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ABSTRACT

This study is divided into two main parts. The first section deals with mathe

matical properties of distance functions. The fp norm is analyzed as a function of its 

parameter p, leading to useful insights for fitting this distance measure to a transportation 

network. Properties of round norms are derived, which allow us later to generalize some 

well-known results. The properties of a norm raised to a power are also investigated, and 

these prove useful in our subsequent analysis of location problems with economies or dis

economies of scale. A positive linear combination of the Euclidean and rectangular distance 

measures, which we term the weighted one-two norm, is introduced. This distance function 

provides a linear regression model with interesting implications on the characterization of 

transportation networks. A directional bias function is defined, and examined in detail for 

the Pp and weighted one-two norms.

In the second part of this study, several properties are derived for various forms of 

the continuous minisum location model. The Weiszfeld iterative solution procedure for the 

standard Weber problem with fp distances is also examined, and global and local convergence 

results obtained. These results are extended to the mixed-norm problem. In addition, 

optimality criteria are derived at non-differentiable points of the objective function.

(iii)



ACKNOWLEDGEMENTS

I would like to thank Dr. Robert F. Love, my supervisor, whose encouragement, 

support and guidance have been invaluable throughout the development of this research. It 

has been a privilege and an honour to work under him.

To the rest of my supervisory committee, Dr. George O. Wesolowsky and Dr. N. 

Balakrishnan, I also wish to express my appreciation.

As well, I wish to thank Paul Behnke for his capable assistance in preparing the 

computer programs, and the ladies of the Engineering Word Processing Centre at McMaster 

University for the excellent typing of this manuscript and their patience in putting up with 

me.

To my father, Maurice Brimberg, most of all - thanks.

(iv)



TABLE OF CONTENTS

LIST OF FIGURES vii

Chapter

1. INTRODUCTION 1

1.1 Minisum Models 2

1.2 Distance Functions 10

1.3 Empirical Work Related to Distance Functions 17

1.4 Thesis Objectives 20

2. GENERAL MATHEMATICAL RESULTS 23

2.1 A Generalization of Jensen's Inequality 23
2.1.1 Jensen's Inequality Revisited 23
2.1.2 A Generalization 31

2.2 Norms 45
2.2.1 Definition of Round Norms 45
2.2.2 Properties 48

2.3 Norms Raised to a Power 56

2.4 Differentiability and Directional Derivatives 63

3. THE fp NORM 76

3.1 Directional Bias 76

3.2 Fitting the Weighted P p Norm 97

3.3 General Considerations on the Use of the Weighted f Norm 109

4. THE WEIGHTED ONE-TWO NORM 124

4.1 Directional Bias 125

4.2 A Linear Regression Model 135

(v)



TABLE OF CONTENTS (Continued)

5. SINGLE FACILITY LOCATION WITH THE fp NORM 140

5.1 Properties of the Minisum Problem 141

5.2 The Weiszfeld Procedure Revisited 153
5.2.1 One-Point Iterative Methods 153
5.2.2 Global Convergence Proof 158

5.3 Local Convergence Rates of the Weiszfeld Procedure 185
5.3.1 Convergence to a Non-Singular Point 186
5.3.2 Convergence to a Singular Point 205

5.3.2.1 Optimal Location at an Intersection Point 206
5.3.2.2 Optimal Location at a Destination 209

5.3.3 Non-Singular Optimum in N-Dimensional Space 218

6. THE MIXED-NORM MODEL 221

6.1 Solution by an Extended Weiszfeld Procedure 222

6.2 Optimality Criteria at Non-Differentiable Points 240

7. A GENERALIZED MINISUM PROBLEM 254

7.1 General Properties 255

7.2 Applications with the Norm 267

APPENDIX A 276

BIBLIOGRAPHY 280

(vi)



LIST OF FIGURES

Figure

2.1.1 A Sum of Order p. 32
2.1.2 General Shape of T under Conditions of Property 2.1.4. 42

2.2.1 Unit Contours in R2. 46

2.2.2 A Practical Classification Scheme for Norms. 49
2.4.1 Profiles of h(x) along a Straight Line in RN Passing through the Origin. 64

2.4.2 Smoothing Approximations of the Norm k in One Dimension. 71

2.4.3 Directional Derivative Calculation at a Non-Differentiable Point. 73

3.1.1 Determining the Directional Bias Function of a Norm. 78

3.1.2 Directional Bias Function of fp(x). 83

3.1.3 Comparison of Directional Bias Functions. 88

3.1.4 Maximizing | 5(0 ; p) | over 0. 93

3.1.5 Maximizing Value of 0. 94

3.1.6 Profiles of 5(0 ; p) for Fixed p. 95

3.1.7 One Cycle of rq(0) and its Approximation Function for q = 6 (p = 1.2!). 96

3.2.1 General Shape of gj and hy. 104

3.3.1 Reference Axes (xi, X2) with Orientation yo- 112

3.3.2 Directional Bias Functions which are Out-of-Phase by 45°. 116

3.3.3 Fitting rp(0) to a Road Network with Underlying Rectangular Grid. 118

3.3.4 Section of Road Map for Southern Ontario. 122

4.1.1 Maximizing | 5(0 ; p)| over 0. 130

4.1.2 Maximizing Value of 0. 131

4.1.3 Profiles of 5(0; p) for Fixed p. 132

4.1.4 One Cycle of rp(0) and its Approximation Function for p = 1.4. 134

5.1.1 Non-Diff rentiable Points and Small Boxes for the Weighted One-Infinity Norm. 145

5.2.1 Unstable Trajectories for p> 2. 173

5.3.1 Eigenvalues of 4>(x*) for Example 3. 203

7.1.1 Uniqueness of the Optimal Solution (x*) Illustrated for Rectangular 259

Norm and K > 1.

(vii)



CHAPTER 1

INTRODUCTION

Locational analysis deals with the formulation of location models and their 

solution. These models are mathematical representations of decision problems in which new 

facilities are to be situated. The term facility is used here in a generic sense to denote such 

diverse entities as warehouses in a geographical region, machines on a shop floor, and 

electronic components on a circuit board. Location models can be classified according to 

whether the set of possible sites is finite or infinite. The first category contains the discrete or 

network models. We shall be involved only with the latter category, known as continuous 

location models.

Whatever the practicalities of the real system at hand, the locational analysis 

invariably consists of the formulation of a mathematical model which is an optimization of 

some type, and a methodology to find a suitable solution to the model. Different criteria may 

be used for the optimization problem. In the minisum model, the objective is to minimize the 

total cost, defined as a sum of cost elements each of which is a function of some distance 

measure between two points (supply and demand centres). Alternatively, the objective might 

be to find a point which minimizes the maximum distance to a set of customers. This 

minimax criterion is popular in such cases as the location of emergency facilities (e . g., 

ambulance centers, fire stations, etc.) where service takes precedence over costs. A third, less- 

utilized criterion involves finding a point in a constrained region which maximizes the 

minimum distance to a set of customers (a maximin problem), as in the location of noxious 

facilities such as waste treatment plants.
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Our aim in overview is to develop properties of various useful classes and 

functional forms of distance measures, and to examine the implications on certain important 

models and solution procedures. The location problems we shall look at will consist solely of 

different forms of the minisum model, with emphasis primarily on the location of a single new 

facility. The minimax and maximin problems will not be considered here. For a detailed 

exposition of these two topics, the interested reader is referred to Buchanan (1988).

We begin this chapter with a brief literature review of minisum location models, 

which is not intended to be a complete survey. Extensive lists of references on this subject and 

other general location problems can be found in the exhaustive bibliography by Domschke 

and Drexl (1985), in the selective reviews of Francis, McGinnis and White (1983), and 

Hansen, Peeters and Thisse (1983), and in the recent book by Love, Morris and Wesolowsky 

(1988). The purpose of our literature review is to provide a suitable background and 

motivation for the work in subsequent chapters. Next, we discuss some fundamental concepts 

pertaining to the distance functions employed in continuous location models, and the 

empirical work related to these functions. The empirical fitting of distance measures is 

carried out in order to improve the accuracy of the travel distances predicted by them in the 

system being modelled. The chapter finally ends with a summary of our objectives.

1.1 Minisum Models

The first known formulation of a location problem dates back to the early 

seventeenth century, when Fermat sought a point in the plane which minimized the sum of 

straight-line distances to three given points. This puzzle was worked on and extended over 

the centuries. For an interesting historical perspective, see Kuhn (1967). An important 

generalization known as the Weber, or Fermat-Weber, problem concerns the siting of a 

facility so as to minimize the sum of weighted distances to a set of fixed points. In a practical 
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setting, these weighted distances represent cost components, and their sum gives the total 

cost. The fixed points have known locations, and are alternatively called demand points, 

demands, customers, destinations, existing facilities or vertices.

The Fermat-Weber problem and its extensions form a major part of continuous 

location theory, having received most of the attention of researchers in this field. A 

formulation of the basic problem in N-dimensional Euclidean space (RN) is given below:

(1.1)

where aj = (an, ..., a,N)T is the known position of the ith fixed point, i=l, ..., n; n equals the 

number of fixed points; x = (xi,...,xn)t is the unknown position of the new facility; w, is a 

positive weighting constant (w,>0), which converts distance travelled between the facility 

and the ith destination into a cost, for i= l.....n; and d(y,z) is some function used to evaluate

the distance between any two points y,z€RN. For the majority of practical applications, we 

have N = 2; that is, the location problem occurs in the plane. Also note that the superscript T 

signifies the transpose operation, and we shall always deal with Euclidean spaces unless 

otherwise specified.

Problem (1.1) cannot be solved in closed form for general distance functions. An 

iterative numerical solution method was first proposed by Weiszfeld (1937), for d equal to the 

Euclidean (straight-line) distance on R2. His technique remained in obscurity for several 

years, until its rediscovery by Miehle (1958), Kuhn and Kuenne (1962), and Cooper (1963). In 

a seminal paper by Kuhn (1973), global convergence of Weiszfeld's procedure is proven for the 

Euclidean case, provided that an iterate does not land on a fixed point. Furthermore, such an 

event is shown to occur only for a denumerable number of starting points. Thus, the 

probability that the algorithm will fail for an arbitrarily chosen starting point becomes 

negligible when high precision arithmetic is used. The iterative technique is generalized by
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Morris and Verdini (1979) to f distances on RN. The f function is a popular distance 

measure in location models, and will be introduced in the next section. Katz (1969) develops 

some convergence properties of the algorithm, adapted to the case where the cost components 

are general functions of Euclidean distances. The Weiszfeld procedure is easy to implement, 

and can be readily extended to generalizations of the Fermat-Weber problem. We shall have 

much more to say about this important method.

When rectangular (also called rectilinear, Manhattan or city-block) distances are 

used in problem (1.1), the coordinates of vector x become separable. The resulting N sub

problems, one for each x,, can be solved quickly and exactly by hand or on the computer. The 

computational advantage of the rectangular measure over other distance functions extends to 

several variations of the Fermat-Weber problem, (e g., see Wesolowsky, 1977). Thus, in 

addition to being the most appropriate measure for certain cases such as urban settings, the 

rectangular distance is often used as a first approximation in more complex location models.

Several modifications or generalizations of the basic model in (1.1) have been 

proposed, some of which are considered below.

a) Up till now the customers are represented as points in space. Witzgall (1964)

formulates a two-dimensional model in which they can be either point or area demands. The 

latter should be considered when the number of customers in a specified region is sufficiently 

large that the demand here can be accurately approximated by a density function. Such a 

condition occurs for example with postal deliveries in a city or suburb. Love (1972) considers 

the case where demands are over rectangular regions and the distance measure is Euclidean; 

with rectangular distances this problem can be solved exactly (Wesolowsky and Love, 1971a). 

Drezner and Wesolowsky (1980) extend the analysis to f distances, and to circles and other 

general shapes. The solution technique they use is an iterative one based on the Weiszfeld 

procedure. It is also interesting to note that the new facility, which is currently modelled as 
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an unknown point x, may actually have a significant area (or volume), as in the location of a 

parking lot to service a set of buildings.

b) Problem (1.1) assumes that the same distance function is associated with every

fixed location. However, practical situations may arise where the distance to each customer is 

more accurately measured by a different function; for example, when travel modes (such as 

land or air) are not the same for each. This results in a more general problem:

(1.2a)

where d; is the distance measure associated with destination a,,i= l.....n. When the d, are all

norms, a well-known class of functions which we shall discuss in the next section, this is 

called a mixed-norm problem. Hansen, Perreur and Thisse (1980) develop some general 

properties for such a case. Alternatively, we may have more than one distance function 

pertaining to each destination; for example, when different products are sent to each customer 

by different travel modes. This variation is formulated as follows:

(1.2b)

where L denotes the number of different travel modes, and Wjj>0 for all i and j, is the 

appropriate weighting constant for customer i using distance function dj. Problem (1.2b) is 

examined by Planchart and Hurter (1975) when L = 2 and the dj are the rectangular and 

Euclidean distances (norms). Note that problem (1.2a) is a special case of (1.2b), in which 

w,j = 0 for all j except one, for i = l,...,n.

c) A stochastic extension of the Fermat-Weber problem is considered by Cooper

(1974), in which the destinations are no longer predetermined points a,, but random variables 

with given probability distributions. The objective in this case becomes the minimization of 

the sum of weighted expected values of the distances from the source to the aP Cooper's model 

uses the Euclidean norm as the distance function associated with each customer. The same
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stochastic model is considered by Wesolowsky (1977) with rectangular distances. Problem 

(1.1) also assumes that the customer demands are deterministic; but in reality, these demands 

often have a random nature. Aly and White (1978) incorporate this feature in the stochastic 

location model by considering the weights w; to be random variables.

d) The Fermat-Weber problem can be viewed as a static model, since the number of 

customers and their locations and demands are assumed to be constant over a long (infinite) 

time horizon. Wesolowsky (1973) looks at the dynamic facility location problem, in which 

these exogenous factors are permitted to change in each period. He employs a dynamic 

programming algorithm to optimize the sequence of locations of the new facility over a finite 

planning horizon. Other approaches are discussed by Erlenkotter (1981).

e) Thus far, the new facility can be located anywhere in the geographic space, since 

the problem is unconstrained. In practical situations, natural and human factors (e g., land 

barriers, zoning regulations) tend to restrict, sometimes drastically, the set of feasible 

locations and routes. Hansen, Peeters and Thisse (1982) allow a very general feasible region 

in the form of a union of a finite number of convex polygons, and develop an algorithm to solve 

this constrained problem. Love (1969) uses a gradient method for locating a facility within a 

convex subset of three-dimensional space. Eckhardt (1975) proposes an amended Weiszfeld 

procedure when the set of feasible locations is defined by a convex polyhedron in N- 

dimensional space. Schaefer and Hurter (1974) consider the case where the new facility is 

constrained to be within a maximum distance of each demand point. Such restrictions, 

referred to as metric constraints, are of interest when locating services such as police and 

postal stations. Properties of the optimal solution for several types of constrained problems 

are given by Hurter, Schaefer and Wendell (1975).

f) Problem (1.1) concerns the location of a single facility. An obvious and important

extension includes the multifacility case, in which two or more new depots must be located 
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simultaneously. Each depot can interact with the existing destinations, as well as with the 

other depots, and all interactions are assumed to be known. Clearly, when no flow exists 

between pairs of new facilities, the problem reduces to a number of single facility models. A 

formulation of the unconstrained multifacility model is given below:

(1.3)

where m is the number of new depots to be located; n is the number of existing destination 

points; X = (xi,...,xm), where Xj = (xji,...XjN)T is the unknown location of depot j for j = l,...,m; 

ai = (ail»->aiN)T is the known location of destination i,i= l,...,n; w^&O is a weighting constant 

which converts distance between an origin-destination pair into a cost, i=l....,n, j = l,...,m; 

vrs>0 is a weighting constant which converts distance between an origin-origin pair into a 

cost, r = 1.....m— 1, s = r + l.^.m; and d is the distance function.

Ostresh (1977) extends the Weiszfeld procedure to the multifacility case with 

Euclidean distances, and proves descent properties of the iterations and convergence to the 

optimal solution. However, his procedure cannot handle vertex iterates (i.e., facilities which 

coincide). Rado (1988) proves global convergence of a modified version of this algorithm. A 

new approach is presented by Drezner and Wesolowsky (1978a), in which a trajectory of 

optimal solutions for a series of perturbed problems is obtained by numerical integration of a 

set of differential equations. The trajectory begins with a perturbed problem which can be 

solved easily, and ends with the solution to the original problem.

When d is the rectangular norm, problem (1.3) can be solved by linear 

programming and related techniques; see Cabot, Francis and Stary (1970), Picard and Ratliff 

(1978), and Wesolowsky and Love (1971b). However, the number of constraints and variables 

increases considerably with the problem size. Wesolowsky and Love (1972) use convex 

programming with a hyperbolic approximation of the rectangular norm, while Juel and Love
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(1976) propose an 'edge-descent’ algorithm which takes advantage of the convex, piecewise 

planar shape of the objective function.

A dual problem can be formulated for the single and multifacility models, which 

provides an alternative method of solution. Kuhn and Kuenne (1962) and Bellman (1965) 

derive the dual for the single facility Euclidean distance model. A dual for the multifacility 

Euclidean case is given by Francis and Cabot (1972), while Love and Kraemer (1973) propose 

a dual decomposition method of solution. A generalization to €p distances is provided by Love 

(1974).

g) An important assumption of the multifacility location model is that the

interactions between pairs of facilities are all known. In many practical situations, 

determining these interactions is a main feature of the problem. For example, in locating 

several warehouses to meet the demands of a set of customers, one generally must determine 

the best allocation of customers to warehouses as well as the optimal locations of the latter. 

The optimal number of facilities to service the customers is also usually unknown; however, 

this can be determined by repeated solution of the location-allocation problem for increasing 

numbers of new facilities. A formulation of the location-allocation problem without capacity 

constraints is given below:

(1.4)

Now the weights w1j representing quantities or flow between facility j and destination i are 

variables, in addition to the unknown locations xj of the m facilities. The constraints in 

problem (1.4) ensure that the demands of each customer (wj) are satisifed.
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Unfortunately, the objective function has a complex shape which is not amenable 

to solution by standard methods. With d as the Euclidean norm, Cooper (1967) proves that $ 

is neither convex nor concave. This result generally holds for any distance metric (e.g., see 

Chapter 7 of Love, Morris and Wesolowsky, 1988); so that <j> can have several local minima. A 

rather dramatic illustration is found in Eilon, Watson-Gandy and Christofides (1971). For a 

50 customer, 5 depot problem (n = 50, m = 5), they obtain 61 local optima by using different 

initial starting locations for the depots and an adaptive location-allocation heuristic. Several 

heuristic methods are proposed by Cooper (1963, 1967, 1972). Love (1976) solves the one

dimensional version exactly using dynamic programming. However, except for some special 

cases, this method cannot be extended efficiently to higher-dimensional spaces. Heuristic 

methods which attempt to 'jump' over local optima are given by Love and Juel (1982), who 

also show that the location-allocation problem can be expressed as a concave minimization 

program. Such programs involve the minimization of a concave function over a compact 

region, so that the search for an optimal solution can be restricted to the boundary of the 

feasible region.

An exact solution method is given by Love and Morris (1975a) when distances are 

rectangular. This procedure uses the property that an optimal solution exists with the new 

facilities located at discrete intersection points. An algorithm further reduces this candidate 

set of points. The conditioned problem is then solved exactly with a backtrack programming 

procedure. Ostresh (1975) considers the two-center problem (m = 2) with Euclidean 

distances. Cavalier and Sherali (1986) examine Euclidean distance location-allocation with 

uniform demands over convex polygons. A large-scale nonlinear programming approach is 

used by Murtagh and Niwattisyawong (1982), but this can only guarantee a local optimum 

dependent on the initial starting locations.
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The heuristic methods generally involve the solution of a large number of location 

problems as the allocations are varied. The use of rectangular distances affords a 

considerable computational advantage, because of the relative ease of solving the location 

problems with this metric. For a sample of test problems and computational results for the 

location-allocation problem with rectangular distances, see Love and Juel (1975).

Physical location problems occur in one, two or three-dimensional space. However, 

it is interesting to note that location theory is now being applied in areas other than physical 

distribution systems. Examples include cluster analysis (Cooper 1973), and the spatial 

analysis of voters' preferences (Riker and Ordeshook, 1973) and customers' preferences in 

product design problems (Schocker and Srinivasan, 1974). Such cases justify the use of 

higher-dimensional spaces.

As a final comment, we note that the extensions discussed above to the Fermat- 

Weber problem, as well as other extensions not included here, give greater flexibility to the 

original model by allowing different types of cost structures to be estimated more accurately. 

These extensions can be applied singly or in combinations depending on the practical problem 

at hand. As an example, one may wish to consider a stochastic location-allocation model with 

mixed norms to represent a real situation. Of course there is the usual tradeoff; — the more 

accurate the model, the more difficult and costly it is generally to solve.

1.2 Distance Functions

The purpose of a distance function d is to give an accurate measure of the 

separation between any two points in space. In physical location problems, this separation 

normally signifies the shortest travel distance between pairs of points in the transportation 

network. Thus, given two points x,y £ RN, the function d(x,y) calculates a distance value. In 

the most general sense, we see that d represents a mapping of the form,
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(1.2.1)

where RNXRN denotes all pairs of points taken from N-dimensional space, with each such 

pair being assigned by d a value on the real number line.

Herein lies the main difference between continuous location models and network

models. The latter type uses actual distances between pairs of points, and by necessity 

restricts the candidate set of locations of the new facilities to the arcs and nodes forming the 

transportation network. In realistic problems, the network can contain a large number of 

nodes and connecting arcs (road segments), so that data storage requirements become 

excessive. The existence of cycles in the graph requires that a shortest path algorithm be used 

to find the shortest distance between pairs of nodes. These features plus long computation 

times for large graphs tend to make network models more cumbersome and expensive. 

However, because actual distances are used, these models can be made to represent real 

systems more accurately than the continuous models. (This is achieved by augmenting the 

number of nodes in the network where necessary). As noted by Francis, McGinnis and White 

(1983), "you get what you pay for".

Continuous location models, on the other hand, require very little data storage, 

since distances between pairs of points are now calculated from the coordinates. Of course, 

these distances only approximate the actual ones. Continuous models are typically easier to 

analyze. They give useful qualitative insights about the system, which can be used to 

simplify the network in a second stage of analysis; for example, by removing from 

consideration a majority of the candidate solution points. Furthermore, there are situations 

where the continuous location models are more appropriate in their own right; for example, 

when the set of demand points or candidate solution points includes regions of the space such 

as line segments, areas or volumes, or when the transportation network has a regular pattern 

such as a rectangular grid which can be represented with a high precision by some function d.
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A distance function should satisfy the following basic properties, where p, q, r are

any points in RN.

(1.2.2)

(1.2.3)

and
(1.2.4)

The first two conditions are intuitively obvious. The third one, known as the triangle 

inequality, tells us that the distance between any two points is the shortest one from all 

possible paths. If d satisfies relations (1.2.2) to (1.2.4), it is termed a weak metric (e.g., see 

Witzgall, 1964). If in addition d satisfies
(1.2.5)

and
(1.2.6)

then it is called a metric. Relation (1.2.6) implies a symmetry in the system being modelled, 

such that the distance from p to q equals the distance from q to p for all pairs of points. 

However, this condition will not apply when nonsymmetric shipment costs exist, as with 

travel up and down streams or inclined planes, and travel along one-way streets in an urban 

area. It should be noted that most location models, including those discussed in the previous 

section, assume relation (1.2.6) holds; so that d(p,q) is interpreted as the distance between p 

and q.

Most distance functions employed in continuous location problems belong to the

family of norms. A function k is said to be a norm if it satisfies the following properties for

any x,y ( RN
(1.2.7)

(1.2.8)

(1.2.9)
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and
(1.2.10)

The value k(x) denotes the distance between the point x and the origin (0 = (0,...,0)T). A norm 

may be employed to define a metric by setting d(x,y) = k(x — y). However, the converse is not 

necessarily true, since norms are homogeneous by relation (1.2.9) while metrics do not have to 

be. A norm provides the following map,
(1.2.11)

which is clearly restrictive when compared with (1.2.1). Now the distance between points x 

and y depends in no way on their absolute positions, but only on the vector (x — y) joining 

them.

A popular distance function in location models is given by the fp norm, which we 

define as follows for N-dimensional space:

(1.2.12)

where once again x = (xj,...,xn)t. The rectangular distance is a special case with p=l, while 

Euclidean distance occurs with p = 2. Properties and applications of the fp norm will be of 

major interest in subsequent chapters. When p is strictly greater than 1, fp(x) belongs to the 

family of'round’ norms, so-named because their contours contain no flat spots. We shall be 

examining this important class of norms in detail later on.

Other examples include the weighted one-infinity norm of Ward and Wendell

(1980), which is defined as follows:
(1.2.13)

where ai and 02 are nonnegative numbers, not both of which are zero, €1 is the rectangular 

norm, and f® the Chebychev norm defined as

(1.2.14)
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The distance function b; and its components €1 and €« belong to a general class known as 

'block' norms (e.g., see Thisse, Ward and Wendell, 1984, and Ward and Wendell, 1985), so- 

named because their contours are made up of flat segments; that is, the contours form 

polytopes in N-dimensional space. The block norm is characterized as follows:

(1.2.15)

In the above relation the bg's with g = ± 1, ±2, ±r, are vectors which define the extreme

points of the unit contour (or polytope) of b(x), and by symmetry — bg = b_g. The block norm 

has a geometric interpretation. The bg's signify the possible directions of travel in the trans

portation network, and b(x) gives the distance of the shortest path connecting the tail and 

head of the vector x which follows these permissible directions. A detailed account of the 

block norm, with proofs of properties and examples, can be found in the references mentioned 

above. Note also that Thisse, Ward and Wendell (1984) compare some of the properties of 

block and round norms, and show that a block norm can be made to represent a round one as 

accurately as desired by increasing the number of extreme points (bg's) of its polytope. In the 

limiting sense then, as r ->«, the block norm becomes a round one.

Other distance functions are found in the literature. Perreur and Thisse (1974) 

propose the radial and circumferential metrics, and a combination of these two, the circum- 

radial metric, for approximating star-shaped networks (e.g., the French railway system) and 

circumferential transportation systems (e.g., ringroads around towns). These functions are 

called central metrics, as the movement in each case is made partly or completely along rays 

through an origin. Hodgson, Wong and Honsaker (1987) derive an asymmetric distance (or 

cost) function for locating facilities on an inclined plane. In this case travel up the slope is 

more difficult than down, so that the cost of travelling from one point to another is not the 

same as the cost in the reverse direction. The authors formulate a minisum model to deter-
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mine the optimal location of prebunching sites on a slope in the logging industry, and develop 

a Weiszfeld-type iterative solution procedure, proving convergence of their algorithm to the 

optimal site. When the demand points in a system cover a sufficiently large area, the radius 

of curvature of the earth's surface can no longer be neglected. Certain distance functions have 

been proposed for the analysis of location problems on spherical surfaces (e.g., see Aly, Kay 

and Litwhiler, 1979, Drezner and Wesolowsky, 1978b, and Love and Morris, 1972).

For networks in which backtracking occurs on a regular basis, such as when 

rectangular floor layouts have a single doorway accessing each department, Juel and Love 

(1985) propose the use of the hyper-rectilinear distance function. This measure corresponds to 

the fp function with 0<p<l, and occurs in practice when travel distances are generally 

greater than rectilinear. When 0<p<l, the €p distance function is not a norm, and further

more, it is neither convex nor concave. The authors show that for the hyper-rectilinear case, 

an optimal solution of the single facility minisum model must occur at an intersection point, 

which may not be in the convex hull of the existing facilities.

A significant research effort has been directed at the problem of characterizing the 

optimal solution of the minisum model, the objective being to simplify or narrow the search 

for this solution by exploiting the properties of the particular distance function. The general 

approaches taken here can be classified into two categories. The first reduces the set of 

feasible solutions to a region characterized by the geometry of the existing facilities. The 

second uses the weight structure or flows between facilities to make deductions on where the 

optimal location must be.

In the first category, Kuhn (1967) proves that the optimal solution of the Fermat- 

Weber problem with Euclidean distances on R2 lies in the convex hull of the existing 

facilities. This result readily extends to N-dimensional space (Kuhn, 1973). Francis and 

Cabot (1972) examine the multifacility model with Euclidean distances on R2, and show that 
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the optimal locations of all the new facilities must be within this same hull. For the more 

general single and multifacility problems with f distances on R2 and a p > 1, Juel and Love 

(1983) prove once again that the optimal locations must be within the convex hull of the 

existing facilities.

With any norm on two-dimensional space, at least one optimal solution to the 

Fermat-Weber problem belongs to the convex hull of the fixed points (Wendell and Hurter, 

1973). It should however be stressed that this property no longer holds in higher-dimensional 

spaces, except when Euclidean distances are used (Plastria, 1984). For the special case of the 

fl norm on R2, Love and Morris (1975a) prove that at least one optimal solution belongs to a 

smaller rectangular hull of the existing facilities, and furthermore, attention can be 

restricted to the intersection points contained in this hull. Hansen, Perreur and Thisse (1980) 

define an octagonal hull of the existing facilities (which is larger than the convex hull), and 

show that when a mixed-norm problem on R2 involves f distance functions only, then at least 

one optimal location belongs to this hull. In a more recent paper, Durier and Michelot (1985) 

define a metric hull in order to account for nonsymmetric distance measures, which are 

termed gauges. They show that an optimal location in N-dimensional space can be found in 

the metric hull of the existing facilities whatever the gauges are.

The second category mentioned above uses the weight structure or flows between 

facilities to make deductions on where the optimal location should be. Such an approach can 

result in considerable computational savings in practical situations. An early contribution in 

this vein is given by Witzgall (1964), who proves the "majority theorem" for single facility 

location. This states that in the Fermat-Weber model, an existing facility having 50% or 

more of the total interaction is an optimal base. A refinement of this result is contained in the 

fixed point optimality criteria proposed by Juel and Love (1981),which apply to the single 

facility location problem with any set of norms. For the multifacility case, criteria are given 
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by Juel (1983), and Juel and Love (1980), for establishing when facility locations coincide in 

an optimal solution.

1.3 Empirical Work Related to Distance Functions:

The major research efforts in continuous location theory have been, and are still, in 

the development of algorithms to solve location problems such as those discussed briefly 

above. Thus, the researcher normally begins with the assumption that the cost structure and 

distance function(s) used in his model are a sufficiently accurate representation of some real 

system. From a practical viewpoint, an accurate measure of distance in the real system is an 

important requisite to finding an optimal solution. No matter how exact and efficient the 

solution algorithm may be, the end result would be of questionable value unless the model is 

an accurate representation of the problem being analyzed.

Very little work in the literature deals with the empirical fitting of distance 

functions to actual data, although this is clearly a topic of crucial interest in continuous 

location models. Love and Morris (1972, 1979) present several distance functions which are, 

for the most part, norms multiplied (weighted) by an inflation factor that helps to account for 

hills, bends and other forms of 'noise' in the transportation network. They carry out an 

empirical study in which the best-fitting parameter values are obtained for sets of data from 

urban and rural regions. An important finding of their study is that an empirical distance 

function should be tailored to a given region whenever a premium is placed on accuracy. This 

conclusion resulted from the observed statistical superiority of the weighted fp norm over the 

weighted rectangular and Euclidean norms. Thus, the claim by Francis (1967), which, by the 

way, has been assumed by the majority of researchers in continuous location theory, that the 

cases of practical interest are the ones where distances are rectangular or Euclidean, is 

refuted by the findings of Love and Morris.
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Other empirical studies are described below. Berens and Korling (1985) examine 

the road network of the Federal Republic of Germany, and conclude that the weighted 

Euclidean norm is sufficiently accurate in this case. They further propose that fitting 

distance functions with two or more parameters is genierally unwarranted, since in their 

opinion the gain in accuracy will be small while the computational work will increase 

substantially. The conclusions of Berens and Korling are refuted by Love and Morris (1988). 

Certainly the previous work of Love and Morris (1972, 1979) shows that significant gains in 

accuracy can be achieved with the weighted fp norm. The method used by Love and Morris 

(and Berens and Korling) to find the best-fitting parameter values involves an exhaustive 

grid search. Thus the number of iterations tends to increase exponentially with the number 

of unknown parameters, so that the computational work can indeed become rather 

cumbersome.

Ward and Wendell (1980) fit the weighted one-infinity norm to two sets of data of 

intercity highway travel used by Love and Morris (1972) for the weighted fp norm, and 

observe that their distance function is relatively close in accuracy to the latter. Further 

empirical work is done by Ward and Wendell (1985) using the general block norm, and the 

data sets of Love and Morris (1979). Since block norms are linear in their parameters, Ward 

and Wendell are able to apply standard linear regression techniques to find the best-fitting 

values.

Another empirical study is carried out by Kolesar, Walker and Hausner (1975), in 

which travel times are of primary interest. They show that the relation of travel time to 

distance for fire engines in New York City is nonlinear with economies of scale. Love and 

Dowling (1985) study the fit of weighted fp functions in facility layout problems with 

rectangular flow patterns, and observe that the accuracy of the fit is more sensitive to changes 

in the inflation factor than to changes in the parameter p.
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In order to account for economies or dis-economies of scale inherent in the structure 

of the transportation network, Love and Morris (1972, 1979) propose a distance function 

having the fp norm raised to a power. This results in an extra parameter, and consequently, a 

better fit to the data. The authors generally observe economies of scale in the road networks 

examined, although a few cases show dis-economies. These results make intuitive sense. One 

would usually expect an economy of scale, arising from the larger number of routes available 

when points are further apart.

It is important to note that the location problem may be more accurately modelled 

with distance functions raised to a power for purposes other than the particular structure of 

the road network. That is, economies (dis-economies) of scale may exist for totally different 

reasons. As an example, one might use different transportation modes depending on the 

distance between points, which would give rise to nonlinearities in the cost structure. It is 

generally assumed in such cases that cost is a non-decreasing function of distance. Thus an 

extension of the Fermat-Weber problem, with distances raised to a power, takes on practical 

significance. A formulation of this problem is given below:

(1.3.1)

where O<K<1 for economies of scale, K = 1 for continuous returns to scale (the original 

Weber problem), and K > 1 for dis-economies of scale.

Relatively little work can be found in the literature pertaining to problem (1.3.1). 

An early formulation of this model is given by Cooper (1968), in which d is the Euclidean 

norm. He develops an iterative solution technique similar to the Weiszfeld procedure. Chen 

(1984a,b) improves the efficiency and convergence properties of Cooper's algorithm by 

changing the step-size. He also investigates a more general class of problems in which the 

cost components can be expressed as non-decreasing functions of the Euclidean distances.
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Morris (1981) extends the iterative solution technique to the case where d is the fp norm, and 

proves convergence for certain ranges of the parameters. He also shows that the objective 

function in problem (1.3.1), with d equal to the fp norm, is neither convex nor concave when 

0 < K < 1, and furthermore, contains several local minima. For this condition the iterative 

solution procedure may converge to a local minimum which is not the global optimum.

Hansen, Peeters, Richard and Thisse (1985) present a very general algorithm for 

solving the single facility location problem in which transportation costs are increasing and 

continuous functions of distance. They call their algorithm Big Square - Small Square. The 

general idea is to divide the set of feasible solutions in the plane into squares; to calculate 

bounds for each square by taking the shortest distance between the square and each demand 

point; to purge those squares whose bounds are no better than the current incumbent 

solution; and to continue branching to smaller sub-squares and bounding until the length of a 

side of a square is smaller than a given tolerance. The authors report good computational 

experience with their algorithm, which is encouraging considering the applicability of their 

method to general cost structures and general sets of constraints.

1.4 Thesis Objectives

The preceding sections give some insight into the broad nature of continuous 

location theory. We started with the well-known Fermat-Weber problem, and then discussed 

several extensions to this classical model. The importance of the distance function in 

continuous location models was emphasized. We observed that this distance measure should 

satisfy the properties of the 'weak’ metric, a wide class of functions of which the norms are 

only a subset. Some of the more popular distance functions (e.g., fp norms, block norms) 

which appear in the literature were presented. Finally, we summarized the empirical work 

dealing with the fitting of distance functions to actual transportation networks. The 
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empirical work invariably begins by assuming a given form of the distance measure, and then 

proceeds to obtain the best-fitting parameter values based on some specified criteria.

In the next chapter, several general mathematical properties of norms are derived, 

which will be useful in the subsequent analysis. We begin by taking a look at sums of order p, 

which represent the function €p(x) with the vector x constant and the parameter p treated as a 

variable. The results obtained here will be of interest when the problem of fitting the €p norm 

to a given data set is investigated. A practical classification of norms is presented next, and 

several properties are derived for this classification scheme. These results are in large part 

generalizations of known properties for particular norms. Some insights into the 

fundamental differences between round and block norms are also provided. The properties 

given here will be useful in our investigation of various minisum models.

The fitting of empirical distance functions was identified in the previous section as 

a topic of theoretical and practical importance which requires much further research. In 

Chapter 3 we consider this problem in terms of the mathematical aspects of fitting the 

weighted fp norm. At present an exhaustive grid search is employed to find the best-fitting 

parameter values; e.g., see Love and Morris, 1972, 1979, Love, Truscott and Walker, 1985, 

and Berens and Korling, 1985. A number of important properties are derived here which will 

allow more efficient and more accurate searches for these values. In Chapter 4 a positive 

linear combination of Euclidean and rectangular distances is considered, which we term the 

weighted one-two norm. It is shown that for practical purposes, this distance measure can be 

used in place of the weighted fp norm. Since the weighted one-two norm is linear in its 

parameters, we are able to develop a simple linear regression model for determining the best

fitting parameter values. Statistical tests are proposed for this model which provide new 

insights of practical significance.
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The remainder of our study is devoted to a broad sample of minisum models. In 

Chapter 5 we return to the classical Fermat-Weber problem, and generalize certain important 

properties to the classes of round and block norms. Some generalized results for the 

multifacility model are also derived. A close look is then taken at the Weiszfeld iterative 

solution procedure. After much analysis, we extend the global convergence proof of Kuhn 

(1973) and the local convergence results of Katz (1974) for Euclidean distances to the €p norm. 

Chapter 6 investigates the mixed-norm model. An extension of the Weiszfeld procedure is 

proposed as a solution method, and global and local convergence properties are proven. 

Optimality criteria which extend the majority theorem of Witzgall (1964) and the results of 

Juel and Love (1981), are also derived. Finally, in Chapter 7 we consider the minisum 

problem with cost components which are nonlinear functions o^ distance (e.g., see model 

(1.3.1)), and obtain some general properties for this case.



CHAPTER 2

GENERAL MATHEMATICAL RESULTS

In this chapter, we derive several general results which are interesting in their 

own right, and of which many will be useful for developing properties of location problems in 

the subsequent chapters. First, we take a close look at sums of order p and the well-known 

inequality of Jensen. The results here will be of interest when fitting the fp distance function 

to a data set is investigated (Chapter 3). We also study the properties of a generalized sum of 

order p, which would be applicable to a generalization of the fp distance function. The next 

section deals with an important class of norms referred to as round norms. Some definitions 

and properties are developed here, and comparisons are made with the block norm. These 

results should improve our understanding of distance functions, and will be useful in our 

analysis of minisum location models. The third section considers functions of norms, and in 

particular, norms raised to a power. Such distance (or cost) functions have received 

comparatively little attention in the literature, although their potential benefit in defining 

more accurate location models has been recognized. Finally, we study directional derivatives 

and the differentiability of norms and functions of norms. The results obtained here will be 

useful later on in our analysis of various minisum models.

2.1 A Generalization of Jensen’s Inequality

2.1.1 Jensen’s Inequality Revisited

A sum of order p is defined as follows (eg., section 1-16 of Beckenbach and Bellman, 

1965):

23
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(2.1.1)

Note that the above sum has the form of the distance function fp(x — ar), where y, replaces 

I Xi — an |, i = 1, •••> K. The requirement that all the yfs be strictly positive (i.e., non-zero) is not 

restrictive, since any zero terms can be deleted from the sum, the remaining terms re-labeled 

and K decreased accordingly, to give the form in (2.1.1).

The sum of order p satisfies the well-known relation,

Sfy-.pp < S(y ip^ 0 < pt < p2 , K > 2 , (2,1'2

which is usually referred to as Jensen’s inequality. (For two different proofs of (2.1.2), see 

Theorem 19 of Hardy, Littlewood and Polya, 1952, and Beckenbach, 1946.) Beckenbach 

(1946) also shows that S(y; p) is convex in p for p>0. His proof utilizes techniques from 

convex analysis.

We now re-prove Jensen’s inequality and the convexity result of Beckenbach by 

studying the first and second-order partial derivatives of S(y ; p) with respect to p. Although 

this approach is less elegant than previous methods, and certainly very tedious, it does enable 

us to prove in addition that S(y; p) is strictly convex in p for p>0 under very general 

conditions, namely K>2. We also are able to make some deductions concerning inflection 

points for p<0. An extension of this approach allows us to determine some interesting 

properties of a 'generalized’ sum of order p.

For the simple case where y = yt, a scalar,
(2.1.3)
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which is constant for varying values of the parameter p. We consider from this point onwards 

the more interesting case in which Ki2, The first and second-order partial derivatives of 

S(y ;p) with respect to p are calculated below.

a) First Derivative

Let

(2.1.4)

so that

(2.1.5)

Then

(2.1.6)

Since

therefore

Hence
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(2.1.7)

wherever this derivative is defined (i.e., p*O). At p = 0, the function S(y ; p) is discontinuous 

as seen by the following limits:

(2.1.8)

and

(2.1.9)

Otherwise, S(y ; p) is continuous and differentiable in p. Based on these observations and the 

inequality (2.1.7), the following result is obtained.

Property 2.1.1

The sum of order p given in (2.1.1) with K>2 is a decreasing function of p for

0<p<°; that is
(2.1.2)

The sum of order p given in (2.1.1) with K>2 is also a decreasing function of p in 

the interval — < d < 0: that is.
(2.1.10)

(Note: Inequality (2.1.10) can be derived directly from (2.1.2), as shown by Beckenbach

(1946), by noting that S(y ; -p) = l/S(l/y, p), where 1/y = (1//y»..., l/yk)T )•

b) Second Derivative

Letting

(2.1.11)

we can rewrite equation (2.1.6) as

(2.1.12)
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The second partial derivative with respect to p is then given by,

and

where

and

Using elementary calculus, the following results are obtained.

Substituting (2.1.14) and (2.1.15) into equation (2.1.13) gives

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16a)

(2.1.16b)

(2.1.17)

Noting that 4>(y ; p) = p<t>' — 4> €n 4>, the above equation simplifies to,

(2.1.18)

Thus,

where

and
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Since 4>(y ; p) > 0 for all p * 0, it is obvious that A(y ; p) > 0 for all p 0. We now examine the 

terms of B(y ; p). From the analysis of the first derivative, <3S/<3p, it is clear that 4>(y ; p) < 0 for 

all p*0. Hence,

The second term of B(y ; p),

(2.1.19)

(2.1.20)

Finally, we add the third and fourth terms of B(y ; p) as follows:

(2.1.21)

Note that i, j € {1, ..., K} is understood in the above summations, but omitted to simplify the

notation. From equation (2.1.21), we see that
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(2.1.22)

with equality occurring if and only if y, = yj for all i, j € {1........ K}. From relations (2.1.19),

(2.1.20), and (2.1.22), it is seen that B(y ; p) > 0 for p>0. Hence, we conclude that

(2.1.23)

Unfortunately, for p<0, the sign of d2S/dp2 cannot be determined from the above analysis. 

This agrees with the known result that S(y ; p) is not convex, or necessarily concave in p for 

p<0, (e.g., see 1-16 of Beckenbach and Bellman, 1965). For example, if yi = y2 = ... = yK = 

a, then

so that S(y ; p) has a unique inflection point in this case at the negative value

(2.1.24)

From the inequality (2.1.23), we immediately obtain the following result.

Property 2.1.2

The function S(y ; p) given in equation (2.1.1) with K > 2 is strictly convex in p, for 

0 < p <«.

Property 2.1.2 strengthens the known fact (Beckenbach, 1946) that S(y ; p) is 

convex in p for p>0, and allows us now to state the following strict inequality.

(2.1.25)

where
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p. > 0 , i = 1,..., m, are arbitrary (and distinct) values of p.

Returning to equation (2.1.6) for the first derivative, the following interesting

observation is made.

But

Hence

(2.1.26)

We can now prove the following fact.

Property 2.1.3

S(y ; p) has at least one inflection point, and hence is neither convex nor concave in

p, in the interval — <» < p < 0.

Proof:

We know that S(y ; p) approaches the horizontal asymptote, ym = min, (y,), 
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from below as p-» — oo (x . g., Beckenbach, 1946). Hence S(y ; p) is concave in p for sufficiently 

large negative values of p. It is easily shown that S(y ; p) —>0 + as p—>0 -. Thus, from equation 

(2.1.26) we soocludd that s S S 0 seisss such that S(y ; .) is soovvx in s Sor s . S — —S, S). 

Therefore the property is proven.

Heckenbach (1946) poses a question concerning the number of possible inflection 

points of S(y ; p) as a function of p in the interval ( — 00, 0). Wx see from the above result that 

there is at least one such point, thus establishing a lower bound of one. It follows that S(y ; p) 

can never be oonoavx over the entire interval — <<p<0, a fact which does not appear to be 

recognized until now. To illustrate Properties 2.1.2 and 2.1.3, the previous example 

(y 1 = Y2 = ••• — YK = a> S(y ; p) = K1ZP a) is plotted in Figure 2.1.1.

2.1.2 A Genrralizatinn

Wx now introduce a generalization of the sum of order p, defined as follows:

(2.1.27)

where

and

(This function is termed a 'weighted’ sum in 2.10 of Hardy, Littlewood and Polya, 1952.) The 

vector b and the scalar p can be considered as a set of parameter values. If all the weights 

bj = 1, then T is just the ordinary sum of order p given in (2.1.1). Note that the function 

T(y; b, p) has the form of a generalized S distance given by,
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Figure 2.1.1 A Sum of Order p.
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(2.1.28)

The weights bj could, for example, represent non-symmetric costs along the axis directions in 

a location model. Just as for S(y ; p), we are interested in studying the behaviour of the sum T 

as a function of its parameter p.

Consider first the asymptotic behaviour of T. Letting ym = min, (y,) and y\f = 

max, (y,) as before, we obtain,

(2.1.29)

and similarly,

(2.1.30)

Thus, the function T approaches the same horizontal asymptotes irrespective of the positive 

weights bi, i = 1,..., K.

Without loss in generality, let us assume that all the yfs have distinct values; that 

is, yi * yj, i * j, for all i, j € {1, ..., K}. (If this is not the case, common terms can be added 

together and K adjusted accordingly.) Denoting the weights associated with ym and yu by bm 

and byf respectively, it is clear from (2.1.29) and (2.1.30) that for Ks2,

and

(2.1.31)
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(2.1.32)

Thus, the direction of approach from above or below the horizontal asymptotes y\f, ym depends 

on the magnitude of the coirresponding weights b\f, bm-

We now examine the behaviour of T near p = 0. Let

(2.1.33)

There are three possibilities to consider.

(i) 0 > 1:

It is readily seen that

(2.1.34)

(This is the same result as for S(y ; p)).

(ii) p < 1:

The situation is reversed; i.e.,

(2.1.35)

(iii) p = 1:

In this case, T(y; b, p) is called the mean value function. Beckenbach (1946) gives

the following result without proof.

(2.1.36)
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It follows that T is continuous at p = 0 if, and only if, 0=1. The result in (2.1.36) is not 

immediately obvious; hence we prove it below.

In the limit p—>0, the denominator and numerator on the right-hand side both go to zero when

0= 1, so that by l’Hdpital’s rule,

Hence,

confirming equation (2.1.36).

We now calculate the first and second-order partial derivatives of €n T with respect

to p. Letting

(2.1.37)

equation (2.1.27) can be re-written as

(2.1.38)

where cq > 0, i = 1..., K, and

Then



36

a)

(2.1.39)

First Derivative

(2.1.40)

Since

we immediately get

(2.1.41)

It is interesting to note that for P> 1,

(equation (2.1.36))

(2.1.42)

This is the same result as obtained for S(y ; p); (see equation (2.1.26)). Thus we can readily 

show that Property 2.1.3 also holds for the generalized sum T(y; b, p) with p > 1. Meanwhile, 

for P < 1, we obtain in similar fashion the following result.
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Hence, the function T(y; b, p) with 0<1 has at least one inflection point in the interval 

0<p< 4-oo.

b) Second Derivative

In the following summations i, j € {1, .. . . K} is understood, but omitted to simplify

the notation.

After some re-arranging this reduces to

(2.1.43)

where

(2.1.44)

By means of the first and second derivatives calculated above, we are able to prove 

some interesting results, which are extensions of Properties 2.1.1 and 2.1.2 for the ordinary 

sum of order p. First, let us consider the simple case, K = 1. Then,

(2.1.45)
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(2.1.46)

and
(2.1.47)

The following facts are immediately obvious:

a) If bi > 1, dT/dp < 0 for all p * 0, d2T/dp2 > 0 for p > 0, and T has a unique 

inflection point at p = — 1/2 €n bi < 0. Thus, T is decreasing and strictly convex in p, for 0 < 

p < +°°. Meanwhile, for — o° < p < 0, T is again decreasing in p, but concave in the interval 

( — oo, —1/2 €n bi] and convex in the interval [ — 1/2 €n bi, 0).

b) If bi = l.thenT = yi which is constant for varying p.

c) If 0 < bi < 1, dT/dp > 0 for all p*0, d2T/dp2 > 0 for p < 0, and T has a unique 

inflection point at p = — 1/2 fn bi > 0. Thus, T is increasing and strictly convex in p, for — °° 

< p < 0. Meanwhile for 0 < p < + «, T is again increasing in p, but convex in the interval (0, 

— 1/2 fnbj and concave in the interval [ — 1/2 fn bi, +«). Alternatively, by noting that 

bi = L/^i' where b/ > 1, we readily see that the behaviour here is just the mirror image of 

the first case.

The preceding results give some insights into the more interesting case where 

K > 2, to which we now turn.

Theorem 2.1.1

Consider the function T(y ; b, p) defined in (2.1.27), with given (constant) vectors y 

and b. Assume without loss in generality that yM = maxj (y;) occurs for a unique M ( {1, .... 

K}; i.e., there are no ties. (If this is not the case, add the coefficients (bt) of the ties to form one 

term.) Then for K >2, T(y ; b, p) is a decreasing function of p for 0 < p < + ®, if, and only if,
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by — 1, where bw is the coefficient of y\f. Furthermore, if by 2 1, T is also a strictly convex 

function in p over this same interval.

Proof:

(i) (If) Since p > 0, K >2 and bM 2 1, it follows that,

(2.1.48)

From equations (2.1.40) and (2.1.43), we see that

Hence, fnT is decreasing and strictly convex in p for 0 < p < + °°. It immediately follows 

that T is a decreasing function of p in this interval. Furthermore,

(2.1.49)

so that

Thus, T is also strictly convex in p, for 0 < p < + °°. We conclude that bw 5 lisa sufficient 

condition for T to be a decreasing strictly convex function of p € (0 , °°).

(ii) (Only if) That by > 1 is a necessary condition for T to be decreasing in p

immediately follows from the asymptotic behaviour of T as p—* + °°, shown in (2.1.31). If by 

< 1, T approaches yy asymptotically from below, and hence is increasing and concave for 

sufficiently large p.

For applications of T as a distance function in location models, one should be

interested in the case where all the weights are greater than or equal to one; i.e., b, 2 1, 
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i = 1K. (Otherwise, distances less than Euclidean are possible.) Theorem 2.1.1 leads to 

the following useful result for this case.

Corollary 2.1.1

T(y ; b, p) with K > 2 is a decreasing function of p > 0 for given weights b and all 

(positive) y, if, and only if, b{ > 1, i = 1, K. Furthermore, T is also strictly convex in p 

under these conditions.

Proof:

Consider any y such that the yfs are not all equal. Clearly, bw > 1 if all the b; > 1.

By the theorem, we know that T is decreasing and strictly convex in p > 0. Now consider any 

y such that all the yfs are equal. Then, T = PlzPyi, where p = SK_ 1 b; > 1 if all the b > 1. 

From our analysis of the special case (K = 1), we know that T is decreasing and strictly 

convex in p > 0. Thus, bi 2: 1, i = 1..., K, is a sufficient condition. That this is also a 

necessary condition is readily seen by contradiction. Suppose br < 1, for some r € {1,..., K}. 

Construct a vector y such that yx * yj, i * j, V i, j £ {1,..., K}, and yr = max; (y,). By the 

theorem, we know that T is not a decreasing function of p £ (0, + <»), for this y.

The shape of T as a function of p becomes more complex when the criteria on the 

weights are changed, as shown in the following result.

Property 2.1.4

Consider a vector of weights b, such that P = Sj b, >1, and br < 1 for at least one 

r € {1,..., K}. Then, for any given y there exists a 5 > 0 such that T is decreasing and strictly 

convex in p € (0, 8). However, if yr = max; (yi), and there are no ties, then T is increasing and 

strictly concave for sufficiently large positive p.
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Proof:

Follows immediately from the limit p—>0 + in (2.1.34) and the limit p—> + <o in 

(2.1.31).

Note that the function T described in the preceding result is neither increasing or 

decreasing in p nor convex or concave in p over the entire interval 0 < p < + «, and that at 

least one inflection point exists in this interval. This is illustrated in Figure 2.1.2.

The fact that T is a decreasing function of p in the interval (0, +<») for all y if, and 

only if, b, > 1, i = 1,..., K (Corollary 2.1.1), has been recognized previously by Hardy, 

Littlewood and Polya (1952) in their Theorem 23. However, their proof is completely different 

than ours, and furthermore, does not show the important result that T is convex in p under 

these conditions. The third and final case to consider for the weights b is where 0 = S, bj < 1. 

In the same Theorem 23, the above authors prove that T is non-decreasing in p over the 

interval (0, +<») for all y if, and only if, this condition holds. Thus, the following property can 

be given without proof.

Property 2.1.5

A necessary and sufficient condition to have

T(y ;b ,p^ £ T(y ;b ,p2), 0 < pt < p2 ,

for given weights b and all y, is that 0 < 1. Furthermore, there is strict inequality unless all 

the y, are equal and 0=1.

We make the additional observation that T has at least one inflection point in the 

interval 0<p< +°°, if 0 < 1- (See the discussion following relation (2.1.42).) Thus, T is 

neither convex nor concave in p under this condition.

Use of negative p when the weighted sum T is a distance function in location 

models does not appear to have a physical interpretation. However, there may be other
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Figure 2.1.2 General Shape ofT under Conditions of Property 2.1.4.
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situations where p < 0 might be considered. In any case, we would like to take full advantage 

of our lengthy calculations of derivatives. This questionable motivation leads to the following 

results for p < 0.

Theorem 2.1.2

Consider the function T(y ; b, p) defined in (2.1.27), with given (constant) vectors y 

and b. Assume without loss in generality that ym = min, (yj) occurs for a unique 

m € {1,..., K}; i.e., there are no ties. (If this is not the case, add the coefficients (bi) of the ties to 

form one term.) Then for K > 2, T(y ; b, p) is a decreasing function of p in the interval (— <», 0), 

if, and only if, bm > 1, where bm is the coefficient of ym. Furthermore, if bm > 1, €n T is a 

strictly concave function of p over this same interval.

Proof:

(If). Since p < 0, K > 2, and bm > 1, it follows that(i)

Returning to equations (2.1.40) and (2.1.43), we can readily show that

(2.1.50)

Hence, fnT is decreasing and strictly concave in p in the interval ( — 00,0). It immediately 

follows that T is a decreasing function of p in this interval. We conclude that bm > 1 is a 

sufficient condition for T to be decreasing in p and fn T strictly concave in p, for — 00 < p < 0.

(ii) (Only if). That bm > 1 is a necessary condition for T to be decreasing in p

immediately follows from the asymptotic behaviour of T as p-» — <0, shown in (2.1.32). If
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bm < 1, T approaches ym asymptotically from above; so that T (or fnT) is increasing and 

convex for sufficiently large negative values of p.

Corollary 2.1.2

T(y ; b, p) with K > 2 is a decreasing function of p in the interval ( — <», 0) for given 

weights b and all (positive) y, if, and only if, b, > 1, i = 1,..., K. Furthermore, fn T is strictly 

concave in p under these conditions.

Proof:

Consider any y such that the yfs are not all equal. Clearly, bm > 1 if all the b; > 1. 

By the theorem, we know that T is decreasing and fnT is strictly concave in p € ( — °°, 0). Now 

consider any y such that all the yfs are equal. Then, T = PlzPyi, where 0 = S, b; > 1, if all 

the bj's > 1. From our analysis of the special case (K = 1), we know that T is decreasing in 

p € ( — <®, 0). Furthermore,

Thus, fnT is strictly concave in p € ( — <», 0). We conclude that b, > 1, i = 1,.... K, is a 

sufficient condition. That this is also a necessary condition is readily seen by contradiction, 

similar to the procedure in Corollary 2.1.1.
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2.2 Norms

2.2.1 Definition of Round Norms

In order to derive additional properties of location models, it is useful to 

characterize norms in more detail. To this end, we define the unit ball B of a norm k acting on 

RN as follows:
(2.2.1)

Thus, B is the closed set of points in RN contained by the unit contour of k. The symmetry 

property, k(y) =k( — y), implies that if y € B then so is — y. Hence B is a symmetric set of 

points containing the origin.

Suppose xj and X2 belong to B, and consider a point y = Xxj 4- (1 — X)x2 where 

X € [0,1]. That is, y can be any point along the line segment joining Xi and X2- Then, using the 

triangle inequality and homogeneity properties of norms, we have

(2.2.2)

Thus y ( B, and we conclude that the unit ball is a convex set. In summary, the unit ball of 

any norm is a symmetric closed bounded convex set. Furthermore, it can be shown (e.g., 

Theorem 15.2 of Rockafellar, 1970) that a one-to-one correspondence exists between the 

norms k and the symmetric closed bounded convex sets B. Thus, a norm is uniquely defined 

by a unit ball, and vice versa.

Thisse, Ward and Wendell (1984) use the unit ball to distinguish between block and 

round norms. They classify block norms as those whose contours are polytopes (polygons in 

R2), as distinct from round norms whose contours contain no flat spots. This feature is 

illustrated in Figure 2.2.1. Referring to Figure 2.2.1, let zj and Z2 denote two points on some 

contour C of the norm k. This contour, which is the boundary of a convex set, is given by

(2.2.3)
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Figure 2.2.1 Unit Contours in R2.
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where b is a scalar greater than zero (b > 0). Noting that k(zj) = k(z2) = b, and proceeding as

in (2.2.2), we obtain
(2.2. 4)

In particular, if C is the unit contour, so that b = 1, relation (2.2.4) becomes
(2.2.5)

We are now ready to give a formal definition of the round norm, in place of the 

qualitative description of Thisse, Ward and Wendell (1984).

Definition 2.2.1 A norm k is a round norm if, and only if,
(2.2.6)

for all zi, Z2 on the unit contour of k such that zi * Z2, and all X in the open interval (0,1).

Note that the strict inequality in relation (2.2.6) implies that the unit ball B of a 

round norm is a strictly convex set. In contrast, the unit ball of a block norm is not strictly 

convex. If zi and Z2 are on the same facet of the unit polytope of some block norm k, then 

k(Xzi 4- (1 — X)z2) = 1. Thus, for k(x) a block norm, the < sign in relation (2.2.6) must be 

replaced by a < sign. The strict convexity of B for round norms allows for some useful 

properties given below. However, before proceeding with these properties, we subdivide 

round norms into two classes as follows.

Definition 2.2.2 A round norm k(x) which is differentiable at all x £ RN, except x = 0 (the 

origin), is termed a differentiable round norm. Otherwise k(x) is a nondifferentiable round 

norm.

By definition, all norms must be nondifferentiable at the origin; (e . g., see 

directional derivatives in Chapter 2 of Juel, 1975). The differentiable round norm has the 

useful property that its first-order derivatives exist everywhere else. However, this property 

does not hold for nondifferentiable round norms, or for block norms. For example, if k(x) is a 
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block norm, then clearly k(x) is nondifferentiable along the edges of its polytope contours, 

while it is differentiable at all other points except x = 0. In R2, this means that the block norm 

is nondifferentiable at the corner points of its polygon contours, while it is differentiable 

everywhere else except at the origin.

The preceeding discussion leads to a practical classification of norms for use in 

location models. This classification scheme is shown in Figure 2.2.2. Sample contours of the 

various norms are illustrated in Figure 2.2.1.

2.2.2 Properties

By means of the triangle inequality and homogeneity properties of any norm k 

(relations (1.2.9) and (1.2.10)), it follows immediately that k(Xxi 4- (1 — X) X2) < Xk(xi) + 

(1 — X) k(x2), for all xj, X2 € RN and all X € [0,1], Hence, k is a convex function of x on RN. This 

is a well-known result, (e.g., Fact 1 in Chapter 2 of Juel, 1975, and p. 131 of Rockafellar, 

1970), which permits many location problems to be formulated as convex minimization 

models. In this sub-section, we exploit the strict convexity of the unit ball B to derive stronger 

convexity results for the case where k is a round norm. This will enable us later on to develop 

some general properties for minisum models which employ round norms.

We begin by formally proving the equivalence between the round norm and

S-norm. The latter is defined by Pelegrin, Michelot and Plastria (1985) as follows:

A norm k on RN is called an S-norm if, and only if, k(xi + x2) =

k(x 1) + k(x2) implies that X2 = 0 xi for some scalar 0.

Clearly, 0 must be a non-negative scalar; otherwise if X2 = - |0l x), then
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Figure 2.2.2 A practical classification scheme for norms.



50

for any norm k and 0*0. We proceed with the following basic result.

Property 2.2.1

Let k(x) be a round norm on RN. Then for xj, xx*0, k(xi + X2) = k(x,) + k(x2) 

implies that X2 = Px, for some scalar 0>0. Furthermore, if this condition is satisfied by a 

norm, it is a round norm.

Proof:

Let xi and X2 be any points in RN other than the origin. Obviously, if X2 = Pxj, 

0>O, then for any norm g, we have

g(x t + x.p = (1 + 0) g(x p = g(x p + g(x2) .

Now suppose k is a round norm, and choose xj and X2 such that X2 * 0Xi, 0>O. Then the half

lines from the origin which pass through xj and X2 intersect the unit contour of k at two 

distinct points, say zi and Z2 respectively. We have xj = p,zj, X2 = P2Z2> where pi, P2 are 

positive scalars and zi *Z2. Then, letting ut = Pi + P2, A = Ui/ut < 1, gives

But

Hence,

We conclude that for k(xi + X2) to equal k(xi) + k(x2), we must have X2 = 0xi,0>O.

Now we prove the second part of this property. Suppose g is a norm such that g(xi 

+ X2) = g(x,) + g(x2) implies that X2 = Px,, P>0. Then, for any xi, X2 such that x2*px,,
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P > 0, we have

Now choose two distinct points zi and Z2 on the unit contour of g. Clearly Z2 * 0zl > 0 > 0. Then, 

letting 0 = X(1 — A), X € (0,1), we see that (1 — Xhz^Xzi. Substituting xi = Xzi and 

X2 = (1 — X)z2 into the above inequality, we get

Hence, we conclude that g must be a round norm, ending the proof.

We see then, that the round norm introduced by Thisse, Ward and Wendell (1984) 

and the S-norm defined by Pelegrin, Michelot and Plastria (1985) are one and the same. The 

next property is taken from Pelegrin, Michelot and Plastria (1985). We introduce some 

notation first. Let L(xi, X2) denote the straight line through any two points xi, X2 C RN, 

(xi*X2), and let (xi, X2) denote the open segment connecting xi and X2. Finally, we define
(2.2.7)

Since the authors do not give a proof of their result, we add one for completeness.

Property 2.2.2

For any point a € L'(xi, X2), any round norm k, and x<j = Xx! + (1 - X) X2, X € (0,1), 

the following inequality holds;
(2.2.8)

Proof:

where
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Since a € L'(xj, x^), clearly yj *0y2, where 0 is a positive scalar. It follows from Property 2.2.1 

thatk(yj + y2) < k(yj) + k(y2). We conclude that

The next property is a direct consequence of Property 2.2.2. It is a fundamental 

result for round norms, which will be seen to have important implications in location models. 

We give two proofs for this result. The first one is a quick derivation based on Property 2.2.2; 

while the second one goes back to basics, -the strict convexity of the unit ball of a round norm, 

and gives some insight into why the result does not hold for a block norm.

Property 2.2.3

Let k(x) be a round norm on RN, N>1. Then k(x) is strictly convex along any 

straight line which does not pass through the origin.

Proof:

Let 0 denote the origin, and choose any two points xj, X2, xjXx2, such that 

0 € L(\i,X2); i.e., the straight line through xj and X2 does not pass through the origin. 

Clearly, 0 f? L'(xj, X2). Thus, we can substitute a = 0 into relation (2.2.8) to obtain
(2.2.9)

where

Hence we conclude that k(x) is strictly convex along any straight line which does not pass 

through the origin.

Alternate Proof:

Again choose any two points xj, X2, xi *X2, such that the straight line through xj 

and x2 does not pass through the origin. Clearly, and x2*0. We can write xj = p1z1
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and X2 = P2Z2> where pi and P2 are positive scalars, and zi and Z2 are intersection points of the 

unit contour of k with the half-lines from the origin through xj and X2 respectively. Since the 

line through xj and X2 does not pass through the origin, we must have zj *Z2- Without loss in 

generality, assume that pi Sp2- Then with xq = Xxi + (1-X)x2, X € (0,1), p' = Xpi + (1 — X)p2, 

and X' = Xpp/p', we obtain

(2.2.10)

But pi = k(xi) and p2 = k(x2), so that (2.2.10) implies

ending the proof.

Returning to relation (2.2.10), let us now suppose that k is a block norm, and 

futhermore that xi and X2 are chosen so that zi and Z2 are on the same facet of the unit 

polytope of k. In this case, k[X'zi + (1 — X')z2] = 1, and so, k(xo) = p' = Xk(xi) + (1 — X) k(x2>. 

We see that if k is a block norm, and the half lines from the origin through xi and X2 intersect 

the unit polytope of k on the identical facet, then k varies linearly along the line segment 

connecting xi and X2- It follows that k is convex, but not strictly convex, along any straight 

line in RN.

As noted previously, the €p distance function is widely used in location models. The 

following result gives additional information concerning the classification of this important 

function.

Property 2.2.4

f p(x) is a differentiable round norm for 1 < p < + <o.
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Proof:

It is well-known that €p(x) is a norm on RN for p>l and that it is differentiable

everywhere except at the origin for 1 <p< + «, (e.g., p. 14 of Juel, 1975). Hence, we need only

show that relation (2.2.6) holds for €p(x) to complete the proof. Let x and y be any two points

in RN. Then,

(2.2.11)

from the Minkowsky inequality. Furthermore, equality in (2.2.11) occurs if, and only if,

(2.2.12)

where p is a non-negative scalar. But if Zi and Z2 are two different points on the unit contour 

of fp(x), then clearly,
(2.2.13)

for any p > 0. This implies that z' * Pz2' for any P > 0. where z' = Xq, Z2' = (1 - X)z2 and

X € (0,1). Hence,

(2.2.14)

Thus. relation (2.2.6) holds, and we conclude that fp(x) is a differentiable round norm.

The next property shows how a nondifferentiable round norm can be constructed.
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Property 2.2.5

Let kj(x) denote a block norm and k2<x) a differentiable round norm, where x € RN,

N > 1. Let k3(x) be a positive linear combination of ki(x) and k2(x); i.e.,
(2.2.15)

Then k3<x) is a nondifferentiable round norm.

Proof:

Since a positive linear combination of norms is itself a norm, we conclude that k3 is 

a norm. Since ki is a block norm, it is not differentiable at all x other than the origin. 

Clearly, the same must hold for k3. Finally, let Zi and Z2 be any two points on the unit contour 

of k3, such that Zi * Z2. (Note that Zi and Z2 are not in general on the unit contour of k) or k2-) 

Then,

and

Two possibilities need to be considered.

(2.2.16a)

b) zi x — Z2> so that the line through Zi and Z2 does not contain the origin. Then for X €

(0,1),
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(triangle inequality)

(relation (2.2.9) for round norms)

(2.2.16b)

We see from (2.2.16a) and (2.2.16b) that k3 satisfies relation (2.2.6), and hence is a round 

norm. We conclude that k3(x) is a nondifferentiable round norm.

Property 2.2.5 implies that any block norm or differentiable round norm can be 

considered as a limiting case of a nondifferentiable round norm. For example,

(2.2.17)

where kj, k2 and k3 satisfy (2.2.15). In this sense then, the family of nondifferentiable round 

norms contains the families of block and differentiable round norms. It will also be evident 

later that the nondifferentiable round norm exhibits characteristics peculiar to each of the 

other norms.

2.3 Norms Raised to a Power

As noted in the first chapter, a generalization of the standard Weber problem 

involves the use of distance functions raised to a power. This allows for a less restrictive cost 

structure in the model. If the distance function is raised to a power t C (0,1), its associated 

cost component exhibits an economy of scale; if t = 1 there is a constant return to scale; 

finally, if t > 1 we have a diseconomy of scale. This section deals with properties of a norm 

raised to a power. We begin by deriving an inequality, which will be useful subsequently.
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Lemma 2.3.1

If c S 0, i = 1.M, then

(For t S 0, we assume that Cj > 0, V i. Otherwise there are undefined terms.) In both 

relations, equality holds if, and only if, all the cfs or all but one of the cfs are zero.

Proof:

If all the e,’s or all but one are equal to zero, it is trivially obvious that the equality 

sign holds in each case. Hence, we assume from this point that two or more of the cfs are 

positive. For t > 0, we can delete the cfs which are equal to zero and re-label the remaining 

ones; so that without restriction we now assume that

Re-write the left-hand side as follows:

Ift > 1,

so that

Ift < 1,
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so that

Thus the lemma is proven.

Let k(x) denote any norm on RN, and define the following function,

(2.3.1)

where t € ( — + ®). We note that

(2.3.2)

so that the homogeneity property of norms is lost unless t = 1. Thus, h(x) is not a norm if 

t * 1. The following results give additional information concerning the function h(x).

Property 2.3.1

h(x) does not necessarily satisfy the triangle inequality when t > 1.

Proof:

Choose three different points xj, X2, X3 C RN, such that xj — X2 = 0(x2 — X3), 0 > 0.

In other words, a straight line connects xi, X2 and X3. For this case, we have

(Lemma 2.3.1)

(2.3.3)

Thus, the triangle inequality does not hold in this case.
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Property 2.3.2

h(x) satisfies the triangle inequality for 0 < t < 1. Furthermore, the triangle

inequality is satisfied in a strict sense.

Proof:

For any three distinct points xi, X2, X3 € RN, we have

(triangle inequality)

(Lemma 2.3.1)

(2.3.4)

Thus, the triangle inequality is satisfied, and furthermore, the inequality is strict for any 

distinct xi, X2, X3 € RN.

The preceding two properties generalize results given by Morris (1981), in which 

k(x) is the €p-norm, to the case where k(x) can be any norm. In addition, we show in 

Property 2.3.2 that the triangle inequality is strict for 0 < t < 1. The following result 

provides information concerning the classification of a norm raised to a power.

Property 2.3.3

h(x) is a metric for 0 < t < 1.

Proof:

We verify that the properties of a metric hold. Let p, q, r denote three points in RN.

(i) Since k(p - q) > 0, V p, q € RN, it follows that h(p - q) > 0, V p, q € RN.
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(ii) h(p-q) = 0 <=> k(p-q) = 0 <=> p = q .

(iii) h(p-q) S h(p-r) + h(r-q), Vp,q,r( RN, by Property 2.3.2,

(with strict inequality if p, q, r are distinct points).

(iv) h(p-q) = [k(p-q)]t = [k(q-p)]t = h(q-p), Vp,q(RN.

We conclude that h is a metric.

The above result can be generalized as follows: If 4>(p, q) is a metric and t € (0, 1), 

then Q(p, q) = [<J(p, q)]t is also a metric. We show that Q(p, q) satisfies the triangle 

inequality, the remaining properties of a metric being easily verified.

(triangle inequality for the metric 4>)

(Lemma 2.3.1)

The next property is taken from Pelegrin, Michelot and Plastria (1985). Since they 

do not give a proof, we provide one for completeness. Also recall that their S-norm is identical 

to our round norm.

Property 2.3.4

If g is a nondecreasing strictly convex function, and k is a round norm on RN, then 

g(k(x)) is a strictly convex function of x.

Proof:

First note that g(u), u( R1, must be an increasing function of u. We see this as

follows : SumDseeui < U9andg(ui.) = g(u2). Then by the strict convexity of g.
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which contradicts the nondecreasing property of g. Hence, we must have g(ui) < g(u2) for 

ui < U2. Now choose any two points xj, X2 € RN, such that xj * X2, and Xi * 0 (the origin). 

There are two possibilities to consider.

(2.3.5)

since k(xi) * k(x2) and g is a strictly convex function.

(ii) X2 * 0xi, where 0^0.

From Property 2.2.2 with a = 0, it follows that k(xo) < Xk(xi) 4- (1 — X) k(x2). Since g is an 

increasing strictly convex function, we get 

(2.3.6)

with equality in the last line if, and only if, k(xi) = k(x2). Combining (2.3.5) and (2.3.6), we 

conclude that g(k(x)) is a strictly convex function of x.

As a consequence of Property 2.3.4, we get the following result.

Property 2.3.5

If k(x) is a round norm and t > 1, then h(x) is a strictly convex function of x.

Proof:

Note that h(x) = g(k(x)), where the function g is given by
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. (2.3.7)
g(u) = uc .

Since g is an increasing strictly convex function for 0 < u < + « and t > 1, we immediately 

conclude from Property 2.3.4 that h is a strictly convex function of x.

Unfortunately, the Properties 2.3.4 and 2.3.5 do not extend to the case where k is a 

block norm. This is due to the fact that k now has polytope contours (polygon contours in R2). 

Since k(x) is constant along the facets of these polytopes, so is g(k(x)), and thus g(k(x)) cannot 

be a strictly convex function of x. However, Property 2.3.4 can be modified for the case where 

k is a block norm as follows.

Property 2.3.6

If g is a nondecreasing strictly convex function, and k is a block norm on RN, then 

g(k(x)) is a strictly convex function of x along any straight line which is not tangent to a facet 

of some contour of k. Otherwise g(k(x)) is a convex function of x.

Proof:

Let xi, X2 be any two points in RN, such that the straight line through xi and X2 

(L(xj, X2)) is not tangent to a facet of some contour of k. There are two possibilities to consider, 

(i) k(xj) * k(x2).

Letting xq = Axj 4- (1 —A)x2, A € (0, 1), we get

g(k(xQ))= gfkfAXj + (1 -A)x2J)

(using the triangle inequality and
< g[Ak(x ) + (1 — A)k(x9)J the homogeneity property for k , and

the nondecreasing property ofg)

(2 3 8
< Ag(k(xx)) + (1 - A) g(k(x2)),

since g is a strictly convex function.
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(ii) k(xi) = k(x2).

Then xj and X2 are on different facets of some polytope contour of k. It immediately follows 

that

k(xQ) < Xklxp +(1-X)k(x2) .

In Property 2.3.4, we showed that g must be an increasing function. Thus, 

g(k(xQ)) < g[Xk(X1) + (l-X)k(x2)J

= Xglklx^) + (1 -Xjgfklx^). (2-3-9)

Combining (2.3.8) and (2.3.9), we see that the first part of the property is proven. Noting that 

an increasing convex function of the convex function k(x) is itself convex in x proves the 

second part.

Analogous to Property 2.3.5, we obtain the following special case.

Property 2.3.7

If k(x) is a block norm and t > 1, then h(x) is a strictly convex function of x along 

any straight line which is not tangent to a facet of some contour of k. Otherwise, h(x) is a 

convex function of x.

2.4 Differentiability and Directional Derivatives

It is usually desirable in optimization models to deal with functions which are 

differentiable everywhere. Unfortunately, norms are not differentiable at the origin. If k is a 

norm on RN, then by the homogeneity property,

k(ax) = |a| k(x)

where a is any scalar value. Thus, if we plot k as a function of x along any straight line 

passing through the origin, the slope will have constant magnitude (> 0), but opposite sign on 

each side of the origin. This V-shape is illustrated in Figure 2.4.1(a). Clearly then, the deri-
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(a) t = I O) t > I

hCx) =

(O) O< t< I GO Z <0

Figure 2.4.1 Profiles of h(x) along a Straight Line in RN Passing through the Origin. 
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vatives are not defined at the origin. In addition, if k is a block norm or a nondifferentiable 

round norm, it has infinitely many other points in RN where it cannot be differentiated.

To partially circumvent these difficulties, we use the concept of one-sided 

directional derivatives, defined as follows (e.g., see p. 387 of Kreyszig, 1983): Let f be a real

valued function on RN, and let x and y be N-vectors, with y having unit length. Then the one

sided directional derivative of the function f at the point x in the direction y is given by

f'(x;y)= lim
8—0

f(x 4- 5y) — f(x)
8

(2.4.1)
+

if this limit exists.

We see from (2.4.1) that f '(x ; y) gives the marginal rate of increase of f at point x in 

the direction y. The term one-sided refers to the fact that the limit is taken as the real 

variable 8 approaches 0 through positive values (i.e., from the right). Since we shall deal only 

with directional derivatives that are one-sided, this term will be omitted. Furthermore, we 

shall only consider continuous functions, so that the limit in (2.4.1) will always exist. Thus, 

the proviso at the end of the definition can also be omitted. Finally we note that the

restriction of y to unit length means that

1/2
2 

y.

N
€2<y)= y

i = l

where y = (yi......yx)T- If this restriction is deleted, then ^(y) has to be included in the

= 1,
(2.4.2)

denominator of the expression for which the limit is being taken in (2.4.1).

If f is differentiable at the point x, the directional derivative here is equivalent to

the total derivative; i.e.,
(2.4.3)f'(x;y)= Vf(x)-y ,

where Vf (x) denotes the gradient vector of f at x, and the signifies the inner product (or dot 

product) of two N-vectors.
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We now give a fundamental result for optimization models in which a convex 

objective function is to be minimized. This result is taken from Shapiro (1979, p. 361), who 

also provides a proof.

Property 2.4.1

Let f be a real-valued function on RN, and let x and y be N-vectors, with y having 

unit length. If f is a convex function, then f has a global minimum at x if, and only if, 

f '(x ; y) > 0 for all directions y.

Alternatively, we can say that the convex function f has a global minimum at x if, 

and only if.
min f’(x;y)SO. (2’4'4

y
That this is a necessary condition is obvious. If y» denotes the direction which minimizes 

f '(x ; y), and if f '(x ; y*) < 0, then the function f is decreasing at x in the direction y* over some 

finite length. Hence, x cannot be a local (or global) minimum. That relation (2.4.4) is a 

sufficient condition can be seen as follows. If miny f(x ; y) > 0, then by the convexity of f, the 

point x must be a local minimum. Furthermore, a local minimum of a convex function is also 

a global one. It is interesting to note that if f is differentiable at x, the relation (2.4.4) reduces

to

Vf(x) = 0 , (2.4.5)

which is the first-order condition defining stationary points of a differentiable function.

Let us now consider any norm k on RN. It is a well-known result that the

directional derivative at the origin is given by

k'(0;y) = k(y), (2-4-6
(e.g., Juel, 1975, Juel and Love, 1981). This follows readily from the definition of the 

directional derivative given in (2.4.1).
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k'(0 ; y) = ,im
5-0+

k(8y) — k(0)
8

lim
5-0 +

8 k(y)

8
= k(y).

If k is a differentiable round norm, it is differentiable everywhere except at the origin; so that

for x 0,
(2.4.7)k'(x ; y) = Vk(x) -y .

Let us extend the results of the preceding paragraph to functions of a norm.

Consider then the case where
(2.4.8)f(x) = g(k(x)).

Here, k is any norm on RN, and g(u) is a differentiable function for u € [0, +»). By means of

the chain rule of calculus, we obtain

f' (x ; y) = g'(k(x)) k'(x ; y) , (2.4.9)

where

dg(u) 
g (u) = —— 

du

Then for x = 0, we get
(2.4.10)f' (0 ; y) = g'(k(0)) k'(0 ; y) = g'(0) k(y) ,

where use is made of (2.4.6) and the fact that k(0) = 0. Note also that g'(0) is the right-sided

derivative of g evaluated at 0, since the argument k(x) is non-negative. Furthermore, if k is a

differentiable round norm and x * 0, then
(2.4.11)f' (x ; y) = g'(k(x)) Vk(x) • y .

As an example, let us return to the function h(x) = [k(x)]k Here, we have f = h and

g(u) = uk Noting that g'(0) = 0 if t > 1 and + «if 0 < t < 1, and applying equation (2.4.10)

gives

h'(0;y) =
if t > 1 ,

(2.4.12)
+ °° , if 0 < t < 1 .
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The shape of h as a function of x along a straight line through the origin is illustrated in 

Figures 2.4.1(b) and (c) for the ranges of t above. Equation (2.4.12) generalizes the results 

obtained by Love and Morris (1978) for the case where k is the Euclidean distance to the case 

where k can be any norm. Our method is also more concise than theirs.

For the case where t < 0, the function h(x) becomes unbounded as x approaches the 

origin; i.e.,

limh(x) = +«>, t<0. (2A13:
x—>0

This is illustrated in Figure 2.4.1(d). Thus, the directional derivative is undefined at x = 0.

An infinite cost is associated with h(x) at x = 0, and the magnitude of h(x) decreases as the 

distance k(x) increases. Thus, the use of negative t does not make sense in standard minisum 

location models. It is not surprising then that t is restricted to positive values in the 

literature. However, it is interesting to note that for the location of a noxious facility, where 

the objective is to maximize the minimum distance to a set of fixed points subject to a set of 

constraints, one might consider instead a minisum criterion with negative t. Such a model

would take the form,
n

minimize W
x

NOX(x) ~ ZE w. h(x-a.)
i = l

n
= w. [k(x —a.)]1, t<0,

i=l
where the w, are positive weights, the aj are the fixed points, and the same set of location 

constraints apply. The use of such a model in practical situations involving the location of 

noxious facilities should be of some interest, as an alternative criterion. As an example, 

consider the location of a polluting facility such as a smoke-stack, where the amount of 

pollution varies inversely as the distance from the facility. In this case, t = — 1.

We use (2.4.12) now to obtain some interesting results for norms raised to a power.
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Property 2.4.2

Consider the function h(x) = [k(x)]t, where k is a norm on RN and t > 1. Then h(x)

is differentiable at the origin, with

Vh(0) = 0 .

Furthermore, if k is a differentiable round norm, then h is differentiable everywhere.

(2.4.14)

Proof:

From (2.4.12) we see that h'(0 ; y) = 0 for all directions y. It immediately follows 

that h is differentiable at x = 0, with Vh(0) = 0. If in addition, k is a differentiable round 

norm, then by (2.4.11), h'(x;y) = t[k(x)]t —1 Vk(x) • y = Vh(x) • y for all x x 0 and all y. Thus h 

is differentiable everywhere in this case.

Property 2.4.3

Consider the function h(x) = [k(x)]t, where k is a norm on RN and t < 1, (t x 0).

Then h(x) is not differentiable at the origin. Furthermore, h(x) is neither a convex nor 

concave function of x.

Proof:

For the case 0 < t < 1, we have h'(0 ; y) = + “> from (2.4.12), for all directions y. 

Also h is a finite-valued function of x with h(0) = 0. It follows that h is not differentiable at 

the origin, and that it cannot be convex or concave in x. For the case t < 0, it is immediately 

obvious from (2.4.13) that the same conclusion holds.

From properties (2.3.5) and (2.4.2), we see that h(x) is a strictly convex differen

tiable function of x, if t > 1 and k is a differentiable round norm. This result has practical 



70

implications on the optimization of continuous location models. Consider for example, the 

minisum objective function,

n
W (x) = Y w. h(x-a ),

i=l
where the w, are positive weights and the a, are fixed points, i = l,...,n. Then Wq is a 

positive linear sum of strictly convex differentiable terms, and so, is itself a strictly convex 

differentiable function of x, if t > 1 and k is a differentiable round norm. Thus, the optimal 

location can be found by standard descent techniques. Furthermore, this location will be 

unique for any set of afs (collinear or not). If the minimization is constrained, a convex 

programming technique will solve it.

Another practical implication is that h(x) can be used as a "smoothing" approxima

tion of a differentiable round norm k(x), by choosing a value of t slightly larger than one; i.e., 

t = 1 + £,

where 0 < e < < 1. This provides an alternative to the well-known hyperbolic and 

hyperboloid approximations used extensively in the literature (e g., Love and Morris, 1975b, 

Morris and Verdini, 1979, and Eyster, White and Wierwille, 1973). We illustrate this concept 

in Figure 2.4.2 for the one-dimensional case, where the hyperbolic approximation V(u2 + e) of 

|u| is compared with our smoothing function |u| 1+e. Note that our approximation is 

significantly better near the origin (u = 0), but it becomes inaccurate with |u| sufficiently 

large.

If k is a block norm or a nondifferentiable round norm, there exist points x other 

than the origin where k is not differentiable. The next property characterizes this set of

points.
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Figure 2.4.2 Smoothing Approximations of the Norm k in One Dimension.
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Property 2.4.4

Let k be a norm on RN which is not differentiable at all points other than the origin, 

and let S denote the set of points where k is not differentiable. Consider any x0 f S, x0 * 0. 

Then

LCS, ,2415)

where Lo is the straight line passing through the origin and x0.

Proof:

We begin by noting that 0 € S for all norms. For the given norm k, we can also 

choose an xq € S such that xq * 0. Consider the change of variables, v = x/p, where p is a non

zero constant. Since k(x) is not differentiable at xo, it follows that f (v) = k(pv) is not 

differentiable at vq = xo/p. But k(pv) = |p| k(v), so that k(v) cannot be differentiable at vq. 

We conclude that the straight line through the origin and xo belongs to the set S.

The directional derivative of a norm k(x) at x = 0 is given in equation (2.4.6). We 

would like to extend this result to the other non-differentiable points of k(x). This would be of 

interest for block norms and nondifferentiable round norms. From Property 2.4.4, we know 

that these points form straight lines through the origin. Referring to Figure 2.4.3(a), let Lo 

denote such a line, and let us calculate the directional derivative at any xq € Lo (xq x 0), in 

the direction of the unit vector y. The unit vector y can be represented by the unique sum of 

two vectors, Vl and Vq> where Vl is parallel to Lo and Vq is tangent to the contour of k at xq; 

(see Figure 2.4.3(a)). Thus,

y = vL+vc; (2.4.16)

so that the directional derivative of k at xq in the direction y is given by
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z

Figure 2.4.3 Directional Derivative Calculation at a Non-Differentiable Point.
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k'(xQ; y) =
k(xQ + 5y) — k(xQ)

8

k(xQ+ 8Vl+ 8Vc) -k(xQ)

6

k(xn+8V,)-k(xn)

since

k(xQ+ 8Vl+ 8Vc) = k(xQ+8VL) + O(82).

But

k(X())+8k(VL),
k(x0+8VL) =

where 8 is sufficiently small, and use

if xQand VL have opposite directions, 

if xQand VL have the same direction ,

is made of the fact that k(vi + V2) = k(vi) + k(v2) if

V2 — P vi, P > 0. We see then that

k'(xQ;y) =
-k(VL),

+ k(VL),

if x and V have opposite directions, 

if xQand VL have the same direction .

(2.4.17)

As an example, consider the case where k(x) is the rectangular norm (€i(x)) on R2.

The set of points at which k(x) is not differentiable is given by

S = {x|xJ = 0 or x2 = 0 } ,

where x = (xj, X2)T. That is, the set S consists of the points on the vertical and horizontal

axes. Let xq be a point on the vertical axis other than the origin, and let 0 be the smallest 

angle at xo between the vertical axis pointing away from the origin and the unit direction

vector y; (see Figure 2.4.3(b)). Then

k(VL) =
— (cos0 + sin0),

+ (cos0 + sin0),

if 135° < 0 < 180° ,

if 0 < 0 < 135°.

We see from (2.4.17) that

k'(xQ;y) = cos0 + sin0, 0 0 < 180° . (2.4.18)
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written as

With y = (yi,y2)T. we have cos0 = y2 and sinQ = |yi|, so that (2.4.18) can alternatively be

k'(xQ;y) = |y) + y2 . (2.4.19)

Consider now a minisum location model with fixed points or customers, a,,

i = 1,n. Each customer at has a norm of the form kjx — a) associated with it. The norm

kj(x — a)) as a function of x is the same as kt(x) translated or shifted by the vector a,. We see 

that the origin associated with k,(x — a) is at x = a) (x — a, = 0). Furthermore, if k, is a block 

norm or nondifferentiable round norm, then the straight lines (Lo) containing the non- 

differentiable points x of k/x — a,) will pass through a), (see Property 2.4.4).

Directional derivatives are used in minisum location models to determine

optimality criteria at the fixed points (e.g., Juel and Love, 1981, and Juel, 1983). We shall see 

later that they can be applied to points other than the fixed locations, for block norms and 

nondifferentiable round norms, to obtain additional optimality criteria at the intersection 

points. These intersection points occur in R2 where two (or more) non-diiffrentiable lines (Lo)

from different fixed locations cross.



CHAPTER 3

THE (p NORM

As noted in Chapter 1, the £p norm is used extensively in the literature on 

continuous location theory. The most popular distances - rectangular and Euclidean - are 

specific examples of this norm with p = 1 and 2 respectively. In this chapter, we investigate 

several properties of the fp norm which are related directly or indirectly to the application of 

this function in approximating travel distances of road networks.

First we define a directional bias function for norms in general, which is subse

quently used to study the directional bias of the fp norm in detail. An important relation 

between €p distances with 1 < p < 2 and those with 2 <p < +<» is established. We then 

derive some properties of the €p norm multiplied by an inflation factor, which pertain to 

certain fitting criteria applied in the literature. These properties should be useful in 

simplifying the search for the best-fitting parameter values. Finally, we discuss a general 

procedure for fitting this distance function to actual road data, and illustrate the approach 

through a case study.

Throughout this chapter, attention is restricted to distance functions acting on the 

plane (R2), since this is the most common case occurring in practice. However, the properties 

given here can be extended in straightforward fashion to higher-dimensional spaces. Also 

note that the reference axes are always assumed to be mutually orthogonal unless otherwise 

stated.

3.1 Directional Bias

For any norm k on R2, we have the following fundamental result.

76
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Property 3.1.1

The dimensionless ratio,

k(x)

€2(x)
x*0 ,

is a function of 0 alone, where 0 is the angle specifying the vector x = (xi, x?)T; that is,

0 = tan 1 (x2/ xp .

(3.1.1)

(3.1.2)

(See Figure 3.1.1a.)

Proof:

For the points x*0on any half-line ending at the origin, we have

k(x) = c€2(x),

where c is a constant. It immediately follows that r = r(0).

We shall call r(0) the directional bias function of the norm k. In a qualitative sense, 

this function can be thought of as a measure of the relative difficulty of travel in any 

direction. If r(0j) > r(0o), then one must travel a longer distance along a line at angle 0j with 

the xj-axis than along a line at angle 0o with the xi-axis, to cover the same Euclidean 

distance between pairs of points. In the physical world, the shortest possible path between 

two points is the straight-line or Euclidean path. Hence, for norms used to approximate 

actual travel distances, the directional bias function should satisfy the following relation,

r(0) > 1 , tf 0 . (3-1-3)

Otherwise, distances shorter than Euclidean are possible. The differentiability of r at a 

specified angle 0o depends on the differentiability of k at xq (Figure 3.1.1b). We shall discuss 

this relationship in more detail later on.

The traditional method of illustrating and comparing the directional bias of norms 

is by means of the unit circle (e g., see Figure 10.1 in Love, Morris and Wesolowsky, 1988). 

The function r(0) provides a formal definition of directional bias, and a new wav of
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a) Constant along any specified orientation 0

b) Differentiability dependent on type of norm

Figure 3.1.1 Determining the Directional Bias Function of a Norm.
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representing it graphically which we believe is more informative and easier to interpret than 

the unit circle, since the relevant information is now contained in a standard plot of a function 

of one independent variable (0).

From the symmetry property of norms, it follows that

k( —x)
€2(-x)

r(0 + n) . (3.1.4)

Thus, r(0) has a periodicity of n/n where n must be some integer greater than or equal to one.

Let us consider now the directional bias of the €p norm, denoted by rp(0) where

p > 1. Using the definition in (3.1.1), we obtain

f (x) i
p Ar (0) = = ------

P €2(X) 9X)
(3.1.5)

Since

(3.1.6)

equation (3.1.5) can be rewritten in the form,

r (0) =

Up
| cos0 |p + | sin0 |p

Up

(3.1.7)

Alternatively, we see that the fp norm can be expressed in terms of the Euclidean distance 

and the angle of travel (9) as follows:

Examples of the directional bias function for different values of p include

rt(0) = | cos0 | + | sin0 | ,

(3.1.8)

(3.1.9)

and
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| cos0 |2 + | sin0 |2 (3.1.10)

for the rectangular and Euclidean norms respectively.

Some useful properties of rp(0) are derived below.

Property 3.1.2

rp(0) is periodic with period n/2 (= 90°).

Proof:

r (0 + n/2) = | cos(0 + n/2) |p + | sin(0 + n/2) |p
1/p

| — sin 0 |p + |cos0 |p

| cos0 |p + | sin0 |p

1/p

(3.1.11)

Property 3.1.3

For any real Q,

r (n/4 + Q) = r (n/4-Q) . 
P P

(3.1.12)

Proof:

This follows immediately from the observation that cos (n/4 + Q) = sin (n/4 - Q) and 

sin (n/4 4- Q) = cos (n/4 — Q).

From the two preceding results, we see that rp(0) is the mirror image of itself about 

the line 0 = n/4, and that this function has a period of n/2. Hence, it is only necessary to 

consider 0 in the interval [0, n/4], (i.e., 0 to 45°). Noting that | cos0 | = cos0 and | sin0 | = sin0 

for 0 €[0, n/2], we readily obtain the following expressions for the first and second-order
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derivatives of rp(0):

and

dr (0)
P

d0
sin 20

2[r (0)]p_1 
p

(3.1.13)

d2r (9) 
p

de2
= — r(0) + (p —1) [r (0)]

P P

l_2p (sin20)P 2

92P-2

(3.1 14)

f

where 0 < 0 < n/2 .

Property 3.1.4

In the interval 0 < 0 <n/4, rp is a strictly increasing function of 0 if 0 < p < 2,

while it is strictly decreasing in 0 if p > 2.

Proof:

For 0 < 0 < n/4, we have cos0 > sin 0; so that cosp “ 20 > sinp “ 2o if p > 2, while

cosp_20 < sinp ~ 20 if p < 2. From (3.1.13) it follows that for 0 < 0 < n/4,

dr
—- > 0 , ifp < 2 (p x0) ,

and

dr
—- < 0 , ifp > 2 . 
d0

(3.1.15a)

(3.1.15b)

Hence, the property is proven.

Property 3.1.5

If p > 1 and p x 2, then rp has a unique inflection point (0*) in the interval

0 < 0 < n/4.
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Proof:

First consider the case 1 < p < 2. Since rp is strictly increasing (Property 3.1.4) 

and so is sin20, we see from (3.1.14) that d2rp/d02 is the sum of two strictly decreasing terms.

Hence, d2rp/d02 is strictly decreasing in 0 € (0, n/4). Furthermore,

and

d2r
lim —7 = +“> , (1 < p < 2) ,

o^o+ d0

(3.1.16)

d2r (n/4) - - -
P (rx. <"> \ O P n (1 rx ° 1 (3.1.17)

Therefore, a unique 0* exists such that d2rp(0*) / d02 = 0, and 0* is an inflection point.

Now consider p > 2. Since rp is strictly decreasing (Property 3.1.4), it follows that 

d2rp/d02 is the sum of two strictly increasing terms. Hence, d2rp/d02 is strictly increasing in 

0 € (0, n/4). Furthermore,

(3.1.18)

and using (3.1.17),

(3.1.19)

Once again we conclude that a unique inflection point 0* exists with d2rp(0*)/d02 = 0, thereby 

ending the proof.

The shape of rp(0) is illustrated in Figure 3.1.2 for various values of p, and for 0 in 

the range [0,n/2], i.e., one complete cycle (Property 3.1.2). From Properties 3.1.3 and 3.1.4, it 

follows that rp has its maximum value at 0 = n/4 and minimum value at 0 = 0, n/2, if 

0 < p < 2, while the converse holds if p > 2. Defining the direction of greatest (least) 

difficulty as the value of 0 which maximizes (minimizes) rp, we see that for 0 < p < 2 the 

direction of greatest difficulty is at 45° to the axes (0 = n/4, 3n/4, 5n/4, 7n/4), and the direction
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Figure 3.1.2 Directional Bias Function of fp(x).
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of least difficulty is parallel to the axes (0 = 0, n/2, n, 3n/2). In other words, the distance 

€p(x — y) between any two points x and y separated by a straight line segment of fixed length 

f2(x — y), is maximized if this line segment is at 45° to the axes, and minimized if it is parallel 

to an axis. The converse holds when p > 2.

We note the following characteristics of the directional bias function at 0 = 0, n/4,

n/2, which will be useful in the subsequent discussion.

r (0) = r (n/2) = 1 , p > 0 ; 
P P

dr (n/4) 
p

1 1
r (n/4) = 2P 2 , tfp * 0 ;

(3.1.21)

dr (0) dr (n/2)
p = —-------  = 0 , 1 < p < 4-00 ; (3.1.22)

d0 d0

d0
(3.1.23)V P 0 .= 0 ,

Relation (3.1.23) can be calculated directly from the functional form of the first derivative in

(3.1.13), while (3.1.22) is readily obtained after rewriting the first derivative as follows:

(3.1.24)—-— = ------------  ( — cosp *9 sin0 + cos6 sinp *9
de [r (0)lp_1 '

P
Since the functional form of drp/d0 given in (3.1.24) (or (3.1.13)) is valid only in the

interval 0 < 0 < n/2, the slopes calculated at 0 and n/2 are in actuality right and left-sided 

derivatives respectively. However, since the slopes at 0 and n/2 are equal in (3.1.22), we

conclude from the periodicity of rp(0) (Property 3.1.2) that rp has a two-sided derivative at 

0 = 0 and n/2 for p> 1; i.e., rp is differentiable here. This is not the case if 0<p< 1, as seen by 

the following limits. For p= 1 (rectangular distance), we have

lim
0—>0 +

— sin0 4- cos0
(3.1.25a)

= 1 ,
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while

drl
lim — = — 1 . 

_ de
0—-

2

(3.1.25b)

ForO < p < 1 (hyper-rectilinear distance),

dr 
lim —- 

n „+ d0 0—0
lim

0-0 +

lim
9—0 +

1

[r (0)]p —1 
p

lim
0—0 +

— cosp !0 sin0
4_ lim

0-0 +

cos0 sinp J0

[rp(0)]p“1 [rp(0)]p“1

{—sin0} -1- lim
0-0 +

{sinp_ !0} (equation (3.1.20))

4-00
(3.1.26a)

9

while similarly,

lim
dr 
__P 
d0

lim — COSP l0 + COS0 = _ 00
(3.1.26b)

n
0—-

2
0—-

2

Hence we conclude, using the preceding limits and the periodicity of rp(0) (Property 3.1.2),

that the right and left-sided derivatives are not equal at 0 or n/2, and thus rp is not 

differentiable at 0 = nn/2, n = 0, ± 1, ±2,..., when 0 < p < 1.

We see now that the directional bias function of the fp norm is differentiable for all

0 if, and only if, p > 1. This result can be extended to general norms as follows.



86

Theorem 3.1.1

The directional bias function r(0) of the norm k is differentiable for all 9 if, and only

if, k is a differentiable round norm.

Proof:

Without loss in generality, consider only the points x on the circle of unit radius 

centered at the origin (^(x) = 1). Let xq denote such a point, 9q be the angle specifying the 

vector xo, and yo be a unit vector tangent to the circle at xo- (See Figure 3.1.1b). Let d/d0 + 

and d/d0- denote the right-sided and left-sided derivatives respectively. Referring to Figure

3.1.1b, we have in general

and

d*9o)

d0 +
= k(x0;y0) ’

(3.1.27a)

drf0o)
— = -k(x0;-y0). 
dU

If k is a differentiable round norm, then by (2.4.7), 

k<x0;y0) = Vk(x0)-y0= ;

so that

dr(0Q) dr(0o)

d0+ d0"

(3.1.27b)

(3.1.28)

(3.1.29)

Hence, k a differentiable round norm is a sufficient condition for r to be differentiable at all 

values of 0.

If k is not a differentiable round norm, and furthermore xq is chosen such that

Vk(xo) is undefined, then we must have

k(xo;yo)5i ’ (3.1.30)

(Since k is differentiable in the radial direction through xq, we would otherwise conclude that

Vk(xo) exists, which is a contradiction.)
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Therefore,

drt0o) dr(0o) (3.1.31)
d0+ d0“

so that r is not differentiable at 0o- Hence, k a differentiable round norm is also a necessary 

condition for r to be differentiable at all values of 0.

Theorem 3.1.1 provides another way of viewing the different classes of norms 

discussed in Chapter 2 (see Figure 2.2.2). If k is a differentiable round norm its directional 

bias function r is a smoothly varying function of 0. On the other hand, if k is a non

differentiable round norm or a block norm, then r(0) has sharp corners at certain values of 0 

where the slope changes by a discrete amount. This characteristic is illustrated in Figures 

3.1.3a and b, where one cycle of rp(0) is plotted for sample fp norms with p > 1, and compared 

with r(0) of weighted one-infinity norms (see (1.2.13)) whose parameters are adjusted so that 

rp(0) = r(0) at 0 = 0, n/4, n/2.

A practical observation can be made concerning the fp norm (p > 1), after a close 

scrutiny of Figure 3.1.2 and equations (3.1.20) to (3.1.23). First we note that rp(0) is a 

decreasing function of p except at the boundaries 0 = 0 and n/2 in Figure 3.1.2, where it is 

constant. (This result is a direct consequence of Property 2.3.1.) When 1 < p < 2, the 

direction of greatest difficulty is at 0 = n/4 (45° to the axes), and the direction of least difficulty 

is at 0 = 0, n/2 (parallel to the axes). Meanwhile, when p>2 this situation is reversed, 

signifying a phase change of 45°. One should expect therefore that the norm fq(x), where q is 

some value greater than 2, can be accurately approximated by the norm o€p(x'), where x' 

gives the coordinates of the point x in a new set of axes obtained by a 45° rotation of the 

original axes, o is a scaling factor less than 1, and p takes on a value in the open interval (1,2). 

This expectation is reinforced by the fact that drp/d0 = 0 at 0 = 0, n/4, and n/2, for all p > 1 

(equations (3.1.22), (3.1.23)).
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(a)

Figure 3.1.3 Comparison of Directional Bias Functions.
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We proceed now to investigate the accuracy of such an approximation. Define a

'normalized' difference between a€p(x') and fq(x) as follows;

o € (x') — € (x)
A = —----------- -— , V x * 0 .

€2(x)

Since Euclidean distances are preserved under an orthogonal transformation and a rotation

(3.1.32)

in R2 is such a transformation (Shields, 1969, p. 285), therefore

€2(x') = €2(x) . (3.1.33)

Thus, we obtain

€ (x)
-3— = r (9) ,
€2(x)

where it is recalled that x = (xi, X2)T and 9 = tan —1 (xg/xi); and

(3.1.34)

f (x')
—----  = r (9 — n/4) ,
€2(X'} P 

since the axes are rotated 45°. Hence, for a given value of q > 2, and specified values of p and

f (x') 
P___

€2(x)
(3.1.35)

o, A is a function of 9 alone; i.e.,
(3.1.36)A (9) = o r (9 — n/4) — r (9). 

p <1
Due to the symmetry of the directional bias function of the fp norm (Properties 3.1.2 and

3.1.3), it suffices to consider 9 in the range,
(3.1.37)0 < 9 S n/4 .

The question now is how to specify for a given rq(9), (q > 2), the values of o and p in

the approximation function orp(9-n/4). We choose a simple method. Impose the following

'boundary’ conditions,
(3.1.38)A(0) = A(n/4) = 0 ,

to obtain two equations to solve for the two unknowns, o and p. With (3.1.20), (3.1.21) and

Property 3.1.2, the boundary conditions become

1 1

A(0) = o - 2P 2 - 1 = 0 , (3.1.39a)

and
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1 1

A(n/4) = o-2q 2 = 0 .
(3.1.39b)

Solving for o and p gives

and

(3.1.40)

p = q/(q —1) . (3.1.41)

Besides the zero value imposed on A at the boundaries, 0 = 0 and n/4, it is easily shown using

(3.1.22), (3.1.23) and Property 3.1.2 that

dA(0) dA(n/4)
-------  = ----------- = 0 . 

do de

(3.1.42)

As a result of the boundary conditions in (3.1.38) and (3.1.42), and the fact that

rp(0 — n/4) and rq(0) have the same general concave/convex shape arising from a unique

inflection point (Property 3.1.5), we expect the difference function A to be small. This implies

that the approximation gives a good fit. Let us determine now the accuracy of this fit.

For 0 < 0 < n/4, we have

r (6) = [cosq 0 4- sin^]17'1 , 
q

(3.1.43)

and

r (0 — n/4) = P
cos(0 —n/4) sin(0 — n/4)

cosp(n/4 —0) 4- sin p( n/4 — 0)
Up

1/P

1

y/2
(cos0 + sin0)p 4- (cos0 —sin0)p

Up

P

Also note from (3.1.41) that

q = p/(p - 1) .
Using the above equations and (3.1.40), it follows that A can be re-written in terms of 0 and p 

alone. In order to signify that the difference function has equations (3.1.40) and (3.1.4 1) 

imposed on the parameters a and p, we denote it as 5(0;p). It is readily seen that
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8(9; p) = (cos9 4- sin0)p + (cos0 —sin0)p
Up

(3.1.43)

(cos0)p/(p-1) + (sin0)p/(p-n
(p- l)/p

where

0 < 9 < n/4 and 1 < p < 2 . (3.1.44)

We can now carry out a numerical search over the ranges given in (3.1.44) to deter

mine the maximum absolute magnitude of 8, and the values of 0 and p where this occurs.

First note the following limiting cases:

lim 8(0;p) = cos0 - lim 
p—»1+ p—►1 +

(cos0)pZ,p- n + (sin 11

= cos0 — max {cosO, sin 9}

= cos0 — cos0 (0< 0 n/4)

= 0 ;

<p- D/p

(3.1.45)

lim 8(0;p) = 8(0;2)
p—»2

1 1/2
= (cos0 + sin0)2 + (cos0 —sin0)2 -1

V 2

Thus, the p and 0 which maximize | 5 | must be at an interior point, remote from the

= l-l=o.
(3.1.46)

Also, by (3.1.38),

8(0 ; p) = 8(n/4 ; p) = 0 . (3.1.47)

boundaries of the rectangle defined by the ranges in (3.1.44). This facilitates the numerical

search, since we can now bypass large values of the exponent p/(p - 1) ( = q) in (3.1.43) when p

approaches 1 + .
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The difference function 8(0;p) was evaluated on the computer over a finely-divided 

grid covering the points (6,p) defined by (3.1.44). The results are summarized in Figures 3.1.4 

and 3.1.5, where maxg |8| and the 0* at which this occurs are plotted as functions of p. Observe

that

at

maxQp|8| = 0.027818 ,

p„ = 1.2355 and 0„ = 33.493° ,

(3.1.48)

(3.1.49)

where the maximizing values p*« and 0** are obtained by the grid search to an accuracy of

0.0001 and 0.001° respectively. In Figure 3.1.6, 8 is plotted as a function of 0 for sample fixed 

p. The profiles here are unimodal in shape, and 0* shifts to the left for increasing values of p

(see also Figure 3.1.5). It is also interesting to note that

8(0;p)>O, V0,p, (3.1’50

a result confirmed by the exhaustive grid search. Finally, in Figure 3.1.7, one cycle of rq(0) 

and its approximation by o rp(0 — n/4) are shown for the sample case, p = 1.2 (q = 6).

We see from the above results that the directional bias function rq(0) for any q > 2 is 

accurately approximated by orp(0 — n/4), where the scaling factor o and p £ (1,2) are given in 

(3.1.40) and (3.1.41). This leads to the following important conclusion.

The norm €q(x), where q>2 and x £ R2, can be replaced for all practical 

purposes by the norm ofp(x'), where x' is the vector of coordinates of x 

measured in a new set of axes rotated 45° from the original, 

o = 21/Q-1/2 < 1, and p = q/(q— 1) € (1,2).

In quantitative terms, we obtain from (3.1.48) and (3.1.50) the following bounds on the

difference;

0 < o C (x') - f (x) < 0.027818 C(x) . p q 2
(3.1.51)

Recall that certain c^i^s^t^raints were imposed on the normalized difference A (see

(3.1.38)), in order to specify o and p for a given q. If these restrictions are removed, and
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Figure 3.1.4 Maximizing | 8(0 ; p) | over 0.
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Parameter p

Figure 3.1.5 Maximizing Value of 9.
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e c°)

Figure 3.1.6 Profiles of 8(0 ; pi) for Fixed p.
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Figure 3.1.7 One Cycle of rq(0) and its Approximation Function for q = 6 (p = 1.2).



97

instead o and p are chosen to minimize the maximum absolute magnitude of A, the approxi

mation will be improved. This result strengthens the conclusion above; namely, that for 

practical problems, the estimation of actual distances by an fp norm with p>2 need never be 

considered, since the same degree of accuracy can be obtained with a value of p in the interval 

(1,2) after rotating the axes 45°.

As a final comment on this topic, we note that when p is given by (3.1.41), fp(-) is 

the polar of fq(-). Thus, the bounds in (3.1.51) provide a quantitative relation between fq(x) 

and its polar acting on transformed coordinates.

3.2 Fitting the Weighted fp Norm

The weighted fp norm was introduced in Chapter 1, where we noted the successful 

use of this function in estimating actual distances from several road networks. We shall see 

below that the weighted fp norm has two parameters, an inflation factor c and the parameter 

p of the fp norm, which need to be specified. Two criteria are mentioned in the literature for 

fitting the unknown parameters of a distance function to a set of data (e.g., see Love and 

Morris, 1972, p. 64). Applied to our distance function, these goodness- of-fit criteria are as 

follows:

Criterion 1

n — 1 n 
xn V V ij / \ ai (3.2.1)minimize ADf = / / | d^(a., a.) — A..|;

r, p i = 1 j = i +1

Criterion 2

n — 1 n
minimize SD^ = [d^ (a., a.) — A.p2/A.^;

t, p i = l j = i+l

where n = the number of fixed points (cities, destinations, customers) in the road 

network, which are chosen for the data set;

Aq = the actual distance (road miles) between the fixed points at and aj;
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df(a.i,a.j) = t fp(ai-aj) is the weighted €p norm used to estimate the distance (road 

miles) between a; and aj;

and i, p>0 are the unknown parameters.

The first criterion involves minimization of the sum of absolute deviations between 

estimated and actual distances. As noted in Love and Morris (1072), the implication here is 

that the empirical function tends to estimate greater actual distances relatively more 

accurately than shorter distances. On the other hand, the second criterion, which involves 

minimization of a weighted sum of squared deviations, achieves a greater sensitivity for 

shorter distances through the weights Ajj-1. It also possesses attractive statistical properties 

(Love and Morris, 1072). We see that the two criteria measure goodness-of-fit in significantly 

different ways.

As noted in Chapter 1, the minimization of AD; or SD; is currently carried out by 

an exhaustive grid search over a 'safe' range of parameter values. Since the calculation of AD> 

or SD; at each grid point involves O(n2) operations, this procedure becomes very time 

consuming and inefficient for large samples. It appears that no effort has been made yet to 

improve on the brute- force approach. Thus, the purpose of this section is primarily to derive 

properties which will permit us to find the best-fitting values of t and p for the two criteria in 

an efficient manner.

The first two results pertain to the behaviour of AD; and SDf as functions of the 

inflation factor r alone (i.e., p is fixed).

Property 3.2.1

ADf is a convex function of t.

Proof:

Denote the terms in the summation defining AD; by
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Then for any i j,

i,j = 1,n , i < j.

(3.2.3)

d
di g‘j ”

— f (a.— a), if x<A../€ (a.—a.), pi j ij p i j (3.2.4)

+ f (a. - a.), if x > A../ € (a. - a.). pi j ’ ij p i j
We see that the slope dgjj/dx is non-decreasing in i, and hence gj is a convex function of t.

. - a.), if x > A../€ (a. - a ), i j >j p i j

Thus, ADf is the sum of convex terms in i, and is itself a convex function of i.

Property 3.2.2

SD; is a strictly convex function of i.

Proof:

Denote the terms in the summation defining SD; by

h..(x, p) = »J ’r

(df(a a)-AJ2 [t€ (a. - a.) - A..]2
P‘ J »J

Then for any i j,

a
- h.. =
dx

and

A., 
ij

A. 
>J

(3.2.5)

2
— [x f (a. — a.) — A..] € (a. - a.), A p 1 J ‘J P i J

ij

(3.2.6)

i,j = l,...,n, i < j.

2 2
— [€ (a. - a.)F>0.
A., p 1 J

‘J

(3.2.7)

Thus, hjj is a strictly convex function of t. Since SD; is a sum of terms which are strictly

convex in x, then it is also a strictly convex function of x.

We shall see later that Properties 3.2.1 and 3.2.2 are very useful in streamlining 

the search for the best-fitting values of x and p. In the meantime, let us examine AD; and SD; 

as functions of p (i.e., x is fixed). This turns out to be a relatively complicated problem.
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Property 3.2.3

Consider any term gij(x,p) in the sum AD; (see (3.2.3)) as a function of p in the open 

interval (0, + °°). If the vector a,-aj is parallel to an axis, then gj is constant. Otherwise, there 

are two possibilities:

(i) if A,j >Tmax{|a1i-aJi|, |ai2_aj2|} = x£®(ai-ap, then gjj is a unimodal function of p, 

strictly convex over the interval 0 < p < pj and strictly concave for p>pj, where p,j is the 

unique value of d such that

min g..(x,p) = g..(x,p..) = 0; (3'2'8

(ii) if Ajj^rfoXai-aj), then g,j is a decreasing strictly convex function of p with a 

minimum approached asymptotically as p—> + <».

Proof:

Suppose aj-aj is parallel to the xpaxis, so that ai2~aj2 = 0. Then clearly, 

de(aj,aj) = t|aii-ajp for all p>0. A similar result holds if a,-aj is parallel to the X2*axis. 

Hence, gj is a constant function of p when a! — aj is parallel to an axis.

On the other hand, if this is not the case, then |ajt— ajt|>0, t = 1,2. By Properties

2.1.1 and 2.1.2, it follows that df(a1,a^j) is a decreasing strictly convex function of pG0, + °o). 

Also limp_,o + df(ai,aj) = +«, and limp_1,o>dfai1aj) = if^=rX^1- aj), using equations (2.1.9) and 

(2.1.29). The remainder of the proof is now obvious.

Property 3.2.4

The previous result applies to any term hjj(-i,p) in the sum SD^ (see (3.2.5)), except 

when a,-aj is not parallel to an axis and Aii>r€«(ai- ap. For this case, hjj is also a unimodal 

function of p with minimum at pj. However, hj is strictly convex over the interval 0<p<p1J
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and strictly concave for p > py, where py is the unique inflection point such that

d
—- h..(x, p..) = 0 . .2 ‘Jdp

(3.2.9)

Furthermore,
(3.2.10)

Proof:

If a;-aj is parallel to an axis, then gy is a constant function of p (Property 3.2.3). 

Therefore, hy = gy2/Ay is also constant in p.

Now consider a^-aj not parallel to an axis. To simplify the notation let 

0(p): = fp(ai-aj), fj := |aii-aji|>0, f2- = |ai2—aj2|l>0, and P'(p) and P"(p) give the first and 

second-order derivatives of p. We have

h.j(x,p) = [xP(p)-A..]2/A.., (3.2.11a)

(3.2.1

and

— h (x,P) = — [x(p'(p)r + (i p(P) - a )p’(P)]. 
lJ A..

Furthermore, by Properties 2.1.1 and 2.1.2, it follows that

p'(p)<0 and p’(p)>0, VpUO,+0°).

(3.2.11c)

(3.2.12)

If Ay< xfco(ai-aj), then

tP(p) — A„ > xf^a. — a.) — A.., 0 < p < +°o , (Property 2.1.1)

Hence,

> 0.
(3.2.13)

(3.2.14)

Clearly then, hy is a decreasing strictly convex function of p with the minimum 

([lOai-ap-Ay] 2/Ay) approached asymptotically as p-> + oo.
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Now consider the case where Ay > t€a>(a,-aj). It is readily seen that h(j has a positive 

vertical asymptote at p = 0 and a horizontal asymptote approached from below as p—> + <». 

Hence, h,j must have at least one inflection point py, such that d2hij(x, Pij)/8p2 = 0. We now 

show that Pij is unique, and furthermore, Pij>Pij. Using equation (2.1.6), rewrite f$*(p) as 

follows:

Pij > Pij-

P'(p) = P(p)-H(p), (3.2.15)

where

H(p) =
1

P2(fj + fp

l^„( f? )+^„()]

1 \ fp + fp / 2 \ fp 4. fp /
12 12

(3.2.16)

Therefore,

P"(p) = P'(p)H(p)+ p(p)H'(p)

= p(p) [H2(p) + H'(p)l.
(3.2.17)

Substituting (3.2.15) and (3.2.17) into (3.2.11c), and equating to zero, it follows that py must

solve the equation

A..
>J 2H2(p) + H'(p) (3.2.18)

T P(p) H2(p) + H'(p)

But

2H2(p) + H'(p) > H2(p) + H'(p)

>0 (v p"(p) > 0),

so that

2H2(p) + H'(p)
„ > 1 , Vp > 0.

H2(p) + H'(p)
(3.2.19)

Hence,

A.. > tP (p. ). ij r rij
(3.2.20)

Since

A.. = iP(p..), ij r rij
(3.2.21)

by the definition of p;j (see Property 3.2.3), and P is a decreasing function of p, we must have
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A lengthy computation, the details of which are left to Appendix A, reveals that the

right-hand side of equation (3.2.18) is a decreasing function of p (>0). The left-hand side,

Ay/x0(p), is clearly an increasing function of p. It follows that pjj is unique, and that hjj is

strictly convex in p for 0 < p < py and strictly concave in p for p > py. Also note that

C< 0 , if 0 < p < p..,

8h..
__JJ
dp

= 0 , if p = p.., (3.2.22)

^>0,iTp>p...

and hence, h,j is a unimodal function of p with minimum at py. This ends the proof.

The shapes of gjj and h,j for varying p are illustrated in Figure 3.2.1a) and b), for the

case where the vector aj-aj is not parallel to an axis. Since ADf and SDf are the sums of terms 

gij and hjj respectively, each term being in general neither convex nor concave in p, we obtain 

the following important result.

Property 3.2.5

Consider the sums ADf and SDf as functions of p in the open interval (0, + <»); i.e., 

the inflation factor x is fixed. In general ADf and SDf are neither convex nor concave in p, and 

may have more than one local minimum or maximum.

As a consequence of the above property, there is no easy way to find a value of p 

which minimizes ADf or SDf globally for a given x. One is forced essentially to do a thorough 

numerical search over a safe range. It would be advantageous to restrict this search by 

specifying the smallest interval of p in which the global optimum is known to occur. This is 

the purpose of the following results.

Property 3.2.6

If x S 1 and at least one of the vectors a,-^ is not parallel to an axis, then
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Figure 3.2.1 General Shape of gy and hy.
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0 < Pr P2 - 2 -

where pi* and P2* are any values of p which minimize ADf and SDf respectively for the

specified t.

Proof:

The proof relies on the fact that the shortest distance between two points is the

Euclidean (straight-line) distance between them. Hence

Aij ~ €2(ai ~ aj}’ Vi’J-

Since €p(ai-a.j) is a non-increasing function of p (Property 2.1.1), and t< 1, therefore

(3.2.23)

A.. - if (a. - a.) > A.. - if (a. - a.) ij p i j ij 2 i j
(3.2.24)

> 0 , V i, j, and p > 2 .
Furthermore, the first inequality in (3.2.24) is satisfied strictly for each pair (i j) with aj-aj not

parallel to an axis. Thus,

n — 1 n
AD^(p > 2) = Y |x€p(a.-a.)-A..|

i = l j=i + i

n-1 n
= Y Y (A..— if (a. — a.))

— — ij p 1 j
i = l j = i + i

n — 1 n
> Y Y (A . - if (a. - a.))

— ij 2 i j
i = 1 j = i +1

(3.2.25) 
= ADf(p = 2).

Similarly,

SD,(p>2)>SD,(p = 2). (3.2.26)

Therefore, we conclude that any value of p which minimizes ADf or SDf lies in the interval

(0,2].
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Property 3.2.7

Let K = {((j‘)|ai-aj is not parallel to an axis, i <j}, and assume that K is non-empty. 

Also assume that Aj ^xooCai-aj), V((j)€ K, where t has some specified value. Then

S Pp S PM

where

Pm= min PiJ and PM = maX P|j'
<i,j)€ K (i,j)«K

Proof:

For pairs (ij)£K, the corresponding terms gj and hj are constant functions of p by 

Properties 3.2.3 and 3.2.4. For pairs (ij)CK, gj and hj are decreasing for 0<p<pj while 

these terms are increasing for p>pj, again using Properties 3.2.3 and 3.2.4. It follows that 

AD^ and SDf are decreasing functions of p for 0<p<pm, and increasing functions of p for 

p>PM- Therefore, we conclude that any value of p which minimizes AD^ or SD^ for the 

specified t, lies in the interval [pm, pm)-

The preceding result has some practical implications. First note that the pj can be 

obtained with relative ease, using standard techniques such as interval bisection or Newton- 

Raphson’s method (e g., see Dahlquist and Bjorck, 1974, Chapter 6), since gj (or hj) is a 

unimodal function of p. With the interval [pm>PMl specified, we now have lower and upper 

bounds on the values of pi* and p2*, so that the search for pi* and po* should be confined to 

this interval. This provides a substantial improvement over the current practice, in which a 

safe range for the search is left to the arbitrary discretion of the analyst.

The range [pm^M! also characterizes or describes the road network in a new way. If 

the width of the interval, measured by PM~Pm, is small, we can regard the road network as 

being consistent with the distance function d^, in that df approximates individual travel 

distances consistently with a high degree of accuracy. Thus, the width of the interval [pm,PM 1 
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can be considered as a measure of the consistency of the road network with the distance 

function df. We also observe that the specification of [pm,PMl is especially useful for 

consistent road networks, since it reduces the search for pi* and P2* to a narrow interval in 

this case.

Let us now examine another aspect of the overall problem, namely that of finding 

ti* and X2*, the values of x which minimize ADf and SD; respectively for a given p. The 

convexity results of Properties 3.2.1 and 3.2.2 can be put to good use here. First we consider 

the sum SDf which is strictly convex in x (Property 3.2.2). Thus, a necessary and sufficient 

condition for minimizing SDf with p fixed is given by

dSD "-1 n 2
------  = Y Y — [x€ (a. — a.) — A..]f (a. — a.)

8x . , . . , A.. P 1 J UP* Ji = l j = i +1 ij

n (3.2.27)

which provides the closed form solution,

n — 1 n
Y Y e (a. - a.)

pi J
t* = —1-1 J~l + 1-------------------- . (3.2.28)

2 n — 1 n
Y Y [e (a. - a.)]2/A..

1 p i j ij
i = l j = i + i

Next consider the sum ADf which is convex in t (Property 3.2.1). We have

8AD n-1 n
------- = Y Y sign [x€ (a. — a.) — A..]€ (a. — a.), 

jt---------------------------b pi J lj p 1 J ’
i = 1 j = i + 1

(3.2.29)

wherever this derivative exists, so that AD; is also piecewise linear in t with discontinuities 

in the slope at

x.. = A../€ (a. — a ), i,j = 1......n, i < i. (3.2.30)
U ij p i J

It is interesting to note that the shape of ADf for varying r is similar to that of the objective 

function in one coordinate for the unconstrained single facility minisum problem with 

rectangular distances (e .g., see Love, Morris and Wesolowsky, 1988, p. 18-22). Hence an 
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analogous solution method can be used to obtain x;*. An outline of this method is given 

below.

Algorithm 3.2.1 {Finding x;* for given p}

Step 1: Calculate each xy using (3.2.30).

Step 2: Sequence and re-label the pairs (xy, fpla^-ap) as (xr, €r), r = 1-.., n(n-l)/2, such that 

Xi ^X2^ ... ^xn(n_l)/2; i.e., the xy are arranged in non-decreasing order.

Step 3: (Finding x;*)

Set i = 0,

n(n—1)/2
S. = - V € .

1 *— r
r = i+l

Repeat

i«— i 4- 1 ,

Sj ♦— Sj_i + 2

until S; s 0.

If S; = Othenxi* € [t,, i; + ;l,

else (S; > 0) = ii-

It should be clear that tj* and X2* are functions of p; furthermore, the curves xi*(p) 

and i2*(p) are readily obtained using Algorithm 3.2.1 and equation (3.2.28) respectively. 

With this information we can immediately calculate ADf* and SDf*, the minimum values of 

ADf and SDf as functions of p; i.e.,

ADf*(p) = AD^ (Xj* (p), p), SDf*(p) = SD^ (x2*(p), p) . (3.2.31)

Thus, the criteria specified in (3.2.1) and (3.2.2) are now reduced to minimization problems in 

one variable.

Using the preceding result, we outline a strategy for finding the global minimizers

of ADf and SDf, denoted by (i;**,P;**) and (x2**,P2**) respectively.
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Algorithm 3.2.2 {Solving Criteria 1 and 2}

Step 1: Determine the curve of ADf*(p) (or SDf*(p)), with a small enough increment Ap to 

identify all sub-intervals containing a local minimum. Delete those sub--ntervals which 

obviously do not possess a global solution, and label the remaining ones 1..., M.

Step 2: Do the following for i = 1........ M.

Divide sub-interval i using a smaller increment of p. With the additional points, reduce the 

width of the sub-interval containing the local minimum (denoted by p(i>). Repeat this process 

until p<‘> is calculated to the desired accuracy.

Step 3: Set pi** = p(k) andri** = ii*(p(k)), where ADf*(p,k)) = minJADf^pO’)}. (For SDf, 

setp2** = p(k)andt2** = t2*(p(k’), where SDf*(p(k)) = min{SDf*(p(1))}.)

The preceding algorithm does not specify a range of p in step 1 for ADf* (or SDf*), 

which guarantees that a global solution will eventually be found. This question is addressed 

in the next section.

3.3 General Considerations on the Use of the Weighted fp Norm

Section 3.1 discusses the directional bias of norms in general, and the fp norm in 

particular. Implicit in this discussion is the fact that the directional bias function pertains to 

a particular set of orthogonal reference axes. Thus, characteristics such as the directions of 

greatest and least difficulty of the distance function are measured relative to the given axes. 

Except for the weighted Euclidean norm (see (3.1.10)), rotating the axes results in a different 

directional bias, or alternatively, the distance between any two points varies under this 

rotation.

In Section 3.2, where fitting of the parameters r and p is discussed, we assume that 

the reference axes are pre-specified. The resulting estimates (xi**,pi**) or (t2*‘>P2**) obviously 

depend on this choice of axes. Consider, as an example, the hypothetical case where the roads 
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in a transportation network form a perfect rectangular grid and the destinations a; are all 

situated at intersection points of the roads. If the axes are chosen parallel to the grid, then 

t** = 12** = 1 . Pl** = P2** = and actual distances are predicted exactly. On the other 

hand, if the axes are specified at 45° to the grid, then r/* = rg** = V2 and pi** = p2** = +», 

with actual distances being predicted exactly once again. However, for any other choice of 

axes, the parameters will take on intermediate values, and the predicted distances will not 

coincide with the actual.

Clearly, the specification of the reference axes is an important part of any empirical 

study. One must recognize the dual relation between the distance function and the reference 

axes. Both are required in order to obtain a specific form of the directional bias. The choice of 

axes and distance function should be made after a careful study of the road network. Based on 

the predominant pattern of the roads, one should ascertain the directions which are easiest 

and most difficult to travel in. The axes and the distance function should be chosen 

accordingly to coincide with this directional bias.

Specification of the reference axes for the distance function based on an identifica

tion and examination of the patterns in the road network, does not appear to be a considera

tion in the empirical studies described in the literature (e.g., Love and Morris, 1972, 1979, and 

1988, Love, Truscott and Walker, 1985, Ward and Wendell, 1980 and 1985). In other words, 

the axes are chosen arbitrarily without examining the physical nature of the system. Before 

showing the advantages and usefulness of our approach for the weighted fp norm, some 

definitions are in order.

Definition 3.3.1

The normalized travel distance between destinations aj and aj in the data set is

given by
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Qij = Ai/€2(ai “ a?’ ij = 1.......n’ 1 < J •
(3.3.1)

Definition 3.3.2

A set of axes having orientation y means that these axes are rotated counter

clockwise by an angle y from true east and north.

Definition 3.3.3.

Let R(0;yo) denote a function of 0, where the angle 0 is measured relative to a set of 

axes having orientation yo (see Figure 3.3.1). Then R(0;yg) is said to have a rectangular bias 

if, and only if, the following conditions are satisfied:

(i) R(0 + n/2;yo) = R(0; yo), V0 (periodicity of n/2};

(ii) R(n/4 — Q;yg) = R(n/4 4- Q;yg), 0< Q < n/4 {symmetry property};

(iii) R is non-decreasing for 0€ [0, n/4] and non-increasing for 0([n/4, n/2] {unimodal

cycle with maximum at 0 = n/4}.

Definition 3.3.4

A transportation network has a predominant rectangular pattern relative to a set 

of axes with orientation yo if, and only if, the following relation is satisfied:

a(0;yo) = Po+P1R(0;Yo)+ G0;Yo); (3J.2

where Po.01 —0 are parameters with at least one Pi strictly positive, a is the normalized travel 

distance from any point q to any point s, where vector (s — q) has direction 0 (Figure 3.3.1), R is 

a function with rectangular bias, £ is an independent error term with mean zero, and (0;yo) 

denotes that the angle 0 is measured relative to the axes with orientation yg.

An obvious example of rectangular bias occurs when

R(0;Yo) = rp(0;yo), 0<p<2. (3J.3
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NORTH

EAST

Figure 3.3.1 Reference Axes (xi, X2) with Orientation yo-
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Typically we expect the road network to have an underlying rectangular grid (identified as 

the predominant pattern), offset by some angle yo to the true east and north directions. We 

shall observe this condition in our case study of the road system in southern Ontario, at the 

end of the chapter. The normalized travel distance would be modelled in this case as

a<8; Yo) = pQ + P, r/0; ¥|)) + €(9; . <3'3'4

In a transportation network with a predominant rectangular pattern, the direction of greatest 

difficulty is at yo + mn/4, m = 11315171 while the direction of least difficulty is at yo + mn/2, 

m = 0,1,2,3. This signifies that for pairs of points separated by the same straight-line 

distance, the actual travel distances are generally greatest at 45° to the set of axes with 

orientation yo and least parallel to these axes. For the special case where p = 2 in (3.3.3), we 

have

a(0;yo) = (Po+P1) + C(0;yo); (3-3.5:

i.e., the normalized travel distance is a constant plus an error term. This signifies a highly- 

developed network, with travel in any direction having the same degree of difficulty on 

average. Also note that R(0;yo) does not necessarily represent the directional bias of a norm. 

For example, if the road system has one-way streets or obstacles resulting in a lot of back

tracking, then R might belong to a hyper-rectilinear distance function (i.e., p< 1 in (3.3.3)).

Consider again the weighted fp norm, with directional bias function irp(0;y), where 

y now specifies the orientation of the reference axes pertaining to the distance function. We 

can specify a third criterion for fitting the parameters i and p, based on a minimization of the 

sum of squared normalized deviations, as follows.

Criterion 3

minimize
t.P

y [xr (0..; y) - a..]2,
— — p ij 1 ij ’
i=i j=i+i

(3.3.6)
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where

aj2(Y) - ai2(Y) \ . .

ajl(y) - ail(y) 1
(3.3.7)

the y in (3.3.7) indicating that the coordinates of a! and aj are measured in the reference axes 

of the distance function.

The advantage of choosing y to comply with the physical nature of the 

transportation network being modelled is shown in the following important result.

Theorem 3.3.1

Suppose we have a transportation network with a predominant rectangular 

pattern as in (3.3.2), and the weighted fp distance function is used to model travel distances in 

this network. If y = yo (i .e> the reference axes of the distance function coincide with those of 

the network), and the sample size of destinations in the data set is sufficiently large (i.e., the 

asymptotic limiting case n—»°°), then
.. (3.3.8)

0 < p3 <2,

where P3** is the value of p at a global minimum of SNDf.

Proof:

The proof is by contradiction. Consider a value of p > 2, and let

% = Po + Pl RISU ; <0*

= aij-s(9ij; Yo) • Vi-i-

Noting that y — yo> and deleting both for notational convenience, we obtain

(3.3.9)

n — 1 n
SND = Y Y fcr (0. ) - a . + a.. - a..]2 

e — P U ij ij ijJ 

(3.3.10)

i = 1 j = i + 1
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In the limiting case, n—><»,

22 Ur^eip-d.p^e..)-*0 , (3.3.11)

i<i
since €(0) is an independent random variable with mean of zero. Thus, for sufficiently large

samples,

SND, = 2^ (xrp(6..) - a..)2 +22 ■ (3.3.12)

i<j i<j
The second summation in (3.3.12) is a constant, so that we only need to consider the first

summation for the minimization of SNDf. Clearly, a t' can be found (for p>2), such that

| Vr2(0) - a (0)| = |V - a (0) |
(3 3 13)

< |Trp(0)- a(0)|, V0. ..

(This is illustrated in Figure 3.3.2.) It follows that (3.3.8) must be true.

Corollary 3.3.1

If in addition R(0;yo) — ri(0;yo), then
*. (3.3.14)

1 s p3 s 2 .

Proof:

We know from the preceding theorem that 0< p3**<2. Therefore it only remains to

be shown that P3** > 1. Deleting yo again for notational convenience, we have

a(0) = PQ + Pjr/0)

= Pt[A +(1 -AJr/O)],
(3.3.15)

(3.3.16)
where

PT Po + ^1 ’

and

0 < A = pQ/PT < 1 . (3.3.17)
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Figure 3.3.2 Directional Bias Functions which are Out-of-Phase by 45°.
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Since travel distance is always at least as large as the straight-line distance, and 

a(0) = 0o +01 = 0t, it follows that
Ml <’.3-18)

The general shape of a is illustrated in Figure 3.3.3, where by symmetry we only need to

consider 0<0<JiV4. Referring to Figure 3.3.3, it should be clear that for x>0 and p p(0,1), a x' 

can always be found such that
— — (3 3 19'

Ix'r^O) - a (0)| S |xrp(0) — a (0)| . ’’

Hence, a global optimum of SND; exists with p3**^> 1, ending the proof.

Using a similar method as in Property 3.2.2, it is readily shown that SND^ is a 

strictly convex function of the inflation factor x. We can proceed as in the derivation of 

(3.2.28), to obtain a closed form solution for 13*, the minimizer of SNDe for a fixed p. Thus, we 

obtain

*3(p; Y) =

n — 1 n
V V a r (0..;y)

ij p ij 1
1 = 1 jsj+l

n— 1 n

2 Z
i = 1 j=1 + 1

(3.3.20)

The preceding theorem and its corollary are readily extended to the criteria 1 and 2

given in (3.2.1) and (3.2.2) respectively. Thus, P3** can be replaced by pt**, t = 1,2,3, in (3.3.8)

and (3.3.14). These results lead to the following general procedure for modelling travel 

distances in a transportation network with the weighted fp distance function.

Step 1: Verify that the transportation network has a predominant rectangular pattern with 

respect to a set of axes having some orientation (yo)- If this is not the case, a different distance 

function should be considered.

Step 2: Orient the reference axes of the weighted fp distance function to coincide with those 

of the network (i.e, y = yo)-
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Figure 3.3.3 Fitting rp(0) to a Road Network with Underlying Rectangular Grid.
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Step 3: Determine the best-fitting values of the parameters r and p for one or more o^ the 

criteria given above, where p is restricted to the interval (0,2] or [1,2] in accordance with 

Theorem 3.3.1 and Corollary 3.3.1.

In brief, the procedure first involves a verification that the weighted fp function is 

appropriate for the network being modelled. Next the axes are rotated so that the distance 

function is in phase with the network. Only at this point, are we ready to solve for the 

parameters r and p. The advantages of such an approach can be summarized as follows:

(i) the directional bias inherent in the road network is reproduced by the distance 

function;

(ii) because the reference axes coincide with those of the network, we can expect the 

best overall fit of the weighted €p function to actual distances; and

(iii) the search for the minimizing values of t and p (e.g., using Algorithm 3.2.2) can be 

done efficiently, since p is effectively restricted by Theorem 3.3.1 and its corollary 

to a small interval.

As a simple example, consider an underlying pattern of roads intersecting at an 

oblique angle, so that the network does not have a rectangular bias. L'se of the weighted fp 

function in this case would lead to relatively poor estimates of actual distances. Instead, we 

would be better off fitting the parameters i and p of a modified function of the form xfp(Ax;yo). 

Here A is a non-singular, non-orthogonal 2X2 matrix which transforms the coordinates in a 

set of reference axes with orientation yo> to reproduce the oblique pattern of the road network.

To illustrate the general considerations given above on the use of the weighted fp 

function, we present a case study of the road system covering the central and eastern parts of 

southern Ontario. Eighteen representative cities are chosen from this region to form the data 

set. These cities are listed in Table 3.3.1, with their coordinates measured in the base axes 

pointing true east and north. From an inspection of the official road map, a section of which is
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Table 3.3.1 - Cities Forming the DataSet

City No. City Name

Coordinates (1/4" Unit)<a>.(b)

Xi *2

1 Windsor 2.0 -5.3

2 Sarnia 12.7 9.3

3 Chatham 15.35 - 3.2

4 London 31.0 8.8

5 Kitchener/W ater loo 42.9 18.7

6 Brantford 46.6 11.6

7 Hamilton 53.2 13.9

8 Toronto 61.0 23.2

9 Fort Erie 68.0 6.7

10 St. Catharines 63.0 12.0

11 Stratford 35.3 17.0

12 Goderich 24.2 25.3

13 Barry 56.0 38.7

14 Owen Sound 36.7 43.0

15 Peterborough 77.3 36.7

16 Belleville 92.1 34.3

17 Ottawa 117.7 61.6

18 Cornwall 132.5 53.8

(a) SCALE: 9.5 units = 50 km.

(b) Coordinates measured in base axes (east, north).
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shown in Figure 3.3.4, we can discern an approximate rectangular pattern underlying the 

network. The base of this rectangular grid is formed in large part by the number 401 

Highway, which is a major route in the network following the north shore of Lake Ontario 

and the St. Lawrence River. Therefore, using our general procedure, we should rotate the 

reference axes of the distance function to parallel the 401 Highway.

The effect of rotating the reference axes on the minimum value of SD; (Criterion 2), 

and the coirresponding parameter values t2** and P2**' is shown in Table 3.3.2. The main 

point of interest here is the sensitivity of P2** to the axis orientation y, and the fact that p2*‘ 

takes on a rather low value (1.4583) at y = 22.5°. This suggests a substantial rectangular 

bias in the road system, at an orientation in line with the mean direction of the 401 Highway, 

thus confirming our earlier conclusion based on an inspection of the map. Also note that the 

fit, measured by the minimum value of SDf, is optimized at y = 22.5°.

Referring to Table 3.3.2, we see that if the axes are arbitrarily set parallel to the 

east and north directions (i.e., y = 0°), a value of P2** close to 2.0 is obtained. This can be 

explained by the fact that the distance function is now severely out of phase with the 

underlying pattern or structure of the network. The arbitrary specification of the reference 

axes in this fashion is common practice in the literature. For example, Love, Truscott and 

Walker (1985) use the east and north directions as the reference axes in their empirical study, 

which covers basically the same geographic region as ours. Not surprisingly, they also obtain 

a value of P2** close to 2.0. This leads to the erroneous conclusion that travel distances are 

essentially Euclidean multiplied by an inflation factor; i.e., there is virtually no rectangular 

bias in the road system. Thus, the case study confirms quite dramatically the usefulness of 

our general procedure for fitting the weighted f p distance function.
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Table 3.3.2 - Effect of Orientation (y) on Best Fit

yO *2** P2** min SDf

0 1.1118 1.9174 417.71

5 1.0874 1.7210 407.22

10 1.0765 1.6059 389.79

15 1.0715 1.5173 367.85

20 1.0715 1.4635 349.82

22.5 1.0733 1.4583 347.40

25 1.0756 1.4675 350.86

30 1.0826 1.5458 375.21

40 1.1158 1.9286 417.83

50 1.1693 2.5243 396.71

60 1.2211 3.0832 357.20

65 1.2353 3.2055 351.38

70 1.2324 3.1122 360.69

80 1.1778 2.4794 401.74



CHAPTER 4

THE WEIGHTED ONE-TWO NORM

The Euclidean and rectangular norms are the most commonly-used distance 

functions in continuous location models. Since the actual routes in the physical problem are 

not likely to follow purely straight-line or rectilinear paths, a logical extension would be to 

consider a positive linear combination of these two distances. Since this hybrid function is a 

positive sum of norms, it is also a norm. The purpose of this chapter is to examine our new 

distance measure, which we term the weighted one-two norm and denote as follows:

kH(x;bo, bj = b0 Wx) + b1€1(x), (4.1)

where x (: RN; bo, bi > 0, with at least one of these parameters being strictly positive; and f j,

€2 are the rectangular and Euclidean norms.

Letting

by = bo + bi > 0, (4.2)

we can rewrite (4.1) as

kH (x; b0, bi) = bT kh (x; a0), (4.3)

with

ao = bo/bj, ai = bi/bj, oq + ai = 1, (4.4)

and

kh(x; a0) = a0 (zW 4- (1 -a0) €i(x). (A ^1

This allows an interesting physical interpretation of the weighted one-two norm. The shortest 

route between any two points q and r on a transportation network can be viewed as a 

composition of straight-line segments parallel to the vector (q — r) and rectilinear segments. 

That is, part of the route follows a direction parallel to q-r, while the remainder is along a 

124
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rectangular grid. Loosely-speaking, the parameter ao gives the proportion of the route which 

is Euclidean, while the remaining proportion, aj = 1 — oq, is rectilinear. The parameter bj 

takes on the role of an inflation factor, similar to t in the weighted fp norm. For a 

transportation network with an underlying rectangular grid (i.e., R = ri in (3.3.2)), this 

interpretation is intuitively appealing, since a typical trip moves along the grid part of the 

way and diagonal roads the rest.

We begin this chapter with a look at the directional bias function of the weighted 

one-two norm on R2(N = 2). This leads to an important observation concerning the relation 

between the families of norms, kh(x;ao), OsSao^Sl, and fp(x), lSp<2. Next, we use our 

hybrid norm to develop a simple linear regression model for describing travel distances in a 

transportation network. Some novel applications are derived for this model, based on 

standard statistical tests. These concepts are illustrated with a continuation of the case study 

at the end of Chapter 3.

4.1 Directional Bias

From the definition in (3.1.1), the directional bias function of the weighted one-two 

norm with b? = 1 is given by

rh(0; ao) = kh (x; ao)/€2W

= ao + ai €i(x)/€2(x)

= a0 + ai ri(0), (4.1.1)

where 0 is defined in (3.1.2). Recalling that

0 < a0 <l,anda0 + ai = 1, (4.1.2)

we see that rh is a convex combination of the directional bias functions of the rectangular 

norm (ri(0)) and Euclidean norm (r2(0) = 1).
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The following properties are immediately obvious from the results in Section 3.1, 

and are therefore given without proof.

Property 4.1.1

rh(0; ao) is periodic with period n/2.

Property 4.1.2

For any real Q,

rh(n/4 + Q ; a0) = rh(n/4 - Q; a0).

Property 4.1.3

If ao< 1, then rh is an increasing function of 0 in the interval [0, n/4].

From the preceding results and Def nition 3.3.3, it is clear that ^(9; oq) exhibits a 

rectangular bias. We also observe that

rh(9;0) = ri(0), (4.1.3)

and

rh(9;l) = l; (4.1.4)

so that these two functions are precisely the same as rp(0) with p = 1 and 2 respectively. It is 

important to keep in mind that the reference axes for rh and rp are assumed to have the same 

orientation y, and that y is omitted to simplify the notation.

Recall from Section 3.1 that rp(0) is a decreasing function of p, except at 0 = mn/2, 

m = 0, ± 1, ± 2,..., where it is constant. An analogous result holds for rh, as shown below.

Property 4.1.4

rh is a non-increasing function of its parameter qq.
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Proof:

Since aj = 1—an, we can rewrite (4.1.1) as

rh(0;ao) = r^O) + ao(l-ri(0)). (4.1.5)

Therefore,

— [r.(0;aft)]= 1 - r,(0) . (4.1.6)
daQ h 0 1

But ri(0) > 1, with equality only at 0 = mn/2, where m is an integer. It follows that

— [r.W-.oJlSO. (4.1.7)
*>0 h 0

and hence rh is a non-increasing function of ag. Furthermore, rh is decreasing in ao, except at 

0 = mn/2, m = 0, ± 1, ± 2,..., where it is constant.

We see then that rh and rp have the same type of bias (rectangular), for qq Q [0,1] and 

p6[l,2]. Furthermore, from Property 4.1.4, equations (4.1.3) and (4.1.4), and the results in 

Section 3.1, it follows that a one-to-one correspondence can be established between rh and rp 

with aq and p increasing in their respective intervals [0,1] and [1,2] and where the amplitudes 

of rh and rp are decreasing simultaneously. Thus, we might expect that our hybrid norm 

closely approximates the fp norm, for an appropriate choice of ao as an increasing function of 

p. Before investigating this relation, we note a basic difference in the shapes of rh(0; ao) and 

rp(0). Whereas the latter has an inflection point in the interval O<0<n/4 by Property 3.1.5, 

no such point exists in the former as shown below.

Property 4.1.5

rh is a strictly concave function of 0 in the interval 0 < 0 < n/2, for any a0 < 1.



128

Proof:

For 0<9<rV2, we have

ri(0) = cos 0 + sin 0,

and thus,

rh(0; oq) = ao + ai (cos0 + sin 0).

Since cosG and sin0 are both strictly concave in this interval, and also, aj = 1— ao>O, the

result follows immediately.

Let us now investigate the accuracy of the hybrid norm k^(x; qq) as an

approximation of fp(x) for l<pS2, where the parameter ao is a function of p yet to be

determined. As in Section 3.1, we use a normalized difference, defined here by

kh(x;ao)-fp(x)
(4.1.8)

€2(X)
V x x 0 ,

Since qq is a function of p, this can be rewritten in the form,

A(0;p) = rh(0;ao(p)) - rp(0). (4.1.9)

Due to the periodicity and symmetry of the directional bias functions (Properties 3.1.2, 3.1.3,

4.1.1 and 4.1.2), it suffices to consider 0 in the range,

O<0<n/4. (4.1.10)

At 0 = 0, we have rp(0) = 1 by (3.1.20), and furthermore,

rh(0;a0) = a0 + ai rj(O)

= ao + a! = 1. (4.1.11)

Thus,

A(0;p) = 0, (4.1.12)

independently of the choice of ao for a given p. In order to specify the form of ao(p), we adopt a 

similar procedure as in Section 3.1 (see (3.1.38)), by imposing the following boundary 

condition:
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&(n/4; p) = 0 .

Noting that

Mn/4 ; p) = aQ + (1 -afl)V2 _2VP-V2,

we can readily solve equation (4.1.13) to obtain

2 - 2Vp
Q° 2 — V 2

To signify that the difference function satisfies the specific constraint in (4.1.13), 

we denote it by 5(0; p). Noting that |cos0| = cos 0 and |sin 0| = sin 0 for OS0<r/4, and using 

(4.1.14), it is easily shown that

2-21/p /2Vp-V2\ n n .. (4 1 15
5(0 ;p) = --------- = + ----------- — (cos0 + sin0) - [cosp0 + sinp0]Vp , (4.1-15

2 - V 2 \ 2 - V 2 /

where the ranges of interest are given by

O<0<n/4 and l;Sp<2 (4.1.16)

The difference function 5(0;p) was evaluated on the computer over a finely-divided 

grid covering the points (0,p) defined by (4.1.16). The results are summarized in Figures 4.1.1 

and 4.1.2, where maxe|5| and the 0* at which this occurs are plotted as functions of p. Observe 

that

max0p|5| = 0.015431 , (4.1.17)

at

p*. = 1.3498 and 0.. = 10.1637° , (4.1.18)

where the maximizing values p** and 0*« are obtained by the grid search to an accuracy of 

0.0001 and 0.0001° respectively. In Figure 4.1.3, 5 is plotted as a function of 0 for sample fixed 

p. Observe that the profiles here are unimodal in shape. From Figure 4.1.2 we see that the 

value 0* which maximizes |5| for a given p, shifts to the right for increasing p. It is also 

interesting to note that

(4.1.13)

(4.1.14)

5(0; p) >0, V 0, p , (4.1.19)
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Figure 4.1.1 Maximizing | 5(0 ; p)| over 0.
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Figure 4.1.2 Maximizing Value of 0.
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Figure 4.1.3 Profiles of 6(0; p) for Fixed p.
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a result confirmed by the exhaustive grid search. Finally, in Figure 4.1.4, we show one cycle 

of rp(0) and its approximation by rh(0; ao) for the sample case, p = 1.4 (ao = 0.6134135).

Returning to Figure 4.1.2, it is seen that 0* varies in a nearly linear manner from 

approximately 8.8° to 12.3° as p increases from 1.05 to 1.95. These low values for 0. can be

explained qualitatively as follows. At 0°, the curve of rp has a zero slope (equation (3.1.22)),

while the right-sided derivative of rh is given by

(4.1.20)

r/0)

Thus, a gap between the two curves is formed, and increases in size as 0 moves to the right of

0° (e.g., see Figure 4.1.4). However, the second-order derivative of rp with respect to 0 is very 

large in the vicinity of 0° (equation (3.1.16)); so that the slope of rp quickly catches up to and 

surpasses the slope of rj,, resulting in a transition from an increasing to decreasing gap size at 

a low value of 0*.

Consider a transportation network with a predominant rectangular pattern, such 

that R = ri for the model in (3.3.2). In this case, the weighted one-two norm (kn) will give a 

better fit than the weighted fp norm (d;). This is readily seen if we substitute

rH(0;bo, bi) = kH (x; b0, bi)/f2(x)

= bTrh(0;ao), (4.1.21)

in place of trp(0) in equation (3.3.12). Then the first term on the right-hand side of (3.3.12) 

goes to zero asymptotically as the sample size of destinations n-»°°, since bo~>Po and bi~>0i. 

Thus, for sufficiently large sample sizes, the sum of squared normalized deviations will be 

smaller with kn than with d^. Alternatively, we can explain this property in physical terms 

as follows. For a transportation network with an underlying rectangular grid, the expected 

travel distance should increase at a positive rate as we move away from a direction of least
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Figure 4.1.4 One Cycle of rp(0) and its Approximation Function for p = 1.4. 
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difficulty (i.e., parallel to a reference axis). Thus, the positive slope in equation (4.1.20) is 

more appropriate than the zero slope of rp at 0 = 0. In this respect, the shape of rh is better- 

suited for such networks than that of rp.

Combining (4.1.17) and (4.1.19), we obtain the following bounds:

0<kh(x;a0) - fp(x) £ 0.015431 C2(x), (4.1.22)

where x is any point in R2, 1 <pS2, and ao is given by equation (4.1.14). We see then that kh 

is an accurate approximation function of €p. Furthermore, recall that a constraint was 

imposed on the normalized difference A (see (4.1.13)), in order to obtain the form of ao in 

(4.1.14). If this restriction is removed, and instead ao is chosen to minimize the maximum 

absolute magnitude of A, the approximation will be improved. Thus, we conclude in summary 

the following important result:

The weighted fp norm with l<p<2 and x (R2 can be replaced for all 

practical purposes by a weighted one-two norm.

4.2 A Linear Regression Model

We begin by hypothesizing the following model for actual travel distances:

A(q,r) = p0f2(q-r) + Pifi(q-r) + e(q-r), (4.2.1)

where

q,r are any two points in the plane,

A(q,r) equals the travel distance between q and r,

00, 0i — 0, with at least one of these parameters being positive,

€1/2 are, as before, the rectangular and Euclidean norms, and

e(q — r) is an independent error term which is assumed to be normally distributed 

with mean zero. 
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It is assumed here that the reference axes for measuring the coordinates of q and r have a 

known fixed orientation (yo)- Also recall the physical requirement, A(q,r) > £2(9 — r), V q,r, 

which implies that Po 4- Pl — 1, similarly as in (3.3.18).

Let us consider the error term more closely. The vector (q — r) has a direction 0 and 

a magnitude ||q — r|| = €2(9 — r)- One would logically expect that for a given 0, the variance of 

the error term should increase as ||q — r|| becomes larger. In other words, the variation in 

travel distance is greater for pairs of points which are further apart. Thus, we assume that a 

normalized error defined as

C(0) = e(q-r)/||q-r||, (4.2.2)

has a standard deviation given by o(0). Making the further simplifying assumption that

o(0) = o,V0, (4.2.3)

where o is a constant, it follows that € is a normal random variable with zero mean and a 

constant variance, o2; i.e.,

€^N(0,O2). (4.2.4)

Now dividing both sides of (4.2.1) by 2 2 ( q — r), we obtain

a(0) = Po + Pi ri(0) + (4.2.5)

where a(0) = A(q,r)/€2(q — r) is the normalized travel distance (see Definition 3.3.1), and C is 

an independent random variable with distribution given by (4.2.4). This is precisely the same 

model as in (3.3.4), for a transportation network with a predominant rectangular pattern 

(Definition 3.3.4) and R = n; except now we specify in addition that € is normally distributed 

with constant variance.

The formulation in (4.2.5) provides a simple linear regression model with one 

independent variable, n(0). For any particular set of data, we can readily calculate the least
A A

squares estimators Po and Pi of Po and Pi, respectively. It is a well-known fact (e g., Neter,

A A .
Wasserman and Kutner, 1985, p. 39) that Po and Pi are the best linear unbiased estimators of 
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the model parameters. (Note, however, that the assumption of constant variance must hold. 

Otherwise, the weighted least squares estimators should be used after determining the func

tional form of o(0).) Furthermore, since the expected normalized travel distance is given by

^(0) = E[a(9)] =PQ+01r1(0), (4.2.6)
A A

it follows that Po and Pi can be used as the coefficients of the weighted one-two norm, kn
A A

(equation (4.1)), to approximate actual distances in the network. Then kn(x; Po, Pi) estimates 

the mean or expected travel distance between any two points q and r, such that q — r = x.

We now propose a few applications of the model in (4.2.5), which provide new ways 

of analyzing the physical nature of the transportation network under consideration. These 

applications rely on standard methods of linear regression analysis. In the following 

statistical tests, Hq and Hi denote the null and alternate hypotheses respectively. The details 

pertaining to these tests are omitted here, since they can be found in any standard text on 

linear regression (e.g., see Chapter 3 of Neter, Wasserman and Kutner, 1985).

Test 1 {Directional Bias}

Here we consider the decision problem,

Ho : Pi = 0 versus Hi:Pi>0. (4.2.7)

When Hgis rejected in favour of Hi, we conclude that the network has a statistically- 

significant rectangular bias. This implies that the underlying rectangular pattern of roads in 

the network contributes on average to the total travel distance between pairs of points.

Test 2 {Diagonal Roads}

Next consider the decision problem,

Hq : Po = 0 versus Hi : Po >0. (4.2.8)
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If Ho is rejected in favour of Hi, we conclude that the Euclidean component of the travel 

distance is statistically significant. This implies in turn that the diagonal roads traversing 

the network contribute on average to the total travel distance between pairs of points.

Test 3 (Outliers)

Under the assumption of variance for the error term, a substantial
A A

deviation of an actual normalized distance from the estimated mean (po + Pi ri(0)) may 

signify the presence of an outlier. Such outliers are detected from an analysis of the residuals. 

Since our model has only one independent variable, it is possible to plot the residuals and 

identify any outliers visually. A more rigorous method involves the use of standardized 

residuals (e g., see Belsley, Kuh and Welsch, 1980). It is crucial that the outliers be identified,
A A

since they can have an excessive influence on the estimates (0o, Pi) of the model parameters, 

and hence on the distance function itself.

In addition, the outliers provide important information concerning the physical 

nature of the transportation network being modelled. If several of them are associated with 

the same destination, say ar, then this implies that the distance function obtained for the 

population in general does not accurately estimate travel distances to ar (and its environs) 

from the other points in the network. To remedy such a situation, we should custom-fit a 

sepiarate distance function for ar alone, using the subset of data associated with ar. This 

results in a mixed-norm model, which will be discussed in further detail in Chapter 6. The 

importance of the mixed-norm model is that it allows a more accurate representation of the 

real system. In this respect, we are closing the gap between continuous and discrete location 

models.

To illustrate the use of our linear regression model, let us continue the case study of 

the road network in southern Ontario discussed at the end of Chapter 3. The 18 cities listed in 
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Table 3.3.1 provided 153 (= ’8C2) travel distances for the analysis, which was carried out with 

the Minitab computer package. Based on our previous observations on the nature of the road 

system, an orientation of 22.5° was chosen for the reference axes of the model.

The least squares estimators of the coefficients Po, Pi, were found to be
A A
Po = 0.7577 and pt = 0.3284 .

From the output of standardized residuals, Fort Erie and St. Catharines were identified as the 

source of several outliers. A scan of the map shows that these two cities are located south of 

Lake Ontario, and that the lake provides a large obstacle between them and the other 

destinations in the data set. Hence, we conclude that a separate distance function should be 

used for these two cities. The data points coirresponding to the Sarnia-Windsor and 

Peterborough-Barrie links were also identified as significant outliers. This is due to the fact 

that Lake St. Clair and Lake Simcoe result in local barriers to travel between these two pairs.

Deleting Fort Erie and St. Catharines plus the two links mentioned above, and 

repeating the regression analysis with the remaining data, we obtained least squares 

estimators,
A A
Po = 0.7786 and pi = 0.2881 .

Subsequent removal of outliers was observed to have little effect on these values. Finally, we
A A

note that the t-test values associated with Po and Pi for the reduced data set, respectively 

12.72 and 5.64, provide strong statistical evidence in support of the alternate hypothesis in

Tests 1 and 2 above.



CHAPTER 5

SINGLE FACILITY LOCATION WITH THE fp NORM

The single facility unconstrained minisum location problem, commonly referred to 

as the Weber problem, was introduced briefly in Chapter 1; (see model (1.1)). We re-state it 

here for the more restrictive case where the distance function is given by a norm k on RN. 

Thus, we obtain the following model:

n
Minimize W(x) = V w k(x —a.), (5'1j

~ i i
i = l

where a, = (au,..., a,N)T is the known position of the ith destination or fixed point, i = 1......n;

n is the number of fixed points; x = (x,..., xn)T is the unknown position of the new facility; w, 

is a positive weighting constant which converts distance travelled between the new facility 

and the ith customer into a cost, for i = 1,..., n; and k(-) is a norm used to measure the distance 

between any two points in RN.

In this chapter, we begin with the minisum model in (5.1), and develop some 

general properties for the case where k is a round norm. These results provide some insights 

into the differences between models which use round norms and those which use block norms. 

We then consider the special case where k is the €p norm. The model in (5.1) becomes

n
minimize W(x) = V w. f (x —a ), (5-2)

— » P ii = l
where p > 1, and w,, a,, i = 1......n, and x are defined above. When the parameter p has a

value in the open interval (1, +00), fp() is a differentiable round norm (Property 2.2.4). For 

p = 1 and 4^00, we have the rectangular and Chebychev norms, both of which are block norms. 

A Weiszfeld-type solution algorithm for the model in (5.2) is analyzed in great detail for global 
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convergence properties and local convergence rates, and some interesting results are 

obtained.

5.1 Properties of the Minisum Problem

In this section, we derive properties pertaining to the optimal solution of model 

(5.1). Conditions which guarantee that this solution is unique have been obtained by 

Pelegrin, Michelot and Plastria (1985), for a more general minisum problem. We provide a 

different proof of these results which is geared to the specific model in (5.1). This also permits 

us to analyze the behaviour of the objective function in more detail and the properties of the 

optimal solution when it is not unique. We first consider the case where k is a round norm, 

then a block norm. Finally, we make use of the uniqueness results to deduce properties 

concerning the location of the optimal solution in relation to the fixed points. Extensions to 

the multifacility problem are also discussed.

Property 5.1.1

Consider the minisum problem given in (5.1), where the aj, i = 1..... n, (n > 1), are

collinear points, and k is a round norm. Then the objective function W(x) is convex piecewise 

linear along the straight line joining the a,, and strictly convex everywhere else.

Proof:

Since W(x) is the sum of convex functions, it is also convex. Let L\ denote the 

straight line passing through the fixed points, and choose a point x C L , , such that x * a^

i = 1, n. Then 

k(x-a.) = cf,(x — a.),I X. 1 i = 1,...,n , (5.1.1)
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ii)

where c is a positive constant. Let y denote a unit vector parallel to £p The directional 

derivative of W at x in the direction y is given by

W'(x;y) = cfy w. - V w. J , (5.1.2)

i€J, i€J_

where Ji = {j | (x-ap • y > 0},

and J2 = {j I (x-ap • y < 0}.

We see that W'(x ; y) is constant at all points in the open segment (a^, a,2) of L\, where a^ and 

a,2 are adjacent fixed points on L\. Furthermore, W'(x;y) changes by a discrete amount 

between adjacent segments, since one of the indices gets transferred between Ji and J2. It 

follows then that W(x) is convex piecewise linear on L\.

Now consider a point x £ L\, and draw any straight line L2 through x. At least 

(n — 1) of the afs are not contained in L2. Choose one of these; say, ar £ £2- Since k is a round 

norm, it follows from Property 2.2.3 that k(x — ar) is strictly convex along £2. Thus, W(x) is 

the sum of n convex terms, of which at least (n — 1) are strictly convex along £2. It follows that 

W(x) is strictly convex everywhere except along the straight line through the fixed points, 

thereby ending the proof.

Corollary 5.1.1

For the collinear case considered above, suppose an optimal solution x* exists such 

that x* £ Li. Then x* is the only optimal solution. If on the other hand, x* € £1, there are two 

possibilities:

i) x* is uniquely located at a fixed point; or

all the points on the closed line segment [a,1, a,2) are optimal, where a^ and a^ are 

adjacent fixed points on £p
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Proof:

Follows immediately from Property 5.1.1.

Property 5.1.2

Consider the minisum problem given in (5.1), where k is a round norm, and the a,, 

i = 1,..., n, are non-collinear points this time. Then the objective function W(x) is a strictly 

convex function of x.

Proof:

Let L denote any straight line in RN. Since the a; are non-coUlnear, there must be 

at least one fixed point, say ar, such that ar € L. Since k is a round norm, it follows from 

Property 2.2.3 that k(x — ar) is strictly convex along L. Thus W(x) is the sum of n convex 

terms, at least one of which is strictly convex along L. We conclude then that W(x) is a strictly 

convex function of x.

Corollary 5.1.2

The optimal solution x* of the minisum model given in (5.1) is unique when k is a 

round norm and the fixed points a; are non-collinear.

Proof:

Follows immediately from Property 5.1.2.

Corollary 5.1.2 gives sufficient conditions for the optimal solution of the classical 

minisum problem to be unique. It is also interesting to note that Properties 5.1.1 and 5.1.2 

generalize the Result 3 of Francis and Cabot (1972), where k is the Euclidean norm on R2, to 
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the case where k is any round norm on RN. Consider now the case where k is a block norm. 

The uniqueness of the optimal solution can no longer be guaranteed, as made evident by the 

following result, which applies irrespective of whether the at are collinear or not.

Property 5.1.3

Let k be a block norm in the minisum model (5.1). Then the objective function W(x) 

is convex piecewise linear in x along any straight line in RN.

Proof:

Along any straight line in RN, W(x) is the sum of n convex piecewise linear terms. 

(See the discussion pertaining to block norms in Section 2.2.) Hence W(x) is itself a convex 

piecewise linear function of x along the line.

Let us consider now the minisum model (5.1) where k is a block norm on R2 (N = 2). 

Recalling Property 2.4.4, we draw through each of the fixed points a; the straight lines along 

which k(x — a,) is non-differentiable. This is illustrated in Figure 5.1.1 when k is the weighted 

one-infinity norm. We see that these lines form in general polygons of various shapes and 

sizes. Let us define a 'small box' as any polygon bounded by these lines, which does not 

contain within it other such polygons. In other words, a small box is any cell formed by the 

straight lines we have drawn through the a,.

In Theorem 6 of Thisse, Ward and Wendell (1984), it is shown that an optimal 

solution must occur at one of the intersection or fixed points located at the corners of the small 

boxes. We can prove this result quite readily using Property 5.1.3. The objective function 

W(x) is convex piecewise linear along any straight line L. Furthermore, the directional 

derivative W'(x ; y), where y is a unit vector parallel to L and x € L, only changes, and by a 

discrete amount, when L crosses from one small box into an adjacent one. Suppose then that
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X2

Figure 5.1.1 Non-DifTerentiable Points and Small Boxes for the Weighted One-Infinity 
Norm.
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an optimal solution occurs at a point x0 belonging to a small box labelled Bj If x0 is an interior 

point of Bj, draw the straight line L to pass through x0 and a corner point xc of Bj. Clearly 

W'(x ; y) = 0 on the open line segment of L contained in Bj. (Otherwise xq cannot be optimal.) 

Thus the corner point xc is also optimal. A similar line of reasoning holds if x0 is on an edge of 

Bj, and L is chosen to coincide with this edge. Thus we conclude as in Thisse, Ward and 

Wendell (1984) that an optimal solution occurs at a corner point.

Based on the preceding discussion, we can also characterize the optimal solution of 

model (5.1), when k is a block norm on R2. There are three possibilities:

i) the optimal solution occurs uniquely at an intersection or fixed point;

ii) the points along one edge of a small box are all optimal; or

iii) all the points belonging to a small box are optimal.

Since Property 5.1.3 holds in RN, it is also interesting to note that the above results can be 

generalized to higher-dimensional spaces.

The following properties deal with the location of the optimal solution in relation to 

the convex hull of the fixed points, denoted by c.h. {ai,..., a„).

Property 5.1.4

Consider the minisum model (5.1), where k is a round norm on R2. Any optimal 

solution must lie in the convex hull of the fixed points.

Proof:

Consider first the case where the a,, i = l,...,n, are non-collinear points. From

Corollary 5.1.2, we see that the optimal solution x* is unique. For any norm, an optimal

solution must exist within the convex hull of the fixed points (Corollary 4 of Wendell and

Hurter, 1973). Hence, we conclude that x* € c.h. {aa......an}. Now consider the case where the 
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a,, i = 1..., n, are collinear points. Suppose an optimal solution x* exists outside the convex 

hull of the fixed points. By Corollary 5.1.1, it follows that x* is the unique optimal. But this 

contradicts Corollary 4 of Wendell and Hurter (1973), which states that an optimal solution 

can be found in c.h. {ai an} . Hence, we conclude for the collinear case that any optimal 

solution x* € c.h. {ai,..., an}.

Property 5.1.5

Consider the minisum model (5.1), where k is the Euclidean norm on RN (k = €2). 

Any optimal solution must lie in the convex hull of the fixed points.

Proof:

First we note that k is a round norm (Property 2.2.4). The remainder of the proof is 

identical to that of Property 5.1.4, except that Corollary 3 of Wendell and Hurter (1973) 

replaces their Corollary 4.

Juel and Love (1983) show that all optimal solutions of the minisum model (5.2) in 

two-dimensional space (i.e., k is the fp norm on R2), must occur in the convex hull of the fixed 

points when p> 1. Their proof relies on properties of the directional derivative of the fp norm. 

We see that Property 5.1.4 generalizes this result to the case where k is any round norm on 

R2.

The hull properties discussed above for single facility location can be readily 

extended to the multifacility case. The multifacility problem was introduced briefly in 

Chapter 1; (see model (1.3)). We reformulate it here with the distance function being given by 

a norm k:

m n m—1 m
minimize WM(X) = V V w..k(x —a.)+ V V v k(x —x.), (5.3)

j=l i=l j=l k=j + l
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where m is the number of new facilities to be located; n is the number of existing destinations 

(or fixed points); X = (xi,xm) is an NmX 1 column vector with xj = (xjb xjn)t being the 

unknown position of new facility j, for j = 1, m; a; = (an,,.., ajN)T is the known position of 

the ith destination, i = l......n; wy > 0 is a weighting constant which converts distance

between new facility j and destination i into a cost, for i = 1 n , j = 1 m ; vjs > 0 is a 

weighting constant which converts distance between new facilities j and k into a cost, for 

j = 1m— 1, k = j + 1,..., m; and finally k(-) is an appropriate norm used to measure the 

distance between any two points in RN.

As discussed in Francis and Cabot (1972, p. 338), the new facilities must be chained 

in order that the model (5.3) be well-formulated. This means that each new facility j must be 

linked to some existing facility i, either directly (w,j > 0), or indirectly through a chain of new 

facilities j, jb .... jp, such that j > 0, j > 0,.... j-jp > 0, wijp > 0, (and vki = vjk when 

k > 1). Otherwise at least two new facilities can be located coincident to each other anywhere 

in RN, without affecting the solution. Henceforth, we assume that the multifacility problem 

is well-formulated; i.e., the new facilities are chained.

The next result extends Property 4 of Francis and Cabot (1972), where k is the €2- 

norm on R2, to the general case where k is any round norm on RN. To simplify the notation, 

let

n
f.(x.) = w k(.x -a.), 
j J ‘J J *

i = l

(5.1.3)

and

so that

m— 1 m
f«) = y y v. k(x.~x), 

0 4— jr j r ’
j = l r=j+l

m
WM(X) = y f.(x.) + f (X) .

— J J 0
j=l

(5.1.4)

(5.1.5)
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Property 5.1.6

Consider the multifacility model (5.3), where k is a round norm on RN. The 

objective function WM(X) is strictly convex if, and only if, for j = 1.......m, the set

Sj = {a; | wy > 0} is nonempty, and the points in each set Sj are not collinear.

Proof:

The proof is a straightforward extension of the one given by Francis and Cabot 

(1972). The details are given here for completeness.

(i) (If). If Sj is nonempty and the points in Sj are not collinear, for j = 1,..., m, it follows 

using Property 5.1.2 that fj(xj) is strictly convex on RN, j = 1,...,m . Thus . Smj = 1 f((f)4 is 

strictly convex on RNm. Let Xj and X2 be distinct points in RNm, with X, = (xi, ..., xm) and 

X2 = (yi,.... Ym)- Using the triangle inequality, we obtain for X € (0, 1),

fo(XX1 + (l-XjXp = vjrk[XXj + (1-X)yj-Xxr-(1-X)yr]
j< r

= Y y V. k[X(x.-x )+(l-XXy.-y )]

j< r

£ X V Y v k(x. —x ) + (l —X) y y v. k(y — y )
— — jr j r Jr •'r
j < r j < r

= Xf (X,) + (l-X)f (XJ . (5.1.6)0 1 0 Z

Thus f0 is convex on RNm. We see that WM is the sum of a convex and a strictly convex 

function, both having domain RNm, and thus, WM is strictly convex on RNm.

(ii) (Only if). Consider first the case where at least one set Sj is empty, and without loss 

of generality, suppose Sm is empty. Let vm = v^ + ...+ vm_lm. Then,

n — 1 
WM(0,...,0,x ) = v k(x ) + y f.(0) .

m m m j
j = l

(5.1.7)
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Since k(xm) varies linearly on any half-line H in RN beginning at the origin, it follows that

WM will be linear on the line segment joining (0......0, Xm1) and (CO.., 0, xm2) in RNm, where

xm1 and Xm2 are distinct points on H. This contradicts the fact that WM is strictly convex, and 

so, each set Sj must be nonempty.

Now suppose that the points in at least one set Sj are collinear; without loss of

generality, assume the points in Sm are collinear, and that wlm > 0. Define

and

W lm

* 
w lm

m— 1
y v.
— jm 
j=l

W. , im

f(*m) = i

i= 1

W lm

f

w. lm k(x m

v + w m lm

-a.) .

+

i = 2,...,n,

Then

WM(a...... a ,x ) =1 1 m

m— 1
V
j=l

Using Property 5.1.1, it follows that f is convex piecewise linear on the line L in RN containing

(5.1.8)

Sm. Thus, distinct points xm> and xm2 in L may be chosen such that f is linear on the line 'm-

segment in RN joining xm! and xm2. It follows from (5.1.8) that f will be linear on the line 

segment joining (ai,ai, xm!) and 0^1, ■•■, ai, xm2) in RNm. This contradicts the fact that WM

is strictly convex, and so, the points in each set Sj are not collinear.

Property 5.1.6 provides a sufficient condition for guaranteeing that WM(X) has a

unique minimum. That is, if k is a round norm on RN, and Sj is nonempty and the points 

contained in Sj are not collinear for j = 1,—, m, then WM is minimized at a unique X* in RNm

Of course this is not a necessary condition, since WM does not have to be strictly convex to

have a unique optimal. It is also interesting to note that the sufficient condition for strict 

convexity given in the above property does not depend in any manner upon f0. 
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The next result considers the case where k is a block norm. We see that

Property 5.1.3 for the single facility objective function W(x) extends quite readily to WM(X).

Property 5.1.7

Consider the multifacility model (5.3), where k is a block norm on RN. Then 

WM(X) is convex piecewise linear along any straight line in RNm.

Proof:

From Property 5.1.3, it follows that fj(xj) is convex piecewise linear along any line 

in RN, for j = l,...,m. Thus, Emj _ fj(xj) is convex piecewise linear on any line in RNm. 

Returning to relation (5.1.6), we see that

f (XX, + (1-X)X ) = Y Y v. k[X(x. —x )+(1 — X)(y. —y )]

j< r
where Xi _ (xi,...,xm) and X2 _ (yi,...,ym) are two distinct points in RNm, and 0 < X < 1. 

As X varies from 0 to 1, the argument of fo describes the line segment joining Xj and X2, while 

the argument of k describes the line segment in RN joining the points (xj — xr) and (yj — yr) for 

each term in the double summation. For a fixed increment on the line segment joining Xi and 

X2 in RNm, we obtain the same proportional increment on the line segment joining (xj — xr) 

and (yj — yr) in RN, for 1 < j < r < m. Using this fact and Property 5.1.3, it follows that fo is 

the sum of convex piecewise linear functions on the line segment joining Xj and X2, and hence 

is also convex piecewise linear on this line segment. Thus, we conclude that WM is convex, 

piecewise linear along any straight line in RNm.

Some localization results have been obtained for the multifacility problem. Francis 

and Cabot (1972, Property 2) prove by induction that any optimal solution to the model (5.3), 

with k as the Euclidean norm on R2, must have all the new facilities located in the convex hull 

of the fixed points. Juel and Love (1983) extend this result to the case where k is an fp norm 
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on R2, and 1 < p < + °°. Meanwhile, Hansen, Perreur and Thisse (1980) show that an optimal 

solution exists with all the new facilities in the convex hull of the fixed points when k is any 

norm on R2. (However, optimal locations may also exist outside the hull.) The next result 

generalizes the one by Juel and Love (1983) for the fp norm on R2 (1 <p< + °°) to any round 

norm on R2.

Property 5.1.8

Consider the multifacility model (5.3), where k is a round norm on R2, and let 

X* = (xi*,..., xm*) denote an optimal solution. Then

....... c ch<al.....................a„>-

Proof:

From the convexity property of WM, it follows that at least one optimal solution 

exists. Assume that such a solution (xj*. , . , , xm*) has at least one new facility located outside 

c.h. {ai,..., a,J. Then c.h. (ai, ...,an, xi*......xm*} 3 c.h. {ai,..., a^. Clearly some of the new

facility locations correspond to extreme points of the larger hull. Take one of these points, say 

x £ c.h. (aa .... arJ. If one new facility is located at x, then by Property 5.1.4, a better solution 

can be obtained by moving this facility to some location in the convex hull of the fixed points 

and the remaining new facilities. This contradicts the optimality assumption for 

(^x^>-,xm*)- If tw0 or more new facilities are located at x, they can be combined and treated 

as a single new facility to arrive at the same contradiction. Hence, we conclude that all the 

new facilities must be located in c.h. {(a..,, a^ for an optimal solution.

The next result generalizes the one by Francis and Cabot (1972) for the Euclidean

norm on R2 to higher-dimensional spaces.
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Property 5.1.9

Consider the multifacility model (5.3), where k is the Euclidean norm on RN 

(k = €2), and let X* = (xi*......xm*) denote an optimal solution. Then

......Xm> C Ch <al....... %>'

Proof:

The proof is identical to the previous one, except that Property 5.1.5 replaces 

Property 5.1.4.

5.2 The Weiszfeld Procedure Revisited

5.2.1 One-Point Iterative Methods

The iterative solution technique developed by Weiszfeld (1937) to solve the single 

facility minisum model with Euclidean distances has received considerable attention in the 

literature. As noted in Chapter 1, this algorithm was re-discovered several years later 

independently by Miehle (1958), Kuhn and Kuenne (1962), and Cooper (1963). The main 

advantages of the Weiszfeld procedure are its simplicity and ease of programming, and the 

fact that the iterations give progressively better solutions. The disadvantages of the 

Weiszfeld procedure include the fact that it will fail if one of the iterates happens to be a fixed 

point (Kuhn, 1973), and the local convergence rate is generally linear (Katz, 1974). In 

exceptional cases which occur only when the optimal location is at a fixed point, this rate may 

be quadratic or sublinear. By local convergence, we are referring to the behaviour of the 

iterates (x<l) when they are sufficiently close to the optimal solution (x*).

It is worthwhile noting that the Weiszfeld procedure belongs to a broader class of 

solution techniques known as one-point iteration methods. (For a general discussion of one- 

point iteration methods, the reader is referred to Dahlquist and Bjorck, 1974, Chapter 6.)
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i = 1

This class of solution techniques can be described as follows. Given a general system of N 

nonlinear equations in N unknowns,

......xN) = 0 ,

we rewrite the system in the form,

\ ......xN) ,

and then proceed to solve for the unknowns by the following iterative sequence,

x’+l = $.(x’......x’>. i=l......N. <5-2-3>

Here, q = 0, 12,..., is used to specify the iteration number, and (xi0,..., xn°) gives our initial 

estimate of the solution for the starting point of the iterations. The system of equations in 

(5.2.1) can normally be put in the form (5.2.2) in many different ways, not all of which will 

necessarily yield sequences that converge to the solution. The trick then is to find the 

functions 4>i with good convergence properties. One can rewrite (5.2.3) in vector notation as 

follows:

xq+1 = 4>(xq), q = 0,l,2,..., (5-2-4)

where x = ..., xn)T, andc>(x) = (<>i(x),..., 4>n(x))T.

We see that the term 'one-point' derives from the fact that the iteration function 

uses only the current iterate (xQ) to determine the succeeding one (xQ + 1). This is the simplest 

possible form which $ can take. More generally, <t> is a function of m points, which are not 

necessarily successive iterates, so that

xq+1 = 4>(yq,yq_l......yq"m+1). (5.2.5)

This is referred to as an m-point iteration method. The principal requirement of an iterative 

method such as the one given in (5.2.4) or (5.2.5) is that the sequence generated should 

converge to a solution (or root) of the system of equations given in (5.2.1), for any arbitrary 

starting point. Letting x* = (x^,..., xn*)T denote such a solution, this means that

lim xq = x* ,
q—»qd 

(5.2.6)
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for arbitrary x° € RN. This is referred to as the global convergence property of the iterative 

method. (For a general discussion of global convergence, see Luenberger, 1973, Chapter 6.)

In the Weiszfeld procedure, the system of equations (5.2.1) is given by the first- 

order conditions for a stationary point of a differentiable function; namely,

VW(x) = 0 , (5‘2'7

where V = (8/dxi,..., 833xn)t denotes the gradienj vector• W(x • = Sn1_ [W^x — aj) is the 

obj'ective function of the minisum problem with Euclidean distances, j • j is the Euclidean 

norm on RN, and the remaining symbols are as defined in model (5.1). The iteration function 

4> used to solve (5.2.7) will be discussed later.

Kuhn (1973) shows that the Weiszfeld procedure converges globally to the solution 

x* of (5.2.7) provided that an iterate xQ does not fall on one of the fixed points a,. If this occurs, 

the iteration function j becomes undefined due to division by zero. We shall investigate this 

problem in greater detail later. In the meantime, it suffices to note that an xQ will coincide 

with an a, only for a denumerable number of starting points (Kuhn, 1973). Theoretically 

then, the probability of a vertex iterate occurring would be zero for a randomly chosen 

starting point and a computer with infinite accuracy. Hence in practice we should expect this 

problem to occur very rarely, and so, we should not be too concerned about it. If by chance a 

vertex iterate does occur, one can always re-start the iterations at an x° slightly removed from 

the fixed point in question. Ostresh (1978) proceeds in this manner to resolve the problem of 

vertex iterates, by defining a new step when an iterate falls on a fixed point. With this 

modification, global convergence is guaranteed for any starting point.

In an earlier paper, Ostresh (1977) extends the Weiszfeld procedure to the multi

facility minisum problem with Euclidean distances, and shows that the descent property of 

the algorithm also holds in this case. By descent property, we mean that the iterative method 

gives lower values of the associated objective function from one iteration to the next, provided 
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the new iterate does not equal its predecessor. For the multifacility case, the problem of 

vertex iterates becomes more complex, since the new facilities can coincide with each other 

anywhere in the location space (RN). If two or more new facilities coincide or a new facility 

coincides with an existing one, the Weiszfeld procedure will fail in a similar manner as the 

single facility case when an iterate lands on a fixed point. The popular way of circumventing 

this problem is to use a smoothing function in place of the distance measure. Eyster, White 

and Wierwille (1973) introduce a hyperboloid approximation of the Euclidean norm. Alter

natively, the hyperbolic approximation can be used (e . g., see Love, 1969, 1974, Wesolowsky 

and Love, 1972, and Love and Morris, 1975b). These smoothing functions have the 

computationally-appealing property that they are infinitely differentiable everywhere. 

Although this approach eliminates the problem of vertex iterates, it has the disadvantage 

that the solution obtained can be a considerable distance away from the solution of the 

original model.

The local convergence properties of an iterative method such as the one in (5.2.4) 

are a measure of the ultimate speed of convergence, when the iterates are within a suffi

ciently small neighbourhood of the solution x*. However, they have to get there first. There

fore, one should establish beforehand that the algorithm is globally convergent. Generally, 

the local convergence properties are of interest when we wish to determine the relative 

advantage of one algorithm to another. Katz (1974) shows that the Weiszfeld procedure has a 

local convergence rate which is always linear if x* is not a fixed point. His results apply to the 

single facility minisum problem with Euclidean distances in RN. In mathematical terms, this 

means

||xq+1-x*||
--------------  = c < 1 , (5.2.8)lim

q—>qo ||xq-x*||
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where c is a positive constant giving the asymptotic convergence rate, and || • || denotes the 

Euclidean norm in RN. For example, if c = , , the distance between xQ and x* is 

approximately halved after every iteration for sufficiently large values of q.

We can use more sophisticated one-point iterative methods to improve the con

vergence rate when xQ is close to x*. However, these methods require several more com

putations at each step. It can be shown that a one-point iterative method of order r always 

requires the computation of all quantities related to the functions fj (xi,xn), i = 1.... N, up 

to and including the Xr— l)th order partial derivatives, at each iteration XDahlquist and

Bjorck, 1974). This becomes very cumbersome for values of r > 2, unless the higher-order 

derivatives are easily computed. An reorder method implies that

.. I|xq+1-x*||
lim -------------  = c
q—® ||xq- X*||f

X5.2.9)(* 0) .

An example of a one-point iterative method of higher order would be the Newton-Raphson 

method generalized to N dimensions, for which r = 2. Katz X1974) uses Steffensen’s method, 

which is also of second order, on several sample problems to obtain much better convergence 

rates near the optimal solution than by the Weiszfeld procedure. However, it should be noted 

that Steffensen’s iterations are not known to be globally convergent. This leads to the idea of 

using hybrid algorithms to solve the minisum location problem, in which we begin with the 

Weiszfeld procedure, and then switch to a more sophisticated technique to accelerate the 

convergence when the iterates are close to the optimal location.

Morris and Verdini X1979) extend the Weiszfeld procedure to the minisum model

with fp distances. We shall proceed next to prove global convergence of their generalized 

algorithm. Currently such a proof exists only for the special case of Euclidean distances 

XKuhn, 1973), or when a hyperbolic approximation of the , norm is used (Morris, 1978, 1981). 

The smoothing function has the advantage that the singularities in the iteration function are 
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eliminated. Subsequently in section (5.3), we extend the local convergence results of Katz 

(1974) for the Euclidean norm to the fp norm. Aside from academic interest, our aims serve a 

practical purpose as well. As noted previously, the use of the hyperbolic approximation of the 

€p norm, or other smoothing functions for that matter, may result in solutions which are 

considerably removed from the optimal solution to the original problem. Hence, a global 

convergence proof pertaining to the original (un-approximated) model would be useful.

Finally, a knowledge of the local convergence properties will enable us to design hybrid 

algorithms and choose acceleration methods more effectively.

5.2.2 Global Convergence Proof

Let us consider now the single facility minisum model (5.2), where distances are 

given by the fp norm on RN. Substituting the functional form of the fp norm, we can rewrite 

the objective function as follows:

i = l

n

p21.
(5.2.10)

When p = 1, so that rectangular distances are being used, the minimization problem can be 

separated in the N dimensions and solved in an efficient manner (e.g., see Love, Morris and 

Wesolowsky, 1988). If the Chebychev norm is used (p = +00), the problem can be refor- 

Hence, in applying the Weiszfeld iterative procedure to minimize W(x), we restrict attention

in practice to problems where the parameter p has a value in the following range,

1 < p < . (5.2.11)

Recall that the fp function is a differentiable round norm for values of p in this range

(Property 2.2.4).
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If a solution occurs at an x* which is not a fixed point, then W(x) is differentiable at x*, 

and the first-order necessary conditions for a stationary point require that

dW(x*)

dxt
t=l,...,N. (5.2.12)

Note that the system of equations in (5.2.12) is analogous to the system given in (5.2.1), where 

one-point iterative methods were being discussed. Since W is a convex function of x, the

equations (5.2.12) are also sufficient conditions for x* to be an optimal location. Evaluating

the partial derivatives of W at x*, we rewrite (5.2.12) as follows:

n
Y w.sign(x*-a.t)
i = 1 [€ (x* —a.)lp_1 

p i
= 0 ,

(5.2.13)

where again x* = (xi*,..., xn*)T. The procedure now is to re-arrange (5.2.13) in an analogous

form as (5.2.2). One of the many ways this can be accomplished is to note first that

=sign(xt-ail)|xt-ail|;

so that (5.2.13) becomes

(5.2.14)

n
Y w.(x -a.)— it it 
i= 1 [€ (x* —a.)]p_1 

p i
= 0,

(5.2.15)

and we readily obtain

w.lx —a.|p 2a. / [f (x* — a.)] p 11' t it1 it p i
—----------------------------------------------- , t = 1..... N.

n
w.| x — a. | p_2 / [€ (x* — a.)]p_ 1 z— l1 t it1 p i

i = l

(5.2.16)

As in (5.2.3), the above set of equations suggests the following iterative scheme:

Y w.lxq—a. |p 2a. / [€ (xq—a.)]p 1 i' t it1 it p i
(5.2.17)

Y w.|x^—a. |p 2 / [€ (xq—a.)]p 1— l1 t it' p i
i= 1

where the superscript q = 0, 12,..., denotes the iteration number.

Letting
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, . i1 t it' . WT
Yit(x) = -------------------7, i=l,...,n, t = l......N,
lt [fp(x-a.)] p" 1

we can rewrite (5.2.17) in the compact form,

n
Z

= --------------- • t = i.....N.

Z Yit<x<1>
i= 1

Note that the iteration function vector 4>(x) in (5.2.4) is now defined as

<|>(x) = (4>1(x)...... <t>N(x))T,

where

(5.2.18)

(5.2.19)

(5.2.20a)

Z Yit(x)alt

* (x) = —-------------  , t = 1......N . (5.2.20b)* n
Z Yit(x) 
i=l

For the special case where p = 2, the iterative scheme in (5.2.17) simplifies to

w a / f (xq-a.) ■— i it 2 1
(5.2.21)

V w. / f (xq —a.) 
a— i 2 1
i = l

This is the well-known Weiszfeld procedure for the minisum model with Euclidean distances,

for which several references are noted in subsection 5.2.1. The iterative method in (5.2.17)

extends the Weiszfeld procedure to the general case where distances are given by an fp norm.

A similar formulation for the hyperbolic approximation of the fp norm is given by Morris

(1978), Morris and Verdini (1979), and Love, Morris and Wesolowsky (1988).

Returning to the equations (5.2.19) and letting

A (x) = 
it

Y|tW

I)
ZYjt<x)

j=l

i = 1......n, t = 1,...,N, (5.2.22)
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we see that

xt + 1 = 2 Ait(x<1)ait’ t=l,...,N.
i = l

(5.2.23)

Since

X_t(x) > 0 , V i,t, (5.2.24)

and

n
Jllt(x)=l, VI,
i = l

(5.2.25)

we conclude the important result that xtQ + 1 is a convex combination of ait, i = 1..., n, in each

iteration step, for t = 1..... N . Furthermore , for the speda 1 case , p = 2,

Yil(x) = Yi2(x) = •" = YiN(x) = Yi(x) ’ 1 = 1....... n’ (5.2.26)

so that

Y/x)
X (x) - = A. (x) , V t, i ,it n i

y Yj(x)
j=i

(5.2.27)

and

n
x?+1 = Y X.(xq)a. , t=l,...,N (p = 2).t — l it r

i=l
(5.2.28)

Hence, xjQ + 1 is the same convex combination of the ajfs as X2ti + 1 is of the a,2’s ...» and x^i + 1 

is of the a1N’s. All the iterates xQ + 1, q = 0, 1, 2,..., must therefore fall within the convex hull 

of the fixed points a,. Kuhn (1973) uses this result to prove that the optimal solution for single 

facility minisum problems with Euclidean distances lies in the convex hull of the a,.

However, if p * 2, then equations (5.2.26), and thus (5.2.27) and (5.2.28), do not 

hold in general. In other words, xQ + 1 will not be the same convex combination of the a,i’s as 

X2<1 + 1 is of the a^’s, and so on. Hence, we can only conclude for p x 2 that all the iterates 

xq + 1, q = 0, 1, 2......will fall in a bounded hypercube containing the fixed points; that is,

min {a.J 5 x^+l max ’
(5.2.29)
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forr=l,... ,Nandq = 0,1,2......

Consider now the case where an = a2t = ••• = ant> for some t € {1,..., N}. Then, from

(5.2.23) and (5.2.25), it follows that
(5.2.30)

Hence, each iterate xq + 1 lies in the hyperplane, xt — ait = 0, and the problem reduces to one 

in (N — 1) dimensions. We assume without restriction that all problems are reduced in this 

manner to the minimum number of required dimensions.

As noted by Morris (1981), no complete proof of global convergence for the €p norm 

has previously been published except for the case where p = 2; i.e., the iterative method in 

(5.2.21). Our purpose then is to extend the global convergence proof to the iterative method in 

(5.2.17) for fp norms in general. Much of the analysis to follow is based on and motivated by 

the work of Kuhn (1973) for Euclidean distances. However, our convergence proof requires 

some new approaches due to complications we shall see later arising from the following 

fundamental result.

Property 5.2.1

If p < 2, the iteration function 4>(x) is undefined along the hyperplanes,

x t - a.t = 0 , i = 1 n (5.2.3DA 1, . .. , 11 >

for t = 1......N. Whereas if p > 2, the iteration function 4>(x) is undefined only at the fixed

points a(, i = 1...., n , oor . = 1......N.

Proof:

If p < 2, then | xt — ait | p — 2 — + °», as x approaches any point on the hyperplane, 

xt-ait = 0, in RN. Note that this hyperplane also includes the fixed point a,. If p > 2, 

division by zero within the functional form of 4>tx) will only occur if fp(x-aj) = 0; i.e., x = a,, 
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for some i. Aside from the above singular points where cannot be computed directly, we 

see that the functional form of 4>t(x) is well-defined and continuous. Hence, the property 

follows.

Property 5.2.1 reveals a basic difference between a Weiszfeld procedure with 

Euclidean distances and one with €p distances, where p < 2. In the former case, the iteration 

functions 4>t(x), t = 1,..., N, are singular only at the fixed locations aj, i — 1,.., n. However, 

in the latter case, we have to contend with singularity on the hyperplanes, xt — a,t = 0, 

i = l,...,n, t = 1,..., N. It would be advantageous in proving global convergence for each 

iteration function 4>t(x) to be continuous. Hence, we study the behaviour of 4>t(x) in the 

vicinity of its singular points to see if it can be made continuous at these points. The following 

three results deal with this question.

Property 5.2.2

Let p have a value in the range, 1 < p < 2. Then the iteration function <£t(x), 

t € {1, N}, is continuous if, and only if, we set 4>tx) = a,t at all points x on the hyperplane 

xt — ait — 0, for i = 1......n.

Proof:

This follows immediately from the fact that

lim 4>t(x)=art, Vr.t, (5.2J2.
x.-»a .t rt

and 4>t(x) is continuous everywhere else.

Property 5.2.3

Let p = 2. Then the iteration function 4>tx), t € {1.......N}, is continuous if, and only

if, we set 4>.(ai) = ait> for i — 1,..., n.
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Proof:

This follows immediately from the fact that

i- ~ \ w • (5.2.33lim <4>t(x) = art ’ V r, t ,
x—»a r

and 4>tx) is continuous everywhere else.

Property 5.2.3 was previously recognized by Kuhn (1973). Using vector notation, 

we see that 4>aJ = at, i = l,...,n, in order that the mapping $: x-»>(x) be continuous for 

p = 2. As seen from Property 5.2.2, this result also holds for 1 < p <2, but there are 

additional requirements on nN hyperplanes in RN as well. For the case where p > 2, the 

following rather surprising result is obtained.

Property 5.2.4

Let p have a value in the range, 2< p < + <°. Then the iteration function <j>t(x),

t € {1...... N}, cannot in general be made continuous at its singular points a,, i = 1,..., n.

Proof:

Let H denote the hyperplane, xt — art = 0, r € {1, m, n}, and consider the following 

limits:

lim 4>t(x) =
x—>ar
x€ H

V w.|a —a..|p 2at / [f (a — a.)]p 1
— i ' rt it' it p r i
ixr

ixr

(5.2.34)

(5.2.35)
lim <>t(x) = art .
x—»ar
xfH

The first limit is easily obtained from ^^.^L The second one follows from the observation

that
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urn
x—»ar 
xfH

1 _ ID—2
1 x , - 3 rJ D — 2

1 x t - a rd _ • •— urn
x—>ar
x€H

[f (x — a ))p_1 
p «■

1X

art ]” - 1

= lim
—1

1 1 

a |x—>a x t -r 
x€H

t rti

+ <» ,
(5.2.36)

where fp(x — ar) = 1| xt — art|, and t > 0 depends on the direction of approach to ar. Since the

two limits are not in general equal, the property is proven.

In summary, we define the following iteration procedure:

i) For 1 < p < 2,

4>t(xq) if Kj-a. * 0, i = l,...,n,

ait Lfx?"ait = 0’ .......

ii)
t = 1,

For p > 2,

q+ 1 XH =
<t>xq)

a.

if xq*a. , i = 1......n,

if xq=a. , i€ {l,..,n}.

(5.2.37)

(5.2.38)

From Property 5.2.2, we see that the mapping given in (5.2.37) is continuous. From

Properties 5.2.3 and 5.2.4, it follows that the mapping in (5.2.38) is continuous for p = 2, and 

discontinuous in general at the fixed points a; for p > 2.

(5.2.37) or (5.2.38) symbolically as

T : x — T(x) (x £ RN).

Denote the procedure given in

(5.2.39)

Clearly, T is just our iteration function vector , specified in (5.2.20a) and (5.2.20b), with the 

singularities of its components, the 4>>. accounted for. The remaining properties deal with the

iteration procedure T as defined in (5.2.37) or (5.2.38).
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Property 5.2.5

The map, T: x -» T(x), lies in a compact set.

Proof:

From equations (5.2.23), (5.2.24) and (5.2.25), it is seen that + 1 is a convex 

combination of the ait, i = 1, if xQ is not a singular point of ). Furthermore, if xQ is a 

singular point of 4>t> then x,<i + 1 = art, r € {1.......n} . from (5.2.37) and (5.2.38) . We conclude

that all the iterates except possibly the starting point will fall in a bounded hypercube, such 

that (5.2.29) is satisfied.

Before proceeding to the next property, we introduce the following notation:

Hit = -aU=0>' i=l n, t = 1 N; (5.2.40)

H, = U H

i=l
it ’ t = l......N; (5.2.41)

and

s =

N
U Ht , 
t=l

f 1 < p < 2 ,
(5.2.42)

{ai...... if p — 2 .

In other words, S is the set of points, x € RN, where 4> is singular. Let D denote the set of x 

where the objective function W is not differentiable. If p > 1, then D = {ai,..., a^. If p = 1, 

then D=UNt_1Ht) It is interesting to note that D = Sifp = 1 or p > 2, but D C S if 

1 < p < 2.

Property 5.2.6

Let x* denote an optimal solution of the model (5.2.10). If xQ = x* then xq + 1 = x*

as well as all subsequent iterations. If xQ i S and xQ + 1 = xQ, then xQ = x*.
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Proof:

If x* £ S, then VW(x*) =0 implies that x* = 0(x*) = ($i(x*),...) <4>n(x*))t- There

fore, if xi = x*, then xQ + 1 = T(xQ) = <>Xx*) = x*, as well as all subsequent iterations. 

Consider now the case where x* € S. If p S 2, then x* = ar, for some r £ {1, n}. Hence, if 

xQ = x*, then by (5.2.38), x<l + 1 = ar = x*. If 1 < p < 2, and V. = {{| 4X>(x*) is non-singular}, 

we obtain the following: the complement of V., V'„ is non-empty; xr* = a^- Vr ( V',; and 

xr* = <pr(x*) V r € V,. Hence, if xQ = x*, then by (5.2.37), xrq + l = a^ = xr* Vr £ V'», and 

xrq + l = 4Xr(x*) = xr* V r( Vo; so that xQ + 1 = x*. For the last statement of the property, we 

have x<l + 1 = T(xq) = 4>Xx«), since xQ £ S. Hence, xQ = <>Xx<), which implies that VW(xq) =0. 

We conclude that xQ = x*.

The next result shows that each iteration moves in a descent direction of the 

objective function, W.

Property 5.2.7

If p = 2, then xq + 1 lies on a vector from xQ pointing in the direction of steepest

descent of W at xQ. Otherwise, if p < 2, this vector points in a descent direction which is 

generally not the steepest descent. In both cases, we assume xq + 1 x xq.

Proof:

Equations (5.2.19) and (5.2.20b) can be rewritten in the form,

n
y (xq) • (xq -a. t) —- ‘it t It

n t = l......N.

V yit(**)
i = l

But
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=
w.sign(Xt-ait)|xt-a.t|p 1

where

d
V := — .

1 ^Xt

Letting

n
st(x) = 2

i = l
Yit(x) > t = l....... N,

we see that

q+1 qxq - xq - — V1W(xq), t = 1.....N,

(5.2.43)

*? - --------
sjx”)

(5.2.44)

provided, of course, xQ is not a singular point of 4>t- Since xQ +1 * xQ, it follows that xQ is not at 

a fixed location; i.e., xQ * a;, i = l,...,n. Thus, xQ can be a singular point of 4>t only if

1 5p<2 and xtQ = a,t for some i € {1........n}. In this case, sJxQ) = +«, and x^ + 1 = ajt, as

well as all subsequent iterations. However, a non-empty set J C {1 N} must exist such 

that sr(x<l) has a finite value for all r € J (i.e., xQ is not a singular point of 4>r), since xQ + 1 * xQ.

We see that
(5.2.45)

t = 1..... N;s^xl > 0 ,

also, st(xQ) is finite valued for all t € {1.......N} if p S 2, and finite valued for at least some t if

1 p < 2. Furthermore, by (5.2.26), it follows that
(5.2.46)Sj(x) = s2(x) = ... = sN(x) = s(x), p = 2 ;

but this does not generally hold if p * 2. We conclude from (5.2.44) and (5.2.45) that xq + 1 lies

on a vector from x<l pointing in a descent direction of W at x<l. For p = 2, this is the steepest 

descent direction, since by (5.2.46),

xq+1_xq = - — vw(xq) (p = 2).

sc^q)
(5.2.47)
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For p * 2, the above equation does not hold in general, so that the descent is not in the 

steepest direction.

The preceding result shows that the iterations move in downward directions along 

the surface of the objective function W. We can rewrite (5.2.44) in the form,

x<q+1 = xq _ [M(xq)]’1VW(xq) ,

in a similar manner as Morris and Verdini (1979) for the hyperbolic approximation of the €p 

norm, to show that the iterative scheme is actually a modified gradient descent method with 

pre-determined step size. The modification matrix [M(x<)] — 1 is a diagonal matrix with (non

negative) diagonal elements given by l/s^xq), t = 1..., N. As noted by Kuhn (1973), a 

problem affecting global convergence may arise if the iterates 'overshoot'; that is, the step-size 

may be too large, causing W to increase between iterations. The following important result 

shows that overshooting cannot occur for a certain range of p.

Property 5.2.8 {Descent Property}

If 1 < p S 2 and xQ + 1 * xq, then W(xQ + 1) < W(xq).

Proof:

For a given xq, let Yitq , — Yit(xq)> i = 1 = 1..... N. Then, from (5.2.19) we

have 
n

V
l=l

provided xq f? Ht if 1 < p < 2 and x<l ? S if p > 2 (see relations (5.2.40), (5.2.41), and (5.2.42)).

Let Vq = {t | OxQ) is non-singular}. If p > 2, then since xq+1 x xq, we must have xQ * a,, 

i = 1,..., n; i.e., xq V S. Clearly, Vq = {1, ...,N} if p > 2. On the other hand, if 1 < p < 2,then 

since xq + 1 x xq, we must have Vq C {1, ...,N} and Vq x 0.
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For t € Vq, define

n
St(xt) = 1 Y?l(xt-ait)2 .

i = l

(5.2.49)

Then gt(xt) is a strictly convex function of xt, and has a unique minimum at + 1. Thus, for 

all t € Vq,

gt(xt + 1 ~ gt(x?

n
= Y w.|x'-a.• ^[f (xq-a.)]1~p. (5.2.50)

— i' t it1 p i
i = l

At least one of the inequalities given by (5.2.50) must be satisfied in a strict sense, since 

xq + l x xq. Now for s € V'q, where V'q is the complement of Vq, we have xsQ + 1 = x^. (Note 

that V'q = 0 if p > 2.) Thus,

h (xq+1) = h (x*, V sfV' ,
s s s s q

where
n

h(x) = • w. | x — a. | p[€ (xq — a.)] 1_p .
i = l

Comb ining (5.2.50) and (5.2.51), gives

(5.2.51)

(5.2.52)

Z + l)+ S h3(xsq+1)< 2 §l(xt)+ 2 \(x?

t € 2 q .
» 

s € 2 q
t 6 2 q s € 2 q

n N
= 22 wJxq-a lklP[fp(xq-ai)J)_P

i=l k=l

n
= • w. f (xq — a.) = W(xV (5.2.53)

-— i p i
i = l

Now consider the left-hand side of the above relation, and p < 2:
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n
= 2 2 w|xxi-atl’-^^pU’-ai)1-'’- (x’+1-a/

i = l t€ V q

n
+ £ 1 wilXJ + 1-aislPf€p(x<1-ai)]1"P

1 = 1 3 € v’
9

n N
= 2 2 w 1aiki P'2t«p0‘,-ai)i(x’+1-af2 

i = 1 k = l
I’S - aik*°

(Vq = 0 if p > 2)

(xq+ 1 = xq , Vs € V ) S3 q

n N ?
= 22 wiKp(xq-a.)J1’p- °xq-aklpl p flx/l-aiknP 

i=l k=l

n N
> — V w.[€ (xq-a.)]1_p 

— — i p i
i=l k=l

for p < 2, (Beckenbach and Bellman, 1965, Chapter 1,14. (7))

[€ (xq_a.)]1”p[€ (x,+ 1 — a.)]p 
pip i

n
w.{(l-p)f (xq—a.) + pf (xq+1-aJ}

1 = 1

for p 2: 1 , (Bedcenbach and Bellman, 1965, Chapter 1,14.(7))

nn
w f (xq — ai) + 2 V w. f (xq+ 1 — ai) 

i pi i «— [ p i
i = l

= - W(xq) + 2W(xq+1) .
(5.2.54a)
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For p = 2, we have

q+ lx xs )
s

t € V 
q s € V 

q

= 11 1 (xj+1iaik)2

i = l k = l

< = 0) 
q

n
= Y w. [€2(xq-a)J-1 [€2(xq+1-a)j2 

i=l

n
1 y w. + 2€2(xq+1-^<i)}

1=1

(Beckenbach and Bellman, 1965, Chapter 1,14. (7))

, (5.2.54b)
= -^W(Xq) + 2W(Xq+1) .

Comparing (5.2.54a) and (5.2.54b) with (5.2.53) gives

- w(xq) + 2W(Xq+l) < w(Xq), 1 < p < 2 .

Hence

W(xq+1) < W(xq), l<p<2, (5.2.55)

thus proving the descent property of the algorithm for values of p in this range.

For values of p greater than 2, the descent property does not hold at all times. This

is due to the fact that the first inequality in (5.2.54a) is reversed for p > 2. Consider the

following simple example with four fixed points in two dimensions: aj = (0, 0), a2 = (0, 10),

a3 = (10, 10), a4 = (10, 0), W! = w2 = 2, and w3 = w4 = 1. Let the starting point of the 

iterations be x° = (0, 5). It is readily seen from (5.2.17) that the iterates will oscillate between

(10, 5) and (0, 5) in all subsequent iterations, for any value of p > 2. This unstable behaviour 

is illustrated in Figure 5.2.1, as well as the first few iterations when x° = (0, 9)T and p = 3. If 

x° is a point on the vertical line through ai and a2 or a3 and a4, then the consecutive iterates 

will oscillate between these two lines to infinity or until one of them lands on an a,. It is clear
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Figure 5.2.^! Unstable Trajectories for p>2.
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then from this simple example and Property 5.2.7, that although the iterates move in descent 

directions, they can overshoot if p > 2 (i.e., W(xQ + 1) > W(xQ)).

A similar situation applies if p < 1 (p * 0). Recall in this case that the €p distance 

function is no longer a norm. It can readily be shown that Property 5.2.7 still applies, so that 

the iterates move in descent directions of the objective function W. However, we cannot 

guarantee that overshooting will not occur, since the second inequality in (5.2.54a) is reversed 

when p < 1.

If xQ = a, for some q, then xQ + 1 = T(at) = a,, so that W(x<! + 1) = W(xQ). As a result, 

the fixed points belong to the solution set T referred to in the general global convergence proof 

for descent algorithms of Luenberger (1973, Chapter 6), which implies in turn that a 

subsequence of the iterates may converge to any aj. This other potential difficulty of the 

Weiszfeld procedure was recognized by Kuhn (1973) for Euclidean distances (p = 2). For the 

case 1 S p < 2, the problem is complicated further by the possibility that T(Q) = Q at non- 

optimal points Q € S, where S is the union of hyperplanes, x> — a;t = 0, as defined in (5.2.42). 

For example, consider the intersection point B in N dimensions defined as follows:

B = (a . . . a . ........... a . ) , (5.2.56)
l. ‘r N

where ij € {1......n} . j = 1........NT,

and B * a, i = 1 •-, n.

If 1 ) p < 2, then T(B) = B, and thus all the intersection points belong to the solution set T. 

As another example, consider a hypothetical point Q on the hyperplane xi - aj i = 0, but on no 

other hyperplanes of S, satisfying

aw(Q) _ dW(Q) _ _ aw(Q) _ o

ax2 ax3 axN

If 1 ) p < 2, then T(Q) = Q, and Q € T. Using similar hypothetical examples, it follows that 

we must investigate the possibility of convergence to any non-optimal point belonging to S.
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Before addressing the potential problem of convergence to a non-optimal point in S, 

we prove two useful lemmas.

Lemma 5.2.1

Let p € [1, 2], and consider any sequence xQ, q = 0, 1, 2. .... g^f^r^tratted by the mpp 

T: x-*T(x). Then {xQ} and all the subsequences thereof converge to one and the same point.

Proof:

First consider the case where xQ + 1 = T(x<l) = xq for some q. Clearly the sequence 

repeats from that point, thus verifying the lemma for this case. Hence, we only need to 

consider sequences where xV 1 m x<i for all q.

With the possible exception of x°, the sequence xq lies in a compact set defined by a 

bounded hypercube (Property 5.2.5). Hence, by the Bolzano-Weeerstrasz Theorem, there 

exists at least one point P and a subsequence xr such that llmm»xrf = P. To prove the 

lemma, we must show that there is at most one such P. This is done by contradiction.

Suppose there are M subsequences (M > 2) of xq which converge to distinct points 

P1—.Pm- Consider the first subsequence xrf. Then

lim x"* = P j . (5.2.57)
f—KB

By the monotonicity of W on the entire sequence xq (Property 5.2.8), we also have

W(x°) > W(xl) > ... > W(P]J . (5.2.58)

Now construct a S-neighbourhood around Pi, isolating it from the other Pr Then it is clear 

that we can choose our subsequence xrf -> P, such that T(xr?) % a, for all f, where Ai denotes 

the fi-neighbourhood. Invoking the Bolzano-Weeerstrasz Theorem once again, we conclude 

that the subsequence T(xr?) must converge to at least one point, say P', € Ai; i.e.,
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lim TCx^) = Pj x Pr (5.2.59)

But

lim T(x^) = T(P . ), (5.2.60)

by (5.2.57) and the fact that T is a continuous mapping. Since Pi * T(Pi), then by Property 

5.2.8,

W(T(P-)) < W(Pt). (5.2.61)

But this clearly results in a contradiction of the monotonicity of W on the entire sequence xq, 

(relation (5.2.58)). Hence we conclude that there cannot be M subsequences (M > 2) which 

converge to distinct points, P,..., Pm- Thus, the sequence xq converges to a unique point.

Lemma 5.2.1 reveals an important property concerning the nature of any sequence 

xq generated by the Weiszfeld procedure, and is a stronger result than previously recognized. 

The uniqueness of the convergence point is based principally on the strict monotonicity of W 

on xq. The lemma applies even when more than one optimal location x* exists, which can 

occur when p = 1 or when the a, are collinear. We cannot extend the lemma a priori to values 

of p > 2, since the descent property can be violated and T is not continuous at the fixed points 

in this case.

The second lemma provides a sufficient condition for non-convergence of the 

sequence xq to a specified point Q, which will be useful in our investigation of the singular 

points on the hyperplanes xt — alt = 0 when 1 ^p < 2.

Lemma 5.2.2

Let Q = (Qi, .... Qn)t be any point in RN. Consider a sequence xq, q = 0, 1, 2, ...,

generated by the map T, such that x^ * Qt for all q and some t € {1,..., N}. If
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lim
x—»Q

VV°

> 1 , (5.2.62)

then the given sequence does not converge to Q.

Proof:

Suppose that the sequence xq converges to Q. Then for any 8-neighbourhood of Q,

where 8 > 0 can be made arbitrarily small, an M can be found such that

(5.2.63)xq AQ, Vq>M,

where Aq denotes the 8-neighbourhood. But for sufficiently small 8, we have by (5.2.62),

|x’*‘-Q |
------------- > 1, V xq€An .
|x'-QJ Q

Hence, an s exists such that if xq C Aq then xq + s€ Aq, which contradicts (5.2.63). We

(5.2.64)

conclude therefore that the sequence xq does not converge to Q.

Informally, the above result says that if an iterate happens to land inside Aq, then

the subsequent iterates will eventually be kicked out by T. In order to apply the preceding

lemma at the singular points of the iteration functions 4>t, we use (5.2.17) to obtain

q + 1 x; —a _t rt

£ Wil X?"aitl P 2(aU-art)/€p(Xq-ai)]P ‘ 1

i*r_____________________________________________

Z Wilxr-aiJP”2/€P(xq-ai)]P~1 

i=l
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p-1

K (x’-a )lp~l
P r

(5.2.65)r € {1......n}, t = 1....... N .
We are primarily interested in sequences where none of the iterates coincide with

singular points of the <t>t. As will be seen later, the probability of an iterate landing exactly on 

a singular point is very low, for a randomly-chosen x°, and theoretically it is zero if the 

sequence is calculated with infinite accuracy. The following definition distinguishes between 

the two fundamental types of sequences.

Definition 5.2.1

A sequence x9, q = 0, 1,2,..., is termed regular if xQ € S for all q, where S is the set 

of singular points defined in Otherwise, xQ, q = 0, 1, 2, ..,is a non-regular sequence.

It is important to note that if xQ € S for some q, then x«i + k € S, k = 12,..., as seen 

by (5.2.37) or (5.2138). The next result shows that a regular sequence will never converge to a 

non-optimal point in S.

Property 5.2.9

Consider any regular sequence x<l of the map T, with 1 < p < 2. Let Q € S be a non-

optimal location; i.e., Q * x*. Then {xQ} does not converge to Q.

Proof:

We consider three cases as follows:



179

i) 1 < p < 2, Q *= a,, i = 1..... n.

Since Q is not a fixed point, the first derivatives dWfQJ/dxk are defined for all k.

Furthermore, since Q at x*, at least one of these derivatives is non-zero, say dW(Q)/<3xt. Thus,

aWCQ)
— = w^sgn^—a.p

t i = l [f (Q -a.)p—‘
p ‘

where Q = (Qi.Qn)t as before.

Suppose {x<4} converges to Q. Then

lim xq = lim T(xq) = Q , 
q—q—

which implies by the continuity of T that

T(Q) = Q .

If Qt * a,t V t then clearly Q is not a singular point of 4>t, and we obtain from (5.2.66),

(5.2.66)

(5.2.67)

(5.2.68)

(5.2.69)4>t(Q) x Qt .

Hence T(Q) x Q, contradicting the supposition that {xq} converges to Q. We conclude that

Qt = art for some r C {1,..., n}, if convergence of {x<i} to Q is to take place. Then (5.2.66)

becomes

aW(Q) 2 w.sign(art-a.t) 
ixr [€p(Q-a.)]p-1

(5.2.70)

* o ,

x 0 .

Using (5.2.65), it is readily seen that

lim
x—Q

x -a xO t rt

(5.2.71)= + <» ,

so that convergence of {xl} to Q cannot occur due to Lemma 5.2.2.
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ii) p=1,Q* ai, i = 1...... n.

Again, suppose that {xq} converges to Q. Using a similar reasoning as in case (i), we 

conclude that for t € {1..... N}, if Qt x a,t V i, then <W(Q)/<3xt = 0. Let Jq = {s | Qs — arsS = 0},

where rs C {1..... n}. Without loss in generality, assume that for each s € Jq, there is a unique

rs such that Qs — a^s = 0. This is always the case if the fixed points do not share common 

coordinates. (The proof can be easily modified otherwise.) Since Q * x*, Jq is a non-empty 

set.

The directional derivative of W evaluated at Q in the direction of the unit vector

y = (y i»—, yN)T is calculated as follows: 

W'(Q;y) =
W(Q + 8y)-W(Q)

8

n N
w. 2 (|Q + 5y.-a..|-| Q.-a.. |) 

i j j j • 1 j ij1
i = l j = l____________________________

8

lim
8—0+

t€jQ

3€Jq
Wr

s
|ysl + — w . sign(a r s -ais Js 

i*r ss

w. sign(Qt-a.t)yt , (5.2.72)
t€JQ

+

+ Y
n 

V
1 = 1

5

8
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where

Jq — {1,..., N} — Jq 

is the complement of Jq. But

8W(Q) n
= V w. sign(Qt-a,t) = 0 , 

} = 1
VtCJq •

(5.2.73)

Hence, equation (5.2.72) becomes

W'(Q;y) = V

s6Jq
Since Q is a non-optimal location, we must have by Property 2.4.1,

w |y 1+ / w sign(a — a. )yr 1J s 1 i ® r s is J s
3 ixr ss

min W'(Q ; y) < 0 • 
y

Hence

min W'(Q;y) = min 2 
s€Jq

V
ixrs

w sign(a — a. )i r s iss
-ly.l

(5.2.74)

(5.2.75)

(5.2.76)
y y

w r 1 s
< o ,

which implies that

z
xr s

w. sign(a —a. )1 ° r s iss
(5.2.77)> 1

w r s

for at least one s C Jq, say s = o. Using (5.2.65) with p = 1, t = o and r = ro, it is readily seen

that

l<Ux)"ar a10
lim
x—»Q | X - a I'a r o '

x -a s=0 a
a r aa

>

y 
ixra

w. sign(a —a. ) i ° r a ioa

w r 0

1 ;
(5.2.78)

so that convergence of {xq} to Q cannot occur due to Lemma 5.2.2.

iii) 1 < p 5 2, Q = ar for some r (: {1,..., n}.

Let
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W_(x) = W(x) - w f (x — a ) = V w. € (x-aj . 
r r p r i p i

i*r

Then the directional derivative of W at Q = ar in the direction y is given by

W'fa^y) = VW^aJ-y + wr €p(y) .

(Note that if p = 1, we are assuming without loss in generality as in case (ii) that the fixed

(5.2.79)

(5.2.80)

points do not share common coordinates. Otherwise, VWr(ar) may not be defined, and the

above equation would have to be modified slightly.) Let

-VW (a )-y 
f(y) = -------- —-----

wr fp(y)

Then the convergence of {xq} to ar must be along a unique asymptotic direction V such that 
(5.2.82)

(5.2.81)

f(V) = max f(y) 
y

(see Property 5.3.8 in the next subsection).

As shown in Juel and Love (1981), a necessary and sufficient condition for ar to be

an optimal solution is that f (V) < 1. Since ar is not optimal in our case, it follows that

-VW (a )• V
f(V) = ----------—------- > 1 .

w € (V) 
r P

(5.2.83)VW (a ) • V + w € (V) < 0 . r r r p

Comparing (5.2.80) and (5.2.83), we see that W'(ar; V) < 0. Hence convergence of {xq} to ar

cannot occur, since this would contradict Property 5.2.8 (descent property).

Since cases (i), (ii) and (iii) exhaust all possibilities, the proof is complete.

At last we are ready to prove global convergence of the Weiszfeld procedure.

However, this shall be under the proviso that p has a value in the range [1, 2], and xq i S for

all q; i.e., the sequence is regular.

Theorem 5.2.1 (Global Convergence)

Let xq, q = 0, 1, 2..... be a regular sequence generated by the map T for a value of p

m the dosed mterval [1, 2]. Then {xq} converges to an optimal solution of the single facility
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location problem; i.e.,

lim xq = x* . (5.2.84)

Proof:

By Lemma 5.2.1, it follows that {xq} converges to a unique point, P £ RN, so that

lim xq = P . (5.2.85)
q—♦to

To prove the theorem, we must show that P = x*.

If xQ + 1 — x9 for some q, then the sequence repeats from that point and P = xq.

Since xQ (? S, P = x* by Property 5.2.6. Otherwise by Property 5.2.8,

W(x°) > W(x') > ... > W(xQ > ... > W(x*) .

Hence

lim (W(xq) — W(T(xq))] = 0 . (5.2.86)
q—»ao

Since the continuity of T and (5.2.85) imply

lim T(xQ) = T(P) , (5.2.87)
q—»ao

it follows that

W(P) - W(T(P)) = 0 . (5.2.88)

Therefore, by Property 5.2.8, we must have P = T(P). If P € S, then P = x* by Property 5.2.6 

If P € S, then P cannot be a non-optimal location by Property 5.2.9. Again P = x*, and the 

theorem is proved.

Consider now a non-regular sequence xq, q = 0,1, 2...... If p = 2 (or p > 2), this

implies that x< coincides with a fixed point for some iteration number q, as well as all 

subsequent iterations, - not an interesting situation. On the other hand, if 1 < p < 2, then 

{xq} is restricted from some iteration number onwards to motion in a subspace of RN, defined 

by the intersection of one or more hyperplanes of the form xt - att = 0. The following corollary 

gives an analogous result as Theorem 5.2.1, for a non-regular sequence when 1 < p < 2. First 
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we introduce the following notation. Let

J = {r| xs -a. = 0 } ,1 s i s J 'r

and

« = n *
s € J s

where s is some iteration number such that J * 0, ir € {l....nj depends on r • and ss

defined in (5.2.40).

Corollary 5.2.1

Consider a non-regular sequence xQ, q = 011,2 of the map T with p € [1, 2). 

Then if all subsequent iterations after xs do not fall on any hyperplanes • ; not already 

included in H, the sequence converges to an optimal solution for the subspace H.

Proof:

By Lemma 5.2.1, it follows that {xQ} converges to a unique point, P € RN. 

Furthermore, by the definition of T it follows that x3 + k, k = 0,1, 2,..., lies in H, hence P € H. 

The remaining steps are essentially the same as in the theorem.

For p = 2, there is only a denumerable set of starting points x° such that {xq} will 

terminate at an a, after a finite number of iterations (Kuhn, 1973). This result can be 

extended to p > 2. However, for 1 < p < 2, the singular points of the iteration function vector 

4> comprise the hyperplanes H,t; and we obtain the following.

Property 5.2.10

For p £ [1, 2), the sequence xQ, q = 0,1, 2..... converges to x*, except for a set of

starting points x° which is dense as the set RN • L
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Proof:

Consider a point Q C S such that if xr = Q for some r, the sequence results in a non- 

optimal solution. Then

fx'lx1 =Q}

is finite, since x° solves a system of algebraic equations. It follows that

{x0| xr = Q for some r}

is denumerable. Let

S' = {Q C S | if xr = Q then lim xq * x* } .
q—*ao

Since S' is dense as the set RN -1, we conclude that

{x° | xr € S' for some r}

is also dense as the set RN -1.

Since xo can be any point in RN, the likelihood that the algorithm will not converge 

to x* for an arbitrarily chosen starting point should be very low (zero theoretically if the 

sequence is calculated with unlimited accuracy). As a consequence of Property 5.2.10, we are 

well-advised to use double precision arithmetic when 1 <> p < 2. A topic for future considera

tion would be the use of a variable step-size when an iterate lands on a singular point, 

extending the results of Ostresh (1978) for p = 2. Asa final comment, we note that although 

global convergence of a regular sequence is not guaranteed for p > 2 (e.g., see counter

examples in Figure 5.2.1), this is not a practical limitation, since we only need to consider 

values of p in the interval [1,2] for properly oriented axes (Chapter 3).

5.3 Local Convergence Rates of the Weiszfeld Procedure

Now that global convergence has been proven for 1 < p C 2, we turn our attention 

to the behaviour of the sequence xi when the iterates are close to an optimal solution x*. Katz 

(1974) studies the local convergence rates of the Weiszfeld procedure for the single facility 

minisum problem in N-dimensions with Euclidean distances (p = 2). For this case he shows 
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that the local convergence is always linear if x* is not a fixed point. Furthermore, for N = 2, 

the upper asymptotic convergence bound (XM) takes on a value in the range 1/2 < XM < 1. If 

x* is a destination, the local convergence rate is usually linear, but it can be quadratic or 

sublinear in certain cases.

The only published results concerning local convergence of the Weiszfeld procedure 

appear to be those given by Katz (1974). Our objective then is to extend these results to the 

single facility minisum problem with fp distances, where 1 < p < 2. We shall soon see that 

the analysis is considerably more complex, and that a basically different methodology than 

the one by Katz (1974) is required, because of the more cumbersome form of the iteration 

functions 4>t for general p. (Compare the functional forms in (5.2.17) and (5.2.21)). Interest

ingly though, the general results obtained by Katz (1974) for Euclidean distances also apply 

when p takes on a value in the open interval (1,2), but a different situation holds for p = 1. In 

the first case the f p function is a round norm, whereas it becomes a block norm when p = 1.

We study the local convergence rates in great detail for the two-dimensional 

problem (N = 2), since location in the plane occurs most commonly in practice. The analysis 

also leads to some interesting observations for values of p outside the interval [1,2], The 

results are then extended to the single facility minisum problem in RN.

5.3.1 Convergence to a Non-Singular Point

We shall assume here as in Katz (1974) that the fixed points or destinations a; are 

non-collinear. For p > 1, this guarantees a unique solution x* (Corollary 5.1.2). The collinear 

case is trivial to solve in two dimensions (see Corollary 5.1.1 and Property 5.1.4), so that a 

W^zfe^ iterative procedure would not be required here. In the following analysis, the same 

notation is used as in section 5.2, unless stated otherwise.

Recall that the iteration functions are given by
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n
= 2 Yitt(^)ait; 7 

i = l

n
Z , t=l......N
i = 1

(5.3.1)

where

.. wllxt-aiJp ' 2 
Y^x) = i=l......n , t = 1....... N . (5.3.2)

[€p(x-a.))p-1

Let us consider first the case where x* is not a singular point of the 4>t; i.e., x* f? S. Since the

first partial derivatives of the objective function W(x) are equal to zero at x*, it follows

immediately that

xt = <t»t(x*) , t ~ 1, ..., N , (5.3.3)

or in vector notation,
(5.3.4)X* = 4>(x*) .

For p € [1,2], the iteration functions are infinitely differentiable at any x £ S.

Thus, we can rewrite 4>(x) in a 8-neighbourhood of x* in terms of its Taylor series expansion at

x*. For sufficiently small 5, the higher-order terms in the series become insignificant.

Letting || • || denote the Euclidean distance, we obtain

4>(x) = 4>(x*) + 4'(x*)--x-x*) 4 O(|i^-x*||2)

= x* +4>'(xn--x-x*) + O(||x-x*||2) ,

where A denotes the 8-neighbourhood of x*, and <>'(x*) is the N X N matrix of first partials of $

(5.3.5)

evaluated at x*; i.e.,

■a^(x*)

dXj

<9>1 (x*) 

dXN

>

$'(x*) =

Affix')

8Xj

*t>N<X*) 

dxN

(5.3.6)

We proceed now to calculate the elements of the above matrix. For general x,
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84>t (x)

ax. J

Z Yit(x) - a,t
i
I Ylt«

i

a
ax. 

j

(5.3.7)

where

st(x) = 2 Ylt(x) >

i

and the summations are understood to be over the index set {1,.... n}. At x = x*, the above

expression reduces by means of (5.3.3) to

*t>t(x‘>____ 1

axj - ’A*1 1=1

Using standard calculus, we obtain

a .
— Y;.(x•) -(a. , - x] . 
ax. 1 >t n t

J

(5.3.8)

and

Thus,

(1 —p)w sign(x — a.,)|x. - a..|p l|x — a |p 2
i j ij j ij t it1 .-------- ---------------------------------------------------------- , J « t,

[f (x - a.)]2”-1 
p 1

-w signlx - a.,) x - a P
, , „ i B t it ■ W
(Ylf(*)J = -------------------------------- :-----------

11 [€ (x - a.))p_l
p 1

• (2-p) +

(5.3.9)

(5.3.10)

£
£ 1 Y ) 1 1 1 = 

j

a
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and

<X.J

(p-1)
St(x*)

j * t,

• z * * I •w. ssignfr* - a..) sign(x* - a^ |x*

[€ (x* p

' - a.. p 1 |xt - a.J p 1j ij' 1 t it1

- a.)) 2P- 1

(5.3.11)

#(x*)

*1

1 n
— 2 
st(x>) —1 w.i [€ (x* - a.)]P-1 

p »

(2 - p) 4- (p - 1) -------------------
(€ (x* - a )]p 

p >

(5.3 12)

n 
s 

1 = 1

Using equations (5 3 11) and (5.3 12). we can

the planar case (N = 2),

where

*>11

*12

*21

and

*11

*21

*12

*22
(5.3.13)

Y.i'x*’ --------------- "
(€ (x*-a )lp 

p 1

/ i v n |x — a |p 1 |x -a |p
(p—l))v • , • v ,• a '* 2--------  2 w. sign(x-a.1)sign(x9-a._)f »» — L & 1 »1 ° 2 I27
Sr* ' ) = )

( p _ 1 1 " . .
-------- V w . iign(* -a. Jsign(x-a J

1 1 11 2 -

[€ (x*-a.)]2p-1 
p 1

n -ph —— Y y ------------------ •1 p S2(x y)- Y«2 ^-a.)]»

When distances are Euclidean, this matrix reduces to the special form,

*22

<t'(x*) = r

ix;--/-1
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4>’(xt)= — 
s(x»)

wih‘i-a,l)2

[«2 (x'-a.))3 1 = 1 [f2(x*-a.)]3

(5.3.14)

[f (x*_ a.)]3 iSiWj&’-a.)!3

P = 2,

n

2
i = 1

i = l
»

where

n 
sCx. = 2 w./f^x-a.. .

i = 1

The matrix in (5.3.14) agrees with the result obtained by Katz (1974).

The eigenvalues of 4>'(x*) are important quantities, since they determine the

ultimate rate of convergence of the iteration procedure. Denoting the eigenvalues by Xj,

j = 1......N, a necessary condition for convergenee to x* is that

p = max {X, |} 1

j
(e . g., see Dahlquist and Bjorck, 1974, or Ortega and Rheinboldt, 1970). Furthermore, if this 

(5.3.15)

relation holds strictly, the local convergence rate will be linear or better, since p equals the 

upper asymptotic convergence bound (Katz, 1974).

We now derive some properties of the 2X2 matrix 4>'(x*) in (5.3.13), which will be

useful in characterizing its eigenvalues, Xj and X2.

Property 5.3.1

The eigenvalues of the matrix in (5.3.13) are real.

Proof:

For p = 2, 4>'(x*) is a real symmetric matrix, as seen by (5.3.14). Hence, the eigen

values are real in this case (Finkbeiner, 1972, Theorem 5.19).
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For p * 2, $'(x*) is no longer symmetric, since Si(x*) x S2(x*) in general. Hence,

the desired result is not immediately obvious. Consider the characteristic equation,
(5.3.16)det[4'(x*) - XI] = 0 ,

where I is the identity matrix, X denotes an eigenvalue, and 'det' symbolizes the determinant.

For the 2X 2 matrix, we obtain the quadratic equation,

x2-X,<*ii + 4>22> + ‘•’ii*a-,>21',,12 = 0 ■ (5.3.17)

whose roots are

1 1 / --------------2---------------
X1 = J % + <*>22) - J + 4[*>21<*>12 ’ (5.3.18a)

and

*2 = J % + *22» + J V + • (5.3.18b)

Since

(fn-W2 2

and

^21^12
(p-1)2 

s^x^Cx*)

n |x.-a . .|P 1 |x -a.JP 1
V w sign(x* -a . . )sign(x* -a.J------------------ -  ‘
“ [€p(<* — a.)] 2p—1

2

>

it follows that
0 ,

•♦n-fa)2 + 2
Hence, Xj and X2 are real valued.

Property 5.3.2

For 1 I p — 2,

det[<t>'(x*)] > 0 ,

where 4'(x*) is the matrix in (5.3.13) and we assume that the fixed points a; are non-collinear.
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Proof:

Let

4 |xl”aillP
F (x) : = Yn»—------ —

. = 1 11 [€p(x - a.)]p

n

= 2
i = l

(5.3.19)

and

n

= 2
i = l

Wl |x2 ~ “■? *~ 2 

[f (x — a.)|21-1 ’ 
p .

(5.3.20)

n
H(x) : = V w.s^n^-a^sign^-a^

i = l

(5.3.21)

Using Schwarz’s inequality, we obtain

| H(x)| <
f |x -al2p 2 -

■ 1 1 a1
= i \fp(x -a.)]2p-l/(j

If
Hi 
' V i»l

lx -a J2*1"2 1/2
w 1 2 i? j

' [f (x -a.)]2**"1 '
p I

= [F1(x)-F2(x)]1/2 .

Equality holds above if, and only if, 

agn^-.-.pIx^a.^-1 = csign(X2-ai2)|x2-a.21 P_1,

for some scalar c and i = 1n. Forp> 1, this implies that

1

||^i-anl = |c| p_lx2-ai2 . Vi,

so that (5.3.23) can be rewritten in the form,

^-a.l = c'(x2-ai2) , Vi,

where

1

c' = sign (c) • 1 c1 p_1.

Thus, equality holds in (5.3.22) for p > 1 if, and only if, the at are collinear.

Now consider the determinant of 4>(x*).

(5.3.22)

(5.3.23)

(5.3.24)
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det[4>'(x*)] = <t>11<t>2> >2l4>12

(2 - p)2+(2 - p)(p -1)
Fj(x*) F^x*)

St(x*) Sj(x*)

(p-1)2 2
+ s;(x^[Fi0‘,)F2(x*)-W(x')>21

2: (2 - p)2+(2 - p)(p -1)
F/x*)

St(x*)

F2(x*)

(relation (5.3.22))

0 , 1 SpS2.
(5.3.25)

>

Since the a, are non-collinear, the first inequality in (5.3.25) is satisfied strictly for p > 1.

Furthermore, the second inequality is satisfied strictly for 1 < p < 2. Hence, we conclude

thatdet[>'(x*)] > Ofor 1 s p < 2.

Now consider the trace of the matrix ['(x*), denoted by tr [4>'(x*)]. For p = 2, we

see from (5.3.14) that tr4>'(x*)] = 1. This result also holds for higher dimensions (N > 2).

However, from (5.3.13) we note the following interesting fact:

lim trfoXx*)] = 2 ; 
P-*1

while for N > 2, it is readily shown that

(5.3.26a)

(5.3.26b)lim trtjXx*)] = N . 
p-»l

We are assuming here that x* remains a non-singular point, since 4>(x*) is undefined other-

wise. Thus, the trace of ['(x*) varies as a function of p. The following result places bounds on

this function.

Property 5.3.3

If p C [1, 2], then

0 < trto'fr*)] < 2 , (5.3.27)
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where <£> (x*) is the 2X2 matrix in (5.3.13). Furthermore, if p x 1, the upper bound is satisfied

strictly.

Proof:

tr[<i>'(x*)] = (4 —2p) + (p-1)
F/x*) F2(x*)

Sj(x*) s2(x*)
(5.3.28)

Since

F(x*) J (5.3.29)

it is immediately obvious that

tr [<£'(x*)J > 0
Rewriting

F.(x*) n
-f— = y 0 (x’)|x’-a J p / [€ (x*-a )lp ,
s.(x’) lJ J ‘j p 1

where

(5.3.30)

n
Pjj(x) = Yjj(x) / y Ykj(x) . V i, j, 

k = 1
we obtain

(5.3.31)

F(x*) 
-J----- <
a(x-) !

max
< i 5 n

(5.3.32)

with at least one of the inequalities being satisfied strictly for each j. Thus,

tr[<t>'(x*)] tS (4-2p) + (p-1) X 2 = 2, (5.3.33)

with equality only when p = 1.

For N > 2, the preceding property is generalized in a straightforward manner to

obtain

0 < tr[4>'(x*)l N, p €[1,2], 
with the upper bound being satisfied strictly except when p = 1.

(5.3.34)



195

We have insufficient information at this point to make any conclusions concerning

the local convergence rate of the iteration procedure. However, the following observations 

lead to an interesting resolution of this problem. From equation (5.3.11) and the second-order

partial derivatives given in Chapter 7 (set s = p in (7.2.5)), it is readily seen that

tyjx*) J

8x. s(x*)J t
From (5.3.12) and (7.2.4), we obtain

a2W(x*)

dxdx J I
j * t. (5.3.35)

d$t(x*)
---------  = l-(l-p)

*1

(1 -p)
1 - ----- —

st(x*)

1
st(x*) 1=1

------------------_ 1
[€ (x*-a.)]pp i

a2W(x*)

2 ’ 
axt

Thus, the N X N matrix <t>'(x*) (see (5.3.6)) takes the form,

1
st(x*)

t = 1, ,.,N. (5.3.36)

n

1

n
V Yit(x")
i = 1

f

- 1

1

<t>'(x*) =

1 a2W(x*) 1 a2w(x*) 1 a2W(x#)"

Sj(x*) sx(x*) ax2*ci Sj(x*) axNaxi

1 d2W(x*) 1 a2W(x*) 1 a^tx*)

S2(X*} 3x?x2
1 S2(x*) a 2 ax., s2(x*)

1 a2W(x*) 1 a2W(x*) 1
1- --------

a2w(x#)

^(x*) <3x, 8x.r1 N sn<x*) ax’sN(x#) dx2<3xN

(5.3.37)
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Let us consider again location in the plane (N = 2), where 4>'(x*) is the 2X2 matrix

given in (5.3.13). Using (5.3.37), we see that

a2W(x*)

(5.3.38)

where

st(x*)

1
s2(x*)

a2W(x*)

8X1dx2

1 82W(x*)

Sj(x*) 8x2dx1

1 82W(x*)

s2(x*> ax2

(5.3.39)

Letting pi and P2 denote the eigenvalues of B(x*), we obtain the following preliminary result.

Lemma 5.3.1

Ifp > 1, and the fixed points a, are non-collinear, then pi and p2 are positive; i.e.,

P,,P2 > 0 •

Proof:

By Property (5.1.2), we know that W is a strictly convex function of x. Thus,

82W(x») 82W(x*)
2 >0’

8x2,28Xj
■ > 0 ,

and

82W(x*) 82W(x*) / a2w(x*) \
- 1 ------------ > 0

, 28Xi -.2
^2 \ 8x^2 /

Also note that sj(x*), S2(x*) > 0. It follows that

Pj p2 = det[B(x*)]

1 a2W(x#) a2w(x*) /a2W(x*)

Sjfx^S^X*) 8x2 ax2 8X]8x2 / .

(5.3.40)
> 0 .
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Furthermore,

P1 + p2 = tr[B(x*)]

1 a2w(x*) 1 0\V(x*)
s,(x#) s2(x*) 0x2

+

> 0 .
(5.3.41)

Using a similar method as in Property 5.3.1, it is readily shown that pi and p2 are real.

Hence, we conclude that pi, P2 > 0.

The main result follows at last.

Theorem 5.3.1

Let p take on a value in the range 1 < p < 2 and the fixed points a, be non-

relation:
(5.3.42)0 < Xr X2 < 1 .

Hence, the asymptotic convergence rate to the non-singular point x* is linear.

Proof:

5.3.3, it follows that

x1x2>o, 

and

0 < Xj + X2 < 2 .

Hence

X X2 > 0 .

Since <>'(x*) = I - B(x*), we also have

X, = 1 - u,, X - = 1 - p„. (5.3.46)
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But pi, p2 > 0 by Lemma 5.3.1, and hence

\ S < 1 •

Combining (5.3.45) and (5.3.47), we obtain the desired relation (5.3.42).

(5.3.47)

To show that the local convergence rate to x* is linear, we employ a direct extension

of the method in Katz (1974). Let

1

0 A

x = Ux (5.3.48)

denote the transformation from the original x-coordinates to new coordinates (x) with respect 

to the eigenvectors ofpt>(x*) (columns of U). Then, pre-multiplying (5.3.5) by U-l and using 

standard linear algebra (e.g., see Stephenson, 1966, Chapter 6), it follows that

~q+i _ + u_14>'(x*) U • (xq-x*) + O(||xq -x*||2)

= x* + diag(A1, Ap • (xq — x#) 4- O(||xq—x*||2) , (5.3.49]

where

diag^A^ : =

Thus, 

cxq+1-x1)2 4- crr1-x/ = A^xq-xy + Ajxq-J 4- o^-x-^ . (5.3.50)

Recall from equations (5.3.18a) and (5.3.18b) that Ai < A2 by definition. Therefore, from the 

preceding relation, we obtain

|Aj • |P-x*||| < F’+1-x‘II < IAJ - ||£q-x*|| , (5.3.51)

where higher-order terms have been neglected, and the Euclidean norm (|| • ||) now acts on the 

transformed coordinates. Hence, |Aj| and |Xg| give the lower and upper asymptotic con

vergence bounds respectively. Since relation (5.3.42) holds, we conclude that the local 

convergence rate to the non-singular optimum x* is linear.

A few comments are required concerning the transformation in (5.3.48). When 

p = 2, we see from (5.3.14) that 4>(x*) is a symmetric matrix. Hence, the eigenvectors in U 

are orthogonal (e.g., Stephenson, 1966, Chapter 5). Furthermore, if the eigenvectors are 
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normalised to unit length, then UT = U -1 for this case. However, when p * 2, $'(x*) loses its 

symmetry, so that the transformation becomes non-orthogonal in general. For the special 

case where Xj = X2, the off-diagonal elements <>12 and <£>21 must equal zero; hence, $'(x*) is 

already in diagonalized form and U = I. In all cases, the inverse U-1 exists and 

equation (5.3.49) is obtainable. We now proceed to illustrate relation (5.3.42) with a few 

simple numerical examples.

Example 1:

Four fixed locations are given which form the corners of a square: aj = ( — 1, — 1),

a2 = (1, —D, a3 = (1, D, a4 = ( — 1, 1). The weight at each fixed location is the same; i.e., 

wj = W2 = W3 = W4 = w. For p>l, there is a unique optimal solution at the centre of the 

square; x* = (0,0). For p = 1, all points contained in the square are optimal. The elements of

4>'(x*) are easily calculated, yielding the diagonal matrix,

Thus,

p 1 .

Example 2:

The fixed points remain the same, but the weights are now W! = w3 = w, and

W2 = W4 = 12 w. The optimal location is unchanged from the previous example; x* = (0,0).

We obtain

Yn(x*) = Y12(x*) = tw., i = 1>->4 ,

where r = 2<i~p)/p. Thus,
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4
s.(x*) = s„(x*) = rw = 3iw .1 2 — i

i = l
After some simple calculations, we find

4>'(x*) =
P-1

6
Solving for the eigenvalues gives

4 1
pal-

Example 3:

In the previous examples, the eigenvalues vary as linear functions of p, because of

the inherent symmetry of the fixed points and the weights. We move the four fixed points now 

to the corners of a rectangle as follows: ai = ( — 3, — 1), a2 = (3, — 1), 83 = (3,1), 84 = ( — 3, 1).

Let the weights be the same at each at; W[ = W2 = W3 = w4 = w. Thus, the optimal location

remains at x* = (0,0). The elements of 4>'(x*) are readily calculated, to obtain

Hence,

Example 4:

The at remain unchanged from the previous example, but now W) = w3 = w and

W2 = w4 = 1/2 w. The calculations proceed as follows.
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[€p(x*-a.)]p-1

, i = 1,.... 4 ;
[1 + 3P](P"n/P

w-3P-2
. i = 1,..., 4 ;

[1 + 3p](p-1)/p

4
3l(x*) = 2 Y1(X#) = \W-

i = l
where r,

3P-1

[1 + 3P]‘P“1)-P ’

Yi2(X*) = 1
12 [€p(x* -a.)]p-1

w.
1

3
where x„ = ------------------- .

2 [1 + 3P]<P-1)/P

4
s2(x#) = y Yi2(x*) =

1 = 1

The diagonal elements .ii and $22 are easily verified to be the same as in the previous 

example. The off-diagonal elements are given by

. (P-1)
12 x wi

3P-1

(1 + 3P)c2P-l,/P
•<W1-W2 + W3-W4}

= (p-1)/(1 +3P), and

. = !i!ZL 13P-2 1Pz£

21 S2(x*) ‘I2 (1+3^

Thus,

$'(x*) =

2 -( — )
' 1+3P'

P-1

1 + 3P

3P-2 1P±. 

(1+3P)

Solving for the eigenvalues, we obtain

1 1 / P-1 \
- (3-p) - - --------2 H 2 \1+3P/

( 1 +3p p j

V (3P- l)2 + (4)3P—2 ,

2 - I --------- -
v 1+3P

X 1

and

1
A2= -(3-P>4

- (—- )x/(3p-l)2 + (4)3P-2 , p>l
2 ' l+3p/
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As an illustration, the eigenvalues in Example 3 are plotted as functions of p in 

Figure 5.3.1. It is interesting to note that the preceding examples illustrate a tendency for the 

eigenvalues to increase, and hence for the local convergence rate to decrease, as p decreases 

from a value of 2 to 1. Furthermore, as p -> 1 + , Xi and X2 both converge to unity (Xb X2 -» 1 -). 

This occurs in all cases where x* remains a non-singular point, as seen by the following result.

Property 5.3.4

lim 4>'(x*) = I, (5.3.52)

provided a 5 > 0 exists such that x* € S for 1 < p < 1 + 5, where S is the set of singular points

of $ defined in (5.2.42).

Proof:

Since x* € S for 1 < p < 1 + 5, the limit is defined . Referring to (5.3.13), we see

that the coefficient of (p — 1) in each element of 4>(x*) is bounded, and hence all terms 

containing (p—1) go to zero asp-* 1 + . Thus, 4>12> <?21 “* 0 and 4*11, <>22 “* 1~, giving the 

desired result for N = 2. The same principle readily extends to higher dimensions, so that

lim 4>(x*) = I forN > 2 .
p-*i +

The preceding property has some practical significance. For p slightly greater than

1, the asymptotic convergence to x* will be at a slow linear rate, since Xi and X2 have values

close to 1. Thus, an acceleration technique such as Steffensen’s method would be most advan

tageous in this case, to finish the iteration sequence. In general, we expect the usefulness of

such acceleration methods to increase as p takes on lower values in the interval (1, 2).

Also note that if p = 1 and there is an optimal location x* f? S, then this solution is 

not unique, and furthermore, a 6-neighbourhood (8 > 0) of x* exists such that all x inside this 

neighbourhood are optimal; (see the discussion following Property 5.1.3). Hence, if an iterate
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A

Figure 5.3.1 Eigenvalues of <>'(x*) for Example 3.
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lands on a point x0 * x* inside the 8-neighbourhood, the sequence will remain there and 

never converge to x*. Such an outcome relates to the fact that eigenvalues Xi and X2 are 

precisely equal to one in this case.

An interesting behaviour occurs in the preceding examples when p > 2. We see 

that

lXJ > 1 , p > M, (5’3’53:

where M > 2 is a sufficiently large value. Thus, the iteration procedure will not converge to 

x* in these examples, when p is sufficiently large. This result is formalized below.

Theorem 5.3.2

Convergence of the iteration procedure to x* will not occur in general for 

sufficiently large values of p exceeding 2.

Proof: (for N = 2)

Let the weights and the geometry of the fixed points be arranged such that

{i| Ix'-aJ > lx'-a.2|}

is empty for all p C(2, + «). (Note that examples 1 to 4 satisfy this condition.) It is easily 

verified that

lim tr[<>'(x*)] = — « .
p-» +®

Since Xj = min {Xi, X2}, and Xi 4- X2 = tr«>'(x*)], it follows that an M > 2 exists such that 

(5.3.53) holds. Hence, the iteration procedure will not converge to x* for p > M, and the 

theorem is proven.

The proof above is readily extended to higher dimensions, so that the theorem 

applies for N > 2. Some comments are appropriate at this time:

(i) Since 0 < Xi, X2 < 1 at p = 2 (Theorem 5.3.1), it follows from the continuity of the 

eigenvalues as functions of p that an r > 0 exists such that local convergence also occurs in 
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the interval 2 < p < 2 4- r. However, global convergence of the iteration procedure is 

guaranteed only for 1 < p < 2, as evidenced by the counter-example in Section 5.2.

(ii) Based on their computational experience, Morris and Verdini (1979) conclude that

convergence can be expected for p > 2. However, we see now by Theorem 5.3.2 that the 

iteration procedure will not generally converge to x*, even locally, f values of p are used 

which are too high.

5.3.2 Convergence to a Singular Point

We consider now the case where the optimal solution occurs at a singular point of 

the iteration functions (fo; i.e., x* € S. For Euclidean distances (p = 2), Katz (1974) studies 

the local convergence of the iterative procedure when x* is at a fixed point. He shows that the 

convergence rate is normally linear, but under certain conditions, it can be superlinear or 

sublinear. We wish to extend these results to distances in general, where 1 < p . 2. Recall 

that for p = 2, the singular points occur only at the fixed locations; whereas for 1 < p < 2, the 

problem becomes more complicated because all points on the hyperplanes, xt — alt = 0, are 

now included in S.

When x* € S, one or more of the iteration functions 4>t is undefined, as well as its 

derivatives, so that the Taylor series expansion given in (5.3.5) is no longer feasible. Thus, 

another method is required to study the behaviour of the iterates close to x*. In order to 

simplify the notation in the subsequent analysis, we restrict attention to location in the plane 

(N = 2), although the method and results are readily extended to higher-dimensional spaces.
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5.3.2.1 Optimal Location at an Intersection Point

Consider an intersection point given by

B = (arbas2)T , (5.3.54)

where r, s C (1,. . ., n} and r * s. By definition (see (5.2.56)), B is not a destination. Without 

loss in generality, assume that a,i * arb Vi x r, and a,2 * as2, Vi s s. (Otherwise minor 

changes are required in the calculations below.) We suppose now that

x* = B . (5.3.55)

The iteration function 4>i(x) for the xpcoordinate can be rewritten in the form,

4>j(x)
-a

i*r

w |x.—a..|p“2-a.1
i1 1 iia ii

[€ (x - a ))P_1
p____ 1______

wJxl_aiJP_2 

[f (x-a )]p“ 1
P »

Y

a . + o ,(x)H ,(x) rl rl rl
1 + o l(x)h l(x) rl rl

(xiIarl)- (5.3.56)

where

1
■ Vtw ' (5.3.57)

Hjt(x) : = Y

i*j

w. lx —a I i1 t it1
[€ (x — a.)]P_1 

p 1
(5.3.58)

and

h (x) := V
J1 . .>*j

(5.3.59)

for all j and t.
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We are interested in the behaviour of the iteration functions <j>t when x is 'close' to

x* = B. Noting that

orl(x) = 0(]x1-arl|2"p) , xUB, (5.3.60)

where Ag is a small 8-neighbourhood of B, we can express the right-hand side in (5.3.56) in 

terms of a power series for p < 2, to obtain

<t>1(x) = [arl + orl(x) Hfl(x)] ■ [1 - orJ(x) hrl(x) + o^(x) h2j(x) + 0(u^(x))]

= arl + [Hrl(x)- hrl(x)arlloH(x)-hrl(x)[Hrl(x) - hrl(x)arl]o21(x) + O(o31(x)). (5-3.61)

Let

gr(x)

[t (x -a )]p~1 
p r

w r
and

Then

E (x) := H (x) — h (x)a t, V t. rt rt rt rt

°rl(x) = gr(x)*lxi~ari|2~P’

and equation (5.3.61) becomes

4>l(x) = ari + Eri(x)gr(x)|Xi-ari|2 P - h. ^x) Ef ^x) g2(x) - aj* 2p

+ O(E1(x)|x1-arl|6-3p).

It is important to note that for p > 1,

(5.3.62)

(5.3.63)

(5.3.64)

(5.3.65)

E (B) = H (B) - h (B) a rl rl rl rl

V
i xr [€ (B —a.)]p_1 

p 1
[€ (B —a.)]p_1 

p 1

V

i xr
w. sign(arl-a.1)

[€ (B —a.)]p_1 
p 1

dW(B)

= 0 ,
(5.3.66)
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since x* — B. For x £ Ag, we apply the Mean Value Theorem and (5.3.66) to obtain

Erl(x) = Erl(B) + VlEr]^^).(x1-arl) + VJQMXj-a^

= ’1E,1<5)'(x1-arl) + V2Erl(Q)'(X2~a52)’ (5.3.67)

where Q € &g> and Vt denotes <5//)xt. Returning to (5.3.65), we see that

K(3X—arl = ^W^E^^aJ + EE/^^-a^l'h-aJ2-1’

+ oqfc-BB^-a^4-2-.

Hence,

(5.3.68)

e<x) - arl

|x-B|
(5.3.69)

Similarly, it can be shown that

B as2

lx -B||
(5.3.70)

Furthermore, if B is an intersection point in RN (see (5.2.56)), where N > 2, the same

procedure can be used as above to obtain a similar result as in (5.3.69) or (5.3.70) for each 4>t, 

t — 1..., N. This leads to the following intriguing fact.

Property 5.3.5

Suppose the optimal location x* occurs at an intersection point for some value of p 

in the open interval (1,2). Then the local convergence rate to x* is superlinear.

Rectangular distances (p — 1) must be treated separately. This is due to the fact 

that when p — 1, dW/8xt is undefined on the hyperplanes xt — a^ — 0, and not just at the fixed 

points; so that (5.3.66) no longer applies. It is well-known that an optimal solution in this case 

always occurs at an intersection point or a fixed point. Let us consider again x* — B, an 

intersection point, and also let us assume that the optimal solution is unique. (Recall that 

this is not guaranteed for the non-collinear case if p — 1.) Using (5.3.65) and invoking the 

optimality criteria at B derived in Property 6.2.3 (set L — 1), we see that
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*>i(x) - arl = ErI(B)gr(B)|M1-arl| + Of||x- B|| 2),

where

(5.3.71)

. 1 5^
0 S |E . (B) g . V w. sign (a — a ) <1.r 1 » YV 1 rl 11r i xr

(5.3.72)

The upper bound must be satisfied strictly since x* is unique. A similar result applies for the 

other coordinates xt. Furthermore, the first inequality in (5.3.72) is generally satisfied in a

strict sense, so that we obtain the following result.

Property 5.3.6

Let p = 1, and suppose that x* occurs uniquely at an intersection point,

B (ar r ar 2’' ‘ ■’ ar ’ 
1 r2 N‘

(See the definition in (5.2.56).) For the special case where

V w. sign^ = 0 , ts!,..^^
i*r 1t

the local convergence rate to x* is quadratic. Otherwise, the rate is linear.

Consider the possibility now that x* occurs at a singular point which is not an

intersection or a fixed point, for 1 < p < 2. Say for example X\ = ark for some r € {1,..., n} 

and k € {{,.,., N}, but x*t x a,t for all i and all t x k. From the preceding analysis it follows

that the local convergence rate to x* will be superlinear in the x^ direction. However, based

on sub-section 5.3.1, it will only be linear in the subspace comprising the other directions.

Hence, the overall rate of convergence is linear.

5.3.2.2 Optimal Location at a Destination

Consider the case where the optimal solution coincides with a fixed point; that is,

x* = ar (5.3.73)
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for some r € {1.........n}. Our objective here is to analyze the local behaviour of the iteration

functions 4>t when x is in a (small) 5-neighbourhood of ar.

Letting Ar denote this neighbourhood, we first observe that for all t,

oJx) = ~ (x-a 
rt W P rr

(€ (x-a )]p_ 1 ■ re (x-a )J2_P 
p r p r (l<p<2)

€ (x — a ) p f

(5.3.74)
= O((x- aJD .

Thus, 4>t(x) can be expressed as a power series using the same procedure as in sub-section

5.3.2.1, to obtain

<t>.(x) = a t + E ,(x) o t(x) - h ,(x)E t(x)o2(x)Tt rt rt rt rt rt rt

+ O(o3(x)) , x € A .rt r
Expressing Ert(x) in terms of its Taylor series at ar, and using (5.3.74), we see that

(5.3.75)

Furthermore,

4>t(x) = art 4- Ert(ar) ort(x) + O(||x - ar||2), x € &r (5.3.76)

E t(a ) = y w. rt r — 1
i*r [€ (a — a.)]p—1 

p r 1

•(a. -a ) it rt

1
w r

1
w r

= - y w. sign(a — a.) i ° rt it
i*r

8W ir(a )■ r

where Wr(x) is defined in (5.2.79), and in general, Ert(ar) * 0.

(5.3.77)
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Let xs, s = 0, 12,. . . . be any regular sequence generated by the iteration

procedure, which converges to ar. Then an iteration number q exists such that xs € Ar for

s = q, q 4- 1........ Using (5.3.76), we obtain for N = 2,

xj+1 - arl = E r /a^a^ + O^-a/) , 

and

xj*1 - af2 = EWV* + Gdlx'-a/) . 
Consider the case where

- VW/a^ = (E^aJ.E^ayxO ,

(5.3.78a)

(5.3.78b)

(5.3.79)

and without loss in generality, assume that Erj(ar) * 0. (Note that if VWJar) = 0, the local

convergence rate will be quadratic.) Then dividing (5.3.78b) by (5.3.78a) gives

E 2(a ) • o Jx’) r2 r r2

E l (a ) • O (x4*) rl r rl
+ O(||xq-arID

w
Erl<ar> + O(||xq-arID . (5.3.80)

Let 

and

b : = E 2(a YE ,(a ) , r2 r rl r
(5.3.81)

tan 0 : = s s = q , q + 1............
(5.3.82)

Then equation (5.3.80) can be rewritten as

tan 0q+ j = b|tan 0J 2 p + O(||xq- aJD •
(5.3.83 )

If b = 0 (Er2(ar) = 0), then tan0q + i = O(||xQ - aJI), which can be made arbitrarily small by

increasing q. We conclude that tan 0q + i approaches zero asymptotically in this case. On the 

other hand, if b . 0, a recursive argument can be used as follows:
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tan0q + 2 = 6 ltfln 9q> ii2’” + °<l|xq+1-arIP

= b |b |tan GJ 2_p 4- O(||xq-arIP|2”p4- O(|xq*l-arID

= b • |b| 2 “ p • |tan0j<2_p> + 0(6) ; (5.3-84a)

and proceeding in this manner,

2 m— 1 m
tan0q+m = b lbl2’P-lbl<2’P> ••.. -|b|(2-p> • Itane^2-'” +0(8). (5.3.84b)

Noting that the geometric series,

1 + (2-p) + (2—p)2 + ... 4-(2 - p)"- 1 = 1 - (2 ~p)m , P * 1 (5.3.85)
P-1

we rewrite (5.3.84b) as

tan0<j+m = sign(b) •|b|X |tan0j<2_pl +0(8), (5.3.86)

where

1 - (2-p)m 
X = ----------------  , and l<pS2 .

P-1

But 8 can be made arbitrarily small by increasing q, and (2 - p)m can be made arbitrarily 

small by increasing m. Hence, we conclude that

1
lim tan 0$ = sign (b) • |b| p ~ 1 , 1 < p < 2 .

s—
If p = 1, equation (5.3.84b) becomes

tan 0 = sign (b) • |b| m • |tan 0 | + 0(8) ,q*m iii qi

so that
r*o , if |b| < 1 ,

lim tan0 = < + °° , s
S—oo

__ 00 >
v

if b > 1 , (p = 1) .

if b < ~ 1 ,

(5.3.88)

For the special case where b = 4-1 or ~ 1, it follows that tan 0s does not have 

(5.3.87)

a unique

asymptotic value when p = 1.
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We see from the preceding analysis that the series {xs} converges to ar along an 

asymptotic "direction of approach” which depends only on b. Also note from equations 

(5.3.78a) and (5.3.78b) that the quadrant of the approach angle is uniquely determined by the 

signs of Erl(ar) and Er2(ar). For Euclidean distances, equation (5.3.87) becomes

lim tan0 = sign(b)-|b|
9—»oo

= b = E 2(a ))E .(a ) , p = 2,

which is the same result obtained by Katz (1974).

We summarize the results obtained above by the following.

Property 5.3.7

Let p take a value in the range 1 < p < 2, and let {xs} be a regular sequence which

converges to the fixed point ar. Then {xs} converges to ar along an asymptotic direction of

approach uniquely defined by 0*, where

Er2(arh
Ei(arJ

w
En<‘r>

1

P- 1 (5.3.89)

and 0* is located in the quadrant defined by the signs of Erl(ar) and E^aJ.

For p = 1, the direction of approach is along the xi-axis if |Eri(ar)| > ^2^)1, along

the x2-axis if |Eri(ar)| < |Er2(ar)|, and along an indeterminate 0 if |Erl(ar)| = |Er2(ar)|. Again, 

the quadrant is uniquely defined by the signs of Eri(ar) and Er2(ar).

Alternatively, the direction of approach can be specified by the unit vector V,

defined as follows:
1 1

V r=(
sign (Erl(af))

IE .(a )| ' rl r ' p-1 IeeJ —
-----, sign (Er2(af)) •

(5.3.90)

D D

where
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2 2

D = [|ErlGar)p-1 + lE^a^jP-1]172 .
(5.3.91)

Equations (5.3.90) and (5.3.91) are generalized for higher-dimensional spaces in a straight

forward manner.

Consider the following problem,

max f(y) =
(5.3.92)

y
where

= (Erl(ar)’ = - VWr(“r’ •

and y is a unit vector. It is a well-known fact that

1
max f(y) = — €(e) , 

w q r y r

(5.3.93)

(5.3.94)

where q = p/(p— 1) and €q(-) is the polar of the fp norm (e.g., see Juel and Love, 1981). But

|Brl»rV-*
D

AV) =
+ |Er2(at)| •

|ErW1
D

|Erl(ar)|p'’p“l) + |I^r^arM^^^11
l/p

|E .(a )| P<p-1) + |E Z(a ^<P‘1)i rl r rz r

= + |Et2(»r»'l“’
r

(5.3.95)

Comparing (5.3.94) and (5.3.95), we obtain the following interesting result.
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Property 5.3.8

The asymptotic direction of approach V at the fixed point ar maximizes the function

f(y); that is,

f(V) = max
y

f(y) =
Wr ep(y)

(5.3.96)

Note that cr • y gives the descent rate in the direction y due to the component Wr of

the objective function W, while Wr €p(y) gives the ascent rate of the component Wr fp(x — ar).

Hence, we see that V is the direction which maximizes the descent rate of Wr relative to the 

ascent rate of Wr fp(x — ar) at ar; or loosely-speaking, V can be regarded as a direction of 

minimum ascent (or maximum descent) of the objective function W at ar.

Juel and Love (1981) prove that a necessary and sufficient condition for ar to be an

optimal solution is that

1
— € (c ) < 1 , x* = a . 
w <1 r rr

On the other hand, if ar is not optimal, it follows that

— € (e ) > 1 
w < rr

(5.3.97)

(5.3.98)x* x a .r»

Consider a regular sequence {xs} which converges to ar. Since V is the asymptotic direction of

approach for this sequence, then

lim
S—>oo

= V .
(5.3.99)

Let V = (vi, Vg)1, where the components vi and V2 are defined in (5.3.90). Neglecting higher-

order terms in the limit as s —> °°, it follows from (5.3.99) that

s + 1 
xt "art vt

l|x9+,-ar|

= ^-aj-

Hxs*l-a |
------------------- . Vt,

Ifx’—a |
(5.3.100)

and so, (5.3.78a) can be rewritten in the form,
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[tp(xs-ar)lp-1-Q^;-arl)

Ox’+l-a |
lx?-a.)-------------- =

h’-arl r

wr sign(x'-arl)||^;-arl|p " 1

= En(‘r,vr( lt|>(x,-ar)|l’-||x,-arl 

wrsign(xj-arl)|x;-arl|p“’ )
Hence,

lim
9—>oo U (xS-a )P-* 

P r

= E t(a bv..rl r 1
(5.3.101a)

Similarly, we obtain

lim
9-* oo

l|x9 + 1-ar|

[f (xs-a )]P"1 
P r

= Er2(ar) ■ v2 .
(5.3.101b)

Adding equations (5.3.101a) and (5.3.101b) gives

|l|xs*l-ar|| 

s—><» I II*1 — ar|‘
lim I-------------- w f (x* — aI M _ . II2 r p = £ • V .r) r

But

f (xs-a )-> ||x3 -a ||f (V) , p r " r" p
from (5.3.99), and we finally conclude that

(5.3.102)

-x
S->oo

I|XS + 1-ar||

llx3 -arl|

e - V r
» VVI r P

1
— € <c > . w <» rr

(5.3.103)

where the second equality is obtained from (5.3.95). This leads to the following important 

result.

Theorem 5.3.3

Let p take a value in the range 1 < p S 2, and let x* = ar, r( {1,..., n}, be the 

unique optimal solution. Then the local convergence rate to ar is linear with asymptotic
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convergence factor p = fq(er)/wn except for two special cases. If €q(er) = 0 (V Wr(ar) = 0), the 

rate is quadratic; if €q(er) = wn the rate is sublinear.

Proof:

If 0 < €q (er)/wr < 1, we see from equation (5.3.103) that convergence is linear with 

asymptotic convergence factor p = fq(£r)/wr. If €q(£r) = 0, then cr = 0, and it follows from 

(5.3.76) that the local convergence rate is quadratic. If fq(Cr) = wr> then from equation 

(5.3.103) and the fact that global convergence is assured by Theorem 5.2.1, we conclude that 

the convergence must be sublinear. From (5.3.97), we see that all possibilities have been 

considered.

Theorem 5.3.3 generalizes a result obtained by Katz (1974, Theorem 2) for 

Euclidean distances, to the case where p can have any value in the closed interval [1,2], 

Although a similar result is obtained for the generalized problem, the analysis turns out to be 

considerably more complex when values of p other than 2 are used. Also note that the 

analysis can be extended to higher-dimensional location spaces (N > 2) in a straightforward 

manner, so that Theorem 5.3.3 holds for N > 2.

If ar is not an optimal solution, then the asymptotic convergence factor, p > 1, by 

(5.3.98). Thus, a regular sequence will never converge to a non-optimal fixed point. This pro

vides an alternate proof to the one given in Property 5.2.9 (for case iii). It is also interesting to 

note that if an iterate xQ lands in a sufficiently small 8-neighbourhood of ar, a non-optimal 

fixed point, then the sequence will linger near ar for several iterations, but will ultimately 

move away along a direction of departure tending to 0*.
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5.3.3 Non-Singular Optimum in N-Dimensional Space

Thus far, we have concentrated on the local convergence properties of our iterative 

solution procedure in R2. When x* was an intersection point or a fixed point, the convergence 

rates derived in subsection 5.3.2 (Properties 5.3.5 and 5.3.6, and Theorem 5.3.3 ) were seen to 

apply readily to higher-dimensional spaces as well. However, the local convergence rate 

when x* is a non-singolar point in RN still remains an open question. Our objective then is to 

generalize Theorem 5.3.1 to the minisum problem in RN. The concept of an asymptotic

direction of approach, introduced when x* was a fixed point, will be useful here.

We begin by defining a diagonal matrix,

’(s/x*))172 0 0 • • • 0 "

0 (s^x*))172 0 • • • 0

W = 0 0 (SgCx*))172 • • • 0

0 0 0 • • • (s^x ))

(5.3.104)

Then, recalling the form of 4>'(x*) in (5.3.37), it is readily seen that

A = W [I — <t>'(x*)]W-l (5.3.105)

is symmetric and positive definite, provided that p > 1 and the a; are non-collinear. This leads 

to the following important result.

Property 5.3.9

Consider the NXN matrix <$>' (x*), and let p>l and the a! be non-coHinear. Then

(a) the eigenvalues of <t>'(x‘) are real, (b) the algebraically largest eigenvalue of 4>'(x*) is less 

than one, and (c) the set of eigenvectors for <tt'(x*) forms a basis in RN.
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Proof:

This property is a direct application of Theorem 2-2.1 in Hageman and Young 

(1981). However, since they do not provide a proof of their theorem, we give one here for 

completeness.

Denote the eigenvalues of A by pt, t = 1........ N, and those of 4>(x*) by At,

t = 1,...,N, Since A is a symmerric <^i^d posiiive definite marrix , therffore

Pt > 0, t=l N. (5.3.106)

But from (5.3.105), A and [I — <j'(x*)] are similar matrices, and thus have identical 

eigenvalues. It immediately follows that the At are real, and

1 — At = pt, t=l........N , (5.3.107)

Combining (5.3.106) and (5.3.107), we see that

At<l, t=l.......N. (5.3.108)

Now let the columns of the NxN matrix D denote the eigenvectors of A. Then the 

eigenvectors of 4>(x*) are given by the columns of W - 'D. Since the eigenvectors in D include 

a basis for RN, it is immediately clear that those in W-'D also form a basis for RN, thereby 

ending the proof.

Theorem 5.3.4 {Local Convergence in RN}

Let p take on a value in the range 1 <p<2, the at be non-collinear, and the optimal 

solution occur at a non-singular point x*. Then the asymptotic convergence rate to x” is 

linear.

Proof:

We prove this result in a heuristic fashion. Consider a perturbed problem in which 

an additional fixed point an + i is placed within a (small) S-neighbourhood of x*. Let us adjust 
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the weight wn + 1 to ensure that an + i (*x') now gives the optimal location, while perturbing 

the original problem as little as possible; i.e.,

--------f(e ,)=1, (5.3.109) 
w <1 n + 1n+ 1

where

£n + i=-VW(an +

q = p/(p - 1),
and W is the objective function of the original problem (see (5.3.97)). Then, from the results in 

subsection 5.3.2 (Property 5.3.7) and global convergence (Theorem 5.2.1), it follows that any 

regular sequence {xs} will converge to an + 1 along a unique asymptotic direction of approach.

Now consider a series of perturbed problems, such that an + i->x‘ and wn + i is 

adjusted according to (5.3.109). Each problem in this series similarly has a unique asymptotic 

direction of approach to an + 1. Also note that en + i->0 since VW(x*) = 0. Thus, wn + 1->0, and 

the series converges to the original problem. We conclude therefore that the sequence {xs} 

converges to x* in the original problem along a single asymptotic direction. But this is 

possible if, and only if, the dominant eigenvalue of 4>(x*) is positive; i.e., the spectral radius,

p = max |A| (5.3.110)

1 <ttSN

is associated with a positive eigenvalue. (Otherwise there would be two directions of 

approach.) Using (5.3.108), it follows that

p < 1, (5.3.111)

and hence, we conclude that the asymptotic convergence rate is linear.



CHAPTER 6

THE MIXED-NORM MODEL

The mixed-norm problem was introduced in paragraph (b) of Chapter 1, where we 

noted that such a model should be considered when flows using different transportation 

modes are associated with individual customers. In this chapter, a specific form of the mixed- 

norm problem is studied, in which distances travelled by the various transportation modes 

are adequately approximated by different €p norms. The resulting model can be formulated 

as follows:

n L
minimize W (x)= V V wf (x — a),

m •— ij p. 1
i = l j=1 J

where

p> 1, j = 1..., L, are distinct values of the parameter p in the fp distance function;

wy>0, j = 1, . . ., L, i=l......... n, are weighting constants which convert distance

travelled between the new facility (x) and destination a, using transportation mode 

j into a cost; and

L&2.

The restriction above that none of the w,j can be zero is not limiting in a practical sense (since 

the Wjj can be made arbitrarily small), and has the advantage of simplifying the notation in 

the subsequent analysis.

We proceed next to solve model (6.1), by developing a simple extension of the 

Weiszfeld procedure for a single fp norm (Chapter 5). Global convergence of our iterative 

solution algorithm is proven when the pj all fall within a certain range of values. Local 

convergence properties of the algorithm are also investigated.
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In Section 6.2, criteria are derived which verify the optimality of the fixed points in 

model (6.1). We also propose the use of intersection point optimality criteria when one of the 

pj’s equals unity, and compute these for our problem. A typical application is examined 

having L = 2, pi = l and P2 = 2. This particular model could be used to represent material 

handling costs, for example on a shop floor, when flow from a source moves partly along 

rectangular aisles, while the remainder travels along conveyance equipment linking each 

destination to the source by a straight path.

6.1 Solution by an Extended Weiszfeld Procedure

The Weiszfeld procedure in Chapter 5 for the standard minisum problem with a 

single €p norm is readily extended to our mixed-norm model. As in (5 2.12), we begin by 

supposing that an optimal solution occurs at a differentiable point, x* = (x* . . ., x*n) , so 

that the following set of first-order necessary conditions must be satisfied:

— W (x*) = 0 , t = 1 , ...,N. (6.1.1)
8xt m

Since Wm is a positive linear combination of norms, it is a convex function of x. Hence, the 

above system of equations also gives a sufficient condition for x* to be an optimal location. 

Evaluating the partial derivatives of Wm at x*, we get

, . . .P;-1
n L | x —a. | J
y' V w.. sign (x — a. ) --------------------- - = 0 , t = 1........ N . (6.1.2)
— — »J t . P;-l
‘=1 1 = 1 [f (x -a.)] J

Pj 1

Following the same substitution as in (5.2.14) and (5.2.15), the above equations are

then re-arranged in analogous form as (5.2.16) to obtain:
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Thus, replacing x*

n L
y a t y w. 
— it ij
1=1 j=l

• P-2

, pi_1
[€p(x -a.)] J

(6.1.3)

n L | x —a. | JV' V' t it1> > w -----------------------------

i~l u * pi~1
1 = 1 j=l [f (x - a.)] J

P; 1
on the right-hand side by xq and on the left-hand side by xq + 1, where

q = 0,1, 2,.... denotes the iteration number, we have the one-point iterative method given by

xq+1 = 4>)xq). (6.1.4)

where

4>(x) = G^x)...........NnW)T , (6.1.5)

and

n
— Pitwai( 

♦l(x) = n
1 p.i(x)
i = l

t = 1........ N, (6.1.6)

P -2

p.t« = 2 wu---------------~

j-1 [€ (x-a.)] J
pj

Note that if L = 1 (i.e., a single fp norm), the

i = 1........ n , t = 1.......... N. (6.1.7)

iteration method reduces to the Weiszfeld

procedure in (5.2.17) with wq = Wj, pi = p, and Pu(x) = Yit<xL for all it.

Letting

n
A„(x) = p(x)/ V pk,(x), 

k = i

the iterative scheme can be rewritten in the compact form,

V i,t, (6.1.8)

<■ = i wx-
i = 1

t = 1. ....N , (6.1.9)

where

X(x) > 0 , it V i.t , (6.1.10)
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and

n
y xn(x) = 1, (6.1.11)V t .
i = l

We see that this is precisely the same form as in (5.2.23), and thus, xtq + 1 is once again a

convex combination of an, i = 1........n , R>r each t € {1.........N. . Henee , the same conclusion is 

reached; namely, that all the iterates xQ + 1 fall in a bounded hypercube containing the fixed 

points. More precisely, we have

min {a..} S xq+1 ~ max {a. J ,
1 itJ t 1 itJ

(6.1.12)

i
for t = 1....,N and q = 0 . 1 ,21........

Let us proceed now with an analysis of our extended Weiszfeld procedure for the

mixed-norm problem. The main objective here will be to determine the conditions which 

guarantee global convergence of the algorithm to an optimal solution. Several of the results 

which follow are a straightforward extension of those given in Section 5.2, for L = 1. 

Complete proofs for these results are therefore omitted.

Property 6.1.1

If pr < 2 for some r € {1,..., L}, the iteration function 4>tx) is undefined along the 

hyperplanes,

i = 1 .... ,n,

for t = 1..., N. Whereas if pj > 2 for all j, then 4> is undefined only at the fixed points ai,

i = 1..., n, for t = 1..., N.

Proof:

Follows immediately from Property 5.2.1, and the fact that Wy > 0 for all i and j.
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The iteration functions 4>t are well-behaved and continuous everywhere, except at 

the singular points noted above, where they are undefined. The next three results deal with 

the local behaviour of the 4>t at their singular points.

Property 6.1.2

Consider the case where Pr < 2 for some r € {1, .... L}. Then for any t € {1..........N},

4>t is a continuous function of x if, and only if, we set 4>t(x) = a^ at all points x on the 

hyperplane xt — a,t = 0, for i = 1....... n.

Proof:

Since L > 2, at least one of the pj's < 2. The remainder of the proof is a 

straightforward extension of Property 5.2.2.

Property 6.1.3

Consider the case where pj S 2, j = 1........ L, with pr = 2 for some r £ {1, ..., L}.

Then for any t € {1..........N}, ) is a continuous function of x if, and only if, we set = ait,

for i = 1..., n.

Proof:

A straightforward extension of Property 5.2.3.

Property 6.1.4

Consider the final possibility where pj > 2, for all j. Then fo, t = 1.. ., N, cannot in

general be made continuous at the singular points aj, i — 1.. ., n.
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Proof:

A straightforward extension of Property 5.2.4.

Based on the preceding properties, we define the following iteration scheme:

i) If pr < 2 for one or more r £ {1. ..... L},

if xt-ait it t*0, i=1« • . n,
< 1 =

1 a t
st if xq-a .t st = 0, s € {1 , . • •, n},

(6.1.13)

t = 1......... N, q = 0,1 ,2............

as if xq = a s , s C {1 , . .n},

ii) If pj > 2, V j,

4>«q) if xq * a1 , i = 1 , .... n
xq + 1 =

1

q = 0,1 ,2..............
Let us denote the procedure given in (6.1.13) or (6.1.14) symbolically as 

T: x -> T(x) (x £ RN).

(6.1.14)

(6.1.15)

Then T is a continuous mapping if pr < 2 for some r € {1, ..., L} by Properties 6.1.2 and 6.1.3,

and discontinuous in general at the fixed points a, otherwise, by Property 6.1.4.

Property 6.1.5

The map, T : x -> T(x), lies in a compact set.

Proof:

Using an identical reasoning as in Property 5.2.5, we conclude that all the iterates

except possibly the starting point fall in a bounded hypercube, such that (6.1.12) is satisfied.
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Adopting the same notation as in (5.2.40) and (5.2.41), the set of singular points of

the vector function <£ is given by

S =

N
u«.

t=l

{‘a.........

if pr < 2 for one or more r C {1 , L}, 

otherwise .

(6.1.16)

Then Definition 5.2.1 can be used to distinguish between the two basic types of sequences,

regular and non-regular.

Property 6.1.6

Let x* denote an optimal solution of model (6.1). If xq = x* then xq + 1 = x*, as well

as all subsequent iterations. If xq € S and xq + 1 = xQ, then xq = x*.

Proof:

A direct extension of Property 5.2.6.

Property 6.1.7

Each iterate moves in a descent direction of Wm, provided xl +1 x xQ,

q = 0,1,2........

Proof:

Equation (6.1.4) can be rewritten in the form,

n
2 pit(^q)'(xr-a,t)

< = ------------------ - t = i. ....N

I p (x9) 
— 'll

i = l

But
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Thus, letting

L
= Y w Vt €p.(x—ai)' V M

j=l J

we obtain

n
St(x) = Ze^x) > t = 1.......... N-

i = l

(6.1.17)

= x? - -— V W ( xq) , t = 1 . N. 
1 jx*) 1 m

(6.1.18)

This assumes, of course, that xq is not a singular point of any of the 4>t

Since x<J + 1 * xq, it follows that xQ x au i = 1..., n. Thus, xq € S only if pr < 2 for

some r € {1,.. .,L} and xtq = a^t for all t € Jq, where Jq is a non-empty subset of {1,.. .,N}. 

Clearly, the complement J'q = {1,.. ,,N} — Jq is a non-empty set, for otherwise, xq + 1 = xq. If 

t € Jq, then s^xQ) —>+<»; and if t € J'q, then st(xq) is positive and finite-valued. We see then 

that
_ (6.1.19)

s/x”) >0, t = 1 , .... N, q = 0,1,2..........

Furthermore, s^x”) is finite-valued for all t if pj 2 2, j = 1, ..., L, and finite-valued for at 

least one t if pr < 2 for some r € {1........L}. Hence, we conclude that the iterates follow descent 

directions of Wm.

The iteration procedure can be rewritten in the same form as (5.2.48), where once 

again, the modification matrix [M(xQ)]“1 is diagonal with non-negative diagonal elements 

(l/st(xq)). We see now that the iterates move in descent directions with pre-determined step-
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size, just as in the single-norm case (L = 1). If the step-size is too large, over-shooting will 

occur. The next result gives a sufficient condition (analogous to Property 5.2.8), to guarantee 

that this never occurs.

Property 6.1.8 {Descent Property}

If 1 S pj s 2, j = 1, ..., L, and x< + 1 x xQ, then W(xQ + !) < W(xQ).

Proof:

Since L > 2 and the pj’s take on distinct values, it is clear that at least one pj < 2.

Hence, by (6.1.16),

N
S = U Ht

t= 1
Let Vq = {t | (^(xl) is non-singular}. Since xq + 1 s xq, Vq is a non-empty set.

(6.1.20)

For t € Vq, define

n
gjtxJ = V pt>t-a,t)2 

i= 1

(6.1.21)

where P^: = Pit(xq), V i, t, and a given xq. For s € V'q (the complement of Vq), define

" p. n 1 - P.
h (x ) = — V w.Jx -a. 1 J [€ (xq-a .)] J

S ' S — a— 1J 1 S 1S1 p. I
i=l j=l J

Then using similar steps as in Property 5.2.8, we obtain

(6.1.22)

y g (x'+1) + 1 b (x'+i)<W (xO .__  6tt s s m
tCV s€V'

q q
Consider the left-hand side of the above relation:

(6.1.23)
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z gt(x'+1)+ Z h.lxf'l

t€V stV'
<i q

n L g
= Z Z Z ^<xq-a,)l ’ V-*/

i = l j=lt€V Jq

n 
+ V

i = l

L
—

j=ls€V*

— w..
- ij 

q

Ix,q+1-’isl " tP„(xq-a>i
J

n 
= Z 

i = l

L N
Z Z 
j=l k=l

w [€ (xq-a.)J
‘J P: •

(xq+1 
s

n L N 
-z z z 

i=l j=l k=l
w.. 

ij
[€ (xq — a.)]* Pj

Pj i

= xq, V s€V" ) 
s q

if p. < 2 , V j (Beckenbach and Bellman, 1965, Ch. 1, 14.(7)),

.(1 - - )e (xq-a.) + 2 V V —(e (xq—a.) 
p/pj * lTiJ=1Pj Pi *

1 - p. , p.
J[€ (xq+1-a.)]J 

P1 1

n L

i=lj=l

ifPj >1 , VJ

/ 2 \ n L w
w I 1 — — f (xq-a.) + 2 — {(1 -p )€ (xq—a )+p f (xq* 1 - a )}‘A PjM 1 TijT.Pj J pi * ■

(Bedtenbach and Bellman, 1965, Ch. 1, 14.(7)),

n L
= V V [_ w.. € ^—a.) + 2w.. € (xq+1 — a.)] 

---  *J P, * UP: *
i = l j=l J J

-W (x*) +2W (xq+1) 
m m

(6.1.24)
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Comparing (6.1.23) and (6.1.24) gives

-W )(x9) + 2W (xq+1) < W (xq) , if 1 £ p. S 2, Vj .m m m J
Hence,

W (xq+!) < W (xq) , m m
ending the proof.

We now see that the descent property is guaranteed if all the pj lie in the closed 

interval [1,2]. As in Section 5.2 (for L = l), we also need to address the problem of possible 

convergence of a given sequence {xq} to a non-optimal singular point. Two preliminary results 

are given next, which follow immediately from Lemmas 5.2.1 and 5.2.2.

Lemma 6.1.1

Let pj € [1,2], j = 1......L, and consider any sequence xq, q = 0,1, 2...... generated by

the map T. Then {xq} and all the subsequences thereof converge to one and the same point.

Proof:

Identical to Lemma 5.2.1, with Properties 5.2.5 and 5.2.8 replaced by 

Properties 6.1.5 and 6.1.8 respectively.

Lemma 6.1.2

Consider any point Q = (Qi Qn)t> and a sequence {xq} such that x^ * Qt for all 

q and some index t € {1 N}. Then relation (5.2.62) gives a sufficient condition for non

convergence to Q.

Proof:

Same as for Lemma 5.2.2.
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We now show that a regular sequence will never converge to a non-optimal

singular point.

Property 6.1.9

Suppose pj € [1,2], j = 1...... L, and let Q € S be a non-optimal location; i.e., Q * x*.

Then any regular sequence {xq} of T does not converge to Q.

Proof:

Using (6.1.6) and (6.1.7),we can rewrite the iterative transformation as follows:

n

2 P.J’X-V' S PW'"1
i*r i = l

9
(6.1.25)

n L 
y y 
i=i j=i

for r C {1,..., n} and t € {1,.... N}. Hence,

i*r j®l
w -------------------

‘J P— 1
(€p(xq-a.)JJ

(6.1.26)
L 
y 
j=i
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Without loss in generality, assume that the pj are arranged in increasing order. We 

also assume that the fixed points do not share common coordinates. (The proof can be easily 

modified otherwise.) Then, three cases are considered.

i) Pl > 1, Q * a,, i = l......n.

Using the same procedure as in case (i) of Property 5.2.9, we conclude that, if

convergence of {xq} to Q takes place, then an r and t can be found such that

8W (Q)
m _ _

----------  * 0 , and Q — = a
Ac t 1 rt

Hence,

8W (Q)m

*t

p.-l 
L |a — -a | J

= V V w..sign (a t- a *--------
— ij ° rt it p-l
i*rj=l [£ (Q-a.)P

Pj ‘

Using (6.1.26) and (6.1.27), it readily follows that

(6.1.27)

lim
x—>Q

x t-a t*0 t rt
(6.1.28)

so that convergence of {xq} to Q cannot occur by Lemma 6.1.2.

ii) pj = 1, Q x a,, i = 1.n.

Again, suppose that {xq} converges to Q. Using a similar reasoning as in case (i), we 

conclude that for t € {1, .... N}, if Qt * a,t, V i, then <Wm(Q)/<3xt = 0. Let 

Jq = {{|Qs-ar,s = 0}, where r9 € {1,..., n}. Since Q € S,Jq is a non-empty set.

The directional derivative of Wm at Q in the direction y = (yi......ytf)T is calculated

as follows:

= + °o ;

* 0 .
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f Wm(Q + 8y)-W__(Q)
wmQ;y) = limm

8-*0 + 6

lim
8—>0 +

lim
8—>0 +

Z Z Wj €p. (Q+5y - a? - Z Z wd ep (Q -a? 
i j J__________________ i j J

8

n
SjQ + Sy-ap-e/Q-a.)]

i = l
8

n L
2 Z wIV/Q + Sy-ap-VQ-api

i = lj = 2 J________________ J________

8

= Z <wr M + 1 w.1Sign(ar 3-a.g)yg} 
s€J„ 3 i*r 3Q s

n n L
+ £ Y wUSIgn(Q_ait)yL+ Z Z Wij ’ y

tfJ'Qi = l i = jj=2 J

W llx,l + 2
3 i*r

w., gign(a —a. )r , is 
3

+ 2
♦ £ T*

dW (Q)m

But from above, we see (hat
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Hence,

sw.n(Q>
= 0, V tj

wm(Q;y)= 2 W M + Z

L

3 ixr s

w., sign(a —a. )11 ° r s is
3

s
+ y w.. sign(a — a. )ij r s 19

j = 2 s R-l
[€p(Q-a.)]J

(6.1.29)

min W (Q; y) < 0 . m
y

(6.1.30)

This implies

1

wr 1
3

P-1
L 1a —a. 1 J

_ / 1 1 r1s 181 \|
2. ^^a, s-ais)+ 1 w signfa, s-ais>-------------7-7 H

■*r, 3 i'2 3 (f(Q_a.)’
> 1

(6.1.31)

for at least one s € Jq, say s = h. Using (6.1.26) with pi = 1, t = h, and r = rh, and (6.1.31), it

is readily seen that

Um 
x—*Q

x. -a . *0 h rhh

Thus, convergence of {xq} to Q cannot occur due to Lemma 6.1.2.

h > 1

h

(6.1.32)

iii) Q = ar for some r € {1,.... n}.

Consider the function

Ur

L
= y w £ (x — a ) ,

— ri p r
j=l J

(6.1.33)
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which gives the contribution to Wm from the cost components due to ar. For x along some ray

from ar with direction 0, it is readily verified that

Ur = Wr '

where p(0) € (1,2) and

(6.1.34)

z

j=l
Furthermore, from the unit circles of the €p^, j = 1,.. ., L, and considering the results obtained

for the weighted one-two norm (Chapter 4), it follows that Wr €p,(x — ar) is a close approxi

mation of Ur, where p, C (1,2) is a mean value of p(0). Thus, the iterates in a 8-neighbourhood

of ar behave to a first approximation as if the single cost wr €p,(x — ar) is associated with ar. 

Based on Property 5.2.9 (case (iii)), we see that {x<i} will not converge to ar, since this would 

have to be along a descent direction of Wm, thereby violating Property 6.1.8.

Since cases (i), (ii) and (iii) exhaust all possibilities, the proof is complete.

We are finally ready to prove global convergence of our algorithm. This extends the 

result given in Theorem 5.2.1 for the single norm to the more general mixed-norm model.

Theorem 6.1.1

Let pj € [1,2], j = 1......L. Then any regular sequence xQ, q = 0,1,2.......converges to

an optimal solution; i.e.,

lim xq = x .
q—

(6.1.35)

Proof:

The same as Theorem 5.2.1, with Wm instead of W, Lemma 6.1.1 replacing Lemma

5.2.1, and Properties 6.1.6, 6.1.8 and 6.1.9 replacing Properties 5.2.6, 5.2.8 and 5.2.9

respectively.
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It is interesting to consider the case where {xq} is a non-regular sequence. Using 

the same notation as in Corollary 5.2.1, we obtain the following immediate result.

Corollary 6.1.1

Let pj € [1,2], j = 1............L, and consider any non-regular sequence xq,

q = 0,1, 2......... If all subsequent iterates after xs do not fall on any hyperplanes Hit not

already included in H, then {xq} converges to a solution which is optimal in the subspace H.

As a final comment on global convergence, we note that Property 5.2.10 readily 

extends to our mixed-norm problem as follows.

Property 6.1.10

If pr £ [1,2) for at least one r € {1,.... L}, then {xq} is a regular sequence, except for a 

set of starting points x° which is dense as RN~l.

The steps of the proof are the same as in Property 5.2.10. We conclude that if 

Pj € [1,2] for all j, the likelihood that the algorithm will not converge to x* for arbitrary x° is 

very low (zero theoretically if the sequence is calculated with unlimited accuracy). Once 

again, the use of double precision arithmetic is recommended.

We take a quick look now at local convergence rates, restricting attention to the 

case where Wm is strictly convex (i.e., the a, are non-collinear), and the optimal solution x* 

does not occur at a singular point. Let 4>'(x*) denote the NXN matrix of first partials of the 

vector 4> evaluated at x*. Then, using an analogous procedure as in subsection 5.3.1, it is 

readily seen that
(6.1.36)
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Note that 0'(x*) has the same form as in equation (5.3.37), except the new objective function

where

*kt =

00. (x‘) 1 rw (x‘)
k p 1 m

— u, — ,
*. kt ^(x') axtaxk (6.1.37)

1 , if k = t,
= is the Kronecker delta,

0, otherwise, (6.1.38)

and
kt = 1..........N.

Wm replaces W and sjx) is now given by (6.1.17).

For the two-dimensional case (N = 2), the elements of 0'(x*) are given by

n L 
y y w< 

i-lj-l
♦11

1

S/x •)
(2 -p.) + (p. -1) (6.1.39a)

*22
1

s2(x #)

n L 
V V w. 
i=lj=l 1J (€ (x’-a )]Pj’1

Pi ‘

(2 —p) + (p —1) J *j • pi[f (x -a.)]J 
pj ‘

(6.1.39b)

*12

• p -1 . p -1
i n L Ix.-a.J J |x2-a J J1 v' • • 1 il 2 ir

----- T 2. 2 (Pj-nwl.sign'Xl-a.psign^-a.^
St(x )i = lj=l

(6.1.39c)

and

*21

. 2p-l
[fpi(x -a.)] )

Sj(x )

( \ *12 •
s2(x )

Consider the case where pj € [1,2] for all j, so that global convergence to x* of any

(6.1.39d)

regular sequence is guaranteed by Theorem 6.1.1. Clearly, 0u and 022 are positive-valued, so

that

X -I- X2 = tr(0'(x )] > 0 , (6.1.40)

where Xi and X2 are the eigenvalues of 0'(x*). Next, we show that the determinant of 0'(x*) is

positive. Letting

>

>

1
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n L
F(X) = 1 1 (P- ~l)w.. 

t Pj ij
1 = 1 j=1

2p.-2J

2p--i ’
[€p (x-a.)] J

p-2
n L |x — a.| J

G(x) = X— y (2-p.)w.. —---- ---------
t ,X— j J p.

1 = 1 J = 1 [€ (x-a.)]J
Pj 1

t = 1,2,
and

H(x) =
n L2 2 (Pj-n w.. sign^i-a.^sign^-a^ 

i=l j=l

p. -1 p. -1
l’^l-3i,l' |x2-aJ1

p -1

2p. - 1 
[€ (x-a.)] JP; ,

J

the following expression is obtained:

det/<t>'(x*)] = ----- --------r {G . (x’)G,(x‘) + G , (x*)F„(x*)
s,(x)s2(x) 1 “ 1 ‘

+ G2(x‘)F (x*) + F t(x*) F2(x*) - H2(x*) }.

Applying Schwarz’s inequality, we readily show that

H2(x*) < F/x’lF^x*) ,

(6.1.41)

(6.1.42)

with strict inequality holding even if the aL are collinear. Furthermore, since Fj, F2, Gi and

G2 are all clearly positive, it now follows that

Xj X2 = det/<t>'(x )] > 0 .

t = 1 ,2 .\ >0,

From (6.1.37) we see that

4>(x ) = I-B (x ) ,m

(6.1.43)

(6.1.44)

(6.1.45)

where
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Bm (x*) =
m

! d2Wm(x*)1 m

s^x*) 8x2

1 a2Wm(x*)
a m

S2(x*) *ci3x2

1 /W fx‘)
a m

S(x*) <2 2X1

1 a*w (x*)1 m

S2(x ) ax 2

(6.1.46)

Furthermore, it can be shown in exactly the same way as for Lemma 5.3.1 that the eigen

values of Bm(x*) are positive. Denoting these eigenvalues by pi and p2, and recalling that

\ = 1 -pt, t = 1,2 ,

leads to the result

\ < 1 , t = 1,2. 

Comparing (6.1.44) and (6.1.48), we finally conclude that

0 < Xt< 1 , t = 1,2 .

Hence, the following important result is obtained.

(6.1.47)

(6.1.48)

(6.1.49)

Theorem 6.1.2

Consider the mixed-norm problem in two dimensions, such that pj € [1,2],

j = 1......L, the aj are non-collinear, and x* £ S. Then the local convergence rate to x* is linear.

As a final comment on local convergence rates, we note that the results in sub

section 5.3.3 are readily extended to the mixed-norm model. This follows from the previous 

observation that 4>(x*) has an analogous form in both cases. In particular note that
(6.1.50)t = 1......... N ,\< 1 ,

for the more general condition where pj S 1 (but not necessarily <2), for all j.

6.2 Optimality Criteria at Non-Differentiable Points

In this section, we are interested in deriving optimality criteria at points x ( D, 

where D denotes the set of non-differentiable points of Wm. Consider first the case where 

pj > 1 for all j. Then the cost component Ur (see equation (6.1.33)) associated with any fixed
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point ar is a positive linear combination of differentiable round norms centered at ar, and 

hence is itself a differentiable round norm centered at ar. It follows that D = {ai an} for 

this case. On the other hand, if one of the pj's equals 1, then D becomes the union of hyper

planes xt — ait — 0> i — 1......n, t = 1,..., N. However, when x is neither an intersection nor a

fixed point, there exists at least one direction Xh where Wm is differentiable; and hence 

<3Wm(x)/8xh = 0 is a necessary condition for x to be optimal. It follows in the latter case that 

optimality criteria are practical only at the intersection and fixed points.

Once again, we make the standard assumption that the a, do not share any common 

coordinates with one another. If this is not so, the criteria given below can be easily modified,

where applicable, to suit the individual case. Let us first consider the fixed point ar,

r € {1...... n}. Using relation (2.4.6), it follows that the directional derivative here is given by

, L N
wJa,; y = 2 wrj fp(y) - - B.t yt • 

j=1 J t=1

where

L
B = - V V w.. signla -a ,)

rt ■<— ij rt it ,
.*r j = 1 (f (a -a.)]Jp- r i

(6.2.1)

(6.2.2)
p.-1

■J

f • •

Letting

Br:- (Brf. • ’ BrN>’

L
w := / w , r rj ’

j=l

a .; — w . / w 
rj rJ

we rewrite (6.2.1) as,

j — 1..., L ,r ’

L
V%fp(y>-Br.y . 

j=1 J

W> ;y) —
m r J w r

(6.2.3)

J
A necessary and sufficient condition for ar to be an optimal solution is that W'm(ar; y) > 0 for

all directions y (Property 2.4.1). This immediately implies
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max
i Br y

W r Lr(y)
(6.2.4)

S 1 ,
y

where the norm,

L
(6'2'5:

j=l J
Note that Lr is a convex combination of the fp^’s. Using the definition of the polar and letting

Lr° denote the polar of Lr, the optimality criterion at ar given in (6.2.4) becomes

— L°(B ) <S 1 . 
w r rr

(6.2.6)

Relation (6.2.6) is identical in form to the optimality criterion of Juel and Love

(1981), where a single arbitrary norm is associated with each fixed point. The total weight 

(wr) at ar has the same interpretation as the simple cost coefficient in the single-norm case. 

However, the polar of an arbitrary convex combination of fp norms is not readily available in 

closed form, and obtaining Lf0 for a specific problem proves to be a cumbersome task (e.g., see 

Juel, 1975). Thus, fixed point optimality criteria have limited practical use in the mixed 

norm problem. At the end of this section, we demonstrate the application of (6.2.6) when Lr is 

a convex combination of € and €2-

Suppose now that pj € [1,2] for all j. Then a lower bound on the directional

derivative of Wm at ar can be obtained in the following manner. Note that

€ (y) >e„y) = 1, j= 1......... L,
PJ L

and Br ■ y is maximized when the unit vector y has the same direction as Br; i.e., 

y = Br/||Br || .

Using (6.2.1), (6.2.7) and (6.2.8), it immediately follows that for any y,

L
Wm(3r’y) - — Br ’ Br /||BJ

j=l

= wr-|Br||.

Thus, a sufficient condition for ar to be an optimal solution is that

(6.2.7)

(6.2.8)

(6.2.9)
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N 1/2
wr * l|Br || =

(6.2.10)

The above criterion provides a practical (but obviously less accurate) alternative to

relation (6.2.6).

Witzgall (1964) proves a "Majority Theorem" which applies to the Weber problem 

with distance function given by a metric. This theorem states that a fixed point is always 

optimal if it accounts for 50% or more of the total interaction. One can easily extend this 

result to a generalized version of the mixed-norm model, as shown below.

Property 6.2.1

Consider the problem,

n L

minimize W (x) = / / w.. d.(x,a.) ,m _ — ij j ’ i ’
i=l j=i

where dj is a metric, j = 1......L, and the other symbols are as before. Then a sufficient

condition for ar to be an optimal solution for some r € {1......n} is that

wrj - 2 wij ' J = 1........... L • (6.2.11)
ixr

Proof:

From the triangle inequality and symmetry properties of the metric, we obtain

|d.(x,a.)-d.(ar,a.)| <d.(x,ar), V j,i,x. (6.2.12)

Hence,
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L L
2 , a.)1 + £ wrj dj<x>ar)
i*r j=l j=l

n L n L

W (x)-W (a ) = m m r Vw ..drx,a.)-y Y w..d(a .a.) 
— ij J i _ — ij j r ' i
i=l j=l i=l j=l

L L
- -Z £ wij I djOc,ai)-dd(ar .a.)! + £ d.(x . af)

ixr j=l j=l

L
> Y Z ^dj.* .ar)— ^x.a^-d^.a.)1]

j=l i*r

(relation (6.2.11))

S 0 (relation (6.2.12)) .

Therefore, ar must be an optimal solution if the Wn satisfy (6.2.11).

Returning to the mixed-norm model (6.1), we now provide a sufficient condition for 

ar to be optimal which is based on the combined effect of the Wj j = 1,. . ., L, as measured by 

the total weight wr at ar.

Property 6.2.2

Consider the mixed-norm model (6.1) with 1 S pj S 2 for all j.

r € {1,..., n} can be found such that

w r
(—)
V 1 + VN/

Suppose that an

(6.2.13)w ,

where

w
n L
v y w._ 
i=i j=i 1

Then ar is an optimal solution.
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Proof:

For any x€ RN,

W (x)-W (a ) = S + S_, m m r 1 2
where

L
S1 = 2 wrj VX_ar) ’ 

j=l J
and

L

Since 1 S pj <S 2, V j, it follows that for any z € RN,

f(z) < €_ (z) S ft(z) , j=l,...,L.
Pj

Furthermore, in N-dimensional space,

€t(z) <; VN f(z) .

Using (6.2.14) and (6.2.15), we see that

L
Si - Y w . fJx-a ) = w fjx-a ) ,1 - rj 2 r r 2 r

j=l
and

(6.2.14)

(6.2.15)

(6.2.16)

L
S2 > - V Y w..|€ fr-aj-f (a -a,^

2 — X .j 1 n 1 p. r 11
iir j=l J J

L
S — Y Y w..f (x —a ) 

— IJ P; r
ixr j= 1 J

(triangle inequality)

L
>-VN f(x-a)Y Y w . (6.2.17)

i*r j= 1
Substituting

L
2 Z (6.2.18)

ij r
ixr j = 1

into (6.2.17) and combining with (6.2.16) gives

S + S„ S t(1 + VN)w - VN w] fx(x - a ) . (6.2.19)lx r x r
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Hence, if wr satisfies (6.2.13), we immediately obtain

W (x)-W (a ) > 0 ; m m r '

so that ar must be an optimal solution.

It is informative to note the following alternative proof of Property 6.2.2, based on

the directional derivative of Wm at ar. From (6.2.2), it is clear that

L
|BrJ < V Y w.. = w-wr , v t. (6.2-20)

i*r j=l

Using the lower bound on W'm(ar ; y) in (6.2.9), and imposing (6.2.13), we thus obtain

S w — VN(w-w) r r

= (1 + V N )wf — V N w > 0 , V y ,

therefore concluding that ar is an optimal solution.

For location in the plane (N =2), it now follows that a sufficient condition for ar, 

r € {1......n}, to be optimal is that

w > f_ j w = 0.5858 w . (6-2.21)
r M+V2/

However, we note from (6.2.13) that as N increases, wr must become a larger fraction of the 

cumulative weight w in order to guarantee the optimality of ar. Hence, the usefulness of 

Property 6.2.2 is limited to lower dimensional spaces.

Let us assume without loss in generality that the pj’s are arranged in increasing 

order, and consider the case where pi = 1. Then, by Property 2.2.5, Lr defined in (6.2.5) is a 

nondifferentiable round norm. For minisum models employing block or nondifferentiable 

round norms, one can derive optimality criteria at any nondifferentiable point of the objective 

function by considering the directional derivative in a similar manner as at the fixed points. 

However, it appears that such criteria are not provided in the published literature, other than
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for the fixed points. In the next result, optimality criteria are specified at the intersection 

points.

Property 6.2.3

Consider the mixed-norm model (6.1) with pi = 1, and let Q denote an intersection 

point; i.e.,

Q ~ (ar j > ar 2 ’ • • •» ar
rl1 r22 rNN

where rg € {1,..., n} depends on s = 1.....N. (Recall that Q * a,, i = 1,..., n, by definition of an

intersection point.) Then Q is an optimal solution if, and only if,

min {C } S 0 , 
lSssN

(6.2.22)

where

C =w
3

Proof:

w;isign(a 
i*r

3

L
— a. )+ ^ w.. sign(a 

is ij r s
j=2 s

(6.2.23)

N.

Referring to the directional derivative calculated in (6.1.29), and noting that

Jq = {1,N} for the intersection point Q, it follows that

min W (Q ; y) = m
y

min
y

N

S C,|\|
3 = i

(6.2.24)

S = 1

r 1 s

> • • • »

r s s
>

Thus, Q is optimal if, and only if, Cs s 0 for all s. We conclude that (6.2.22) is both a necessary 

and sufficient condition for Q to be an optimal solution.
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An Application:

Let us consider a typical mixed-norm problem in R2, which utilizes the rectangular

and Euclidean norms. The model is stated as follows:

n L 
minimize W (x) — V V w.. f (x-a.) ,m X— .j p.' i' '

i = 1 j=1 J

where N — 2, L — 2, pj — 1, and p2 — 2. Alternatively, the objective function can be written 

as

n
W (x) = V w. L<.(x — a.) , m x— 11 i '

i=l
with

w. = w.+w . . ,1 il 12

L.(z) = a.f/zj + p.^z), V z(R2,

(6.2.25)

0 < a.i = w.,/w. < 1 , il i
. = w//w. = 1 — a. , 
i 12 i i ’

i— 1........ n.
We see that L is a convex combination of the €i and €2 norms. Furthermore, if a, has the same

value for all i (a, — a, i — 1......n), the problem reduces to a standard minisum model with

distances given by a weighted one-two norm (L(z) — a €1 (z) + (1 — a) €2(2)).

The fixed point optimality criteria can be derived directly from relation (6.2.6), 

using the polar for positive linear combinations of fi and €2 given by Juel (1975, p. 15). 

However, it is simpler to back-track a few steps, and utilize the special structure of the 

directional derivative for this case. The criteria thus obtained have a different form, which is 

more compact and easier to implement.

From (6.2.3),

W (q ;y) — w [q f ,(y) + B f„(y)) -B -y m r J rri * r z. r 

— W[[Qr^((y) + PJ— B[ • y ,
(6.2.26)
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(6.2.27)

(6.2.28)

(6.2.29)

(6.2.30)

since y is a unit vector (€2(y) — 1). Letting 0 denote the direction of y, we have

y = (cos0, sin0)T;

so that (6.2.26) becomes

Wm(ar;y) = w^a^l cos0 | + 1 sin0 |) + Pfl-Br . co<s)-Br2sm0 .

Clearly, the directional derivative at ar will be minimized if, and only if, 

sign(cos0) = sign(Brl), sign(sin6) = sign'B^;

in which case,

Wm(ar :y) = (arwr-lBriNcose | + (arwf-| Br2D|sin0| + (1 -ar)wf .
Also note that the direction which minimizes W ’ m(ar; y) is restricted to a specific quadrant by 

(6.2.29).

Suppose that ar wr > min{|Bri|, |Br2|}, and without loss in generality, assume that 

|Brj| = min{|Bri|, |Br2|}. Then the first term on the right-hand side of equation (6.2.30) is non

negative, and clearly, a 0 which minimizes the directional derivative at ar satisfies 

(|cos00|, |sin0*|) = (0,1). Hence, we obtain

min {WJar i y)} = - maxflBj , IBJ} + wr .

y
The other possibility to consider is that ar wr < min{|Bri|, |Br2|}. For this case, it is readily

shown using elementary calculus that

mm (W (a ; y)} = —((a w
1 m r J * rr

-|r .|)2 + (a w -| B J)2 ]V2+(1 -a )w .
’ . r r r& rr

(6.2.32)

y
From (6.2.31) and (6.2.32), we immediately obtain the following optimality criterion at a fixed 

point.

Property 6.2.4

Consider the mixed-norm problem with objective function defined in (6.2.25). Then

x = ar, r € {1....... n}, is an optimal solution if, and only if,
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maxflBjjBj}, if >mn^{|Br1|,|Br2|},
(6.2.33)w > r ^arwr “ l®rl^2 + ^QrWr ~ I ’ otherwise.(i)

r
It is interesting to examine relation (6.2.33) for the limiting cases, a, —> 1”

(Lr -> fi), and a, —> 0+ (L, -* €2)- Assuming that w, x |B,i| or wr * |B,2> we see that

(TZ7)lfa.Wr-|B-l|)2 + ,%W--|B-J,21U2

r
+ aolim

a —» 1 ~r
Hence, the optimality criterion at a, reduces in the first case to testing whether or not

wr > max{JBrl|, IB,^ .

For the second case we have a, wr —> 0, and hence, the limiting form of (6.2.33) becomes

(6.2.34)

(6.2.35)w > (B2 + B22 )V2r rl r2
Note that (6.2.34) and (6.2.35) are the optimality criteria at ar with Lr as the rectangular and

Euclidean norms respectively.

The following results give some useful information concerning the sensitivity of an

optimal solution at a fixed point.

Property 6.2.5

For the mixed-norm problem with objective function defined by (6.2.25), suppose 

that an r f {1...., n} exists such that wr > max{|Bri|, |Br2|}■ Then an a* t 0O, 1 ) can be found 

such that x = ar is an optimal solution for all a, in the interval [a*, 1].

Proof:

Since w, > max{|B,i|, |B,2|}, it follows that an a* € [0,1) exists such that 

a*wr = minflBj, |Br2|} .

Then, for any a, € [a*, 1], we see that the criterion in (6.2.33) is satisfied. Hence, by

Property 6.2.4, a, is an optimal solution for all a, € [a , 1].
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Property 6.2.6

For the mixed-norm problem with objective function defined by (6.2.25), suppose 

that an r ( {1, n} exists such that wr > (Brl2 + B^2)1^. Then x = ar is an optimal solution 

for all ar in the interval [0, 1].

Proof:

Without loss in generality, assume that

I Br,| = minJBJJBJ} .

There are two possibilities to consider.

(i) |Bri| = 0.

Then wr > |Br2| = max{|Bri|, |Br2|}, and ar wr > min{|Bri|, |Br2|} for any ar £ [0, 1].

If follows from Property 6.2.4 that ar is an optimal solution for all ar € [0, 1).

(ii) |Bri| > 0.

Let

h2<ar):= V^-IBJa

and g(Gr) ( !_a )[hl'ar' + h2(ar)]

r
The first-order derivative of g is given by,

dg(ar 1

da r (l-a/

Now, smce wr > (Brl2 + Br22)172

(1 — a )wr r
(hj + h^)172

• (h + hp

it follows that

wr > lBfJ = maxABj > |Br2|} •

(6.2.36a)

(6.2.36b)

(6.2.37)

(6.2.38)

(6.2.39)
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Then, an a* €(0,1) exists such that

<■'<», = IBrJ = rnrnflBBIJBJ} . (6240)

From (6.2.39), (6.2.40) and Property 6.2.4, we conclude that ar is an optimal solution for all 

ar( [a*, 1].

dg(0) 
da 

r

Next consider ar in the interval [0, a*). Clearly, hi < 0 and ha < 0; so that

\ + h2 = _(1hJ + |hJ) . (6.2.41)

Substituting ar = 0 in (6.2.38), we obtain

- (b^b^)W-,B2 J;,
Brl + r2

s ((B2, + Bjs)w-(|Btl| + |BJ)|

(6.2.42)
< 0. (Property 2.1.1)

Also, g(0) = (Brl2 + B^)1^, and hence

wr > g(0) . (6.2.43)

From (6.2.42) and (6.2.43), it follows that an a** > 0 exists such that wr > g(Qr) for all

ar ( [0, a**]. Furthermore, let a** denote the largest value for which this is true. We show by

contradiction that a** > a*. Suppose a** < a*. Then, using (6.2.41), we have

dg(a**) _ 1

dar (-a * *)2
(h2(a**) ) h2^*)))72-2 ---- --- (Ihjia**)| + |212aa‘*)|)

g(a )

----- [(h2(a~ + h;(a“)),/2 -<|h.(a**X + |h (a**X)l 
(1—a r

< 0. (Property 2.1.1) (6.2.44)

But this contradicts the fact that a“ is the largest value such that wr > g(ar) for all 

ar ( [0, a**]. Hence, a** > a*, and we conclude from Property 6.2.4 that ar is an optimal

solution for all ar ( [0, a*).

Thus, combining results, we see that x = ar is optimal for 0 S ar < 1.
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Property 6.2.7

For the mixed-norm problem with objective function defined by (6.2.25), suppose 

that an r € {1, n} exists such that Qr is optimal for Qr — Qri and Qr — ar2, where Qri, Qr2 are 

values in the interval [0,1] and Qri < ar2- Then Qr is optimal for all Qr € [ari, Qr21-

Proof:

A straightforward modification of the one given for Property 6.2.6.

The next result provides the criterion for testing the optimality of an intersection 

point in our example.

Property 6.2.8

Consider the mixed-norm model with objective function given in (6.2.25), and let Q

denote an intersection point; i.e.

Q — (arl ,as/’

where r, s 6 {1....... n}, r * s. (Recall that Q * Qi, i — 1......n, by definition of an intersection

point.) Let

wn sig^-a^ + (a -a. ) rl il
C1 = »tl- Y

i*r

w 2
■^(Q-a.)

c2 — '''.I- y
i xs

Wnsign(a g2 - a 2) +
(a,2 } QU>

w •212 e2(Q-a.)

(6.2.45q)

(6.2.45b)

Then, Q is an optimal solution if, and only if, 

min{Cj,C2} > 0 . (6.2.46)

Proof:

This is a direct application of Property 6.2.3.



CHAPTER 7

A GENERALIZED MINISUM PROBLEM

An extension of the single facility minisum location problem (or Weber problem)

has the distance function raised to some power K. This generalization was discussed briefly 

in Chapter 1 (see model (1.3.1)), where we noted that economies of scale are introduced in the 

model if 0 < K < 1, while dis-economies occur when K > 1. Finally, if K = 1, we are back to

the original Weber problem with its constant returns to scale. The purpose of the new

formulation is to provide a more accurate representation of the cost structure in the real 

problem. As explained in Chapter 1, the actual costs will often exhibit a nonlinear relation 

with the distance function.

In this chapter, a new model is investigated which generalizes the minisum 

problem with distances measured by a norm even further. This model, which we 

appropriately name the "mixed-power” problem, is formulated as follows:

n

minimize W,„ (x) = V— w [k(x — a.)]Cr *•— 1 1
1 = 1

where w,, a,, i = 1......n, k(-) and x are the same as in model (5.1), and K, > 0, i= 1....... n, is

the power associated with the ith fixed point or destination. If all the Kj are equal, we have

K1 for each customer, we are providing a greater flexibility in the cost structure. This 

recognizes the fact that economies or dis-economies may differ among customers, due to the 

use of different transportation modes and other possible factors.

We begin this chapter by deriving some general properties of the mixed-power 

problem. Next, we look at the specific case where k is the fp norm. The model then becomes

254
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n

minimize W _ (x) = Y w. [f (x — G i p
i = l

K
V1 ‘ p>l. (7.2)

To our best knowledge, the mixed-power problem has not been formulated previously in the

published literature on location theory. Since this model allows the cost component of each

customer to have a different functional form , it can be considered analogous to the mixed- 

norm problem. We could complicate matters further, but hopefully increase the accuracy of 

the model as well, by mixing norms and powers simultaneously. For example, we might 

consider the following model:

" K.
minimize W_ , . (x) = V w [k.(x — a.)| 1 , GM a— ij i ' ’

i = 1

(7.3)

where k, is the norm associated with customer i, and all other symbols are the same as above.

7.1 General Properties

We first derive some properties related to the shape of the objective function. These 

results generalize ones obtained by Morris (1981) for the case where k is an fp norm and all 

the K, are equal. Unless stated otherwise, the location problem takes place in N-dimensional 

space (RN).

Property 7.1.1

Let k be a round norm in model (7.1). If K, > 1, i = 1, ..., n, with at least one of

these inequalities satisfied strictly, then Wq is a strictly convex function of x.

Proof:

Wq(x) is a positive linear combination of convex terms, with one or more of these

terms having Kr > 1, r € {l,...,n}, and being strictly convex by Property 2.3.5. Hence, WG(x) is 

strictly convex.
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Property 7.1.2

If 0 < Kr < 1, where r € then the fixed point ar is a local minimum of

Wg(x).

Proof:

Letting

K
h.(x) : = (k(x)] 1 , i = 1......n, (7.1.1)

we can rewrite the objective function as

n
W_(x) = V w. h. (x — a.).G *— i i i

i=l

Then the directional derivative of Wg evaluated at x = ar in the direction y is given by 

WG (ar; y) = Y w. h - a.; y) + wr h'r (0 ; y) .
i*r

But for all i2r (see equation (2.4.9)),

K.-l
h. (r — a.;y) = K.[k(a -a.)] 1 k'(a — a.;y),

which is finite-valued; while for i = r,

h'r (0 ; y) = + <» ,

by equation (2.4.12). It follows that

W’G(ar;y)= +« ,

for all directions y, and hence, the fixed point ar is a local minimum of Wg.

(7.1.2)

(7.1.3)

(7.1.4)

(7.1.5)

(7.1.6)

Property 7.1.3

If 0 < Kr < 1 for one or more r £ {l,...,n}, then Wg(x) is neither convex nor concave.
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Proof:

By Property 7.1.2, a local minimum occurs at x = a,, an interior point, so that Wq 

cannot be a concave function of x. Since Wq is bounded in any compact set containing a,,and 

WG' (ar;y) = + 00 for all directions y (equation (7.1.6)), it follows that Wq cannot be a convex 

function of x either.

Returning to Property 7.1.1, we see that the optimal solution (x*) must be unique, if 

k is a round norm and K, > 1, V i, with at least one of these inequalities satisfied in a strict 

sense. The uniqueness of x* is guaranteed here for any arrangement of the fixed points— 

even the collinear case. Suppose now that k is a block norm. Then Wq will no longer be a 

strictly convex function of x, so that x* may not be unique. However, from Property 2.3.7 it 

follows that the optimal solutions must all lie on a facet of some polytope contour of k (x — a,), 

for each r € {l,...,n} such that K, > 1. This result provides an easy way of checking the 

uniqueness of the optimal solution for problems in R2 (N = 2). Say that we have found an 

optimal solution at xq. Now draw the edge of the polygon contour of k(x — a,) passing through 

xq for each r £ {l,...,n} having K, > 1. If any two of these edges are not parallel, then xq must 

be the unique solution. In higher-dimensional spaces, this verification step becomes more 

difficult, since we are now dealing with the intersection of hyperplanes instead of edges.

The uniqueness properties discussed above are illustrated with two simple 

examples in R2. First consider a problem having two fixed points, ai = (0,1 )T and a2 = (2,0)T, 

W1 = w2 = w, and Kj = = K. Suppose that k is a round norm. Then if K = 1, the set of

optimal solutions consists of all the points on the line segment joining ai and a^ However, if 

K > 1, then x* = (1, 1/2)T is the unique solution. Now suppose that k = ) ■ (a block norm). If 

K = 1, all the points contained in the rectangle with vertices (0,0)T, (0,1)T, (2,1)T and (2,0)T 

are optimal. If K > 1, x* occurs at a reduced set co insisting of the points on the 45° line 
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segment through (1, 1/2)T bounded by the sides of the rectangle (see Figure 7.1.1(a)). We see 

that x* is not unique here even when K > 1.

For the second example, add two more destinations at the unoccupied vertices of 

the rectangle; that is, a3 = (0,0)T and a4 = (2,1)T Let w( = w and Kt = K, i = 1.....4. Then 

the optimal solution is uniquely given by x* = (1,1/2)T for k a round norm and K > 1. If 

k = J j and K = 1, all the points within the rectangle are optimal as in the first example. But 

if K > 1, x* = (1,1/2)T becomes the unique solution, since the edges passing through x* of the 

polygon contours for k (x -ai) and k (x-• a2) are not parallel to those of k (x -a3) and k (x-a4), 

as shown in Figure 7.1.1(b).

Let us consider now the case where 0 < Kr < 1 for at least one of the indices r. In a 

small 5-neighbourhood of the fixed point ar, the directional derivative of Wq is dominated by 

the contribution from the cost component associated with ar. Thus, along any line segment 

through ar and contained in the 5-neighbourhood, Wq has the basic shape shown in Figure 

2.4.1(c). This confirms graphically Property 7.1.3. Since Wq is neither a convex nor concave 

function of x, the optimal solution will not be unique in general. By Property 7.1.2, a local 

optimum occurs at x = ar, which cannot be ruled out a priori as the global optimum. A global 

solution may also exist at a point other than the a,.

The following result is rather interesting, in that it shows a tendency for the 

optimal solution to move to a fixed point for sufficiently small values of the K,.

Property 7.1.4

In the limiting case Kj-*0 + , Vi, the optimal solution of model (7.1) occurs at 

x* = as, where ws = max, {wj.
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a) Nonunique

b) Unique

Figure 7.1.1 Uniqueness of the Optimal Solution (x*) Illustrated for Rectangular Norm 
and K> 1.
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Proof:

Denote this limiting case by 'lim'. Then for x * a;, i — 1.....n, we have

n
lim WJx) — V w •

G *— 1i— 1
(7.1.7)

while for x — ar,r ( {l,...,n},

lim W } (q ) G rlim W_(x) — u

— lim
' K K.

> w. [k(a — a.)] 1
— I r i
ixr

It follows that

—
i xr

(7.1.8)

min
X

lim WG(x) G ■ ■ I-..
i xs

(7.1.9)

which occurs at x* — as.

As Kj-* 0 + , i — l,...,n, we see from (7.1.7) that there is a flattening effect on the 

objective function. The cost component associated with each destination aj becomes 

insensitive to the distance travelled, because of the extreme economies of scale resulting from 

the low values of the Kj. We also note from (7.1.7) and (7.1.8) that the cusps at the fixed points 

(see Figure 2.4.1(c)) become more pronounced as the Kt are decreased. This fact is recognized 

by Morris (1981) for the case where k is the fp norm, and illustrated in his Figure 2 with q 

one-dimensional example. We see now that the optimal solution tends to be for sufficiently 

small values of the K at the destination with the largest weight.

If all the K( — 1, we return to the standard minisum problem,

n

minimize W(x) — / wk(x — a).
— i i

i — l
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For this model, a fixed point ar will be optimal if, and only if, the following criterion proven by

Juel and Love (1981) is satisfied:

w a k° r 2 w. V k (a - a.)1 r i
i»r

(7.1.10)

where k° denotes the polar of the norm k, k (x — a,) is differentiable at x = ar for all i * r, and

Vk(ar —a) denotes the gradient of k(x) evaluated at x = ar —a, (or alternatively, the gradient 

offj(x) = k(x — aj) evaluated at x = ar) for all i*r. The above result derives from the fact that 

the directional derivative W' (ar; y) must be greater than or equal to zero for all unit vector 

directions y, when x = ar is an optimal solution. (For further discussion, see the derivation of 

fixed point optimality criteria for the mixed-norm problem in Chapter 6.) Since W is a convex 

function of x, the requirement, W' (ar; y) > 0, V y, is both a necessary and sufficient condition 

for optimality at ar (Property 2.4.1). As a comparison, note that W^'feriy) = +®, V y, if 

0 < Kr < 1 (equation (7.1.6)). But since Wq(x) is not convex, we can only conclude that ar is a 

local minimum.

The fixed point optimality criterion in (7.1.10) for the standard minisum problem 

shows that if the weight wr is sufficiently large relative to the weights and geometry of the 

other fixed points, then x* = ar. In fact, by the majority theorem of Witzgall (1964), ar is 

guaranteed to be an optimal solution if

1 n
w > — a w . 

r 2 i- 1

However, the optimality criterion in (7.1.10) is often satisfied in practice at a much lower 

value of wr, as seen in the examples given by Juel and Love (1981).

Consider once again the mixed-power model (7.1) in which K, > 1 for all i, with at 

least one of these inequalities satisfied strictly. Furthermore, assume that J = {i | K, = 1} is a 

non-empty set. Then, optimality criteria at the fixed points ar, where r € J, can be derived in a 

similar manner as for the standard minisum problem. First we calculate the directional
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derivative of Wq at ar in the direction y.

W'GGar;y) = V w.h’.^ - a. ;y) + wrk(y) 
i*r

T
y •

K-l
" w.K. [k(a -ji.)] 1 Vk(a -a ) *— i i r i r iixr

+ w f k(y) , (7.1.11)

where equation (2.4.6) is used in the first step, and we assume that k (x — a,) is differentiable

at x — ar,V ixr, and use equation (2.4.11) in the second step. A necessary condition for an

optimal solution to occur at ar is that Wq' (ar; y) > 0 for all directions y. Letting

K-l 
, Vi x r ,v. = w. K. [k(a —a1)]1 ii r 1 (7.1.12)

we see that this implies

T y • Y v. V k(a 
i xr

— ai) + r i w r k(y) > 0 , Vy ,

or

T -y •

w , V y .

— v. V k(a —a )■— i r 1
ixr> ------------------------------------

r k(y)
Substituting z = —y, and noting that k( — z) = k(z), we can rewrite (7.1.13) as

T z •

(7.1.13)

w > max 
r

z

Y v1 V k(a —a1)— 1 r 1
i xr

k(z)
(7.1.14)

k° Y v. V k(a -a.)— i r 1
ixr

by definition of the polar. Since Wg is a convex function of x when all the K, > 1, it follows

that (7.1.14) is both a necessary and sufficient condition for an optimal solution to occur at ar, 

for any r € J. Comparing (7.1.14) with (7.1.10), it is interesting to note that the optimality 

criterion at any fixed point ar, r € J, corresponds to the one for the standard minisum problem 

with adjusted weights v, used in place of the w, for i x r.

Thus far we have observed that ar is a local minimum of Wq if 0 < Kr < 1, and

that the criterion (7.1.14) can be used to test for the optimality of ar when Kr = 1. If
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K, a 1, Vi, then this criterion is both a necessary and sufficient condition for a global 

minimum at ar. However, if any of the K, are in the interval (0,1), then (-.1.14) is a necessary 

condition but not a sufficient one, since Wq is no longer a convex function of x. To complete 

this topic, consider now a fixed point ar with Kr > 1. We prove below that the directional 

derivative Wq' (ar; y) is independent of the weight wr in this case. Thus, the optimality 

criterion at ar (Wq' (ar; y) > 0 for all y) is unaffected by any increase in wr. We conclude that 

fixed point optimality criteria are not relevant at any destinations ar with power Kr > 1.

Property 7.1.5

Consider model (-.1) where Kr > 1 for some r( {1......n} . Then the directiona 1

derivative of Wq evaluated at the fixed point ar in any direction y is independent of the weight

wr.

Proof:

W'(a ;y) = V w. h'.(a -a. ;y) h w h'(0 ;y).(j r i i r i r r
i *r

But h'r(0 ; y) = 0, by equation (2.4.12) with t = Kr > 1 and h(x) = hr(x). Thus

W'(a ;y) = V w. h’.(a—a. ;y) , (7.1.15Vr r ’ • r •
i xr

which is independent of wr

In general, a direction y can be found such that W'qtar; y) < 0 in (7.1.15). As an

example, assume that k(x — a,) is diferrntiablr at x - ar for all i x r. Then (7.1.15) becomes

W'G(ar;y) =yT- v Vk(a —a.)— i r 1
i *r

where v, is defined in (7.1.12). But

V v Vk(a -a.) = VWG (a ), _. i r i Gr r
i*r

(7.1.16)

where
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W^r(x) = X w.[k(x-a.)] *, (7.1.17)
i*r

and thus,

W'(a ;y) =yT.VW_(a), K>1. (7.1.18)v-r r Or r r
Except for the special case where VWQr(a,) = 0, we can choose y to be the steepest descent 

direction; i.e.,

y = - VWGrOir)/VWGr(ir)ll ’ (7.1.19)
so that

W'G(a,;y)= - HVWG/a^Il < 0 . (7.1.20)

It follows that the fixed point a,, with K, > 1, is never an optimal solution, except for very 

special choices of the weights and geometry of the other destinations.

In Chapter 5 we showed that any optimal solution of the Weber problem in R2 must 

lie in the convex hull of the fixed points, when the distance function is a round norm 

(Property 5.1.4). We also showed that this result holds in RN when the Euclidean norm is 

used (Property 5.1.5). Surprisingly enough these localization results extend to a general class 

of minisum problems, of which model (7.1) is a specific case. The key observation here is that 

an optimal solution of the general problem also solves a related Weber problem.

Theorem 7.1.1

Consider the following minisum model,

n
•i i W () V (k( )) (7.1.21)minimize W (x) = V w g. (k(x — a.)),g — i i *

i = l
where g;(u) is an increasing differentiable function of u in the interval [0, + «), i = 1, n, 

and k is a round norm on R2. Then any optimal solution must lie in the convex hull of the 

fixed points.
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Proof:

Let x* denote an optimal solution. If x* is a fixed point, it is automatically within 

the convex hull. Therefore, we only need to consider the case, x* x at, i = l......n.

If k is a nondifferentiable round norm, the objective function Wg may not be 

differentiable at x*. Hence, in order not to lose generality, we need to consider the directional 

derivative, W'g(x* ; y). The necessary condition for a local minimum must be satisfied at x*;

i.e.,

min W'gO^*;]^))>0. 
y

Using equation (2.4.9), we see that

n
W',(x* ; y) = , w. g'. (kx* —a.))k'(x* — a. ; y), 

i= 1
where g'j(u) = dgj(u)/du, i = 1,..., n. Now let

v. = w. g'. (((((♦-a.)) , i = 1......n.

Since the g; are increasing functions, then g'j(k(x* — a,)) > 0 for all i, so that

v. > 0 , i = 1n .

Combining (7.1.22), (7.1.23) and (7.1.24), it follows that

min
y

n
V v. k'(x*-a. ;y)

1 = 1

(7.1.22)

(7.1.23)

(7.1.24)

(7.1.25)

(7.1.26)
> 0 .

Consider the following Weber problem,

• • • \ V i z « i (7.1.27minimize W(x) = i v. k(x — a.),
i = l

where the v1 are adjusted positive weights defined in (7.1.24). By the inequality (7.1.26), we 

conclude that x* is also an optimal solution of this related problem. But all optimal solutions 

of (7.1.27) must lie in the convex hull of the fixed points, by Property 5.1.4. Hence,

x* € c.h.{ai......an} , ending the proof.
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In model (7.1), g,(u) — uK> with K, > 0, i — l n. Since these are increasing, 

differentiable functions of u in the interval [0, + «>), we immediately obtain the following 

result.

Corollary 7.1.1

Let k be a round norm on R2 in model (7.1). Then all optimal solutions must lie in 

the convex hull of the fixed points.

The preceding theorem and its corollary apply in N-dimensional space when k is 

the Euclidean norm, as shown next.

Theorem 7.1.2

Consider the following minisum model,

n
minimize W (x) = V w g.(f„(x — a.)) (7’1-28,g i ° i 2 1

i = 1
where g;(u) is an increasing differentiable function of u in the interval [0, + «), i = i,...,n, 

and ^2 is the Euclidean norm on RN. Then any optimal solution must lie in the convex hull of 

the fixed points.

Proof:

As in the preceding theorem, we only need to consider the case x* « a,, i = 1......n.

The directional derivative of Wg at x* can be calculated, with the proof proceeding in a similar 

manner as before. However, since the Euclidean norm is a differentiable round norm 

(Property 2.2.4), it follows that Wg is differentiable at x*, and we can use instead the first- 

order necessary condition,

VW (x*) = 0 . 
g

(7.1.29)

But
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n 

VW }(x*) — Y v.VC(xx_a ), g — lx I
i—l

where the v; are adjusted positive weights defined in (7.1.24) with k s } . Thus 

n

v. Vffr* -a.) — 0 .
‘ I

i — 1

It follows that x* is also an optimal solution of the related Weber problem, 

n

minimize W(x) — Y v. €„(x — a.) .
“ I A 1
i—l

Therefore, by Property 5.1.5, x* € c.h.{ai......a^.

The next result is immediately obvious.

Corollary 7.1.2

Let k be the Euclidean norm on RN in model (7.1) (or alternatively, p — 2 in model 

(7.2)). Then all optimal solutions must lie in the convex hull of the fixed points.

The preceding localization theorems require that the g; be increasing differentiable 

functions. This is not restrictive in a practical sense, since we normally expect costs to 

increase with distance travelled, and any function can always be approximated by a 

differentiable one to the degree of accuracy desired. It is also interesting to note that the 

objective function (Wg) does not have to be a convex function of x since the gj are not restricted 

in this manner, and yet all optimal solutions will be in the convex hull. We can go one step 

further, using the same reasoning as in the theorems, to observe that all local minima of Wg 

lie in the convex hull.

7.2 Applications with the fp Norm

In this section, we investigate the mixed-power problem (7.2), where k is now the f p 

norm. Letting Kj — p/sj, s, > 0, i — 1......n . mode } (72) } can be rewritten in the form,

(7.1.30)

(7.1.31)
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y—' pSi
> w [€(x-a.)l 
— i p i
i = 1

minimize W , (x)G

_
n

V w € (x-a.) ; (7.2.1)
i p,Si 1 ■

i=l i
where

1
N •

€ (x — a.) = V | x. — a.. | p
s , s > 0 , (7.2.2)p,s 1 J ij i

j=i

is a distance function on RN first introduced by Love and Morris (1972, 1979) for N — 2.
We initially calculate the first and second-order partial derivatives of the €p s 

function, since these will be required in the subsequent analysis. Using standard calculus, we 

obtain after some re-arranging the following results at points x where the derivatives are

defined:

p( 1 — s)
— € (x) = - [f (x)J 8 sign(x)|x|p-1, j = 1..... N;
ax. p* s P J J

j

(7.2.3)

— p(_l_2s2
— € (x) = - [f (x)J s |x |p"2 (p-l)[f (x)]p+ -(l-s)|x |p .
ax2 p.s s p J p s J J

j

j = 1,..., N ;

and

a2 P2 p*1"—
-------  f (x) = ^-(1 -s)[f (xj 8 signlxJsignlx )|x |p“l|x |p_l
ax.axb s2 p j k jj k 3

j,k = 1 N, j*k.
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From Property 2.3.5, it follows that €p3 is a strictly convex function of x when p > 1 

and p/s > 1 (p —s > 0). However, ifp = 1 and 1/s > 1, then fi^ix) is convex but not strictly so, 

by Property 2.3.6. It is instructive to verify these results using the Hessian matrix of second- 

order derivatives given in (7.2.4) and (7.2.5). This is done below for the two-dimensional case 

(N = 2), thereby extending the convexity proof of El-Shaieb (1978, Theorem 1) for p = 2 to 

general values of p S 1.

We consider first the second-order derivatives d2fp s(x)/dxj2. From (7.2.4), it follows

that

d2
-€w(x) = B.(x).A.(x), 

j
where

p(l-2s)

B.(x) = - [f (x)J s
J s p

> 0 , if x. x 0 ,J
(7.2.6)

and

A. (x) = (p- 1 )[€ (x)]p + - (1 — s)| x. | p
P s J

N
= (p —1) 'S' |x |p+ —(1—s)|x |p 

tTi s J

> 0 , if x. x 0 ,

since p — s > 0. Hence, if p 2 1 and p/s > 1, then

(7.2.7)

(7.2.8)N

The Hessian matrix for N = 2 is given by
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’ a2
-- £ (x)
dx2 P3

*2
f (x) 

6x^2 P3

H2(x ; p, s) =
, (7.2.9)

*2 *2f (x) —X (x)8X2*^ P-s av2 p3^2 J

where

fM(x) =[|x,|p + |x2|’)^.

The determinant of H2 is readily obtained using (7.2.4) and (7.2.5). After a straightforward 

computation, we get

2 2|pl — s)

det(H2) = ^(p-l)(p-sKp(x)] 3 |xt| p-2|x2|p-2 
sJ p

(7.2.10)

For any x with xi x 0 and x2 * 0, it follows that

det(H2) > 0 , if p > 1 , (7■r.11

since p — s > 0, and

det(H2) = 0 , if p = 1 . (7-2.12

From (7.2.8), (7.2.11) and the first-order differentiability of fps(x) for all x

(Property 2.4.2), we conclude that fps is a strictly convex function of x if p > 1 and p/s > 1.

However, since detfH^ = 0 if p = 1, it follows that €i 3 is convex but not in a strict sense, if 

1/s > 1. Thus, Properties 2.3.5 and 2.3.6 are verified by means of the Hessian matrix for the 

case where k is the f p norm on R2.

If p > 1 (and finite), and the location problem is in R2, we can apply Corollary 7.1.1 

to obtain the result that any optimal solution of model (7.2) must lie in the convex hull of the 

fixed points. Consider now the case where p = 1, so that the cost components contain 

rectangular distances raised to a power. Using (7.2.1) and (7.2.2), the model becomes

n
vminimZe W„(x) = ' w.Lr 1
i = l

(7.2.13)

where
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N Vs
(7.2.14)

, s > 0 .€l,s(x) = Zlxjl
j=l

We shall soon see that if s, — 1 (or K, S 1) for all i with at least one of these inequalities 

satisfied strictly, then any optimal solution must occur at one of a finite number of 

intersection or fixed point locations.

The first and second-order partial derivatives of - , , are obtained directly from

(7.2.3), (7.2.4) and (7.2.5) with p = 1. Thus, at points x where the derivatives are defined we

have

(1-s)

~ €1 Jx) = — [€ , (x)] s sign(x ,) , j = l..... N;
dx. 13 S 1 J

J

9 (1 -2s)
a- a-)
- = — [€1(X)] s ■ j = 1....... N;
ox. s

J

and

0 (1 —2s)
o (1—S) T-

-------- € (x) = ——— [€ (x)] sign(x.)sign(x ) ,
<9x <3x. 1,s « 1 J Kj k »

(7.2.15)

(7.2.16)

(7.2.17)

j,k=l,...,N, j*k.

It is important to note that the first partial derivative in (7.2.15) is undefined on the 

hyperplane xj = 0, since sign(xj) is undefined here. (An exception occurs at x = 0 when s < 1, 

in which case a€l>s(0)/8xj = 0.) Hence, higher-order derivatives in which d/dxj appears at least 

once are also undefined on the hyperplane xj = 0.

We are now ready to prove the following useful result.
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Property 7.2.1

Consider the minisum problem given in (7.2.13), where the € j s are distance 

functions on RN. If s, > 1 for all i with at least one of these inequalities satisfied strictly, then 

any optimal solution must occur at an intersection point or a fixed point.

Proof:

Suppose that a local minimum occurs at an x® = (x^...... xn°)T which is not an

intersection point or a fixed point. Then one or more indices r € {1,..., N} exist such that

x° * a. , i = 1,..., n . (7.2.18)r ir ’ ’
Hence, the objective function Wg is infinitely differentiable in the xr direction at x®, and 

furthermore using (7.2.16),

(1 — 2s.)
n82 a V-

—w _ (xo) = y w
c i-i

<0,

(1—s)
1

—
I

[f/x'-a . )1

(7.2.19)

since s, S 1, V i, with at least one s, > 1. This implies that Wq is strictly concave in the xr

direction at x®, which contradicts the supposition that x0 is a local minimum. We conclude 

that all local minima of Wq must occur at an intersection point or fixed point, and hence any 

global solution occurs here as well.

The key observation in the preceding proof is that for any x which is not an 

intersection or fixed point, the objective function is infinitely differentiable in at least one 

direction. This concept is extendable to the minisum problem involving functions of a general 

block norm. In Theorem 6 of Thisse, Ward and Wendell (1984), a different method is used to 

prove that an optimal solution can always be found at an intersection or fixed point, when the 

cost components being summed are non-decreasing concave functions of a block norm, and 
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N = 2. If in addition these functions are strictly concave, the authors show that the optimal 

solutions can only occur at the fixed points and the intersection points contained in the convex 

hull of the fixed points.

Suppose now that 0 < p < 1, so that the objective function in (7.2.1) is a weighted 

sum of hyper-rectilinear distances raised to different powers. Juel and Love (1985) prove that 

for the standard Weber problem with hyper-rectilinear distances, an optimal solution always 

occurs at an intersection or fixed point. They also show that the optimal location may not lie 

within the convex hull of the existing facilities, even when N — 2. We extend this inter

section point property to the mixed-power problem, for a certain range of values of the 

parameters sj. The proof is analogous to the one for Property 7.2.1.

Property 7.2.2

Consider the minisum problem in (7.2.1), where the €piSi are distance functions on 

RN. If 0 < p < 1} and Si > p for all i, with at least one of the s, > p, then any optimal solution 

must coincide with an intersection point or a fixed point.

Proof:

Suppose that a local minimum occurs at an x° = (xi<°..., xx°)T which is not an 

intersection point or a fixed point. Then xr° * ajr, i — 1..., n, for at least one r C {1,..., N}. It 

follows that Wq is infinitely differentiable at x° in the xr direction, and using (7.2.4) and

(7.2.7),
pl-2s.)

4 n w P » ' x
— wc(x°) = V — [<€(x°-a.)] 1 lx'-arl' Ar(x“a.)>
(Jx" i = 1 Si

(7.2.20)

where
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A (xp — a.) — ir i
(p-s )
---------------- [x° - a. j p

- 1 r irS.
i

(p-s.)
-------— |x° — a. |s. r lr1

1

(p < 1)

o, i—l...,N (s. > p) . (7.2.21)
Since one or more of the s, > p, there exists at least one q € {1...... n} such that A^xo- aq} <t 0.

£

5

It follows that

a2
— W_(x°) < 0, 
ax*r

and using the same reasoning as in the preceding property, we conclude that any optimal 

(7.2.22)

solution occurs at an intersection point or fixed point.

If Si — p, i — 1,..., n, we return to the standard Weber problem. Note that in this

case,

A.r(^o--ai) — (p-1) i—1.... n. (7.2_23)
t*r

For p < 1, we have Air(x° — q,) S 0 for all i. Furthermore, except for the trivial problem where 

the fixed points all lie on a straight line parallel to the xr-axis, there must be again at least 

one q€ {1,..., n} such that Aqr(x° — aq) < 0. Hence, (7.2.22) applies here as well, and we 

conclude the following important result.

Property 7.2.3

If Sj — p, V i, 0 < p < 1, and the Q; do not all lie on a straight line parallel to one of 

the axes, then any optimal solution of the minisum problem in (7.2.1) coincides with an 

intersection point or fixed point.
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Juel and Love (1985, Property 3) show that an optimal location for the preceding 

problem can always be found at an intersection or fixed point. Property 7.2.3 gives a stronger 

result; we see now that an optimal solution cannot exist elsewhere.



APPENDIX A 

(To be read in conjunction with Property 3.2.4)

Property A.l

Let

2H2(p) + H'(p) (A1
G(p) = —--------------- , (A 1

Hz(p) + H'(p)

where H(p) is defined in equation (3.2.16), with fi and f2 denoting positive constants. Then

G(p) is a decreasing function of p in the interval (0, + of).

Proof:

To prove that G(p) is a decreasing function of p € (0, + °°), it suffices to show that

G'(p) < 0. Rewriting (A.l) in the form,

H2
G(p) = 1 + — ,

h2+ H'

we obtain using standard calculus,

G'(p) =
2HH' h2

h2+ H' (H2+ H')2
• (2HH * + H")

2H(H')2 — H2H’ (A.2)

(H2 4- H')2

Since fi and f2 are both positive constants, it immediately follows from (3.2.16) that

H(p) <0, V pf(0, +> . (A3)

Thus, G'(p) < 0 if, and only if,
2 (A.4)

2(H')2 - HH" > 0 .
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have

where

Without loss in generality, assume that fi S f2. Returning to equation (3.2.16), we

1

l+up

0 < u = f2/f1 < 1 . 

Letting

4>(p) : = 1 + up , 

and noting that

<>'(p) = uP fn u , 

equation (A.5) can be written as

€n 4)
2 P

Again using standard calculus, we obtain

H + 1
— 0' • 
p<t>

H'
2fn

V
24>'
2.

P 4)

and

H"
6€n 4)

4 
P

+ 6
—p34>

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)
11 z -—(<t»r+— .

P4>2 p4>
n2

p4>

+ 3 2 3— (4,2 _ —
2.2 ’ 2, T 

P <t> Pf

3 2 3 1- —4>'<r+ ——4>'"p4>“ p4> pO (A.U)

With equations (A. 10) and (A.ll), the left-hand side of (A.4) becomes after some

simplification and re-arranging:

5
2(H')2 - HH" = . S. ,

i = l
(A.12)

where
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and

(<t>')2r

3$
3,2 

P 4>
+

2(4>')3 €nt>

4)'<t>"' 4>"€,nK>
2,2 + 3.

P <t> P <t>

2(€n 4>)2

P6

4$> fnt> 
P%

4
2(<t>')2

4,2 
P <t>

Recalling equations (A.7) and (A.8), and also noting that

</ = uP(€n u)2 . 4>" = uP(€n u)3 ,

we can rewrite the Si in terms of p and the constant u as follows:

5uP

1 p3(l + uP)3

(1 + fn(l + UP) (fn u)2

P
— up(fn u33

and

u2p(fnu)4(2 + i^f^ 

p2(l+^i/)3 ’

u(fn(l 4- uP^)(?n u)3(3 + uP)

p3(l+uP)3

uP(€n u)3 

p2(l + uP)2

(1 + uP) €n(l + uP
— uP fn u +--------------------

P

2_
4

P

2 
fnH+uP uPfnu

P l+uP

Since 0 < u < 1 from relation (A.6), therefore fnu < 0 and fn(l + uP) > 0

(A. 13a)

(A.13b)

(A.13c)

(A.13d)

(A.13e)

(A.14)

(A.15a)

(A.15b)

(A.15c)

(A.15d)

(A.15e)

Hence, it

is readily seen that,
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S^O, j = l,2,3,

s4so,
and

S. >0. o
In order to prove that

S5 . S. >0 ,
1 = 1 1

it is thus sufficient to show that

S4 , S. > 0 .1 = 1 i

After a series of straightforward algebraic steps, we obtain

(A.16a)

(A. 16b)

(A.16c)

S9+S„ + S , = —----------- [p u2p(fn u)4 — (u2p-up)(fn u)3 fn(l +up)] .
2 3 4 p3(l+uP)3

Then, using the inequality,

(A.17)

x > fn(l 4- x) , V x > 0 ,
and deleting non—negative terms, it follows that

u2P(fnu)3 

p3(l +uP)3 

Combining (A.15a) and (A.18), we now see that

5upfn(l+upP)(n u)2 4u2P(fnu)3

p4((+uu)2 p^K-u^3

2> 0 .

Combining (A. 16c) and (A. 19) gives

S5 . S. >0 .
i = l i

Thus, the inequality (A.4) is satisfied, ending the proof.

(A.18)

(A.19)
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