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ABSTRACT

This study describes algorithms for the solution of 

several single facility location problems with maximin or 

minimax objective functions.
Interactive computer graphical algorithms are 

presented for maximizing the minimum rectilinear travel 
distance and for minimizing the maximum rectilinear travel 

distance to a number of point demands when there exist 
several right-angled polygonal barriers to travel. For the 
special case of unweighted rectilinear distances with 
barriers, a purely numerical algorithm for the maximin 
location problem is described.

An interactive computer graphical algorithm for 
maximizing the minimum Euclidean, rectilinear, or general 1p 

distance to a number of polygonal areas is described. A 

modified version of this algorithm for location problems 

with the objective of minimizing the maximum cost when the 

costs are non-linear monotonically decreasing functions of 

distance is presented. Extension of this algorithm to 

problems involving the minimization of the maximum cost when 

the costs are functions of both distance and direction is 
discussed using asymmetric distances.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Facility Location Problems 

Location models are used in operations research to 

determine the best location to place one or more new 
facilities in order to serve demands with known positions. 
The best location depends in some manner on the distances 

from the new facilities to the demands they serve. 
Variations in the appropriate measure of distance, 

constraints on the locations of new facilities, behaviour of 
costs as functions of distance, and the criteria used to 

evaluate solutions yield a rich variety of optimization 
problems. These models are of interest to many disciplines 

including engineering, economics, management, and geography.

1.1.1 Early History

Interest in location-type problems dates back at 

least to the early seventeenth century. In his essay on 

maxima and minima Fermat wrote: "Let he who does not 

approve of my method attempt the solution of the following 

problem: Given three points in the plane find a fourth 

point such that the sum of its distances to the three given 

points is a minimum." This was partially solved by

1
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Torricelli prior to 1640 (Love, Morris, and Wesolowsky). 

Also studied by Jacob Steiner in the early nineteenth 
century (Courant and Robbins), this problem is known as the 

Steiner or Fermat problem.

1.1.2 The Weber Problem
The Weber problem is a generalization of the Steiner 

problem; there can be more than three given points and 

weights representing the amount of demand at the given 
points. The given points are usually termed "demand points" 

or, more simply, "demands" but may also be called "fixed 
points" or "existing facilities." This problem has served 

as a prototype for many of the location problems found in 
operations research. The Weber problem can be formulated as

N 
minimize f(X) = w.d(X,P.) (1.1.1)

X i = l
where

X = (x,v) = location of new facility, 

= location of i'th demand point, 

w^ = weight associated with i'th demand, 
N = number of demand points, 

and d(X,F.) = distance from X to P.. i i
For obvious reasons, this problem is called a minisum 
location problem.

Although the Steiner problem has a simple geometric 
solution (Courant and Robbins), this is not the 
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case for the Weber problem. Weiszfeld (1936) presented an 

iterative algorithm for the Weber problem which was 
subsequently rediscovered by Kuhn and Kuenne (1962). Like 

the Weber problem, most location models require iterative 

algorithms for their solution and to solve problems of 
realistic size, these algorithms must usually be implemented 

on an electronic computer.
A minisum location problem similar to the Weber 

problem but defined on a network is usually called a 
"median" problem (Handler and Mirchandani, p. 13).

1.2 Minimax and Maximin Criterions
Although the minisum criterion, minimizing the sum 

of weighted distances or costs, is the most common criterion 

used in the literature, it is not the only possible one. 
The first version of a location problem with a minimax 

criterion, that is minimizing the maximum of a set of 
weighted distances, was presented in 1357 by J. J. 

Sylvester. He offered the one sentence problem description 

(Love, Morris, and Wesolowsky): "It is required to find the 

least circle which shall contain a given set of points in 

the plane." A minimax location problem defined on a network 
is commonly called a "center" problem (Handler and 
Mirchandani, p. 80).

The maximin criterion, or maximizing the minimum of

a set of weighted distances, is another possibility. This 
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research examines certain minimax and maximin single 

facility location problems in the plane.

1.2.1 Justification
The appropriate criterion for evaluating locations 

depends on the particular application involved and the goals 

of the decision maker. The minisum criterion, minimizing 

the sum of weighted distances from the new facilities to the 

demands they serve, is appropriate when one wishes to reduce 
average transportation costs. For example, if the weights 

in the Weber problem are the numbers of trips per year to 

each of the demands, then the minisum criterion will 
minimize the total distance traveled per year.

The minimax criterion, since it minimizes the 
largest component of the total cost, may be useful when 

costs are known to increase rapidly with distance but the 

costs as functions of distance cannot be determined with 

reasonable accuracy. (Optimization using a minisum 

criterion implicitly involves trading-off cost increases 
with respect to some demands against cost decreases with 

respect to other demands. When costs are difficult to 

determine and the marginal costs cannot be assumed to be 

equal for different demands and distances, minimizing the 

sum of the distances may not be justified.) Thus, the 

minimax criterion has been suggested as appropriate for 

choosing the location of emergency services such as fire
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stations and ambulances (Elzinga and Hearn 1972a). In a 

sense, the minimax criterion can be interpreted as a "grease 

the squeaky wheel" policy because it minimizes the effects 

of the worst situation (Francis and White, p. 379).
The minimax criterion can also be appropriate in 

certain types of competitive situations. Consider the 
problem of positioning a security force at one of a number 
of targets so that it can respond as quickly as possible to 
an attack on any one of the targets. Assume that the 
opponent can launch only one attack and that he knows the 
position of the security force when he chooses his point of 
attack. If the opponent desires to maximize the time 
available at the target in which he can cause damage, then 
he will choose to attack the target furthest from the 
security force. Thus, the minimax criterion, which 
minimizes the maximum distance from the security force to 
any target, is the appropriate criterion to use in 
positioning the security force.

The maximin criterion, where the minimum distance is 
maximized, can be appropriate when locating noxious or 
hazardous facilities as far as possible from a given set of 

points. Since it will minimize the largest component of the 
total cost, the maximin criterion is convenient if the costs 

or hazards associated with a facility are expected to 

decrease rapidly with increasing distance but cannot be 

determined with reasonable accuracy. The related maxisum 
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criterion, in which we maximize the sum of the distances to 

the given points, could be used if the costs are expected to 

decrease linearly with increasing distance from the noxious 

facility.
The maximin criterion, like the minimax, can be 

appropriate for evaluating locations in certain competitive 

situations. For example, if the attacker in the preceding 
discussion is confronted by several security forces, then he 

should choose as his point of attack that target which is as 
far as possible from the nearest security force.

The minimax criterion has also been advocated on 
grounds of equity because it improves the worst case service 
and reduces the disparity among service recipients (often 
substantially increasing the cost of providing a given 
average level of service).

1.2.2 Formulation
A fairly general formulation of the constrained 

single facility minimax problem in the plane is 

minimize ( maximum f.(X)} (1.2.1)
X in F i=l,...,N

where

f.(X) = w.d(X,P.),
X = (x,y) = location of new facility,

?i = (a^,b^) = location of i'th demand point, 
w^ = weight associated with i'th demand,

F = set of feasible new facility locations,
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and
d(X,P^) = distance from X to P^.

The distance function d(X,P^.) depends on the 

particular application. If travel is confined to a 
rectangular street grid or aisles in a warehouse such that 

each street or aisle is parallel to either the x or y axis, 

then the rectangular, rectilinear or "Manhattan" distance, 
d(X,P.) = )x-a.) + [y-b.], (1.2.2)

is a more appropriate measure of travel distance than the 
straight-line or Euclidean distance, 

2 2 1/2d(X,P.) = [(x-a.r + (y-b.r]^ . (1.2.3)

The Euclidean and rectilinear distance metrics (norms) are 

special cases of the more general 1^ distance metric which 
is also used to model travel distances. The 1 distance P 
function is

d(X,P.) = [)x-a.]P + ]y-b.[P]^P, p > 1. (1.2.4)

A maximin problem formulation can be obtained by 
replacing "minimize'' by "maximize" and "maximum" by 

"minimum" in (1.2.1).

1.2.3 Relation to Covering Problems

Minimax and maximin location problems are closely 

related to covering problems. The unweighted (all w^ equal) 

minimax location problem with Euclidean distances can be 

interpreted as finding the center and radius of the smallest 

circle which encloses all of the fixed points P^ (see Figure
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1.1 ). In more than two dimensions, this is also known as 

"the minimum covering sphere problem" (Elzinga and Hearn 

1972b). The unweighted maximin location problem with 

Euclidean distances can be interpreted as finding the 
largest circle with its center in a given feasible region 

which does not contain any of the (see Figure 1.2).

For weighted problems (not all w^ equal), these 
simple interpretations no longer apply. The weighted 
maximin location problem with Euclidean distances can be 
interpreted as finding the largest value of z such that the 
union of the set of discs with radii z/w. and centers at the 
P^ does not cover all of the points in the feasible region 
F. Any feasible point which is not covered by at least one 
of the discs defined by this optimal value of z is an 

optimal location (see Figure 1.3). This interpretation can 
also be applied to unweighted maximin problems where all of 

the w^ are equal. When the unweighted maximin problem is 
interpreted as a covering problem in this manner, an 
extensive related literature exists in the area of the 

geometry of numbers, according to Dasarathy and White 
(1980). They note that a good discussion of the 

mathematical theory of this type of covering can be found in 

Rogers (1964).
The weighted minimax location problem with Euclidean 

distances can be interpreted as finding the smallest value 

of z such that the set of discs with radii z/w_. and centers
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Figure 1.1. 
minimax.

Covering interpretation of unweighted

FEASIBLE REGION F
INFEASIBLEREGION

Figure 1.2. Covering interpretation of unweighted
maximin.
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at the has a non-empty intersection (see Figure 1.4). 
The optimal location is the smallest possible non-empty 

intersection that can be obtained by varying z (Francis 
1967). This geometric interpretation can be converted to a 
more convenient covering interpretation similar to the 
interpretation of the weighted maximin problem by using an 
identity from set theory: namely, that the intersection of 
several sets is identical to the complement of the union of 
their complements. Thus, the weighted minimax location 
problem with Euclidean distances can also be interpreted as 
finding the smallest value of z such that the union of the 
complements of the discs with radii z/w^ and centers at the 

P^ does not cover the entire feasible region. Any feasible 
point which is not covered by the union of the complements 
of the discs defined by this optimal value of z is an 
optimal location.

Discrete location problems with a finite set of 
possible locations for the new facility or facilities are 

also closely related to set covering problems. A discussion 
of both can be found in Francis and White (1974).

Since this research is concerned with certain single 

facility weighted minimax and maximin problems in continuous 

space, only the interpretations of weighted minimax and 

maximin problems as covering problems are particularly 

relevant.
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Figure 1.4. Covering interpretation of weighted 
minimax.
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1.3 Barriers to Travel

Ironically, Larson and Li (1981) noted that the 
rectilinear or "Manhattan" distance metric is inadequate as 
a measure of travel distances in Manhattan due to barriers 

to travel like Central Park. They pointed out that such 
barriers to travel are often found in transportation and 
plant layout problems and they presented an algorithm 
(POLYPATH) to find the minimum rectilinear distance path in 
the presence of polygonal barriers.

1.3.1 Location with Barriers
Although barriers to travel occur frequently in 

practical problems they have received very little attention 
in the literature of location problems in continuous space. 
Network location problems can take barriers into 
consideration when the distances between the nodes of a 
network are defined. Larson and Sadiq (1983) considered a 
continuous space minisum problem with rectilinear distances 
and polygonal barriers to travel which they reduced to a p- 
median problem on a finite network.

The only other work on location problems with 

barriers to travel in continuous space is that of Katz and 
Cooper (1979a, 1979b, and 1981), Muralimohan and Babu 

(1983a, 1983b), and Ravindranath, Vrat, and Singh (1985). 

Katz and Cooper studied single facility minisum problems 

with Euclidean distances and one or more circular barriers.
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Muralimohan and Babu studied single facility minisum 

problems with Euclidean distances and at most two non­

intersecting convex barriers. Ravindranath et al. 
considered a single facility location problem with 
rectilinear distances and only one rectangular or circular 
barrier to travel.

Barriers to travel which are right-angled polygons 
aligned with the travel directions (streets or aisles) are a 
type of barrier which is quite common in practical 
applications. For example, the boundaries of parks and 
zones where truck traffic is prohibited usually follow a 
street grid and hence are right-angled polygons aligned with 

the travel directions. Interpreting the d(X,P^) in (1.2.1) 
as the minimum rectilinear distance in the presence of such 
right-angled barriers yields one of the location problems 
studied in this research.

1.3.2 Barriers versus Infeasible Regions
A facility located in the interior of a barrier 

cannot be reached and thus a barrier to travel is for 

practical purposes also an infeasible region for facility 

location. In a given application, there may also exist 

regions where it is infeasible to locate a facility (zoning 

restrictions etc.) but travel through the region is allowed. 

Location problems having this type of infeasible region for 

facility placement are known as constrained location 
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problems and, in contrast to barrier problems, have received 

considerable attention.

1.4 A Graphical Approach to Some Location Problems 

Although mechanical and electrical analogues have 
been used, most location models are solved using numerical 
methods. (For discussions of analogue methods for planar 
problems see Francis and White or Eilon et al. and see 
Litwhiler for applications to problems on the sphere.) This 
section discusses a graphical method of solving some minimax 
and maximin problems. In order to illustrate the graphical 
method, a simple single facility location problem with 
Euclidean distances is discussed. Neither the method nor 
this particular application are new but they provide an 
introduction to the methodology developed in the succeeding 

chapters.

1.4.1 Previous Graphical Approaches 
Francis (1967) gave a geometrical characterization 

of the optimum for minimax location problems and remarked 

that since the level sets in the Euclidean and rectilinear 
cases can be constructed graphically the optimum can be 
determined by graphical methods. (The level set of a 

function for the value t is the set of points for which the 

value of the function is less than or equal to t. The level 

sets of Euclidean and rectilinear distance functions are 

circular discs and squares, respectively.)
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Brady and Rosenthal (1980) presented an interactive 
computer graphical algorithm for optimally solving 
constrained minimax location problems with rectilinear, 
Euclidean, or mixed (rectilinear and Euclidean) distance 
norms. Brady, Rosenthal, and Young (1983) extended this 
method to the multifacility case by relying more heavily on 
the pattern recognition ability of the operator.

Hansen, Peeters, and Thisse (1981) presented a 
graphical method (BLACK AND WHITE), similar to Brady and 
Rosenthal (1980), for solving the problem of locating one 
obnoxious facility when the costs incurred by the fixed 
points (demand points) decrease with increasing distance 
from the facility and the objective is to minimize the 
maximum cost. Their method was implemented manually.

Melachrinoudis and Cullinane (1986) presented a simple 
interactive computer graphic method using slowly expanding 
circles for locating an undesirable facility in a non-convex 
feasible region. The noxious effects of the facility were 
assumed to be proportional to the inverse of the square of 

the Euclidean distance from the facility to the fixed 

points.
This study extends the single facility graphical 

approach to several unsolved location problems. In these 

problems the determination of the level curves of the 

d(X,P.), required by the graphical approach, is a non­

trivial problem by itself.
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1.4.2 A Simple Example

Consider the problem of locating a facility in a 
bounded region of the plane so that the minimum weighted 
Euclidean distance from the facility to any of a finite 
number of demand points is maximized. This problem can be 
formulated as 
maximize z 
X in F 
subject to 

f.(X) = w.d(X,P.) > z; i=l.....N 
where 

X = (x,y) = location of new facility,
P^ = (a^,b^) = location of i'th demand point, 
w^ = weight associated with i'th demand, 
F = a bounded region of the plane, 

and
d(X,P.) = [(x-a.r + (y-b.r]^ .

The set of points which satisfy the i'th constraint 
for a given value of z is the complement of a disc with 
center P. and radius z/w.. The disc itself is the level set i i
of the function f.(X) for the value z and is the set of i 
points which violate the i'th constraint for the current 

value of z. The circle with center P^ and radius z/w^ is 

the level curve or contour line for the value z. The union

of the N discs is the set of points which do not 

simultaneously satisfy all of the constraints for the 

current value of z. The union of the N discs is a
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"dominated region" in the terminology of Hansen et al. 

(1981) since all points in it have an objective function 
value less than the current feasible value of z. The 

optimum location or locations is the smallest set of 
feasible points lying outside the dominated region which we 
can obtain by varying z.

To determine the optimum location for the facility 
one could apply the following algorithm using paper and 
pencil or, more conveniently, computer generated graphics.

Step 1. Initialization

Choose the region of the plane which will be 
represented on the screen or graph paper in such a way that 
it contains the optimum location. In this example, the 
maximin solution must lie in the bounded feasible region so 
that any rectangle which encloses all of the feasible region 
can be used. (See Figure 1.5.)

Choose z. an initial value for the objective 
function, so that for all i=l,...,N and all points X in the 

region under consideration f.(X) > z. .. In this i — mt 
example, let z^^^_ = 0.

Set k = 1, z. = z. .. 0 mt 
Step 2. Improve Value of Objective Function

If the remaining unshaded region on the screen or 

graph paper has been reduced to a few points (pixels), then 

go to Step 4.
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Otherwise, pick any unshaded point X^, preferably 

one which lies near the center of an unshaded region. (See 

Figure 1.6.) Calculate z^ = min( f^X^); i=l,...,N}. 
Step 3. Eliminate Dominated Regions

Shade the area between the level curves of f^(X) 
corresponding to the values z^^ and z^ for each i=l,...,N. 
In this example, shade the annulus with center P^, radii 
z^^/w^ and z^/w^ for each i=l,...,N.

Set k = k + 1.
Go to Step 2.

Step 4. Accept or Expand Scale
If the size of the remaining unshaded area is 

sufficiently small so that the uncertainty in the location 
of the optimum is acceptable, then go to Step 5.

Otherwise, choose a small rectangle enclosing the 
unshaded region and expand the scale so that the rectangle 

fills the screen or graph paper.
Go to Step 2.

Step 5. Get Optimum
Pick a point in the remaining unshaded area as a 

% * * near-optimal solution X . Calculate z = min{ f^(X );
i=l,...,N). (See Figure 1.7.)

Stop.
In effect, one colours or shades every point X in 

the area under consideration for which at least one of the 

f^(X) is less than or equal to the current value of z. By
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stage.

INFEASIBLE

Figure 1.5. A simple example - Initialization

Figure 1.6. A simple example - Intermediate stage.
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increasing z one is eventually left with only the optimum 

location (or locations) unshaded.

Since most bit-mapped computer graphic systems can 
quickly and accurately plot lines and circles there are 
obvious advantages to implementing this procedure using 
computer generated graphics rather than pencil and paper. 
When regions must be expanded to gain additional accuracy, a 
computer implementation is almost essential.

1.4.3 Advantages

Although much faster mathematical programming based 
algorithms are available for unconstrained minimax problems 
(Drezner and Wesolowsky 1980a) as well as for constrained 
minimax and maximin problems with special types of feasible 
regions (Drezner 1983), this simple graphical procedure has 
several inherent advantages when compared to strictly 
numerical methods; it is also extremely flexible.

Standard mathematical programming search methods are 

difficult to apply to optimization problems with non-convex 
or disjoint feasible regions since searches can be trapped 
in local optima at boundaries even when the objective 

function is convex. (Because the Euclidean, rectilinear, 
and general 1^ distance functions are convex, the maximum of 

a set of such distance functions is convex.) These search 

methods are even more difficult to apply to maximin location 

problems, because the minimum of a set of convex functions
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Figure 1.7. A simple example - Final stage.
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is usually not convex. When there exist barriers to travel, 

the distance function itself is not convex since it is not 
defined over a convex region.

Specialized numerical algorithms usually avoid the 
problems associated with standard search techniques by 
adopting a combinatorial approach which repeatedly finds 
analytic solutions to the problem for small subsets of the 
fixed points, usually pairs on the line or triples in the 
plane. Dasarathy and White (1980) is one example of this 
type of approach. The practicality of this approach depends 
on the distance functions having relatively simple 
properties which is the case for the Euclidean, rectilinear, 
and general 1^ distances from a point.

The graphical approach can be used to solve problems 
with costs which are nonlinear functions of distance (Hansen 

et al. 1981), with mixed distance norms, and with non-convex 
feasible regions (Brady and Rosenthal 1980). It is the 
ability to attack problems with non-convex, possibly 
disjoint, feasible regions that is a major advantage of this 
graphical procedure. The visual representation of the 
problem helps to build client confidence since both the 

validity of a location model and the appropriateness of its 
solution are more readily demonstrated (Brady and Rosenthal 

1980). Also, the possibility of user modification of 

constraints and objectives can lead to greater realism. 

Only trivial modifications are required to generate the
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contour lines of the objective function which are useful 

when the decision maker wants a good but not necessarily 
optimal location (Francis 1967; Brady and Rosenthal 1980).

An inherent advantage of the graphical method over 
the specialized numerical methods is that it deals with the 
demand points P^ one at a time. Because relationships 
between pairs or triples of demand points are not used in 
the solution procedure, it is relatively easy to apply this 
method to problems which have different distance metrics 
associated with different demand points or which possess 
complicated cost or distance functions.

1.5 Scope and Order of Presentation
Chapter 2 surveys the literature and discusses the 

state of the art with respect to the location problems 
considered in Chapters 3 and 4. Chapter 3 examines 
constrained single facility weighted minimax and maximin 
location problems with rectilinear distances and right- 
angled barriers to travel that are aligned with the travel 
directions. The demands are considered to be points and the 
feasible region for facility location may be non-convex or 

disjoint. A method of efficiently determining the level 
sets of the distance function in the presence of barriers to 

travel is developed and used to apply the graphical method 
to these location problems. A purely numerical algorithm 
for unweighted maximin problems is also described.
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Chapter 4 examines a constrained weighted maximin 
single facility location problem with area demands which are 
allowed to be general, possibly non-convex, polygons instead 
of single points. This is presented in the context of 
optimally placing a single undesirable or noxious facility 
with respect to several vulnerable areas. Euclidean, 
rectilinear, and general 1^ distances are treated, but 
barriers to travel are not considered. Extension of the 
method to asymmetric functions of distance and costs which 
are non-linear functions of distance is discussed.

Chapter 5 presents a summary of this research and 
recommendations for further investigations.



CHAPTER 2

STATE OF THE ART

This chapter reviews some of the literature related 
to the two types of problems considered, namely, maximin 
location problems with area demands and minimax or maximin 
location problems with rectilinear distances in the presence 
of barriers to travel.

The very extensive literature on location problems 
in general will not be surveyed here. Location problems in 
continuous space are covered in the forthcoming book by 
Love, Morris, and Wesolowsky as well as in the text by 
Francis and White (1974). Selective literature reviews can 
be found in Francis, McGinnis, and White (1983) and Hansen, 
Peeters and Thisse (1983). Domschke and Drexl (1985) have 
compiled an extensive international bibliography on location 
and layout-planning problems. One may refer to the textbook 
by Handler and Mirchandani (1979) for a comprehensive 
discussion and bibliography of location problems on 
networks. A discussion of discrete plant location problems 

can be found in the survey article of Krarup and Pruzan 

(1983).
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2.1 Minimax and Maximin with Barriers to Travel

In this section, we review some early work on 
minimax location problems and then examine more recent work 
which is directly related to the minimax and maximin 
rectilinear distance location problems with barriers which 
are the subject of Chapter 3.

2.1.1 Minimax and Maximin

The history of minimax location problems in the plane 
dates back to 1857 when J. J. Sylvester posed the problem of 
finding the circle of smallest radius that enclosed a number 
of points. This minimum covering circle problem is a 
special case of the minimax location problem with Euclidean 
distances and with all weights equal. In 1860, Sylvester 
gave a geometrical solution method attributed to Peirce 
(Love, Morris, and Wesolowsky). Surprisingly, improved 
algorithms for this century-old problem are still being 
discovered (Oommen 1987).

Modern interest in minimax location problems appears 
to date from the mid-1960s. Smallwood (1965) used a hill 

climbing iterative method to find locally optimal solutions 
to a multifacility Euclidean distance minimax problem 

involving the placement of identical detection stations for 
optimum coverage of an arbitrary plane area. Interestingly, 

Smallwood appears to have used a computer graphics terminal 

to display and study the trajectories followed by the
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stations during the solution process, although computer 
graphics plays no role in the algorithm.

Elzinga and Hearn (1972a) presented efficient, 
finite solution methods based on geometrical arguments for 
unweighted single facility problems with rectilinear or 
Euclidean distances which they called "Delivery Boy" 
problems. Unlike Peirce's method, their algorithms could be 
conveniently implemented on an electronic computer. For the 
Euclidean distance problem, they constructed successively 
larger circles defined by two or three demand points until a 
minimum covering circle was obtained. For the rectilinear 
distance problem, a simple closed form solution was found. 
They also presented algorithms to solve related "Messenger 
Boy" problems in which positive constants k. are added to 
the distances. Francis (1972) presented a similar result 
for rectilinear distance problems which could be applied to 

any bounded set in the plane.
Weighted minimax problems proved to be more 

difficult than unweighted (all w. equal) problems and 
solution methods developed more slowly. Francis (1967) 
presented a geometric characterization of the solution of 

the weighted single facility minimax problem. For the 
Euclidean distance case, the solution is obtained by varying 
z to achieve the smallest non-empty intersection of discs 

with radius z/w^. centered at the demand points P^. Francis 

pointed out that for Euclidean or rectilinear distances this 
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graphical construction could be used to find the optimum 

location or to construct the level curves of the objective 
function. Francis presented other results for the 

unconstrained weighted single facility minimax problem which 
included a lower bound and a necessary condition for the 
optimum as well as an explicit solution when the lower bound 
was obtained.

The simple, almost linear, form of the rectilinear 
distance function leads to effective linear programming 
approaches to the minimax problem. Wesolowsky (1972) 
introduced a linear programming formulation of the weighted 
multifacility linearly constrained rectilinear distance 
problem which could be solved using parametric programming. 
Later, Elzinga and Hearn (1973) and Morris (1973) presented 
simpler linear programming formulations which could be 
solved without parametric programming.

Dearing and Francis (1974) presented a linear 
programming based method for the weighted multifacility 
problem with rectilinear distances and maximum distance 

constraints. The minimax rectilinear distance problem is 
not separable into x and y axis subproblems in the simple 
manner of the minisum rectilinear distance problem because 

the selection of the maximum distance demand point links the 
x and y coordinates together. However, Dearing and Francis 

were able to decompose it into two subproblems which could 

be solved independently by network flow techniques.
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For weighted rectilinear distance multifacility 
problems which are unconstrained or which have linear 
constraints, formulation as a linear program has proved to 
be an effective solution method. For some constrained 
problems having convex feasible regions which cannot be 
represented by a set of linear inequalities, other 
mathematical programming methods are available such as the 
subgradient algorithm of Chatelon, Hearn, and Lowe (1982) 
for single facility minimax problems with 1^ distances.

Drezner and Wesolowsky (1980a) presented a fast 
method for the unconstrained weighted 1^ distance single 
facility minimax problem based on the fact that in a convex 
minimax problem in k dimensions there exists a subset of k+1 
functions which defines the optimum solution (Drezner 1982). 
The method proceeds by finding the solution for a set of 
three demand points and then attempting to find a demand 
point which has a greater weighted distance from the current 
location. If such a point is found, then a new set of three 
demand points which yields a higher objective function value 
can be formed. The procedure is quite similar in spirit to 
the Elzinga and Hearn (1972a) method for unweighted 
Euclidean distance problems. A specialized version of the 
method which decomposes the problem into two independent one 

dimensional subproblems was used for the rectilinear 

distance case and proved to be very fast by solving a 5000 

point problem in less than half a second. For unconstrained 
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single facility problems with rectilinear distances, this 
method is very effective.

Brady and Rosenthal (1980) introduced interactive 
computer graphical optimization to location analysis and 
pointed out that the advantages of the graphical approach 
included the ability to deal with non-convex or disjoint 
feasible regions. They used a bisection search over 
objective function values with an interactive step in which 
the operator was required to decide if the intersection of a 
set of circles contained any feasible points. This 
interactive graphical method was used to solve single 
facility minimax problems with Euclidean or rectilinear 
distances and general constraints. Brady, Rosenthal, and 
Young (1983) extended the algorithm to location-allocation 
type multifacility Euclidean distance problems. This 
extension depended on the operator's ability to perceive 
whether or not a given pattern of circle intersections 
yielded m-facility coverage of the demand points.

Plastria (1987) presented a cutting plane method 
which could be be used to solve a large class of single 
facility location problems including minimax problems with 
mixed norms and nonlinear cost functions. Although the 
method is limited to unconstrained problems or problems 
having convex polyhedral feasible regions, it is much more 

flexible than most numerical methods.
Hansen, Peeters, Richard, and Thisse (1985) 
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presented an algorithm called FOCUS AND EXPAND which could 

be used to solve single facility minimax location problems 
with a mixture of 1^ norms and nonlinear cost functions. 
The feasible region was allowed to be the union of a set of 
convex polygons. In the first stage of their two stage 
algorithm, the unconstrained optimum was found using a 
procedure which is in essence a numerical version of Brady 
and Rosenthal's graphical method. The second stage of the 
algorithm checked if the unconstrained optimum was a 
feasible solution to the constrained problem. If it was not 
feasible, the boundaries of the convex polygonal constraints 
were searched using their visibility concept and dominance 
rules.

Methods for maximizing the minimum weighted 
rectilinear distance to a number of demand points have 
received considerably less attention than methods for the 
minimax problem. Drezner and Wesolowsky (1983b) studied the 
single facility weighted maximin location problem with 
rectilinear distances and linear constraints. They 
presented two different solution methods. In the first, 
they searched the boundary of the feasible region and 
certain line segments in the interior. In the second, they 
broke the problem down into a number of linear programming 

problems, one of which must yield the solution. Mehrez, 

Sinuany-Stern, and Stulman (1986) provided an improved 

version of Drezner and Wesolowsky's linear programming based 
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method but the improved version only applied to the special 

case of unweighted distances. The graphical method of 
Hansen, Peeters, and Thisse (1981) for locating an obnoxious 
facility can be applied to single facility rectilinear 
distance problems, but we will postpone describing their 
method until the section on noxious facility location.

2.1.2 Barriers

Although facility location in the presence of 
barriers to travel has many practical applications, very 
little work has been done on the problem. When one 
considers that a general barrier may, quite literally, be a 
maze, it is not surprising that only the rectilinear 
distance minisum location problem with barriers but without 
location constraints has been adequately treated.

Determination of the shortest path is an integral 
part of the facility location problem with barriers to 
travel and has been considered by a number of researchers in 
relation to a variety of problems. For Euclidean 
distances, Wangdahl, Pollock, and Woodward (1974) gave a 
dynamic programming method for minimum length pipe routing 
in ship design. Lozano-Perez and Wesley (1979) gave a 
similar algorithm in the context of navigating a robot 

vehicle among convex polygonal obstacles. Shortest 

Euclidean distance paths in the presence of disjoint linear 

barriers were studied by Chein and Steinberg (1983). Lee 
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and Preparata (1984) considered two special cases of the 
shortest Euclidean distance path problem with polygonal or 
linear barriers. Algorithms which have been developed for 
the related problem of routing wiring traces on circuit 
boards were discussed by Belter (1987).

Larson and Li (1981) developed an algorithm to find 
the shortest rectilinear distance path in the presence of 
polygonal barriers to travel. Using results from this work. 
Larson and Sadiq (1983) proved that a location-allocation 
type of multifacility minisum problem with rectilinear 
distances and general barriers to travel could be reduced by 
inspection to a finite network problem. The network problem 
could then be solved using any available p-median algorithm.

Viegas and Hansen (1985) studied the problem of 
finding the shortest 1^ distance path in the presence of 
polygonal barriers and gave an algorithm for its solution.

Aside from Larson and Sadiq (1983), the only other 
work on location problems with barriers to travel in 
continuous space is that of Katz and Cooper (1979a, 1979b, 
and 1981), Muralimohan and Babu (1983a, 1983b), and 

Ravindranath, Vrat, and Singh (1985).
Katz and Cooper (1981) discussed a general minisum 

single facility problem with 1^ distances and a single 

region where travel is forbidden which they called a 

"forbidden region" rather than a "barrier to travel." After 

formulating the problem with Euclidean distances and one 
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circular barrier to travel, they used a standard nonlinear 
programming method to solve two numerical examples and found 

several local minima in each case. Katz and Cooper (1979b) 
extended this to Euclidean distance problems with several 
circular barriers.

Muralimohan and Babu (1983a) considered the Weber 
problem with one convex barrier to travel. Muralimohan and 
Babu (1983b) extended this to two convex non-intersecting 
barriers and applied it to the case of two ellipses. 
Ravindranath, Vrat, and Singh (1985) formulated a single 
facility location problem with rectilinear distances and one 
rectangular or circular barrier to travel. They used a 
standard mathematical programming search technique to 
minimize a weighted combination of minisum and minimax 

objective functions.

2.1.3 Summary of Minimax and Maximin with Barriers 
Although both minimax and maximin single facility 

location problems with rectilinear distances and right- 
angled barriers to travel have many practical applications, 
no solution methods have yet been presented for either 

problem.
Excluding graphical approaches, the methods used to 

solve other minimax and maximin problems with rectilinear 

distances are not easily adapted to problems with barriers. 

Simple extensions of the linear programming formulations do 
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not appear to be possible because the distance between a 

demand point and a potential facility location is no longer 
a simple function of the two sets of coordinates. The 
method of Drezner and Wesolowsky (1980a) and convex 
programming methods are ruled out because the distance 
function is no longer convex when there are barriers to 
travel. The minisum rectilinear distance problem with 
barriers could be solved by Larson and Sadiq because, like 
many other median-type problems, an optimum solution could 
be found in a finite set of easily identified candidate 
points. For example, in a median problem on a network an 
optimum solution can always be found at one of the nodes. 
Neither the minimax, a center-type problem, nor the maximin 
rectilinear distance problem have this convenient property.

2.2 Noxious Facilities with Area Demands
In this section, we review some of the previous work 

related to the topic of Chapter 4, locating a noxious 
facility with the objective of maximizing the minimum 
weighted distance to any of a number of polygonal areas. We 
will first examine work on noxious facilities with point 
demands and then work which has been done on facility 

location with area demands.

2.2.1 Noxious Facilities
Locating a facility as far as possible from a set of 

demands is a problem which has received much less attention 
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than those problems in which the objective is to place the 
facility as close as possible to the demands. Problems in 
which the objective is to locate the facility as far as 
possible from the demands are usually called "undesirable," 
"obnoxious," or "noxious" facility location problems. 
Although locating a noxious facility is the more common 
interpretation, it is also possible to interpret these types 
of problems as locating a vulnerable facility as far as 
possible from a set of hazardous points. For example, this 
is the interpretation used by Mehrez, Sinuany-Stern, and 
Stulman (1983) when locating a facility along a line with 
the objective of maximizing the minimum distance to the 
closest of a set of points on the line.

Some examples of early work on noxious facility 
location are Paroush and Tapiero (1976) which examined the 
problem of locating a polluting plant on a line under 
uncertainty, as well as Church and Garfinkel (1978) which 
examined the problem of locating a single facility on a 
network with the objective of maximizing the minimum 
weighted distance from the facility to any node.

Maximin location problems in continuous space have 

inconvenient properties which tend to make them more 
difficult than minimax problems. Constraints which define a 

bounded feasible region for facility placement are required 

for the problem to be non-trivial. Otherwise, the optimum 

and unrealistic solution is to place the facility at 
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infinity. Also, the minimum of a set of convex distance 

functions is not convex unlike the maximum of a set of 
convex functions which is convex. The resulting maximin 
objective function has many local minima and maxima, 
precluding many mathematical programming techniques. Most 

mathematical programming approaches to maximin problems 
attempt to identify and check certain interior points at 
which the optimum may occur as well as to search the 
boundary of the feasible region.

Shamos and Hoey (1975) solved an unweighted 
Euclidean distance maximin problem which they called "the 
largest empty circle problem" with a technique employing 
Voronoi diagrams. The location was restricted to lie inside 
the convex hull of the set of points. They showed that the 
center of the required circle must lie either at one of the 
Voronoi points or at the intersection of a Voronoi edge and 

the convex hull.
Dasarathy and White (1980) examined the unweighted 

single facility maximin problem with Euclidean distances and 
point demands. For the two dimensional case, they extended 

the algorithm of Shamos and Hoey to treat problems in which 

the optimum location is required to lie inside a convex 
polygon. They also presented a combinatorial algorithm for 
the three dimensional case which checked certain interior 

points as well as the faces and edges of the convex 
polyhedron in which the optimum location was required to 
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lie. Melachrinoudis (1980) presented a combinatorial method 
for weighted Euclidean distances in the two dimensional 
case.

Drezner and Wesolowsky (1980b) used a different type 
of mathematical programming approach than the preceding 
methods to solve a maximin location problem with Euclidean 
distances and maximum distance constraints. Their method 
used a bisection search over objective function values like 
the method of Brady and Rosenthal (1980). The existence of 
feasible solutions at a particular objective function value 
was checked by a numerical method rather than by interactive 
computer graphics. Their numerical method searched for a 
feasible solution on the circumference of at least one of a 
set of circles defined by the current objective function 

value.
Drezner and Wesolowsky (1983) presented an algorithm 

for the minimax and the maximin single facility location 
problem on the sphere with great circle distances. Drezner 
(1983) provided a unified treatment of problems in which 
both the objective function and the constraints involved 
monotonic functions of Euclidean distance m the plane or 
great circle distance on the sphere. This formulation 
allowed the facility to be excluded from the interior of 

some circles and to be required to lie inside others. 
Melachrinoudis and Cullinane (1985a) extended 

Melachrinoudis' combinatorial algorithm for weighted
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Euclidean distance maximin problems to cases with non-convex 
polygonal feasible regions. They also included minimum 
distance constraints in their formulation producing circular 
infeasible regions centered on the demand points and called 
these "forbidden regions." (These are not barriers to 
travel and should not be confused with the "forbidden 
regions" of Katz and Cooper, which are.) Their solution 
method finds all local maxima to a relaxed problem without 
the "forbidden regions" by checking interior points and 
searching the boundary. If the best of these local maxima 
violates one or more of the "forbidden regions," the 
violated constraints are added to the problem and new local 
maxima are found by considering constraints three at a time. 
They applied their method to a problem of locating a waste 
dump in the state of Massachusetts. The circular "forbidden 
regions" about the demands can be regarded as an indirect 
and partial solution to the problem that the cities in their 
application are extended geographical areas rather than 

point demands.
Melachrinoudis and Cullinane (1985b) presented a 

heuristic version of Melachrinoudis' combinatorial algorithm 
for maximin location problems with convex polygonal feasible 
regions. The heuristic version reduced the amount of 
computation required for large problems by checking only 

close triples of demand points.
Weighted maximin problems with rectilinear distances 
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have been treated by Drezner and Wesolowsky (1983b) who 

considered a problem with constraints in the form of linear 
inequalities and presented two solution methods. The first 
method searched the boundary of the feasible region and 
certain interior line segments. The second method broke the 
problem down into a number of linear programming problems. 
Mehrez, Sinuany-Stern, and Stulman (1986) showed that the 
linear programming approach used by Drezner and Wesolowsky 
for the weighted case could be significantly improved when 
applied to unweighted problems.

Drezner and Wesolowsky (1985) established duality 
relationships between a multifacility maximin location 
problem with maximum service radius constraints and a 
related minimax problem. Abhinorasaeth and Melachrinoudis 
(1985) as well as Benhamou and Melachrinoudis (1987) 
considered single facility location problems with a 
combination of minisum and maximin criteria.

Hansen, Peeters, and Thisse (1981) presented a 
graphical algorithm (BLACK AND WHITE) for locating a single 
obnoxious facility in relation to a set of point demands. 
Their method consisted of first finding an unshaded feasible 
point and then shading all those parts of the feasible 
region which are dominated by the feasible point. (In a 
maximin problem, a point is dominated if the objective 

function of the point is less than that of the last feasible 

point evaluated.) This is repeated until the remaining 
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unshaded feasible region, which must contain the optimum, is 
sufficiently small. They pointed out that this is a very 
flexible method since it can easily handle problems with 

mixed distance norms, cost functions which are non-isotropic 
or which are non-linear functions of distance, and any 
feasible region which can be drawn, including non-convex and 
disjoint regions.

Melachrinoudis and Cullinane (1986) considered the 
problem of locating an undesirable facility so that the 
maximum weighted inverse of the squared Euclidean distance 
to the fixed points was minimized. The inverse square of 
the Euclidean distance was chosen because the levels of 

2 emissions from point sources often follow a 1/r law where r 
is the distance from the source. A slightly modified 
version of Melachrinoudis' combinatorial algorithm for 
maximin problems was presented for problems which have a 
convex feasible region. For problems with non-convex 
feasible regions, a simple interactive computer graphic 
method was presented. The method drew the level curves of 

the 1/r functions about each fixed point for a series of 
decreasing, closely spaced, objective function values. This 

produced a set of expanding circles centered at the fixed 
points. The last feasible point left outside the circles by 
this procedure was the optimum location. The authors noted 
that when the remaining feasible space has been reduced to a 

very small area, the graphics display can be "zoomed" in on 
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the feasible area to gain additional accuracy.

In summary, all previous work on noxious facility 
location problems has involved locating the facility in 
relation to a finite set of fixed points. The solution 
algorithms presented for these problems fall into two 
categories: mathematical programming methods, usually 
combinatorial in nature, and graphical or interactive 
computer graphic methods.

2.2.2 Area Demands
Almost all location models treat demands as a finite 

set of points, although practical applications may involve 
locating a facility in relation to a population which is 
distributed over one or more regions. The limited amount of 
work on facility location in relation to area demands has 
been concentrated, almost exclusively, on minisum location 

problems.
Minisum location problems with area demands and 

Euclidean distances were treated in Love (1972), Bennett and 
Mirakhor (1974), Drezner and Wesolowsky (1978), and in 
Cavalier and Sherali (1986). Drezner (1986) examined a 
related Euclidean distance minisum problem in which both the 
facility and the demands are circular regions. Minisum 

location problems with area demands and rectilinear 
distances were treated in Wesolowsky and Love (1971), 

Marucheck and Aly (1981), and in the forthcoming book by
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Love, Morris, and Wesolowsky. Minisum location problems 
with area demands and general 1 distances were treated in P
Drezner and Wesolowsky (1980c). Because the algorithms 
presented in these works use a variety of methods which are 
not applicable to the maximin location problems, we will not 
discuss them any further.

In their book, Love, Morris, and Wesolowsky point 
out that the extreme points of the area demands determine 
the minimax solution. Thus, a minimax problem with area 
demands in the form of polygons can be reduced to a minimax 
problem involving only the corners of the polygons, a finite 
number of points, and solved by algorithms designed for 
point demand problems. This, undoubtedly, accounts for the 
lack of interest shown by operations researchers in minimax 
problems with area demands. The sole exception is Francis 
(1972) which gives a geometrical solution procedure for the 
unweighted minimax location problem with rectilinear 
distances and area demands which were allowed to be any 

bounded set in the plane.

2.2.3 Summary of Noxious Facilities with Area Demands 
Although the maximin or noxious facility location 

problem with area demands has practical applications, no 
solution methods have yet been presented. The maximin 

problem with area demands does not reduce to a problem 
involving a finite number of points because any point on the 
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boundary of an area demand may play a role in determining 

the optimum solution to a maximin problem. The mathematical 
programming methods are also difficult to adapt to area 
demand problems because they depend on the distance function 
having convenient properties such as convexity. For the 
case of area demands, the level curves are not simple and 
the distance function is not necessarily convex. Thus, the 
available methods for maximin or noxious facility location 
cannot be directly applied to problems with area demands or, 
with the exception of the graphical method, modified to 
handle them without considerable difficulty.



CHAPTER 3

RECTILINEAR DISTANCE LOCATION PROBLEMS WITH BARRIERS

3.1 Introduction

In this chapter we present an interactive computer 
graphic method for single facility minimax and maximin 
location problems where the underlying distance metric is 
rectilinear and there exist barriers to travel. A purely 
numerical algorithm for unweighted maximin location problems 
is also discussed.

3.1.1 Description of Problem
We examine the problem of placing a single facility 

in the plane with the objective of either minimizing the 
maximum distance from the facility to a set of demand points 

or maximizing the minimum distance.
For this chapter, we assume that the underlying 

distances can be approximated by rectilinear distances as 
would be the case when travel is restricted to two 
orthogonal directions by a rectangular street grid or by 
aisles in a factory or warehouse. Thus, the travel distance 

between two points, P^ and Pg, can be calculated using the 

rectilinear metric, d(P.,Pg) = [x^-x^t+ty^-y^L unless the 
distance is increased by the presence of barriers.

45
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A barrier to travel is a region of the plane through 
which travel is not possible or not permitted. We assume 
that one or more barriers to travel are present and that the 
barriers to travel are right-angled, possibly non-convex, 
polygons with their edges aligned with the travel directions 
(Figure 3.1). We assume without loss of generality that the 
polygons do not overlap.

Since the boundaries of parks and zones where 
certain types of traffic are prohibited tend to follow the 
street grid, such right-angled polygons are a common type of 
barrier. Barriers to travel with other shapes, such as 
lakes, can be approximated by enclosing them in right-angled 
polygons.

In addition, we assume that the facility is 
constrained to lie inside a given feasible region. The 
feasible region may be non-convex or disjoint. In minimax 
problems, the feasible region may be the entire plane. For 
convenience, we will assume that the feasible region 
consists of one or more general polygons, although our 
method can accommodate feasible regions of any shape which 
can be drawn and filled on the screen. The complement of 
the feasible region is the infeasible region for facility 

placement. Travel through an infeasible region is 
permitted, although the facility cannot be located there.

Barriers to travel have been called "forbidden

regions" by some authors. To avoid confusion with
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Figure 3.1 Demand points and right-angled barriers.

Figure 3.2 Rectilinear distance diamonds.
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"infeasible regions" as defined earlier, we will use the 
more descriptive "barriers to travel" or simply "barriers" 
and avoid the term "forbidden regions."

In a practical sense, a barrier to travel is also 
an infeasible region for facility placement, since a 
facility lying in the interior of a barrier to travel cannot 
be reached. However, we will reserve the term "infeasible 
region" for those regions where travel is permitted but 
facility placement is not.

3.1.2 Formulation
Let B^, m = l,...,Ng be a set of right-angled 

barriers to travel with vertices V(k,m) = (x(k,m),y(k,m)), 
k = l,...,v and m = 1,...,N_, (Figure 3.1). Let F be the m o
feasible region for facility placement.

The minimax single facility location problem with 
rectilinear distances and barriers to travel can be 

formulated as 
minimize { maximum f.(X) } (3.1.1)
X in F i=l,...,Np

where

f.(X) = w.d(X,P(i)),
X = (x,y) = location of facility, 
P(i) = (x(i),y(i)) = location of i'th demand, 
w. = positive weight associated with i'th demand, 

Np = number of demands,

and 
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d(X,P(i)) = minimum rectilinear distance from X to P(i) 
in presence of barriers B , m= .m B

The related maximin problem can be obtained by 
changing the objective function to 

maximize { minimum f.(X) }. (3.1.2)
X in F i=l,...,Np

A bounded feasible region for facility placement is 
necessary in order for the maximin problem to be non­
trivial .

3.1.3 Requirements for Graphical Approach
The graphical method alternates between filling the 

area between level curves of a distance function and 
calculating the distance from a demand point to a general 
feasible point. In the absence of barriers to travel, both 
of these operations are extremely simple. The travel 
distance between any two points is given by the rectilinear 
distance metric and the level curves are simply squares 
(usually called "diamonds") as shown in Figure 3.2.

Since the right-angled polygonal barriers to travel 

may literally be a maze, the level curves of the distance 
function d(X,P(i)) can have quite complex shapes and the 
distances can be correspondingly difficult to calculate. 

Figure 3.3 shows the level curves of a distance function 
d(X,P(i)) in the presence of a simple set of barriers.

We require a method which will allow us ^o determine 

those areas which lie between particular level curxes of the
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Figure 3.4 Division of problem universe into cells.
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distance function when we are given any set of right-angled 

barriers to travel. We will accomplish this by dividing the 
plane into rectangular areas, "cells," in which the level 
curves of the distance function are reasonably simple to 
calculate if we know the values of the distance function at 
each of the corners of the cell. As a by-product of our 
method of determining the level curves, we will also obtain 
a method of calculating the distance from a demand point to 
a general feasible point.

Section 3.2 explains the division of the plane into 
cells and proves that only the distances to the corners of a 
cell are necessary to calculate the distance to any point 
inside the cell. Using this result, section 3.3 presents 
the distance function and the level curves of the distance 
function inside a cell. Section 3.4 explains how the theory 
and results of Larson and Li (1981) can be used to calculate 
the distances from the demand points to the corners of the 
cells. Section 3.5 presents the algorithm for maximin 
location with a description of a program which implements it 
and an example. Section 3.6 presents the algorithm for 
minimax location problems and discusses the differences from 

maximin location problems. Section 3.7 discusses a purely 

numerical version of the algorithm which can be applied to 

unweighted maximin problems.
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3.2 Division of Plane into CelIs and Properties

The maximin and minimax location problems with 
barriers to travel were formulated in the entire xy-plane. 
However, working with such an unbounded region would 
unnecessarily complicate our discussion. We can avoid this 
complication by introducing a large finite rectangular 
region which we will call the "problem universe" containing 
all the elements of the location problem. This will not 
alter the optimal solution of any problem and is similar to 
the common practice of choosing some large but finite number 
to represent infinity when an algorithm is implemented as a 
computer program.

We note that such a rectangular region can always be 
found for a given problem. For minimax problems with a 
bounded feasible region or any non-trivial maximin problem 
which necessarily has a bounded feasible region, we can use 
as the problem universe any rectangle which completely 
encloses the demand points, the barriers, and the feasible 
region. For minimax problems with a feasible region which 
consists of the entire plane, any rectangle completely 
enclosing the demand points and the barriers can be used as 

the problem universe.
Let wxmin and wxmax be the x—coordinates of the left 

and right edges of the rectangular problem universe. Let 
wymin and wymax be the y-coordinates of the bottom and top 

edges of the problem universe.
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Definit ion 3.1 Let the problem universe be partitioned into 

rectangular cells (see Figure 3.4) by vertical lines located 
at each distinct x-value in the set (wxmin, wxmax; x(i), 

i=l,..,Np; x(k,m), k=l,...,v^ and m=l,...,Ng) and horizontal 
lines at each distinct y-value in the set {wymin,wymax; 
y(i), i=l,...,N ; y(k,m), k=l,...,v andm=l,...,N.).m B

In effect, the rectangular problem universe is cut 
into small rectangles, cells, by the vertical and horizontal 
lines.

3.2.1 Cel1 Properties
Lemma 3.1:

For any given cell, any demand point P(i) or barrier 
vertex V(k,m) must lie either at a corner of the cell or 
outside the cell in one of the "corner regions" (Figure 
3.5) .
Proof: 

Let xmin and xmax be the x-coordinate of the left
and right sides of the cell, respectively. Let ymin and 
ymax be the y-coordinates of bottom and top of the cell, 

respectively.
Assume that the P(i) does not lie at a corner of the 

cell or outside the cell in one of the "corner regions." 

Therefore, either the x-coordinate of P(i) lies strictly 
between xmin and xmax, or the y-coordinate lies strictly 

between ymin and ymax, or both. However, all distinct 
values were used to construct the cells, giving rise to a
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Figure 3.6 Simply communicating vertices - 
Condition 1.
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contradiction. The proof for a barrier vertex V(k,m) is 
identical.
Lemma 3.2:

No boundary of a barrier lies in the interior of a 
cell. Thus, the interior of a cell is either entirely 
inside a barrier or entirely outside all barriers.
Proof:

Since the barriers are right-angled polygons aligned 
with the x and y axes any barrier side must be a horizontal 
or vertical line segment with a barrier vertex at each end. 
If this side lies in the interior of the cell then at least 
one of the coordinates of the barrier vertices at its end 
points is distinct from those used to determine the 
boundaries of the cells. This is a contradiction. a

3.2.2 Four Entry Point Theorem
Before proving an important property of cells, it is 

necessary to review some results obtained by Larson and Li 
(1981). They studied the problem of finding minimum 
rectilinear distance paths in the presence of several 
polygonal barriers to travel and presented an algorithm, 
POLYPATH, which determined such paths. The barriers that 
they considered were general polygons and were not 
restricted to right-angled polygons aligned with the travel 

directions as are the barriers in this work.
In Larson and Li's network terminology, both the 
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origin and destination of a path as well as the vertices of 
the polygonal barriers to travel are termed "vertices."

Larson and Li defined vertices which were connected 
by particularly simple feasible paths as being "simply 
communicating vertices." For the special case of right- 
angled barriers aligned with the travel directions their 
definition can be simplified and restated in an equivalent 
form.

Definition 3.2: Two vertices with coordinates (a^,b^) and 

^2'^2^ are simply communicating vertices under either of 
the following conditions:

(1) If either a^ a^ or b^ bg and the line segment 
joining the two vertices has no point in common with the 
interior of any barrier and no other vertices lie on it 
(Figure 3.6). This includes the case of adjacent vertices 

of a barrier.
(2) If a horizontal ray drawn from one vertex 

intersects a vertical ray drawn from the other vertex before 
either ray encounters the interior of a barrier or another 
vertex. Thus, the rays must intersect either at (a^bg) 
(a^b^ and neither of the line segments from the vertices 
to the point of intersection can have any point in common 

with the interior of a barrier or have any other vertex 

lying on it (Figure 3.7).
It is obvious from the preceding definition that the 

travel distance between a pair of simply communicating
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Figure 3.7 Simply communicating vertices -
Condition 2.

NOT POSSIBLE

Figure 3.8 T and Q satisfy condition 1 and Q on a
side.
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vertices with coordinates (a^,bj and (a^,b^) is equal to
the rectilinear distance between them, a,- a^l + lb,- b^.
since a feasible path exists which has not been increased in 
length by the presence of the barriers.

We also note that the minimum rectilinear distance 
path between any two points is usually not unique. In 
particular, there exist an infinite number of minimum 
rectilinear distance feasible paths between between any pair 
of simply communicating vertices which satisfy condition (2) 
of definition 3.2. Since the optimum facility location 
depends only on travel distances, we will not attempt to 
specify a unique path from among the possibly infinite 
number of minimum distance feasible paths between any pair 
of simply communicating vertices.

We can now state the very useful result of Larson 
and Li. In Larson and Li's formulation of the shortest path 
problem, let U be the set of vertices u(i) for i = l,...,m 
where m is the total number of vertices. If there exists a 
feasible path from vertex u(s) to vertex u(d) both in U, 
then there exists a minimum distance feasible path from u(s) 
to u(d) which passes through a sequence of vertices {u(s), 

u(kj, u^), u(k^)........ u(k^), u(d)} where the u(k^)
for j = l,...,n are in U and the pairs {u(s), uf^)}, 

(u(k ), u(k„)}, {u(k-), u(k )}........ (u(k ), u(d)} are
simply communicating vertices. This includes the 
possibility that n = 0, in which case the sequence of 
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vertices contains only the pair of vertices {u(s), u(d)} and 
they are simply communicating vertices.

Larson and Li's result reduces the shortest 
rectilinear distance path problem in the continuous plane to 
a finite network problem since only paths passing through a 
sequence of simply communicating vertices need to considered 
in the search for a shortest path. Although the minimum 
distance path taken between any pair of simply communicating 
vertices in the sequence may not be unique, this need not 
concern us because we are only interested in the length of 
the minimum distance path between the pair of vertices and 
this length is unique and well defined. The total length of 
any minimum rectilinear distance feasible path which follows 
a sequence of simply communicating vertices is easily 
calculated since it is the sum of the distances between the 
pairs of simply communicating vertices through which the 

path passes.

Theorem 3.1 (Four Entry Points):
Let Q be a point in the interior or on the boundary 

of a given cell. If a minimum distance feasible path exists 

between a demand point P(i) and Q, then a path of equal 
length from P(i) to Q can be found which passes through one 

of the corners of the cell.

Proof:
The demand point P(i) must lie outside the cell 
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containing Q or at a corner of the cell by Lemma 3.1.

If P(i) or Q lies at a corner of the cell, then all 
paths from P(i) to Q pass through a corner of the cell and 
the theorem holds.

If P(i) lies outside the cell containing Q then 
consider the minimum distance feasible path from P(i) to Q. 
Using Larson and Li's results, we know that such a minimum 
distance feasible path can always be replaced by a path of 
equal length containing a sequence of simply communicating 
vertices.

Let T be the last vertex before Q on such a vertex 
following path from P(i) to Q. Since T is either a demand 
point or barrier vertex, it must lie outside the cell 
containing Q or at one of the cell's corners, by Lemma 3.1.

If T lies on a corner of the cell, then the vertex 
following path satisfies the theorem since it is a minimum 

distance path from P(i) to Q.
We will prove that if T lies outside the cell then a 

minimum distance feasible path from T to Q can be found 
which passes through a corner of the cell or can be 
transformed into a path which passes through a corner 

without increasing its length.
Consider the first condition for simply 

communicating vertices. The vertices T and Q are joined by 

a single horizontal or vertical line segment which has no 

point in common with the interior of any barrier and 



61

contains no other vertex.

If Q lies in the interior of a cell, then, T which 
is either a demand point or a barrier vertex, must have at 
least one coordinate which is distinct from the set of 
coordinates used to define the cell boundaries. This is a 
contradiction. Therefore, Q must lie on the boundary of the 
cell under this condition.

We have already demonstrated that if Q lies on a 
corner the theorem is satisfied, so that we only need to 
consider the case when Q lies on a side of the cell between 
the corners. In this case, T which is either a demand point 
or a barrier vertex must lie on an extension of that side 
of the cell on which Q lies by the definition of cells 
(Figure 3.8). Thus, one corner of the cell lies on a 
feasible path from T to Q and the vertex following path will 

satisfy the theorem.
Consider the second condition for simply 

communicating vertices. A feasible path exists from T to Q 
which consists of a single horizontal line segment joined to 

a single vertical line segment.
By Lemma 3.1, the demand point or barrier vertex T 

must lie in one of the corner regions relative to the cell 

containing Q.
We have already demonstrated that if T or Q lies at 

a corner of the cell, then the theorem is satisfied.
If Q lies on a side of the cell, or T lies on an 



62

extension of one side of the cell, or both, then one corner 
of the cell lies on a feasible path from T to Q and the 
theorem is satisfied (Figure 3.9).

If Q lies in the interior of the cell and T lies in 
the interior of a corner region, the only remaining case, 
then we will show that the path from T to Q can always be 
modified without increasing its length so that the modified 
path passes through a corner of the cell.

Consider the example shown in Figure 3.10. Let 
and (a^,b^) be the coordinates of T and Q 

respectively. Let (c,d) be the coordinates of the cell 
corner which lies on the side intersected by the path and is 
nearest to T.

Modify the path by "pushing" the horizontal line 
segment to the corner. That is, replace the two line 
segments, T to (a^,b^) and (a^,b^) to Q, with the three line 
segments, T to (a^e), (a^e) to (a^,e), and (a^,e) to Q, 

where e is allowed to decrease from b^ to d.
This path has the same length as the original path 

from T to Q and passes through a corner of the cell when e = 
d. It only remains to show that this is a feasible path.

The path from T to (a^e) remains feasible. By 
Lemma 3.2, the line segments Q to (a^,e) and (a^,e) to (c,e) 

are feasible, since Q to (c,b^) is feasible.
The line segment (a^e) to (c,e) can cease to be a

feasible path as it is "pushed" toward the corner only if it
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Figure 3.9 T and Q satisfy condition 2 and T or Q 
on side or extension of side.

Figure 3.10 T and Q satisfy condition 2 and neither 
on side or extension of side.
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encounters the interior of a barrier, and hence, a barrier 
vertex before it reaches the corner. By Lemma 3.1, no such 

barrier vertex can exist since any such barrier vertex would 
not lie at either a cell corner or outside the cell in one 
of the corner regions.

The proofs for T in other corner regions and for 
other path orientations are similar. This completes the 
proof of Theorem 3.1. n

3.3 Distance Function inside Cells

Consider any cell, the interior of which does not 
lie inside a barrier (by Lemma 3.2 the interior is entirely 
inside or outside barrier). Label its corners in 
counterclockwise order starting with 1 at the northeast 
corner (Figure 3.14). By Theorem 3.1, the distance from a 
demand point P(i) to a point Q = (x,y) in the cell is 

d(P(i),Q) = minimum {d(P(i),C(j))+d(C(j),Q)}, (3.3.1)
j = l.....4 

where C(j), j=l,...,4 are the corners of the cell. For 
notational convenience and for this section only let 
(x(j),y(j)) represent the coordinates of the j'th corner of 
the cell. Since no part of a barrier lies inside the cell, 

d(C(j),Q) = [x(j) - x] + ]y(j) - y] = the rectangular 
distance from C(j) to Q without barriers. The distances 
from the demand point to the cell corners, d(P(i),C(j)) for 

j = 1,...,4, are constants independent of the location of 

the point Q inside the cell and can obtained using Larson 
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and Li's algorithm.

In order to understand the nature of the function 
d(P(i),Q) inside the cell, we will examine the behaviour of 
the four functions [ d(P(i),C(j)) + d(C(j),Q) ] = 
[d(P(i),C(j)) + ]x(j)-x) + )y(j)-y[]. In particular, we 
will consider the function associated with the third cell 
corner C(3). Let

z = d(P(i),C(3)) + ]x(3) - x] + }y(3) - y].
For any point Q = (x,y) which lies in the cell, x > x(3) 
and y y(3), so that the equation can be simplified to 

z = d(P(i),C(3)) + x - x(3) + y - y(3).
Rearranging this equation, we obtain

(x - x(3)) + (y - y(3)) - (z - d(P(i),C(3)) = 0 
which is the equation of a plane in three dimensions passing 
through the point ( x(3), y(3), d(P(i),C(3) ) and which is 
orthogonal to the vector Let z(j) = d(P(i),C(j))
for j = 1,...,4. The equation of the plane associated with 
cell corner C(3) can now be slightly rewritten as

(x - x(3)) + (y - y(3)) - (z - z(3)) = 0. 
Similarly, the function associated with each of the other 
cell corners C(j) can also be shown to be represented in 
three dimensions by a plane which passes through the point 

( x(j), y(j), z(j) ). The normal vectors to the planes 

associated with the corners, C(1), C(2), and C(4), can be 

shown to be (-1,-1,-!)/ (1,-1,-1), and (-1,1,-!) 

respectively.
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Inside a cell the surface representing each of the 
four functions, (d(P(i),C(j))+d(C(j),Q)], is a section of a 
plane. The edges of the section of the plane are defined by 
the limits of the cell (Figure 3.11). The lowest point on 
the section of the plane associated with the corner C(j) is 
found above the corner C(j) at a height of z = d(P(i),C(j)). 
The gradient of the plane is directed towards the interior 
of the cell at a 45° angle from both the x and y axes. The 

surface representing the distance function d(P(i),Q) in the 
cell is the minimum of four such sections of planes, each 
with its minimum at a different corner of the cell.

To help visualize the type of surfaces which can be 
formed by the minimum of four such planes, consider the 
entire planes from which the sections of planes were 
derived. Taking the minimum of two planes associated with 
diagonally opposite corners of the cell forms a surface with 
a ridge running at 45° to the x and y axes. The planes 

associated with the other pair of diagonally opposite 
corners also form a surface with a ridge running at 45 to 
the axes but this ridge is orthogonal to the preceding ridge 

(Figure 3.12).
The minimum of these two surfaces and also the 

minimum of the original four planes has three possible 
shapes (Figure 3.13). The orientation and the length of the 

ridge line depends on the values of the d(P(i),C(j)). The 

pyramid case can be considered as a special case of either
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Figure 3.11 Function [d(P(i),C(j)) + d(C(j),Q)l m a cell.

Figure 3.12 Minimum of 2 planes through opposite 
corners.
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Figure 3.13 Minimum of 4 planes through cell corners.
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of the other two possibilities with a ridge line of zero 
length. The shape of that portion of the surface which lies 
inside the cell depends on the location of the ridge line 
relative to the cell and hence on the values of the 
d(P(i),C(j)).

3.3.1 Level Curves inside a Cell

It is convenient to determine the region between two 
level curves by working with the minimum of the four planes 
and then clipping the resulting polygonal area so that only 
that part of the polygonal area which lies inside the cell 
is actually drawn. The region between two level curves 
inside the cell could also be calculated by first 
determining the type of pattern that the level curves have 
in the cell by examining the values of d(P(i),C(j)) for j = 
1,...,4 and then calculating the two level curves using 
specialized formulae for that type of level curve pattern. 
It can be shown that there are 16 distinct patterns of level 
curves inside a cell which can be produced by variations in 
the values of the distances d(P(i),C(j)). By working with 
the minimum of the four planes and then clipping the 
resulting area, we can avoid dealing explicitly with the 16 

possible patterns of level curves.
The equations of the planes associated with 

each corner are:
+(x-x(l)) + (y-y(l)) + (z-z(l)) - 0, for C(l); (3.3.1)
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-(x-x(2)) + (y-y(2)) + (z-z(2)) = 0, for C(2); (3.3.2)

-(x-x(3)) - (y-y(3)) + (z-z(3)) = 0, for C(3); (3.3.3)
+(x-x(4)) - (y-y(4)) + (z-z(4)) = 0, for C(4). (3.3.4)

Let cz be the value of the distance associated with 
the level curve under consideration and let cz be less than 
the maximum function value in the cell. Finding one by one 
the intersection of these four planes with the plane z = cz 
and projecting the resulting four lines into the xy-plane 
yields the equations of the four lines (see Figure 3.14) 
which form the level curve for cz:

x + y = x(l) + y(l) - (cz - z(l)), for line L(l);
-x + y = -x(2) + y(2) - (cz - z(2)), for line L(2);
-x - y = -x(3) - y(3) - (cz - z(3)), for line L(3);
x - y = x(4) - y(4) - (cz - z(4)), for line L(4);

where line L(k) is associated with corner k. The level 
curve is a rectangle with sides oriented at 45° to the x and 

y axes. This rectangle may be partially or entirely outside 
the cell. The intersections of the four lines taken 
cyclically in pairs yields the end points of the line 

segments which form the level curve.
Let xmin = x(2) = x(3), xmax = x(l) = x(4), ymin = 

y(3) = y(4), and ymax = y(l) = y(2). From L(l) and L(2), we 
obtain the top corner of the rectangle with coordinates:

x = (xmax+xmin)/2 +(z(l)-z(2))/2, (3.3.5)

y = (xmax-xmin)/2 + ymax - (2cz-z(l)-z(2))/2. (3.3.6) 
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Similarly, the left corner, obtained from L(2) and L(3), has 
coordinates:

x = xmin - (ymax-ymin)/2 + (2cz-z(2)-z(3))/2, (3.3.7)
y = (ymax+ymin)/2 + (z(2)-z(3))/2. (3.3.8)

The bottom corner, obtained from L(3) and L(4), has 
coordinates:

x = (xmax+xmin)/2 -(z(3)-z(4))/2, (3.3.9)
y = -(xmax-xmin)/2 + ymin + (2cz-z(3)-z(4))/2. (3.3.10)

The right corner, obtained from L(4) and L(l), has 
coordinates:

x = xmax + (ymax-ymin)/2 - (2cz-z(l)-z(4))/2, (3.3.11)
y = (ymax+ymin)/2 + (z(l) -z(4))/2. (3.3.12)

3.3.2 Maximum Distance in a Cel1
The formulae for the line segments which compose the 

level curves on the four-plane surface yield meaningless 
results when the contour value, cz, is greater than the 
maximum value of the distance function in the cell, cmax. 
Thus, it is necessary to check that cz is not greater than 
cmax before attempting to calculate the level curves, and we 

will require an expression for cmax.
From the results of subsection 3.3.1, it can be 

shown that the level curve for any value of cz < cmax is a 
rectangle which decreases in size as cz approaches cmax and 

that at cmax at least one pair of opposing sides of the 
rectangle must coincide (Figure 3.15). Thus, the value of
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C(1)C(2)

C(3)

cell.

C(4)
Figure 3.14 Level curve of distance function in a

Figure 3.15 Condition for CMAX.
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cmax can be found by determining the smallest value of cz 
for which either lines L(l) and L(3) coincide with each 
other or lines L(2) and L(4) coincide with each other.

Recall from subsection 3.3.1 that the equation of 
line L(l) is

x + y = x(l) + y(l) - (cz - z(l)) 
and the equation of line L(3) is

-x-y = -x(3)-y(3)-(cz-z(3)).
Let cz^ 3 be the value of cz for which these two lines 
coincide. The lines defined by ax + by = c and Ax + By = C 
coincide if and only if there exists a k 0 such that a = 
kA and b = kB and c = kC. Thus, the lines L(l) and L(3) 
coincide if

x(l) + y(l) - (cz-z(l)) = x(3) + y(3) + (cz-z(3)). 
Solving for cz^ 3 we obtain

cz^ 3 = [z(l) + z(3) + x(l) - x(3) + y(l) - y(3)] / 2.
Similarly, it can be shown that the value of cz for which
the lines L(2) and L(4) coincide is

czg 4 = [z(2) + z(4) + x(4) - x(2) + y(2) - y(4)] /2.
The value of cmax is equal to the smaller of the two
values, cz^ 3 and cz^ 4. Letting H = y(l)-y(3) = y(2)-y(4) 
be the height (in y-direction) of the cell and letting W = 
x(l)-x(3) = x(4)-x(2) be the width, we obtain the expression 

cmax = min{ [z(l)+z(3)+H+W]/2,
[z(2)+z(4)+H+W]/2 }. (3.3.13)
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The preceding expression for cmax is valid for any 
real values assigned to the variables z(j), j = and

it gives the maximum value of z found on the surface 
generated by taking the minimum of the four planes 
(equations 3.3.1 to 3.3.4). This is sufficient for the 
purpose of checking the value of cz before attempting to 
calculate the level curves for the value cz.

Since we will also use equation 3.3.13 to calculate 
the maximum value of the distance function d(P(i),Q) inside 
the cell, we must show that there can always be found at 

* least one point Q in the cell or on the boundary of the 
cell such that d(P(i),Q ) = cmax. This is not necessarily 
true when the z(j), j = 1,...,4 are allowed to assume any 
real values. However, the z(j)s represent distances in our 
problem and this makes it possible to prove the existence of 

* such a point Q in our case.
This can be done by substituting equation 3.3.13 for 

cmax into the formulae for a corner point of the rectangular 
level curves (for instance, equations 3.3.5 and 3.3.6) in 
order to obtain the coordinates of a point for which 
d(P(i),Q) = cmax. One can then show that the corner point 

lies in the cell or on the cell boundary by using the 
triangle inequalities which the distances z(j), j = 1,...,4 
must satisfy. As an example of the triangle inequalities, 
consider the distances d(P(i),C(l)) = z(l), d(P(i),C(3)) = 

z(3), and d(C(l),C(3)) = ]x(l)-x(3)[ + [y(l)-y(3)[ = W + H.
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These distances must satisfy the triangle inequality, 

d(P(i),C(3)) .< d(P(i),C(l)) + d(C(l),C(3)) or equivalently 
z(3) z(l) + W + H. In the same manner, we can prove that 
z(l) < z(3) + W + H. Similar but not necessarily identical 
inequality relations can be established between all other 
pairs of z(j)s.

3.3.3 Clipping Area between Level Curves

Any of the four line segments of a level curve 
calculated in subsection 3.3.1 may lie partly or completely 
outside the cell. Since Theorem 3.1 is valid only for 
points inside a cell, those portions of the line segments 
and the areas between line segments which lie outside the 
cell may not be valid. Therefore, the areas must be 
clipped in order that only those portions which lie inside 

the cell are actually shaded by the algorithm.
The problem of determining that portion of a polygon 

which lies inside a rectangular window is a well-studied 
problem in computer graphics for which efficient algorithms 
are available such as the Sutherland-Hodgman algorithm 

(Foley and Van Dam, p. 450-454). By splitting the area 
between the two level curves as shown in Figure 3.16, we 

obtain four trapezoids which can be clipped by the 
Sutherland-Hodgman algorithm since the trapezoids are simple 

polygons without holes.



76

Figure 3.16 Splitting region between level curves 
into 4 trapezoids.

Figure 3.17 Vertex-seeking trees.
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3.4 Finding Distances to Cell Corners

The results of sections 3.2 and 3.3 provide a method 
of calculating the distance to any point inside a cell and a 
method of filling the area between level curves inside a 
cell whenever we know the distances to the corners of the 

cell. In principle, the distances to all cell corners could 
be found by directly applying Larson and Li's POLYPATH 
algorithm. However, this would severely limit the size of 
the problems which could be solved. Instead, we will rely 
on Larson and Li's theory and methods while exploiting our 
problem's special features to reduce the problem's size and 

eliminate unnecessary computations.

3.4.1 Reducing Problem Size
We will calculate the number of cell corners as 

defined in section 3.2 and show that it is inconveniently 
large even for moderate numbers of demand points and barrier 

vertices.
The demand points contribute at most Np distinct x- 

values to the set {wxmin, wxmax; x(i), i=l,..,Np; x(k,m), 
k=l.... v and m=l,....N^} and the edges of the problem m B
universe contribute two distinct x-values to the set. Let 
NBV be the total number of barrier vertices in the problem. 

Since the barriers are right-angled polygons aligned with 
the coordinate axes, each barrier vertex shares its x- 
coordinate with at least one other barrier vertex. Thus,
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the barrier vertices contribute at most NBV/2 distinct x 

values to the set. Therefore, the total number of possible
distinct x-values in the set is (Np + NBV/2 + 2).
Similarly, the total number of possible distinct y-values in
the set (wymin,wymax; y(i), i=l,...,N - y(k,m), k=l,...,v" m
and m=l .,Ng} is also (Np + NBV/2 +2). Of course, the 
number of distinct values in the sets may be less than this 
if some of the points in the problem happen to share the 
same coordinate.

The problem universe is divided into cells by
vertical lines at each distinct x-value and horizontal lines 
at each distinct y-value in the preceding sets (Figure 3.4).
Therefore, the maximum number of intersections and cell 

2corners is (Np + NBV/2 + 2) . A moderate sized problem
2with Np = 30 and NBV = 30 could have as many as (47) = 2209 

cell corners and each cell corner would have associated with
it the distances to each of the 30 demands. Storage 
considerations alone would limit such a direct and naive 

approach to small problems.
We note that the distance from any given demand 

point depends on the position of the demand point and the 
positions of the barriers but it is not affected by the 
positions of any of the other demand points. Thus, to find 
the distance from any given demand point to any point we can 
solve a reduced problem with all of the barriers present but 

only that one demand point included in the reduced problem.



79

The maximum number of distinct x-values or y-values in such 

a reduced problem is (NBV/2 + 3) and the maximum number of 
2 cell corners is (NBV/2 + 3) . For such a reduced problem 

with NBV = 30, the maximum number of cell corners is (18)2 _ 

324 and each corner would have only one distance associated 
with it.

Although we must solve and store distances for Np 
reduced problems, this is a substantial improvement over the 
naive approach. The only disadvantage to using Np reduced 
problems is that the problem universe is divided into a 
slightly different set of cells in each reduced problem. 
Since the graphical method deals with the demand points one 
at a time in both its filling of contours and its 
calculation of minimum (or maximum) distance, this is not a 
significant disadvantage. It is only necessary to store the 
x-values and y-values which were used to divide the problem 
universe into cells for each of the Np demand points. At 
worst, this requires that we store an additional 2(NBV/2 + 

3) real values for each demand point.

3.4.2 Distances from One Demand Point
For each demand point, we must solve a reduced 

problem with that demand point and all of the barriers 
present in order to find the distances from the demand point 

to all accessible cell corners in the reduced problem. Some 
cell corners may be inaccessible because they happen to lie 
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in the interior of a barrier (Figure 3.4). Since the 

distance to such inaccessible corners is undefined, they 
must be identified by our procedure.

To solve the reduced problem, we apply Larson and 
Li's result that if a feasible path exists between two 
vertices, then a minimum distance feasible path can always 
be found which contains a sequence of simply communicating 
vertices. The demand point, the barrier vertices, and the 
cell corners are all "vertices" in Larson and Li's network 
terminology. Thus, we can find the distance to any 
accessible cell corner by first finding those vertices which 
are simply communicating vertices and then applying 
Dijkstra's shortest path algorithm (Minieka, p. 44-45) to 
the resulting network of simply communicating vertices. The 
length of the arc joining two simply communicating vertices 
in the network is just the rectilinear travel distance 
between them. This distance is not increased by the 
barriers to travel because of the manner in which simply 

communicating vertices were defined.
Larson and Li's POLYPATH algorithm first finds which 

vertices are simply communicating vertices and then applies 
a shortest path procedure which exploits special features of 
the problem in order to achieve a computational complexity 

fractionally less than that of Dijkstra's shortest path 
algorithm. However, the computational complexity o^. ooth 

Dijkstra's and Larson and Li's shortest path procedures grow 
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as the square of number of vertices in the network (Larson 
and Li). Since there could be as many as (NBV/2 + 3)2 

vertices, the complexity of solving one reduced problem 
would be proportional to (NBV/2 + 3)\ Fortunately, it is 

not necessary to solve the reduced problem with all (NBV/2 + 
23) cell corners as vertices in the problem at one time. 

The distance from the demand point to any given cell corner 
depends only on the positions of the demand point, the 
barriers, and that cell corner. Thus, we can solve the 
reduced problem by solving one smaller problem for each cell 
corner in the reduced problem.

Consider one of the small problems which has only 
the demand point, the barriers, and one cell corner present. 
By Larson and Li's result, there exists a minimum distance 
path from the demand point to the corner point which 
consists of a sequence of simply communicating vertices. 
The last link on this path is either from one of the barrier 
vertices to the corner or from the demand point to the 
corner. The total length of this path is the length of the 
path from the demand point to the next to last vertex on the 
path plus the rectilinear distance from the next to last 
vertex to the corner point. If we know the minimum travel 
distance from the demand point to each of the vertices of 

the barriers, then we can find the minimum travel distance 

to any cell corner by finding that node, barrier vertex or 
demand point, which simply communicates with the cell corner 
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and which minimizes the total path length. Thus, we only 

need to find the minimum travel distance from the demand 

point to the barrier vertices once for each reduced problem. 
Since this requires solving a shortest path problem with NBV 
+ 1 nodes, the complexity is proportional to (NBV + 1)^. In 

subsection 3.4.3, we will show that creating the network for 
the shortest path problem with NBV + 1 vertices is also of 

2 complexity O(NBV ).

To completely solve a reduced problem, we must find 
2 the minimum travel distance to, at most, (NBV/2 +3) cell 

corners and for each cell corner this requires checking each 
of NBV barrier vertices and the one demand point to 
determine if they simply communicate with the cell corner. 
Thus, the complexity of solving a reduced problem by 
splitting it into smaller problems is proportional to the 
cube of NBV. This is a substantial improvement over the 
O(NBV^) computational complexity which would have resulted 

if we applied Larson and Li's methods directly to the entire 

reduced problem containing all of the cell corners as 

vertices.
We briefly summarize our method of finding the 

distances to the cell corners in a reduced problem 
containing one demand point. The vertex-seeking trees 

mentioned are explained in subsection 3.4.3.
First, we determine the minimum rectilinear travel

distance from the demand point to each of the barrier 
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vertices. This is accomplished by creating a network 

containing as nodes the demand point and all of the barrier 
vertices. Next, we determine all pairs of nodes which 
simply communicate and join them by arcs with length equal 
to the rectilinear distance (unaffected by barriers) between 
the nodes. Then, we apply Dijkstra's shortest path 
algorithm to find the minimum distance from the node 
representing the demand point to the rest of the nodes. We 
save the distances to the barrier vertices and the vertex­
seeking trees used to determine which pairs of vertices are 
simply communicating vertices.

For each cell corner in the reduced problem, we grow 
a vertex-seeking tree rooted at that cell corner. If a cell 
corner is inaccessible because it lies in the interior of a 
barrier, it will be found by the procedure which grows 
vertex-seeking trees and skipped after it has been flagged 
as inaccessible. Using the vertex-seeking tree rooted at 
the cell corner and those trees rooted at the network nodes 
which were saved from previous step, we determine those 
nodes which simply communicate with the cell corner. Among 
the nodes which communicate simply with the cell corner, we 
find that node which minimizes the sum of the distance to 
the node as determined by the shortest path procedure pa.us 
the rectilinear distance (unaffected by barriers) from the 

node to the cell corner. The minimum value found is ^he 

minimum distance to the cell corner.
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We now have an efficient procedure for calculating 
the distances from the demand point to all cell corners. 
The next two subsections explain Larson and Li's method of 
finding simply communicating vertices and discuss an 
integer representation of part of the problem which reduces 
the storage requirements and simplifies some of the 
calculations.

3.4.3 Finding Simply Communicatinq Vertices
Larson and Li define simply communicating vertices 

in terms of vertex-seeking trees rooted at the vertices. 
Our definition of simply communicating vertices in 
subsection 3.2.2 is somewhat easier to understand and is 
consistent with Larson and Li's definition in the case where 
the barriers are required to be right-angled polygons 
aligned with the travel directions. However, their 
definition in terms of vertex-seeking trees is more 
convenient when actually determining which pairs of vertices 

are simply communicating vertices.
For the special case of right-angled barriers 

aligned with the travel directions, we can simplify Larson 

and Li's definition of a vertex-seeking tree.
Definition 3.3: A vertex-seeking tree rooted at the point 
(x,y) is the union of four rays, called probes, originating 

at the point (x,y) and extending in the positive x 
direction, the negative x direction, the positive y 
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direction, and the negative y direction until they encounter 
either the interior of a barrier or a barrier vertex or a 

demand point or the boundary of the problem universe (Figure 
3.17). We define the rays to include both of their end 
points.

For the case of right-angled barriers and using our 
simplified definition of vertex-seeking trees, we can define 
two vertices as being simply communicating vertices if their 
vertex-seeking trees have at least one point in common. 
This is a very convenient definition to use. Once we have 
constructed the vertex-seeking trees rooted at each vertex, 
we only need to check two pairs of line segments for 
intersections in order to determine if a pair of vertices 
communicate simply. The intersection tests which must be 
done for each pair of vertices are very simple operations 
requiring at most eight comparisons of coordinates. Since 
the computational effort required to test a pair of vertices 
does not depend on NBV, the complexity of finding all pairs 
of simply communicating vertices in a set of NBV + 1

2 vertices has a complexity of O(NBV ).
Growing the vertex-seeking trees is a more difficult 

operation but it only has to be done once for each vertex 
and the resulting vertex-seeking tree stored. For our 
simplified vertex-seeking trees, we only need to store the 

lengths of the four probes to fully describe a vertex­

seeking tree rooted at (x,y).
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The mechanics of constructing vertex-seeking trees 
is fairly straight-forward. Before constructing the vertex­
seeking trees, we break the boundaries of the barriers and 
the boundary of the problem universe into a set of 
horizontal line segment barriers and a set of vertical line 
segment barriers (Figure 3.18). The vertical line segments 
are sorted according to their x-coordinates and the 
horizontal line segments are sorted according to their y- 
coordinates. For each line segment, we also keep a code 
indicating on which side of the line segment barrier travel 
is possible. These two sets of line segment barriers 
contain all of the information about the original barriers 
and the boundary of the problem universe. Creating the 
sorted lists of line segment barriers only needs to be done 
once for each problem since they do not depend on which 
demand point is included in a particular reduced problem. 
The complexity of creating the sorted lists of (NBV/2+2) 
line segment barriers is O(NBV log NBV), since n items can 

be sorted in 0(n log n) time.
To construct a vertex-seeking tree at some point 

(x,y), we first check if the point lies on any of the line 
segments. If it doesn't lie on any line segment, then from 

(x,y) we grow horizontal probes in the positive and negative 
x directions until each probe intersects a vertical line 

segment (Figure 3.19). Similarly, we grow vertical probes 
until they intersect horizontal line segments. If a probe



87

Figure 3.18 Breaking boundaries into line segment 
barriers.

HORIZONTAL PROBES VERTICAL PROBES
Figure 3.19 Growing probes of vertex-seeking tree.
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strikes a line segment from that side of the line on which 

travel is not possible, then the point (x,y) must lie in the 
interior of a barrier and be inaccessible.

If the point (x,y) lies on a horizontal line segment 
between the end points of the line segment, then the end 
points of the line segment become the end points of the 
horizontal probes (Figure 3.20). The vertical probe toward 
the side which is open to travel is grown in the usual 
manner and the vertical probe in the opposite direction has 
zero length. If the point lies on a vertical line segment 
between the end points the result is similar.

If (x,y) lies at the end point of one horizontal 
line segment and at the end point of one vertical line 
segment, then it lies either at a corner of a barrier or at 
a corner of the boundary of the problem universe (Figure 
3.21). The end point of one horizontal probe will coincide 
with the opposite end of the horizontal line segment on 
which it lies and the end point one of the vertical probes 
is similarly determined. If the corner on which (x,y) lies 
is an exterior corner, then the remaining horizontal and 

vertical probes are grown in the usual manner. If the 
corner is an interior corner, then the remaining two probes 

have zero length. Whether a corner is an exterior or 
interior corner can be determined by examining the 
orientation of the line segments in relation to he sides of 

the line segments which are open to travel.
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Figure 3.20 Root on line segment between end 
points.

4 PROBES 2 PROBES
pjgure 3.21 Root on e corner.
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Finding the position of the root (x,y) in relation 
to the line segment barriers and then growing the four 

probes of the vertex—seeking tree until each collides with a 
line segment barrier requires computational effort which is 
proportional to the number of line segment barriers in the 
lists and hence is at worst proportional to NBV/2 + 2. 
Thus, the complexity of constructing and storing the NBV + 1 
vertex-seeking trees rooted at the demand point and the 
barrier vertices is at worst 0(NBV ).

In subsection 3.4.2, we stated that the network of 
NBV + 1 nodes, which we must solve to obtain the distances 
from the demand point to all barrier vertices, could be 

2 constructed with computational effort of only 0(NBV ). 
Creating the network requires creating and storing lists of 
line segment barriers, growing and storing NBV + 1 vertex­
seeking trees, and then finding all pairs of simply 
communicating vertices using the vertex-seeking trees.

2 Since these steps have complexity 0(NBV log NBV), 0(NBV ), 
and O(NBV^), respectively, we have shown that creating the 

2 network has a complexity of 0(NBV ).

3.4.4 Integer Representat ion
An integer representation of some parts of the 

problem can be used to reduce storage requirements on those 
computers which require less memory for integer variables 

than for real variables.
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Consider the process of constructing vertex-seeking 
trees and of determining if two vertices simply communicate 
by checking if their vertex-seeking trees have a point in 
common. Both processes depend upon comparisons of 

coordinates to determine if one coordinate is greater than, 
equal to, or less than another coordinate. The actual 
amount by which one coordinate exceeds another does not 
affect the result of a comparison. Neither introducing cell 
corners nor growing vertex-seeking trees adds any new values 
to the sets of distinct x and y coordinate values which we 
introduced in the definition of cells. Thus, the x- 
coordinate values being compared come from a small set of 
real x-coordinate values and similarly for the y-ccordinate 
values. The results of the tests to determine which 
vertices simply communicate would be unaffected if we 
replaced each real x-coordinate by an integer value equal to 
its position in the set of distinct x-values when that set 
has been ordered by increasing size. For example, if 10.7 
is the third value in the set of distinct x-values after it 
has been sorted into order of increasing value, then we 
replace each x-coordinate in the problem which has the real 
value 10.7 with the integer value 3 as the new x-coordinate. 
The y-coordinates are replaced by integers in the same 
manner. This also allows us to represent each vertex­
seeking tree by four integers rather than four real values.

After using the integer representation of the 
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problem to determine which vertices communicate simply, we 
must use the real coordinates of the vertices to calculate 
the rectilinear distance between them before we apply a 
shortest path algorithm to the network of simply 
communicating vertices. The integer representation also 
allows us to code the routines which grow vertex-seeking 
trees and test for simply communicating vertices using 
comparisons of integer values rather than comparisons of 
real values. This simplifies the comparisons since we do 
not have to take into account the possibility of round-off 
errors which we would have to guard against when testing 
real values for equality. Although this integer 
representation of part of the problem is not necessary, it 
is both convenient and easily implemented.

3.4.5 Finding Closed Cells
Although the determination of open and closed cells 

is not a part of the process of finding the distances to 
cell corners, it is included in this section because it is 

closely related.
From Lemma 3.2 of subsection 3.2.1, we know that the 

interior of a cell is either entirely inside a barrier and 
hence closed to travel or entirely outside all barriers. It 
cannot be determined whether a given cell is open or closed 
to travel merely by examining the distances from a demand to 

the cell corners since all corners of a cell may be 
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accessible but the interior of the cell may still lie inside 

a barrier. Since the contour filling routines must skip 
cells which are closed to travel, the closed cells must be 
identified and the results saved for use by the contour 
filling routines. A simple method of checking whether a 
cell is open or closed is to attempt to grow a vertex- 
seeking tree rooted at the center of the cell. If the cell 
is closed, then the probes will strike the line segment 
barriers from the sides which are not open to travel 
indicating that the point at the center of the cell is 
inaccessible and that, by Lemma 3.2, the entire cell 
interior is inaccessible.

3.5 Maximin Location with Barriers

3.5.1 Maximin Location Algorithm
We have divided the maximin algorithm into two 

phases. The first phase calculates the distances to all 
cell corners and determines which cells are closed to 
travel. This data is then stored for use by the second 
phase. In the second phase, we apply the interactive 
graphical approach to find an optimum solution.

In the following description of the maximin 

algorithm, we do not include the integer representation 
discussed in subsection 3.4.4 because it is not an essential 
part of the solution procedure. Also, its inclusion would 

greatly complicate our description of the algorithm.
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Phase I: Data Preparation

Step 1. Initialization

Choose the limits of the problem universe, wxmax, 
wxmin, wymax, and wymin such that it encloses all demand 
points, all barrier vertices, and all feasible points in the 
bounded feasible region F.

Set 1=1.

Step 2. Divide Reduced Problem into Cells
Find all distinct x-values in the set {wxmin, wxmax, 

x(I); x(k,m), k=l,...,v and m=l,...,NQ}. Sort the x-values 
found into ascending order. Let VLINES be a vector of the 
distinct x-values sorted into ascending order and let 
NVLINES be the number of distinct x-values. Find all 
distinct y-values in the set {wymin, wymax, y(I); y(k,m), 
k=l,...,v and m=l,...,N^}. Sort the y-values into m B
ascending order. Let HLINES be a vector of the distinct y- 
values sorted into ascending order and let NHLINES be the 
number of distinct y-values. VLINES specifies the set of 
vertical lines which divide the problem universe into cells 
and HLINES specifies the horizontal dividing lines. 
Step 3. Create Sets of Line Segment Barriers

Create a set of vertical line segment barriers 

consisting of the two vertical edges of the problem universe 
and all of the vertical barrier sides. For each line 
segment include a code indicating on which side of the line 

travel is possible. Similarly, create a set of horizontal 
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line segment barriers. Sort the vertical line segments so 

that the vertical line segments can be stored in order of 
increasing x-coordinate. Sort and store the horizontal line 
segments in order of increasing y-coordinate.

Step 4. Grow Vertex-Seeking Trees at All Network Nodes 
Grow vertex-seeking trees rooted at the demand point 

(x(I),y(I)) and at each of the barrier vertices 
(x(k,m),y(k,m)) for k=l,...,v and m=l,...,N^.m B
Step 5. Find Distances to All Barrier Vertices

Create a network of simply communicating vertices.
The nodes of the network consist of the demand point and the 
barrier vertices. If the vertex-seeking trees rooted at a 
pair of nodes have a point in common, then that pair of 
nodes communicate simply. Join all pairs of simply 
communicating nodes in the network by arcs of length equal 
to the rectilinear distance between the two points. For 
example, if the vertex-seeking trees rooted at the demand 
point (x(I),y(I)) and at barrier vertex (x(k,m),y(k,m)) have 
a point in common, then the nodes should be joined by an arc 
with length equal to the rectilinear distance between the 

points, ]x(I)-x(k,m)j + )y(I)-y(k,m)j.
Find the distance from the demand point node to ail 

other nodes in the network using Dijkstra's shortest path 

algorithm. Save the vertex-seeking trees created in Step 4 
and save the distances from the demand point to all other 

nodes.
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Step 6. Find Distances to Cell Corners

For j = 1,...,NHLINES and k = 1,...,NVLINES, 
attempt to grow a vertex-seeking tree rooted at the cell 
corner with coordinates (VLINES(k),HLINES(j)).

If the attempt to grow the tree fails because the 
point at which it is rooted is inaccessible, then set the 
distance to the cell corner D(j,k) equal to -999 in order to 
flag that corner as inaccessible.

Otherwise, find all nodes of the network with which 
the cell corner simply communicates. For each node with 
which the corner simply communicates, calculate the sum of 
the distance from the demand point to the node, as found in 
Step 5, plus the rectilinear distance from the node to the 
cell corner. For example, if the barrier vertex 
(x(k,m),y(k,m)) was found to be a distance of d units from 
the demand point in Step 5 and if it simply communicates 
with the cell corner, then calculate the sum of d plus 
(]x(k,m)-VLINES(k)[ + [y(k,m)-HLINES(j)])- Set the distance 

D(j,k) equal to the smallest sum found over all of those 
nodes which simply communicate with the cell corner. 

Step 7. Find Closed Cells
For j = 1,...,NHLINES-1 and k = 1,...,NVLINES-1, 

attempt to grow a vertex-seeking tree rooted at the 
coordinates ( (VLINES(k) + VLINES(k+l))/2, (HLINES(j) + 

HLINES(j+l))/2 ). In other words, attempt to grow a tree at 
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the center of the k'th cell in the j'th row of cells.

If the attempt to grow a tree fails because the 
center point is inaccessible, then set CCLEAR(j,k) = -99 to 
indicated that cell is closed to travel. Otherwise, set 
CCLEAR(j,k) = +1. 
Step 8. Save Corner Data

Save the values NVLINES and NHLINES, the vectors 
VLINES and HLINES, and the matrices D and CCLEAR which are 
associated with the demand point I for use by the 
interactive phase of the algorithm.

If I = Np then stop. Otherwise, set 1=1+1 and 
go to Step 2.
Phase II: Interactive Optimizat ion
Step 1. Initialization

Choose the problem universe as that region of the 
plane which is to be represented on the screen. Shade the 

infeasible region for facility placement. Shade the 

interiors of all barriers to travel.
If no unshaded point remains on the screen, then 

stop since no feasible solution exists.
Otherwise, set k = 1 and z^ = 0.

Step 2. Improve Value of Objective Function
Choose any unshaded point = ^k'^k^' Preferably 

one which lies near the center of an unshaded area.
For each demand point I, retrieve the corner da^a 

from storage. That is, retrieve the values NVLINES and
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NHLINES, the vectors VLINES and HEINES, and the matrices D 

and CCLEAR associated with the demand point I. Determine in 
which open cell lies by finding m and n such that 
VLINES(n) < x^ < VLINES(n+l), HLINES(m) < y^ < 
HLINES(m+l), and CCLEAR(m,n) = +1. Calculate f (X ) I k
= w^.min{ D(m,n) + ]x^-VLINES(n)] + [y^-HLINES(m)], 

D(m+l,n) + )x^-VLINES(n)[ + )y^.-HLINES(m+l)], 
D(m,n+1) + ]x -VLINES(n+l)[ + [y.-HLINES(m)[, 
D(m+l,n+l) + )x^-VLINES(n+l)] + ]y^-HLINES(m+l)]}.

Calculate z^ = min { f^X^; 1 = 1 ..Np}.
Step 3. Eliminate Dominated Regions

Shade the area between the level curves of f^(X) 
corresponding to the values z^_^ and z^ for each 1=1,...,N?. 
That is, for each demand point I we retrieve the corner data 
associated with it. For m = 1,...,NHLINES-1 and n = 
1,...,NVLINES-1, if CCLEAR(m,n) = -99, then skip to the next 
cell since cell (m,n) is closed. Otherwise, calculate CMAX 
for cell using the corner distances D(m,n), D(m+l,n), 
D(m,n+1), and D(m+l,n+l). If both z^._^,/w^. and z^/w^ are 
greater than CMAX or if both z^^/w^ and z^/w^. are less than 
min {D(m,n), D(m+l,n), D(m,n+1), D(m+l,n+l)}, then skip to 
the next cell because no part of cell (m,n) needs to be 
shaded. Otherwise, calculate the region which lies between 

the level curves as described in section 3.3 and shade it 

after clipping the region against the cell boundaries.

Set k = k + 1.
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If only a few points (pixels) remain unshaded, then 
go to Step 4. Otherwise, go to Step 2. 
Step 4. Accept or Expand Scale

If the size of the remaining unshaded area is 
sufficiently small so that the uncertainty in the location 
of the optimum is acceptable, then choose a point in the 
remaining unshaded area as a near-optimal location X . 

* *Calculate z = min ( f^.(X ); 1=1,...,N?}. Stop.

Otherwise, choose a small rectangle enclosing the 
unshaded region and expand the scale so that the rectangle 
fills the screen. Shade the infeasible region and the 
interiors of all barriers. For all I = 1,...,N?, shade the 
area between the level curves of f^fX) corresponding to the 

values Z, and z. „. Go to Step 2. 0 k-1

3.5.2 Demonstration Program
The algorithm for single facility maximin location 

with rectilinear distances and right-angled barriers to 
travel was implemented on a Digital Equipment Corporation 
(DEC) Professional 350 personal computer. Phase I and Phase 
II of the algorithm were implemented as separate FORTRAN 77 
programs. The interactive optimization program for Phase II 

utilized DEC'S Core Graphics Library of graphic subroutines 
which follow the proposed Core Graphics System standard of 

the ACM SIGGRAPH Graphics Standards Planning Committee 

(1979). Excluding comment lines, the Phase I program 
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consists of approximately 1300 FORTRAN lines and the Phase 

II program consists of approximately 1800 lines of FORTRAN.

A maximum of 30 demand points can be accommodated by 
the programs and each demand point may have a different 
positive weight associated with it. The programs allow a 

maximum of 30 barrier vertices which can be divided among as 
many as 7 different right-angled barriers to travel. The 
feasible region is assumed to consist of one or more 
polygons up to a maximum of 20 with the total number of 
vertices not exceeding 200.

The Phase I program reads the barrier, the demand 
point, and the feasible region information from text files. 
It writes the corner data that it calculates for each demand 
point onto a hard disk in the form of an unformatted FORTRAN 

file which is read by the Phase II program.
During the interactive optimization phase, positions 

on the screen are indicated by moving the cursor about using 
the keyboard. Since there may be more than one small region 
which the user would like to expand in Step 4 of Phase II, 
the program allows more than one region to be picked for 
expansion. The most recently picked region is expanded and 
the information on the other regions is placed on a stack 

for later retrieval.

3.5.3 Example
A large example with 30 demand points and a total of 
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30 barrier vertices was created (Figure 3.22). Each of the 
demand points was assigned a weight of 1. The bounded 
feasible region for the example is a relatively simple 
polygon with 7 vertices. The coordinates of the demand 
points, the barrier vertices, and the vertices of the 
feasible region are given in Appendix A.

The best location found was at (16.251, 19.152) on 
the boundary of the feasible region. The minimum distance 
to the nearest demand point, number 14 situated at (19.0, 
14.0) was found to be 7.901 units. The distance to the next 
nearest demand point, number 13 at (12.0, 15.5), was found 
to be 7.903 units. The third nearest demand point was 
number 12 situated at (10.0, 17.0) and the distance to it 

was 8.403 units.

3.6 Minimax Location with Barriers
Since only minor changes are required to convert the 

maximin algorithm into an algorithm for minimax location 
problems, we will not repeat the rather lengthy description 
of the algorithm here. Instead, we will discuss the 
differences between maximin and minimax location problems 
and specify those changes which must be made to the maximin 

algorithm given in subsection 3.5.1 to convert it ^o a 

minimax algorithm.
3.6.1 pjfferences from Maximin Location

A bounded feasible region for facility placement is
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Figure 3.22 Large maximin example.
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not necessary for a minimax location problem to be non­
trivial because the process of minimizing the distance to 
the farthest demand point in effect "pulls" the facility 

toward the demand points rather than "pushes" it away as in 
maximin location problem. Accordingly, the feasible region 
for minimax location problems may consist of the entire 

plane. If this is the case, the problem universe should be 
picked so that it encloses the demand points and the barrier 
vertices.

In the maximin algorithm, we begin with the smallest 
possible objective function value, z^ = 0. By picking a 
series of feasible points, we generate a series of 
increasing objective function values. In the minimax 
algorithm, we must begin with a sufficiently large objective 
function value and generate a series of decreasing objective 
function values. Since there is no upper bound on the 
objective function value, the choice of the initial 
objective function value is more difficult than in the 
maximin case. For our initial z^, we use the largest 
weighted distance from any demand point to any accessible 
point in the problem universe since this value is relatively 

simple to calculate from the corner data files.

3.6.2 Minimax Location Algorithm
To obtain an algorithm for minimax problems, make 

the following changes to the maximin algorithm given in
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subsection 3.5.1.

For Phase I of the algorithm, we only need to 
include in the description of Step 1 the sentence "If the 

feasible region consists of the entire plane, then choose 
the limits of the problem universe so that it encloses all 
demand points and barrier vertices."

For Phase II of the algorithm, several changes are 
required. Replace z = min { f_(X. ); 1 = 1.... w } by z, = i K............ P k
max { f^X^); 1 = 1,..., N?} in Step 2 of Phase II. Replace
z* = min { f^(X*); 1 = 1,...,N?} by z* = max { f^X*); 

1=1,...,Np) in Step 4 of Phase II.

We also need to calculate an initial value for z^ in 
Step 1 of Phase II. Replace the instruction setting z^ = 0 
by the following instructions: For I = l,...,Np, calculate 
the maximum distance from demand point P(I) to any point in 
the problem universe by calculating CMAX for each open cell 
and taking the maximum value of CMAX obtained. Call this 
maximum distance UMAX(I) for demand I. Set z^ = max ( w^ * 

UMAX(I); I = 1,...,N„}. r

3.7 Non-Graph!cal Unweighted Maximin Location
Although this work is primarily concerned with 

graphical approaches to location problems, we note that 
simple extensions to the theory and methods developed in 
this chapter for the graphical algorithms can yield a purely 

numerical algorithm for unweighted maximin location problems 
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when the feasible region is defined by one or more polygons. 
Since this type of location problem with rectilinear 

distances and barriers is of considerable practical interest 
and is unsolved, we will briefly sketch a numerical 
algorithm for the special case of maximin location with 
unweighted distances.

3.7.1 Unweighted Maximin Objective Function Properties 
The key to a practical numerical algorithm for the 

unweighted maximin problem is an observation about the 
properties of unweighted distances in a cell. Consider a 
cell as defined in section 3.2 with all demand points 
present when the division into cells was made. The distance 
from a given demand point P(I) to any point X in a cell is 
given by min{ d(P(I),C(j)) + d(C(j),X); j = l....4} where 
d(P(I),C(j)) is the distance from the demand point P(I) to 
the j'th corner of the cell C(j) and d(C(j),X) is the 
rectilinear distance from corner C(j) to X. In maximin 
problems, the objective function to be maximized is the 
minimum distance over the demand points P(I), 1=1,...,Np. 
Since this is an unweighted problem and the d(C(j),X) do not 
depend upon I, the minimization over the corners and the 
minimization over the demand points can be interchanged.

Let d(*,C(j)) = min( d(P(I),C(j)); 1=1,...,Np } for 

each corner C(j). After interchanging the minimization over 
demand points and minimization over corners, the objective 
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function at any point X in the cell is given by min{ 

d(*,C(j)) + d(C(j),X); j = l.... 4 }. Since this form of the 

objective function is identical to the form of the distance 
functions inside a cell, those results which we obtained for 
the level curves and maximum value of the distance in a cell 
can also be applied to the objective function inside a cell. 

In particular, equation 3.3.13 can be used to calculate the 
maximum objective function in a cell which we will call 
OCMAX. If H and W represent the height and width of the 
cell, then

OCMAX = min{ [ d(*,C(l)) + d(*,C(3)) + H + W ]/2,
[ d(*,C(2)) + d(*,C(4)) + H + W ]/2 }. 

The line segment on which the objective function has the 
value OCMAX can be obtained by substituting OCMAX into the 
equations of the level curves given in subsection 3.3.1 
after replacing z(j) by d(*,C(j)) for j=l,...,4. This line 
segment will always lie entirely in the cell or on the cell 
boundary. This can be proved by substituting the 
definitions of the d(*,C(j))s and the preceding expression 
for OCMAX into the equations (3.3.5 to 3.3.12) for the 
corners of the level curves and then using the triangle 
inequalities for distances which were discussed in 

subsection 3.3.2.

3.7.2 Numerical Unweighted Maximin Location Algorithm
A practical numerical algorithm for unweighted 
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maximin problems can be obtained by replacing Phase II, the 
interactive graphical phase, of the algorithm presented in 
subsection 3.5.1 by the following numerical procedure. The 
procedure first determines the maximum feasible value of the 
objective function in the cells through which the boundary 
of the feasible region passes. It then calculates the 
maximum objective function value OCMAX in each of those 
cells which lie inside the feasible region and which do not 
contain any part of the boundary.

First divide the problem universe into cells with 
all of the demand points present in the problem when the 
division is made. Let C(j,k) represent a general cell 
corner resulting from this division. For each of the cell 
corners in the problem, calculate d(*,C(j,k)) = min { 
d(P(I),C(j,k)); 1=1,...,Np } using the corner data prepared 
by Phase I of the algorithm. The distances to cell corners 
which do not appear in a particular reduced problem can be 
calculated in the same way as the distance to a general 

point so that no changes to the Phase I program are 
necessary. For each cell, determine if it is open or closed 
to travel by testing the point at the center of rhe cell in 
order to determine if it is an accessible point. Using the 
Phase I corner data associated with any one of the demand 
points, this can be done by finding the reduced problem cell 
in which the center point lies. If that cell in the reduced 

problem is open then the center point is accessible.
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For each open cell through which the boundary of 
the feasible region passes, determine the maximum feasible 
objective function value in the cell. The maximum feasible 
objective function value in a cell either occurs on the 
boundary of the feasible region or is equal to OCMAX for the 
cell. Calculate OCMAX and the line segment on which the 
objective function value of OCMAX occurs using equations of 
the level curves. Determine if any point on the line 
segment is feasible. If the entire line segment is 
infeasible, then search that portion of the boundary which 
lies inside the cell in order to find the maximum feasible 

value in the cell.
For each of the remaining open cells, determine if they 

lie entirely inside or entirely outside the feasible region 
by checking one interior point to determine if that point 
and hence, the entire cell is feasible. For each entirely 
feasible cell found, calculate OCMAX and the line segment on 

which OCMAX occurs.
Choose the maximum feasible objective function value 

found in the search over all cells as the optimum value and 
choose as the optimum location that point or line segment on 

which the optimum value was found.



CHAPTER 4

NOXIOUS FACILITY LOCATION WITH AREA DEMANDS

4.1 Introduction

This chapter addresses the problem of locating a 
single noxious facility so that the minimum of the distances
to several polygonal areas is maximized. Euclidean,
rectilinear and general 1 distances are treated, but there
are no barriers to travel. We discuss extensions of the 
method to problems involving the minimization of the maximum 
cost, where the costs are functions of distance and 
direction, or distance alone.

4.1.1 Problem Description
Although a facility may provide important or 

essential services, the facility itself may have undesirable 
characteristics which make it necessary to locate the 
facility as far as possible from certain areas. The 
facility may be unaesthetic and unpleasant for those living 
nearby; waste-treatment plants and garbage dumps certainly 
fall into this category. The facility's normal operation 
may pose a health hazard to the surrounding population. 
It is suspected but has not been proved that this is the 
case for coal-fired generating stations (Cohen 1983). The

109
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facility may even threaten nearby residents with 

catastrophic accidents such as have occurred at oil-fired 
generating stations and natural gas facilities. Machines, 
equipment, or electrical components which produce excessive 
emissions of noise, heat, or electrical interference can 
pose similar problems in plant layout and in the design of 
electronic equipment.

We will use the term "noxious facility" to describe 
such a facility. In the literature, this type of facility 
is frequently called an "obnoxious facility." Less often, 
it is termed an "undesirable" or "controversial" facility. 
We note that in general usage "obnoxious" is almost 
exclusively applied to persons and that it produces 
distracting connotations when it is applied to inanimate 
objects.

The noxious facility is to be located as far as 
possible from several areas which we will call area demands 
or vulnerable areas. We assume that these area demands are 
general polygons or can be approximated by general polygons. 
These polygons may be non-convex and may overlap. Without 
loss of generality, we assume that the polygonal areas have 
no interior holes. A polygonal area with holes can always 
be represented by two adjacent polygons without holes.

These area demands may represent sensitive 

components in a layout problem or populated areas which are 

to be avoided when locating a noxious facility. If the 
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entire feasible region for facility placement is populated, 

then the polygonal areas can still be used to represent high 
density areas, such as cities, which should be avoided. 
Although our discussion is in terms of locating a noxious 
facility in relation to several vulnerable regions, we could 
also interpret the model in terms of locating a vulnerable 
facility as far as possible from several noxious regions.

We assume that the noxious facility is constrained 
to lie in a bounded feasible region. Engineering, 
geographical, political, or legal considerations may 
constrain the facility to lie inside a particular region in 
practical problems. Maximum service distances may also 
place constraints on the location of the noxious facility 
because it provides services either to the vulnerable areas 
or to other service recipients with fixed positions relative 
to the vulnerable areas. In the absence of such a bounded 

feasible region for facility placement, the trivial and 
unrealistic solution to a maximin location problem is to 

place the facility "at infinity."
Weighted Euclidean, rectilinear, and general 1^ 

distance norms are allowed in our formulation. Also allowed 
are mixed norm problems in which different area demands have 
different distance norms associated with them. ihe weights 

associated with each demand can be used to reflect the 
relative insensitivity to damage of the area demands.

The undesirable effects of a noxious facility often 
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can be assumed to decrease with distance, even though the 
magnitude of its effects and the rate of decrease with 
distance are not known with reasonable accuracy. By using 
the maximin criterion, maximizing the minimum distance from 
the vulnerable areas to the noxious facility, we will at 
least be assured of minimizing the largest of these adverse 
effects.

4.1.2 Formulation

Let A(i), i=l,...N be a set of N polygonal areas 
(Figure 4.1). Let V(m,i), m=l,...,M^ be the vertices of 
polygonal area A(i) in clockwise order. Each polygonal area 
is defined to include its boundary. The areas may be non- 
convex and may overlap one another. Let F be a closed, 
bounded feasible region for placement of the facility. The 

region F may be non-convex or disjoint.
The maximin single facility location problem with 1^ 

distances and polygonal area demands can be formulated as 

maximize { minimum f^(X) ) 
X in F i=l,...,N

where
f.(X) = w. minimum { d(p(i);X,Q) ), 
i Q in A(i)

X = (x,y) = location of new facility, 
Q = (a,b) = location of a general point, 
w. = positive weight associated with area A(i), 

p(i) = p-value for points in A(i),
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Figure 4.1. feasible region and area demands.
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and d(p(i);X,Q) = [)x-a)P^^ + )y-b)P^^]^P^)

= ^p(j) distance from X to Q.
If the set of area demands covers the entire 

feasible region F, then the problem has a trivial solution 
with an objective function value of zero and all feasible 
points are optimum locations. If there exist one or more 
feasible points outside the set of area demands, then the 
formulation can be simplified since only points on the 
boundaries of the area demands need to be considered.
Lemma 4.1:

Let X be a point which lies outside the area demand 
A(i). If Q is a point in A(i) which minimizes d(p(i);X,Q), 
then Q lies on the boundary of A(i).
Proof:

The point Q must lie either in the interior or on 
the boundary of A(i). Assume Q lies in the interior of 
A(i). Ey the definition of an interior point, there exists 
an e > 0 such that if d(p(i);Y,Q) < e, then Y lies in A(i). 
Consider a ooint Z on the line segment from X to Q such that 
0 < d(p(i);Z,Q) < e. See Figure 4.2. It is well-known in 
the familiar Euclidean case, and easily proved for the 
general 1 distance case, that d(p(i);X,Q) = d(p(i);X,Z) + 
d(p(i);Z,Q) whenever Z lies on the line segment XQ between X 
and Q. Thus, Z lies in A(i) and d(p(i);X,Z) = d(p(i);X,Q) 
d(p(i);Z,Q) < d(p(i);X,Q). This is a contradiction with our 
assumption that Q minimizes d(p(i);X,Q). Therefore, Q does
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Figure 4.2. Diagram for lemma.

Figure 4.3. Maximin algorithm - Initialization
stage.
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not lie in the interior of A(i) and must lie on the 
boundary.

Let L(m,i) be the m'th side of polygon A(i) with end 
points V(m,i) and V(m+l,i) for m = 1,...,M.-1. Let L(M.,i) 
be defined as the M^'th side with end points V(M^,i) and 
V(l,i).

By the Lemma 4.1, f^(X) can be simplified for X 
not in A(i) since

f.(X) = w minimum { d(p(i);X,Q) } 
Q in A(i)

= w minimum { d(p(i);X,L(m,i)) } 
m=l,...,M. i 

where

d(p(i);X,L(m,i)) = minimum { d(p(i);X,Q) } 
Q in L(m,i)

= minimum 1 distance from X to line P
segment L(m,i).

In our preceding definition of L(m,i), we were 
forced to include a special definition for the M^'th side 
L(M^,i) because the general definition of L(m,i) as the line 
segment with end points V(m,i) and V(m+l,i) did fit the line 
segment from V(M.,i) to V(l,i). To reflect the cyclic 
ordering of the vertices of the polygon A(i), we define 

any reference to the vertex or side M^+l as being a 
reference to vertex or side number 1. For example, any 
reference to V(M.+l,i) is to be interpreted as V(l,i).



117

4.2 Graphical Approach to Maximin Problem

The following algorithm for the maximin noxious 
facility problem is an extension of the algorithm given by 
Hansen, Peeters, and Thisse (1981) for noxious facility 
location in relation to a finite number of point demands. 
We have extended it to the case of polygonal area demands 
and added a scale expansion step which allows increased 
accuracy. Hansen et al. (1981) presented their graphical 
method in the context of minimizing the maximum cost where 
the costs are monotonically decreasing functions of 
distance. To avoid unnecessarily complicating the 
discussion of graphical methods for area demand problems, we 
will first deal with maximin distance problems and postpone 
until section 4.3 the treatment of minimax cost problems, 
even though the modifications required are straightforward.

Subsection 4.2.1 presents, in general terms, the 
algorithm for maximin location problems with polygonal area 
demands. The level curve (contour line) of a function for 
a value z is the set of points for which the function has 
the value z. In extending the graphical approach to area 
demands, we will be particularly concerned with determining 
and shading those regions of the plane which lie between the 
level curves of the function f^(X) for given function values 
(Figure 4.6). Subsections 4.2.2, 4.2.4, and 4.2.6 discuss 
this in detail for Euclidean, rectilinear, and general 1^ 

distances. Calculation of the minimum distance to an area 
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demand for each of the three distance metrics is covered in 
subsections 4.2.3, 4.2.5, and 4.2.7.

4.2.1 Algorithm for Maximin Location

Although the algorithm is designed to be implemented 
on a bit-mapped computer graphic system, if only modest 
accuracy is required, small problems can be solved by hand 
using graph paper and drawing instruments.
Step 1. Initialization

Choose the region of the plane which will be 
represented on the screen so that it encloses the entire 
feasible region for facility placement. Shade the 
infeasible region. Shade the interiors and boundaries of 
all area demands A(i), i=l,...,N. See Figure 4.3.

If no unshaded point remains on the screen, then 
only a trivial solution is possible. Stop. Optimum 
objective function value is zero and pick any feasible point 

as an optimum location.
Otherwise, set k = 1 and z^ = 0.

Step 2. Improve Value of Objective Function
Choose any unshaded point X^, preferably one which 

lies near the center of an unshaded region (Figure 4.4).

Calculate
z. = min { f.(X. ); i = l,...,N}. K IK

Step 3. Eliminate Dominated Regions
Shade the area between the level curves of f^(X)
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Figure 4.5. Maximin algorithm - Final stage.
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corresponding to the values z^ and z^ for each 1=1.... N. 
Set k = k + 1.

If only a few points (pixels) remain unshaded, then 
go to Step 4. Otherwise, go to Step 2.
Step 4. Accept or Expand Scale

If the size of the remaining unshaded area is 
sufficiently small so that the uncertainty in the location 
of the optimum is acceptable, then choose a point in the 

. . * remaining unshaded area as a near-optimal location X 
* *(Figure 4.5). Calculate z = min ( f^(X ); i=l,...,N). 

Stop.

Otherwise, choose a small rectangle enclosing the 
unshaded region and expand the scale so that the rectangle 
fills the screen. Shade the infeasible region and the area 
demands A(i), i=l,...,N. For all i=l,...,N, shade the area 
between the level curves of f^(X) corresponding to the 

values 0 and z. Go to Step 2. k-1

4.2.2 Euclidean Level Sets of a Polygon
We require a procedure for determining and shading 

that region of the plane (Figure 4.6) which lies between two 
level curves of the function f^(X) when the distances are 
Euclidean. It would be equally effective to determine and 
shade the set of points for which f^(X) .< z^, but it would 
be less efficient since the algorithm would repeatedly shade 

areas which have already been shaded during earlier
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Figure 4.6. Euclidean level curves of area demand.
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iterations. The set of 
called the level set of 
(Bazaraa and Shetty, p.

points for which f^.(X) < is 
the function f^(X) for value z^ 

81). The level curve (contour line)
of f^(X) for a value z. is the set of points X for which

* z^. Since f^(X) is a continuous function, the
boundary of the level set of f.(X) for the value z^ is the 
level curve of f.(X) for the value z,.i k

Consider a given area demand A(i) with p(i) = 2
indicating the Euclidean distance case and with weight w^.
The level set of the function

f.(X) = w. minimum { d(p(i)=2;X,Q) ) 
Q in A(i)

for a function value of z^ is the set of all points which 
are no more than z^/w^ Euclidean distance away from at least 
one point in the area demand A(i). The level set of the
function w^d(p(i)=2;X,Q) associated with each point Q in 
A(i) is a disc with center Q and radius z^/w^. The level 
set of f^(X) is the union of the level sets associated with 
each point in A(i). By Lemma 4.1, the points on the 
boundary of the area demand A(i) determine the boundary of 
the level set and the level curve of f^(X). As shown in 
Figure 4.7, the level curve of the function f^(X) for a 
value z, forms an envelope of the family of level curves of k
the functions w^d(p(i);X,Q) associated with each point Q on 

the boundary of polygonal area A(i).
Since we are only concerned with a single area
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Figure 4.7. Euclidean level curve is envelope of 
circles.
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demand, we can simplify our notation for the remainder of 
this chapter by suppressing the index which indicates the 
area demand A(i) when we refer to its vertices and sides. 
Accordingly, V(m) represents the m'th vertex of the area 
demand under consideration and (x(m),y(m)) represents the 
coordinates of V(m). Similarly, L(m) is the line segment 
from V(m) to V(m+1) which forms the m'th side of the 
polygonal area demand A(i).

Let the vector S(m) = (s (m), s (m)) = V(m+1) - V(m) x y
= (x(m+l)-x(m), y(m+l)-y(m)). Recall that S(M^) = V(M^+1) - 
V(M^) = V(l) - V(M^) by our definition of M^ + l in subsection 
4.1.2. The vector S(m) associated with the m'th side is 
parallel to the m'th side and is directed from V(m) to
V(m+1).

Consider side L(m) of the polygon (Figure 4.8) 
between vertices V(m) and V(m+1). It can be seen that the 
area between the level curves for z^_^ and can be 
completely shaded by shading one rectangular area for each 
side of the polygon and one sector of an annulus for each 
vertex with an exterior angle greater than 180 . This may 

shade points which are closer to the area demand than
when the polygon is non-convex. Since these points

are in the dominated region which has already been shaded, 
the solution of the maximin problem is not affected.

The rectangular region to be shaded for the m'th 

side is R^R^R^R^. The corners are given by
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y 4.8. Recta.n^lc 3nd ssctor of annulus.
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Rl = V(m) + (z^-i/w.) T(m),
Rg = V(m) + (z^/w.) T(m),

R3 = V(m+1) + (z^/w^.) T(m),
and R^ = V(m+1) + (z^_^/w.) T(m)

where T(m) is a unit vector perpendicular to the m'th side 
and directed toward the exterior of the polygon. If the 
vertices of the polygon have been labeled in clockwise 
order, then

T(m) = ( -s (m)/)S(m)[, s (m)/]S(m)[ ) Y
where ]S(m)] is the length of the vector S(m).

The exterior angle at vertex V(m) = 130° + 3m, m— 1
where 3 , is the angle between the vectors S(m) and S(m-m, m— 1
1) measured from S(m) to S(m-l). The magnitude of the 
vector cross product of S(m) and S(m-l) is

)S(m) X S(m-l)] = )S(m)] [S(m-1)[ sin 8^
By rearrangement and substitution, we obtain sin 3^ =
[s (m)s (m-1) - s (m-l)s (m)] / []S(m)[ ]S(m-l)]]. Since x y x y

o o . .sin 3 > 0 implies that 0 < 9 . < 180 , the exteriorm,m-l m,m-l
angle at V(m) is greater that 180° if

In this case, a portion R.R^R^R, of an annulus between radii 0021
z, /w. and z, /w. with center k-1 1 k 1
the exterior angle is greater

at V(m) must be shaded. If 
than 180°, then the angle 8

(Figure 4.8) through which the annulus must be shaded is 
equal to the angle 8^ between the vectors S(m) and 
S(m-l). The dot product of the vectors S(m) and S(m-l) is 



127

S(m) - S(m-l) = )S(m)] ]S(m-l)[ cos e m,m-l 
After rearranging and taking inverse cosines, we obtain 

e = e m, m-l
= arc cos { [s^(m)s^(m-l) + s^(m)s (m-l)] 

/ []S(m)) ]S(m-l)]] }.

For Euclidean distances, we have shown that the 
regions to be shaded are readily calculated and hence, the 
algorithm can be implemented if the computer graphics system 
provides the necessary primitive operations. To shade the 
polygonal area demands and the rectangles associated with 
each side of the polygons requires a routine which shades 
(fills) a polygon given its vertices. This type of polygon 
filling graphic primitive appears to be quite common. We 
expect very few graphics systems will provide a routine to 
fill the interior of a sector of an annulus. However, one 
can use a routine which fills a sector of a circle or fills 
an entire circle since the additional points shaded are in 
the dominated region and will not affect the solution of the 

maximin problem.

4.2.3 Euc1idean Distance to a Polygon
In order to evaluate the objective function at a 

given X outside the area demands, we need to find the 

minimum distance from X to each of the A(i). By Lemma 4.1, 
we only need to consider points on the boundaries of the 
area demands. Since the A(i) are polygonal areas, this
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Figure 4.9. Euclidean distance to line segment.

Figure 4.10. Test for exterior points.
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reduces the problem to finding the minimum distance to a 
number of line segments.

Consider the problem of finding the minimum distance 
from point C to the line segment with end points A and B 
(Figure 4.9). If angle A or angle B of triangle ABC is 
greater than 90° (cos A or cos B < 0), then the minimum 

distance is the distance to the nearest end point. If both 
angles A and B are equal or less than 90° (cos A and cos B > 

0), then the minimum distance is the perpendicular distance 
from C to the line passing through A and B.

From the "Law of Cosines" for triangles, we can 
2 2 2obtain the equations cos A =(b +c -a)/ 2bc and cos B 

2 2 2= (a + c - b )/ 2ac. Degenerate triangles with sides a, 
b, or c equal to zero are simple to treat as special cases. 
The minimum Euclidean distance D from point = (x^,y^) to 
a line with the equation ax + 0y + r = 0 is given by the 

standard formula, 
9 2 1/2D = ]ax^ + Pyi + r{ / [(<* + (3 ) ].

We have shown that the minimum Euclidean distance 

from a point to a line segment can be easily calculated. 
Thus, the minimum distance to a polygonal area A(i) from any 
point X outside it can also be easily determined.

We assumed that the point X lies outside ail area 
demands. In order to guard against operator errors when 
picking the next feasible point in Step 2 of the algorithm, 

it is possible to verify that X lies outside a given 
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polygonal area by a simple test (Figure 4.10). Let X be a 

point on the outside of a simple, closed curve (a polygon in 
this case). Consider a point P on the curve which traces 
out the curve and returns to its starting point. The total 
angle traced out by the vector from X to P as P traces the 
curve is zero. If the point X lies inside the closed curve 
the total angle will be 360°. Thus, a simple way to check 

whether the point X lies outside a non-convex polygon is by 
calculating and summing the angles subtended by the sides of 
the polygon at the point X.

4.2.4 Rectilinear Level Sets of a Polygon
In the rectilinear distance case, the level sets of 

the function w,d(p(i)=l;X,Q) are squares, usually called 
"diamonds," with their diagonals parallel to the x and y 
axes (Figure 4.11). Like the Euclidean case, the level set 

of the function 
f.(X) = w. minimum ( d(p(i)=l;X,Q) } 

i Q in A(i)

for a function value of z^ is the union of the level sets of 
the functions w^d(p(i)=l;X,Q) associated with each point Q 
in A(i). The level curve of f^(X) for value z^ is the 
boundary of the level set of f^(X) and forms an envelope 
(Figure 4.12) about the level curves of the functions 
w^d(p(i)=l;X,Q) associated with each point Q on the boundary 

of A(i).
Consider the m'th side of a polygonal area demand
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Figure 4.11. Rectilinear distance diamond.
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linear level curve is envelope of Figure 4.12. Kecm-^icc^.
diamonds.
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(Figure 4.13) between vertices V(m) and V(m+1). it can be 

seen that the area between the level curves for the values 
z^i and z^ can be completely shaded by shading one 
parallelogram for each side of the polygon and at most two 
trapezoids for each vertex with an exterior angle greater 
than 180°. Like the Euclidean case, this may shade points 

which are closer to the area demand than z, „/w. when the k-1 i 
polygon is non-convex. Since these points are in the 
dominated region which has already been shaded, the solution 
of the maximin problem is not affected.

The corners of the parallelogram P^P^P^P^ are given 

by
= V(m) + (Zk-l'/"i) U(m), 

P^ = V(m) + (z^/w^. ) U(m) ,

P^ = V(m+1) + (z^/w.) U(m),

and P4 = V(m+1) + (z^_^/w^) U(m) 
where U(m) is a unit vector pointing toward that corner of 
the diamond which touches or may touch the level curve. Let 
6 be the angle, measured counterclockwise, from the positive 
x direction to S(m) = V(m+1)-V(m). The unit vector U(m) is 

then defined as
U(m) = (-1, 0) if 45° < 6 < 135 ,

= ( 0,-1) if 135° < 9 225 ,

= (1,0) if 225° < 6 <_ 315 ,
o = (0,1) if 315 < 9 <. 360 or

if 0° < 9 < 45°.
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Figure 4.13. Parallelogram and trapezoid.
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If the exterior angle at the vertex V(m) is greater 

than 180 , then it may be necessary to draw one or two 
trapezoids at the vertex (Figure 4.13). This depends on the 

orientation of the m'th and m—I'th sides of the polygon. If 
the unit vector U(m) associated with the m'th side is egual 
to the unit vector U(m-l) associated with the m-l'th side, 
then no trapezoids need to be drawn.

If the angle between U(m) and U(m-l) is 90°, then 

one trapezoid must be drawn (Figure 4.13) and it
has corners given by

Ti = V(m) + (z^-i/w^) U(m-l), 
= V(m) + (z^/w.) U(m-l),

T3 = V(m) + (z^/w.) U(m),

and T4 = V(m) + (z^_^/w^) U(m).
If the angle between U(m) and U(m-l) is 180°, then 

two trapezoids, T^T^T-T. and T.T-T^.T,-, must be drawn at the 
vertex V(m) as shown in Figure 4.14. The formulae for T^, 
T_, T-, and T,^ are identical to those of T , T , T , and 6 9 10 1 z j
T4, respectively. If U(m) = (u^(m),u^(m)), then the other 

two corners, T_ and T„, are given by Z o
T- = V(m) + (z. /w ) U'

and Tg = V(m) + (z^_^/w^) U' 
where U' = (-u (m),u (m)) is a unit vector perpendicular to y x 
U(m) and directed toward the exterior of A(i).

For rectilinear distance cases, one only needs a 

polygon-filling routine since only parallelograms,
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Figure 4.14. Two trapezoid case.
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trapezoids, and the polygonal area demands need to be 

shaded. If execution speed is not essential, one can 
dispense with the calculation of the corners of the 

trapezoids and simply draw a complete diamond at each corner 
which has an exterior angle greater than 180°. The 

additional shaded points lie in the dominated region and do 
not affect the solution of the maximin problem.

4.2.5 Rectilinear Distance to a Polygon

Like the Euclidean distance case, evaluating the 
minimum rectilinear distance from a point outside to a 
polygonal area reduces to finding the minimum distance to a 

number of line segments.
Consider a line segment AB and a point Q (Figure 4.15). 

If neither A nor B is the closest point on the line segment 
to Q, then at least one of the corners of the level curve 
for the minimum distance must touch the line segment between 
A and B as shown in Figure 4.15. Thus, to find the minimum 

rectilinear distance to the line AB, calculate the 
intersections, IX and IY, of the horizontal and vertical 
lines through Q parallel to the x and y axes with the line 

through the points A and B (Figure 4.16). Let S be the set 
consisting of the points A, B, and any of the intersection 

points (IX and IY) which lie between A and B. The minimum 

distance from the point Q to the line segment AB ^s the 

rectilinear distance to the closest point in the set S.
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Figure 4.15. Rectilinear distance to line segment.

Figure 4.16. Intercepts IX and I/.
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Those cases for which either IX 

the line segment AB is parallel 
must be treated separately.

or IY is undefined because 
to either the x or y axis

4.2.6 L Level-p ----- Sets of a Polygon

In the general 1 distance case P the level sets of
the functions w^d(p(i);X,Q) are 1^ circles as shown in
Figure 4.17. For p-values greater than one, these 1 P
circles are strictly convex and the tangent exists at all
points on the circumference. Also, 1 circles are symmetric 
about the lines x=y and x=-y as well as the x and y axes.

As in the Euclidean and rectilinear cases, the level 
set of the function

f.(X) = w. minimum { d(p(i);X,Q) }
i i Q in A(i)

for a function value of z, is the union of the level sets of k
the functions w^d(p(i);X,Q) associated with each point Q in 

A(i). The level curve of f^(X) for the value z^ is the 
boundary of the level set of f^(X) and forms an envelope 
(Figure 4.18) about the level curves of the functions 
w^d(p(i);X,Q) associated with each point Q on the boundary 

of A(i).
In the Euclidean distance case, we used a unit 

vector T(m), perpendicular to the m'th side and directed 

toward the exterior of the polygonal area demand, to point 

toward that point on the level curve of w^d(p(i)=2;X,Q) 

which coincided with the level curve of f^(x).
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Figure 4.17. Lp circles for various values of p.
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Figure 4.18. Lp level curve is envelope of Lp 
circles.
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general 1 case, we construct a vector R(m) of unit 1 
P 

length directed toward that point on an 1^ circle where the 

tangent is parallel to the m'th side of the area demand 

(Figure 4.19). Consider an 1^ circle of radius Z and, for 
convenience, one with its center at the origin. This circle 
has the equation

)X[P + [Y)P = zP.

If we restrict our attention to points (X,Y) in the first 
quadrant, the absolute value brackets can be eliminated 
giving the simpler equation 

xP + yP = zP.

Implicit differentiation yields the following expression
for the slope of the tangent at the point (X^Y^): 

dY/dX = -(X^/Y^)P"^ where p > 1.

We note that the slope of the tangent to the 1^ circle at 
(X^,Y^) depends only on the ratio of X^ to Y^ and not on the 
radius Z of the 1 circle. Of course, similar arguments P
apply to the other three quadrants. This implies that for a 
family of concentric 1^ circles the locus of points on their 

circumferences which have a tangent of given slope is a 
straight line which passes through the center of the 1^ 
circles (Figure 4.20). This useful property, well known in 
the Euclidean case, will be utilized when calculating the 1^ 

distance to a line segment in subsection 4.2.. This 
property also implies that the unit vector R(m), which we 

require, can be derived from the unit 1^ circle.
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Figure 4.20. Tangent property of Lp circles.
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Consider the equation of the unit 1 circle 
)x]P + }y]P = 1.

For points (x,y) lying in the first quadrant, this can be 
simplified to

xP + yP = 1.

The slope of the tangents to this unit 1^ circle at points 

lying in the first quadrant is in the range zero to negative 
infinity. If t is the slope of the tangent at such a point 
(x,y) in the first quadrant, then the coordinates of the 
point are given by

y^ = { i/[i+(-t)(P/(P"i))j }(1/P) 
and x^ = (-t)(l/(P-l)) { i/[i+(-t)(P/(P*l))]

when p > 1. These expressions can be obtained by 

substituting the expression for the slope of the tangent 
into the equation of the unit 1^ circle.

Let t be the slope of the vector S(m) = V(m+1)-V(m). 
If S(m) lies in the fourth quadrant, then (x^,y^.) is a 
vector of unit 1^ length and directed toward that point on 
the 1^ circle where the slope of the tangent is t. Thus, 
R(m) = (x^y^) is the unit vector which we require whenever 

S(m) lies in the fourth quadrant. If S(m) does not lie in 

the fourth quadrant, then we can rotate the axes by some 
multiple of 90° to bring S(m) into the fourth quadrant, 
calculate (x^y^.), and then transform back to the original 

axes to get R(m) for S(m) lying in the first, second, or 
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third quadrant.

For each side of the area demand, we must shade one 

parallelogram the angle at the vertex is
greater than 180°, one sector of an annulus of an 1 circle 

P 
?5?6?2?1 order to shade the area between the level curves 
of f^(X) for values z^^ and z^ (Figure 4.21). Consider the 
m'th side of a polygonal area demand between vertices V(m) 
and V(m+1). The corners of the parallelogram are

= V(m) + (z^-i/w^) R(m), 
P^ = V(m) + (z^/w.) R(m),
P^ = V(m+1) + (z^./w. ) R(m) ,

and P^ = V(m+1) + (z^._^/w^.) R(m). 
The other two corners of the sector of an 1 annulus are P

P^ = V(m) + (z. ./w ) R(m-l)
and Pg = V(m) + (z^./w.) R(m-l)
where R(m-l) is the unit vector associated with the m-l'th 
side. Although the parallelogram can easily be shaded by a 
polygon-filling routine, shading a sector of an annulus of 
an 1 circle is rather inconvenient. A graphic routine P
which draws a curved line through a given set of points and 
fills from a specified point to that curved line can be used 

to fill the sector of the 1^ circle of radius z^/w^ which 
lies between the directions of R(m) and R(m-l) or to fill 

the entire 1 circle. The additional shaded points lie in 
P

the dominated region and do not affect the solution of the 

maximin problem. The number of points on the circumference
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Parallelogram and sector of Lp Figure 4.2^.. i^ara±j.ej.^^ 
annulus.
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of the circle whose coordinates need to be calculated for 

input to the curved line subroutine can be reduced by noting 

that only points on one-eighth of the circumference need be 
calculated and the rest can be obtained by symmetry.

The Euclidean distance case can be treated using
the methods for general Ip distances given in subsections
4.2.6 and 4.2.7, but the rectilinear distance case must be 
treated separately because its level curves are not smooth 
with the slope defined at all points on the curves.

4.2.7 Lp Distance to a Polygon

Like the Euclidean and rectilinear distance cases, 

finding the minimum Ip distance from a point outside to a 

polygonal area demand reduces to finding the minimum Ip 

distance to a number of line segments.
Consider the line segment V(m) to V(m+1) and a point 

Q (Figure 4.22). If neither V(m) nor V(m+1) is the closest 
point on the line segment to Q, then the level curve for the 

minimum distance is tangent to the line segment V(m)V(m+l) 

at some point lying between V(m) and V(m+1). In order to 

find the minimum distance from Q to the line segment, 
calculate the intersection I of the line through V(m) and 

V(m+1) with the line through Q having the same slope as 
R(m). If the point I lies on the line segment V(m)V(m+l) 
between V(m) and V(m+1), then the minimum Ip distance to the 

line segment is the Ip distance from Q to I. Otherwise, the
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Figure 4.22. Lp distance to line segment.

Figure 4.23 Nonlinear cost functions
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minimum distance is the 1 P 
end point, V(m) or V(m+1).

V(m)V(m+l) and p > 1, then

distance from Q to the closest 

If t is the slope of the line 
from the results of subsection

4.2.6, the slope of the vector R(m) and the line QI is
-(1/t)(1/(P I)) if t > 0

and (-1/t)(1/<P 1)) if t < 0.

The special cases which occur when V(m)V(m+l) is parallel to 
either axis must be treated separately.

4.3 Extension to Minimax Cost Problems

The obnoxious facility location model of Hansen, 
Peeters, and Thisse (1981) was formulated in terms of 
minimizing nuisance costs, which were assumed to be 
continuous and decreasing functions of distance, rather than 

maximizing distances to the facility. They noted that the 
perceived advantage in moving a noxious facility ten miles 
further away is larger when the facility is located close by 

then when it is initially further away. Thus, they 
concluded that linear cost functions with constant marginal 

costs are often too rough an approximation to real nuisance 

costs. Fortunately, the algorithm for maximin distance 

facility location with area demands, presented in section 
4.2, is easily adapted to minimax cost problems when the 

costs are continuous, decreasing functions of distance 

alone.
The minimax criterion may be more appropriate tor 
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locating a noxious facility than the minisum criterion if 

the variation of the facility's effects with distance is not 

known with reasonable accuracy, because minimizing the sum 

of the effects implicitly involves trading off increased 
damage to some areas in return for reduced damaged to 

others. If the variation of the damage as a function of 
distance is not known with reasonable accuracy, one has 
insufficient information on which to make these trade-offs 
and might more appropriately attempt to minimize the damage 
to the most severely affected area.

In particular, the minimax criterion can be more 
appropriate than the minisum criterion for the location of a 
noxious facility which is believed to pose health hazards to 
the surrounding population. The variation with distance of 
the levels of noxious physical or chemical agents about the 
facility may be known with reasonable accuracy from theory 
or measurement. However, the relationship between the 
amount of exposure to the agent and the resulting health 
effects may be largely unknown at the low levels to which 

the population is actually exposed since the effects at 
those levels may be so small that they defy detection in any 
practicable experiment and cannot be isolated from other 
effects in survey data. In such cases, one has insufficient 
information to trade off damage between areas even though 

exposures as a function of distance are well known. In 
addition, if it is suspected that there exists a threshold
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level below which there are no adverse health effects, then 

the criterion of minimizing the maximum exposure seems to be 
the most appropriate criterion.

4.3.1 Nonlinear Cost Functions

Let C^(r) be a non-negative, continuous, 
monotonically decreasing function defined on the range r>0 
which is associated with the area demand A(i) for i = l,...,N. 
Let the limit of C^(r) as r tends to infinity be 0 and let 
C^(0) be finite for all i = l,...,N (Figure 4.23). Let B^z) 
be the inverse of the function C^(r) defined on the range 0 
< z C^(0) for i=l,...,N. For convenience, assume 
Cj(O)>^C^(O)>^...>^C^(O). If this is not the case, then 
renumber the area demands accordingly.

The requirements that the nuisance costs C^(*) be 
finite at zero distance and have a limit of zero cost as the 
distance from the facility tends to infinity would seem to 
be met in all practical problems. For example, the well 
known 1/r^ dependence of the intensity of light or sound 

from a point source is only an approximation which breaks 
down at small r where the source can not monger be regarded 
as a point and the intensity remains finite at r - 0. The 

requirement that the C^.(*) be monotonically decreasing 
functions appears to be more restrictive and may not hold in 

some practical problems.
We note that if identical monotonically decreasing 
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cost functions are associated with each of the area demands 

A(i) , then any location which maximizes the minimum distance 
to the area demands must also minimize the maximum cost. 
Thus, any minimax cost problem with C^(r)=Cj(r) for all i 
and j and for all r >0 can be reduced to the maximin 
distance problem considered in sections 4.1 and 4.2. 
Accordingly, we assume that C^(r)^C^(r) for some i and j.

The minimax cost single facility location problem 
with 1^ distances and polygonal area demands can be 
formulated as

minimize ( maximum h.(X) } 
X in F i = l.... N

where
h.(X) = maximum { C.(d(p(i);X,Q)) } 
i Q in A(i)

X = (x,y) = location of new facility, 
Q = (a,b) = location of a general point, 

p(i) = p-value for points in A(i), 
and d(p(i);X,Q) = []x-a]^^^ +

= 1 distance from X to Q.p( i)
Since the same monotonically decreasing function C^(-) is 
associated with all points in a given area demand A(i), the 
maximum over all points in A(i) will occur a^ that point Q 
which minimizes d(p(i);X,Q). Thus, the function h^X) can 

be restated as
h.(X) = C . ( f,(X) ) i' i i
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where

f.(X) = minimum { d(p(i);X,Q) } 
Q in A(i)

This f.(X) is identical to the f.(X) which appeared in the 
maximin distance problem defined in section 4.1 except that 

all — 1. The weights w^ are no longer necessary since 
the functions C^( * ) can include all of the differences in 
costs between the area demands A(i).

We note that the level curve of the function f.(X) 
for a value d^ is identical to the level curve of the cost 
function h^(X) for a value of C^(d^) (Figure 4.24). Thus, 
we can shade the area between the level curves of h^(X) for 
values and z^ by shading the area between the level
curves of f^(X) for the values B^(z^._^) and B^z^). We also 
note that the procedures for shading the area between level 
curves of f^(X) in some cases shade points closer to the 

area demand than B.(z, „) but this does not affect the 
solution of the minimax problem because these additional 
points have objective function values which are higher and 
less optimal than the current best objective function value. 

These additional points will lie in the dominated region for 
the minimax cost problem and will already have been shaded 
by the minimax algorithm. Thus, the geometrical procedures 

developed for the graphical solution of the maximin distance 
problem are directly applicable to the minimax cost problem 

and only minor modifications to the maximin distance
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Figure 4.24. Level curves for cost and distance 
functions.

Figure 4.25. Contours of total dose iue t.
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algorithm are necessary.

The graphical algorithm for the minimax cost problem 

starts with the highest possible objective function value 

CJO) and works downward toward the optimal value. A minor 
complication is caused by the fact that points in the 

interiors of different area demands may have different costs 
associated with them; that is, C.(0) and 0^(0) may not be 

equal. As a result, only the area demands with C^(0) = 

C^(0) are shaded in the initialization step and the 
remaining area demands are shaded when their C^(0) is 
greater than current objective function value z^.

The following is an algorithm for the minimax cost 
location problem as defined in this section. As can be 

seen, only minor modifications of the maximin distance 

algorithm were required. 

Step 1. Initialization
Choose the region of the plane which will be 

represented on the screen so that it encloses the entire 

feasible region for facility placement. Shade the 
infeasible region. Shade the interiors and boundaries of 

all area demands A(i) for which C.(0) = C^(0).
If no unshaded point remains on the screen, then 

stop. Optimum objective function value is C^(0); pick any 

feasible point as an optimum location.
Otherwise, set k = 1 and z^ - C^(0).
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Step 2. Improve Value of Objective Function

Choose any unshaded point X^, preferably one near 
the middle of the unshaded region. Calculate

= max { h^(X^); i=l,...,N).

Step 3. Eliminate Dominated Regions

Shade the area between the level curves of h.(X) 
corresponding to the values z^^ and z^ for each i = l....N.
This is equivalent to shading the area between the level 

curves of f^(X) for the values B^(z^_and B^z^). If z^._^ 
> C^(0) > z^ for some demand i, then this should be 
interpreted as shading the polygonal area demand i and the 
area between the level curves of h^(X) for the values C^(0) 

and z, . If both z. and z. are greater than C.(0), then k k-1 k i
shade nothing since there is no region of the plane which 
lies between these particular level curves for the demand i.

Set k = k + 1.
If only a few points (pixels) remain unshaded, then 

go to Step 4. Otherwise, go to Step 2.

Step 4. Accept or Expand Scale
If the size of the remaining unshaded area is 

sufficiently small so that the uncertainty in the location 
of the optimum is acceptable, then choose a point in the 

% 
remaining unshaded area as a near-optimal location X 

Calculate z = max { h^.(X ); i = l,.--,N}. Stop.
Otherwise, choose a small rectangle enclosing th 
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unshaded region and expand the scale so that the rectangle 

fills the screen. Shade the infeasible region and the area 

demands A(i) for which C^.(0) = C^(0). For all i = l,...,N, 
shade the area between the level curves of h^(X) 

corresponding to the values C^(0) and following the

interpretation of special cases as explained in Step 3. Go 
to Step 2.

4.3.2 Non-isotropic Cost Functions

Hansen, Peeters, and Thisse (1981) remarked that 

their algorithm for point demands, BLACK AND WHITE, could be 
extended to take into account non-isotropies in the nuisance 

costs such as might occur when dominant winds diffuse 

pollution further in some directions than in others. An 

example of the theoretical effect of wind direction on the 

deposition of particles is given in Figure 4.25 which shows 

the contours of the total radiation dose due to fallout 18 

hours after a 2 megaton nuclear explosion with a wind of 15 

mph (Glasstone and Dolan, p.426). Such non-isotropic 

distributions of noxious emissions are probably quite common 

and cannot be adequately modeled by cost functions which 

depend only on the distance from the facility.
We will show that the graphical algorithm for 

minimax cost location problems can be extended with little 

difficulty to a class of non-isotropic cost functions based 

on the asymmetric distance functions introduced by Drezner
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Figure 4.26. Family of level curves with same 
shape.

Figure 4.27. Relationship of level curves to
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and Wesolowsky (1986). All of the iso-cost contours of the 

type of function which we will consider have the same shape 

and orientation but differ in scale (Figure 4.26). That is 
any two contours can be made to coincide by applying a 

translation transformation and a change of scale to one of 
the contours. This is in contrast to the dose contours 
shown in Figure 4.25 which differ in shape. Although 
somewhat restricted, this class of non-isotropic cost 

functions can provide much better approximations to actual 
non-isotropic nuisance costs than cost functions which 
depend on distance alone.

A minimax non-isotropic cost single facility 
location problem with polygonal area demands can be 

formulated as

minimize ( maximum g.(X) } 
X in F i=l, . . . ,N

where
g.(X) = maximum ( C.( d(X,Q)/r.(9(X-Q)) ) ) 

Q in A(i)
X = (x,y) = location of new facility, 
Q = (a,b) = location of a general point, 
d(X,Q) = Euclidean distance from Q to X 

= t(x-a)2 + (y_b)2]l/2,

O(X-Q) = angle measured counterclockwise from 
positive x-direction to vector X-Q, 

r^(9(X-Q)) = a function of 9(X-Q) for Q in A(i), 
and the C.(*) are monotonically decreasing cost functions 

1
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defined in subsection 4.3.1.

The functions r^(Q) determine the directional 

dependence of the non-isotropic costs. We require that the 
functions r.(.) be such that r=r.(9) is the equation in 
polar coordinates of a simple closed curve enclosing the 
origin and that the interior of the curve is convex. We 

will call the quantity d(X,Q)/r^.(Q(X-Q)) the asymmetric 
distance from Q to X. Although we have placed the 

directionally dependent function in the denominator rather 
than in the numerator for our convenience, this asymmetric 
distance function is essentially that introduced by Drezner 
and Wesolowsky (1986).

The relationship between the level curves of the 
function C^( d(X,Q)/r^(G(X-Q)) ) and the function r^(6) can 
be seen by noting that the level curve of d(X,Q)/r^(G(X-Q)) 
for a value s coincides with the level curve of the cost 
function for a value C^(s). Thus, the equation d(X,Q) = 
s*r^(G(X-Q)) with s as a parameter describes the entire 
family of level curves of the cost function about the point 
Q (Figure 4.27). Each level curve of C^(d(X,Q)/r^(G(X-Q))) 
for the value C^s) has exactly the same shape as r^(G(X-Q)) 
but is s times larger. The curve r = r^(6) can be regarded 

as the unit circle for the asymmetric distance function, 
since every point on it is one unit of asymmetric distance 

from Q.
only the Euclidean distance function was needed in
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CONTOUR ABOUTFACILITY AT X CONTOUR ABOUT POINT Q
Figure 4.28. Fixed 

point contours.
facility versus fixed vulnerable

Figure 4.29. Tangent property of asymmetric 
distance circles.



162

the formulation of this problem because the functions r (e) 
i' ' 

can include any variation with direction which would be 

produced by using rectilinear or general 1 distances In 
P

the non-isotropic case, we must distinguish between contours 
about a facility which describe the costs imposed on points 
in the plane as in Figure 4.25 and contours about a point Q 
which describe the costs imposed on Q if a facility is 
placed at various points in the plane (Figure 4.28). The 
form of the contours is the same except that they are 
rotated 180° from each other. This occurs because the cost 

which a facility imposes on a point ten miles downwind is 
the same as the cost imposed on a point by locating a 
facility ten miles upwind. In our formulation, the function 
r^(Q) describes the level curves about the point Q and C^(-) 

gives the cost imposed on Q by locating the facility at 

various points in the plane.
Like the general 1^ distance case, we require R(m), 

a unit vector in the asymmetric distance sense, which is 
directed toward the exterior of A(i) and which points toward 

that point on the asymmetric distance circles where the 
slope is equal to the slope of the m'th side. Let t oe the

slope of the tangent to the asymmetric distance circle r 

s-r^fe) at the point (x^y^.) = (r-cos(e),r-sin(9)) 
(s.r.(e)cos(e),s-r.(e)sin(9)). Taking the ratio of the 

differentials dx^. = x^dr^/de^e - y^de and d/^_ 

y^.(dr^./de)d9 + x^de, we obtain
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t ( y^.(dr^/d6) + x^} / { x^_(dr^/de) - y^} 
where dr./de is the derivative of r.(6) with respect to e 

and is evaluated at a value of e corresponding to the 
direction of the point (x^y^) from the center of the 

asymmetric distance circle. We note that all points on a 

ray from the center of a family of asymmetric distance 
circles will intersect the circles at points which have 
tangents of the same slope (Figure 4.29). This is similar
to the property found for 1 distance circles and would not
necessarily hold if the level curves of the distance 
function did not have the same shape.

Given t the slope of the m'th side, solving the 
preceding expression for the ratio of y^_ to x^_ in order to 
get the unit vector R(m), may be more difficult than in the 
general 1^ case, depending on the particular function r^(9). 
If a simple closed form expression in terms of t cannot be 
found, the equation could be solved numerically. This is 
not a significant computational burden since it only needs 

to be done once for each side of each demand during the 
initialization stage of the algorithm and the results stored 

for later use.
Consider the non-isotropic cost function associated 

with the area demand A(i),
g.(X) = maximum { C.( d(X,Q)/r^(6(X-Q)) ) }.
i Q in A(i)

Since C^(-) is a monotonically decreasing function the
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level curve isFigure 4.30. Asymmetric -.1^ — 
envelope of asymmetric ci-C-<-S.



165

maximum will occur for that Q which minimizes the asymmetric 

distance d(X,Q)/r.(O(X-Q)). The level curves of the 

function g^X) for a value C.(s) form an envelope of the 
level curves for the value s of the functions 

d(X,Q)/r^(O(X-Q)) associated with the points Q on the 
boundary of A(i) (Figure 4.30).

The area between the level curves of g^X) can be 
shaded by shading one parallelogram P.P^F P for each side 12 3 4
of the polygonal area demand and one region P.P^P,P for 
each vertex with an exterior angle greater than 180° (Figure 

4.31). The corners of the parallelogram are given by
Pl = V(m) + B.(z^-i).R(m),

P^ = V(m) + B.(z^).R(m),
P3 = V(m+1) + B.(z^)-R(m),

and P4 = V(m+1) + B^z^^-Rfm)
where B^t-) is the inverse of Ci(*) as defined in 
subsection 4.3.1. The remaining two corners of the region 

P^PgP^?l are given by
P^ = V(m) + B. (z. ,)-R(m-l) 

and P^ = V(m) + B.(z. )-R(m-l)
where R(m-l) is the unit vector associated with the m-l th 
side. The curved lines P^ and P^P^ are sections of the 
asymmetric distance circles about V(m) with s-B^-k-i) and 

5=61^), respectively. Thus, one can shade the region 
P.P P P in the same manner as shading a sector of an 
o 6 2 1 

i about the same amount ofannulus of an 1 circle and witn aooui. 
P
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, i of asymmetricFigure 4.31. Parallelogram a..
annulus.
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Figure 4.32. Asymmetric distance to line segment.
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difficulty. Similarly, a sector of an asymmetric distance 

circle or an entire asymmetric distance circle could be 

drawn about the vertex V(m) without affecting the solution 
of the minimax asymmetric cost problem.

Evaluating the cost function g^(X) at a point X 
outside the area demand A(i) reduces to finding the minimum 
asymmetric distance from a point on a line segment to X 
(Figure 4.32). In order to find the minimum asymmetric 
distance from m'th side to a point X, find the intersection 
I of the line through V(m) and V(m+1) with the line through 
X having the same slope as R(m). If I lies between V(m) and 
V(m+1), then the minimum distance is the asymmetric distance 
from I to X. Otherwise, the minimum distance is the 
asymmetric distance from the closest end point, V(m) or 

V(m+1), to X.

4.4 Demonstration Program

4.4.1 Description
The graphical algorithm for single facility maximin 

distance location with area demands was implemented on a 

Digital Equipment Corporation (DEC) Professional 350 
personal computer. The program was written m FORTRAN 77 

and utilized DEC'S Core Graphics Library of graphic 
subroutines which follow the proposed Core Graphics System 
standard of the ACM SIGGRAPH Graphics Standards Planning 
Committee (1979). DEC'S implementation of CORE includes 
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several extensions which were used in the demonstration 

program. In particular, the routine which fills a polygon 
given its vertices, the routine which fills a sector of a 

circle, and the routine which draws a curved line and fills 
from a point to that curved line were used in the 
demonstration program.

The demonstration program consists of 
approximately 2200 lines of not very tightly written 
FORTRAN. A maximum of 20 area demands are allowed and each 
demand may have a different weight and 1^ distance function 
associated with it. There may be up to a total of 200 
vertices associated with the area demands and they may be 
divided among the individual area demands in any manner as 
long as the total number does not exceed 200. The feasible 
region is assumed to consist of one or more polygons up to a 
maximum of 20 with the total number of vertices not 
exceeding 200. Point demands are allowed and treated as a 

special case of polygonal area demands.
The information on the area demands and the feasible 

region is input from data files. In a frequently used 
application not requiring high accuracy, this could be done 

more conveniently using a graphics tablet as an input 
device. Positions on the screen are indicated by moving ^he 

cursor about using the keyboard.
Since there may be more than one small region which 

the user would like to expand in Step 4 of the algorithm,
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the program allows more than one region to be picked for 

expansion. The most recently picked region is expanded and 

the information on the other regions is placed on a stack 
for later retrieval.

4.4.2 Examples

An example with realistically shaped geographical 
regions was generated from a road map of Ontario (Figure 

4.33). The feasible region is a polygon with 196 vertices 
which approximates the shape of Southern Ontario. Five area 
demands were generated which approximate Essex County, 
Hamilton-Wentworth Region, Metropolitan Toronto, Ottawa- 
Carleton Region, and Algonquin Provincial Park. The 
polygons representing the demands have a combined total of 
107 vertices. The coordinates of the vertices of the 
feasible region and the area demands are given in Appendix 

B.
For Euclidean distances and all weights equal to 

one, the best location found was at (15.975, 54.238). This 
is very close to the feasible region vertex with coordinates 

(15.9, 54.2) which represents Cape Hurd on the north-west 
tip of the Bruce Peninsula. The minimum weighted distance 
to the nearest area demand, Algonquin Provincial Park, was 
26.650 units. The next closest area demand was Metropolitan 

Toronto at a distance of 28.968 units.
For rectilinear distances and all weights equal to



Figure 4.33. Southern Ontario example.
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one, the best location found was at (19.337, 49.351) which 
corresponds to a point on the west side of the Bruce 

Peninsula about halfway down from the tip of the peninsula. 

The minimum weighted distance to the nearest area demand, 

Algonquin Provincial Park, was 31.612 units and the next 

closest area demand was Hamilton-Wentworth Region at a 
distance of 31.613 units.

For general 1^ distances with p = 1.5 and all 
weights equal to one, the best location found was at 
(15.948, 54.221). Like the Euclidean case, this is very 
close to the feasible region vertex with coordinates (15.9, 

54.2) which represents Cape Hurd. The minimum weighted 1^ 
distance to the nearest area demand, Algonquin Provincial 

Park, was 28.118 units. The next closest area demand was 

Hamilton-Wentworth Region at a distance of 32.268 units.



CHAPTER 5

SUMMARY AND RECOMMENDATIONS FOR FUTURE RESEARCH

This chapter summarizes the research performed and 
presents recommendations for future research related to the 
topics investigated.

5.1 Summary

This research presents an extension of graphical and 
interactive computer graphical approaches to previously 

unsolved location problems. The problems studied were of 
two distinct types. The first type involved the 

maximization of the minimum distance or the minimization of 
the maximum distance to a set of point demands where the 
underlying distances were rectilinear and a number of right- 

angled barriers to travel were present. The second type 
involved the maximization of the minimum distance to a 

number of polygonal area demands.
Chapter 1 presents a brief introduction to facility 

location problems as well as the maximin and minimax 
criterions, and provides a simple example of the graphical 
approach. Chapter 1 also points out the importance of 

barriers to travel in practical location problems. Chapter 
2 presents a literature survey of previous research related 

173
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to the two types of location problems studied.

Chapter 3 considers maximin and minimax location 

problems with rectilinear distances and right-angled 

barriers aligned with the travel directions. We present a 
division of the plane into cells and prove certain 

properties of these cells which give us a practical method 

of applying the graphical approach to these problems. An 

algorithm for the maximin problem is presented and those 

changes needed to convert it to an algorithm for minimax 

problems are also given. The maximin algorithm was 

programmed and an optimal solution to a large example 
problem was obtained. For unweighted maximin problems which 

have feasible regions in the form of one or more polygons, a 

purely numerical method is given.
Chapter 4 considers the problem of locating a 

noxious facility so that minimum distance to a set of 

polygonal area demands is maximized. Rectilinear, 

Euclidean, and general 1^ distances are treated and 
extensions to asymmetric distances and non-linear cost 

functions are discussed. An interactive computer graphic 
algorithm for maximin location with rectilinear, Euclidean, 

or general 1 distances is presented. The algorithm was 
programmed and optimal solutions were obtained for a large 

example problem using various distance metrics.
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5.2 Recommendations for Future Research

Based on this research, four areas suggest 

themselves for further investigation. We present them in 
the order of expected difficulty.

5.2.1 Cel1 Consolidation

We have proved that the distance function inside a 
cell as defined in Chapter 3 has a particularly simple form 
and that the level curves also have a simple form inside a 

cell. Although necessary for Phase I, this division into 
cells may be finer than necessary for Phase II of the 

algorithm. We have observed that a row or rectangular block 
of cells can often be replaced by a single large cell since 
the same simple pattern of level curves often extends over 
many cells. Whether two adjacent cells can be consolidated 
into a larger single cell can be determined by examining the 

distance function at the corners of the cells. The 
potential benefits of consolidating cells at end of Phase I 

of algorithm are increased execution speed in Phase II of 

the algorithm and reduced storage requirements if a 
sufficient number of cells can be consolidated to offset 
increased storage requirements per cell. We recommend tnat 

the advantages and disadvantages of consolidating cells <as 
the final stage of Phase I of the algorithm be investigated.

5.2.2 Numerical Minimax With Barriers
A purely numerical algorithm for unweighted minimax 
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location problems with rectilinear distances and barriers 

appears to be more difficult than the algorithm for 

unweighted maximin problems. In the maximin case, we were 

able to greatly simplify the problem by interchanging the 

minimization over the demand points and the minimization 
over the cell corners. In the minimax case, we are faced 

with a maximization over demand points and a minimization 

over cell corners so that no comparable interchange and 

simplification is possible. However, the set of distances 
from each demand point to each of the cell's corners still 

contains in a relatively simple form all of the information 
required to calculate the objective function at any point 
inside the cell and to determine the minimum objective 

function inside the cell. Accordingly, we recommend that a 
purely numerical algorithm for unweighted minimax location 

problems with rectilinear distances and barriers to travel 

be developed which is based on the division of the plane 

into cells as presented in Chapter 3.

5.2.3 General Polygonal Barriers
Larson and Li's theory and algorithm were developed 

for general polygonal barriers to travel but the barriers 

that we considered in Chapter 3 were restricted to be righ^- 

angled polygons aligned with the travel directions. 

Restricting the allowed barrier shapes to this common type 
of barrier shape simplified many aspects of applying the 
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graphical approach to the problems considered. We recommend 

that the extension of the methods of Chapter 3 to more 

general polygonal barriers be investigated.

5.2.4 Euclidean Distances With Barriers

Euclidean distance problems with barriers to travel 

appear to be more difficult than rectilinear distance 
problems because there appears to be no simple division of 

the plane into an equivalent of the cells used for 
rectilinear distance problems. We recommend that a 
graphical approach to weighted maximin location problems 

with Euclidean distances and polygonal barriers be 

investigated.



APPENDIX A

BARRIER TO TRAVEL EXAMPLE

In clockwise order, the 7 vertices of the feasible
region are: 

( 1.0,20.0) (19.0,19.0) (19.0, 0.0) (13.0, 1.0) ( 0.0, 2.0) 
( 0.0,10.0) ( 1.0,11.0).

The 30 demand points, each with a weight equal to 
one, are:
( 7.0,10.0) 
(13.5,11.5) 
( 8.5, 8.5) 
(14.0, 2.0) 
( 2.0, 2.0) 
( 4.5, 8.0)

(10.3, 8.5)
(13.5, 9.0) 
(10.0,17.0) 
(18.0, 5.0) 
( 1.5, 8.5) 
( 2.0,16.0)

(11.0,12.5) 
(14.5, 8.0) 
(12.0,15.5) 
( 3.0, 4.0) 
( 3.5,15.0) 
( 2.0,17.0)

(13.0,13.5) 
( 9.0, 6.5) 
(19.0,14.0) 
( 5.0, 2.0) 
( 7.0,16.5) 
( 6.5,12.0)

(12.0, 9.5) 
( 5.5, 6.0) 
(17.5,11.0) 
( 6.0, 3.0) 
( 5.0,12.0) 
( 7.0,12.0)

In clockwise order, the 6 vertices of the first of
four barriers to travel are: 
( 3.0,15.0) ( 4.5,15.0) ( 4.5, 6.0) (14.5, 6.0) (14.5, 4.0) 
( 3.0, 4.0).

In clockwise order, the 8 vertices of the second of 
four barriers to travel are:
( 5.0,16.5) ( 8.0,16.5) ( 8.0, 9.0) ( 7.5, 9.0) ( 7.5,13.0) 
( 6.0,13.0) ( 6.0, 7.0) ( 5.0, 7.0).

In clockwise order, the 8 vertices of the third of 
four barriers to travel are:
( 9.0,15.5) (17.5,15.5) (17.5, 3.5) (15.0, 3.5) (15.0,13.5) 
(10.0,13.5) (10.0, 9.0) ( 9.0, 9.0).

In clockwise order, the 8 vertices of the fourth of 
four barriers to travel are:
(10.5,11.5) (13.5,11.5) (13.5, 7.0) ( 7.5, 7.0)( 7.5, 8.0) 
(12.5, 8.0) (12.5,10.0) (10.5,10.0).
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APPENDIX B

NOXIOUS FACILITY EXAMPLE

In clockwise order, the 196 vertices of the feasible
region which approximates Southern Ontario are:
(34.4,27.5) 
(41.2,26.6) 
(42.2,22.8) 
(30.1,20.1) 
(29.5,17.3) 
(23.6,18.4) 
(11.2,13.5) 
( 5.4,10.5) 
( 0.4,14.3) 
( 6.0,14.6) 
( 5.0,17.6) 
( 7.8,23.5) 
(11.9,26.6) 
(15.3,36.5) 
(18.5,43.3) 
(19.4,50.6) 
(15.9,54.2) 
(19.8,53.3) 
(22.7,48.7) 
(24.0,47.2) 
(26.8,45.6) 
(32.9,46.1) 
(33.6,48.8) 
(36.9,42.4) 
(37.4,39.7) 
(40.6,41.7) 
(38.6,45.8) 
(29.1,56.8) 
(34.9,67.4) 
(42.5,68.5) 
(59.1,63.8) 
(64.3,62.6) 
(73.6,55.9) 
(87.7,59.4)
(84.4,51.5) 
(69.4,41.2) 
(62.3,36.5)

(34.8,26.4) 
(41.8,26.6) 
(43.3,22.3) 
(28.9,18.9) 
(31.9,16.9) 
(19.2,18.7) 
( 7.4,11.5) 
( 4.2,10.6) 
( 1.0,14.8) 
( 6.9,14.5) 
( 5.7,17.8) 
( 7.7,23.8) 
(12.4,26.6) 
(15.0,38.4) 
(20.1,45.8) 
(18.7,50.7) 
(16.6,54.8) 
(19.9,52.8) 
(21.6,47.8) 
(23.4,45.2) 
(31.6,43.4) 
(32.4,46.8) 
(34.2,47.7) 
(35.9,42.2) 
(37.7,39.6) 
(40.9,43.2) 
(38.7,45.0) 
(25.5,63.2) 
(38.7,67.6) 
(45.6,68.7) 
(60.8,62.1) 
(65.4,58.6) 
(74.9,57.4) 
(86.9,55.7) 
(82.9,51.7) 
(67.6,40.0) 
(62.2,35.9)

(37.2,25.7) 
(42.0,24.9) 
(43.5,21.8) 
(28.8,18.2) 
(30.5,16.7) 
(16.0,16.8) 
( 6.6,10.5) 
( 3.0,10.1) 
( 2.1,15.1) 
( 7.4,15.3) 
( 6.5,18.5) 
( 8.2,24.1) 
(13.6,27.2) 
(16.1,39.8) 
(19.7,46.8) 
(17.8,52.5) 
(18.6,54.3) 
(20.4,52.7) 
(21.6,47.4) 
(24.6,46.7) 
(32.4,44.0) 
(31.4,47.3) 
(35.6,47.4) 
(36.4,42.1) 
(37.9,40.1) 
(40.2,44.5) 
(35.6,47.4) 
(23.4,64.0) 
(38.2,68.9) 
(50.9,68.1) 
(62.5,61.4) 
(69.2,56.9) 
(79.2,59.2) 
(88.3,54.4) 
(78.9,43.8) 
(66.1,40.0) 
(63.9,36.4)

(38.4,25.8) 
(41.7,24.0) 
(43.0,21.3) 
(28.2,18.4) 
(28.2,17.2) 
(13.5,14.7) 
( 6.3, 8.8) 
( 2.0,10.0) 
( 3.7,14.6) 
( 7.4,16.6) 
( 7.2,20.6) 
(10.0,24.5) 
(14.5,27.9) 
(16.7,41.8) 
(20.0,47.0) 
(17.2,53.2) 
(20.3,54.4) 
(20.6,51.2) 
(22.9,48.3) 
(25.3,47.1) 
(32.8,44.9) 
(31.5,48.2) 
(38.7,45.0) 
(37.6,42.6) 
(37.6,40.6) 
(39.0,44.9) 
(31.9,52.3) 
(24.2,64.9) 
(41.0,68.7) 
(56.3,66.7) 
(63.1,62.0) 
(69.8,58.0) 
(82.2,60.2) 
(86.7,53.3) 
(74.5,44.5) 
(64.1,38.9) 
(64.0,36.0)

(39.0,25.5) 
(42.3,23.7) 
(35.4,21.1) 
(27.7,17.8) 
(25.9,17.3) 
(13.2,13.3) 
( 6.0, 9.8) 
( 0.1,11.0) 
( 4.7,14.4) 
( 5.7,16.9) 
( 7.1,21.4) 
(11.8,26.1) 
(15.0,28.7) 
(17.8,43.0) 
(19.2,49.8) 
(17.3,53.7) 
(20.3,54.1) 
(22.9,49.2) 
(23.9,48.1) 
(26.5,47.0) 
(32.6,45.2) 
(32.5,48.7) 
(38.0,43.5) 
(37.3,40.5) 
(38.0,41.2) 
(39.2,47.1) 
(32.0,53.2) 
(30.1,65.1) 
(41.6,69.2) 
(59.3,64.7) 
(62.8,63.0) 
(71.4,57.9) 
(84.9,60.3) 
(86.4,52.4) 
(73.0,42.4) 
(64.1,38.0) 
(61.0,34.7)
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(60.1,34.9)
(50.0,36.0)
(37.9,31.7)

(59.2,36.1)
(47.9,35.3)

(57.6,35.8)
(44.5,34.8)

(56.3,37.1)
(41.7,34.0)

(53.8,36.4)
(39.8,32.3)

In clockwise order, the 20 vertices of the area 
demand approximating Essex County are:
( 7.4,11.5)
( 4.2,10.6)
( 1.0,14.8)
( 7.2,14.2)

( 6.6,10.5)
( 3.0,10.1)
( 2.1,15.1)
( 6.9,13.7)

( 6.3, 8.8) 
( 2.0,10.0) 
( 3.7,14.6) 
( 7.1,13.4)

( 6.0, 9.8)
( 0.1,11.0)
( 4.7,14.4)
( 7.1,12.7)

( 5.4,10.5)
( 0.4,14.3)
( 6.0,14.6)
( 6.9,12.7).

In clockwise order, the 16 vertices of the area
demand approximating Hamilton-Wentworth Region are:
(34.4,27.6) (34.8,26.5) (36.1,26.1) (35.8,25.1) (35.3,25.3)
(34.8,23.9) (30.4,26.1) (29.9,27.8) (30.5,27.9) (30.3,28.7)
(31.6,28.9) (31.6,29.2) (32.0,29.6) (33.8,27.9) (33.3,27.4)
(33.6,27.0).

In clockwise order, the 9 vertices of the area 
demand approximating Metropolitan Toronto are: 
(39.8,32.3) (37.9,31.7) (37.3,31.0) (36.5,32.1) (36.7,32.3) 
(36.2,33.5) (40.9,34.9) (41.1,34.3) (41.6,33.9).

In clockwise order, the 17 vertices of the area demand 

approximating Ottawa-Carleton Region are:
(69.1,56.9) (69.7,58.0) (71.3,57.9) (73.6,55.8) (75.0,57.3)
(78.1,58.7) (79.3,56.3) (77.6,55.5) (78.4,53.7) (76.1,52.2)
(75.8,52.6) (75.6,52.0) (74.0,50.5) (72.5,51.9) (72.6,52.0)
(68.5,56.5) (68.9,56.9).

In clockwise order, the 45 vertices of the area

demand approximating Algonquin Provincial Park are

(55.2,65.9) 
(51.9,59.4) 
(48.7,55.5) 
(46.8,55.5) 
(41.7,61.2) 
(43.4,65.6) 
(44.6,66.2) 
(46.0,66.2) 
(49.1,65.8)

(57.0,61.3) 
(50.1,58.6) 
(48.5,55.5) 
(46.1,57.2) 
(42.0,61.4) 
(43.3,65.8) 
(45.0,66.4) 
(46.1,66.0) 
(51.0,66.4)

(52.6,59.4) 
(49.6,57.3) 
(48.4,55.7) 
(43.9,56.4) 
(41.5,62.9) 
(44.0,66.1) 
(45.3,65.8) 
(47.0,66.4) 
(51.4,65.3)

(52.5,59.8) 
(51.1,53.3)
(48.1,55.5) 
(42.1,61.1) 
(41.7,63.0) 
(43.9,66.4) 
(45.7,65.9) 
(47.4,65.4) 
(53.0,65.9)

(51.9,59.6) 
(49.7,52.8) 
(47.9,55.9) 
(41.8,61.0) 
(41.1,64.7) 
(44.4,66.6) 
(45.6,66.0) 
(49.0,66.0) 
(53.4,65.2)
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