - -1 to the point before transition from thermal 

dominated to mass species dominated opposing flows. This indicates that 

the mass species buoyancy force still has a minor but visible effect on 

the flow even though the opposing thermal buoyancy force influences the 

main flow circulation.

6.4 Effect of the Lewis Number on Convection

The effect of Le on convection is also examined for a few 

specific buoyancy ratios to obtain a brief insight into this 

relationship. To provide a standard comparison with the previous effect 

of the thermal Rayleigh number, the flows are examined for similar 

buoyancy ratios: n - -2, -1.2, -1 and 2, reflecting conditions for mass 

species dominated opposing, transitional, unity buoyancy ratio, and mass 

species dominated aiding flows respectively. For these cases the 

thermal Rayleigh number is held constant at 50 000.

The effect of Le on convection for a buoyancy ratio of -2 can be 

examined in figures 6.29 to 6.32 for Lewis numbers of 1, 2, 5 and 10 

respectively. At a Lewis number of 1 (fig. 6.29) the temperature and 

concentration profiles are exactly the same as expected, the resulting 

flow is definitely mass species dominated with a high flow rate 

circulation. As Le is doubled (fig.6.30) a significant change occurs in 

the stream functions, the maximum dimensionless stream function 

decreases the flow circulation from -13 to -5. It is evident at this 

point that as the Lewis number is increased the effect of the mass 

species buoyancy force for a constant buoyancy ratio is reduced. This
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Figure 6.32 Streamfunction, Temperature and Concentration Contours for Ra^ — 50 000, Le - 10, n - -2
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is due to the decreased diffusivity of the mass species, which results 

in the thinning of the mass species boundary layers. Consequently the 

effect the mass species on the fluid density does not penetrate as a far 

as the thermal fluid density effect. Further increases in the Lewis 

number results in the onset of transitional flow (figures 6.31 and 6.32) 

where a thermal dominated vortex intrudes from the top centre of the 

enclosure.

The effect of the Lewis number on transitional flow is further 

demonstrated for a buoyancy ratio of -1.2 in figures 6.33 to 6.36. At a 

Lewis number of 1, the flow is clearly dominated by the mass species 

buoyancy force. However as Le is doubled (fig. 6.34), transitional flow 

starts to develop. Compared to the previous case (n = -2) separation at 

the top of the enclosure starts for a lower Lewis number, consequently 

if the buoyancy ratio is increased transitional flow will start to occur 

at a lower Lewis number. Further increases in the Lewis number (figures 

6.35 and 6.36) results in the reduction and eventual disappearance of 

the mass species dominated "L" shaped eddy. Examination of the 

temperature contours indicate that as the Lewis number is increased, the 

layers at the vertical centreline go from an unstable to a stable 

stratified condition (unstable being the condition where warmer lighter 

fluid is covered by colder heavier fluid). When the flow circulation is 

reversed by the dominating opposing thermal buoyancy force (fig. 6.36) 

the concentration in the centre of the enclosure exhibits the previously 

mentioned "blob" like characteristic as opposed to the reverse pattern 

of fig. 6.33. This is due to the lower diffusivity of the mass species 

at the higher Lewis number.
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Figure 6.35 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 5, n - -1.2

Figure 6.36 Streamfunction, Temperature and Concentration Contours for Ra = 50 000, Le = 10, n = -1.2
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For the buoyancy ratio of -1 the flow characteristics are 

established in figures 6.37 through 6.40. At Le = 1 figure 6.37 

indicates a no flow situation where the temperature and concentration 

contours emulate pure heat conduction and solid diffusion. Doubling the 

Lewis number creates a drastically different flow profile (fig 6.38). A 

strong thermal buoyancy force dominated vortex has been created. 

However further increases in the Lewis number does not result in a 

significantly large increase in the intensity. One may notice again 

that separation occurs at the upper left and lower right corners in 

which these eddies are caused by a weak mass species buoyancy force. 

Upon close examination of the separation points along the enclosure 

walls it is determined that these secondary eddies are shrinking with 

increasing Le, such that at very high Lewis numbers (very small mass 

species diffusivities) the size of the separation area will become 

insignificantly small. At this point the effect of the concentration on 

the buoyancy force will be negligible, since the diffusion of the mass 

species will be almost nonexistent. As a result, the concentration 

within the enclosure will be uniform, such that gradients are 

nonexistent, thus there is no mass species buoyancy force.

Figures 6.41 through 6.44 show a very interesting relationship 

between the Lewis number and the flow profiles for the aiding flow case 

of n - 2. The most notable feature is that as the Lewis number is 

increased, the intensity of the flow decreases and then levels off 

slightly oscillating around a dimensionless streamfunction value of 12. 

The explanation for this trend is reasonable. The boundary thickness of 

the mass species layer is shrinking, such that the extent of the



Figure 6.37
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Figure 6.40 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 10, n - -1
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Figure 6.41 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 1, n = 2

Figure 6.42 Streamfunction, Temperature and Concentration Contours for Ra - 50 000, Le = 2, n = 2 
T
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Figure 6.44 Streamfunction, Temperature and Concentration Contours for Ra^ = 50 000, Le = 10, n = 2
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buoyancy effect is becoming closer and closer to the wall. Thus the net 

aiding buoyancy force is reduced to a value primarily influenced by the 

stable thermal buoyancy force (indicated by the almost consistent 

temperature contours). Extrapolating from the present observations, 

further increases in Le will not greatly effect the flow profiles apart 

from a thinning of the concentration contours. This is due to the same 

reasons as mentioned in the latter part of the previous paragraph.

6.5 Effect of Ra on the Average Sherwood and Nusselt Numbers 
T

The effect of the thermal Rayleigh number on the average Nusselt 

and Sherwood numbers for a buoyancy ratio range of -10 i n s 10 can be 

examined in figures 6.45 and 6.46. Generally, the average Nusselt and 

Sherwood number increases with the thermal Rayleigh number for constant 

n. However, Nu and Sh tend to be minimized in the transitional range 

of flow reversal for constant Ra^ In general the average Nusselt 

numbers are less in the opposing flow area (n < 0) than for the 

corresponding n in the aiding flow range (n > 1). This is also true for 

Sh, however the relative difference for corresponding aiding and 

opposing buoyancy ratios is lower. This difference is attributed to the 

fact that opposing flow has a lower flowrate adjacent to the enclosure 

walls than for the corresponding aiding flow case.

6.6 Effect of Le on the Average Sherwood and Nusselt Numbers

The general effect of the Lewis number on Nu and Sh for the 

buoyancy ratio range of -10 s n s 10 is shown in figures 6.47 and 6.48. 

Examining figure 6.47 reveals that an increase in the Lewis number tends 

to decrease the average Nusselt number, except for the thermal dominated 

opposing flow range of n = 0 to the onset of flow reversal. On the
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other hand, the average Sherwood number increases for the whole buoyancy 

ratio range for an increase in the Lewis number for a given buoyancy 

ratio. The increase in the Sherwood number is simple to explain. An 

increase in the Lewis number represents a decrease in the mass species 

diffusivity. This results in the thinning of the mass species boundary 

layer, consequently the concentration gradients at the vertical 

enclosure walls will increase. The explanation for the Nu-Le 

relationship is slightly more complex. In the thermal dominated 

opposing flow region between n - 0 and flow reversal (min. Nu), the flow 

is enhanced with increasing Le as shown in figures 6.33 to 6.40. This 

increase in flow circulation is responsible for the increase in heat 

transfer rate. However, outside this region, flow circulation intensity 

is reduced as the Lewis number is increased. This is demonstrated in 

figures 6.41 to 6.44 and discussed in section 6.4.

An interesting relationship between the aiding buoyancy ratio (n 

> 0) and the average Nusselt number occurs for Le — 10. As the buoyancy 

ratio is increased the average Nusselt number decreases, whereas for 

other Le (1, 2 and 5), the average Nusselt number tends to increase for 

the same region. Since the mass species boundary layer is much thinner 

than the thermal boundary layer for Le — 10, the mass species buoyancy 

force tends to dominate the flow very close to the vertical walls. The 

influence of the thermal dominated buoyancy force extends further out. 

At low buoyancy ratios (n “ 2, fig. 6.48) the axial velocity between the 

vertical wall and the centre of the enclosure tends to smoothly 

distributed. However as n increases the flow adjacent to the wall tends 

to be highly dominated by the mass species buoyancy force such that the 
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majority of the flow occurs within this region. Thus the axial velocity 

distribution is very high in a small region very close to the wall, 

whereas the velocity outside the mass species boundary layer, but within 

the thermal boundary layer, is quite low if not close to stagnant. This 

has the effect of reducing the rate of heat transfer from the vertical 

walls, consequently the average Nusselt number is reduced.

A special case exists for Le - 1 where the solutions are 

symmetric with respect to n - -1. For example, the streamfunction, 

thermal and mass species equation solutions for n - -2, 0 will be 

symmetric with a horizontal line of reflection. This is expected for 

this Lewis number due to the similar dimensionless mass species and 

thermal distributions in which the only difference between the 

corresponding solutions is the change in the sign of the buoyancy force. 

Notice in figures 6.47 and 6.48 that the average Nusselt and Sherwood 

numbers for the case of n - -1 are a minimum of 1.44 as predicted by 

equation 5.3 for a no flow situation. The solutions for this specific 

Lewis number are referred to as simple additive flow in which similar 

solutions can be obtained provided the following criteria is met:

Le — 1 Ra + Ra - Ra n + 1 - Constant (6.1) ( T c J J

Symmetric solutions will be obtained when In + 1| - Constant.

Finally it should be observed that at n - 0 all solutions, 

regardless of the Lewis number, intersect at the same average Nusselt 

number (Nu - 5.2313, fig. 6.47). Since the buoyancy ratio is zero, mass 

species has absolutely no effect on the convection, consequently the 
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problem is considered to be single diffusive for this point even though 

separate solutions exist for the concentration distribution (see fig. 

6.48).

6.7 Flow Transition and Flow Reversal Ranges

The flow transition range only covers a small part of the 

buoyancy ratio spectrum studied, however it is important in the 

understanding of flow reversal. There are three major points in the 

buoyancy ratio: onset of flow transition, the upper critical buoyancy 

ratio and the lower critical buoyancy ratio. The onset of flow 

transition is the point at which the mass species buoyancy force 

dominated vortex experiences intrusion by the thermal dominated vortex. 

The upper critical buoyancy ratio is the point at which the transitional 

flow changes to thermal dominated flow, which is associated with a 

sudden rise in Nu. The corresponding lower critical buoyancy ratio is 

the point at which a thermal dominated opposing flow jumps to a 

transitional flow, which is associated with a sudden decrease in Nu. 

The upper critical buoyancy ratio is obtained by increasing n, whereas 

the lower critical buoyancy ratio is obtained by decreasing n. The 

difference between the upper and lower limits of the critical buoyancy 

ratio is defined as the critical buoyancy ratio range. It can be argued 

that a fourth major point exists at the opposing-aiding flow boundary (n 

- 0), however since this point does not vary with the thermal Rayleigh 

number and the Lewis number it is not discussed here.

6.7.1 Effect of Ra^, on Transition Onset and Critical Buoyancy Ratios

The effect of the thermal Rayleigh number on the onset of 

transitional flow can be examined in the streamfunction plots for Le -
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5, n - -2 (figures 6.13 - 6.16) in which increasing Ra^ results in the 

intrusion and expansion of a thermal dominated vortex (see section 6.3). 

The onset of transition for a constant Lewis number is plotted in 

figures 6.49 and 6.50. Examination of these plots reveals that an 

increase in the thermal Rayleigh number results in the lowering of the 

buoyancy ratio at which the onset of transitional flow occurs. The 

actual buoyancy ratio values for the onset of transitional flow can be 

found in table 6.1.

Table 6.1 Transition Onset Point and Critical Buoyancy Ratios 
for 5000 - Ra - 100 000 at Le - 5.T

Ra Onset of Lower Upper
T Transition Critical n Critical n

5000 -1.5 -1.15 -1.00 0.15

20 000 -2 -1.25 -1.13 0.12

50 000 -2.5 -1.275 -1.19 0.085

100 000 -3 -1.29 -1.23 0.06

Figures 6.49 and 6.50 show the average Nusselt and Sherwood 

numbers in the region of flow reversal, in which the relationship 

between the two critical buoyancy ratios and the thermal Rayleigh number 

can be observed. It may be noted that as Ra^ increases both the lower 

and upper critical buoyancy ratios decrease. From table 6.1 it may also 

be noticed that the critical buoyancy range or the difference between 

the upper and lower critical buoyancy ratios (An) is decreasing with 

increasing Ra . From the present observations one would hypothesize
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Figure 6.49 Effect of RaT on Nu and on the Critical Buoyancy Ratios

Figure 6.50 Effect of Ra^ on Sh and on the Critical Buoyancy Ratios
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that a further increase in the thermal Rayleigh number would result in 

the further shrinkage of the critical buoyancy range to a point where 

only one critical buoyancy ratio exists. However if this point exists, 

it is more likely that there will be a step difference or discontinuity 

in the solutions than a smooth flow reversal since the difference 

between the average Nusselt number solutions along with the average 

Sherwood number solutions is increasing. For Ra* beyond this value it 

is uncertain if the single step difference will remain or that there may 

be region of instability or transient flow between the transitional and 

thermal dominated flow solutions. In fact the region for a high Ra* may 

be turbulent as opposed to laminar such that the present speculations 

may not be applicable.

6.7.2 Effect of Le on Transition Onset and Critical Buoyancy Ratios
The effect of the Lewis number on the onset of transitional flow 

can be examined in figures 6.47 and 6.48 in which an increasing Lewis 

number will advance this onset when the buoyancy ratio is increased 

through the opposing flow range. This agrees with the observations in 

figures 6.29 through 6.32 for a constant Ra* of 50 000 (the buoyancy 

ratio is held at -2), where an increasing Lewis number is documented by 

the intrusion of the thermal buoyancy force dominated vortex. The 

actual values of the onset of transition flow may found in table 6.2. 

Transitional flow is not applicable to Le - 1, since the flow can only 

be dominated by either the mass species or thermal buoyancy force, not 

both. It can be argued that the no flow condition (n - -1) could be 

considered the point of flow transition. This is not the case since 
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transitional flow requires that there be separate vortices governed 

separately by the two diffusive buoyancy forces.

Table 6.2 Transition Onset Point and Critical Buoyancy Ratios 
for 1 Le s 10 at Ra - 50 000.

Le Onset of 
Transition

Lower 
Critical n

Upper 
Critical n An

1 n/a -1. -1. 0.

2 -1.5 -1.085 -1.05 0.035

5 -2.5 -1.275 -1.19 0.085

10 -4 -1.485 -1.35 0.135

Figures 6.51 and 6.52 examine the average Nusselt and Sherwood 

numbers in the critical buoyancy ratio range. These plots also enable 

us to examine the effect of the Lewis number on the critical buoyancy 

ratios and other reversal phenomena. Curves are plotted for Le - 2, 5, 

and 10 for a constant thermal Rayleigh number of 50 000. The curve for 

Le - 1 is not included since it does not have a discontinuity and 

therefore does not need to be closely examined in this specific range. 

Examination of this range reveals that as the Lewis Number is increased 

the upper and lower critical buoyancy ratios decrease. Furthermore, 

table 6.2 indicates that the critical buoyancy ratio range (An) 

increases with the Lewis number. A special case exists for Le - 10 in 

which three separate solutions can exist during flow reversal. In this 

case one solution exists for thermal dominated opposing flow (n 

-1.485, upper curve), however two separate solutions exist for the 

transition region ( -2.15 n s -1.375, middle curve; n s -1.35, lower
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Figure 6.51 Effect of Le on Nu and on the Critical Buoyancy Ratios

Figure 6.52 Effect of Le on Sh and on the Critical Buoyancy Ratios
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Figure 6.53 Streamfunctions for Middle Solution Curve for Ra — 50 000,
Le = 10 and n = -2. T

Figure 6.54 Streamfunctions for Lower Solution Curve for 
Le - 10 and n - -2.

Ra - 50 000, I
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curve) depending on the initial flow conditions. The difference between 

the two transition solutions is shown in figures 6.53 and 6.54 for n - 

-2 at Le - 10 and Ra? - 50 000. The difference between the two plots is 

that the thermal buoyancy force governed vortex has separated from the 

outer radial wall (fig. 6.54) for the lower solution curve. Referring 

to figure 6.51, the relationship between the buoyancy ratio and the 

solution curves will be explained. If the buoyancy ratio is increased 

from n < -2.15, the solution will follow the lower curve where the 

thermal dominated vortex is clear of the radial walls. Once the 

buoyancy ratio surpasses n - -1.35, the solution steps to the upper 

solution curve where thermal dominated circulation encompasses the 

enclosure from the lower inner wall to the upper outer wall (fig. 6.36). 

If n is now decreased, the solution will not revert to transitional flow 

until a lower critical buoyancy ratio ( n < -1.485) is reached. Beyond 

this point the buoyancy ratio can be increased or decreased along the 

middle solution curve, for which the thermal dominated vortex is 

attached to the outer radial wall. If n is increased the flow will 

revert to thermal dominated flow at n > -1.375; if n is decreased the 

thermal dominated vortex will separate from the outer radial at n < 

-2.15 and then follow the lower transitional flow curve.

6.7.3 Comparison of Critical Buoyancy Ratio with Other Studies

In Chapter Two it was discussed that other numerical studies 

have found critical buoyancy ratios for flow reversal. Comparisons with 

the other studies are difficult on two accounts. First, the physical 

configurations are different, but more importantly the values of the 

fluid parameters such as Pr and Ra are different if not unknown.
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However, the same general relationships between the Lewis number and the 

critical buoyancy ratios are present for the studies.

Taunton et al. [14] have found numerically that two separation 

points exist for a vertical flat plate in which, if the buoyancy ratio 

is decreased from a small negative buoyancy ratio, counter current flow 

will result until a second buoyancy ratio is reached, beyond which flow 

occurs entirely in the opposite direction. Comparing to the present 

study, Taunton's first separation point may represent the lower critical 

buoyancy ratio, whereas the second separation point represents the onset 

(or in Taunton's case the termination) of transitional flow. There is 

no mention of results due to an increase in n from the other end of the 

spectrum, thus the existence of an upper critical buoyancy ratio was not 

established. In fact, one critical buoyancy ratio may exist as opposed 

to two critical buoyancy ratios (upper and lower) if the solutions for 

vertical flat plates are unique. The first separation points (critical 

buoyancy ratios) are listed in table 6.3.

Table 6.3 First Separation Point (Critical Buoyancy Ratio) for 
a Vertical Flat Plate. (Note: Ra is unknown for Taunton's study)

Pr Le First Separation 
Point

0.35 2 -1.13

0.14 5 -1.29

0.7 10 -1.69

0.01 10 -2.00

0.1 100 -3.88

1.0 1000 -6.86
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Nilson [17,18] also found a domain of counterflow between two 

domains of opposite unidirectional flows for double-diffusive flow along 

a vertical flat plate. The author determined relationships for the 

domain boundaries for Le » 1 and Pr > 1.

(i) unidirectional downflow for n -Le (opposing mass species 

dominated convection)

(ii) unidirectional upflow for n £ -Le (thermal dominated

convection)

(in) bidirectional counterflow for -Le i n -Le (transitional

flow)

The parentheses represent the equivalent flows in the present study. 

Similar to Taunton, Nilson assumes there are unique solutions for any 

given buoyancy ratio and no other flow parameters have an effect (Ra^ 

and Pr). Nilson's correlations are compared to the present study in 

table 6.4. Since Nilson's criteria (Le » 1 and Pr » 1) do not exactly 

match, one would not expect good results. However the large differences 

may also be due to the fact that Ra^ and geometry parameters have not 

been considered.

Table 6.4 Comparison of the Nilson and Present Studies for 
Critical Buoyancy Ratios and Onset of Transition

Le
Critical Buoyancy Ratio(s) Onset of Transiton

Nilson Present Nilson Present

2 -1.25 -1.085, -1.05 -2 -1.5

5 -1.7 -1.275, -1.19 -5 -2.5

10 -2.15 -1.485, -1.35 -10 -4
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Han [4] found critical points similar to the present study in 

his examination of numerical double-diffusive flow in a square two 

dimension cavity. From Han's streamfunction plots, transitional flow 

represented by the intrusion of thermal buoyancy force dominated 

vortices are similar to the present study. However in Han's two 

dimensional study the intrusion occurs centro-symmetrically, intrusion 

occurs from both the top and the bottom of the enclosure. The absence 

of centro-symmetry in the present study is most likely due to the 

axi-symmetry of the problem in which the physical geometry prevents 

symmetric conditions with respect to the coordinate centre of the 
* *enclosure (r = 1.5, z -0.5). Han found that upper and lower critical 

buoyancy ratios for flow reversal exist, in which the solutions are 

dependent on the initial conditions. He also determined that as the 

Lewis number is increased the critical buoyancy ratio will decrease, 

however no relationship between the critical buoyancy ratios and the 

thermal Rayleigh number was investigated. Table 6.5 shows the upper and 

lower critical buoyancy ratios documented by Han.

Table 6.5 Critical Buoyancy Ratios for a Square Two-Dimensional 
Enclosure: Pr - 1, Ra = 100 000 (Han) T

Le Upper Critical 
Buoyancy Ratio

Lower Critical 
Buoyancy Ratio

2 -1.14 -1.13

10 -1.8 -2.13



CHAPTER SEVEN

CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions

A computer code has been developed to study double-diffusive 

flow in cartesian and axi-symmetric coordinates. The code was verified 

against a numerical two dimensional double-diffusivity study and a 

numerical axi-symmetric convective heat transfer study. Grid 

independence was found for a semi-uniform grid structure for an 

arbitrary case. Numerical results are presented for steady laminar 

natural convection of a fluid in a vertical annulus with a constant 

temperature and concentration applied across the vertical walls. Both 

opposing and aiding buoyancy force conditions are examined. Depending 

on the relative magnitude of the buoyancy forces, three flow domains may 

exist:

i) mass species buoyancy force dominated circulation

ii) thermal buoyancy force dominated circulation

iii) transitional flow (combination of the above flow domains)

Three main parameters have been investigated to determine their 

effect on the flow structure and the average heat and mass transfer 

rates. These include the buoyancy ratio (n), the Lewis number (Le) and 

the thermal Rayleigh number (Ra^). The aspect ratio (Ar), curvature (K) 

and the Prandtl number (Pr) have remained constant for the entire study.
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The buoyancy ratio strongly determines the flow domain due to 

the fact that this ratio determines the relative strengths and 

directions of the buoyancy forces. At low n, the flow is opposed and 

mass species dominated. For high n, the flow structure is aided and 

again mass species dominated. For -1 < n < 1 the flow structure is 

dominated by the thermal buoyancy force for Le > 1. The transitional 

domain is generally located in the region of -4 < n < -1 for the 

parameters studied, in which the points of flow reversal are dependent 

on the Lewis and thermal Rayleigh numbers. The average Nusselt and 

Sherwood numbers tend to be minimized at the points of flow reversal.

Solutions in the flow reversal range are not unique, as two or 

three different solutions could be found for the same parameters 

depending on the initial flow conditions. The extent of this flow 

reversal range is defined by upper and lower critical buoyancy ratios.

An increase in Ra tends to increase the heat and mass transfer 
T

rates. The thermal Rayleigh number also affects the critical buoyancy 

ratios. An increase in Ra will decrease the values of the critical 
T

buoyancy ratios and will also decrease the difference between these two 

points.

The Lewis number has a slightly more complex relationship with 

the Nusselt and Sherwood numbers. For all flow structures an increase 

in Le will result in an increase in Sh. For flow structures in the 

opposing mass species dominating domain and all aiding flow conditions, 

Nu decreases with an increase in Le. However for buoyancy ratios in the 

thermal dominated buoyancy force region, the average Nusselt number 
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increases with an increase in Le. The critical buoyancy ratios are 

decreased by an increase in Le, however the range between the ratios is 

increased.

Similar findings with flow domains and critical buoyancy ratios 

have been found in other numerical studies. In fact the general 

relationship between the Lewis number and the critical buoyancy ratios 

has been documented, however the relationship between flow reversal and 

other parameters have not been as well analyzed in previous studies.

7.2 Recommendations for Further Studies

Due to the number of system parameters it is necessary to 

investigate the effect of the parameters neglected in this study. The 

range of the present parameters should also be extended especially the 

Lewis number. The following future work should be considered

i) Effect of aspect ratio (Ar)

ii) Effect of curvature (K)

iii) Effect of Prandtl number (Pr)

iv) Extension of the Lewis number range ( 1 < Le < 2000)

v) Tall enclosures with high Le to examine possible multicell flow 

structures

vi) Transient flows (including the study of periodic flows, 

bifurcation and chaos)

vii) Turbulent flows

viii) Soret effects near the density inversion temperature using a 

nonlinear temperature-concentration-density relationship.

ix) Examination of different boundary conditions such as uniform

heat and mass transfer.
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A corresponding experimental study is required in order for the 

results to be fully confirmed. In fact the mechanics of flow reversal 

should be experimentally examined to verify the existence of upper and 

lower buoyancy ratios. Other "hysteresis" effects have been 

experimentally established such as the different onset and termination 

points for circulation in single-diffusive natural convection systems. 

Thus it is plausible that such a physical phenomenon exists in the 

present case.
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APPENDIX A

TABULATIONS OF NUMERICAL RUNS

Table A-l Grid Independence Runs for Non-Uniform Grids (Ar - 1, K - 1, 
Pr - 1, n — -1, Le — 4 and Ra^ — 20 000)

m i Nu Sh Max. Cell size

11 0 3.1854 5.2596 0.0909
11 10 3.1137 4.9931 0.1280
11 20 3.0641 4.8713 0.1719
11 30 3.0223 4.7785 0.2214

21 0 3.1174 5.0059 0.0476
21 5 3.0960 4.9504 0.0639
21 10 3.0782 4.9068 0.0828
21 15 3.0620 4.8686 0.1042
21 20 3.0462 4.8332 0.1279
21 30 3.0146 4.7666 0.1810

31 0 3.1065 4.9860 0.0323
31 5 3.0914 4.9477 0.0483
31 10 3.0783 4.9147 0.0679
31 15 3.0643 4.8808 0.0906
31 20 3.0493 4.8458 0.1159

41 0 3.1038 4.9829 0.0244
41 5 3.0925 4.9540 0.0405
41 10 3.0807 4.9241 0.0610
41 15 3.0670 4.8900 0.0851
41 20 3.0506 4.8513 0.1117
41 30 3.0182 4.7781 0.1703

51 0 3.1038 4.9836 0.0196
61 0 3.1009 4.9807 0.0164
61 10 3.0931 4.9528 0.0554

101 0 3.0584 4.8801 0.0528
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Table A-2 Grid Independence Runs for Semi-Uniform Grids (Ar - 1, K = 1, 
Pr - 1, n - -1, Le — 4 and Ra^ - 20 000)

m s Nu Sh Core Cell Size

11 1 3.1854 5.2596 0.0909
11 2 3.0048 4.6492 0.1111
11 3 2.8472 4.4463 0.1429
11 5 2.9886 4.8867 0.3333

21 1 3.1174 5.0059 0.0476
21 3 3.1298 4.9749 0.0588
21 5 3.1180 4.8680 0.0769
21 7 2.9598 4.4877 0.1111
21 10 2.9527 4.8067 0.3333

31 1 3.1065 4.9860 0.0323
31 3 3.1125 4.9897 0.0370
31 5 3.1185 4.9907 0.0435
31 7 3.1256 4.9826 0.0526
31 10 3.1171 4.8630 0.0769

41 1 3.1038 4.9829 0.0244
41 3 3.1058 4.9855 0.0270
41 5 3.1083 4.9881 0.0303
41 7 3.1121 4.9916 0.0345
41 10 3.1210 4.9958 0.0435

51 1 3.1038 4.9836 0.0196
51 3 3.1001 4.9791 0.0213
51 5 3.1049 4.9860 0.0233
51 7 3.1067 4.9884 0.0256
51 10 3.1112 4.9948 0.0303

61 1 3.1009 4.9807 0.0164
61 3 3.0976 4.9766 0.0175
61 5 3.1046 4.9869 0.0189
61 7 3.1047 4.9868 0.0204
61 10 3.1079 4.9929 0.0233
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Table A-3 Numerical Runs

Filename Pr Le Ra T n Nu Sh Max.^ ... ,* Mm.

F13 LO-1 1 0.1 20000 -1 1.4430 1.4430 0.000 0.000
F13 LO-2 1 0.2 20000 -1 1.4430 1.4430 0.000 0.000
F13 LO-25 1 0.25 20000 -1 1.4430 1.4430 0.000 0.000
F13 LO-5 1 0.5 20000 -1 1.4430 1.4430 0.000 0.000
F13 L2 1 2 20000 -1 2.6023 3.3037 7.524 -0.017
F13 L5 1 5 20000 -1 3.2043 5.5584 9.224 -0.084
fl3_L10 1 10 20000 -1 3.4312 7.5601 9.510 -0.138

F16 LO-1 1 0.1 80000 -1 5.3414 2.3923 0.506 -57.527
F19 LO-1 0.1 10 80000 -1 4.1975 9.7107 11.578 -0.766
F16 LIO 1 10 80000 -1 5.0784 11.1982 14.715 -0.647
F19 LO-1B 0.1 10 8000 -1 2.2365 5.0400 4.920 -0.050
F21R 1E04 7 5 10000 -1 2.5918 4.4708 6.643 -0.021
F28N1O 1P5 7 5 10000 -1.5 1.5564 3.1818 0.174 -1.242
F21R 2E05 7 5 200000 -1 6.2537 10.7277 21.399 -1.261
F21R_2EO3 7 5 2000 -1 1.5906 2.6090 1.890 -0.005

MY16 PL1O 7 5 5000 10 3.3482 8.8286 4.933 0.000
MY16 PL5 7 5 5000 5 3.0529 7.5083 4.827 0.000
MY16 PL2 7 5 5000 2 2.8444 6.2753 5.235 0.000
F27N5 Pl 7 5 5000 -0.1 2.4876 4.8528 5.279 0.000
F27N5 P25 7 5 5000 -0.25 2.4413 4.7027 5.212 0.000
F27N5 P5 7 5 5000 -0.5 2.3507 4.4195 5.052 0.000
MR13 P995 7 5 5000 -.995 2.0755 3.6106 4.390 -0.007
MR13 IPO 7 5 5000 -1 1.4426 1.4426 0.000 0.000
F21R 5E03 7 5 5000 -1 2.0754 3.6068 4.389 -0.007
MR11 1P0005 7 5 5000 -1.000 1.4427 1.4442 0.017 -0.035
MR5N5 1P005 7 5 5000 -1.005 1.4432 1.4563 0.042 -0.101
MR14 1P005 7 5 5000 -1.005 2.0686 3.5897 4.365 -0.008
MR5N5 1P05 7 5 5000 -1.05 1.4485 1.5790 0.089 -0.306
MR14 IPO5 7 5 5000 -1.05 2.0290 3.4753 4.384 -0.007
MR15 1P1 7 5 5000 -1.1 1.9763 3.3219 4.102 -0.027
MR16 1P15 7 5 5000 -1.15 1.8929 3.0714 3.865 -0.061
MR18 1P175 7 5 5000 -1.175 1.4650 1.9121 0.078 -0.573
F28N5 1P2 7 5 5000 -1.2 1.4686 1.9761 0.073 -0.613
F27N5 1P5 7 5 5000 -1.5 1.5149 2.6622 0.174 -1.242
F27N5 2 7 5 5000 -2 1.5985 3.5296 0.000 -1.396
F27N5 5 7 5 5000 -5 2.0606 6.0833 0.000 -2.657
F27N5_1O 7 5 5000 -10 2.6038 7.9690 0.000 -3.610

MY15 PL1O 7 5 20000 10 4.9546 12.9663 6.843 0.000
MY15 PL5 7 5 20000 5 4.6636 11.1284 7.125 0.000
MY15 PL2 7 5 20000 2 4.4561 9.4167 8.656 0.000
MY15 0 7 5 20000 0 3.9382 7.5205 9.794 0.000
MY29_P5 7 5 20000 -0.5 3.6780 6.7462 9.832 0.000
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Filename Pr Le Ra T n Nu Sh * Max. V> * Min.

F21R 2E04 7 5 20000 -1 3.2118 5.5024 9.294 -0.060
MY16 1P1 7 5 20000 -1.1 3.0350 5.0921 8.899 -0.148
JN6 1P125 7 5 20000 -1.125 2.9807 4.9732 8.767 -0.179
JN5 1P13 7 5 20000 -1.13 1.9580 2.7999 6.491 -0.640
MY29 1P15 7 5 20000 -1.15 1.8130 2.6737 5.400 -0.737
MY31 1P2 7 5 20000 -1.2 1.7397 2.8885 4.598 -0.934
MY16 1P2 7 5 20000 -1.2 2.7720 4.5445 8.201 -0.337
MY16 1P25 7 5 20000 -1.25 2.4850 3.9710 7.462 -0.580
JN1 1P26 7 5 20000 -1.26 1.7082 3.1392 4.046 -1.090
MY29 1P35 7 5 20000 -1.35 1.6860 3.4703 3.367 -1.267
F27N 1P5 7 5 20000 -1.5 1.6777 3.9316 2.403 -1.482
F27N 2 7 5 20000 -2 1.7908 5.1803 0.113 -2.111
F27N 5 7 5 20000 -5 2.7018 9.0415 0.000 -3.737
F27N_10 7 5 20000 -10 3.6493 11.7349 0.000 -4.933

JN26 PL10 7 1 50000 10 10.5203 10.5203 24.990 0.000
JN26 PL5 7 1 50000 5 8.8724 8.8724 21.699 0.000
JN26 PL2 7 1 50000 2 7.2649 7.2649 18.194 0.000
JN26 PL1 7 1 50000 1 6.4466 6.4466 16.257 0.000
JN26 0 7 1 50000 0 5.2313 5.2313 13.185 0.000
JN26 P5 7 1 50000 -0.5 4.2233 4.2233 10.571 0.000
JL5 P8 7 1 50000 -0.8 3.1579 3.1579 7.455 0.000
JN26 P95 7 1 50000 -0.95 2.0027 2.0027 3.464 0.000
JN28 P995 7 1 50000 -0.995 1.4546 1.4546 0.450 0.000
JN15 1 7 1 50000 -1 1.4427 1.4427 0.000 0.000
JN25 1P005 7 1 50000 -1.005 1.4546 1.4546 0.000 -0.450
JN26 1P02 7 1 50000 -1.02 1.6001 1.6001 0.000 -1.688
JN22 1P05 7 1 50000 -1.05 2.0027 2.0027 0.000 -3.464
JN20 1P1 7 1 50000 -1.1 2.5132 2.5132 0.000 -5.301
JN20 1P2 7 1 50000 -1.2 3.1575 3.1575 0.000 -7.452
JN20 1P5 7 1 50000 -1.5 4.2233 4.2233 0.000 -10.571
JN15 2 7 1 50000 -2 5.2313 5.2313 0.000 -13.185
JN15 5 7 1 50000 -5 7.8985 7.8985 0.000 -19.623
JN15_10 7 1 50000 -10 9.9481 9.9481 0.000 -23.878

MY7 PL19 7 2 50000 10 9.2020 12.8425 15.548 0.000
MY7 PL5 7 2 50000 5 7.8926 10.9623 14.308 0.000
MY7 PL2 7 2 50000 2 6.6732 9.1556 13.513 0.000
MY7 0 7 2 50000 0 5.2313 6.9879 13.185 0.000
MY7 P5 7 2 50000 -0.5 4.5900 6.0318 13.177 0.000
MY22 1P9 7 2 50000 -0.9 3.7525 4.7859 12.500 -0.004
MY11 1 7 2 50000 -1 1.4430 1.4430 0.000 0.000
MY7 1 7 2 50000 -1 3.3847 4.2459 11.737 -0.060
MY23 1P02 7 2 50000 -1.02 3.2876 4.1052 11.491 -0.094
MY24 lp04 7 2 50000 -1.04 3.1759 3.9449 11.188 -0.160
MY16 1P05 7 2 50000 -1.05 1.8180 2.1147 6.361 -1.063
MY28 1P075 7 2 50000 -1.075 2.9086 3.5689 10.414 -0.395
MY3O_1PO85 7 2 50000 -1.085 2.7672 3.3773 10.021 -0.563
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Filename Pr Le Ra T n Nu Sh * Max.^ Mm.y

JN6 1P09 7 2 50000 -1.09 1.7555 2.2315 4.379 -1.536
MY14 1P1 7 2 50000 -1.1 1.7571 2.2722 4.074 -1.622
MY10 1P2 7 2 50000 -1.2 1.8282 2.6529 0.890 -2.374
MY10 1P3 7 2 50000 -1.3 2.0189 3.1339 0.243 -2.931
MY1O 1P4 7 2 50000 -1.4 2.2158 3.5798 0.005 -3.380
MY7 1P5 7 2 50000 -1.5 2.4118 3.9855 0.002 -3.781
MY9 1P75 7 2 50000 -1.75 2.8820 4.8463 0.000 -4.637
MY7 2 7 2 50000 -2 3.3108 5.5360 0.000 -5.363
MY8 2P5 7 2 50000 -2.5 4.0371 6.5819 0.000 -6.554
MY8 4 7 2 50000 -4 5.5025 8.4931 0.000 -8.921
MY8 7 7 2 50000 -7 7.1358 10.5732 0.000 -11.453
MY8_1O 7 2 50000 -10 8.1667 11.9024 0.000 -12.969

A1O PL1O 7 5 50000 10 6.4265 16.5051 8.568 0.000
A1O PL5 7 5 50000 5 6.1063 14.2525 8.944 0.000
A1O PL2 7 5 50000 2 5.9240 12.1640 11.491 0.000
A1O 00 7 5 50000 0 5.2313 9.8417 13.185 0.000
A10 P2 7 5 50000 -0.2 5.1071 9.4877 13.304 0.000
A10 P5 7 5 50000 -0.5 4.8769 8.8531 13.445 0.000
A10 P8 7 5 50000 -0.8 4.5483 7.9902 13.500 -0.025
F21R 5E04 7 5 50000 -1 4.1994 7.1654 13.376 -0.325
MR21 1P1 7 5 50000 -1.1 3.9363 6.6489 13.027 -0.654
A10 1P15 7 5 50000 -1.15 3.7717 6.3607 12.696 -0.855
A10 1P175 7 5 50000 -1.175 3.6761 6.1997 12.459 -0.962
A16 1P18 7 5 50000 -1.18 3.6556 6.1655 12.406 -0.983
A16 1P19 7 5 50000 -1.19 2.3119 3.5028 9.428 -0.894
A4 1P2 7 5 50000 -1.2 2.2818 3.5677 9.210 -0.976
All 1P2 7 5 50000 -1.2 3.5679 6.0203 12.167 -1.066
All 1P25 7 5 50000 -1.25 3.2806 5.5414 11.275 -1.309
A16 1P275 7 5 50000 -1.275 3.0259 5.0948 10.424 -1.469
A17 1P285 7 5 50000 -1.285 2.1782 4.1003 8.203 -1.398
MR23 1P3 7 5 50000 -1.3 2.1680 4.1852 8.066 -1.449
F28N50 1P5 7 5 50000 -1.5 2.0890 5.1147 6.425 -1.950
MR19 1P5 7 5 50000 -1.5 2.0890 5.1147 6.425 -1.950
A18 1P75 7 5 50000 -1.75 2.0527 5.9401 4.581 -2.320
MR19 2 7 5 50000 -2 2.0087 6.5997 1.478 -2.689
A4 2P2 7 5 50000 -2.2 2.1048 7.1944 0.462 -2.902
A4 2P5 7 5 50000 -2.5 2.2615 7.9515 0.068 -3.164
A4 3 7 5 50000 -3 2.5104 8.9756 0.000 -3.533
MR19 5 7 5 50000 -5 3.3327 11.6136 0.000 -4.568
MR19_10 7 5 50000 -10 4.6289 14.9656 0.000 -6.013

A21 PL10 7 10 50000 10 4.4465 19.7822 5.821 0.000
A21 PL5 7 10 50000 5 5.3483 17.1570 9.110 0.000
A21 PL2 7 10 50000 2 5.5811 14.9571 12.059 0.000
A21 0 7 10 50000 0 5.2313 12.5365 13.185 0.000
A17 P5 7 10 50000 -0.5 5.0064 11.4890 13.430 0.000
A17_l 7 10 50000 -1 4.5552 9.8533 13.639 -0.377
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Filename Pr Le Ra T n Nu Sh * Max.
* 

Min.V>

JIA 1P1 7 10 50000 -1.1 4.4070 9.5026 13.638 -0.576
D19 1P2 7 10 50000 -1.2 4.2309 9.1474 13.554 -0.794
A21 1P25 7 10 50000 -1.25 4.1294 8.9564 13.452 -0.905
JL9 1P32 7 10 50000 -1.32 3.9662 8.6568 13.194 -1.060
JL5 1P35 7 10 50000 -1.35 1.6982 4.4390 4.524 -0.983
A25 1P35 7 10 50000 -1.35 3.8858 8.5101 13.031 -1.131
MY15 1P375 7 10 50000 -1.375 2.6254 5.0869 10.267 -0.701
JL3 1P4 7 10 50000 -1.4 1.7511 4.5849 5.104 -1.039
MY14 1P4 7 10 50000 -1.4 2.5888 5.2650 10.057 -0.800
MY7 1P4 7 10 50000 -1.4 3.7298 8.2223 12.661 -1.255
MY11 1P45 7 10 50000 -1.45 2.5375 5.6170 9.726 -0.956
MY9 1P45 7 10 50000 -1.45 3.5238 7.8287 12.094 -1.394
MY9 1P475 7 10 50000 -1.475 3.3738 7.5258 11.640 -1.471
MY14 1P485 7 10 50000 -1.485 3.2858 7.3389 11.365 -1.511
JN28 1P5 7 10 50000 -1.5 1.8222 5.1818 5.580 -1.191
A17 1P5 7 10 50000 -1.5 2.4973 5.9477 9.431 -1.080
JN27 1P7 7 10 50000 -1.7 1.8420 6.3371 5.193 -1.476
MY10 1P7 7 10 50000 -1.7 2.3676 7.0366 8.395 -1.437
JN26 1P725 7 10 50000 -1.725 1.8368 6.4681 5.066 -1.507
JN11 1P75 7 10 50000 -1.75 1.8312 6.5956 4.940 -1.535
JL3 1P75 7 10 50000 -1.75 2.3380 7.2590 8.138 -1.504
JN7 1P85 7 10 50000 -1.85 1.8077 7.0729 4.374 -1.635
JIA 1P85 7 10 50000 -1.85 2.2806 7.6577 7.632 -1.616
A17 2 7 10 50000 -2 1.7817 7.7068 0.357 -1.746
JIA 2 7 10 50000 -2 2.1984 8.1613 6.869 -1.745
JL9 2P1 7 10 50000 -2.1 2.1445 8.4393 6.336 -1.811
JL9 2P15 7 10 50000 -2.15 2.1148 8.5498 6.049 -1.842
JL6 2P2 7 10 50000 -2.2 1.7713 8.4441 2.631 -1.836
JN7 2P25 7 10 50000 -2.25 1.7724 8.6134 2.438 -1.851
A17 2P5 7 10 50000 -2.5 1.7934 9.3881 1.562 -1.957
A17 3 7 10 50000 -3 1.8779 10.6507 0.433 -2.138
A17 4 7 10 50000 -4 2.0697 12.4769 0.003 -2.441
A21 7 7 10 50000 -7 2.5492 15.7686 0.000 -3.073
A21_10 7 10 50000 -10 2.9167 17.8203 0.000 -3.531

MY1O PL1O 7 5 100000 10 7.8178 19.7138 10.218 0.000
MY1O PLS 7 5 100000 5 7.4562 17.0710 10.556 0.000
MY1O PL2 7 5 100000 2 7.2833 14.6498 13.853 0.000
MY10 0 7 5 100000 0 6.4466 11.9757 16.257 0.000
Al 8 P5 7 5 100000 -0.5 6.0050 10.8000 16.710 0.000
F21R 1E05 7 5 100000 -1 5.1174 8.7506 16.928 -0.755
MR17 1P1 7 5 100000 -1.1 4.7991 8.2127 16.819 -1.203
A3 1P2 7 5 100000 -1.2 4.3828 7.5700 16.259 -1.689
MY7 1P22 7 5 100000 -1.22 4.2774 7.4087 16.033 -1.791
A18 1P225 7 5 100000 -1.225 4.2488 7.3646 15.965 -1.815
A9 1P225 7 5 100000 -1.225 4.2490 7.3650 15.966 -1.815
MY7 1P23 7 5 100000 -1.23 2.7921 4.3672 12.763 -1.039
A24_1P235 7 5 100000 -1.235 2.7765 4.4077 12.653 -1.047
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Filename Pr Le Ra T n Nu Sh Max.^ * Min.^

A19 1P235 7 5 100000 -1.235 4.1893 7.2729 15.820 -1.864
A20 1P245 7 5 100000 -1.245 4.1252 7.1734 15.656 -1.918
A3 1P25 7 5 100000 -1.25 2.7439 4.5319 12.392 -1.196
A24 1P25 7 5 100000 -1.25 4.0911 7.1200 15.564 -1.946
MY7 1P26 7 5 100000 -1.26 4.0182 7.0052 15.361 -2.007
MY8 1P27 7 5 100000 -1.27 3.9349 6.8728 15.122 -2.063
MY10 1P28 7 5 100000 -1.28 3.8413 6.7203 14.829 -2.134
MY11 1P29 7 5 100000 -1.29 3.7149 6.5119 14.441 -2.203
MR22 1P3 7 5 100000 -1.3 2.6821 4.9305 11.764 -1.544
MR17 1P5 7 5 100000 -1.5 2.5709 6.1737 9.877 -2.334
JLIO 1P7 7 5 100000 -1.7 2.5061 7.0523 8.124 -2.753
A17 1P75 7 5 100000 -1.75 2.4939 7.2367 7.706 -2.830
JL11 1P8 7 5 100000 -1.8 2.4822 7.4078 7.265 -2.901
JLIO 1P9 7 5 100000 -1.9 2.2179 7.5076 3.749 -3.060
MR17 2 7 5 100000 -2 2.2585 7.9053 2.971 -3.206
MY10 2P5 7 5 100000 -2.5 2.5612 9.5545 0.435 -3.713
A18 3P5 7 5 100000 -3.5 3.1886 11.7915 0.000 -4.456
MR17 5 7 5 100000 -5 3.9456 13.9458 0.000 -5.296
MR17_10 7 5 100000 -10 4.5626 17.9030 0.000 -7.090
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APPENDIX B

SIMPLER ALGORITHM

The governing equations are numerically solved using a finite 

volume approach. The variables are determined at discrete points on a 

staggered grid in which Patankar's Semi-Implicit Method for Pressure 

Linked Equations-.Revised (SIMPLER) algorithm [7,46] is adopted.

1. Equation Discretization

The governing equations can simply be expressed in a generalized

conservation non-dimensional equation form with a dependent variable

(<^) , a diffusion constant (T) and a source term (S)

a^ d<f>* dj> * r d -2 . a s+
at or * az * 8r * 8r a *2 oz

*

(B.l)

can

Since we are

neglect the time

concerned only

dependant term.

with

The

the steady

integration

state solution we

of equ.(B.l) over

the control volume in figure B.l gives

J - J + J - J = (S + S <^ ) r* Ar* Az* 
e w n s C P P P (B.2)

where J represents the total flux across each control volume face

* * *J - u r </> Az

(B.3)
* * *J - u r Az
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Figure B.l Layout of a Typical Control Volume and Neighboring Points
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* * *J = v r Ar n n P n p n

* Ar

d4>* *“ v r s PJ s 0 Ar 5
* Ar

And (S + S 0 ) represents the linearized source term.

The continuity equation is expressed as

(B.4)

Integrating eq. (B.4) over the control volume

F - F + F - F = 0 e w n s (B.5)

where,

* * * * * ★F = r u Az , F = r u Az e e e w w w
(B.6)* * * * * *F = v r Ar , F=vrAr n n P s s P

If equation (B.5) is multiplied by <f> and subtracted from

equation (B.2), we obtain

(J - F <f>) - (J - F 6) + (J - F6) - (J - F <f> ) e e P w w P nnP ssP

(S + S )
C P P

★ * itr Ar Az p (B.7)

The terms in the parentheses can be expressed in the following manner:

J - F 4> U -4), (J - F 4) - a U - 4) (B.8)e e P E P E wwP WWP

with similar expressions for J and J we can now write the n s
discretization equation as

a (b = 3 <b + 3 <b + 3 (b + 3 <b + b P P E E W W N N S S (B.9)
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where

a - D A(|Pe |) + MAX(-F ,0) 
E e e e

a - D A(|Pe |) + MAX(F ,0) W w w w
a - D A(|Pe I) + MAX(-F ,0) M n n n
a - D A( |Pe | ) + S s s

* * *
b - S r Ar Az c p

MAX(F ,0) s

* * Ar Az

* r Az
*(Sr ) 

w

(B.10)

(B.ll)

(B.12)

(B.13)

+ a

D - 
w

* rw

* r Ar * r pD - 
s *(Sz ) s

The function A is a weighting function determining the dependant

variable (^) value at the control volume walls. This value is 

determined by the relative strengths of convection and diffusion, also

known as the Peclet number.

Pe “ 
e

Pe = n

* 
U 

e
(Sr) 

e Pe - w

Pe = s

* 
u

w
(Sr) w

*
V 

n

r

(Sz) n

»

* 
V

s

r

(Sz) s

»

(B.14)

r
»

r

The power law scheme is chosen for interpolating the convective

terms at the control volume walls

A( |Pe | ) = MAXlO, (1 - O.llPel)5] (B.15)

2. Solution Technique

The appropriate control volumes for the velocity components u 

and v are shown in fig. 4.1. The two faces of the control volume around 
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the u pass through the grid points p and e. The corresponding e 
discretized momentum equation can be written as

* * * * * * , , a u = y a u + b + Az r (P - P ) (B.16)ee nb n b eP E

A similar expression can defined for the axial momentum

* „ * * ■* * * , __K av = £ a v + b + Ar r (P - P) (B.17)n n nb nb P P N

It is not directly possible to solve for the velocities using the 

discretized momentum equation as the pressure field is not known. 

However we can obtain a velocity field form a guessed pressure field. 

Let u denote the velocity field obtained form the guessed pressure field 

P.

au = y a u + b + Az r (P - P ) (B.18)e e nb nb e P E

The estimated pressure and velocity field will generally not satisfy the 

continuity equation. For this purpose the fields may be corrected using 

a pressure correction (P') and a corresponding velocity correction (u') 
★ *P = P + P' (B.19)
* _u = u + u' (B.20)

-v = v + v' (B.21)

Subtraction of eq.(B.18) for (B.16) gives

a u' = y a u' + Az*r*(P' - P') (B.22)

Assuming that £ a u' is negligible, (at convergence, this correction 

term will be zero, such that its absence does not effect the final 

solution) equation (B.22) may be rewritten

* *
* - AZ re

u = u + d (Pf - Pf) , where d — ------ (B.23)e e e P E e a e
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The pressure-correction equation is obtained by substituting the 

velocity-correction formulas (B.23) into the discretized continuity 

equation. The resulting equation can be written as

a P' - a P' + a P' + a P' + a P' + b (B.24)PP EE W W NN SS

where

a - a d2, a = a d2, a - a d2, a - a d2 (B.25)
Eee W w w N n n Sss

a - a + a + a + a (B.26)p e w n s

b-lur-urAz+iv-vrAr (B.27)w w e e ) Vs n J P

It may be noted that the term b in eq. (B.24) represents the

residual for the continuity equation when an estimated velocity field is 

applied.

An equation is required for the pressure field itself. Patankar 

found that the pressure correction does a good job of correcting the 

velocities, however it does a relatively poor job of correcting the 

pressure field. In order to obtain a more efficient algorithm Patankar

used a pseudo-velocity field to obtain the pressure field. With

reference to eq. (B.16)
x a u* + b

‘ nb nbU — ----------------e a e

a pseudo-velocity u can be defined as e

(B.28)

The pressure equation is written as

★ ★ ★ ★ ★aP - a P + aP -1-aP + a P + b (B.29)PPEEWWNNSS

where the coefficients a^, a^, a^, a^ and a? are given by eqs. (B.25) 

and (B.26) and b is defined by
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b - [ u r - u r Iaz + [ v - v I r Ar (B.3O)

I W w eel Is nJP

The only difference between the pressure-correction and pressure 

equations is that the b term is calculated in terms of the estimated 

velocity field in one case and the pseudo-velocity field in absence of a 

pressure force in the other.

The overall calculation procedure is outlined as follows

1. Start with the guessed values for all relevant dependent 

variables, especially for the velocity components.

2. Calculate the coefficients in the momentum equations and 

hence evaluate u and v from equations like (B.28) by 

substituting the values of the neighbor velocities on the 

right-hand side.

3. Evaluate the term b from eq. (B.30) and hence solve eq.
*(B.29) to obtain the pressure field P .

4. Regarding this pressure as P, solve the momentum equation 

such as (B.18) to obtain u and v.

5. Calculate the term b from eq. (B.27) and hence solve the 

pressure-correction equation (B.24).

6. Using the P' field, correct the estimated velocities via 

equations such as (B.23).

7. Solve the discretization equations for the other <^'s such as 

temperature and concentration, provided they influence the 

flow field.

8. Return to step 2 with the corrected velocity field and the 

new values of all other ^'s, and repeat the process until 

convergence.
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APPENDIX C

TRIDIAGONAL MATRIX ALGORITHM (TDMA)

The standard tridiagonal form is given by

Thomas [50] suggests that the following procedure be used to directly 

solve this series of equations.

The system is put into upper-triangular form by computing the

new d according to j

b
_ j - 2,3,...,n

and the new c by j

b
c = c - -- -— c ,

J j J j-1
j-1

The unknowns are then computed from back-substitution according to

x = c / d n n n and then

x k k = n-l,n-2,... ,1
k


